University of Bath

UNIVERSITY OF

BATH

PHD

Application of fault tolerant techniques to a real time control system.

Jackson, P. R.

Award date:
1983

Awarding institution:
University of Bath

Link to publication

Alternative formats
If you require this document in an alternative format, please contact:
openaccess@bath.ac.uk

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

» Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
« You may not further distribute the material or use it for any profit-making activity or commercial gain
« You may freely distribute the URL identifying the publication in the public portal ?

Take down policy

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 11. May. 2021

https://researchportal.bath.ac.uk/en/studentthesis/application-of-fault-tolerant-techniques-to-a-real-time-control-system(16d686d5-7f67-49f8-a8e6-23bc61577230).html

APPLICATION OF FAULT TOLERANT TECHNIQUES

TO A REAL TIME CONTROL SYSTEM

submitted by P.R. Jackson B, Sc.
for the degree of Ph.D.
of the University of Bath
1983

COPYRIGHT
Attention is drawn to the fact that copyright of this thesis rests with the
author. This copy of the thesis has been supplied on condition that anyone
who consults it is understood to recognise that its copyright rests with its
author and that no quotation from this thesis and no information derived from

it may be published without the prior written consent of the author.

This thesis may not be consulted, photocopied or lent to other libraries
without the permission of the author for five years from the date of

acceptance of the thesis.

ProQuest Number: U641730

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,
a note will indicate the deletion.

Pro(Quest.
/ \

ProQuest U641730
Published by ProQuest LLC(2015). Copyright of the Dissertation is held by the Author.

All rights reserved.
This work is protected against unauthorized copying under Title 17, United States Code.
Microform Edition © ProQuest LLC.

ProQuest LLC
789 East Eisenhower Parkway
P.O. Box 1346
Ann Arbor, Ml 48106-1346

Synopsis.

List of Symbols.

List of Figures.

CONTENTS

(ix)

Chapter 1. Introduction. Page 1

1.1, Research Objectives. 2

1.2. Research Model. 3

1.3. Systems Implementation and Investigation. 3

Chapter 2. Techniques for Reliable Systems Design. 5

2.1, Failures, Errors and Faults. 5

2.2, Fault Avoidance. 5

2,3. Fault Removal. 8

2.4, Fault Tolerance. 9

2.4,1. Characterisation of Faults, 10

2.4.2, Redundancy Techniques. 11

2.4.3. Fault Recovery. 12

2.4.4, Fault Tolerant Software. 13

2.4.4.1. N-Version Programming. 13

2.4.4.2., The Recovery Block. 14

2.5. Reliability Modelling. 15

2.5.1. Software Reliability Modelling. 16

2.5.2. Hardware Reliability Modelling. 17

Chapter 3. Analysis of a Single Microprocessor System, 19

3.1. Cause and Effect of Faults in a Typical 19
Microprocessor System.

3.2. Discussion of Failure Mode Effects. 25

Chapter 4.

Chapter 5.

Chapter 6.

Real Time Systems Description.

4.1. Design Overview.

4.2, Target Tracking.

4,2.1,
4,2.2.
4,2.3.
4,2.4,
4,2.5.

Target Data Input.

Azimuth Inhibit,

Range Inhibit.

Approach/Recede Identification.
Missile Coverage.

4,2,5.1. Search Mode.
4,2,5.2, Track Mode.

4,3. Missile Guidance Loop.
Modelling of Real Time System.

5.1. Target Simulation.,

5.2. Target Tracking Process.

5.2.1.
5.2.2.
5.2.3.
5.2.4,
5.2.5.
5.2.6.
5.2.7.
5.2.8.

Read Routine.

Process Azimuth Inhibit.
Process Range Inhibit.

Set Binaries.

Process Binaries.
Approach/Recede Assessment.,
Coverage Assessment.

Baseline Performance.

5.3. Missile Guidance Loop.

5.3.1.

5.3.2.

Implementation.

Floating Point Arithmetic.
5.3.1.1. Direct Realisation.
5.3.1.2. Cascade Realisation,
5.3.1.3. Parallel Realisation,

Integer Arithmetic.

6.1. System Memory

6.2. System Input/Output.

(iif)

Page 27
27
28
28
29
29
29
30
30
30
30
32
32
33
33
33

34
34

35
35
36
37
37
38
39
39
41
41
42

6.3. System Software. Page 43

6.4. Fault Injection. 44
6.4.1. Design of Fault Injection Logic 44

6.4.2, Method of Fault Injection. 46

6.5. System Integration and Test. 46
Chapter 7. Design Strategies: Single Processor System. 47
7.1. System with No Recovery. 47
7.2. Basic Recovery Block. 48
7.2.1. Integrity ot Data. 49

7.2.2. Design Discipline. 50

7.2.3. System Performance. 50

7.3. Addition ot Watchdog Timer. 51
7.3.1. Recovery Using a Watchdog Timer. 51

7.3.2. System Performance. 52

7.3.3. Summary. 52

7.4, Typical Fault Effects. 53
7.5. Further Additions to Recovery. 55
7.5.1, Use of Unimplemented Instruction Trap. 55

7.5.2, Default Data Bus. 56

7.5.3. Trap Area. 57

7.5.4. Performance Counter, 57

7.6. Extensions to the Recovery Block. 58
Chapter 8. Single Microprocessor Study Conclusions. 60
8.1. Acceptance Test, 60
8.2. CPU Local Storage. 60
8.3. The Watchdog Timer. _ 60
8.4, Default Data Bus. 61
8.5. Microprocessor Dependent Facilities. 61
8.6, Use of Trap Areas. 62
8.7. Performance Counter, 62
8.8. Built in Test. 62

8.9. In Conclusion. 63

(iv)

Chapter 9.

Chapter 10,

Chapter 11.

Introduction to the Distributed Processing System.

9.1.

9.2.
9.3.
9.4.
9.5.
9.6.

Design Philosophy for Inter Processor
Communication.

Local Recovery Strategy.

Global Recovery Strategy.

Task Swapping.

Functional Decomposition of System.

Injection of Faults in Real Time.

9.6.1. Mechanism of Fault Injection.

9.6.2. Specific Cycle Fault Injection,

The Distributed Processing System Description.

]00]‘
10.2.

10.3.

10.4.

Central Processing Unit.

Microprocessor to 1553B Interface.
10.2.1. Control and Status Register.
10.2.2, Message from Bus Controller.
10.2.3. Message to Bus Controller.
10.2.4. Message to Remote Terminal.
10.2.5. Message from Remote Terminal.
10.2.6. 1553B Protocol Fault Injection.
Communication Software.

10.3.1. Message from Bus Controller,
10.3.2. Message to Bus Controller,
10.3.3. Message to Remote Terminal.
10.3.4. Message from Remote Terminal.

Systems Integration and Test.

Design Strategies: Distributed System.

11.1.
11.2,
11.3.

Target Characteristics.

Performance Index.

System with No Recovery.

11.3.1. Data Corruption Type Faults.
11.3.2. Controller Crashes.

Page 64

Chapter 12,

Chapter 13.

Chapter 14,

11.4. Basic Recovery Block.
11.4.1. Target Tracking Processor.
11.4.2, Digital Controller Processor.
11.4,3. Data Corruption Types.
11.4.4. Controller Crashes.

11.5. Use of Software Traps.

11.6. Addition of Watchdog Timer.

11.7. Global Recovery,
11.7.1. Transient Failure and Recovery.
11.7.2, Example of Recovery.

Standby Processing Systems.

12.1. Task Swapping.

12.2. Health Monitoring.

12.3. Use of Field Test Data.

12.4. Failure of a Remote Terminal.
12,4.1. System Recovery.
12.4.2. System Performance.

12.5. Failure of a Bus Controller,
12.5.1. Use of Bus Monitor.

12.5.2. Effect of Failure on Performance.

Distributed Processing Conclusions.
13.1. Review of Design Philosophy.
13.2. Distributed Proeessing Recovery.
13.2.1. Local Recovery.
13.2.2. Global Recovery.
13.2.3. Use of a Standby Processor.
13.3. Future Work.
Towards an Integrated Approach to Design.
14,1. Guidelines for Design
14.1.1. Functional Decomposition.

14,1.2, Recovery Block.

Page 84
84
84
85
86
86
86
87
87
88
89
89
90
90
91
91
92
93
94
94
97
97
97
98
98
98
99

101
101
101
101

14.1.3. Watchdog Timer.
14,1.4. Run Time Overhead.
14.1.5. System Traps.

14.1.6. Reverionary Modes.
14.1.7. MASCOT ACP Diagram.
14,1.8. Fault Scenarios.
14.1.9. Design Reviews.

14.1,10. Structured Walththroughs.
14.1.11, Testing.

14.2. Single Processor System,
14.2.1. Functional Decomposition.
14.2.2., Recovery Block.
14,2.3. Watchdog Timer,
14.2.4. Run Time Overhead.
14.2,5. Trap Areas.
14.2.6. Reversionary Modes.
14.2.7. MASCOT ACP Diagram.

Chapter 15. Overall Review of Achievements.

Acknowledgements.

References.
Appendices: Digitisation of Guidance Loop.
The Z8000 Microprocessor

The Micromaster.

Z8002 Microprocessor Program Assembler.

mo o>

Target Tracking Process: Acceptance Tests
and Alternate Routines.

An Overview of MIL-STD 15538,

-

G. Worst Case Limits for Parallel Realisation

of Digital Controller.

(vii)

Page 102
102
102
102
102
103
103
103
104
104
104
104
105
105
105
105
105
107

109

110

113
115
118
119
128

132
134

Figures.

Tables.

(viii)

Synopsis.

The report describes a research investigation into fault tolerant
strategies within a real time control system. Methods for increasing
the reliability of a system other than through the use of fault tolerance
have also been reviewed. The study which concentrated on a Recovery
Block structure is separated into two parts, that is, a single and a
distributed processing system. The single processor study involved
modelling a subset of the control system; error recovery strategies
are presented here as additions to the basic Recovery Block structure.
Fault injection logic was specially designed and built in order that the
recovery strategies could be tested under exireme operating conditions.

The distributed processing study is an extension of the single
processor research. Three types of recovery are investigated to
increase system availability; local recovery, global recovery and task
swapping. The philosophy used in the distributed processing study
was always to attempt recovery on a local basis, that is to prevent
the propagation of faults to other microprocessors within the system,
Global recovery is established as a method of maintaining continued
safe operation when local recovery or communication between processors
fails. The use of a standby processor system for dynamic task swapping
is shown to give continued systems operation under conditions which
would normally cause a catastrophic crash in non redundant systems.

The overall conclusion of the research is that fault recovery
must be localised to prevent fault propagation from one process to the
following process, with no distinction as to whether the communicating
processes are in the same or different microprocessor subsystems,
and that this can be successfully achieved in a real time environment by

the use of a Recovery Block structure.

ACP
A/D
BC
CPU
D/A
DMA
EMP
FIFO
FMEA
/O
LED
LSI
MASCOT

RAM
ROM
RT
s=a=0

s=a=1

List of Symbols

Activity Channel Pool

Analogue/Digital

Bus Controller

Central Processing Unit

Digital/Analogue

Direct Memory Access

Electromagnetic Pulse

First In First Out

Failure Modes Effects Analysis

Input/Output

Light Emitting Diode

Large Scale Integration

Modular Approach to Software Construction Operation
and Test

Random Access Memory

Read only Memory

Remote Terminal

Stuck at logical '0'

Stuck at logical '1’

Triple Modular Redundancy

Very Large Scale Integration

Discrete Operator

Z - Transform of ()

List of Figures
Fig.2.1. Cold Standby Redundancy
Fig.2.2. Hot Standby Redundancy
Fig.2.3. The Recovery Block

Fig.3.1. A Typical Microprocessor System

Fig.4.1. Real Time System Schematic

Fig.4.2. Range/Velocity Gate Matrix

Fig.4.3. Taboo Channels

Fig.4.4. Principle of Azimuth Inhibit

Fig.4.5. Missile Guidance Loop

Fig.4.6.a. Gain Plot of Missile Guidance Loop
Fig.4.6.b. Phase Plot of Missile Guidance Loop
Fig.4.7. Step Response of Missile Guidance Loop

Fig.5.1. Target Tracking Process
Fig.5.2. Read Routine
Fig.5.3. Process Azimuth Inhibit
Fig.5.4. Process Range Inhibit
Fig.5.5. Set Binaries
Fig.5.6. Process Binaries
Fig.5.7. Approach/Recede Assessment
Fig.5.8. Coverage Assessment
| Fig.5.9. Target Tracking Process Outputs
Fig.5.10. Digitisation of Guidance Loop
Fig.5.11. Unit Step Response for Direct Realisation
Fig.5.12. Unit Step Response for Direct Realisation:
Binary Rounded Coefficients
Fig.5.13. Cascade Realisation of Missile Guidance Loop
Fig.5.14. Unit Step Response for Cascade Realisation

Fig.5.15. Unit Step Response for Cascade Realisation:
Binary Rounded Coefficients

Fig.5.16. Parallel Realisation of Guidance Loop

Fig.5.17. Unit Step Response for Parallel Realisation

Fig.5.18. Unit Step Response for Parallel Realisation:
Binary Rounded Coefficients

Fig.5.19. Unit Step Response for Parallel Realisation:
16 Bit Integer Arithmetic

Fig.5.20. Unit Step Response for Cascade Realisation:
16 Bit Integer Arithmetic

Fig.5.21. Unit Step Response for Parallel Realisation:
32 Bit Integer Arithmetic

Fig.5.22. Unit Step Response for Cascade Realisation:
32 Bit Integer Arithmetic

Fig.6.1. Overall Systems Diagram

Fig.6.2. Photograph of Microprocessor Expansion Box
Fig.6.3. Memory Map

Fig.6.4. Input/Qutput Map

Fig.é6.5. Schematic of Error Correcting Memory
Fig.6.6. Error Correcting Memory Board 1

Fig.6.7. Error Correcting Memory Board 2

Fig.6.8. Layout of Error Correcting Memory Board 1
Fig.6.9. Layout of Error Correcting Memory Board 2
Fig.6.10, Input/Output Board

Fig.6.11. Layout of Input/Output Board

Fig.6.12. Buffer Card

Fig.6.13. Layout of Buffer Card

Fig.6.14, System Sottware Suite

Fig.6.15. System Software T,pical Operation
Fig.6.16. Schematic of Fault Injection Logic

(xii)

Fig.6.17.
Fig.6.18.
Fig.6.19.
Fig.6.20.
Fig.6.21,
Fig.6.22.
Fig.6.23.

Fig.7.1.
Fig.7.2.
Fig.7.3.
Fig.7.4.
Fig.7.5.
Fig.7.6.

Fig.8.1.

Fig.9.1.
Fig.9.2.
Fig.9.3.
Fig.9.4.
Fig.9.5.
Fig.9.6.

Fig.10.1.
Fig.10.2.
Fig.10.3.
Fig.10.4,
Fig.10.5.
Fig.10.6.
Fig.10.7.

Implementation of Address Fault Logic
Control /Condition Input Circuitry
Fault Injection Switching Arrangement
Implementation of Data Fault Logic
Photograph of Fault Injection Logic
Fault Injection Logic

Layout of Fault Injection Logic

Three Level Structure

Schematic of Watchdog Timer
Recovery Interrupt Service Routine
Default Data Bus

Schematic of Trap Area

Generalised Form of Recovery Block
System Availability Related to Recovery Strategies

Design Philosophy for Inter Processor Communication
Local Recovery Strategy

Global Recovery Strategy

Separation of Functions in Distributed System
Schematic of Real Time Fault Injection Mechanism

Specific Cycle Fault Injection

Overall Systems Diagram for Distributed Processing System
Central Processing Unit

Layout of Central Processing Unit

Schematic of 1553B/Microprocessor Interface
1553B/Microprocessor Interface Board 1

Layout of 1553B/Microprocessor Interface Board 1
1553B/Microprocessor Interface Board 2

(xiii)

Fig.10.8. Layout of 1553B/Microprocessor Interface

Fig.10.9. Photograph of 1553B/Microprocessor Interface Boards
Fig.10.10. Message from Bus Controller: Hardware Operation
Fig.10.11. Connection of Terminal to 1553B Bus

Fig.10.12. Message to Bus Controller: Hardware Operation
Fig.10.13. Message to Remote Terminal: Hardware Operation
Fig.10.14. Message from Remote Terminal: Hardware Operation
Fig.10.15. 1553B Protocol Fault Injection Board

Fig.10.16. Layout of 1553B Protocol Fault Injection Board
Fig.10.17. Message from Bus Controller: Software Operation
Fig.10.18. Message to Bus Controller: Software Operation
Fig.10.19. Message to Remote Terminal: Software Operation
Fig.10.20. Message from Remote Terminal: Software Operation

Fig.11.1. Missile Angle Plot

Fig.11.2, Missile Range Plot

Fig.11.3. System Configuration for Baseline Results

Fig.11.4. Data Corruption Type Fault in Gathering Phase (2 seconds)
Fig.11.5. Data Corruption Type Fault in Gathering Phase (4 seconds)
Fig.11.6. Data Corruption Type Fault in Gathering Phase (& second)
Fig.11.7. Data Corruption Type Fault in Terminal Phase (7% seconds)
Fig.11.8. Data Corruption Type Fault in Terminal Phase (9 seconds)
Fig.11.9. Effect of Cverflow in Digital Controller

Fig.11.10. Parallel Units of Digital Controller

Fig.11.11, Guidance Demand

Fig.11.12, Omission of Acceptance Test Due to a Fault

Fig.11.13. System Recovery

Fig.12.1. 4K Memory Board

Fig.12.2, Layout of 4K Memory Board

Fig.12.3. System Configuration for Remote Terminal Failure

(xiv)

Fig.12.4. Schematic of Task Swapping

Fig.12.5. Failure of Target Tracking Processor

Fig.12.6. Remote Terminal Failure in Gathering Phase
Fig.12.7. Remote Terminal Failure in Terminal Phase

Fig.12.8. System Configuration for Bus Controller Failure
Fig.12.9. Bus Inactivity Detection

Fig.12.10. Use ot Discrete to Disable Failed Bus Controller
Fig.12.11, Bus Controller Failure in Gathering Phase (1 second)
Fig.12.12. Bus Controller Failure in Gathering Phase (2 seconds)
Fig.12.13. Bus Controller Failure in Gathering Phase (4 seconds)
Fig.12.14. Bus Controller Failure in Terminal Phase (7 seconds)
Fig.12.15. Bus Controller Failure in Terminal Phase (8 seconds)

Fig.12.16. Bus Controller Failure in Terminal Phase (9 seconds)

Fig.14.1. MASCOT Diagram for Target Tracking Process

Fig.B. 1. Z8000 Memory Read Cycle
Fig.B.2. Z8000 Memory Write Cycle

Fig.E. 1. Acceptance Test for Read Routine

Fig.E.2. Read Alternate Routine

Fig.E.3. Acceptance Test for Azimuth Inhibit

Fig.E.4. Azimuth Inhibit Alternate Routine

Fig.E.5. Acceptance Test for Range Inhibit

Fig.E. 6. Range Inhibit Alternate Routine

Fig.E.7. Acceptance Test for Set Binaries

Fig. E.8. Acceptance Test for Process Binaries

Fig.E.9. Acceptance Test for Approach/Recede Assessment
Fig.E.10. Approach/Recede Assessment Alternate Routine
Fig.E.11. Acceptance Test for Coverage Assessment

Fig.E.12, Coverage Assessment Alternate Routine

Fig.F.1. 1553B Message Formats
Fig.F.2. 1553B Word Formats
Fig.F.3. Data Encoding

Table 4.1. Angular Rate Information

Table 6.1. Parts List of Error Correcting Memory Board 1
Table 6.2. Parts List of Error Correcting Memory Board 2
Table 6.3. Parts List of Input/Output Board

Table 6.4. Parts List of Buffer Card

Table 6.5. Parts List of Fault Injection Logic

Table 10.1. Baud Rate Selection

Table 10.2. Parts List of Central Processing Unit

Table 10.3. 1553B Interface Memory Addresses

Table 10.4. Parts List of 1553B/Microprocessor Interface Board 1
Table 10.5, Parts List of 1553B/Microprocessor Interface Board 2
Table 10,6, Frame Length Adjustment

Table 10.7. Parts List of 1553B Protocol Fault Injection Board

Table 11.1. Major Causes of Microprocessor System's Crash

Table 12.1. Parts List of 4K Memory Board

(xvi)

Chapter 1. Introduction.

With the introduction of low cost sophisticated processing, the use
of microprocessors has become an important part of the industrial scene,
with LSl and VLSI devices often replacing analogue or large digital
equipment. In addition to small size and high processing power, a
microprocessor based system provides system flexibility with the
capability of system reconfiguration. A growing realisation of the new
problems that the change to microprocessors has brought about is now
evident; the consequence of a system failure in applications such as
satellite attitude control is severe, leading to a need for analysis and
design techniques to be adopted in order to improve system reliability
and availability. Such system failures can originate at either the
design or manufacturing stages or in operational use. Design errors
typically include systems analysis, hardware design, incomplete
specification, mismatch of hardware and software, software design and
coding. An analysis of program errors points to the fact that
incomplete, inconsistent or ambiguous software requirement
specifications are a significant problem.]

The reliability of a system may be improved by a combination of
different techniques which fall into three main categories, fault
avoidance, fault removal and fault tolerance. Chapter 2 reviews the
considered techniques which are summarised below.

The avoidance of faults at the analysis and design stage can be
carried out by the use of a formal specification language and associated
design techniques. Fault tree analysis and failure modes effects
analysis (FMEA) can be used to detect critical parts of the system;
certain failure modes can then be eliminated at the design stage.

Fault removal techniques involve the construction and integrated
testing of hardware and software prototypes. In addition the use of
structured software enables a more thorough testing of the system to be

. carried out. The use of correctness proofs of software is beginning to

emerge but is unlikely to replace prototype testing.
Fault tolerance is a further technique whereby redundant hardware
and software is used for the protection and recovery from faults.
The need for high reliability can be justified in systems where human
life is at stake, where maintenance is not possible or in situations
where a large financial loss results from a system crash.

1.1. Research Objectives.

A method ot increasing the availability of a given system is by
the addition of redundant hardware and software to provide protection
against and recovery from faults within and external to the system.

It is important that the implementation of redundancy techniques is
considered in terms of cost effectiveness, weight and power requirements;
for example massive redundancy may not be a cost effective solution

if only a marginal increase in reliability and availability is obtained.

The aim of the research study was therefore to investigate the
possibility of increasing the availability of a given system by the
inclusion of fault tolerant mechanisms for the protection and recovery
from predefined faults. The aim can best be divided into constituent
parts as follows:

. (@) To establish good design practices based upon a practical
rather than a mathematical approach.

(b) To establish a simple but obvious structure for system
recovery.

(c) To establish design criteria for reliable inter-task
communication within a single microprocessor system,

(d) To establish a design philosophy for message passing between
microprocessors in a distributed system in order to inhibit the propagation
of faults.

The research entailed an initial study of different strategies that could
be adopted as a starting pcint. The next stage was to choose a system

upon which the strategy could be applied. The aspects which govern

system recovery under faulted conditions become more critical as the
response time of the system decreases. With these factors in mind a
decision was made to choose a real time system as opposed to a batch
processing system since requirements for processing speed, criticality of
system outputs and fault recovery time are much more demanding.

1.2. Research Model.

After careful consideration it was decided to base the study on a

notional ground defence system, which consisted of a target tracking and
“missile guidance loop as described in Chapter 4, in order to establish
the objectives previously mentioned.

The target tracking process consists of converting raw target data
into a plot of target positions. The raw target data is produced from a
radar whose aerial rotates at a constant rate, and consists of range and
velocity data extracted from the returning radar signals.

The missile guidance loop consists of a proportional plus integral
controller and the missile itself whose autopilot is represented by a
second order function,

The tracking process determines the angular position of the target
which is known as the target azimuth. This angle becomes the input for
the guidance loop, whose objective is to constrain the missile to lie
on a line joining the tracking system and the target.

The modelling of these functions in a microprocessor environment
is described in Chapter 5.

1.3. Systems Implementation and Investigation.

A subset of the real time system was implemented on a single
microprocessor to establish how well it was capable of detecting and
recovering from faults within its system. The single microprocessor
system carried out the function of the target tracking process with raw
target data being provided from a PDP 11, The implementation of the
target tracking process in a microprocessor system is described in Chapter 6.

This system was then operated under fault conditions to provide a baseline

for the results, Following this a fault tolerant structure was implemented;
the results obtained from this are discussed in Chapter 7. The conclusions
of the single microprocessor study are stated in Chapter 8.

Having gained valuable experience about the workings of the
system under fault conditions, a distributed processing system was then
investigated, this involved the choice of a communications link and the
method for injecting real time faults onto the system; these topics are
discussed in Chapter 9, The implementation of the complete real time
system in a distributed processing environment is described in Chapter 10,
The study also involved looking at a three processor system with
protection and recovery methods for increased availability under fault
conditions, the results of which are given in Chapter 11.

The use of a standby processor system is shown to give continued
systems operation under conditions which would normally cause a
catastrophic crash in non-redundant systems.

Chapter 12 looks at the question of when should such a redundant
processor subsystem be used and presents results for the recovery of the
system from the failure of a complete subsystem. The conclusions of the
distributed processing study can be found in Chapter 13. This is
followed by a review of guidelines for reliable systems design and the
initial design of a single microprocessor system within Chapter 14,

A final chapter reviews the achievements made from the research study.

Chapter 2. Techniques for Reliable Systems Design.

The reliability of microprocessor based systems can be improved by a
combination of several strategies: fault avoidance, fault removal and fault
tolerance. The amount of work carried out in this area is considerable and
this chapter summarises a number of techniques which are directed at
enhancing the reliability of a system. In addition the problem of
reliability prediction for microprocessor based systems is considered.

2.1. Failures, Errcrs and Faults .

To avoid ambiguity the terms failures, faults and errors are defined2
and are used throughout this thesis.

Failure.

A failure of a system occurs when the system does not perform its
service in the manner specified. This may be either because it is unable to
perform the service or because the system outputs are not in accordance
with the specifications. Thus a failure is an event.

Error.

An error is a part of an erroneous state which constitutes a |
difference from a valid state.

A fault is the mechanical or algorithmic cause of an error. This
éncompasses areas of design inadequacies such as incorrect choice of
component, system specification misinterpretation and incorrect inter-
relationship between system components (software and hardware).

2.2, Fault Avoidance.

The initial stage of a development process is the functional
specification stage; this generally involves determining the requirements
for both normal and abnormal operation of the system. Design faults that
can arise during this phase include inconsistent requirements and
misinterpretation or omission of requirements. Design inadequacies made
during the requirements definition phase which are found at a later stage

generally involve a redesign of software and/or system and repeat of the testing

process. A reduction in the number of errors resulting could possibly be
obtained by the introduction of formal system specification languages which
serve as a communication aid between systems design, implementation
and user. Research in this area is at an early stage; an exanple of a
formal specification language can be found in Ref.3.

