107,712 research outputs found

    Parallel Load Balancing Strategies for Ensembles of Stochastic Biochemical Simulations

    Get PDF
    The evolution of biochemical systems where some chemical species are present with only a small number of molecules, is strongly influenced by discrete and stochastic effects that cannot be accurately captured by continuous and deterministic models. The budding yeast cell cycle provides an excellent example of the need to account for stochastic effects in biochemical reactions. To obtain statistics of the cell cycle progression, a stochastic simulation algorithm must be run thousands of times with different initial conditions and parameter values. In order to manage the computational expense involved, the large ensemble of runs needs to be executed in parallel. The CPU time for each individual task is unknown before execution, so a simple strategy of assigning an equal number of tasks per processor can lead to considerable work imbalances and loss of parallel efficiency. Moreover, deterministic analysis approaches are ill suited for assessing the effectiveness of load balancing algorithms in this context. Biological models often require stochastic simulation. Since generating an ensemble of simulation results is computationally intensive, it is important to make efficient use of computer resources. This paper presents a new probabilistic framework to analyze the performance of dynamic load balancing algorithms when applied to large ensembles of stochastic biochemical simulations. Two particular load balancing strategies (point-to-point and all-redistribution) are discussed in detail. Simulation results with a stochastic budding yeast cell cycle model confirm the theoretical analysis. While this work is motivated by cell cycle modeling, the proposed analysis framework is general and can be directly applied to any ensemble simulation of biological systems where many tasks are mapped onto each processor, and where the individual compute times vary considerably among tasks

    Engineering simulations for cancer systems biology

    Get PDF
    Computer simulation can be used to inform in vivo and in vitro experimentation, enabling rapid, low-cost hypothesis generation and directing experimental design in order to test those hypotheses. In this way, in silico models become a scientific instrument for investigation, and so should be developed to high standards, be carefully calibrated and their findings presented in such that they may be reproduced. Here, we outline a framework that supports developing simulations as scientific instruments, and we select cancer systems biology as an exemplar domain, with a particular focus on cellular signalling models. We consider the challenges of lack of data, incomplete knowledge and modelling in the context of a rapidly changing knowledge base. Our framework comprises a process to clearly separate scientific and engineering concerns in model and simulation development, and an argumentation approach to documenting models for rigorous way of recording assumptions and knowledge gaps. We propose interactive, dynamic visualisation tools to enable the biological community to interact with cellular signalling models directly for experimental design. There is a mismatch in scale between these cellular models and tissue structures that are affected by tumours, and bridging this gap requires substantial computational resource. We present concurrent programming as a technology to link scales without losing important details through model simplification. We discuss the value of combining this technology, interactive visualisation, argumentation and model separation to support development of multi-scale models that represent biologically plausible cells arranged in biologically plausible structures that model cell behaviour, interactions and response to therapeutic interventions

    Modeling reaction-diffusion of molecules on surface and in volume spaces with the E-Cell System

    Get PDF
    The-Cell System is an advanced open-source simulation platform to model and analyze biochemical reaction networks. The present algorithm modules of the system assume that the reacting molecules are all homogeneously distributed in the reaction compartments, which is not the case in some cellular processes. The MinCDE system in Escherichia coli, for example, relies on intricately controlled reaction, diffusion and localization of Min proteins on the membrane and in the cytoplasm compartments to inhibit cell division at the poles of the rod-shaped cell. To model such processes, we have extended the E-Cell System to support reaction-diffusion and dynamic localization of molecules in volume and surface compartments. We evaluated our method by modeling the in vivo dynamics of MinD and MinE and comparing their simulated localization patterns to the observations in experiments and previous computational work. In both cases, our simulation results are in good agreement

    Horizontal DNA transfer mechanisms of bacteria as weapons of intragenomic conflict

    Get PDF
    Horizontal DNA transfer (HDT) is a pervasive mechanism of diversification in many microbial species, but its primary evolutionary role remains controversial. Much recent research has emphasised the adaptive benefit of acquiring novel DNA, but here we argue instead that intragenomic conflict provides a coherent framework for understanding the evolutionary origins of HDT. To test this hypothesis, we developed a mathematical model of a clonally descended bacterial population undergoing HDT through transmission of mobile genetic elements (MGEs) and genetic transformation. Including the known bias of transformation toward the acquisition of shorter alleles into the model suggested it could be an effective means of counteracting the spread of MGEs. Both constitutive and transient competence for transformation were found to provide an effective defence against parasitic MGEs; transient competence could also be effective at permitting the selective spread of MGEs conferring a benefit on their host bacterium. The coordination of transient competence with cell-cell killing, observed in multiple species, was found to result in synergistic blocking of MGE transmission through releasing genomic DNA for homologous recombination while simultaneously reducing horizontal MGE spread by lowering the local cell density. To evaluate the feasibility of the functions suggested by the modelling analysis, we analysed genomic data from longitudinal sampling of individuals carrying Streptococcus pneumoniae. This revealed the frequent within-host coexistence of clonally descended cells that differed in their MGE infection status, a necessary condition for the proposed mechanism to operate. Additionally, we found multiple examples of MGEs inhibiting transformation through integrative disruption of genes encoding the competence machinery across many species, providing evidence of an ongoing "arms race." Reduced rates of transformation have also been observed in cells infected by MGEs that reduce the concentration of extracellular DNA through secretion of DNases. Simulations predicted that either mechanism of limiting transformation would benefit individual MGEs, but also that this tactic's effectiveness was limited by competition with other MGEs coinfecting the same cell. A further observed behaviour we hypothesised to reduce elimination by transformation was MGE activation when cells become competent. Our model predicted that this response was effective at counteracting transformation independently of competing MGEs. Therefore, this framework is able to explain both common properties of MGEs, and the seemingly paradoxical bacterial behaviours of transformation and cell-cell killing within clonally related populations, as the consequences of intragenomic conflict between self-replicating chromosomes and parasitic MGEs. The antagonistic nature of the different mechanisms of HDT over short timescales means their contribution to bacterial evolution is likely to be substantially greater than previously appreciated

