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Abstract—The E-Cell System is an advanced open-source
simulation platform to model and analyze biochemical reaction
networks. The present algorithm modules of the system assume
that the reacting molecules are all homogeneously distributed in
the reaction compartments, which is not the case in some cellular
processes. The MinCDE system in Escherichia coli, for example,
relies on intricately controlled reaction, diffusion and localiza-
tion of Min proteins on the membrane and in the cytoplasm
compartments to inhibit cell division at the poles of the rod-
shaped cell. To model such processes, we have extended the E-Cell
System to support reaction-diffusion and dynamic localization of
molecules in volume and surface compartments. We evaluated
our method by modeling the in vivo dynamics of MinD and
MinE and comparing their simulated localization patterns to the
observations in experiments and previous computational work.
In both cases, our simulation results are in good agreement.

Keywords—Ilattice, hexagonal close-packed, systems biology,
Monte Carlo, simulation, FtsZ, MinC

I. INTRODUCTION

HE E-Cell System is one of the well known and advanced

open-source simulation platforms to model and analyze
both small- and large-scale biochemical reaction networks in
living cells [1]. The driver algorithm of the E-Cell System
(version 3) supports concurrent executions of multiple simula-
tion algorithms, whose time steps are independently advanced
in continuous-time, discrete-time or discrete-event manner
at varying timescales [2]. Multiple sessions of simulations,
usually required for estimation of reaction parameters and to
obtain the averaged results from stochastic reactions, can be
simultaneously executed with its distributed computing utility
[3], [4]. Simulation runs can be automated and modified ex
tempore with Python scripting, while new simulation algo-
rithms can be developed using C++ and incorporated into the
system as plug in modules.

Recent advances in molecular biology suggest that modeling
reaction networks alone is not sufficient to accurately repro-
duce certain important cellular processes such as cell division
[5] and gene expression [6]. The dynamic location, crowding
and diffusion of molecules in cellular compartments play
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crucial roles in such processes [7]. Molecular crowding can
cause some subspace within a compartment to be inaccessible
to reacting molecules because it is occupied by other macro-
molecules. This volume exclusion effect can reduce molecular
diffusion and alter reaction kinetics [8].

In the rod-shaped bacterial cell Escherichia coli, the division
site is restricted to the midcell by nucleoid occlusion and
the pole-to-pole oscillation of the proteins MinC, MinD and
MinE, collectively called the MinCDE system (reviewed in
[5]). The periodic oscillation is established because of intri-
cately controlled reaction and diffusion of the proteins in the
cytoplasm and the inner membrane. A simplified model of the
system is illustrated in Figure I, which includes only MinD
and MinE since MinC is not necessary for the oscillation.
Division at the midpoint of the cell is important to ensure
equal distribution of cell contents to the two daughter cells.
The MinCDE molecules, found in low copies in the cytoplasm
and on the inner cell membrane compartments, are not evenly
distributed temporally. As a result, the rate of reactions, which
is determined by the frequency of collision between reacting
molecules, is influenced by diffusion and physical localiza-
tion within the compartments. The molecules undergo sur-
face (two-dimensional space) and volume (three-dimensional
space) reaction-diffusion (RD) on the cell membrane and in
the cytoplasm respectively.

Current algorithm modules of the E-Cell System assume
that reactions take place between molecules that are uniformly
distributed within the reaction compartment. It is also not
possible to specify the physical location of each molecule.
In this paper, we describe the extension of the E-Cell System
to model the spatial localization and RD of molecules. Out
of the several available methods (see Table I), ours is the
only one that can account for the important implications of
volume exclusion by molecules and RD in both volume and
surface spaces. To evaluate the new approach, we compare
the simulation results of the MinDE system with the results
obtained from experiments and previous computational work.