There exists a number of semigraphical methods for systems analysis.
The most widely accepted of these methods is probably HIPO4 (Hierarchy,
Input, Process and Output) whereby functional specification is created
by naming the basic functions which have to be performed and decomposing
them into hierarchically ordered sub-functions. A further technique is
the Structured Analysis and Design Techniques. This is basically a
diagramming language which is used to describe the relationship between
objects and activities. The amount of detail shown in a single diagram is
controlled and thus leads to diagrams which can be quickly understood by
management and users.

A technique gaining more acceptance is MASCOT6 which provides
a formalism for expressing the software structure of a real time system which
can be independent of computer configuration and programming. It also
provides a disciplined approach to design, implementation and testing
of the system along with a strategy for documentation.

One of the most effective ways of avoiding design faults is to
keep the complexity of systems design under control. Many software
design methodologies based on this premise have been developed.
They aim to structure software in a simple hierarchy of reasonably
independent software modules. Work in this area includes reliable soft-
ware through composite design7 and the decomposition of systems into
modules .

The use of small modules enables a complete understanding of their
operation, in addition the consequence of modifications can be more
easily seen than with one large program. Further, the use of structured

programming leads to more reliable software and significantly improves

the readability and maintainability of a module since structured code is
read from top to bottom,

Consider now the hardware design; this is a task of selecting the
most appropriate microprocessor and associated circuitry. A hardware/
software trade-off has to be made, this is a matter of deciding which tasks
are to be performed by software and which tasks by specialised hardware.
Performing a task with specialised hardware incurs an extra cost in
components and assembly for each product, whilst a software solution
incurs a high development cost but has the advantage of non-recurring
costs and ease of reconfiguration. A software solution to a problem will
generally slow down the task execution unlike specialised hardware which
can be designed to perform the task independently, for example a floating
point arithmetic unit. Thus when difficulties arise in achieving the
response time, then software should be replaced by hardware.

Systems design may be realised by a multi-processing solution
since the processing power of a single microcomputer may be insufficient
to meet the system requirements. In this case the software would be
partitioned into independent tasks, each being located in the relevant
subsystem, The communications protocol used between subsystems would
then be determined by consideration of distance of transfer, data integrity
and response requirements.

In applications where highly reliable systems are required, an
analysis of failure modes is usually carried out following the design.

An example of a technique for failure analysis is Fault Tree Analysis,9
which starts by specifying a total system failure or safety critical failure.
The analysis then proceeds downwards from this failure to identify part
failure modes which could lead to such an overall failure. The final
result is a highly detailed logic diagram depicting basic faults and events
that can lead to the critical failure at the top of the diagram. Each basic
fault is given a probability from an analytical or an empirical approach.

The probability of the critical failure occurring is then cal culated by

appropriate means from probabilities of the basic part failures. This
technique is often applied in safety analysis, particularly in situations
where human life is at risk or where cost of failure is prohibitive, or where
certain system failure modes must be eliminated at the design stage.

The choice of programming language is another consideration of
reducting the number of design faults and several high level languages have
been introduced to meet the demanding requirements of a real time system.
The choice of a language is made by considering language facilities such
as interrupt handling, 1/O facilities, program structure inherent in language
implementation, data structure appropriate to application, portability
and efficiency of execution of obj ect code. Examples of this are languages
such as Coral and RTL/2, which have been specifically designed for real
time applications, although Coral suffers from lack of 1/O facilities.

Pascal has.a good structure and is portable, whilst Concurrent Pascal has
specifically been designed for multi tasking environments. Ada is still very
new and may be too complicated to be reliable. In contrast PLM, PLZ and
MPL have been specifically designed by Intel, Zilog and Motorola for their
own chips and hence there is a lack of portability.

2.3. Fault Removal.

Despite efforts to avoid faults in the analysis and design stages,
system failures will still occur due to residual design faults. Fault removal
techniques can be applied during the design phase in order to remove as
many of these faults as possible consistent with cost, development time
scale and reliability requirements.

In the case of hardware many well proven techniques exist;
these include design reviews, the building and testing of prototypes,
inspection and testing of printed circuit boards and the use of component
Burn-In to eliminate early failures.

The correctness of a systems design is important and must be checked
before software coding is started. The use of structured walk throughs and

design reviews are desirable where the correctness of each design step can

be checked by the designer and project engineers.

A structured software system has the advantage that testing can be
modular and more thorough thus removing a greater percentage of design faults.
In top down testing, the top level is tested first, a lower segment is added
and the combination tested. This is repeated down to the lowest level.
Dummy segments temporarily replace the segment subordinate to the segment
under test. These dummy segments can vary in complexity and may return
constants or may be a primitive version of the segment being simulated.

To enhance structured testing the length of a segment should be limited to a
manageable level, say fifty statements to enhance readability and
comprehension whilst minimising page turning. Usually each segment will
correspond to one function and can be implemented as a procedure with a
descriptive name corresponding to the function. Thus the limited size of
segment in addition to single entry/exit, top to bottom flow of control

makes programs easier to extend and maintain. Reliability is further

enhanced because test plans for the segment are easier to specify and execute.
Techniques for formal proving of program correcfness]o' N
are unlikely to replace program testing, now or in the near future since
there are many problems still to be overcome. [t seems reasonable to

doubt the ability of correctness proofs as it is difficult to write long programs
without errors and program proving has so far been more difficult than the
construction of programs. The solution may lie in the use of computer aids
to check the proof or generate it. The problem that then arises is how do
you check the proof checker. In addition, large program proofs probably
have to be constructed of small modules which could lead to an interfacing
problem between modules. The correctness proof must also include areas
such as processor and system architecture, memory size and timing
considerations.

2.4, Fault Tolerance.

Mi croprocessor based systems of the future are unlikely to be

designed and built so as to be free from faults during their operational life.

Residual software design faults and random hardware faults are likely to occur;
these must be detected, corrected and the system restored to a working state
which leads to a need for built in redundancy for highly reliable systems
operation. However, such redundancy must be applied carefully and in the
correct structure, otherwise increased system hardware and software could
lead to a reduction in reliability.

There are certain applications areas where use of fault tolerance
is vital. First, there are systems where maintenance is not possible such
as in space vehicles whilst reconfiguration around a malfunction may be
possible. Secondly, fault tolerance is important in systems where human
life is at stake, for example control of nuclear plants, ground defence
systems and transport systems. Finally, there are applications in which
computer downtime leads to financial losses such as automated process
control and communication systems.

Having discussed the need for fault tolerance, consider now the
types of faults that may occur during the operational life of the system.

2.4.1, Characterisation of Faults.

Faults occurring in a system may be attributed to a number of
factors, e.g. temporary, intermittent or permanent failure of hardware
components, hardware or software design faults or manufacturing faults.
A fault causes an error if an incorrect state is entered; the fault does not
always cause an error to occur immediately, for example a memory cell
having a stuck-at 'logical 1' fault will not cause an error until a
'"logical 0' is incorrectly read as 'logical 1'.

Temporary or transient faults are those of limited duration and
can be caused by malfunctions of components or by the introduction of
interference. If the duration of a transient fault is longer than a pre-
determined time then it will be interpreted as a permanent fault; for example
a communications link may allow up to three re-transmissions of data
before a permanent fault is reported.

Consider next the permanent failures of components; if the fault is

10

not masked then it must be detected and recovery can then take place.
This may consist of a software algorithm for hardware reconfiguration along
with program and data rollback.

Local faults can be described as those that only affect a single logic
variable whereas distributed faults are those which affect two or more
variables. The advent of LSl and VLSI chips means that distributed
faults are much more likely to occur than in the past, as a single gate is
unlikely to fail without affecting other gates in a complex closely packed
integrated circuit. Distributed faults can also be caused by failure of a
single critical element, for example processor clock or power supply.

2.4.2, Redundancy Techniques.

The detection of a fault during operational use is the starting point
of all fault tolerant mechanisms except those which use fault masking.

In many systems it is important that these faults are detected quickly and
are not allowed to propagate, otherwise system failure may occur.

In order to detect malfunctions the systems behaviour must be
monitored in order to show deviations from the norm. This monitoring is
generally performed by a combination of hardware and software techniques
for detecting system malfunctions include the following:

(a) The pattern of states through which the system passes can be
compared with expected or valid state transition patterns in order to reveal
the presence of hardware or software faults.

(b) The performance of the system can be monitored to indicate
fault free operation; this monitoring includes response time, system
throughput and process calculation time,

(c) A malfunctioning system will often lead to the process trying
to execute an invalid instruction or one that has an invalid address.

(d) The use of traps in processor software can be used to indicate,
for example, division by zero or overflow conditions which may be caused
by the propagation of a fault to the relevant instruction.

Hardware redundancy can be divided into two types, i.e. masking

11

and standby redundancy as described below. Redundancy in the form of
software is considered in section 2.4.4.

Fault masking is a technique widely used, whereby the fault is masked
by the presence of additional hardware, the output remaining error free
as long as the protection is adequate. One form of fault masking is the
use of n = modular redundancy where majority voting takes place on the
outputs of an odd number of identical units. The use of error correcting
codes is another form of fault masking, the most common code being the
Hamming code]2. '

Standby redundancy can either be classed as cold or hot standby;
the terms cold and hot relate to whether the redundant units are powered up.
In cold standby redundancy, only one unit is powered up and operational,
whilst the remaining units are not powered up. A schematic of cold
standby redundancy is shown in Fig.2.1. A failure sensing and switchover
device monitors the operation of the working unit and switches to one of the
standby units when a failure of the working unit is detected.

In a hot standby redundancy scheme, all units are powered up, and
are arranged typically as shown in Fig.2.2. This figure shows three units
with the output of one of the units, chosen arbitrarily, providing the system
output. If the comparator detects a disagreement, then the faulty unit
must be identified and the system output taken from one of the other units.
The time taken to switch from a faulty unit to a fault-free unit must be
considered in the design phase.

2.4.3. Fault Recovery .

The detection of a fault provides the basis for the next step which is
the correction and recovery of the system. Fault masking is a special case
of system recovery which does not use separate fault detection.

In systems where high availability is necessary, the recovery from
a fault must be automatic and not require human intervention,

Methods of recovery from a fault include:

(@) Re-try the operation that failed, if successful then continue.

12

This is particularly valid in the presence of temporary faults.

(b) Rollback of system to a position where system operation was
known to be correct and repeat execution.

(c) Reconstruct or correct data structures from redundant data
or status information.

(d) Re-initialise the system, with or without status information.

(e) Restore the system state to nominal or default values with
the use of a status flag to indicate that output may contain inaccuracies.

(f) The useof standby spares either in a cold or a powered up
condition.

System recovery can take one of three useful forms: full recovery,
graceful degradation or safe shutdown. The techniques used ina °
particular system depend upon the extent of the damage, the possible
cause of malfunction and the operating state of the system at the time of
the fault.

2.4.4, Fault Tolerant Software.

The use of redundant elements is an established practice in fault
tolerance of hardware. However, the use of redundant software for
reliable operation requires special attention due to the nature of software.
In contrast to hardware in which physical faults dominate, software defects
are time invariant. Executing duplicate copies of a program in parallel
does not improve the operation with respect to software defects, because
software design faults will be inherent in both copies. The following
paragraphs describe two methods of achieving fault tolerance in software:
N =Version progrc:mming]3 and the Recovery BlockM.

2.4.4.1. N-Version Programming.

This approach is analogous to the well known hardware method of
replication and voting on the outputs of the hardware modules.
A number (N)2) of independently coded programs for a given process
are run simultaneously on loosely coupled processors. The independent

results are then compared, and in the case of a disagreement, a preferred

13

result is generated by majority voting (for N >2) or by a predetermined
strategy. The success of this technique depends upon the level of
independence that can be achieved in the N Versions of the program.
Independence is best obtained by the use of different algorithms and
programming languages in each version. Different data structures could
also be used to increase the independence. The critical areas for this
technique are the voting algorithm and the housekeeping prior to and
after voting.

A constraint on N-Version programming is the requirement for
N computers that are hardware independent, yet are able to communicate
efficiently. The problem of synchronising arises here, a voter may have

to wait for a result or indeed a result may never arrive due to a fault.

2.4.4.2, The Recovery Block.

This technique, in contrast to N-Version programming, can be
applied to any configuration of processors, including a single processor.
The structure in its simplest form is shown in Fig.2.3., where a process
is described by a primary routine P. The output of the primary routine must
pass an acceptance test T before passing control to the next process,
if the acceptance test fails or if a set time has expired whilst executing
the primary routine then a transfer to the alternate routine, Q, is initiated.
If the acceptance test fails after execution of the routine Q or if a time
out occurs during Q then an error return results. This technique does
not preclude the use of several alternate routines if necessary for critical
parts of the system.

It follows that a critical feature of the Recovery Block is the
acceptance test. The alternate routines are worthless if failure of the
primary routine is not detected by the acceptance test, thus the acceptance
test must be thorough without being too time consuming.

A number of different types of acceptance tests are described in
the following paragraphs:

(@) In many cases the definitions of the process imposes conditions

14

which must be met at the completion of the process. These conditions

can be used to construct the acceptance test. For example, an acceptance
test for a sorting process may be to check the order, produced by the
primary or alternate routines, is correct.

(b) Accounting checks can be used in acceptance tests for
processes that are transaction oriented. The acceptance test could
independently generate a checksum and compare it with the one produced
by a primary or alternate routine.

(c) Another class of tests are called reasonableness tests.

These tests are based on precomputed ranges of variables, expected sequences
of program states or other occurrences that might be expected to occur in

the system. Reasonableness tests are based on physical constraints whereas
tests for requirements are based on mathematical or logical relationships.
Tests used for acceptance can typically examine whether a variable is in
range, whether the increment or decrement of a variable is in range or
correlation between different variables is in range. For example, a process
might calculate the acceleration of a missile. The acceptance test might
simply test whether this acceleration is within predetermined limits, say

¥ 10g in order to maintain structural integrity.

(d) In an important process such as a firing sequence, the use of
flags is a good way to ensure the correct procedure has been followed.

In such a case, the acceptance test could check to see if all the
appropriate flags have been set before firing is allowed to occur.
2.5. Reliability Modelling.

The reliability of microprocessor based systems has conveniently

been divided into two areas, i.e. that of hardware and software, due to the
two disciplines involved in the design. Hardware reliability modelling

has been an established practise for many years whilst software

reliability modelling has only made an appearance in the last ten years.

Consider first the modelling of software reliability.

15

2.5.1, Software Reliability Modelling.

Software has the unique property that it suffers no natural
degradation, except in the special case of software stored on magnetic
media. The purpose of an error prediction model is largely as a
management aid to decide when enough testing has taken place and in
assessing the confidence levels that can be placed in the software.

Many models that have been put forward use a bug counting
approach. This approach has been used by Jelinski and Morcndcw and
by Schoomcm]é. Jelinski and Moranda developed a software reliability
model which assumes exponential distribution of faults and a software
failure rate, i.e. the rate at which the software system fails to meet in-
formal system requirements, which decreases in discrete steps as a function
of time. Schooman's model is based on the same underlying assumptions
with the difference that failure rate is also dependent upon the debugging
effort. These models imply that reliability improvement can only take
place at a system failure, since it is only here that a design error can be
removed.

Musa]7 presents another model, using program execution time as
the time variable rather than calender or debugging time as in the
previously mentioned models. In addition he introduces a factor for non-
corrections of the cause of the failure.

Schick and Wolverfon]8 address the problem to a reliability model
by determining an analytic stochastic model for predicting the number of
remaining errors in the software, the mean time to next failure, the time
to discover the remaining errors and the standard deviation associated
with the error prediction.

Littlewood and Verrc:lll9 use a contrasting approach of no news
being good news, where failure rate decreases between failures and
periods of failure free working cause the reliability to improve.

Even if assumptions about failure rates being propaortional to the

number of errors remaining are accepted, then estimation of model

16

parameters still poses great difficulty. One objective should be to measure
the quality of the behaviour of the software, its operational reliability
(integrity) rather than the number of design errors left in the program.

It is considered by the author that instead of establishing a figure
for software reliability, in terms of number of remaining errors, that a
range of software metrics be used for assessment of software integrity.
This assessment must depend upon the compexity of the software modules,
the criticality of each module to system performance, the tolerance of
each module to errors caused by environmental factors and the maintain-
ability and testability of the software.

Consider now the modelling of hardware reliability.

2,5.2. Hardware Reliability Modelling

The effects of environmental stressing are known as random failures.
These failures occur in all types of electronic equipment and are generally
treated as exhibiting a constant failure rate. This constant failure rate
in non-redundant systems is supported by the use of life test and field data,
after accounting for infant mortalities and the effects of maintenance.

In microprocessor based systems, malfunctions are dependant upon
the component configuration, for example a failure may result from a
transistor sinking excess current. Thus a reliability model must take
account of prevalent failure modes.

The laws of probability govern the outcome of a mission of a
redundant system and simple probability formulae clearly show the
advantage of redundancy. Consider a triple modular redundant (TMR)
system where three identical computers are used to give an output based
on a majority vote. This system will only give an improvement in the mean
time to error if maintenance is provided before the 'mean time before
failure' of the individual modules. TMR systems are vulnerable to voting
and single point timing failures which reduce the reliability of such
systems.

Error detection and correction can be incorporated into integrated

17

circuits to extend their 'mean time between failure' provided a
comprehensive testing capability is also incorporated. An example of

the design for testability of error correction circuitry for memory arrays

is given in Ref.20. However, the effectiveness of any on chip redundancy
will always be limited by the high correlation between malfunctions and
the common thermal and structural failures.

In a complex system, the relationship between a random failure and
its manifestation as an error is apt to be obscured by ill defined propagation
paths. This is likely to cause problems for analytic models based on
simple cause - effect relationships.

The modelling of some of the more complex redundant systems is often
carried out by the use of Markov process models. These models can be made
arbitrarily accurate by incorporating an arbitrary number of states.

Caution must be applied in using these models on processes other than
those with constant failure and recovery rates. A constant recovery

rate is hard to imagine for a real time system as the time taken to recover
depends upon configuration of the system at time of fault, the process
being executed and the criticality of the fault.

Availability is measured as the percentage of time that a system is in
an operational state. In some applications, the penalty for a single long un-
operational period is much greater than that for many short periods, whereas
the availability figure may be equal for the two instances. In this case,
another parameter is required to describe the performance, i.e. time.

This concept of penalising a slow recovery is discussed in Chapter 11.2.

Coverage of a system is the probability of the system recovering from
a malfunction, it is a complex architectural attribute and is influenced
by latency of fault, ambiguity in the perception ot the fault and by the
architectural anticipation of such a fault. An estimation of coverage
made before experimental verification is likely to be largely inaccurate.
Retrospective coverage can be obtained but cannot accurately reflect

any system other than that for which it was gathered.

18

Chapter 3. Analysis of a single Microprocessor System.

Having discussed techniques for reliable systems design in
Chapter 2 an approach had to be chosen that could be used for single or
distributed processing systems. A requirement of the research was that
massive redundancy was to be hvoided, if possible. The Recovery Block
meets this requirement and in the view of the author was a good basis for
further investigation, initially on a single microprocessor and then finally
in a distributed processing environment.

In order to determine recovery mechanisms for a processor system
under fault conditions, it became necessary to identify the effect of faults
on system operation. An example of this identification is given here on
a typical processor system consisting of CPU, RAM ROM, A/D and D/A
convertors along with the necessary interconnecting and buffering logic,
as shown schematically in Fig.3.1. The data bus transceivers, address
and control buffers as shown in Fig.3.1. are permanently enabled and the
direction of the data bus transceivers defaults to drive away from the
CPU except when reading memory.

The approach of identifying failure modes and their effects is a
useful method of fault avoidance. As hazards are identified, software
and hardware defences can be developed using fault tolerant or self
checking techniques to reduce the probability of their occurrence once
the system has been implemented.

In the following section, typical causes and effect of faults are
given for the described system; in addition possible solutions are given
for the purpose of system recovery.

3.1. Cause and effect of Faults in a Typical Microprocessor System.

The following descriptions of causes and effects should be read
with reference to Fig.3.1. The list is not exhaustive, but sufficient to

identify typical fault effects in the view of the author.

Cause Effect Possible Solutions
1. No clock, The system will stop. The use of a fault tolerant
c!ock2] .

19

2. Address bit Incorrect addressing A time out can be used to
failure. occurs resulting in CPU indicate that the program
fetching data and/or sequence was not completed
instructions from wrong in fime.
addresses. By monitoring of bus with
other logic then it may be
possible to re-arrange
addressing of system, i.e.
move program and data to
another part of memory.
3. Reset failure. System fails to reset If reset fails then attempt
when required. to carry on processing.
4. Read/write If the line is stuck at A time out will indicate

Cause

line.

Effect

logical '1', that is
always a read cycle,
then CPU is always
reading from memory and
I/O. When attempting
to write then bus conflict
will occur with CPU and
memory buffers driving

against each other.

Possible Solution

that a foult has occurred.
Monitoring logic could give
information on the nature

of the fault.

If the line is stuck at logical

'0' then the system always
sees a write cycle, When a
CPU read cycle occurs then
memory is loaded with garbage.
The effect of an undriven bus

will inevitably result in in-

correct program execution,

20

5.

6‘

7.

8.

Cause

Data bus

fransceivers.

Memory

failure.

Address
bus buffer.

Effect

If stuck at faults occur

on the data bus, then bad
data is read from or written
to memory, [f a fault in
the direction logic occurs
with direction always
towards the CPU then bus
conflict will occur; when
writing to memory no data
will be stored. Ifa

direction fault occurs with

direction always to memory,

then when reading from
memory the CPU will read

a bus which is not driven.

Incorrect instruction/data

is read from memory,

As address bit failure.

No memory accesses can

Clock failure. be made.

21

Possible Solutions

There is a possible
detection of an undriven
bus as the CPU will
probably read all 1's;
alternatively the bus
could be made to
default to a particular
instruction. A conflict
on the data bus will
cause time-out or a frap
due to attempted

execution of invalid

instruction,

The fault can be masked
by automatic error detecting
correcting codes, although
CPU intervention or

special logic may be needed

to correct multiple faults.

See solution 2,

The duplication of
address and control buffers
is possible but not cost

effective,

9.

10.

11.

Cause
Valid Memory
Address
Signal.

CPU.

Address
Decode

Logic.

Effect Possible Solution

If stuck at logical '1' fault The effect is probably
occurs then memory is caught by a time out.
accessed at wrong point in

time or spurious addressing

occurs. If stuck at logical

'0' fault occurs then memory

is never accessed.,

The effects of such a fault Repeated time=-outs
are wide ranging and inclﬁde may possibly occur but
stuck at faults on buses, CPU may not respond
invalid control signals and to them.

incorrect operations.

If no outputs from the There is a possibility
address decode logic are of using self checking
enabled, then the CPU reads logic here.

an undriven bus.

If one output from the address

decode logic is enabled, but

it is the incorrect output then

incorrect addressing occurs.,

If two outputs are enabled then

memory is corrupted on a write

cycle, and a bus conflict

occurs on a read cycle.

If the address decode logic is not

enabled then no memory accesses

will occur. If however the logic

is always enabled then accidental

addressing will probably occur,

22

12.

13.

14,

Cause
Buffered

Read/write.

Memory
Enable.

Buffer for end

of conversion

“of A/D

convertor,

Effect
As for effect 4.

Bus conflict will occur if
the enable occurs at the

wrong time.

If the buffer is always
enabled then bus conflict
If the
buffer is never enabled,

then the CPU reads an

will occur.

undriven bus.

23

Possible Solution

See solutions 4 and
8.

Possible solutions in-
clude self checking or
monitoring by adaptive

logic.

A bus conflict will
probably cause a time-
out in a program segment.
If the buffer is never
enabled then CPU will
believe that conversion
is not finished. The
CPU could wait until
conversion should have
finished and then read
the data, This data
can then be compared
with the last value to
determine whether
'end of conversion'
has not appeared due
to a buffer or an A/D
convertor fault. If
an A/D convertor
fault has occurred then
set a flag and use

another A/D convertor.

Cause Effect Possible Solution

15. End of The conversion may When polling to look
conversion appear to have finished for 'end of conversion'
fault. early. then check that it

appears when
expected and not
before.

The fault may be due
to A/D convertor;
use another A/D

convertor if necessary.

16. Conversion If accidental addressing If accidental

command occurs then an exh‘d addressing occurs then

fault, conversion command may an exfra conversion
be generated. will probably not
However, the con- matter,
version command may If no conversion command
not be given due to given then 'end of
logic fault. conversion' may not

be cleared. The out-
put of the A/D convertor
can be compared with
last value; switch

to alternative A/D
conversion if

necessary.

24

17.

3.2.

Cause
Data latch
for D/A

convertfor,

Effect

If input or output lines
of latch have stuck at
type faults then in-
correct conversion will
occur, If the latch is
not clocked then the last
value clocked will be
converted, If the latch
is operated at the wrong

point in time due to

. accidental addressing

then an incorrect value

will be converted.

Discussion of Failure Mode Effects.

Possible Solution

The periodic connection
of the D/A convertor
output to the A/D convertor
input could detect faults.
If incorrect conversion
occurred then CPU will
detect the difference.

If the latch is not working
then the D/A convertor
output will remain at last
latched value and this
will be detected by the
CPU. If the latch'is
operated at wrong point
in time then the D/A con-
vertor output is neither
correct (present) value
nor last value and the
CPU will detect this.

If the data bus is not
stuck then an alternative
D/A convertor can be

switched in.

The effects listed in the previous section for the faults considered

are generally quite severe and continued system operation is unlikely

if the faults are permanent.

The most common of the effects appears

to be incorrect addressing, leading to execution of the wrong

instruction or use of the wrong data.

25

The corruption of data within

memory may occur even if memory is error correcting, since correction
can only take place on faults within memory cells and not on incorrect
data given to the error correcting memory.

The effect of faults on the control lines is similar to the effect
of faults directly on the. address and data lines. For example, a fault on
the address strobe line may result in the wrong address being read or
written to. This effect is similar to corruption of an address line, and
may result in the microprocessor's program counter being corrupted.

If the faults are transient in nature, then the effects suggest that
detection must include checking of data reasonableness, checking of
address sequences and the use of the time domain for checking system
operation. If permanent faults occur in a single microprocessor system,
then continued system operation will not be possible in the majority of
cases. Redundancy can be used to protect certain parts of the system,

e.g. clock, memory and possibly the address decode logic.

26

Chapter 4. Real Time Systems Description.

This chapter describes a small real time system to be used as a basis
for investigation into fault tolerant techniques. The system is complex
enough to model a real system, but is simple enough such that complexity
does not hinder the objectives of investigating the possibility of
increased system availability. |t was with this view in mind that the
following operating characteristics were chosen.

4.1, Design Overview.

The system devised for the research investigation was a ground
based target tracking and guidance process which selectively tracks a single
target and determines whether the target is within missile coverage.

The system is shown diagramatically in Fig.4.1. with an explanation of
the component parts as follows.

The doppler radar consists of an aerial which rotates at a constant
rate. The nature of this radar means that target information from a single
rotation of the aerial is insufficient to determine whether the target is
approaching or receding. The decision on whether a target is approaching
or receding is made using intormation from successive scans of the aerial.
In addition, the target tracking process determines whether the target is
within missile coverage, i.e. has a missile a high probability of reaching
and hitting the said target.

An operator can interact with the target tracking process and enter
the system into one of two modes, i.e. search or track modes. The former
mode of operation is used whilst waiting for a target detection.

