848 research outputs found

    Real-time software methodologies: Are they suitable for developing Manufacturing control software?

    Full text link
    Computer-Integrated Manufacturing (CIM) systems may be classified as real-time systems. Hence, the applicability of methodologies that are developed for specifying, designing, implementing, testing, and evolving real-time software is investigated in this article.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/45553/1/10696_2005_Article_BF01358949.pd

    FLEET: Butterfly Estimation from a Bipartite Graph Stream

    Full text link
    We consider space-efficient single-pass estimation of the number of butterflies, a fundamental bipartite graph motif, from a massive bipartite graph stream where each edge represents a connection between entities in two different partitions. We present a space lower bound for any streaming algorithm that can estimate the number of butterflies accurately, as well as FLEET, a suite of algorithms for accurately estimating the number of butterflies in the graph stream. Estimates returned by the algorithms come with provable guarantees on the approximation error, and experiments show good tradeoffs between the space used and the accuracy of approximation. We also present space-efficient algorithms for estimating the number of butterflies within a sliding window of the most recent elements in the stream. While there is a significant body of work on counting subgraphs such as triangles in a unipartite graph stream, our work seems to be one of the few to tackle the case of bipartite graph streams.Comment: This is the author's version of the work. It is posted here by permission of ACM for your personal use. Not for redistribution. The definitive version was published in Seyed-Vahid Sanei-Mehri, Yu Zhang, Ahmet Erdem Sariyuce and Srikanta Tirthapura. "FLEET: Butterfly Estimation from a Bipartite Graph Stream". The 28th ACM International Conference on Information and Knowledge Managemen

    A Method for Specifying Complex Real-Time Systems With Application to an Experimental Variable Stability Helicopter

    Get PDF
    Engineering systems increasingly contain a significant element of embedded software. The specification of such systems causes problems because of the diversity of the sub-systems which they contain. For example, in modem aerospace systems a combination of mechanical, electrical, hydraulic and digital sub-systems need to function together in a safety-critical manner. The need is for a uniform means of specification which spans the whole diversity of sub-systems and which serves both to verify and to validate the functional aspects of the total system

    On the engineering of crucial software

    Get PDF
    The various aspects of the conventional software development cycle are examined. This cycle was the basis of the augmented approach contained in the original grant proposal. This cycle was found inadequate for crucial software development, and the justification for this opinion is presented. Several possible enhancements to the conventional software cycle are discussed. Software fault tolerance, a possible enhancement of major importance, is discussed separately. Formal verification using mathematical proof is considered. Automatic programming is a radical alternative to the conventional cycle and is discussed. Recommendations for a comprehensive approach are presented, and various experiments which could be conducted in AIRLAB are described

    Safe software development for a video-based train detection system in accordance with EN 50128