II. METHODOLOGY

In this section, we describe the proposed RD scheme before
providing the details of the implementation with the E-Cell
System.
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Figure 1. The simplified oscillation model of the MinDE sytem in Escherichia coli, adapted from [9]. MinC is not represented because it is not essential for
the oscillation. Arrows depict the five basic reactions in the model. In the first reaction, MinD opp exchanges nucleotide to become MinD poTp with the rate
k1. In the form of MinD o1p, the molecule can bind to the membrane either autonomously with the rate k2 or cooperatively with a another membrane-bound
MinD%* Arp at the rate k3. Cytosolic MinE is also recruited to the membrane by MinD’{}p with the rate k4 to form MinE.MinD{p. The ATPase function
of MinD is activated by MinE in the MinE.MinD{*,p, complex and consequently, MinD o1 is converted to MinDapp that cannot stay bound to the
membrane. This is represented by the fifth reaction, in which the MinE.MinD{}., complex dissociates from the membrane at the rate k5 and forms the

cytosolic monomers MinE and MinDapp.

Table 1

COMPARISON OF REACTION-DIFFUSION MODELING METHODS
Name Volume Volume | Surface

Exclusion RD RD
MCell [10] - + +
MesoRD [11], [12] - + +
Smoldyn [13] + +
GMP [14] - + +
GFRD [15] + + -
CyberCell [16] + + -
GridCell [17] + + -
E-Cell (this work) + + +

A. The Reaction-Diffusion Scheme

Molecules diffuse freely in space by making random walks
[18]. According to the Collins and Kimball theory [19], when
two reactive molecules come into contact (i.e., collide), they
react with a certain probability p, which is related to the reac-
tion rate constant k. To avoid molecule search when checking
for collisions, we have discretized the space into hexagonal
close-packed lattice [20]. Each sphere voxel in the lattice has
12 adjoining neighbor voxels. To account for volume exclusion
and molecular crowding, each voxel can be occupied by a
single molecule. The radius of the voxels is set according to
the size of diffusing molecules. A molecule can walk to a
randomly selected neighbor voxel in an interval 74 following
the Einstein-Smoluchowski’s expression for diffusion

(r?)
Pl (1

where <7"2> and D are the mean squared displacement and
the diffusion coefficient of the molecule respectively, and
I = 2 for surface diffusion while for volume diffusion,
[ = 3. Since in the interval 74 the molecule walks to a
neighbor voxel, the mean squared displacement is given by
the lattice spacing. We have derived the spacing for surface
and volume diffusion, and the connection between p and k

Td =

in [21]. At the destination voxel, the walking molecule may
collide with another molecule that is a reactant pair and react
if an independent random number drawn from a unit uniform
distribution is less than p.

B. E-Cell System Data Structure and Driver Algorithm

The specific details of the E-Cell System data structure,
driver and integration algorithms have previously been de-
scribed [2]. We briefly provide the data structure and the
driver algorithm here to characterize the implementation of
our algorithm modules. We adopt the notations in [2] and
capitalize the class names.

A reaction network system is represented in E-Cell as a
Model, specified by the user in E-Cell Model description
language (EML), a subset of XML. Figure 2 shows the
data structure of the Model class, which contains a list of
state Variables and Steppers. The Stepper class is the main
algorithm module of the Model and it operates with a set of
Processes, the current local time 7 and the step interval AT,
a step method that advances the Stepper in time either in a
continuous-time, discrete-time or discrete-event fashion, and
an interruption method that allows other Steppers to notify the
Stepper when they modify a read Variable of the Stepper. The
Process is a lower level algorithm module that directly reads or
modifies the state Variables according to the algorithm using
a transition-function. Here, the instances of the state Variables
are accessed by dereferencing the Variable References.

Central to the E-Cell driver algorithm is a priority queue
that arranges the Steppers according to the scheduled time of
execution, given as 7 + A7. At initialization, the global time
t and the local time 7 of Steppers are reset. Next, the step
method of the Stepper S; with the minimum scheduled time
is called and the global time is updated to t = 7, + Am;.
The step method also sets the local time to 7; = 7; + A7; and
calls the transition function of its Processes to update the state
Variables. The method may also update the next step size Ar;
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and call the interruption method of other Steppers whose read
Variable has been modified. The Stepper S; is rescheduled
in the priority queue according to the new scheduled time.
The same procedure is repeated for the Stepper with the
next earliest scheduled time in the priority queue until the

simulation is ended.
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Figure 2. The data structure of the E-Cell Model.