The target tracking process constantly updates the azimuth on which
a target lies; thus azimuth is referred to as Theta Beam in Fig.4.1.

In order that only one target is tracked, the system uses an inhibition
mechanism whereby target detection is only considered within a window
around the last detected target position.

The target angle (Theta Beam) is used as the input to the missile

guidance loop; this loop is stabilised by a digital controller using

27

proportional plus integral control with a phase advance network.

The digital controller generates an output proportional to lateral
acceleration (latax) demand which is transmitted to the missile, which

in turn produces a lateral acceleration as a result of this guidance demand.
The guidance loop is closed by a simple relationship between the
acceleration and the missile angle. Consider first the target tracking
process.

4.2, Target Tracking.

This section describes the requirements of a target tracking process
which processes target aircraft data and determines whether the target is
within missile coverage. If a target is present on the same azimuth as the
radar, which scans through 360° in one second, then it appears in a range/
velocity channel. Target detection in a given channel defines the range
and velocity limits within which the target lies. The detection of a
target in a channel sets a pair of binaries; other binaries cannot become
set until the original pair have been reset. An alarm is then set
depending upon which pair of binaries has become set.

The azimuth and range at which a target is detected are used for
inhibition purposes on subsequent scans and provide control for setting
binaries. Due to the nature of the radar supplying target data, the system
must decide whether the target is approaching or receding and use this
information to determine whether the target is within missile coverage.

4.2.1, Target Data Input.

Data input to the system consists of six range and four velocity
gates, giving a total of 24 channels. The range and velocity gates are
combined by means of a matrix, shown in Fig.4.2, Some of the gates
are arranged not to give an alarm, these correspond to slowly approaching
or fast receding targets at maximum range. The combination of range and
velocity gates which do not give an alarm are known as taboo channels

and are shown diagramatically in Fig.4.3.

28

4.2,2, Azimuth Inhibit.

Following a target detection, the target position is stored in terms
of azimuth,and range and velocity gates set. On subsequent scans a
target will only be detected if its azimuth position lies within I 24 degrees
of the stored target azimuth, which moves with each target detection.
The azimuth inhibit persists for four scans after the last detected target.
The principle of the azimuth inhibit is shown in Fig.4.4.
4,2.3. Range Inhibit.

When a target is detected the target range is stored; on the two
scans following this detection the system will only detect targets at the
same range or within one range gate on either side of the stored target

range.

4,2.4, Approach/Recede Identification,

The identification of the target as approaching or receding is carried
out by examining range and velocity data from successive scans.
In search mode only one missed scan is allowable before the approach/
recede decision is restarted, whereas up to four missing scans are allowable
in frack mode. The decision is based on four criteria as follows:

1. New target detection

A new target is deemed to be approaching until a complete
evaluation is completed.

2, Crossing target detection.

A crossing target is defined as a target whose component of
velocity towards the radar is close to zero.

3. A changing target range pattern .

A target which has a rapidly changing range pattern is quickly

identified as approaching or receding.

4, Doppler derived criteria .

If a target remains within a given range gate for a number of
scans then velocity gate information is used for the approach/

recede assessment,

29

The algorithms for each of these criteria are not described in this thesis.

4.2.5, Missile Coverage.

Following the approach/recede algorithm the system identifies
whether a target being tracked is within missile coverage. An 'in cover'
indication represents a high probability that a target can be successfully
reached by a missile. The determination of the coverage is described
below.
4,2,5.1. Search Mode.

In search mode, 'out of cover' is indicated if the target is deemed
to be receding and the angular rate appropriate to the alarmed range and
velocity gate is zero. Table 4.1, shows the angular rate information for
range and velocity gate combinations.
4.2,5.2. Track Mode.

In track mode, Table 4.1, is used to determine whether the target
is in or out of missile coverage for the appropriate range and velocity
gate combination. If the angular rate, calculated as below, is less
than the value in lookup table, then 'in cover' is set, otherwise
'out of cover' is set.

Angular Rate = 100 -=(10 x Number of alarms on target)..... (4.1.)
Having described the target tracking process, now consider the missile
guidance loop.

4.3. Missile Guidance Loop.

The guidance loop used is a line of sight guidance loop where

the missile is constrained to lie as nearly as possible on the line joining
the defence system and the target.

The position of target is identified by a scanning radar aerial which
rotates once per second. The target tracking process described in the
previous section provides the position of a single target. The azimuth
position of the target being tracked is then used as the input to the missile
guidance loop which is taken from Ref.22 as shown diagramatically in

Fig.4.5. This consists of a controller, missile autopilot and a double

30

integrator for kinematic loop closure.

The controller consists of proportional plus integral control with
an integrating time constant of fwge,‘cs‘ln addition a double phase advance
network, giving a maximum phase advance of 62.6° is used for loop
stabilisation.

The missile autopilot is represented by dynamics defired by a natural
frequency of 12 rods_] and a damping factor of 0.6. The missile produces
a lateral acceleration as a result of a guidance demand. Kinematic loop
closure of the guidance loop from lateral acceleration to position results
in 180° phase lag represented as a double integrator.

The Bode plot for this loop is shown in Fig.4.6. giving a phase
margin of 35° and a gain margin of 10.5dBs. The step response of the
analogue system is shown in Fig.4.7. giving an overshoot of approximately

55%.

31

Chapter 5. Modelling of Real Time System.

The system described in Chapter 4 consists of two distinct parts:
the target identification process and the guidance loop. In order to
model this system, it became necessary to simulate a target being tracked
by a radar. This chapter describes how the above processes were
modelled in order to represent a realistic real time control system.

5.1. Target Simulation.

Target simulation is performed by a program which was
specifically written for this study to run on the PDP 11, The program
is designed to handle multiple targets, but for the purpose of this
study only a single target was considered. The target is characterised
by a start co-ordinate (x, y, z), a heading co-ordinate (s, t, u)
and a velocity; a straight line course is assumed between the two co=
ordinates. The range of the target from the fracking system, situated at
(0, 0, 0) is given by equation (5.1.) assuming the target is at
corordinate (a, b, ¢)

2, 2%

Slant Range = (02+b +c) ceeaa(5.10)

The target is then tracked by a radar whose characteristics are given
by:

Measurable Slant Range: 1 Km to 7 Km

Measurable Velocity: 50 m/s to 450 m/s.
A complete revolution was initially divided into 30 equal §egmenfs.
If a target is seen in the aerial's beamwidth at a particular point in
time then the appropriate range and velocity gates are set.
Thus for each 1/30th second the program gives an output of six range
and four velocity gates, either set or unset as determined by the target
position. Ten complete scans are simulated, representing ten seconds
of target motion. This duration was chosen as this period of
results of the target tracking process conveniently fills the temporary

storage available.

32

The target chosen for the first part of the study has the following

characteristics:
Start Position: 800 1500 200
Heading: -100 1400 190
Velocity: 400

The units for the start position and heading are metres whilst the
velocity is in mefres/second. This target was chosen as it represents
a crossing target, i.e. the target is lost by the radar for approximately
two seconds due to the fact that after about five seconds from the

start of the run the target's component of velocity towards the radar
aerial is close to zero.

5.2, Target Tracking Process.

The target tracking process consists of seven tasks interconnected
as shown in Fig.5.1., which is a top level diagram of an SADT
(Structured Analysis and Design Technique) activity mode|5.

The tasks are described briefly below followed by typical results of the
process.
5.2.1. Read Routine.

The read routine reads range and velocity data every 1/30th
second. This data is precomputed by a simulation program and is
stored in an area of microprocessor memory. If a target is detected,
i.e. if any go'rés are set then the appropriate range and velocity
channel variables are set to the appropriate values and the 'target
detected' flag is set. The radar azimuth position is updated when the
read routine is entered and can take values from 0 to 29, A flow
chart of this routine is shown in Fig.5.2.

5.2,2, Process Azimuth Inhibit.

On the four scans following a target detection, the system

+ .
considers targets only within a given angle (- 24°) of the last azimuth
on which a target was detected. A flag, 'target azimuth valid'

is used to signify if a target has been detected within the last four scans.

33

A flow chart of this routine is shown in Fig.5.3.

5.2.3. Process Range Inhibit.

On the two scans following a target detection, the system
considers targets only within I 1 range gate of the gate set when the
target was detected. If 'azimuth inhibit' is set at any time then
'range inhibit' is also set. A flag 'target range valid' is used to indicate
if a target has been detected within the last two scans.

If more than two missing scans occur then 'target range valid'
is set invalid awaiting a new target, or reappearance of an old target.
A flow chart of this routine is shown in Fig.5.4.

5.2.4, Set Binaries .

The set binaries routine decides which pair of binaries (if any)
becomes set; only one pair of binaries can be set at any one time.
Another pair of binaries cannot become set until a target appears in a
range/velocity channel and the 'range inhibit' is not present, The
setting of new pair of binaries resets the old pair. A flow chart of this
routine is shown in Fig.5.5.

5.2.5, Process Binaries.

The routine determines if the pair of binaries set are allowed to
generate an alarm. This is performed by the use of a look up table of
taboo channels.

Two types of alarm can be generated; internal and external.
The internal alarm is used for control of the approach/recede and
coverage assessments whilst the external alarm is an indication to the
operator, The external alarm is given to the operator only in search
mode. A flowchart of this routine is shown in Fig.5.6.

5.2.6. Approach/Recede Assessment.

The approach/recede algorithm in track mode is different from

that performed in search mode, as previously described in Chapter 4.2.4.
Before the algorithm is started several other variables are calculated,

these include the number of scans at the same range, variations in range

34

between successive scans and identification of crossing targets. A flow
chart of this routine is shown in Fig.5.7.

5.2.7. Coverage Assessment,

The coverage assessment is based upon a look up table which
determines whether the target is in or out of missile coverage. The entry
within the table is identified by the particular range/velocity binary pair
set and whether the target is deemed to be approaching or receding.

If no binaries are set then the previous coverage indication remains for
four aerial scans or until a new pair of binaries become set when coverage
is reassessed. A flow chart of this routine is shown in Fig.5.8.

5.2.8, Baseline Performance.

Using the target characteristics given in Chapter 4. 1., the target
tracking process was run for ten seconds to provide a baseline performance.
Fig.5.9. represents some of the outputs of the target tracking process.

An explanation of these graphs follows:

Fig.5.9(a) Azimuth Position. This represents the internal radar

azimuth position; the ramp up to 30 represents the rotation
of the aerial through 30 sectors of 12 degrees each.

Target Detected. This is a flag used to inform the system

that a target has been detected, i.e. a combination of

range and velocity gates have been set. The absence of the
flag at five seconds is due to the crossing target.

Target Azimuth., The target azimuth is a record of the current
azimuth on which the target being tracked lies. This
variable is used for azimuth inhibition if 'target azimuth

valid' is set. The target being tracked changes from
appearing early in the aerial scan to late in the aerial scan

as it moves from right to left across the sky.

Fig.5.9(b) Range Inhibition. Information on the target is updated only

when range inhibition is not set. No information on the targets

range and velocity is updated during the period of crossing.

35

Binaries Flag. This flag is used to identify whether the last
stored pair of range/velocity binaries are valid.

Internal Alarm. This informs the system that a target has

been detected within the last second. The alarm is set to
zero at about five seconds due to the crossing target,
although the system still remembers the target as up to four
missing scans are allowed. The alarm is set again when
the target reappears after approximately two seconds.
In Cover. This graph shows that the target being tracked
is deemed to be within missile coverage.

5.3. Missile Guidance Looop.

In order to implement the guidance loop on a microprocessor system,

it became necessary fo digitise the transfer function. From Fig.4.6.qa.,
it can be seen that the analogue crossover frequency is 3.4 rad.f:‘i.
A sampling frequency had to be chosen that was a compromise
between a low sampling frequency resulting in aliasing and a high
sampling frequency where inaccuraciss occur due to finite word length.
The sampling frequency chosen was 30 Hz which conveniently ties in
with the 30 sectors in 360° for the target tracking process. The guidance
loop, Fig.5.10. was implemented on two microprocessors, one
processor performing the digital controller process and the other
simulating the missile autopilot. Thus in digitising the complete guidance
loop it is necessary to include two zero-order hold circuits as shown in
Fig.5.10. Combining the missile autopilot with the kinematic loop
closure, the guidance loop consists of two separate parts. Z Transforms
were used todigitise the two separate parts.

From Fig.5.10.

G,@)=0-2").z (1, 10(S +1)(S+ 1)(5+0.5)\ (5.2.)
I S S(5+3.18)(S+3.16)

and

G,(z) = (-z"),z(l, 144) vevr (5.3.)
5

(52 + 145 + 144)

36

The transfer functions of the controller and the missile in terms
of z-] is derived by taking partial fractions, and then Z Transforms
of the component parts, along with setting T = 1/30 second.
A full derivation of G](z) and G2(z) can be found in Appendix A.

This results in the following equations:
2

G, (@)= 10(1 - 2.918785963z" ' +2.8395908562" ; vere(5.4))
- 0.9207881866z
(1 - 2.8000489282" " +2.61009296322
- 0.8100440352"2)
and
G, (z) = -0.000903747z" + 0.002798632z-§ e (5.5.)
- 0.002670325z"° + 0.0009156z
| - 3.500869446z" + 4.6288279772 "2
- 2.7550482632"° + 0. 6270890852

Having derived Z Transforms for each of the two parts of the system, it
is necessary to transform these equations into difference equations so
that they can be executed on a PDP 11 or a microprocessor.

5.3.1. Floating Point Arithmetic.

The guidance loop was initially modelled on a PDP 11 using floating
point arithmetic with seven significant decimal figures. Floating point
arithmetic was used to determine the best realisation of the Z Transform
equations before proceeding to execute the difference equations on a
microprocessor with integer arithmetic. Three realisations were used
and these are described in the following paragraphs.

5.3.1.1, Direct Realisation.

The first realisation used the Direct method for transferring the

transfer functions in z-] into difference equations.23 Given that
Uz)=a.+a z_] +a'z-2+c z-3 (5.6.)
0 1 2 3
E(z) . 2. -3
1+ boz + b]z + bZZ

37

then by the Direct method

U= 08, Y o1B oy T ok o Tk 5

B b] Un-2 - bZUn-

1

-b,U
n=-

0 n-1 3 (5.7.)
Inserting the coefficients of equation 5.4. into equation 5.7, gives

the following difference equation for the digital controller

U =10E - 29,18785963E = 28.39590856E - 9.207881866E
n n n-1 n-2 n-3
+ 2.800048928U - 2.610092963U + 0.810044035U
n-1 n-2 n-3 (5.8.)

Likewise inserting the coefficients of equation 5.5. into equation 5.7,

gives the following difference equation for the missile

Yn == 0.000903767Un_ + 0.002798632Un_ - 0.002670325Un_

2 3

- 4.628827977Y _

1

+ 0.0009156Un_ + 3.500869446Yn_

2 2
- 0. 627089085Yn_ 4 eeees (5.9.)

4

+ 2,755048263Y
n-3

The guidance loop step response for this realisation is shown in Fig.5.11,
and gives an overshoot of 61% with a settling time of approximately
six seconds to within 1% of the final value.

To ensure that the simulation was not conditionally stable, the
binary representation of the coefficients was carried out. This
representation is necessary for the realisation of the loop in integer
arithmetic.

The resolution was set such that the smallest number which could
be represented was 2-]] . The simulation was again run with a unit
step input and the output is shown in Fig.5.12. This shows that the
direct realisation ot the guidance loop is unstable with a binary
representation of the coefficients.
5.3.1.2. Cascade Realisation.

The second approach was to use the Cascade method of realisation.

In this method the transfer function is expressed as a product of simple

block elements.

38

@=00D1(z). D2(z) ceee.. Dm(z) ee...(5.10.)
E(z)

where m is less than n, the order of the system; % is a constant,

The block elements consist of either first or second order elements.

Using this method, the guidance loop was divided into block elements

as shown in Fig.5.13. The response to a unit step input is shown in
Fig.5.14. and is similar to that of the direct realisation shown in Fig.5.11.
The binary representation of the coefficients using the cascade

realisation was carried out using the same resolution as above and this

gave a step response as shown in Fig.5.15. This shows slightly less
overshoot than for the realisation with exact coefficients (Fig.5.14.).

5.3.1.3. Parallel Realisation.

Finally the Parallel method of realisation was used to simulate the
guidance loop, In this method, the transfer function is expressed as the

sum of parallel units which are either first or second order, i.e.
U)=a,+ D,(z) + D,(z) +D_(z) veeea(5.11))

where m is less than n, the order of the system; a is a constant.

Using this method, the guidance loop was divided into elements as shown
in Fig.5.16. Applying a unit step input, the output settles as shown in
Fig.5.17. The response shown in Fig.5.18. represents the same
realisation, except that the coefficients have been binary rounded as
above, .

Under no fault conditions, the parallel and cascade structures
give similar results, however under conditions of a fault in a basic
element, the cascade structure suffers from the fact that a fault is
multiplied by each successive unit. The direct realisation was unstable
with binary rounded coefficients and was left out of any further analysis.

5.3.2. Integer Arithmetic.

Having obtained stable results from both cascade and parallel
realisations of the guidance loop, the next step was to perform the

difference equations in integer arithmetic on a microprocessor,

39

initially in 16 bit arithmetic. Using a unit step input the parallel
realisation gave the output shown in Fig.5.19. and shows an overshoot less
than 50%. Fbwever when the error signal becomes small the output
shows quantisation errors. The 16 bit cascade realisation, whose output
for a unit step input is shown in Fig.5.20., suffers from quantisation
much more than the parallel realisation. The output is completely
unsatisfactory and shows that this realisation has no practical use, and
was therefore discarded.

In order to improve upon these results, the software for the two
realisations was converted to perform 32 bit integer arithmetic.
To increase the sampling frequency at this stage would only have increased
the quantisation due to a finite word length, Using the same input
as before, both realisations (Fig.5.21. and 5.22.) show improved
responses which agree with that of the continuous system shown in
Fig.4.7.

From the above results obtained, the parallel realisation of the
guidance loop using 32 bit arithmetic was chosen as the 16 bit cascade
realisation gave poor results and 'cascades' any error caused by hardware

or software.

40

Chapter 6. Implementation,

The system used in this study to assess the effectiveness of
redundant software and hardware for fault detection and recovery is
based on a single Z8000 microprocessor. This processor was used
throughout the research study and a description can be found in Appendix B.
The Z8000 is connected to a Micromaster (Appendix C refers), via a serial
link, which is in turn connected to a PDP 11/34. This chapter describes
the hardware and software which was designed and completed for this
study.

The software for the target fracking process is assembled on the
PDP 11 and then transferred to the Micromaster be fore being loaded
info the memory of the Z8000, as shown in the systems diagram in Fig.4.1.
Assembler code was used in order to effectively monitor the effects of
faults upon system execution.

The Micromaster acts és a terminal for the PDP 11 and controls flow
of programs and data to and from the Z8000 processor system, which is
situated on an Am96/4016 Evaluation Card24. In order to inject
faults onto the processor system, the processor buses are brought out from
this card into an expansion box shown in photograph Fig.é.2.

The expansion box contains the manual switch arrangement for the
injection of faults onto the processor bus, in addition to system memory
and input/output. The memory and 1/O maps were designated as shown
in Fig.6.3. and 6.4, respectively.

6.1, System Memory .

The Evaluation card contains 8K bytes of dynamic RAM which is
used to store the target data.

Memory organisation in the expansion box is such that any one RAM
chip is assigned to only one bit of a word in memory so that a memory
failure (either.single cell or complete RAM) wi Il not cause more than one
bit to be in error.

The error correcting memory, shown schematically in Fig.6.5. is

4]

situated on two double Eurocards. The first card consists of the data
memory, whilst the second consists of parity memory, error code
generation and the error correction circuitry. The two circuit diagrams
are shown in Fig.6.6. and 6.7. respectively, whilst the layout diagrams
and parts list are shown in Figs 6.8. and 6.9. and Tables 6.1. and 6.2.

The operation of the error correcting memory is briefly described
for both the read and write conditions as follows. Consider the operation
of writing to memory. The data word is written directly into the data
memory whilst the parity bits are generated from the data bits by a set of
parity equations and are written into parity memory.

On a read operation, the data word is read from memory along
with the associated parity bits. Parity is then regenerated from the data
word. |f an error has occurred in a memory cell that is being read, one
or several of the parity bits will be in error. The parity bits are then
decoded to determine which data bit is in error. The erroneous data bit is
then corrected by the exclusive OR operation and is buffered onto the data
bus by an inverting buffer. Note that the exclusive OR operation inverts
all bits except the bit in error (if any). The correct polarity is restored
by the use of the inverting buffers, as shown in Fig.é6.5.

6.2, System Input/Output.

System inputs can be divided into two types, firstly target data which
is produced on the PDP 11 and down loaded via the Micromaster.
Secondly inputs are provided in the form of switches on the front panel
of the expansion box; these inputs represent the mode of operation of the
tracking system and a system cancel facility. System outputs are in the
form of LED's and consist of an operator alarm, an error signal and
indications to inform the operator that a target being tracked is within
missile coverage. The circuit diagram layout diagram and parts list of the
input/output card are shown in Figs.6.10. and 6.11. and Table 6.3.

The expansion box also houses a buffer card which buffers all

signals from the Z8000. The circuit diagram, layout diagram and parts

42

list of this card are shown in Figs. 6.12. and 6.13. and Table 6.4.
6.3. System Software.

The system incorporates a suite of programs which are required
for the various tasks involved; these being shown diagramatically in
Fig.6.14. With the ‘excepﬁon of the PDP 11 graphics and plotting
routines this software was developed by the author for this study.

The software is explained by means of following a typical run to generate
ten seconds of system results. A flow diagram of the software is shown
in Fig.6.15.

Initially fault data is produced by generating exponentially
distributed fault interval times and uniformly distributed faults across the
address and data bus.

Following this, the target data is generated by the target simulation
program described in Chapter 5.1. A Z8000 cross assembler was written
to generate assembly code listings and object code files for the target
tracking process. The cross assembler runs on a PDP 11 and is described in
detail in Appendix D. The object code file produced, approximately
3K bytes in size for the target tracking process, is transferred first to
the Micromaster and then loaded into memory in the expansion box.

The target data takes the same path to the Z8000 system and resides in the
memory on the Evaluation Card.

The target ffocking process, described in Chapter 5.2, is then run by
commands to the Z8000 monitor via the Micromaster Keyboard., The
injection of faults is carried out during the operation of this software and
is described in the next section. Results are periodically sent from the
Z8000 to the Micromaster and are stored there until the end ot the ten second
run, when they are transferred to the PDP 11 and written into a disk file.
The disk file contains blocks of data which can then be sorted in a form ready
for the plotting routines. Fig.5.9. shows a typical set of graphs

produced in this manner.

43

6.4, Fault Injection.

Two alternatives existed for the injection of faults; these are
as follows:-

(@) Injection of faults within each of the memory and 1/O
devices connected to the buses

or

(b) Injection of faults directly in the buses which are common to
all memory and 1/O devices.
The second of these alternatives was chosen as it simplified the circuitry
required together with providing greater flexibility.

Implementation of the fault injection logic was achieved by
intercepting the buses by a logic and switching circuit. This
arrangement allowed up to two bits of each of the address and data buses to
be injected with faults at any one time. The faults can be stuck at
logical '0' (s=a-0), stuck at logical '1' (s=a=1) or open circuit.
Two timers were used so that faults injected onto the data bus could be of
different length to those on the address bus, and to ensure that faults
are injected onto the respective buses at the appropriate time in the cycle.
The design of logic to inject faults with the previously mentioned properties
is described in the following section.

6.4.1. Design of Fault Injection Logic.

Consider the design of fault injection logic for the single direction

address bus. The requirement for the logic was that the output be:

1. Asinput
2, s=a-0
3. s=a-1

4, Open circuit
The selection and injection of these conditions is shown diagramatically in
Fig.6.16., where for simplicity of presentation a single pole switch selects
either a fault or no fault condition. Consider initially the first three

requirements listed above, for the purposes of design let A be the input

of the block (see Fig.6.16.) and Z be the output of the block.
The fault control consists of two inputs, one to decide if a fault is to be
applied (to be known as X) and the other to decide whether the fault is
stuck at logical '0' or '1* (referred to as Y).
The control input is defined as: X at logical '0' - No fault
X at logical '1' - Inject fault
The type of fault injected is determined by the condition of the Y input
which is defined as: Y at logical '0' - s-a-0 fault
Y at logical '1' - s=a=1 fault
Constructing a truth table it follows that the output of the block is given
by: Z= AX + AY + XY
ceesn(6.10)
Since three input OR gates are not available, the equation 6.1. was
rewritten using De Morgans law to give:
Z= AX. AY. XY ceen(6.22)
which can be implemented as shown in Fig.6.17.
The output Z can then be optionally open circuit by adding a tri-state
bus driver. Circuitry providing the control input (X), the condition
input (Y) and the tri-state buffer driver (disable) is shownin Fig.6.18.

Two of the above circuits were built so that up to two faults can be
injected onto the systems address bus. The two lines which are injected
with faults are switch selecfable; the switching arrangement is shown in
Fig.6.19. which also shows the switching for the data lines. The switches
are shown in a position representing a typical fault injection path.

Since the data bus is bi-directional it required more logic to
implement fault injection compared with the address bus. This was
accomplished by using two of the circuits shown in Fig.6.17., back to
back with a direction select (READ/WRITE) as shown in Fig.é.20.

A wait state is used to extend the memory access, as the circuitry
described above incurred a delay of approximately 40 nanoseconds.

The length of the applied faults is adjustable, via potentiometers on the

45

expansion box front panel, between approximately 100 nanoseconds and
1000 nanoseconds; although this does not preclude the possibility of
leaving the fault on for any number of instructions. The length of the
open circuit fault is not adjustable and was fixed on a per instruction
basis; this was thought to be a flexible enough arrangement.

The fault injection logic is mounted behind the front panel on the
expansion box close to the fault selection switches, as shown in photograph
Fig.6.21. The circuit diagram, layout diagram and parts list can be
found in Figs 6.22. and 6.23 and Table 6.5.

6.4.2. Method of Fault Injection,

The procedure for the injection of faults onto the processor system
is as follows: the system is run for X instructions where X is an exponentially
distributed variable. This type of distribution was used as it is typical
in reliability studies. The system then halts and the fault is set up on the
front panel; the fault being introduced onto the processor bus when a single
step command is given. Although the system is not run at full speed, it
was time scaled to ensure that recovery from a fault takes place within a
given time. When the fault has been injected, the system ‘is run for
another Y instructions, where Y is another exponentially distributed variable
with the same mean as above. It was decided that 90% of the faults should
be of s-a-0 or s-a-1 type, with the remaining 10% being open circuit faults.
A uniform distribution was used to determine which bit of the address bus
or the data bus was to be faulted.

6.5. System Integration and Test.

In conclusion to the chapter, system integration and testing was
carried out to establish that the design requirements had been satisfied.
These tests were extensive and consisted of procedures specially developed,

but which have not been included in this thesis.

46

Chapter 7. Design Strategies: Single Processor System.

This chapter presents strategies for detection and recovery from
transient hardware faults, their implementation on a single microprocessor
system and their performance under exireme operating conditions.