    Get PDF
    Diese Studienarbeit gibt einen Überblick über ausgewählte Teile des Softwareentwicklungsprozesses für sicherheitsrelevante Applikationen am Beispiel eines videobasierten Zugerkennungssystems. Eine IP-Kamera und ein externer Bildverarbeitungscomputer wurden dazu mit einer speziell entworfenen, verteilten Software ausgestattet. Die in Ada und C geschriebenen Teile kommunizieren dabei über ein dediziertes, UDP-basiertes Netzwerkprotokoll. Beide Programme wurden intensiv anhand verschiedener Techniken analysiert, die in der Norm EN 50128 festgelegt sind, welche sich speziell an Software für Eisenbahnsteuerungs- und überwachungssysteme richtet. Eine an der Norm orientierte Struktur mit Verweisen auf die diskutierten Techniken zu Beginn eines jeden Abschnitts erlaubt einen schnellen Vergleich mit den originalen Anforderungen des Normtexts. Zusammenfassend haben sich die Techniken bis auf wenige Ausnahmen als sehr geeignet für die praktische Entwicklung von sicherer Software erwiesen. Allerdings entbindet die Norm durch ihre teils sehr abstrakten Anforderungen das am Projekt beteiligte Personal in keinster Weise von seiner individuellen Verantwortung. Entsprechend sind die hier vorgestellten Techniken für andere Projekte nicht ohne Anpassungen zu übernehmen.:1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 1.2 Description of the problem . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 1.3 Real-time constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 1.4 Safety requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 2 Implementation details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 2.1 Camera type and output format . . . . . . . . . . . . . . . . . . . . . . . . . 11 2.2 Transfer Protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 2.3 Real-world constrains . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 2.4 Train Detection Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 3 EN 50128 requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 3.1 Software architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 3.1.1 Defensive Programming . . . . . . . . . . . . . . . . . . . . . . . 20 3.1.2 Fully Defined Interface . . . . . . . . . . . . . . . . . . . . . . . . 21 3.1.3 Structured Methodology . . . . . . . . . . . . . . . . . . . . . . . 21 3.1.4 Error Detecting and Correcting Codes . . . . . . . . . . . . . . . . 29 3.1.5 Modelling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 3.1.6 Alternative optionally required measures . . . . . . . . . . . . . . 34 3.2 Software Design and Implementation . . . . . . . . . . . . . . . . . . . . . 35 3.2.1 Structured Methodology . . . . . . . . . . . . . . . . . . . . . . . 35 3.2.2 Modular Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 3.2.3 Components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 3.2.4 Design and Coding Standards . . . . . . . . . . . . . . . . . . . . 39 3.2.5 Strongly Typed Programming Languages . . . . . . . . . . . . . . 41 3.2.6 Alternative optionally required measures . . . . . . . . . . . . . . 44 3.3 Unit Testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 4 Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48This paper intends to give an overview of selected parts of the software development process for safety-relevant applications using the example of a video-based train detection. An IP-camera and an external image processing computer were equipped with a custom-built, distributed software system. Written in Ada and C, the system parts communicate via a dedicated UDP-based protocol. Both programs were subject to intense analysis according to measures laid down in the EN 50128 standard specifically targeted at software for railway control and protection systems. Preceding each section, a structure resembling the standard document with references to the discussed measures allows for easy comparison with the original requirements of EN 50128. In summary, the techniques have proven to be very suitable for practical safe software development in all but very few edge-cases. However, the highly abstract descriptive level of the standard requires the staff involved to accept an enormous personal responsibility throughout the entire development process. The specific measures carried out for this project may therefore not be equally applicable elsewhere.:1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 1.2 Description of the problem . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 1.3 Real-time constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 1.4 Safety requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 2 Implementation details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 2.1 Camera type and output format . . . . . . . . . . . . . . . . . . . . . . . . . 11 2.2 Transfer Protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 2.3 Real-world constrains . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 2.4 Train Detection Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 3 EN 50128 requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 3.1 Software architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 3.1.1 Defensive Programming . . . . . . . . . . . . . . . . . . . . . . . 20 3.1.2 Fully Defined Interface . . . . . . . . . . . . . . . . . . . . . . . . 21 3.1.3 Structured Methodology . . . . . . . . . . . . . . . . . . . . . . . 21 3.1.4 Error Detecting and Correcting Codes . . . . . . . . . . . . . . . . 29 3.1.5 Modelling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 3.1.6 Alternative optionally required measures . . . . . . . . . . . . . . 34 3.2 Software Design and Implementation . . . . . . . . . . . . . . . . . . . . . 35 3.2.1 Structured Methodology . . . . . . . . . . . . . . . . . . . . . . . 35 3.2.2 Modular Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 3.2.3 Components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 3.2.4 Design and Coding Standards . . . . . . . . . . . . . . . . . . . . 39 3.2.5 Strongly Typed Programming Languages . . . . . . . . . . . . . . 41 3.2.6 Alternative optionally required measures . . . . . . . . . . . . . . 44 3.3 Unit Testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 4 Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

    The Hamlet design entry system: an overview of ADL and its environment

    Get PDF
    Exploiting parallelism for industrial real-time applications has not received much attention compared to scientific applications. The available real-time design methods do not adequately address the issue of parallelism, resulting still in a strong need for low-level tools such as debuggers and monitors. This need illustrates that developing parallel real-time applications is indeed a difficult and tedious task. In this paper we show how problems can be alleviated if an approach is followed that allows for experimentation with designs and implementations. In particular, we discuss a development system that integrates design, implementation, execution, and analysis of real-time applications, putting emphasis on exploitation of parallelism. In the paper we primarily concentrate on the support for application *design*, as we feel that parallelism should essentially be addressed at this level

    v. 80, issue 1, September 21, 2012

    Get PDF

    Requirements for a software maintenance support environment

    Get PDF
    This thesis surveys the field of software maintenance, and addresses the maintenance requirements of the Aerospace Industry, which is developing inige projects, running over many years, and sometimes safety critical in nature (e.g. ARIANE 5, HERMES, COLUMBUS). Some projects are collaborative between distributed European partners. The industry will have to cope in the near and far future with the maintenance of these products and it will be essential to improve the software maintenance process and the environments for maintenance. Cost effective software maintenance needs an efficient, high quality and homogeneous environment or Integrated Project Support Environment (IPSE). Most IPSE work has addressed software development, and lias not fully considered the requirements of software maintenance. The aim of this project is to draw up a set of priorities and requirements for a Maintenance IPSE. An IPSE, however can only support a software maintenance method. The first stage of this project is to deline 'software maintenance best practice' addressing the organisational, managerial and technical aspects, along with an evaluation of software maintenance tools for Aerospace systems. From this and an evaluation of current IPSEs, the requirements for a Software Maintenance Support Environment are presented for maintenance of Aerospace software
    corecore