C. Implementation of Reaction-Diffusion with E-Cell

We have implemented the proposed reaction-diffusion
scheme using the E-Cell System by creating two basic algo-
rithm modules — a Diffusion Process and a Reaction Process.
The molecules are represented as the state Variables of the
Model. For each diffusion coefficient in simulation, a Diffusion
Process object is created to walk the molecules. Likewise,
a Reaction Process object is instantiated for every reaction
involving a diffusing molecule. A discrete-event Stepper ad-
vances the Diffusion Process in time and handles the lattice
structure and the physical location of molecules. The transition
function of the Diffusion Process walks each molecule to a
randomly selected adjoining voxel in a diffusion step interval.
When a molecule collides with a reactant pair, the transition
function of the corresponding Reaction Process is called. If the
reactive collision probability is met, the Process removes the
collided molecules and replaces them with one or two product
molecules, as specified by the reaction.

III. APPLICATION RESULTS

We modeled the periodic oscillatory behavior of molecules
in the MinDE system to evaluate our approach because it
involves both surface and volume RD, and spatio-temporal
localization of molecules. We describe the computational
model of the sytem before presenting the results of simulation.

A. The MinDE Model

In Escherichia coli, the FtsZ membrane protein initiates cell
division physically by polymerizing and constricting annularly
at the middle of the long axis of the rod-shaped cell [5], [22].
Although the protein can diffuse over the entire membrane,
nucleoid occlusion prevents the polymerization from taking
place over the nucleoid mass, leaving only the midcell and the
two cell poles as viable locations for polymerization [23], [24],
[25]. Nonetheless, because of the inhibition by MinC proteins
at the poles [26], [27], the polymerization can only take place
at the midcell. During the cell cycle, MinD with the help of
MinE forms polar zones which oscillate from one pole to the
other. Since MinC piggybacks on MinD and the oscillation
occurs on the rod-shaped cell with some dwelling time at the
poles, the time-averaged concentration of MinC at the middle
of the cell is kept low, permitting FtsZ to polymerize.

According to the model by Huang et al. [9] (illustrated in
Figure 1) cytosolic MinD in the ATP-bound form (MinD arp)
binds to the membrane either cooperatively with another
membrane bound MinD (MinD{rp) or independently. MinE
from the cytoplasm inhibits MinD{7rp by first associating with
it and setting off the ATPase function of MinD that hydrolyzes
the bound ATP to ADP. The membrane-bound MinE and the
ADP-bound form of MinD (MinDapp) then dissociate to the
cytoplasm. In the cytoplasm, MinD spp is phosphorylated and
takes the form of MinDarp again. MinC is not explicitly
represented in the model because it is usually attached to
MinD and experimental data indicate that the oscillation can
take place without it [27], [28]. The series of reactions in the
model are as follows:

MinDapp <5 MinD arp @)

MinD arp ~2 MinD7yp 3)

MinD arp + MinDZpp <25 2MinDTp @)
MinE + MinD7p <% MinE.MinD7yp )

MinE.MinD%pp 22 MinE + MinDapp  (6)

B. Simulation Results and Discussion

To simulate the MinDE oscillation model using the pro-
posed approach, we applied the parameters from [29] (listed
in Table II). However, we reduced the radius of our voxels to
more closely reflect the size of diffusing molecules. Another
variation between our method and the MesoRD method in [29]
is that our molecules can exhibit excluded volume.

Figure 3 shows the random distribution of cytosolic
MinDapp, MinDatp and MinE molecules at initialization.
The pole-to-pole oscillation of membrane-bound MinD’{'rp,
as shown in Figure 4, is spontaneously triggered after about 1
minute of simulated time although all molecules were initially
randomly distributed in the cytoplasm. For the 1 minute of
simulated time, it takes about 14 minutes of simulation on
an Intel Core 2 Extreme 3.2 GHz system with 8 GB of
RAM. The oscillation has an average period of 36 seconds
which corresponds to what has been observed experimentally
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[30], [28]. The period is also in close agreement with the
value from the previously reported computational model [29].
Consistent with the observations by Huang et al. [9] and in
[29], the period increased proportionally to the number of
MinD, while reduced proportionally to the amount of MinE
in the model. In addition, as observed in the MinD-MinE
localization studies in Escherichia coli [31], the membrane-
bound MinE.MinD\rp dimers appear to be lagging behind
MinD¥'rp molecules when they migrate from one pole to the
other. Taken together, our simulations closely reproduce the
results from both experimental and previous computational
studies.