The approach taken here was initially to inject faults on the target fracking
system with no recovery mechanisms to provide a baseline for the results.
Having obtained a baseline, the next step was to use the basic Block
Recovery structure and then build upon that structure to provide a recovery
mechanism for a greater proportion of faults.

The software described in this chapter was stored in RAM as this
gives less protection against faults than if the software were held in ROM;
thus results obtained are worst case, since program memory is not write
protected.

It was decided that a system run should last ten seconds, as
previously explained and that during this time a large number of faults
would be injected in order to keep down the number of runs. It was
decided that the interval between faults be exponentially distributed such
that the mean number of faults that were injected was thirty.

7.1. System with No Recovery.

In order to obtain a baseline set of results, the system was initially
operated without any recovery or protection software or hardware.

The criteria for improved systems availability taken here was the
percentage of runs that successfully complete ten seconds of operation,
to produce valid outputs at the end of that time.

A total of twenty runs were carried out, of which only one was
successfully completed. A further four runs completed the ten seconds, but
did not give correct outputs during that time. Without any protection,
system variables were often corrupted due to faults injected and these faults
were allowed to propagate unchecked. Once a variable has been corrupted
then, due to the lack of acceptance testing, it is passed onto the next

process which will also give incorrect outputs.

47

The most surprising effect of faults was that only a minority caused
the program counter to be badly corrupted immediately following the fault
contrary to intuition, Given that the program counter was at address X
before fault, then the effect of the majority of the faults was to leave
the program counter within the range X T s6 bytes. This is due to the
small percentage of the total instruction set that allow a large deviation
from the present program counter. Instructions that allow this large
deviation include jump to absolute address, call subroutine with absolute
address and reload program counter from memory. The consequence of
the program counter generally staying local immediately following a
fault is that it is not necessary to separate primary and alternate routine
software into separate blocks of memory with the provision of enabling
and disabling memory, but that it is sufficient to separate the two routines
by a trap area of 256 bytes.

Typically a fault can lead to execution of wrong instructions, due
to either an address or data fault. After one of these instructions the
program counter is often set to a non=-instruction word boundary.

This then leads to corruption of register contents or a misinterpretation
of instruction. Although the fault may only have occurred for the
duration of a single instruction, an instruction word boundary may not
be reached for several instructions.

7.2, Basic Recovery Block.

Having established the baseline, the next step was to implement
the Recovery Block on the target tracking software. For each process,
an acceptance test and an alternate routine was devised for checking and
standby purposes. A brief description of this sottware can be found in
Appendix E. The acceptance tests used here were fairly simple consisting
typically of checking that variables were in range and checking that certain
flags were set before generating an output to the system operator. The
alternate routines ranged from re~-entry of primary routine, setting a variable

or variables to default values through to a less accurate method of the

48

primary routine, for example the alternate routine for range inhibit

does not take into account the range at which the target is detected.

The overhead in software, caused by the use of a Recovery Block structure
depends upon the extensiveness of the acceptance tests and the alternate
routines structured within the system software; a typical value resulting from
this study was 30 - 40%. The run time overhead depends upon how often
the alternative routines are entered, this was found to be in the region

of 15 - 20% under the operating conditions of thirty faults (mean) in

ten seconds.

The approach of using acceptance tests to flag errors and then using
the alternate routines to correct them was avoided, as this quickly leads to
a large collection of flags which have to be set, reset and read.

This could result in a situation where no error flags are set or reset.

The approach taken was to use the acceptance test to flag an error
in the corresponding primary routine as complete failure of the routine and
initiate transfer of control to an alternate routine. The assumption made
was that if an error was found by the acceptance test then all values
generated by the appropriate primary routine were judged to be in error
and were regenerated or set to a predefined value.

7.2.1. Integrity of Data.

In order to maintain the integrity of the data base, each variable
is only updated in memory after it has been confirmed to be correct.
At the beginning of each process the required variables are read into the
CPU registers after which the CPU performs the particular process.
Only after the acceptance test passes are the updated variables written
into memory. This is for two reasons; first, register transfers were
considered to be more reliable than memory to register transfers during
the process and so were kept to a minimum. Secondly, if the acceptance
test fails, a correct copy of the variables is available in memory. The
concept of using registers during the process rather than reading the

variables from memory is not such a constraint as one might first think

49

as many assemblers allow the user fo give registers labels at assembly time,
Thus during the process the variable can be given a meaningful label rather
than say Ré.

7.2.2, Design Discipline,

The immediate implications of the Recovery Block technique imposes
an additional element of discipline upon the designer in that he has to
divide the total system task into subtasks each of which has an identifiable
function which is amenable to acceptance testing. This forces him to
think about the total system design and by virtue of packaging into subtasks
introduces some element of siructure into the program. The subtasks are
each associated with a block of code corresponding to a Recovery Block of
the form shown in Fig.2.3. These can be linked together to perform a
complete software task in a three level system shown in Fig.7.1.

The first level is task direction and points to tasks to be performed in their
proper sequence. Level 2 has the format of the Recovery Block for each
task, and level 3 contains the coding for each primary alternate and
acceptance test routine.

Note that the use of a Recovery Block structure does not preclude
the use of defensive programming techniques, often known as Exception
Handlingz.

7.2.3. System Performance.

Using the above three level structure a total of 14 runs were carried
out, each of 300 system cycles. Of these, five runs were successfully
completed with a further one run failing safe during the ten seconds.

This still left a total of eight runs which failed to complete due mainly to
the processor trampling through memory.

As previously stated five runs successfully completed the ten seconds,
all of these had at least one entry into an alternate routine which prevented
the propagation of the original fault. A further two runs had an entry into
an alternate routine during the ten seconds but 'crashed' before the ten

seconds was completed.

50

The Recovery Block was found to be capable of coping with data
type faults where corruption of data occurs but incapable of dealing with
system crashes which may occur due to execution of unimplemented
opcode, or execution of unidentified instruction (where operation is

uncertain) or by trampling through memory.

7.3. Addition of Watchdog Timer.

The use of the basic Recovery Block as used in the previous section
often led to a total loss of function. This loss of function was not
flagged by the acceptance test as the test was often not entered under
fault conditions, To overcome this the simple expedient of a hardware
timer was introduced. On entry to level 2 in the software structure, the
timer in the form of a free running counter is loaded with a process time
number which is directly proportional to the expected completion time of
the process. The task is then initiated, a successful exit from the primary
routine leading to a reset of the counter, If the primary routine does not
exit in a predetermined time (i.e. the value loaded at the beginning of
the process) then the counter goes through zero and triggers a system
interrupt, this concept is shown schematically in Fig.7.2.

7.3.1. Recovery Using a Watchdog Timer.

Although it is fairly easy to time out a process due to a failure,
the next problem is to return the system to either the alternate routine
of the same process or initiate a safe shutdown of the system. Once the
interrupt routine has been entered it is not possible to use the program
counter contents immediately before the interrupt as a guide to the last
segment being processed.

In order for the interrupt service routine to determine the interrupted
process, the appropriate process number is loaded into a RAM location at
the beginning of each primary and alternate routine. A lookup table
can then be used to determine the setting of the program counter which is
then loaded to transfer to alternate or fail safe routine, depending upon

which routine (primary or alternate) was being processed.

51

It is possible that if a fault occurs then the task number may be
corrupted. To overcome this, the integrity of the recovery mechanism was
improved by use of a simple check on the process number to determine
whether it is within a predetermined range. |If it is found to be out of
range then a fail safe routine can be entered. A flow chart of the
recovery interrupt service routine is shown in Fig.7.3.

7.3.2, System Performance.

The target tracking system, with the watchdog timer was run for a
total of fourteen times. Of the fourteen runs, nine successfully completed
the 300 system cycles with valid outputs, with a further three runs failing
safe during this period. This left two runs which failed to complete with
valid outputs, due either to a system crash or data corruption.

The proportion of runs that completed ten seconds was significantly
improved over the basic Recovery Block. This was due to the system
recognising that under fault conditions some processes failed to complete
within a predetermined time limit. An analysis of the two runs that
failed to finish shows that the first would have been able to recover from a
particular fault if the unimplemented instruction trap had been used.

The second run failed to finish as the timer had not been started when the
fault occurred and the fault led the program counter to be set into memory
that was not present, and thus recovery never occurred.

7.3.3. Summary.

The results obtained for the watchdog timer are encouraging when
compared with the strategies so far examined, as summarised below.

(@) No Recovery System - 5% of runs successfully completed.

(b) Basic Block Recovery - 35% of runs successfully completed

7% of runs failed safe
(¢) Block Recovery with Watchdog Timer
64% of runs successfully completed

21% of runs failed safe.

52

7.4. Typical Fault Effects.

As a result of injecting hundreds of faults on a microprocessor
system, there emerged a number of different fault effects. Before
proceeding to further protection and recovery mechanisms, these fault
effects are briefly discussed below:

(a) Execution of Wrong Instruction.

An address fault led to execution of instruction at location other
than program counter. Following this instruction the program counter
was set to a non-instruction word boundary. When fault removed next
instruction was an address which corresponded to an instruction for a
software interrupt.

(b) Condition Code Error.

A data fault led to a conditional jump based on the wrong condition

code.

(c) Opcode Error.

A data fault completely changed meaning of instruction. Instead
of loading a register from memory, a different memory location was
cleared.

(d) Offset Error in Jump.

A data fault led to a relative jump made to wrong address due to
incorrect reading of offset in instruction.

(e) Execution of Wrong Instruction,

An address fault led to execution of instruction at location other
than program counter. This instruction (actually an address) led to a
reloading of program counter and status register, leading to system crash.

(f) Recovery Block Error.

With the basic Recovery Block, a fault at the end of the primary
routine caused the processor to miss the return from subroutine instruction.
The processor carried out through the acceptance test, following the
primary routine, until it encountered a return instruction which caused

a return to the instruction following the call to primary routine which was

53

call acceptance test. This acceptance test actually performed twice
on primary routine outputs.

(@) Memory Read Error.

A fault occurred during reading of variables from memory into
registers; the registers were left as they were from previous process.
Acceptance test failed and recovery occurred by alternate routine which
correctly read variables, performed process and passed acceptance test.

(h) Acceptance Test Failure.

After returning successfully from acceptance test, a fault occurred
when acceptance test error flag was being checked, the program counter
was updated and entry into alternate routine occurred.

(i) Execution of Wrong Instruction.

A fault led to execution of wrong instruction, the program counter
was set to a non instruction word boundary and the next instruction was an
unimplemented instruction. A trap occurred whose vector had not been
set and a system crash followed.

(j) Acceptance Test Failure.

A fault occurred within the acceptance test which led to its failure
on good data.
(k) Memory Read Error.

A register was loaded from an incorrect memory address due to a data
fault.

(1) Execution of Wrong Instructions .

A register was loaded from memory at wrong point in program due
to execution of wrong instruction due to address fault.

(m) Program Corruption.

A corruption of a program location led to an unimplemented
instruction trap. |

(n) System Data Corruption.

A safe shutdown on the system occurred when primary and alternate

routines both failed acceptance test. During execution of primary routine a

54

variable was corrupted in memory and incorrect outputs were given.
The alternate routine was to perform primary routine again when incorrect
results were also given. This highlights the care necessary when using
a repeat of primary routine as the alternate routine.
(o) Subroutine Call Error
A situation occurred where timer was of no use for recovery.

A fault occurred at level 2, i.e. CALL PRIMARY, instead of a primary

routine being called a subroutine was called whose address was in
memory which was not implemented. The timer was set running as
primary routine was never entered.

(p) Execution of Wrong Instructions

A fault occurred at the end of a primary routine on instructions to
reset timer, time out occurred soon after and alternate routine was
successfully entered.

(q) Timer Reset Fault

As a precaution to the above effect, the timer was reset at the
beginning and end of every primary routine. A situation arose where,
due to a fault the timer was not reset at the beginning of a primary
although the task time was loaded and the timer set running. However,
there was no ill effect of the missed timer reset as it would
have been reset at the end of the preceding process.

7.5. Further Additions to Recovery .

The use of the watchdog timer provided system recovery in 85% of
the runs carried out. In order to improve system recovery coverage it
is necessary to look at additional facilities which are discussed in the
following paragraphs.

7.5.1. Use of Unimplemented Instruction Trap.

One of the runs with the watchdog timer, as summarised in
Section 7,3. 3. showed that the unimplemented instruction trap
can be used for recovery purposes. The Z8000 has a built in

unimplemented instruction trap and this can be used for recovery if the

55

vector is set equal to that of the interrupt for the hardware timer.

Thus if either an interrupt due to timeout or an unimplemented instruction
trap occurs then the same recovery mechanism will be used, as previously
described. The run which failed due to this facility not being used was
carried out again with its vector set and with the same faults injected,
resulting in a successful completion.

Only some microprocessors have this built in facility for detecting
unimplemented instructions, though this facility can usually be added by
the addition of external hardware. For example, the Texas 9900 which
has about 2% of its opcode field as unimplemented can use external
hardware as given in Ref. 25,

In addition most processors have a software interrupt facility.

If this is not required by the system software then the software interrupt
vector should be set equal to that of the hardware timer, so that an
unexpected software interrupt due to a fault will not cause a system crash.
7.5.2, Default Data Bus.

In most real time systems there are areas of the memory map that are

not filled by memory devices. Thus if the program counter is inadvertantly
set somewhere within this unimplemented area then during a read operation
the data bus will be floating. This can be made use of by attaching
resistors onto the data bus, in the form of pull up and pull down resistors,
so that the data bus defaults to an instruction such as software interrupt
when not driven. This is shown by example in Fig.7.4. for a 4 bit data
bus where a software interrupt is represented by 1100 (binary).

The resistors should be of sufficiently high value in order to prevent
excessive current drain. During normal operation the bus will be driven
high and low as required by CPU and memory devices. The first
instruction that the processor executes after jumping into unimplemented
memory is a software interrupt whose vector is set equal to that of the
timer and thus initiates a recovery. This mechanism provides an earlier

fault indication than the watchdog timer in the situation of the processor

56

jumping into unimplemented area, although the timer is still invaluable
for recovery if the processor executes an incorrect section of code.

In addition this mechanism provides a fault indication if the processor
jumps into an unimplemented area of memory before the timer is started.
7.5.3. Trap Area.

It was found that on many occasions, due to faults, that the return
statement at the end of a process was missed and the processbr continued
into the next section of code. In this situation recovery would still take
place by watchdog timer or by execution of an unimplemented instruction.
However to speed recovery and to reduce still further any inadvertant
action, a trap area can be used after each return statement, i.e. between
each process. This trap area, shown schematically in Fig.7.5., would
consist of a gap equal to the maximum length opcode in words of the
processor. This trap area would consist of software interrupt instructions
whose vector was set equal to the timer recovery procedure. Thus if a
return was missed due to a fault then a software interrupt would occur
and recovery take place.

7.5.4, Performance Counter .

It has been shown that with certain additions to the Recovery Block,
it is possible in a single microprocessor system to recover from all, as
far as can be seen, fransient hardware faults. However, in many real time
systems it is not sufficient to use an alternate routine cycle after cycle
in the case of a prolonged fault or software design error as degraded
performance may only be acceptable for a limited period of time before
a different system sfrofegy is required. This is almost certainly true in
a situation with recursive calculation where an alternate routine may use
last value or a default value. Thus it is suggested here that in many
applications a counter be used within the alternate routine to count
consecutive or total entries into the routine. [f the count is exceeded
then another alternate, for example use of another sensor, or fail

safe routine can be entered.

57

7.6. Extensions to the Recovery Block

This section summarises the possible extensions made by the
author, the majority of which have been implemented.

(@) An unimplemented instruction trap can be used to speed
response to faults. This trap is internally implemented on processors
such as the Z8000, 68000 and can be readily implemented in hardware
on others such as the TMS 9900,

(b) A timer can be used to ensure that primary and alternate
routines do not take longer than expected to execute or finish before
.a minimum time.

(c) A set number of automatic retries can be used before
classifying the fault as permanent or transient.

(d) The use of pull up and pull down resistors to provide
recovery when program counter is set into an unimplemented memory
area.

(e) For system critical variables, it may be re cessary to keep
a copy in both memory and allocated register within CPU, This can
obviously only be used for one or two variables.

(f) In some instances it may not be possible to perform the
acceptance test on the alternate routine due to time constraints.

(g) In some instances it is not advisable to carry out an
acceptance test on the alternate routine, if the size of the routine is
less than that of the acceptance test,

(h) A count may be necessary within the alternate routine as
degraded system performance may only be acceptable for a limited period
of time.

(i) A trap area can be used between processes to eliminate the
possibility of inadvertantly going from one process to another through
omission of a return.

A more generalised form of the Recovery Block can be found in

Fig.7.6. which covers some of the points mentioned above, which are

58

not covered by the basic Recovery Block. In this figure block A is
general, the output of A may be to P or Q or output or other

alternates.

59

Chapter 8. Single Microprocessor Study Conclusions.

The single microprocessor study has shown that by observing
certain formats for software layout, most transient hardware bus faults
are recoverable, This recovery strategy produces a small overhead in
running time and memory. The Recovery Block techniqué used also enforces
a degree of design discipline onto the software engineer to produce a
structured format to his software.

8.1. Acceptance Test.

It has been found that care must be taken in designing the acceptance
test for a particular process. A compromise must therefore be made between
the amount of testing in the acceptance test, and the overhead incurred.
8.2, CPU Local Storage.

The Recovery Block, in its simplest form provides protection and

recovery mainly from faults that lead to data corruption. The integrity of
the data is improved by a procedure where variables are read into CPU
registers, followed by the particular process, and finally the updating of
variables only after the acceptance test has been passed. This method leads
to a greater probability that data within memory is uncorrupted, and is
already available in some high level language compilers.

8.3. The Watchdog Timer.

The introduction of a watchdog timer resulted in a small software

overhead, additional software was used for setting up, starting and resetting
the timer. The overhead was less than one per cent for software, in addition
to a simple counter for tuning system operation. The use of a watchdog
timer highlights the importance of a system approach to fault tolerance
through the combined use of hardware and software to increase the availability
of the system. The increase in availability that was obtained by the use of a
Recovery Block structure and a watchdog timer is shown in Fig.8.1.

The recovery mechanism used consisted of eniry to an alternate
routine either by failure of the relevant acceptance test or following

execution of a fault detection interrupt service routine. A simple

60

interrupt service routine kept recovery time to a minimum. The number of
the process being executed at the time of the fault was read, and a
check was made that it was within an expected range. The process
number was then used as an entry to a process re=entry look up table

stored in ROM, followed by a jump to the relevant process re-entry point.
System variables are only updated following successful completion of the
relevant acceptance test; it is assumed that a copy of valid system
variables remains within the RAM area. [f this assumption is invalidated,
for example by a momentary power failure, then a fail safe state is

entered shortly afterwards through the mechanism of a count being

exceeded within an alternate routine.

8.4. Default Data Bus.

The use of a watchdog timer generally provides recovery when the
microprocessor's program counter is corrupted to a value outside the
segment being processed. In addition, there are situations when the
program counter stays within the segment, but the segment is either
completed too quickly or not within time; this latter case is particularly
important in real time systems. If the program counter is corrupted
to a value outside of the segment being processed, then it can be
situated in one of two areas of memory. First, the program counter
can be corrupted to a value which corresponds to another segment, and
secondly the program counter can be set to a value which corresponds
to unimplemented memory. This latter situation arose in the study
and recovery time was decreaed by the use of default resistors on the
data bus. These resistors were used to trigger a software interrupt
when the microprocessor attempted to execute an instruction from
unimplemented memory. Furthermore the same recovery routine can be
used as that for the watchdog timer.

8.5. Microprocessor Dependent Facilities.

A growing number of microprocessors have traps for detection of

illegal conditions such as attempted execution of illegal instruction,

61

bus error and division by zero. System recovery can take place under
these conditions if the trap vectors are set equal to the vector of the
hardware timer.

8.6. Use of Trap Areas.

The majority of real time systems have critical areas of software
where a correct procedure must be carried out before an action can be
taken. The Recovery Block technique is useful in this situation whereby
the setting of flags can be checked within an acceptance test.

However, this situation can be improved by the use of trap areas
between segments in a critical area of software. This prevents the
microprocessor from running on from one segment into another.
Recovery takes place if the program counter is set equal to an address
within the trap area, provided that the trap is filled with a suitable
software interrupt.

8.7. Performance Counter.

In real time control systems it is important that a counter is
provided within alternate routines as degraded performance may be
acceptable only for a certain period before a different system strategy is
required.

8.8. Built in Test.

A built in test facility is often used for operator confidence and
for diagnosing faults in the field. The Recovery Block technique can
be used as an aid in testing and diagnosing faults. It was previously
mentioned that a counter can be used within certain alternate routines
so that continued degraded performance is prevented. Whilst the
system is in a standby state, the counts from the alternate routines can
be used as an input to the built in test equipment and provide information
on possible faults. For example, a certain alternate routine entry may
be associated with the defective reception of information from
a peripheral; this information can aid test equipment in diagnosing

a fault.

62

8.9. In Conclusion.

The use of a Recovery Block structure established that the
mechanism is a useful tool which can be integrated into the design of
real time system for improved availability. The most important
additions to the basic structure are the use of a watchdog timer and a
simple counter within alternate routines. It has been stated that the
Recovery Block is not capable of recovering from software errors due to
incomplete or inconsistent requirements specification. This situation
can be improved by the use of independent design of alternate
routines to simulate an N-Version Programming approach without the
need for massive redundancy, although this is very difficult to

achieve in practice.

63

Chapter 9. Introduction to the Distributed Processing System.

The single processor study demonstrated that increased availability
under prescribed fault conditions was obtained using protective
redundancy. This confirmed that the propagation of faults from one
process to another could be stemmed by the use of a fault detection
and recovery strategy. The next objective of the research study was to
investigate the possibility of increased availability for a distributed
processing system undertaking the tasks of target tracking and missile
guidance, as described in Chapter 4. The nature of the increased
system complexity required to undertake these tasks, together with the
locations in which they would normally be undertaken involved the
decomposition of the system into subsystems,

The first objective was to establish a design philosophy for
communication between the subsystems; this being described in the
following section.

9.1. Design Philosophy for Inter Processor Communication.

The Recovery Block technique ensures that only valid data is passed
from one process to the next, by use of the acceptance test. The
following process simply takes the data and uses it without any need for
testing its validity. This approach can then be extended to a distributed
processing environment in the following manner.

Consider the fransmission of data from one microprocessor subsystem
to another using a communications link. The use of a Recovery Block
structure within each subsystem ensures that only valid data is transmitted.
The design philosophy for message passing follows implicitly, i.e. that
data testing is carried out at the point of maximum information
(transmission) with the absence of testing data on reception. This is
shown schematically in Fig.9.1. The testing of data is carried out by
an acceptance test prior to transmission, the data is assumed to be valid
if it is received correctly with respect to the particular communications
protocol. If a transmission failure occurs, for example incorrect parity,

then a request for re~transmission can be made.

64

When message passing is carried out between subsystems then the
transmitting subsystem is said to be active whilst the receiving subsystem is
passive. The transmitting subsystem has a responsibility to provide valid data
with the use of local recovery if necessary, while the receiving subsystem
need only wait for data.

9.2, Local Recovery Strategy.

The initial aim for recovery from a fault within a distributed
processing system is the attempted recovery on a local basis, that is within
the subsystem. A schematic diagram of local recovery is shown in
Fig.9.2. This figure shows the importance of localising the effect of a
fault and the prevention of propagation to other subsystems.

In view of the experience and results obtained for the single
processor study, it was decided to continue with a similar strategy for each
of the microprocessors within the distributed system. The Recovery
Block structure was discussed in Chapter 7 and when implemented within
each microprocessor subsystem provide the basis for local recovery.

The absence of reception of expected data leads to another
principle, i.e. the message transfer proceeds only in one direction.

If @ message fails to arrive then the receiving subsystem must not attempt
to diagnose the failure to transmit, instead it must initiate global recovery
after a predetermined time period.

The concept of global recovery is introduced in the following
section,

9.3. Global Recovery Strategy.

In a real time disiributed processing system, it is possible that
local recovery may fail or that communication between processors may fail.
Under these circumstances, in a master/slave system then the master can
wait only for a predetermined time before action has to be taken.
This action of global recovery can take place in the event of failing to
receive data from a slave. Global recovery can simply be seen as failing

to pass the acceptance test of a routine in the master which is requesting

65

data, and the subsequent transfer to an alternate routine.

The above strategy is illustrated in Fig.9.3., which is described

below:
Cycle Time Master
1 Request for data
2 Request for data
3 Request for data
4 Request for data

Slave Remarks
Satisfactory (a) Acceptance test
response in master passes: -

Satisfactory (a)

response
(b)
(c)
Unable to (a)
send data

(b)

(c)

Satisfactory (a)
response

(slave sub-

system able to
transmit valid

data)

66

no communication
faults.
Acceptance test
in master passes.
Fault occurs in
slave after
transfer of data.
Local Recovery
attempted in slave
but faik.

Master requests
data, four

retries are carried
out.

Acceptance test
in master fails as
no data available.
Alternate routine
in master entered.
Acceptance fest

in master passes.

This alternate routine then provides data that can be used by the
system for continued operation. This data may be a default value or the
last correct value received. The action of transfer to an alternate routine
prevents the maximum system latency being exceeded. However,
continued entry of this routine may be dangerous to the system and may
occur in the presence of a permanent failure of one of the microprocessor
subsystems., This type of failure is considered in the following section.

9.4. Task Swapping.

If a permanent failure occurs in a slave then global recovery is not
possible over a prolonged period, due to the repeated entry of an alternate
routine within the master. Such a failure would only be retrieved if
redundancy were to be included. Under these conditions it becomes
necessary to use an alternative processor to carry out the function of the
failed slave.

Having described a recovery strategy for the distributed processing
system, the next point for consideration is the manner in which the system
is distributed. The criteria governing this,together with the approach
which was adopted is discussed in the following section.

9.5. Functional Decomposition of System.,

The manner in which the functional decomposition is carried out is
an essential feature of thesystem recovery sfrategy26. The factors
to be considered in this respect being as follows:

1. Inter processor communications to be kept to a minimum.

2, Separation by function or process

3. Considerations of physical locality of functions.

The function of the distributed processing system was to perform
the target tracking process and the missile guidance loop equations,
which are divided into those of the digital controller and the missile
autopilot, This provided a natural split into three sub=functions, each
of which could be perfom.ed by a separate microprocessor. This natural

division also meets the three criteria stated above which is shown

67

schematically in Fig.9.4., with the realisation of the sub-functions being
described in Chapter 5. The generation of raw target data is carried

out by a Foriran program running on the PDP 11 in a similar manner to that
used in the single processor study. Intercommunication between the
subsystems was carried out using a high integrity data highway link.

For continuity of design and use of existing software, the Z8000
microprocessor was chosen as the processing element for each of the
subsystems.

In order to effectively monitor the detection and recovery from
faults, it was necessary to inject faults onto the distributed processing
system. A description of how this was achieved is given in the following
section.,

9.6. Injection of Faults in Real Time.

In the single processor study faults were injected by halting the
processor, selecting the fault by switches and then single stepping,
one system instruction being executed with a corrupt address or data bus.
This approach, when extended into a distributed processing system would
require the synchronisation of all the processors, which was considered
to be an over complicated solution. The problem then was how to inject
faults in real time on one of the microprocessor subsystems.

