388 research outputs found

    Group-In: Group Inference from Wireless Traces of Mobile Devices

    Full text link
    This paper proposes Group-In, a wireless scanning system to detect static or mobile people groups in indoor or outdoor environments. Group-In collects only wireless traces from the Bluetooth-enabled mobile devices for group inference. The key problem addressed in this work is to detect not only static groups but also moving groups with a multi-phased approach based only noisy wireless Received Signal Strength Indicator (RSSIs) observed by multiple wireless scanners without localization support. We propose new centralized and decentralized schemes to process the sparse and noisy wireless data, and leverage graph-based clustering techniques for group detection from short-term and long-term aspects. Group-In provides two outcomes: 1) group detection in short time intervals such as two minutes and 2) long-term linkages such as a month. To verify the performance, we conduct two experimental studies. One consists of 27 controlled scenarios in the lab environments. The other is a real-world scenario where we place Bluetooth scanners in an office environment, and employees carry beacons for more than one month. Both the controlled and real-world experiments result in high accuracy group detection in short time intervals and sampling liberties in terms of the Jaccard index and pairwise similarity coefficient.Comment: This work has been funded by the EU Horizon 2020 Programme under Grant Agreements No. 731993 AUTOPILOT and No.871249 LOCUS projects. The content of this paper does not reflect the official opinion of the EU. Responsibility for the information and views expressed therein lies entirely with the authors. Proc. of ACM/IEEE IPSN'20, 202

    Intelligent evacuation management systems: A review

    Get PDF
    Crowd and evacuation management have been active areas of research and study in the recent past. Various developments continue to take place in the process of efficient evacuation of crowds in mass gatherings. This article is intended to provide a review of intelligent evacuation management systems covering the aspects of crowd monitoring, crowd disaster prediction, evacuation modelling, and evacuation path guidelines. Soft computing approaches play a vital role in the design and deployment of intelligent evacuation applications pertaining to crowd control management. While the review deals with video and nonvideo based aspects of crowd monitoring and crowd disaster prediction, evacuation techniques are reviewed via the theme of soft computing, along with a brief review on the evacuation navigation path. We believe that this review will assist researchers in developing reliable automated evacuation systems that will help in ensuring the safety of the evacuees especially during emergency evacuation scenarios

    Mission-Critical Communications from LMR to 5G: a Technology Assessment approach for Smart City scenarios

    Get PDF
    Radiocommunication networks are one of the main support tools of agencies that carry out actions in Public Protection & Disaster Relief (PPDR), and it is necessary to update these communications technologies from narrowband to broadband and integrated to information technologies to have an effective action before society. Understanding that this problem includes, besides the technical aspects, issues related to the social context to which these systems are inserted, this study aims to construct scenarios, using several sources of information, that helps the managers of the PPDR agencies in the technological decisionmaking process of the Digital Transformation of Mission-Critical Communication considering Smart City scenarios, guided by the methods and approaches of Technological Assessment (TA).As redes de radiocomunicações são uma das principais ferramentas de apoio dos órgãos que realizam ações de Proteção Pública e Socorro em desastres, sendo necessário atualizar essas tecnologias de comunicação de banda estreita para banda larga, e integra- las às tecnologias de informação, para se ter uma atuação efetiva perante a sociedade . Entendendo que esse problema inclui, além dos aspectos técnicos, questões relacionadas ao contexto social ao qual esses sistemas estão inseridos, este estudo tem por objetivo a construção de cenários, utilizando diversas fontes de informação que auxiliem os gestores destas agências na tomada de decisão tecnológica que envolve a transformação digital da Comunicação de Missão Crítica considerando cenários de Cidades Inteligentes, guiado pelos métodos e abordagens de Avaliação Tecnológica (TA)

    Beyond heritage science: A review

    Get PDF
    Heritage science is an established and thriving field of enquiry. Initially considered as inherently cross-disciplinary, encompassing both the needs of conservators and practitioners and the high-quality evidence produced by scientists, heritage science has, through its expansion in recent years, formed a discipline in its own right. Here, we examine how heritage science can, and to an extent has, moved beyond the straightforward scientific analysis of historical materials and artefacts through an exploration of heritage science’s interactions with four key themes: (i) historical and archival research, (ii) conservation practice, (iii) policy at governmental, organisational and institutional levels, and (iv) a view to how new technologies, such as machine learning and artificial intelligence, can shape the future of heritage science. Much of the review narrative is framed via the analysis of UK-based case studies; however, they deal with issues that are international in nature (universal) and therefore transcend the UK context. Taken together, we demonstrate that heritage science as a discipline is capable of directly instigating or (re-)framing new areas or avenues of research, as well as enhancing and feeding into existing research questions, and has adapted and evolved along with emerging technologies and funding opportunities

    Beyond Heritage Science: A Review

    Get PDF
    Heritage science is an established and thriving field of enquiry. Initially considered as inherently cross-disciplinary, encompassing both the needs of conservators and practitioners and the high-quality evidence produced by scientists, heritage science has, through its expansion in recent years, formed a discipline in its own right. Here, we examine how heritage science can, and to an extent has, moved beyond the straightforward scientific analysis of historical materials and artefacts through an exploration of heritage science’s interactions with four key themes: (i) historical and archival research, (ii) conservation practice, (iii) policy at governmental, organisational and institutional levels, and (iv) a view to how new technologies, such as machine learning and artificial intelligence, can shape the future of heritage science. Much of the review narrative is framed via the analysis of UK-based case studies; however, they deal with issues that are international in nature (universal) and therefore transcend the UK context. Taken together, we demonstrate that heritage science as a discipline is capable of directly instigating or (re-)framing new areas or avenues of research, as well as enhancing and feeding into existing research questions, and has adapted and evolved along with emerging technologies and funding opportunities

    WSN based sensing model for smart crowd movement with identification: a conceptual model

    Get PDF
    With the advancement of IT and increase in world population rate, Crowd Management (CM) has become a subject undergoing intense study among researchers. Technology provides fast and easily available means of transport and, up-to-date information access to the people that causes crowd at public places. This imposes a big challenge for crowd safety and security at public places such as airports, railway stations and check points. For example, the crowd of pilgrims during Hajj and Ummrah while crossing the borders of Makkah, Kingdom of Saudi Arabia. To minimize the risk of such crowd safety and security identification and verification of people is necessary which causes unwanted increment in processing time. It is observed that managing crowd during specific time period (Hajj and Ummrah) with identification and verification is a challenge. At present, many advanced technologies such as Internet of Things (IoT) are being used to solve the crowed management problem with minimal processing time. In this paper, we have presented a Wireless Sensor Network (WSN) based conceptual model for smart crowd movement with minimal processing time for people identification. This handles the crowd by forming groups and provides proactive support to handle them in organized manner. As a result, crowd can be managed to move safely from one place to another with group identification. The group identification minimizes the processing time and move the crowd in smart way
    corecore