Table 11
PARAMETERS OF THE MINDE MODEL

Variable Value Units
k1 0.5 st

k2 0.0125 | pms™*
ks 0.0149 | pm3s~!
k4 0.0923 | pm3s~?
ks 0.7 st
Decytoplasm 2.5 ,quS_l
Dmcmbranc 0.01 ,um2571
Cell volume 3.27 pm?®
Cell radius 0.5 pm
Voxel radius 8 nm

Initial MinDaTp molecules | 2001
Initial MinDapp molecules | 2001
Initial MinE molecules 1040

Figure 3. Simulated cytosolic molecules of the MinDE system. MinD poTp
(purple), MinDapp (white) and MinE (red) are randomly distributed in the
cytoplasm of Escherichia coli at initialization.

Here, we describe the steps that trigger the spontaneous
oscillation. Initially, all molecules are evenly distributed in
the cytoplasm. Very small number of MinDarp molecules
begin to independently associate at random locations on the
membrane and rigorously recruit other MinD s1p molecules
cooperatively. As shown in Figure 5, the recruitment gives the
appearance of growing patches on the membrane. Cytosolic
MinE molecules are attracted to these patches because of
their high affinity to MinD{rp and form MinE.MinDirp
dimers. Soon the patches loosely cover the entire membrane
because the rate of MinD recruitment is faster than the rate
of dissociation, even after almost all MinE are found in the

MinE.MinDp dimer form on the membrane. At random
locations on the membrane, some MinD’{p patches are free
from MinE inhibition because of the limited cytosolic MinE
molecules. In addition, these patches also become more persis-
tent at locations farther from the dissociating patches, where
they are less inhibited by the newly released MinE molecules
and where MinDaTp can escape cooperative recruitment by
MinD’{pp in the dissociating patches. Finally, patches (or
polar zones) form alternately (i.e., oscillate) at the two poles of
the cell because the poles are sufficiently far from each other
to avoid both the rapid inhibition by the released MinE and the
cooperative recruitment by MinDy'rp. During the oscillation
cycle, the MinE.MinDyrp dimers appear to be lagging behind
MinD¥rp because the released MinE molecules from the
opposite pole find MinDrp at the rim of the polar zone first.

From the simulations, we observed several important fea-
tures of the MinDE system that support the periodic os-
cillations. When we increased the nucleotide exhange rate
of MinDapp to k; = 1 s™1, the population of MinDrp
increased, resulting in more MinD{'rp and longer polar zones.
Since there are more MinD’{p to be activated by MinE, the
oscillation period also increased to about 63 s. Conversely, the
duration of an oscillation cycle is reduced to approximately 20
s when the rate is decreased to k; = 0.3 s~! because of the
limited number of MinDrp copies available.

The reactive collision probability p for MinDap to as-
sociate independently to the lipid molecules on the mem-
brane (ks = 0.0125 ums™', p = 0.274 x 10~%) is about
four orders of magnitude lower than to associate coop-
eratively with another membrane-bound MinD{rp (k3 =
0.0149 pm3s~!, p = 0.16), even though the number of
lipid molecules (~72000) is only about an order of mag-
nitude more than that of MinD{"p (~1400). This ensures
that MinDsTp only binds to the membrane independently
to nucleate bindings of other MinD srp. When we increased
ks = 0.05 pms~!, MinD{yp were found loosely distributed
in the polar zone that extended beyond the midcell because
the enhanced nucleation rate allows MinDa1p to successfuly
bind almost anywhere on the membrane. Occasionally, there
were no clear definition of the polar zones, with MinDirp
and MinE.MinD’{p covering the entire membrane. The os-
cillation period increased moderately to about 44 s. Reducing
ks = 0.0009 pms~! shortened the period marginally to 33
s and displayed erratic nucleation patterns, with the polar
zones frequently appearing and growing near the midcell. In
addition, because of the decreased nucleation rate, cooperative
membrane recruitments of MinD arp dominated further and
rigorous membrane associations occured at the nucleation
sites.