Initially, faults were to be injected by means of pseudorandom
generafor527. This was dropped in favour of the following approach as it
was considered that it would be more informative by injecting repeatable
faults in known positions of the software, in so far that the type of fault
injected is directly correlated to the observed failure at a systems level.

9.6.1. Mechanism of Fault Injection,

The mechanism of fault injection used in the distributing processing
research was as follows. A hardware register is loaded by the micro-
processor with a fault address, prior to the operation of the system.

When the processor reaches this address in the software, a comparator

is activated by the two addresses (i.e. hardware register and address bus)

68

being identical. This is shown schematically in Fig.9.5. A non-maskable
interrupt is then generated and the interrupt service routine activates

the fault, For example, the interrupt service routine may either read a
variable and corrupt it, or corrupt the stack or stack pointer.

At the end of the short interrupt service routine the microprocessor
loads the hardware register with the next fault address. Finally the
'return from interrupt' instruction returns control to the module being
executed prior to the interrupt, or to another address if the stack has
been corrupted. Provided that the interrupt service routine is short
enough, say less than 1% of a system cycle, then a fault can be injected
in real time.

9.6.2. Specific Cycle Fault Injection.

This mechanism can be used to inject a fault within a specific
predetermined cycle as shown in Fig.9.6. The interrupt service routine
then reads the cycle number; if the cycle number is the one in which the
fault is to be injected then the predetermined fault is allowed to occur.
On every other cycle, the cycle number is found not to be equal to the
required cycle number and a 'return from interrupt' instruction is then
executed. The overhead incurred in adopting this procedure was in the
order of a few tens ot micoseconds which was generally short enough not
to invalidate the system operation for the research model.

An alternative method of injecfing a fault onto a specific system
cycle would be the use ot a maskable interrupt which could then be
enabled on the specific cycle. This approach was not used as it
involved modifying the system software, that is, it requires the addition
of enable and disable interrupt instructions and a recompilation of

software if a different fault address is required.

69

Chapter 10, The Distributed Processing System Description.

As described previously the distributed processing system used in
this study is based on three active processor subsystems which perform the
system function, together with a standby processor subsystem for failure
recovery viz. task swapping as shown in Fig.10.1, Communication
between subsystems was carried out using a high integrity serial data
highway, a description of which is contained in this chapter.

The microprocessor used in the single processor study was utilised as the
basis for one of the subsystems. The other three subsystems consisted

of identical processor cards which were constructed to the author’s design.
The facilities offered by these common processor cards are described in
Chapter10.1. The link selector shown also in Fig.10.1. comprises a
manual switch arrangement for routing the program loading of the subsystems
via the RS 232 data link.

The requirement for the data highway between the microprocessor
subsystem was based on the following criteria:

1. Distributed processing power

2, High communication bit rate

3. Ability for system expansion

4. High integrity communications |
It was considered important to make a choice of data communication system
which had an established message format and protocol. This led to the
decision to implement MIL - STD]553828, which has been developed
for high integrity data communications between aircraft subsystems,

An overview of MIL - STD 1553B can be found in Appendix F,
10.1. Central Processing Unit,

The subsystem processor card designed for the real time control
system is based around the Z8000 microprocessor. An RS232 serial
interface is included on the card to provide communication with a visual
display unit. The defaultbaud rate was set to 9600, but different

rates can be selected by the interconnection of wire wrap pins on the card.

70

Details of the baud rate selection can be found in Table 10.1.

The card contains 4K bytes ot static RAM and allows for up to 8K
bytes of EPROM. A 4K byte monitor on the card is derived from that’
on the Am96/4016 Evaluation Card .2'4. The memory maps of each
processor subsystem are identical and are as shown in Fig.é6.3.

The card also contains the logi ¢, as described in Chapter 9.6. for
the injection of faults in real time.

The circuit diagram, layout diagram and parts list are shown in
Figs. 10.2. and 10.3. and Table 10.2.

10.2. Microprocessor to 1553B Interface.

The data highway interface was designed to meet the requirements of

MIL - STD 1553B for communication with a Z8000 microprocessor.

The interface was capable of acting as either a bus controller or as a

remote terminal. The position of a dual-in-line switch on one of the
interface cards decided which mode of operation was to be used for the
terminal. The design uses a single twisted pair bus, although the standard
allows up to three redundant buses, in addition to the active bus.

The interface appears to the Z8000 as a number of memory addresses as shown
in Table 10.3.

A schematic of the microprocessor to 1553B interface can be found
in Fig.10.4. and shows that the message path between the serial bus and
the Z8000 is achieved by the use of a 32 word FIFO. A control register
decides whether the word to be sent or received is a command, data or
status word. The interface was designed on the principle that a remote
terminal is always ready to receive a message but is not always ready to send
a message.

A simple time out circuit on the transmitter of the interface precludes
continuous transmission longer than 800 microseconds, implemented as a
monostable which is triggered by a request to send a message.

Thus the failure of a bus controller results in a quiet bus with no transmissions,

due to the time out. The 1553B standard allows ten message formats although

71

only two of these are required for this study, these being bus controller to
remote terminal fransfer and remote terminal to bus controller transfer.

10.2.1. Control and Status Register.

Control and status information within the interface consists of two
registers, one for read and one for write, having the same address.
The function of the control and status register bits is shown below;
these bits form the data word which is either read from or written to
the status register. Each bit of the status register is valid only when the
terminal is either a bus controller (BC) or a remote terminal (RT). The
exception is bit 9 in the read status which is valid in both modes of operation.

Read Status:

Bit No. Title Function
0 -7 Not used.
8 ME(RT) A logical '1' indicates that the last

message was invalid.

9 C/RT A logical '1" indicates that the terminal is
configured as a bus controller.
A logical '0' indicates that the terminal is

configured as a remote terminal

10 BUSY(BC) A logical '1" indicates that a busy status
return was received from a remote terminal.

11 BUSY(RT) Alogical '1' indicates that the remote
terminal is unable to send data.

12 Not used.

13 ME(BC) A logical '1' indicates that the message error
bit was set in the last status return,

14 OR(RT) Alogical '1' indicates that the FIFO contains
valid data.

15 "T/RRT) Alogical '1" indicates that a request for data

has arrived. A logical '0' indicates that

data has arrived in the interface.

72

Write Status:

Bit No. Title Function

0 BUSY(RT) Alogical '1' sets the busy bit within the
status word.

1 DBCARRT) Alogical '1" sets the dynamic bus control
acceptance bit within the status word.

2 SUBFLG(RT) A logical '1' sets the subsystem flag within
the status word.

3 SERREQ(RT) A logical '1' sets the service request bit
within the status word.

4-15 Not used.

The interface was built on two Eurocards; the circuit diagrams,
layout diagrams and parts list can be found in Figs.10.5., 10.64., 10.7.,
10.8. and Tables 10.4. and 10.5. Figure 10.9. shows a photograph
of the two interface cards.

The operation of the interface is best describe d by considering
its use as a bus controller and then as a remote terminal under the operations
of sending and receiving messages.

10.2.2, Message from Bus Controller.

Consider the interface configured as a bus cénh’oller, and requiring
to send a message to a remote terminal. Initially the microprocessor
loads the FIFO with the message to be sent followed by the loading of the
command word with the transmit/feceive bit set to receive. Note the
transmit/receive bit is set depending upon the direction of the message with.
relation to the remote terminal being addressed. When the command word has
been loaded, the microprocessor then initiates the transfer, as shown in
the timing diagram in Fig.10.10. The low to high transition of the initiate
command enables the Manchester Bi-Phase encoder, which sets
the SEND DATA output high when it is ready to receive data. The
command word is converted into serial data, which is clocked into the

encoder at a rate of one bit a microsecond. After the sync and encoded

73

data are output, the encoder adds on an additional bit which corresponds to
the parity for that word. '

The encoder produces bipolar outputs which are used to drive an
isolating transformer via a long tailed pair as shown in Fig.10.7.b.
The connection between the isolating transformer and the bus is achieved by
means of a stub and a coupling transformer as shown in Fig.10.11, The
coupling transformer for each interface is housed in a shielded box at the
back of the expansion box.

When SEND DATA goes high after transmission of the command word
the first data word is clocked out of the FIFO, The data word is
converted into serial data and then clocked into the encoder when the
encoder is ready to accept data. The converted serial data word is
preceded by a data sync which is different from the sync which precedes
the command word, as shown in Fig.F.2. After the last word has been
transmitted, the bus controller then expects to receive a status word
from the addressed terminal to confirm that the message has been received.
If this status word is not received within 15 microseconds of the last data
word being sent, then a response time out occurs. Note the 1553B standard
requires that a bus controller wait at least 14,0 microseconds before
allowing a no response time out to occur; no maximum time period is
specified within the standard. The time out can be used to inform the
mi croprocessor that message handshaking has failed; which can then be
followed by a re~transmission or other predetermined course of action.

10.2.3. Message to Bus Controller.

Consider now the operation of a bus controller requesting a message
from a remote terminal. A subaddress field of five bits within the command
word can be used to signify, for example, a request for a particular data
type. The controller sets the word count field equal to the required
message length, the transmit/receive bit equal to transmit, ard the
address and subaddress fields to their relevant values. This command word

is loaded into the command register followed by an initiate transfer command

74

from the microprocessor subsystem, The low to high transition of the
initiate command enables the Manchester Bi Phase encoder;

the timing diagram is shown in Fig.10.12, The serial form of the command
word is clocked into the encoder when it sets SEND DATA high.

The addressed terminal identifies its own address within the command
word and signals the subsystem processor that a message is required.

If the message has not been preloaded into the interface then the subsystem
would have set the busy bit within the status word which is transmitted

to the bus controller. The status word is decoded by the Manchester
Bi-Phase decoder which sets TAKE DATA high. The bus controller
recognises that the remote terminal was unable to transmit the message

at that time, it then waits for a predetermined period, before re=transmitting
the command under subsystem control. The period of waiting is under
control of the subsystem processor, and was typically set between fifty

to a hundred microseconds.

During the period ot waiting, the transmitting subsystem processor
identifies the relevant message and loads it into the interface. The busy
bit in the status register of the remote terminal is also reset so that when
the request is received again then the message is automatically transmitted.
On this occasion, the bus controller decodes the status word and recognises
that the required message follows the status word. The data is loaded,
one word at a time into the FIFO; after the last data word
CONTIGUITY FAIL goes high since there was no bus activity for a
period of four microseconds since the last data word. The length of the
message requested is checked with the number of words received to confirm
that the message has been correctly received.

10.2.4. Message to Remote Terminal.

Consider the operation of a remote terminal receiving a message.
The first word received is the command word which is decoded by the
remote terminal. Having ensured that the message has the correct

address, the interface loads the word count into a latch and clears the FIFO

75

ready for the message. In addition a signal VALID COMMAND SYNC
goes high which starts the receive cycle; the timing diagram is shown
in Fig.10.13.

As each word arrives it is decoded into serial data with the decoder
setting a VALID WORD signal high if the word is valid. The serial word
is converted into a parallel 16 bit word, loaded into the FIFO and the
word counter is incremented. At the end of the message the interface
recognises a period without data syncs, and sets CONTINGUITY FAIL
high. The value of the word counter is then compared with the word
count from the command word. If these two values are equal then the
message has been correctly received and the subsystem processor is
interrupted to indicate the presence of a message. The Manchester Two
Bi-Phase encoder is enabled and the status word is sent to the bus controller.
If the word counts are not equal then an error has occurred and the
subsystem processor is not interrupted. The occurrence of an error sets the
message error bit in the status register and the status word transmission
is suppressed.

10.2.5. Message from Remote Terminal.

Consider the operation of a remote terminal sending a message.
When a request for data is received, a signal VALID COMMAND SYNC
goes high, as shown in the timing diagram in Fig.10.14. The encoder is
enabled and the status word is clocked into the encoder and transmitted.
On the falling edge of SEND DATA, the interface determines whether a
message has been loaded into the FIFO.

If a message has been loaded then one word is read at a time from
the FIFO; each word is converted into serial data before being sent
as part of a contiguous message. However, if no message has previously
been loaded into the FIFO the busy bit is set within the status word return,
This indicates to the bus confroller that the remote terminal was unable
to send a message in response to the request. Due to the time constraints

of the 1553B standard (i.e. respond with status word within 12 microseconds)

76

there isinsufficient time to load a message into the FIFO after receiving
a transmit command and before it is necessary to send the status word.
The subsystem processor is then interrupted and can then load the required
message into the FIFO and release the busy within the status register,

On the next request to transmit the message is sent to the bus controller.
10.2.6. 1553B Protocol Fault Injection.

The encoding and decoding of Manchester Two Bi-Phase Level

data within the interface was carried out by a customised integrated
circuit, the Harris]5530.29 This integrated circuit sets the word
length to 20 bits as defined by the 1553B standard. An alternative
integrated circuit similar to that above, the Harris 1553130 was used
within one of the interfaces and allows 1553B protocol faults to be injected
onto the bus. The integrated circuit is similar to that described above
except that the frame length and parity are programmable for both the
encoder and the decoder. A frame length of between six and thirty
two bit periods can be obtained with this device, which is set up by
writing to address 6FE@. The bit pattern and the corresponding frame
length can be found in Table 10.6.

This interface was also constructed on two Eurocards, whose circuit
diagrams are found in Figs.10.5. and 10.15. The corresponding layout
diagran and parts list for Fig.10.15. are to be found in Fig.10.16. and
Table 10.7.

10.3. Communications Software.

The available time for designing and building the 1553B interface
was limited, therefore the decision was made to use the Z8000 processor to
pass data in and out of the interface rather than use DMA which would
have been more elegant. However, this decision did not affect the
performance of the distributed processing system as sufficient free time
was available to allow the processor to transfer the data.

The communications software written for this study is described

by considering the sending and receiving of messages to and from the

bus coniroller and a remote terminal, as follows:

10.3.1. Message from Bus Controller.

The sending of a message is performed as shown in Fig.10.17.
The processor clears the FIFO prior to writing the message one 16 bit word
at a time into the FIFO, When the message has been loaded, the command
word is loaded into the command register. This command word contains
the address of the remote terminal which will receive the message and the
word count of the message. Finally, a send command is given and the
message is sent under control of the interface. |

Under nommal conditions the message transfer is then complete;
however, if no status return is received from the remote terminal in
question, then an interrupt is generated and the sequence can be repeated.

10.3.2. Message to Bus Controller.

The request and reception of data is performed as shown in
Fig.10.18. The message sequence starts with the processor loading the
command word register and then initiating the transmission. If the
busy bit is set in the status word from the remote terminal then an interrupt
occurs. The interrupt service routine increments the busy count (number
of requests given a busy reply), clears the interrupt flip flop and returns
to the calling program which repeats the sequence. If the busy is not
set in the status word then no interrupt occurs and the message is read from

the FIFO within the interface after a short delay.

10.3.3. Message to Remote Terminal.

" The reception of a message is performed as shown in Fig.10.19.
When data is expected from the controller the interrupt is enabled.
On reception of a receive command, an interrupt is generated and the
message is loaded into memory. On return from interrupt the remote
terminal then disables the interrupt.

10.3.4. Message from Remote Terminal.

The sending of a message by a remote terminal is performed as

shown in Fig.10.20. It is assumed that the busy bit within the status

78

register is set; when a request for data first appears the busy reply is given.
The request for data triggers an interrupt; the interrupt service routine

then loads the message into the interface. When the request appears
again the message is sent, this condition is recognised by the subsystem
processor which then sets busy for the next request.

10.4. Systems Integration and Test.

As for the single processor case, system integration and test
programs were developed for this phase. These consisted partly
of programs written for the single processor togehter with communications

test schedules. These programs have not been included in this thesis.

79

Chapter 11, Design Strategies: Distributed System.

This chapter presents strategies for detection and recovery from
transient and permanent hardware faults, and their implementation in
hardware and software within a real time distributed processing system.
The approach was, first to inject faults onto the control system which had
no recovery mechanism. Having gained experience from the single
processor study on the effect of faults, it was felt unnecessary to inject
a large number of random faults but instead to inject faults to give
typical or specific faults. Having obtained a baseline, the basic
Recovery Block was implemented upon the target tracking and digital
controller software.

Other techniques, for example the use of a watchdog timer,
developed in the single processor study were then implemented in order
to localise the effect of faults. Global recovery was used to prevent a
system crash or an unsafe system state when the localisation of the
effect of faults was not possible.

The performance of the distributed processing system was obtained
using the results of tracking a single target, whose characteristics are
described in the following section . The subsystem is operated wholly in
track mode and for the purposes of the distributed system, a run is
considered to start at missile launch.

11.1. Target Characteristics.

The target used for the distributed processing study was different
from that of the single processor study and had the following characteristics:
START POSITION 4000 4700 200 (metres)
HEADING - 100 4000 200 (metres)
VELOCITY 250 (metres/second)
This target was chosen as it gave a missile angle characteristic, as shown
in Fig.11.1., which has two phases of missile flight, i.e. that of
gathering and the terminal phase. In addition, the missile range is not

equal to the target range until approximately 10.8 seconds, as shown

80

in Fig.11.2,, thus allowing the system to recover under difficult fault
conditions.

The target tracking software was modified slightly from that used in
the single processor study, and involved the use of 120 sectors to represent
360° instead of the 30 sectors previously used. This increase in the
number of sectors allows more accuracy to be obtained in target tracking,
due to the higher resolution,

The use of 120 sectors gives a sector spacing of 30, and the effect of
this can be seen in Fig.11.1. The missile does not lie on the exact angle
as the target during the terminal phase but can still said to be tracking
the target. Tracking can be justified as the missile lies within the same 3°
sector as the target, and the system cannot distinguish one edge of this
sector from the other edge. Thus during the terminal phase the missile
believes it is on the same azimuth as the target, and a target hit is
considered to have occurred if the missile angle is within the same 3°
sector when the ranges are equal. This situation is adequate for the
purposes of demonstrating system recovery, but can be improved by the use
of smaller sectors and the use of feedforward terms in the missile guidance
loop.

The operation time of a single run was extended from ten to fifteen
seconds, this was simply a convenient time which was greater than the time
for the missile range to be equal to the target range. In taking results the
criterion taken was to compare the missile angle under fault conditions with
the frue missile angle obtained under no fault conditions. Each run was
continued to fifteen seconds even if a target hit occurred before this time.
The measurement of performance is described in the following section.

11.2. Performance Index.

A quantitative measure of performance was required to assess the
performance of the system under different fault conditions. The use of
availability as a measure is quite good but does not differentiate between

a single long unoperational period and many short periods. In many

81

applications, it is not sufficient just to recover from a fault but it is
important that fast recovery takes place as in the case of a missile
tracking a target. In addition, the time at which a fault occurs is
important, for example, a fault occurring at nine seconds after missile
launch has a higher probability of disrupting system performance than a
fault occurring at three seconds.

The missile flight consisted of two distinct phases, that is the
gathering and the terminal phases. During the gathering phase the missile
to target angles are large in contrast to the small angles obtained during
the terminal phase. Sin;:é the guidance control is closed loop, the system
recovers naturally from propagated data corruption type faults. However,
the natural recovery period is likely to be significant and may result in a
failure of the mission particularly if the fault occurs during the terminal
phase. Thus it is important that data corruption type faults are not
allowed to propagate and that the system is always in a known state.

In order to penalise slow recovery and large errors from the expected

performance, the following measure, called a Performance Index was used
_ (A
Performance Index _A t(error)2 dt ceeeo(11.1))

The upper time limit of the integral occurs when missile range is
equal to target range.

11.3. System with No Recovery .

Initially the system was configured as shown in Fig.11.3. without
any protection or recovery schemes to provide a baseline set of results.
Two types of faults were considered, that of data corruption and faults that
caused the digital controller to crash.

11.3.1. Data Corruption Type Faulits.

Using the mechanism described in Chapter 9.6. faults were initially
injected to produce data corruption effects. First, consider faults
infroduced during the gathering phase, i.e. up to about eight seconds
after the start of the run. The effect of corrupting the target angle

presented to the missile guidance loop can typically be as shown

82

in Figs.11.4. and 11.5. Fig.11.4. shows the effect of corrupting the

target angle to a value of - 3° for a period of eight iterations (1/15th second)
at two seconds after the start of the run. This value is a legal target angle,
however such a jump in target angle is unlikely to occur under no fault
conditions. This results in a maximum deviation of 6.05° and a performance
index of 65.0@econds, ‘degrees)2. Fig.11.5. shows the effect of

corrupting the target angle to a value of = 6° for the same period at four
seconds after the start of the run. This also gives a maximum deviation

of 6.05° with a performance index of 112, 3(seconds, degrees)z.

A data corruption type fault occurring in the output of the digital
controller corresponds to the missile being given an incorrect guidance
demand. The effect of setting the guidance demand to zero at 1/4 second
from the start for eight iterations is shown in Fig.11.6. This figure
shows @ maximum deviation of 8.49° and represents a performance index
of 152.2¢econds, ‘_degrees)z. The effect of data corruption occurring
during the gathering phase, as shown in Figs 11.4., 11.5, and 11,6.
is to change the plot of missile angle but does not affect the terminal
phase of the missile.

The time taken to recover from a data corruption fault within the
gathering phase was between two and six seconds. [f this recovery period
is repeated during the terminal phase then the effect of the fault is to
cause the missile to miss the target. In the terminal phase the recovery
period was generally shorter as shown in Figs. 11.7. and 11.8. which
indicates that tracking was lost for between one and three seconds.

The effect of an uncontrolled overflow, due to a large target angle, in
the controller’s cal culation of lateral acceleration is shown in Fig.11.9.
This effect is quite severe causing the missile to slew rapidly, giving a
maximum deviation of 14.0° with a corresponding performance index of
141 95.8Cseconds,.degrees)2. Tracking is regained three seconds after
the fault was introduced during which time the target was missed. The

overall effect of data corruption in the terminal phase in a system without

83

recovery is that there is a high probability that the target will be missed.
11.3.2. Controller Crashes.

The next stage was to consider the type of fault that led to a

controller crash, i.e. a total loss of system function. Typical causes
of system crashes were found by studying the single processor results;
a list of these causes can be found in Table 11.1,

Twelve runs of the system were carried out, each run was faulted
by one of the fault types listed in Table 11,1, The faults were injected
within the calculation of the difference equations by substituting one of
the instructions in Table 11,1, for a system instruction. Of these
twelve faults, all caused a loss of system function except fault type
number 2. The introduction of a relative jump meant that the program
counter stayed local to the correct value and a system crash did not occur;
the effect was one of data corruption. This cause was eliminated from
further consideration of faults that cause the system to crash if no protection
or recovery is applied.

11.4. Basic Recovery Block.

The previous section identified two different types of fault and their
effects; the next step was to implement the basic Recovery Block and
monitor its effectiveness in a distributed processing environment under
these fault conditions. The basic Recovery Block was implemented within
the target tracking processor and the digital controller processor to localise
the effect of faults on total system performance. The implementation is
described below followed by the resulting effect of the faults.

11.4.1. Target Tracking Processor.

The basic Recovery Block implementation used was the same as for the
single processor study (see Chapter 7.2.) except that the software was
modified to allow 120 sectors per revolution.

11.4,2, Digital Controller Processor,

The digital controller, as described in Chapter 5.3. consisted of the

addition of four difference equations. Each of the five units (four difference

84

equations plus the addition) had its own Recovery Block with the acceptance
test defined as ensuring the output is within the worst case limits.

The estimation of worst case limits can be found in Appendix G.

The outputs of the four parallel units and their addition can be found in
Figs. 11.10. and 11.11. and satisfy the results obtained in Appendix G.

In addition to acceptance testing, any overflow following an
arithmetic operation resulted in the entry of the appropriate alternate
routine. For simplicity, the alternate routine was to re-execute the
primary routine.

11.4.3. Data Corruption Faults.

The data corruption faults as described in Chapter 11.3.1. were
introduced into the system with the basic Recovery Block. Of the faults
introduced into the target tracking processor all were captured by the
relevant acceptance tests, This resulted in no degradation in the plot
of missile angle, even though a default or last value was used on several
occasions. The explanation for this is that the output of the target
tracking process is slow moving, with the target azimuth being updated once
per second.

Now consider faults injected into the controller software, as before,
the output of the digital controller difference equations was corrupted and
set to zero., The acceptance test was entered and the output passed the
test. The resulting missile angle plot was the same as for the system with
no protection, i.e. as in Fig.11.6. However, the effect of this fault
occurring during the gathering phase does not influence the system's ability
to enter the terminal phase.

The effect of allowing a large transitory target azimuth appear
as input to the missile guidance loop was shown in Fig.11.9. This caused
overflow in the digital controller's difference equations. However, with
the basic Recovery Block implemented within the target tracking
processor, then the acceptance test trapped the large swing away from

the target being tracked. The alternate routine was then entered and the

85

previous value used; this resulted in the plot of the missile angle being
equal to that under no fault conditions. Thus, the extent of the fault
was localised within the target processor and was not allowed to
propagate to the digital controller.

11.4.4. Controller Crashes.

The causes ot system crashes, as listed in Table 11.1, except

fault type number 2, were introduced into the controller software

with a basic Recovery Block structure. All the runs failed to complete
i.e. a system crash occurred, except number ten (POP instruction).

This was due to the structure of the Recovery Block. The POP instruction
results in the correct return address of a subroutine being taken off the
stack, this led to the processor pointing to the wrong calling address
when a return from subroutine was executed as shown in Fig.11.12,

This led to omission ot the acceptance test following calculation of one

of the difference equations. This omission was not a hazard to the system
as the addition of the four parallel units is checked later in the cycle before
a guidance demand is sent to the missile.

11.5. Use of Software Traps.

Some microprocessors, including the Z8000, have built in software
traps to detect potentially hazardous situations, in addition to a software
interrupt call for user software. The use of these traps was described in
Chapter 7.5.; using this technique the system was run using the faults
listed in Table 11,1,

In addition to those recovered from by the basic Recovery Block,
numbers one and five did not cause a system crash using the technique of
reading the process number and returning control to the appropriate
alternate routine.

11.6. Addition of Watchdog Timer.

A watchdog timer, as previously described in Chapter 7.3., was
added to the structure of the Recovery Block within the digital controller.

The remaining faults from Table 11,1, (instructions most likely to cause

86

a system crash) that were not recovered from using the mechanisms in
Chapter 11.4. (Basic Recovery Block) and 11.5. (Software Traps) were
introduced into the controller software. A time out occurred on each
occasion leading to entry of the alternate routine. No degradation in
system performance resulted from the injection of these faults.
11.7. Global Recovery.

Under fault conditions the 1553B bus controlier may request data

and repeatably receive a busy response. Alternatively the failure of a
remote terminal may lead to the message error bit being set and the
suppression of the status word. In a real time system, the controller cannot
continually accept this situation and must take steps to maintain the
integrity of the system. This section describes how the system can deal
with the transient failure of a remote terminal, in this case the terminal
attached to the target tracking processor. The permanent failure of this
processor is covered in Chapter 11.8.