    Detailed simulations of cell biology with Smoldyn 2.1.

    Get PDF
    Most cellular processes depend on intracellular locations and random collisions of individual protein molecules. To model these processes, we developed algorithms to simulate the diffusion, membrane interactions, and reactions of individual molecules, and implemented these in the Smoldyn program. Compared to the popular MCell and ChemCell simulators, we found that Smoldyn was in many cases more accurate, more computationally efficient, and easier to use. Using Smoldyn, we modeled pheromone response system signaling among yeast cells of opposite mating type. This model showed that secreted Bar1 protease might help a cell identify the fittest mating partner by sharpening the pheromone concentration gradient. This model involved about 200,000 protein molecules, about 7000 cubic microns of volume, and about 75 minutes of simulated time; it took about 10 hours to run. Over the next several years, as faster computers become available, Smoldyn will allow researchers to model and explore systems the size of entire bacterial and smaller eukaryotic cells

    MOLNs: A cloud platform for interactive, reproducible and scalable spatial stochastic computational experiments in systems biology using PyURDME

    Full text link
    Computational experiments using spatial stochastic simulations have led to important new biological insights, but they require specialized tools, a complex software stack, as well as large and scalable compute and data analysis resources due to the large computational cost associated with Monte Carlo computational workflows. The complexity of setting up and managing a large-scale distributed computation environment to support productive and reproducible modeling can be prohibitive for practitioners in systems biology. This results in a barrier to the adoption of spatial stochastic simulation tools, effectively limiting the type of biological questions addressed by quantitative modeling. In this paper, we present PyURDME, a new, user-friendly spatial modeling and simulation package, and MOLNs, a cloud computing appliance for distributed simulation of stochastic reaction-diffusion models. MOLNs is based on IPython and provides an interactive programming platform for development of sharable and reproducible distributed parallel computational experiments

    An agent-based model for mRNA export through the nuclear pore complex.

    Get PDF
    mRNA export from the nucleus is an essential step in the expression of every protein- coding gene in eukaryotes, but many aspects of this process remain poorly understood. The density of export receptors that must bind an mRNA to ensure export, as well as how receptor distribution affects transport dynamics, is not known. It is also unclear whether the rate-limiting step for transport occurs at the nuclear basket, in the central channel, or on the cytoplasmic face of the nuclear pore complex. Using previously published biophysical and biochemical parameters of mRNA export, we implemented a three-dimensional, coarse-grained, agent-based model of mRNA export in the nanosecond regime to gain insight into these issues. On running the model, we observed that mRNA export is sensitive to the number and distribution of transport receptors coating the mRNA and that there is a rate-limiting step in the nuclear basket that is potentially associated with the mRNA reconfiguring itself to thread into the central channel. Of note, our results also suggest that using a single location-monitoring mRNA label may be insufficient to correctly capture the time regime of mRNA threading through the pore and subsequent transport. This has implications for future experimental design to study mRNA transport dynamics

    Stochastic noise and synchronisation during Dictyostelium aggregation make cAMP oscillations robust

    Get PDF
    The molecular network, which underlies the oscillations in the concentration of adenosine 3′, 5′-cyclic monophosphate (cAMP) during the aggregation phase of starvation-induced development in Dictyostelium discoideum, achieves remarkable levels of robust performance in the face of environmental variations and cellular heterogeneity. However, the reasons for this robustness remain poorly understood. Tools and concepts from the field of control engineering provide powerful methods for uncovering the mechanisms underlying the robustness of these types of biological systems. Using such methods, two important factors contributing to the robustness of cAMP oscillations in Dictyostelium are revealed. First, stochastic fluctuations in the molecular interactions of the intracellular network, arising from random or directional noise and biological sources, play an important role in preserving stable oscillations in the face of variations in the kinetics of the network. Second, synchronisation of the aggregating cells through the diffusion of extracellular cAMP appears to be a key factor in ensuring robustness to cell-to-cell variations of the oscillatory waves of cAMP observed in Dictyostelium cell cultures. The conclusions have important general implications for the robustness of oscillating biomolecular networks (whether seen at organism, cell, or intracellular levels and including circadian clocks or Ca2+ oscillations, etc.), and suggest that such analysis can be conducted more reliably by using models including stochastic simulations, even in the case where molecular concentrations are very high
    corecore