When the rate of cooperative recruitment was increased
to k3 = 0.034 um3s~?!, the oscillation was not triggered
because MinE cannot rapidly activate the rigorously recruited
MinD’{pp. Therefore, both MinD’irp and MinE.MinDiirp
were uniformly distributed on the membrane. Setting k3 =
0.024 pm3s~! stimulated the oscillation but the polar zones
were not clearly defined and extended well over the midcell
because of the larger population of MinD’{pp. The oscil-
lation period also increased to approximately 50 s. Reduc-
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ing k3 = 0.004 pum3s~! also prevented the oscillation be-
cause MinDap cannot successfully bind to the membrane—
MinE rapidly dissociates them since their cooperative recruit-
ment activity has been weakened. However, setting k3 =
0.007 pm3s~! started the oscillation with a reduced period of
about 30 s, while the polar zones were occasionally nucleated
near the midcell.

Reducing or increasing the MinE membrane recruitment
rate k4 has generally the opposite effect of k3. This is because
the membrane associated MinE activates MinD ATPase func-
tion that dissociates MinD to the cytoplasm. Increasing the rate
to k4 = 0.4 um3s~! generated the oscillation with a shortened
period of about 30 s since more MinE.MinD{'1p are available
to activate MinD. The polar zones were nucleated both near the
midcell and at the poles, resulting in their rapid growth in each
cycle. Conversely, setting k; = 0.05 um3s~! produced polar
zones that are not clearly defined with an oscillation period
of approximately 41 s. Both polar zones frequently appeared
simultaneously with one usually covering more than one half
of the cell long axis.

The MinE.MinD{rp dissociation rate k5 has almost the
same properties as k4 but with higher efficacy. When the
rate was increased to k5 = 1.2 s~1, the polar zones were
shorter and cycled between the poles with a period lasting
approximately 12 s. The higher rate increases the population
of free MinE that can associate and activate other MinD’{'1p,
thus reducing the size of the polar zones and increasing the
oscillation speed. On the other hand when the rate was reduced
to ks = 0.5 s~1, the period increased to about 54 s, while
the polar zones were nucleated at the cell poles and extended
beyond the midcell.

The significantly slower diffusion coefficient of MinDy/rp
and MinE.MinD{rp on the membrane prohibits the
molecules from rapidly achieving uniform concentration on the
membrane. By increasing the diffusion coefficient twofold to
Dinembrane = 0.02 um?s™!, the polar zones extended beyond
the midcell and were not clearly defined. The oscillation
period was about 60 s. Increasing the coefficient further to
Dinembrane = 0.05 pm?s~! did not produce the oscillation.

IV. CONCLUSIONS

We have successfully extended the E-Cell System to model
RD on surface and in volume spaces with dynamic localization
of molecules. A unique feature of our method is that it can
account for the important implications of volume exclusion by
molecules while performing RD in both volume and surface
spaces [21]. The correctness of our method and implemen-
tation is demonstrated by the accurate reproduction of the
MinD and MinE oscillation behaviors in Escherichia coli,
as observed in both experimental and previous computational
studies. We modeled the MinDE system because the proteins
display unique properties such as spatio-temporal localization
patterns on the membrane and inter-compartmental reactions.
We have shown the impact of changing the various reaction
and diffusion parameters to the dynamic localization patterns
of the proteins. Recent experimental studies have shown that
MinD forms helical polymers on the membrane [32]. Our

12s
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28s
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Figure 4. MinD and MinE oscillation on the membrane of Escherichia coli.

MinD’{*rp monomers and MinE.MinD{p dimers are shown in cyan and

green respectively. The MinD{*,p monomers appear to lead the dimers in
the oscillation cycle which has an average period of 36 seconds.

work can be further extended to model such membrane-
bound polymerization dynamics of molecules. The software
implementation of the method and the model presented in this
paper are provided upon request. A detailed guide for the RD
modeling using the method is also available [33].
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