11.7.1. Transient Failure and Recovery.

Consider the transient failure of the remote terminal belonging to
the target tracking processor for one system cycle. The transient
failure was simulated using the 1553B protocol fault injection interface
described in Chapter 10.2,6. At the required time of failure, the frame
length was adjusted to twenty one bits for a single cycle only. The target
tracking process is a slow moving one, therefore the last correct value
received by the controller is a reasonable estimate of the true position of
the target.

The recovery of the system is explained by following the run of the
above failure, with the aid of Fig.11.13. On the fault cycle, the bus
controller receives an invalid status word each time a request for data is
made. This is allowed to occur a maximum of four times; this figure being
set by the maximum latency allowed in the system. At this stage the digital
coniroller assumes that the remote terminal is not going to reply and

enters an alternate routine. This routine is a stepping stone between

87

fault free operation and the permanent failure of a remote terminal or
subsystem, thus a transient failure is first assumed.

11.7.2. Example of Recovery.

For this example the system entered the alternate routine and the last
correct data from the target tracking process was used. In addition, a
counter was updated for the purposes of counting the number of times the
alternate routine was entered; a maximum value of five was allowed before
a permanent failure was diagnosed. The use of the last correct data
corresponds to the target azimuth position which is used as the input to the
missile guidance loop.

On the next cycle the target tracking processor responded correctly
to the bus controller's request for data, and the target azimuth was sent from
the remote terminal to the controller. This cycle and the following cycles
were successfully completed.

The fault was induced in a cycle on which the target azimuth did
not change, and as recovery took place the missile angle was exactly as in
the fault free operation. If the fault had occurred on a cycle when the
target azimuth had changed, the digital controller would have used the
previous value on the faulted cycle and the true value on the next cycle.
This would have resulted in the step change in target azimuth appearing

1/120th second later than it should have done.

88

Chapter 12, Standby Processing Systems.

The previous chapter demonstrated the improvement of availability
that can be obtained in a distributed processing system under fault
conditions.

Consider now a system which decomposes into a given number of
processor subsystems due to factors such as complexity, allowed latency,
distribution of system peripherals and prevention of propagation of faults.
How then is the decision made to include a further processor to increase
system availability and performance under fault conditions and what
function will it undertake.

The decision to add an extra microprocessor subsystem and the
amount of fault tolerance within the other microprocessor subsystems, is
based largely on system requirements, i.e. how is the system expected to
operate under certain specified conditions. The operating conditions
may include environmental conditions such as EMP radiation, permanent
or transient fault conditions, and difficulty of maintenance whilst in
field use.

The processing power of an additional microprocessor system may be
used for task swapping and/or health monitoring; these functions are
described below.

12.1. Task Swapping.

The concept of using a standby microprocessor system is not a new
idea, however it is not sufficient to obtain a better performance under
fault conditions. The additional processor may need to gain access
to peripherals or transducers within the system, and this access will
depend upon the physical system distribution and the availability of
transducers. The use of the terminal attached to the standby unit as
a remote terminal or as a standby bus controller will depend upon the
number and nature of the remote terminals and the attached subsystems,
and the requirement for continued system operation. For example, it may

be imperative that a bus controller failure does not cause system failure.

89

12.2. Health Monitoring.

In many real time systems it is important to give an operator
confidence that the system is functioning fully or in a degraded mode.
The importance of this confidence may vary depending upon environment
and skill level of operator. In order to gain confidence that the system
is operational it is necessary to carry out routine health monitoring;
this monitoring must be integrated into the design of the system.

In the system described the digital controller could send its immediate
outputs of the difference equaﬁons- to a standby processor on a regular
basis. The reception of this data can then be used for health monitoring,
that is, a signal from the bus controller to confirm the functional state

of the system. In the event of a bus controller or digital controller
subsystem, the standby processor can use the last valid set of intermediate
outputs rather than restart the difference equations from zero.

12.3. Use ot Field Test Data.

The system requirements may or may not be sufficient to determine
the system configuration; additional data in the form of field test dcfa, if
available, can be used for the basis of the decision. This field test
data can be gathered, if possible, from existing equipment using for
example the same fransducers and/or operating in similar environmental
conditions. From this data, it may be deduced, for example, that
transient faults predominabe or that a certain transducer is critical
to the operation of the system or that the communications link is prone
to burst errors. The field test data can be used to decide whether the
system operational requirements are likely to be met with a certain
configuration and determine the level of fault tolerance within the
subsystem and the need for a standby microprocessor system.

Having considered aspects of a standby processing subsystem, the
following sections describe the recovery process that takes place

following a subsystem failure and the associated achieved performance.

90

12.4. Failure of a Remote Terminal.

The addition of a fourth processor subsystem was provided in order
that system recovery could take place when a complete processor subsystem
failed. This section describes the recovery that takes place following
a remote terminal failure whilst the system is tracking a target.

During the four processor study the raw target data was loaded
into the memory of the missile processor, as this processor is assumed fault
free. This involved the building of an additional memory card whose
circuit diagram, layout diagram and parts list can be found in Figs.12.1.
aond 12,2, and Table 12.1. The placement of this raw data within the
memory of the missile processor enabled the system to obtain target data
even in the presence of the digital controller or target tracking processor
failure. This involved a small modification to the software, that is on
each cycle the bus controller has to get the raw data and give it to the
target tracking processor. This involved a time overhead but it was small
compared to the cycle time, thus having no effect on system performance.
The arrangement of the four processor subsystems and the software is shown
schematically in Fig.12.3., where the fourth processor contains a copy of
the target tracking process and is idle during fault free operation.

12.4.1. System Recovery.

Consider the permanent failure of the target tracking processor and
the associated recovery. For this example, the failure of the target tracking
processor results in a busy reply when a request for data is made. On the
first cycle of the failure, a maximum number of busy status returns are
received, leading to entry of an alternate routine shown in Fig.12.4,

The last correct value of target azimuth is used and the guidance demand
calculated. System considerations determine that no more than six
consecutive entries of the first alternate routine were allowed. The
fault, being permanent, after five cycles causes the system to enter the
alternate routine for a sixth time and thenassumes a permanent

failure.

21

The second alternate routine is then entered and this effects the
use of the fourth processor to take over the failed processor's function.

On the first cycle in this alternate routine, the digital controller has to
give the standby processor sufficient information to take over the failed
function. In this case, the bus controller sends the radar azimuth position
ard the azimuth on which the target lies. The reception of these variables
by the standby processor acts as a wake up signal, with these variables
being used as a starting point of the function.

It is assumed that time is limited on this sixth cycle and so the
digital controller again uses the last stored value of the target azimuth.
On subsequent cycles the digital controller enters the alternate routine,
sends raw data to and receives target azimuth positions from the standby
processor,

12.4.2. System Performance.

If the failure of the target tracking processor occurs at least six
cycles before a change in target azimuth then no difference in the
resultant missile angle is obtained. The digital controller has no
knowledge of the targets range or velocity characteristics and so a
period of graceful degradation occurs for a period less than one second
until the standby processor identifies the target.

If the failure of the target tracking processor occurs less than
six cycles before the target azimuth position is due to be updated, then
the resulting missile angle plot will be different from that of the unfaulted
one. Thisis due to the effect which can be seen schematically in
Fig.12.5. The standby processor does not identify a target on a
particular cycle until approximately one second after the fault, and
uses the target azimuth value prior to the fault.

Two runs were carried out with a failure of the target tracking
processor occurring less than six cycles before the target azimuth was due
to change. In the first run, the fault was introduced at one second after

the start of the run. The resultant missile angle plot can be found

92

in Fig.12.6. and shows that only the gathering phase is affected and the
missile still enters the terminal phase successfully. A maximum deviation
of 2° was recorded with a performance index of 46.5Geconds, \degrees)z.
The second run involved a fault at approximately eight seconds, i.e.
during the terminal phase. The resultant missile angle plot can be found
in Fig.12.7. and shows that the system regained tracking within three
seconds, giving a performance index of 154,9Geconds, degrees)z, and a
maximum deviation ot 1.44°, As the angle was within three degrees of the
true unfaulted angle at eleven seconds, then the run was considered to be
successful . Eight seconds from the start of the run, was found to be the
latest time that such a fault could occur without affecting mission success.
12.5. Failure of a Bus Controller.

The failure of the target tracking processor during system operation

did not cause system failure due to recovery taking place with the aid of a
standby processor. Intuitively, the failure of the bus controller is likely
to have a much greater effect on system performance. This section

shows by way of examples how the recovery from such a failure can take
place and its effect upon system performance.

The configuration of the four processor systems, was as shown in
Fig.12.8. with the standby processor idle under no fault conditions.
Consider then the failure of the digital controller whilst tracking a target.

The function of the digital controller is to execute a number of
difference equations to calculate the guidance demand of the missile.

If another processor has to take over then it is advantageous to use a good
estimate of the past values of the four parallel units rather than restart
the difference equations from zero. The outputs of the four parallel units
can be seen in Fig.11.10. which shows that the best estimate for

previous outputs is in fact zero.

It was assumed that the failure of a bus controller would result in
a prolonged period of inactivity or a prolonged period in which invalid

commands are being transmitted on the bus. This period was detected by

93

the failure to retrigger a monostable by the val id command sync pulse
derived from the bus monitor. The output of the monostable was then polled
by the microprocessor subsystem to detect the bus coniroller failure.
For the purposes of the study the minimum period of inactivity was set to
four milliseconds from the receipt of the last valid command sync pulse,
this being shown in Fig.12.9,

Thus the detection mechanism consisted of a retriggerable monostable
which was continually retriggered during normal bus operation giving a
logical '1' output. Following bus controller failure the monostable is not

triggered and the output falls to a logical '0'.
12.5.1. Use of Bus Monitor.

The failure of the bus controller was carried out by the use of the

non-maskable interrupt mechanism as previ ously described. The subsystem
processor (digital controller) was put into a halt condition, thus taking
no further part from the time of failure to the end of the run. In practice
the failed bus controller must not be allowed to issue further commands,
after it has deemed to have failed by a bus monitor. This can be carried
out, as shown schematically in Fig.12.10. by the use of a discrete
which disables the output of the bus controller. This discrete is set by
the bus monitor on detection of a prolonged inactive bus period.

Having detected prolonged bus inactivity the bus monitor
then assumes bus control. The standby processor must then obtain the
target azimuth from the target tracking processor and read the missile
angle. The missile to target error angle is used as input to the
difference equations, setting previous inputs equal to the present input, and
the previous outputs of the four parallel units equal to zero. The system
then continues as normal during which time coverage is still given by the
target tracking processor.

12.5.2. Effect of Failure on Performance.

The effect of the bus controller failure on the missile angle depends

upon when the failure occurs during the run. The greatest deviation in

94

in the missile angle occurred when the failure took place in the

gathering phase. This occurred due to the starting up of the difference
equations immediately after bus controller failure. During the

gathering phase the target to missile error angle is large and not equal to
zero, even if zero is the best estimate. A failure at one second after

the start of the run results in the missile angle plot as shown in Fig.12.11,
This shows a large deviation from the true missile angle (9.50) with
recovery taking about eight seconds, resulting in a performance index

of 738.5@econds, ,degrees)z. This large deviation affects the missile
angle during the gathering phase but shows that tracking still occurs before
the target is reached.

The effect of the failure occurring later in the gathering phdse
results in a smaller excursion from the true missile angle as can be seen
from Figs.12.12, and 12.13., which show the effect of a failure at two
seconds and four seconds respectively. The failure at two seconds gives a
maximum deviation of 4.01° with a performance index ot 140.5Geconds,

degrees)2 , whilst the failure at four seconds resulted in a maximum
deviation of 2.65° and a corresponding performance index of
128.9Geconds, degrees)2 .

During the terminal phase of the missile, the missile to target error
angle is small, and the outputs of the four parallel units are close to zero.
Thus if a failure occurs during this phase the effect of setting the parallel
outputs to zero (in the standby processor) is likely to be less than that
in the gathering phase. This is likely to result in a shorter recovery
time and a smaller excursion from the true missile angle. Failure of the
bus controller was carried out at seven, eight and nine seconds after the
start of the run, giving maximum deviations of 2.350, 1.99° and 1.24°
respectively. The resulting plots can be found in Figs.12.14., 12.15. and
12.16., these represent perfformance indices of 39.1, 20.5 and
12.7 Geconds, 'degrees)z. The graphs show that the time to recovery and

the maximum excursion are less than that in the gathering phase and

95

that mission success is not affected by a bus coniroller failure even in the

terminal phase of the missile.

96

Chapter 13. Distributed Processing Conclusions,

The implementation of fault tolerant techniques within a
distributed processing environment has resulted in an increase in availability
under exireme operating conditions. However, it must be stressed that
redundancy does not automatically increase the reliability of a system.
A poor implementation of a fault tolerant technique may actually result
in a decrease of system reliability,

13.1. Review of Design Philosophy.

The use of a Recovery Block within subsystems which form part of a
distributed system provides recovery on a local basis. This ability to
recover locally has led the author to establish a design philosophy for
message passing between processors. This philosophy is based on
testing data at the point of maximum information, i.e. at the point of
transmission of the message, and the absence of testing data on reception.
The testing of data is carried out by an acceptance test prior to
transmission; the data is assumed to be valid if it is received correctly
with respect to the particular communications protocol.

The absence of reception of expected data leads to another principle, |
i.e. that message transfers proceed only in one direction. If a message
fails to arrive then the receiving subsystem must not attempt to diagnose
the failure to transmit; instead it must initiate global recovery after a
predetermined time period. If the receivingdevice were allowed to
attempt fault diagnosis of the transmitting subsystem a loop would be
closed around the communications link, and the system would become more
complex and probably more unreliable.

13.2. Distributed Processing Recovery.

The distributed processing research has shown that by using the
Recovery Block as a basis, transient and permanent faults can be recovered
from generally without a severe loss of performance. System recovery was
shown to take place whilst real time control was being performed, without

massive redundancy as in triple modular redundancy.

97

The faults injected were divided into two groups, i.e. data
corruption type faults and system crash type faults. The distributed
processing system without a recovery mechanism was still able to track
targets when the data corruption type faults were injected during the
gathering phase. The effect of data corruption in the terminal phase
let to a high probability of missing the target being tracked.

By definition this sytem was unable to recover from system crash type faults.

13.2.1. Local Recovery.

The implementation of the basic Recovery Block within the
distributed processing system ensured that recovery took place when data
corruption type faults were injected into the target tracking and digital
controller processes. This implementation was unable to recover from
system crash type faults; this confirmed the results of the single processor
study. The use of the time domain in the form of a watchdog timer and
the use ot system traps for illegal conditions led to recovery from the system
crash type faults.

13.2.2. Global Recovery.

If local recovery from a particular fault was not possible, then
global recovery was shown to maintain the system functional. Global
recovery was performed by the use of an alternate routine in the master
processor subsystem, and is necessary if transient faults prevent the master
from receiving valid data. The use of local recovery means that there is
a high probability that the processor's communication interface is loaded
with data, but cannot guarantee correct communication of data.

Under these conditions, global recovery is necessary to ensure valid
data and continued system operation.

13.2.3. Use of a Standby Processor.

If system availability is required to be high then the use of a standby
processor system may be justified. The failure of a slave subsystem was
performed and dynamic task swapping was shown to give good results when

the system was tracking a target. The task swapping was initiated when a

98

counter exceeded a predetermined limit within an alternate routine in the
master processor subsystem. This was followed by enabling the standby
processor with the necessary starting values. The failed subsystem took
no further part and all communication with the particular function was
made to the standby processor. This type of failure did not affect system
success provided it occurred more than three seconds from the target.

In a master/slave system, the master is critical for continued
operation and high availability. A bus controller failure was carried out
which did not lead to a system crash due to bus inactivity detection
circuitry within the bus monitor. Assuming that the bus controller fails
quietly, i.e. no bus communication traffic, then this effect can be used
to initiate take over of bus control. The new bus controller must ensure
that the failed bus controller takes no further part in the operation of the
system. The results showed that failure of the bus controller, even in the
terminal phase of the missile did not affect the objective to hit a target.
System performance was only slightly impaired as shown by the low
performance indices recorded in the terminal phase, as shown in
Chapter 12.5.

The take over of control by the bus monitor was fast and occurred
within one system cycle. The degradation in performance was due to the
Settling of the digital controller's difference equations in the new master
subsystem, This performance can be improved if the intermediate outputs
of the difference equations are regularly transmitted to the bus monitor.
The transmission of these outputs can also act as a health monitoring signal
to the bus monitor. In the event of the bus controller not failing quiet,
the absence of a health monitoring signal can be used to signify a failure
of the bus controller, without waiting for a quiet period on the bus.

13.3. Further Work.

The modelling of hardware reliability is well established, unlike

the field of software reliability modelling which is a comparatively new one.

However, in the view of the author the problem is being tackled incorrectly

99

since the all important point is the reliability of the system. Few
researchers (if any) have tackled the self imposed problem of combining
hardware and software models to give a system reliability model. This area
needs consideration before too much time is spent on developing software
reliability models.

The system described in this thesis was operated without need for
an operating system. Some real time systems may require a kernel to
supervise the operation of parallel co-operating processes. Such a kernel
would also require fault tolerance for high reliability,

Further work is required to establish the implementation of a Recovery
Block structure within such a system. It is likely that the kernel would
be considered as the highest level of software and perform acceptance
on processes either running or to be run.

The single processor study involved applying mainly single faults
with a small percentage of double faults. This was considered to be
sufficient within the time available, however further work could be
usefully spent by studying the implementation of a Recovery Block
structure under multiple fault conditions. An important area for
investigation is the development of robust software specifically for areas
where input data is likely to be corrupt.

In the distributed processing study, a standby processor was
effecﬁvefy used for continued systems operation under the conditions of a
failed subsystem. Under normal operating conditions the standby processor
is idle and could be used for system health monitoring, that is to monitor

and record the state of the system,

100

Chapter 14, Towards an Integrated Approach to Design.

The approach used in this report was to investigate different
strategies including the assessment of their performance in order to arrive
at a system with high availability under prescribed fault conditions.

The experience gained from the study is used here to discuss guidelines
for the design of a reliable system. In addition, these guidelines

have been applied to the design of a single microprocessor target
tracking system; this design is illustrated using @ MASCOT methodology.
14.1. Cuidelines for Design.

The use of redundancy is often necessary in order to achieve

system reliability and availability requirements. However redundancy
must be applied methodically to ensure that system complexity is not
unnecessarily increased, This section presents guidelines for the design
of reliable systems,

14.1.1. Functional Decomposition.

The functional decomposition of a system is an essential feature
of the system recovery strategy. The factors to be considered
are:

Separation by function or process.

.

Interprocess communication kept to a minimum,

L]

Consideration of physical locality of functions.

-P-?ON—‘

. Functions need to be a manageable size for a complete
understanding of the total system.

14.1.2, Recovery Block.

The use of a Recovery Block structure must be justified within the
system to be designed. Consideration should be given to the overhead
incurred with relation to the increase in availability obtained. The
single processor study gave an increase from 5% to 42% availability
(with fail safe). This must be weighed against the overhead in sottware
resulting from the use ot the structure; a figure of 30% additional software

was found to be typical.

101

14.1.3. Watchdog Timer.

The use of the time domain for implicit fault detection was
considered to be an essential feature of any real time system. The
watchdog timer is simple in hardware terms, consisting of a programmable
timer which can set an interrupt flip flop. An interrupt service routine
must be written to determine the process which was being performed at the
time of the fault and transfer control to the relevant re-entry point.
Results from the single processor study showed an availability of 85%,
an increase of 43% over the basic Recovery Block structure.

14.1.4. Run Time Overhead.

The overhead in time, incurred by using a Recovery Block structure
is dependant upon the complexity of the acceptance tests and the
environment in which the system operates. If the environment is noisy
electrically then transfer of control into alternate routines is likely to
be common.

14.1.5. System Traps.

Any unused software or hardware traps available within the
processor must be restored to the same address as that for the hardware
timer. A log of fault interrupt causes can be kept for continuous
monitoring and maintenance purposes.

14.1.6. Reversionary Modes.

Systems design must take account of reversionary modes of
operation upon fault detection. A safe shutdown of the system is
often desirable if a hazardous condition is detected.

14,1.7. MASCOT ACTIVITY CHANNEL POOL (ACP) Diagram.

An initial design is illustrated using an ACP diagram, which

shows the Activities of the system and the Intercommunication Data Areas.
The reader is referred to Ref.6. for information on MASCOT, An
inadequate decomposition of the system will result in a large ACP

diagram with highly interconnected activities.

102

The overall system design is illustrated as a hierarchical set of
ACP diagrams. Decomposition is carried out to a depth necessary to
achieve a reasonable level of functional modularity.

14.1.8. Fauit Scenarios.

Having decided upon a hierarchical set of ACP diagrams then
system designers should study the diagrams to identify situations which
might compromise safe system operation. If a hazardous situation is
identified then a fail safe mechanism or alternative strategy is necessary.

14,1.9. Design Reviews.

Design Reviews should be carried out to ensure that the system
specification requirements are adequately stated and can be feasably met.
A design Review should cover the following points:

(i) Clarity of software structure.

(it) Tolerance of software to hardware errors.

(iii) Design proving requirements.

(iv) Requirements for configuration control.

(v) Safety.

(vi) System development tools.

(vii) Acceptance procedures.
(viii) Reversionary modes of operation.

(ix) Software/Hardware trade offs.
14,1.10. Structured Walkthroughs.

The structured Walkthrough is similar to a Design Review except

that it is carried out with greater frequency. It is concerned with the
design of a subsystem or part of a subsystem and covers the following points:
(i) Function.
(ii) Clarity of structure.
(ifi) Speed of operation.
(iv) Test requirements.
(v) Fault detection and recovery.

(vi) Size of software.

103

14.1.11, Testing.

The use of a Recovery Block structure has the advantage that testing
of software can be modular and more thorough thus removing a greater
percentage of design errors. In top down testing, the top level is
tested first, a lower segment is added and the combination tested.

This is repeated down to the lowest level. Dummy segments temporarily
replace the segment subordinate to the segment under test. These dummy
segments can vary in complexity and may return constantsor may be a
primitive version of the segment being simulated. To enhance structured
programming the length of a segment should be limited to a mangeable
level, say fifty statements to enhance readability and comprehension
whilst minimising page turning. Usually each segment will correspond

to one function and can be implemented as a procedure with a descriptive
name corresponding to the function. Thus the use of small segments makes
programs easier to extend and maintain; reliability is further enhanced
since test plans for the segments are easier to specify and execute.

14.2, Single Processor System.

Having discussed guidelines for reliable systems design, this section
describes the initial design of a single microprocessor target tracking
system. It is assumed here that the microprocessor to be used is capable
of the real time processing necessary.

14.2.1, Functional Decomposition.

Using the factors detailed in Section 14.1.1. it was decided to use
the same decomposition as previously used. However the sub tasks will
no longer be processed in a sequential order, due to the operation of the
system in a MASCOT environment.
14.2.2. Recovery Block.

It was considered that the use of a Recovery Block structure could
be justified in order to obtain a high availability. The inclusion of a
Recovery Block structure is not suffi~ient to increase system availability;

it is necessary to ensure that the implementation is robust. The implementation

104

of the Recovery Block structure on a particular processor system will result

in a particular overhead, which is application dependent. The estimated
overhead in software and hardware can be weighed against the increase

in availability obtained. At present, as far as is known, this study

represents the only source of information on the increase in availability

that can (not necessarily will) be obtained by using a Recovery Block structure.
14.2.3. Watchdog Timer.

The introduction of a watchdog timer can be justified here, as it
involves little overhead in software and hardware terms.

14.2.4. Run Time Overhead.

The target tracking system is operated with an angular separation

of 12°. The time taken for the processing will depend upon the
processor chosen. A correct choice of processor will allow a Recovery
Block structure to be used.

14,2,5. Trap Areas.

The use of trap areas between code segments does not necessarily
result in an increase of availability., However, this feature can be
effectively used for safety purposes, that is to ensure that a routine is
correctly entered. It is considered sufficient for this system to include
a trap area immediately before each primary routine.

14.2.6. Reversionary Modes.

The reversionary modes of operation in the target tracking system

simply consist of alternate routines relevant to the particular process.
The system is shutdown if any alternate routine is entered on four
consecutive cycles. This is considered to be the point at which the
system can no longer give valid outputs. No hazardous states exist
within the target tracking system.
14,2.7. MASCOT ACP Diagram.

The top level ACP diagram for the target tracking process is shown

in Fig.14.1. Whilst the system is in a standby state, i.e. SEARCH mode,

then time is available for checking of system hardware. Using a

105

priority scheduler then the activity for hardware checking can run at the
lowest priority. The design of an activity scheduler is not considered

here.

106

Chapter 15. Overall Review of Achievements,

This chapter reviews the research study in terms of the objectives
set out in Chapter 1.1. The study has conclusively shown that the
availability of a system can be improved by a combination of measures
as outlined in the following paragraphs.

For completeness the constituent parts of the main objective are
repeated below, together with reference to the relevant chapters where

they are achieved.

(@) 'To establish good design practices based upon a
practical rather than a mathematical approach’.
Cuidelines to design are discussed in Chapter 14
which presents an integrated approach. This
approach is applied to the design of a target
tracking system as described in Chapter 14.2,

(b) 'To establish a simple bdf obvious structure for system
recovery'.
The Recovery Block was shown to be a basis
for the design of reliable real time systems

as described in Chapters 7 and 8.

(c) 'To establish design criteria for reliable inter-task
communication within a single processor’.
The integrity of data was improved by a method
wheréby system variables were not updated
until the appropriate acceptance test had been
successful. The system variables were then
passed to the next task by the use of CPU

internal registers as described in Chapter 7.

107

(d) 'To establish a design philosophy for message passing
between microprocessors in a distributed system in order
to inhibit the propagation of faults'.

The concept of checking data before passing

it to the nexttask was extended to the
distributed processing environment where the
receiving processor accepts data as valid unless
otherwise indicated by the transmitting processor.
This philosophy is described in Chapter 9 with
results in Chapter 11,

The overall conclusion of the research study was that for reliable
systems operation, fault recovery must be localised to minimise the
propagation of faults to the next task in a single processor system or to
another processor in a distributed system. The conclusions for the single
processor study are presented in Chapter 8, whilst the distributed
processing conclusions are presented in Chapter 13.

The initial objectives were to investigate recovery from transient
faults; however opportunity was taken to extend the study to investigate
failures of a catastrophic nature whereby a subsystem fails permanently.
As described in Chapter 12, the strategy adopted in this respect was to
infroduce a standby processor in a task swapping mode. Conclusions

drawn from the results obtained are presented in Chapter 13.

108

Acknowledgements.

The author would like to thank British Aerospace and the Science
and Engineering Research Council for support and funding of the research
study. The author would also like to thank Prof. J.F. Eastham for
the use of the laboratory and Dr. B.A. White for his guidance and
assistance throughout the study. Thanks are also due to Mr.M.G. Brown
and Mr. S.C. Dunn of British Aerospace for their assistance with the
research,and Mr. R.V.S. Penfold and his team, also from British
Aerospace, for hardware support.

Thanks are finally due to Mrs. P, Jackson for the typing of
this thesis.

109

10.

11.

12,

References
FISCHER K.F., WALKER M.G.: 'lmproved Software Reliability
Through Requirements Verification'; IEEE Trans. Reliab. R-28,
pp. 233 - 240, August 1979.
MELLIAR-SMITH P.M., RANDELL B.: 'Software Reliability:
The Role of Programmed Exception Handling', SIGPLAN Notices
12(3). pp.95 - 100, March 1977.
BALZER R., GOLDMAN N., WILE D.: 'Informality in Program
Specification', IEEE Trans, Software Engr. SE-4, pp. 94 -103,
March 1978,
MYERS G.J.: 'Software Reliability', John Wiley, 1970.
ROSS D.T., 'Structured Analysis (SA): A Language for
Communicating Ideas', IEEE Trans. Software Engr. SE-3,
pp. 16-34, January 1977, ‘
The Official Handbook of MASCOT, MASCOT Suppliers
Association, December 1980.
MYERS G.J.: 'Reliable Software through Composite Design'
Van Nostrand Reinhold Company, 1975.
PARNAS D.L.: 'On the Criteria to be Used in Decomposing
Systems into Modules', Communications of the ACM 15(2),
pp. 1053 - 1058, December 1972,
FUSSELL J.B., POWERS G.J., BENNETTSR.G.: 'Fault
Trees - A State of the Art Discussion’, IEEE Trans. Reliab. R-23,
pp. 51 = 55, April 1974,
LONDONR.L.: 'Proving Programs Correct: Some Techniques
and Examples', BIT 10, 1970.
WENSLEY J.H. et al: 'SIFT: Design and Analysis of a Fault
Tolerant Computer for Aircraft Control', 1EEE Proceedings
Vol. 66, pp.1240-1255, October 1978,
PETERSON W.W., WELDON E.J.: 'Error Correcting Codes'
Znd Ed., MIT Press 1972,

110

13.

14,

15,

16.

17.

18,

19.

20.

21,

22,

23,

24,
25,

CHEN L., AVIZIENIS A.: 'N-Version Programming: A Fault
Tolerance Approach to Reliability of Software Operation’,
Dig. FTCS-8, Eighth Ann. Intl. Conf. on Fault Tolerant
Computing, pp. 3-9, 1978,

RANDELL B.: 'System Structure for Software Fault Tolerance',
IEEE Trans., Software Engr. SE-1, pp. 220-232, June 1975.
JELINSKI Z., MORANDA P,: 'Software Reliability Research,
Academic Press, pp. 465-468, 1972,

SCHOOMAN M.L.: 'Probabilistic Modes for Software
Reliability Prediction’, Int. Symp. Fault Tolerant Computing,
pp.211-215, June 1972,

MUSA J.D.: 'A Theory of Software Reliability and its
Application', IEEE Trans, Software Engr. SE-1, pp.312-327,
September 1975.

SCHICK G.J., WOLVERTON R.W.: 'Assessment of Software
Reliability', Proc. Operations Res. pp.395-422, 1973.
LITTLEWOOD B., VERRALL J.L.: 'A Bayesian Reliability Model
with a Stockastically Monotone Failure Rate’, 1EEE Trans.
Reliab. R-23, pp.108-114, June 1974,

QUINN M.D., RICHTER D.: 1980 IEEE Test Conference,

pp. 238-253, 1980,

MOORE W.R.: Electronic Letters Vol.15 No.22, pp.722-724,
1979.

GARNELL P., EAST D.J.: 'Guided Weapon Control Systems'
Pergamon Press, 1977.

KATZ P.: 'Digital Control Using Microprocessors',
Prentice/Hall, 1981,

Am96/4016 Users Manual, Advanced Micro Devices, 1979.
TMS 9900 Family System Development Manual, Texas Instruments,
Bulletin MP702, p.58, 1977.

111

26.

27.

28,

29,

30.

31.
32,

33.

BERGLAND G.D.: 'A Guided Tour of Program Design
Methodologies', Computer, pp.19-37, October 1981,
HARTLEY M. G. ed.: 'Digital Simulation Methods',

Peter Pereguins Ltd., 1975.

MIL=-STD 1553B: Aircraft Internal Time Division Command/
Response Multiplex Data Bus, Department of Defence,
September 1978.

HD-15530 CMOS Manchester Encoder = Decoder, Harris
Corporation, 1978,

HD-15531 CMOS Manchester Encoder - Decoder, Harris
Corporation, 1978.

Z8001/Z8002 Product Specification, Zilog., 1979.
Principles of Operation AmZ8001/2 Processor Instruction Set,
Advanced Micro Devices, Am-PUB086, 1979,

Principles of Operation AmZ8001/2 Processor Interface,
Advanced Micro Devices, AmPUB089, 1979.

112

APPENDIX A

Digitisation of Guidance Loop.

In the following derivations the sampling period of the digitised
system is 1/30 second.

A.1. Digital Controller: G](z)

G](Z)

1-2z1).2 (1. 10(s+])(s+l)(s+0.5))
s s(s+3.16)(s+3.16)

1-z".z (_.

S

]

—

G](s)) e (A.1.)

By Partial Fractions
G](s) = 1,685972102 + 0,.500721038
s 2
s s
+ 8.314027898 - 12,42839289
G +3.16) (s +3.16)% ceeen (AL2))
Then Z. <G.|(s) >= 1.685972102z + 0.016690701z
z-1 2
z-1)
+ 8.314027898z - 0.372861921z
| z - 0.900024464 , _ 0.900024464)° ... (A.3.)
Finally G](z) = (1~ z-]).Z (G](s))

S

S

1.685972102 + 0.0166%20701
z-1)

+ 8.314027898(z - 1) - 0.372861921 (z - 1)
z - 0.900024464 2 - 0.900024464)2

+ 28.395908562 2
- 9.2078818662"°
+2.61 009296322

- 0.810044035z'3 (A.4.)

= 10 - 29.187859632"

1 - 2.800048928z

113

A.2. Missile Autopilot: GZ(Z)

.Z 1. (144)
s ‘52(52 + 14s + 144)

-1
(1-2).z (1. GZ(S))

Gyz) = (1- 2]

By Partial Fractions
Gz(s) = 0.002507716 - 0.097222222 + 1

2 3

s s s
- (0.002507716s - 0.062114198)

52+ 14s+14 ...,

Then Z. GZ(S) = 0.002507716z - 0.00324074z
z-] (z - 1)2

S
+ 0,000555555z (z+ 1)
- 1)°
- (0.00250771 622 - 0.0030375042)

22 - 1.500869446z + 0, 627089085

(1 -z-]).Z (62(5))

S

Finally Gz(z)

0.002507716 - 0.00324078 + 0,000555555 (z + 1)
z-1 2
(z=-1)
+ (z = 1)(- 0.002507716z + 0.003037504)
z2 - 1.500869446z + 0. 627089085

1 2

+0.002798632z

3 4 0.0009156962"
2

= - 0.000903767z
- 0.002670325z"

1 - 3.5008694462 + 4.6288279772"

- 2.7550482632"°

4

+0. 627089085{4

114

APPENDIX B
The Z8000 Microprocessor.
This appendix contains a brief description of the Z8000

microprocessor; further information can be obtained from Refs. 31,
32 and 33.
B.1. Architecture.

The Z8000 is a single chip 16 bit microprocessor using N-Channel
MOS technology and provides a multiplexed data/address bus.
The Z8000 CPU is at present offered in two versions: the Z8001
segmented version and the Z8002 non-segmented version;
future versions will include a virtual memory capability. The Z8001 can
directly address 8 megabytes of memory, whereas the Z8002 directly
addresses 64 kilobytes. The two operating modes of the microprocessor,
system and normal modes, and the distinctionbetween code, data and stack
spaces within each mode allows memory extension up to 48 megabytes
for the Z8001 and 384 kilobytes for the Z8002.

The Z8000 CPU contains sixteen 16 bit general purpose registers,
a status register (Flag and Control Word), a program counter, a program
status area pointer and a refresh counter register.

B.2. Interrupts and Trap Structure.

The Z8000 provides three types of interrupts (non maskable, vectored
and non vectored) and four traps (system call, unimplemented instruction,
privileged instruction and segmentation trap). The segmentation frap is
only available on the Z8001.

When an interrupt or trap occurs, the current program status is
automatically pushed onto the system stack. The program status consists of
program counter, the Flag and Control Word, and a 16 bit identifier.

The identifier contains the reason or source of the trap or interrupt.
After saving the current program status, the new program status is
automatically loaded from the program status area in memory which is

directed to by the program status area pointer.

115

B.3. Memory.

The Z8000 uses four control signals in association with four status
signals during memory read or write cycles. The multiplexed bus contains
a valid address on the rising edge of Address Strobe (AS). The Data Strobe
signal (Bg) is used to indicate either valid data on awrite cycle or that .‘
the CPU expects valid data on a read cycle. A memory request
signal (MREQ) is active during all memory cycles.

Consider first a memory read cycle, the timing diagram is
shown in Fig.B. 1. which assumes that the memory used has an access time
comparable to one clock period. Slower memories can be used by the
addition of wait states. At the beginning of the cycle the Read/Write (R/W)
signal goes high. The rising edge of AS indicates a valid read address,
data can be placed on the bus after DS becomes active and is read by the
CPU on the rising edge of DS.

On a memory write cycle (shown in Fig.B.2.) the R/W line is low,
and valid memory address is indicated as for the read cycle. Valid data
may be taken off the bus whilst Data Strobe is low.

B.4. Input/Output.

Input/Output is carried out in a similar manner to memory accesses
with the exceptions that the memory request line is not active, an automatic
wait state is inserted, and the status lines indicate an 1/O reference.

I/O devices are addressed with a 16 bit port address.

Direct memory access (DMA) can be carried out over the Z8000
multiplexed bus during which time the bus is driven by a DMA device.
B.5. Instruction Set.

The Z8000 provides the following types of instructions:
Load and exchange _
Arithmetic
Logical
Program conirol

Bit manipulation

116

Rotate and shift

Block transfer and string manipulation
Input/output

CPU control

117

APPENDIX C

The Micromaster.

The Micromaster was developed by the Control Group at the
University of Bath, School of Electrical Engineering, for use as a
microcomputer teaching aid. Its use as a teaching aid is not described
here since the Micromaster was simply used as an intelligent terminal
for the duration of this study.

The Micromaster contains a Z80 microprocessor and this was used
to communicate with the PDP 11 through an R$232 port and with the
Z8000 microprocessors through the other RS232 port. Temporary
storage of system results was carried out using 32K bytes of dynamic
RAM within the Micromaster.

The communication software written for the Micromaster
basically consists of polling the serial interface parts but is not

described within this report.

118

APPENDIX D
Z8002 Microprocessor Program Assembler.

This appendix describes the two pass assembler which produces an
object code file and an assembly listing for the Zilog Z8002. This program
runs on the PDP 11 under theRSX-11M operating system.

D.1. Statement Format.

A Z8002 assembly language statement is defined as follows:
label: opcode operand(s) comments

The label and comment fields are optional, and no continuation
lines are allowed.
D.1.1. Label Field.

The label field may contain a user-defined symbol containing up
to six characters, the first of which must be alphabetic. The assembler
allocates the current location to the label, so that a user may make
further references to the label without knowing its address. A symbol used
in a label field may not be redefined in the label field of another
statement.
D.1.2. Opcode Field.

The opcode field follows the label field and contains one of the
following:

1. Mnemonic operation code of a machine instruction

2. Assembler directive operation code.
The opcode field is terminated by a space, tab, semi=colon when there are
no operands or a carriage return when there are no operands or comments.

D.1.3. Operand Field.

The operand may contain up to four expressions or terms, depending
upon the type or requirements of the opcode. The operand field must
follow an opcode and can be terminated by a semi-colon when a comment
is to follow or by a carriage return when there are no comments.

D.1.4. Comment Field.

The comment field is used.purely to help the user or future users

119

on the workings of the assembly language program. It may be preceded
by any or more of the fields previously mentioned. The comment field
has no effect on the assembly and must be preceded by a semi-colon and
terminated bf a carriage return,

D.2. Z8002 Expressions.

This section describes the components of legal Z8002 expressions

which include the instruction set, numbers and characters.

D.2.1. Character Set
The following characters are valid in Z8002 source programs:
1. The letters Ato Z.
2. The digits 0 to 9.

3. The special characters as below:

Character Designation

(left parenthesis
) right parenthesis
’ comma

<SP space

CHT? horizontal tab
AN up arrow

$ dollar

' apostrophe

* asterisk

+ plus sign

- minus sign

. full stop

/ slash

{LF> line feed

v vertical tab

{FF> form feed

{CR> carriage return

“~ hash

120

If any character other than those above is encountered the line being

'I" will occur on that line in the

assembled will be terminated and an
listing.
D.2,2, Numbers.

Numbers used in the assembly language problem may be decimal,
hexadecimal, octal or binary. Any number must be preceded by 'Z
and one of the following: AO (denotes octal number), AH (hexadecimal),
$ (hexadecimal), AD (decimal) or no characters.

If 22" is followed by a number then the number defaults to decimal.

Octal numbers consist of the digits '0' to '7' only.

Hexadecimal numbers consist of the digits '0' to '9' and the
letters 'A' to 'F',

Decimal numbers consist of the digits '0' to '9'.

Binary numbers consist of '0' and '1' only.

A truncation error ('T' on the assembly listing) will occur if the
converted number is too large to fit into eight bits for byte operations,
sixteen bits for word operations or thirty two bits for long word operations.
All numbers are considered to be in two's complement arithmetic,

The binary representation of a number is not implemented for thirty two bit
operations,

D.3. Assembler Directives.

These are statements which are used at assembly time for ease of
programming such as set a label equal to a constant, and are non
executable as far as the Z8002 microprocessor is concerned.

D.3.1. Title.

The title directive is used to print a heading on the output listing.
The heading will be printed on the first line of each page of the listing.

For example,

TITLE PRO GRAM TO CALCULATE SQUARE ROOTS
The 'TITLE' directive appears in the opcode field, if omitted the
title defaults to '"MAIN',

121

D.3.2. Page Ejection.

Apart from the automatic page eject after 61 line counts, a form
feed may also be used to cause a page eject.

D.2.3. ORG.

The location at which the machine code is to be placed may be

changed by the ORG directive.
For example,
label: ORG $3000 ; comment
will place the following code in memory locations starting at 3000
D.3.4. EQU.

The EQU directive assigns a value to a symbol name, which will

16°

be used when that symbol is further encountered in the program. The
directive is of the form:

name EQU value ; comment
The symbol name must appear in the label field without a following
colon and cannot be re-defined within an EQU directive.
D.3.5. SET.

This is identical to the EQU directive, except that the symbol
name may be redefined.
D.3.6. END.

The END directive indicates the end of the source program, It may
have an optional label and/or comment field. Any statement following
this directive will be ignored by Z8002,

D.3.7. DEFINE WORD,

The Define Word (DW) directive is used to set a memory location

to a user determined value and is of the following form:

label: DW value ; comment

D.4. Instruction Set.

The instruction set for use with the assembler may be found in
AmZ8001/2 Processor Instruction Set Manual 32, and is fully implemented

for use with the Z8002 microprocessor.

122

D.5. Addressing Modes.

This section describes the addressing modes available for use with
Z8002, see Ref.32. for details of which addressing modes can be used with
each instruction,

Addressing Mode Example

1. Register Ré

2. Indirect Register (R3)

3. Direct Address FRED

4, Immediate F£4

5. Indexed FRED (R1)
6. Base Address Ré (ZZ5)
7. Base Indexed R5 (R4)
8. Program Relative BILL
D.6. Permanent Symbol Table.

The assembler contains a permanent symbol table whose entries
may be not redefined. The explanation of these symbols follows:

Symbol Meaning

RLO
RL1
RL2
RL3
RL4
RLS
RLé
RL7
RHO
RH1
RH2
RH3
RH4
RH5
RHé
RH7

Byte Registers

N e e N N s N Na? il e Nl Nt il ot sl i o it sl et ot ettt et

123

Symbol Meaning
RO
R1
R2
R3
R4
RS
R6
R7
R8
R9
R10
R11
R12
R13
R14
R15

Word Registers

N Sas? N s s Nl i o v Nl vl atl Nt i s i ‘v i s e s s “me?

RRO
RR2
RR4
RRS
RR8
RR10
RR12
RR14

32 bit Registers

Nt N N N’ Na? N i e i’ it “au?

RQO
RQ4
RQ8
RQ12

64 bit Registers

Nt s N i

124

Symbol

Meaning_

NZ
ZR
NC

PO
PE

PL

Mi
NE
EQ
NOV
ov
GE
LT
GT
LE
LGE
LLT
LGT
LLE
Blank

PV

<

Not zero

Zero

No carry

Carry

Parity odd

Parity even

Plus

Minus

Not equal

Equal

Overflow is reset
Overflow is set

Greater than or equal
Less than

Creater than

Less than or equal
Logical greater than or equal
Logical less than

Logical greater than
Logical less than or equal

Unconditional

Carry

Zero

Sign
Parity/Overflow

Vectored interrupt

Non vectored interrupt

125

N S Nt N N N N S S S N N S S S N S S S S S N S o S S S N St o St

N St N N er?

N N N

Condition Codes

Used in Flag
instructions such
as SETFLG

Enable/disable

interrupts

Symbol Meaning

FCW Flag and control word)

REF Refresh register g Used in

OFF NPSAP offset) LDCTL instruction
SP Stack Pointer)

FLGB Flag byte = used in LDCTLB instruction..

D.7. Using Z8002.

The assembler may be.run as follows:
> Run Z8002.

Z8002 > FILE, FILE = FILE
Where FILE = program to be assembled which must have a
The above command generates an object file and a list file which is sent
to the printer. Only an object file is created if the command line is
as follows:

Z8002 > FILE= FILE
D.8. Error Codes.

Two types of error can occur.

1. Errors which halt assembly are as follows:
? BAD SWITCH ? The switch specified was not
recognised.

)

TOO MANY INPUT FILES ? Only one input file may be

processed at a time,

2 NO INPUT FILE ? No input file was specified.

? TOO MANY OUTPUT FILES ? Too many output files were
specified.

? WRITE ERROR ? An error occurred: when attempting

to write to output file.
? SYMBOL TABLE FULL ? All the available symbol table
space has been used.
INTERNAL FAULT ? A software fault has occurred.

-

126

2, Errors which terminate assembly of single statement only and
are as follows:

Q Questionable syntax error.

T Truncation error,

* An assembler directive was encountered which is

not valid in Z8002,
P A phase error occurred, i.e. a label's definition or

value differed from first pass to second.

An illegal character was encountered.
An undefined symbol was encountered.

No END directive was encountered.

-~ m C

Statement length was greater than 92 characters;

exira characters were ignored.

127

APPENDIX E
Target Tracking Process = Acceptance Tests and Alternate Routines.

This appendix describes the acceptance tests and the alternate
routines for the following processes:

Read

Azimuth Inhibit

Range Inhibit

Set Binaries

Process Binaries

Approach/Recede Assessment

Coverage Assessment.

E.1.1. Read: Acceptance Test (see Fig.E.1.)

The following tests were carried out:
1. Check range gate within range, i.e. 1 range gate { 6.
2. Check velocity gate within range, i.e. 1 velocity gate 4.
3. Check that range and velocity channel valid flags are
set if 'target detected' flag is set.
4, Check that azimuth position counter within range,
i.e. 0 azimuth 29.
E.1.2. Read: Alternate Routine (Fig.E.2.)

On failure of the primary read routine, the last azimuth position
is read and updated. The 'target detected' flag is reset indicating no
target.

E.2.1. Azimuth Inhibit: Acceptance Test (Fig.E.3.)

The following tests were carried out:

1. An error is signalled it "tar get azimuth' is not valid and the
flag 'within azimuth limits' is set.

2, Check that 'target azimuth'® is within limits,
i.e. 0\< target azimuth\< 29.

3. Check that missing scans counter (for approach/recede
assessment) is greater than or equal to zero. If less than zero for any reason

then an error is flagged.

128

E.2.2. Azimuth Inhibit: Alternate Routine (Fig.E.4.)

The alternate routine for processing azimuth inhibit is based on a

target detection decision. If no target is detected on the azimuth on
which the alternate routine is entered, then all parameters are unmodified.

If a target is detected then 'target azimuth' is updated and the missing
scans count is set to zero. In addition, the 'within azimuth limits® flag
is cleared and cannot become set again until the radar has rotated 360°
minus half the width ot the azimuth inhibit arc. As a target has been
detected then coverage information will be given, determined by a later
process.

E.3.1. Range Inhibit: Acceptance Test (Fig.E.5.)

The following tests were carried out:

1. An error is indicated if '"azimuth inhibit' is set and
'range inhibit' is not set.

2. If 'target range' is valid and the missing scans count is
larger than two, then an error is indicated if "target range' does not
equal the range gate set, or if 'range inhibit' is not set.

E.3.2. Range Inhibit: Alternate Routine (Fig.E.é.)

The alternate routine sets 'range inhibit' if 'azimuth inhibit'
is set. If a target is detected and is not inhibited by azimuth
considerations then 'target range' is updated,

In this simpler routine, range inhibition rules (i.e. I range gate)
are not used. Thus if a target is detected following a system error
(an error must have occurred in order to enter the alternate routine)
then it is tracked. A target being fracked at the time of the error may
be lost if multiple targets exist. It was thought better to track a
target whose position is known exactly then use the position of a target
whose characteristics may have been corrupted.

E.4.1. Set Binaries: Acceptance Test (Fig.E.7.)

The following tests were carried out:
1. Check that velocity binary is within limits,

i.e. 1€ velocity binary\< 4,

129

2. Check that range binary is within limits,

i.e. 1 range binary(6.
E.4.2. Set Binaries: Alternate Routine .

The alternate routine in this case is to re-execute the primary
routine fo set the appropriate binaries.

E.5.1. Process Binaries: Acceptance Test (Fig.E.8.)

The following tests were carried out:

T. If either alarm is set, ensure that 'binaries' flag is set.

2, If provisional external alarm is set, ensure that system is in;
search mode.
If the ccéepfunce test passes and the provisional external alarm is set, then
the external alarm is set.

E.5.2. . Process Binaries: Alternate Routine.

The alternate routine would attempt a re~execution of the primary
routine to determine whether the binaries are allowed to signal an alarm.

E.6.1. Approach/Recede Assessment: Acceptance Test (Fig.E.9.)

The following tests were carried out:

1. An error is indicated if both approach and recede are
indicated,

2. An error is indicated if neither approach nor recede is
indicated whilst the system is in track mode.
E.6.2. Approach/Recede Assessment: Alternate Routine (Fig.E.10.)

The alternate routine is a clean up and get out procedure, and is
simply the setting of the approach/recede assessment to approach.

E.7.1. Coverage Assessment: Acceptance Test (Fig.E.11.)

The following tests were carried out:

1. If 'no coverage' flag is set, check that no provisional
coverage indications are set.

2. Check that one and only one provisional coverage
indication is set.

If the acceptance test passes, then set 'out of cover' or 'in cover' as

appropriate.,

130

E.7.2. Coverage Assessment: _Alternate Routine (Fig.E.12.)

If either 'no coverage' or 'cancel’ is set then coverage
indications are sef, otherwise a fail safe procedure is carried out by

setting missile coverage to 'in cover'.

131

APPENDIX F
An Overview of MIL-STD 1553B

The 1553B standard was developed largely for aircraft internal

transfers and defines a master slave communications protocol over a twisted
pair. The exchange of messages along the twisted pair (bus) is

precisely defined with ten allowable formats; the two formats which were
used in this study are shown in Fig.F.1. Message formats can be divided
into two groups, i.e. mode commands and data transfers. Mode commands
are used to communicate with the bus hardware to aid the management of
informa tion flow, for example to shutdown a transmitter on a particular
bus, as redundant buses are allowed. Data transfers along the bus

consist of a message of not more than 32 words.

The standard allows three types of terminal to be connected to the
bus. A terminal is defined within the standard as *the electronic module
necessary to interface the data bus with the subsystem and the subsystem with
the data bus', while a subsystem is the combination of hardware and
software required to perform a specific function. A master-slave protocol
requires a master and is called a bus coniroller in the context of the
1553B standard. The bus coniroller is in charge of all communication
over the bus, i.e. any message must be initiated by the bus controller.
The second type of terminal is called a monitor; this terminal being
assigned the task of receiving bus traffic and exiracting selected
information if required. A bus monitor is permitted to assume bus control if
a set of predetermined bus fransmission defects is detected. Finally a
remote terminal is any terminal which is neither a bus controller nor a
bus monitor.

Only three types of word are permitted with the standard.
A word is a sequence of 16 bits plus sync (3 bit times) and parity
(1 bit time) as shown in Fig.F.2, The first type of word is the command
word which is always the first word of a message and is transmitted by the

bus controller. The command word defines the type of message that will

132

follow. A transmit/receive bit within the command word establishes
whether the message is to or from the remote terminal being addressed.
A five bit address field specifies a unique address of a remote terminal
for the purposes of the message. This address field allows a system to
contain up to 31 remote terminals; the remaining address is used to
communicate with all remote terminals. The second type of word is the
status word, which is always the first word that is transmitted by a remote
terminal in response to a message. This word contains the status
condition of the remote terminal. Thebusy bit can be used by the
remote terminal to indicate that it is unable to move data to or from the
subsystem in compliance with the bus controllers command.

The message error bit indicates to the controller that one or more of the
data words associated with the preceding receive command failed to pass
the remote terminal's validity test. Finally a data word is used as

part or whole of a message that may be up to 32 words in length.

The method of fransmission along the bus is Manchester Two
Bi-Phase level at a rate of 1.0 megabit per second. A logical '1' is
transmitted as a positive pulse followed by a negative pulse, while a
logical '0' is fransmitted as a negative pulse followed by a positive
pulse. A transition through zero occurs at the midpoint of each bit
time as shown in Fig.F.3.

A 1553B word is valid if it conforms to the following criteria:

1. The word begins with a valid sync field.

2. The bits are in a valid Manchester Two Bi=-Phase level
code,

3. The information field has 16 bits plus parity.

4, The word parity is odd.

133

APPENDIX G

Worst Case Limits for Parallel Realisation of Digital Controller.

The parallel realisation of the digital controller results in four
parallel units which are added to give a guidance demand. The acceptance
test for each of these four units was based on worst case outputs of the
units. The worst case value for the guidance demand was achieved by the
addition of the worst case values for the units.
The worst case outputs were obtained by using an input which is
equivalent to a 90° step. A simulation run was then carried out on the

PDP 11 and the following results were obtained.

Worst Case Value used in
Output Acceptance test
Unit 1 I5.27 Te
Unit 2 Zo.814 By
Unit 3 To4.8 T
Unit 4 45 Is
Guidance Demand tay

134

| UNIT 1
INPUT FAILURE f | ouTpPUT
O——— DETECTION AND o—{ uNIT 2 —©
SWITCHOVER
| UNIT 3

Fig.2.1. Cold Standby Redundancy.

COMPARATOR/
FAULTY UNIT
IDENTIFICATION

ACTIVE
UNIT 1

'

CONTROL Y

ACTIVE
UNIT 2

-]

P

INPUT

ACTIVE
UNIT 3

Fig.2.2,

UNIT
SELECT

Hot Standby Redundancy.

O
QUTPUT

MAIN ROUTINE
P
\
ACCEPTANCE
TEST T
TEST OK NO
\/ Y
YES ALTERNATE
ROUTINE
Q
\
ACCEPTANCE
TEST
T
\
YES
- TEST OK
NO
Yy
FAIL SAFE
TASK IN
EXIT ROLéTINE

Fig.2.3. The Recovery Block.

“waitkg sottddcidonyy (0313} v

.—.ﬂ.mmnm

BaodIa
ssygay f—
1 _ |
omAaNoD b | b
nocho, < TONTR w1 vava [‘
318vN3 378VN3
1 1
¥OLHANOD
¥344n8 viva E aN
N wOou -
]
319VN3 378VN3
Z N ‘
N |
n NOISHANOD NI
40 an3 INDOTVNY
YWA i
S¥I4404 TOWNOD |
$NA §53900Y sne $s3¥aay
anvssvaay |,
\ *
M_
waodia 2
sswaay |2 Y O
y J ae S _ N
M3 3VN W W
A W " TRz MRS A & 58 viva nd
v sNe viva
i . M O 1353y
\ \
HOLVHINIO
YO 14v1S3Y

*O1JDWAYDG WRYSAG dwl] |pay

3SSIW
V13IHL

NSO LOTIdOLNY
dOO1 —
u:<<<m_z_v_\ F1USSIW
\I\
XVLVT aNvwid
IAIIHOV IDONVAIND

JITOILINOD
wviiola

b [OX}. 5
Wv3g

Y,

Wv3d
V13HL

o/l
YOLVY¥IdO

$SID0¥d
ONINDVL
139¥v1

4

dvavy
431ddOd

VELOCITY

RANGE

BINARIES

VELOCITY

- BINARIES

Vi

V2

V3

RAN GE
_——>-
R1 R2 R3 R4 Ré6
Fig.4.2. Range/Velocity Gate Matrix.

V4

NN

RANGE GATE NUMBER
w

1 2 3
VELOCITY GATE NUMBER

7

THESE CHANNELS
DO NOT GIVE AN
ALARM

Fig.4.3. Taboo Channels.

TARGET LAST DETECTED
POSITION ; TARGET POSITION

A\ A 240
\/

TARGET+NOT DETECTED
(NOT WITHIN T24° OF PREVIOUS TARGET)

LAST DETECTED

TARGET TARGET POSITION
POSITION

TARGET DETECTED

Fig.4.4. Principle of Azimuth Inhibit.

*door @ouDpling) 3|Issiyy "Gy By

2 vrl +Syl + 5S Z(91°€ +9)S N
JNSSIN L 44 (570 +5),(1 +s)ol ~Nvas vl
V13HL
h.[OF.2.E
: ITONV
JINSOT1O 4001 10114 Olnv :

JILVWININ JTUSSIW

YITOILINOD

*do07 92UDpING) d|ISSIN JO §O|d Ul

QU-O u*-wm

0°00l

0°0l

(S/avy¥) ADNINOIYA

0°l

L0

lowl

-09-

- 0b-

ooL-

(4Q) NIVO

*doo 8oupping B|Issiyy §O 0]d APy

CRNATF

0°001

0°0L

(s/avy¥) ADNINDOIYS

A

0°l

L°0

ol

ov

Q o
9 N
(S33¥93A) IDONVAQV 3ISYHJ

(=
o™

(=]
0

061

0ce

*dooT] 9oUDpINg) dIsslyy JO dsuodsay dayg

A AT

0l

b O~

b CO

b= N

(SANOD3S) IWLL
9 S

1 i

o <t

Nall

ALY

v°0

9°0

ISNOJSIY LNd1NO

SNOILYIION]
JOVIIAOD

\.\ 19VHIA0D SINVNIE

. -
$S3sSV ADONIA/IONVYE

‘sted0ig Bupydoi) jeBmy “{"¢ Biy

30353y |-~
/HOVOUddv|
\\ ssassy |
3038 4 A &
/HOVOUddV
STANNVHD
\OO.-(»
- sIngvnie |
\\ ss1doud |
|
WEVIY
SIIYVNIG
7 s [
SINYNIE |
LIGIHNI
JONVY [
P \,\ $S3D0¥d
NOVEL_, |
TIDNVYDI /HO¥v3S wﬁ_uq.__ TNNVHD
ALIDGHA
. /19N
LigANI p
HINWIZY o
\\ $S3D0M
LIRIHNT HIOWIZY A
i wirwiny | Y AIGTIA
135 SINAYNIG /3IONVY
— aviy

HINWIZY MIN =___ *

ALDOTIA
/IONVY

7

UPDATE AZIMUTH
INITIALISE FOR
DATA

|

READ RANGE AND

" VELOCITY DATA

SET CHANNELS AS
APPROPRIATE

Fig.5.2. Read Routine,

NY¥N1IY

“AqiYu) Yinwzy %01y gTG By

P

|

[LI9IHNT HINWIZV 7 3

INNOD SNVDS ONISSIW ¥v3a1D
OV S1wiI 13533
HINWIZY = HINWIZY 130¥v1

OVIIAOD ON 1354

———

-1t

OVTd SLIWIT 13538
INNOD SNVDS
ONISSIW LN3WINONI

FOVHAOD ON 135
QITYANI HINWIZVY
139¥v1 13§

135 OVl
siwn
St

O
HINWIZY

SIA ONISSIW
H]

LIgIHNY
HiIAWIZY
135 .

HINWIZY

<

13O¥v1 135

aNvA
HINWIZV
1393¥vi
s!

SIA

Q31d3130

A

ON 130yvi

ovH
SLWIN 13§

SIA

oHT=
HINWIZY =
HINWIZY
39wv1
St

anva
HINWIZY
139yv1
S!

-t By w950 S By

LEIHNI IONVY 13534
uo_zww 4 _‘wozs_ 139¥V1 31vadn
I -
A

! §

]
mon\ﬁﬂ aIvA
139¥v1 135 JONVY
ON 139¥V1 13§

Z<INNOD
SNVDS
ONISSIW

031133130
1393¥v!

4

ON

13§
L19IHNY
HINWIZY

SIA

CANCEL

YES

SET

NO

YES

INHIBIT
SET

CLEAR
BINARIES

SET
BINARIES
ACCORDINGLY

v
A

Y

CLEAR
BINARIES

RETURN

Fig.5.5. Set Binaries.

ARE

BINARIES N

A\ 4

SET

PERFORM_ NOT

LOOKuUP EQUAL >

YES\
SET PROVISIONAL NO
EXTERNAL
ALARM
SET INTERNAL
ALARM

Fig.5.6. Process Binaries.

CALCULATE
MISSING
SCANS

YES

YES

CALCULATE CALCULATE
SEARCH SCAN TRACK SCAN
COUNT COUNT
SEARCH TRACK
ASSESSMENT ASSESSMENT

SET APPROACH

Fig.5.7.

Approach/Recede Assessment.

NO YES

COVERAGE

YES

A

\ 2

IDENTIFY ENTRY
IN LOOKUP
TABLE

CLEAR
COVERAGE
INDICATIONS

YES

IS

\

SEARCH
SET

NO

PERFORM
LOOKUP

DETERMINE
ANGULAR RATE
PERFORM
LOOKUP

N

3

SET
COVERAGE
ACCORDINGLY

zZ

Coverage Assessment.

*syndjn $sa204y4 bujons) §8biD| *D*4°G b1y
(035) QL 8 ? 4 ¢ 05 (335) O} 8 2 4 ¢c 0
IWIL ——— |+« IWIL -o
L9 A
L 6 n
L Z1 B
L Gl i
- 81 N
- _.N -
N .VN =
- /2 .
Y] i
HLOWIZY LIDWvVL 0¢ DV AIVA HINWIZY L
(03s) 0l 9 ¥ Z 0 o (03s) 0l 8 9 ¥ z 0,
IWIL IWIL
£
L9
6
-zl
51
- -gl
- - 12
- vz
- -/C
- | Log

OV14d d310313Q0 1303Vl

NOILISOd HINWIZV

*syndjnQ) ssadouy bupdpol) jabio) “q°6°G by
Qi) 08 ¢ % 7 o TG 8 e ¥ 7 0
IWIL IWIL
i i
| ﬁ
9V1d JIAOD NI, ! WAV)
(035) o1 8 9 ¥ 4 0 (23s) ol 8 9 4 4 0
il 0 IwiL
- .
OV1d SINYVNIG _ LISIHNI 3DONVY

*dooq soupping jo uolypsiyibig

0L°G By

(P¥L + SH1L +N&Nm
24!

aTOH
430Y0
Oo¥iz

A4
(2%

LOTIdOLNY 3TISSIW

1
W vIdHL +8 V13HL
(91°€ +S)9L°€ +S)S J10H | 3% T
(570 +S)(L +S)(1 +S)oL Pt \\
% g g VL3HL
(9'o

dHTIOYINOD TVLIOIa

“UoyDs1|pay Jo01iQ Joy esucdsay dayg sluny (|G b1

ol

e L

(SANOD1IS) IWIL

¢ '0-

~ © N TR SN
- - o c o© o
ISNOdS3Y 1Nd1NO

~t

9°1

81

*$juUa10144907) pspunoy Alpulg :uolDSI|DIY Jodll(J0) dsuodsay dayg yun *Z1° G b1y

(SANOD3S) IWIL

Gl-

olL-

ot

ISNOdS3Y LNdLNO

“doo7 83uBpIng @ISy §O UOIDSI|DaY OPDISDY) ‘g1 -G BIJ
Wy3d
V13HL
1
1
3X
Nnnmwouwonuo.o+ Tnvovvuowoon._ -1 —IN -1 —nn -1 ‘D.w Na—uuvovaoou.o - 1) A_nn - 1)
A Nuuoooomacm.o+ _unvmmo:.mun._ -1 —nuon leteezstt -t —..nnohnooooo.ou N:wakvomoo.o + _nuowcnoomoo. -l A—uuoowm:omo.c -1)ol
JUSSIW
ViIHL

1011doLNY 3TISSIW

33TI0¥INOD 1V1IOIa

‘uol§Ds} |9y S9pDISDY) Joj ssuodsay dayg jiun “¥1°6 B

(SANOD3S) IWIL
ol G 0

- 8°0

ISNOdSIY LNdLNO

*S§udid 144900 papunoy Aiouig

:uoljps||oay epposD) Joj asuodsay doyg iU ‘GG Bi4

Gl

ol

(SANOD3S) IWIL

0

¥°0

0°1

A

?°1l

ISNOdSIY LNdLNO

*dooq aoupping jo uolpsI|PIY |2]|PI0

‘91°G b1y

76806804290 +

¢ | ZPIVP698006 7L - |

_Zy0S/E0£00 0 -

_..NNvammoo.o + 91££05200°0 -

c

gt
Z+ | _Z)SG5655000°0

.

z -
- l

_Z8/0¥2€00°0-

l

914£5200°0

NA [-2Y9Y¥20006°0 - 1)

o

22" |-2)1e61982Le°0-

|-ZYIVVZ0006°0 - |

(,_%-1)868.20¥1€°8

|

z -
- I

_Z]0£069910°0

|

2012465891

*uo1§DSI|D3Y |3]|DIDY Joj dsuodsay dayg jiun

*/1°G by

ol

' n

(SANOD3S) IWIL

3

ISNOdS3Y LNd1INO

*s§u9101J4907) papunoy AIoulg :uol4DS][DIY |3]|PIDg lof dsuodsay dayg 4lun

"8L°G b4

Gl

0

L

(SANODIS) IWIL

L 8°1

ISNOdS3Y LNd1NO

*o1joWyiIny 19Baju] {1g 9| :UOKDSI|Day [9][PIDg Joj asuodsay dajg 4luny 41 GBIy

(SANOD3S) IWIL _§l-
Gl el zl g ol 6 G/ 9 ¢y € Gl 0

L R 1 1 - i 1] 1 1 o

0l X) ISNOJSIY LNdLNO

— G0l

!
N

(

L 0Cl

- GE

~ 091

*oljeuy}1ly 19b634u| j1g 9| :uUCH4DSI|DIY SPDISD)) I04 AsuOdsdY dB4S 41uUn ‘0Z°G 614

:-moon_m X) IWIL — 82-
0/l €61 9c1 611 4] G8 89 LS Ve L1 0

1 b 1 3 1 1 o

(3]

(o] o
O <t

O
o~

01 X) 3ISNOJSIY LNdLNO

| {44

!
N

(

(AT A

08¢

*dljowy} 1Ny 19Ba4U| §1g g€ :UCDS|[D3Y |9]|PIDd 10} esuodsay dayg 4Iuy “|Z°C Bl

(,_SANOD3S X) IWIL - /-

0£1 st 9el 6lL1 col g8 89 59 142 Ll 0
A 1 ' Y 1 1 1 1 1 O

T
©

l
ee]
0

i
7s)
(=]

I
N
o

(,.01 X) 3SNOdS3¥ LNdLNO

I
o~

— 9€l

— €61

- 0/1

*d1awyyiny 1abajuf §1g ZE :UOHDS]|DaY SpDOSDY) Joj dsuodsay dayg «.::D

‘72 G’ by

0/1

€5l

9€cl1

6l1

1

:,mn_onum X) IWIL

201

g8

89

5.

Ll-

Al

ve

1S

89

Te]
[oe)

20l

o

9¢€1

€6l

0£1

(Z_Ol X) ISNOdSI¥ LNdLNO

12310¥d AYOWIW 1N4d1NO AYOWIW
ANV ¥EWIL -1NdNI AV
FTIVWWY IO Old
171
£ 2

*wpIBDI(] SWaysAS |[PIRAQD

*1°9° By

sng ailnvd

X049 NOISNVdX3

|2 \}

d b

21001
NOILO3rNI
1nv4

T

ayvo
NOILVYNTVAI
00082z

TVNIWYIL
SOIHdVEO

YISYWOUIW

T

ANIT VIS

431107d
A-X

VIdIw LNdLNO Vvivd

ve/11 dad

Az

ANIT VIS

mmimmtmnianmmniimmiiumimNiiuiiiUiniimii

uimunmmnm» i.niiumininiiisinaim nnifij

fmUiaifUanifnilsmSiUiinjllljllilfNUiillfininUliniiiO'iWiiim}

%

KW/ -

HEX ADDRESS

| —, FFFF
' |
A
L
T ~
|
! 8000
EXPANSION BOX
STATIC RAM
, ' 7000
| |
| i
| |
6000
RAM
o . o - - = - = = - - -] 40FF
WORKING STORAGE FOR MONITOR
: | 4000
| |
! I
' |
| | 3000
| I
' |
: UNUSED EPROM !
| SPACE !
| i
PROGRAM LOADER 1056
1000

MONITOR

0
EVALUATION BOARD MEMORY : 0 - 6000 (HEX)

Fig.6.3. Memory Map.

HEX ADDRESS

FFFF
|]
]
l i
| |
AL L
T v
i i
| |
] |
i
| EVALUATION CARD 1/0 | OFFC
| / | oFCo
| i
|]
| |
| |
[i
| |
| SYSTEM I/O 00FE
| L 000
t |
{ i
i i
i l O
SYSTEM 1/O
0OFE - TIMER

O0OFC - SEARCH/TRACK SWITCH
00FA - CANCEL PUSH BUTTON

00F8 - ALARM LED

00F6 - IN COVER LED
00F4 - OUT OF COVER LED
00F2 - ERROR LED

00FO - TIME OUT RESET

Fig.6.4. Input/Ouiput Map.

*Alowsyy Bud3LI0n) JouIg JO D1§DWAYIG *G*9 b1y

A
N

¥30023a
ss3dyaav Lig 1 YOLVIVIWOD
!
/
/
Y ¢
NOILDIRIOD
Jouy3 A0
ALI¥vd
NOILV¥INIO
Y 3qoD ¥yo¥wid/o | 0000 Tt
AYOWW
¥344n4)) VIVQ
ONILEIANI ,
91 ,
Y
/
‘ 9l

NOILV¥INID
3Q0D YOuYd d/1

o1l

sSng viva

‘| poog Riway Bujizency o ‘99 Bl
I | I | | | 1 1
€ np € nt ERT] S ¢ nt E o € nf £ n} £ J-ch
| ' of] ¢z [] |] ' X
ail &t o-x‘_? il %xr,_w.:ﬁ %xm..lE 4l nxm_-aﬁ %X i ol nnxml al“ xx..T o il
1 [1 i 1 1 ! t v
30E]\
voe |- |t | |]
& | Icia 21 1€1a Zia R{1] otd &a 8d
Vot Wyl ot tnl Wy Ul ol nl Uy Now
o8 |- o] o eexi | o e Bz wexaf pae eex aetx i) Llerend | | ja ax i
vei |- m il vy 1 e 1| R 1} iy ' pul 1R sl '
Al =_ g 8 ¢ 8 ¢ 8f L) £ 8 ¢ 8 € 8f € 8F/wv
v} I | | | | |
2%z |- I | 1 1 1 |
vz - nv;. € nf E "k Enf ¢ nt € € nt € riov
B174 o |zt 2t ex | ffo _ ' U axt o 97X U osex
o Alet @l B _nx"rﬂ oex §| ffet ex ﬂL_ 2 ezxi| e aaxt I x| ol sex e
o 1 l. T i 8 i 8l i 8| 1n e u sl i i.\ v vz
viIZ |- \] I - I 12U
3t |- 1za 1§ 1sa ya 1ea 23] ig 0d 1 <."
vee| 0 "t o} "t Wb] "nf bl | "nf "y ow =
w s sif sif stf- sif- sit s} st 73
s 91} st} ot 91l ot} al 91t 1=
1r I tr tr tF 1k tF 1} 4 58
¢ b Ll e Flda b lda bpder Rl Rl R Lla e}]
Joe L) s m (P e I (Hia iR 2 cf [(o1 b v
361 ax o} six ol rix ol eix ol] | aix gf tx ol b ox oL 6 ol] wN
v&z | st 113 st st st sl st st 1=
J8z | rf vl rf v rf v v ' N
vez |- t s ¢ 8} £ 6f £ 8} € s £ o} t 8 £ 8/ v A -
24 | I — | T) | 1 I I v 50T
W =7
et ZVQ orX-52X 13
y "
!
v1¥e&]
o
_ 2 [
1x
EUNIZ 1X-6X gy £x
t 1 __N_ 35
! BEEY]

r

*Z pioog Kioweyy Bupdeiioy joiy c0°/°9°Byy
| oIV o | T T ey B
- €l -..I/ »e € 2 €l J -, €l .._ - !
e | Flaex] «w.u_ 62| W21 8z " “
]
- 1 8l 1 sk -
a u é iy 1t 8py 18k 8y : |
[T 1 1 “M_N _
73 N E—T(Y S E— — —TT I __ow] (™%
35] £l rl et nj- et rtf £l ¥l
Fﬂ.n st st sit st} st}
ol o ot o} ol
¥ L o | : o ik i
z1 [1 z L) | Lla " | Ya i L1z1 i
E2 (2] s 7] L € F 7] ¢ 19 ¥
= ax o X o sex of rex o of eex o
X177 w st S 18 18 st
ir 1 ¥ " B ¥
1] K7 tt /v tt 8] v i o_r v it c_ﬁ ty
@ 1
@& x>t
@ @ AO
ztx
]
| oy ¥} IEX — €IX
A [[-ﬁ, € Nid
i 6 s 2
six O T /AL 2]
]
m s 9 ¢! Lo ! '
T ¥ i
0 1 \ay N~ s 19, 566
0t 7! 7 =
o262 | o262
V&L ’ | V6L
Jel4 oL14
VaZ | Sd L7:14
Y74 ou_x € oY44
Vit Vit
v L I
= w5t L w o2 Lo | o Ll «tyw r e
B4 1 1 N 1 [4 (] []] 1 [1] 1 []
Tes it 6 £ ¥ U 6 £ ¥ W 6 £ ¥ W6 £ ¥ wmm
UvN 8x X] 99X [2.4 T
vre ELOL9ENL IL ST ELOLoPEM 1L S €101 9€ ¥l 11 62 €101 9 €9 LLS T | Ve |
] %4 LABIE U I " S S O J JE l—.lm\ X 2t
yic [7oL 2__ zit stal zZig 1y .T: tal ad Ll ._ 2 E~ x_._ £l] erm € oa\[¥e
i |

ar

*Z pioog Kowayy Bugiaesroyy so1n

‘9798

282

ver

o)44

v

09¢

v9l

25¢

vse

0]Z4

v¥e

J8L

vee

Ir

sta 80 0 00
| T O O O O N | T I I I B
€67 62l 9t €662 rt 9tel
UX 61/t Six 61/1
AASLELIL B9 KT Zasrer gy
0a
| l
| _
teoteve ot v ¢ tot v ol v ¢ 6L
X £X [A%4 tx
WestLELSE9T L 8StLEte9e LLBSILEL ST 2N 8S1Ets9e
Jrryv UL L NI
TR AT tit-%e1 _—EHH: €1— 0l
?9s¥rez LA SLYELILOLBLZYY
rix eIxX
61 81 0C 1Z T €2 61 81 02 1Z 2T €2 oL

LL

|]

4 32

1 1 1 1
X14 |x24 [x32] [x40
1 1 1 1
S} X15] |X23] [x31] [X39
1 1 1 1
x14 |x22[|x30| [x3g
— 1
1 5 1 1 1 1
x13 |x21 9| [X37
1
X4] N 1 1 1
] X120 [x20 [x28 [X3
X3
| 32 1 1 1 1
1 X1l [x19 [x27 X35
X2
1 1 1 1
1 x1q |x1g |x2q 34
12 X1
1 1 1 1
xo| K17l 2§ a3
1
Fig.6.8. Layout of Error Correcting Memory Board 1.

32

J1

-

32

|2

1 1 1 1 1
X8 X271 |X32
X16| [x22 ;

1 1 1 1
X7 X31
X15 X26
1 1 1
X6] X250 IX30
1 1 1

X14
X5 X24 o9
1
1 1 1
X4 -
13 3| |xod
1 1 1
X31 |xi12] [x20
1 1 1
x2| |x11] [xi9
] 1 1 1
x1] Ix10] [x18] [x3
1 1 1
X9 X17] [x21

Fig.6.9.

Layout of Error Correcting Memory Board 2.

-1} 6f——mo—
Ve | (o=
(. voupl—

| tX
! w6t —
b 18
LY*] ¥alva
i | L-
| | AG+ e ANI_N
_ _ €t
(Vo
YO |—xoomr sSan

| o

‘paoog 1nding /induyy “0701 "9 By

16X

€l

4]

8X

-l ON| ey

} 9 ¢ 4 @l st
% 3650 x|
| | 61—
I |
| 9,
] . . 1
] J—
I ' g £ w
62 S rH— X
s~ do¥ X
4
VSl £ ¢
) 1 A ’ J ¥ [I})
|]
S5
T o
) . l o '
o o 8y e t o 128
et 9x 01X

*ploog _.&.\:O\._.x—:_

‘9°01 9By

381 9
o m._m <
AL 17 Y
zex
X1y)
vZl z
Y
T g ' ¢
RE+ 13539
F3
(%} =
50} 55 o Y LY
>a|ﬁl i
} L}
) n vt
v
0zx 14 : !
Gt : _” : el
o ra H ? ¢iIx F f El pIl}
o — e, _~ ot nxm_ Vil
! v 521
¢
P o “ - T
vt I S0\, N st L
vit]- . o § EAlﬂJ SN ; _
CZ ¢ 0y S on ¢ £x _ >
AO 5l 8ix “ o
SIX 1z st 9 o
. " yn X t ! !
o _ M 4 8 Lix bt
£l 8 ! !
r 9 u !
Voo
! t
-] P
8 s ;
AN) y N.OAT & 150
s ux £x 81X
- X) V2 ¢ ia
\ o__ 8tx oa
81X/ 7 2.}
; 1"
e
ASH

32

J

32
-

J2

1 1 1
xs| Ix9{ [x18
1 1 1
X7 100 |x19
1 1]
x6| XU

X20
1 1
X5 X112
1 1
xa| [X13

1
1 1 X21
X3 X4

1
1 1 X22
x2| [|xi15
1 1

X1
X1
1
17

Fig.6.11.

Layout of Input/Qutput Board.

‘Po) Byjng 719 81y TrE

144 [y —— AN «MM !
voz = o TECE I
Y A0 | I
0143 i Sx s (ot
o Al 8 Vo
9 6101 81X ot | ! !
g € 1 2.4 Al Uv-
i 4 N g .
Y
0z € a 202
s s st M8 5
tls £l €S I'vai
val]
Zis 6 s 157
D21 is
vil | MS U ey B Vil
ol% "9 OS5
p&;<2 SEEN] TR Dy ooy
N1 8l .z D
Vil { vri
sy D T ¥
1 .,— ~ 411 6l 6 T ~ AO]
30¢ +H 21 8 I0¢
YOE |- Jﬁn AS 18 <(F sia [{voe
62 n M. o M - 456z
Vel F -4 61 8X - .
| ﬁ —q 9t r- . MMM
2821 4o e} | D82 |
vee |- 4
4ot 2} A0 V8Z
A . V1 e 0T 4o
vzl PE EEI N 80 ™~ vz
29 ~, 4 2l 8-] 92
y9Z I~ «a E I L+ L 4 w9z
o5z |- 4n 9o} o5z
vsZ t— ER1! S -1.vs¢
or - 4o ot 4oz
vrZ |- 4a ¢} vz
€2 |- N 48ty Z)- 45tz
veZ |- — oa I 0a] vEL
Sr
221 -~ _~ - I\
vzl v sww [vz
ol 41t
Vil Vil
0L 4301
vol |- 1 voi
) o 1=
v |- —8v v ~ 4 ve
o8 ~ 1.08
ve |- ¢V ﬁ [A4 é 4 w8
)4 nd - 12X
vl i j /4
2} - 129
vo |- i g)
oyl i 1=
ory L ov - oY "\ lw

u

32

J1

32

J2

X5

X4

X3

X2

X1

X7

X6

X8

Fig.6.13.

Layout of Buffer Card.

*941ng alom}jog WaysAg

‘y1°9°614

SWILSAS HavoT SINIINOY

39N3I43a WV O¥d ONILLOT

ANNO YO ANV YOLINOW ANV SDOIHdVYD

:0008Z :0008Z ‘11 dad
NOILVENID S1INsS3d 0008Z ANV Lldad NOILYINWIS
1INV4 WOANVy 40 ¥34SNVAL WO ANV Ol WWavy ANV 139¥VL
1 4ag ANV 3OVIOLS NOILYDINAWWO)D I N,
W3 LSYWOUDIW W3 ISYWOUDIW
3LINS

WVIO Oud

GENERATION OF
FAULT DATA

:

GENERATION OF
TARGET DATA

'

ASSEMBLY OF GROUND
DEFENCE SOFTWARE

'

TRANSFER OF OBJECT CODE

FROM PDP 11 TO Z8000 VIA MM

FAULT
INJECTION

v

TRANSFER OF TARGET DATA
FROM PDP 11 TO Z8000 VIA MM

v P

=

OPERATION OF GROUND
DEFENCE SOFTWARE

TRANSFER OF RESULTS
TO MICROMASTER

—

TRANSFER OF RESULTS
FROM MM TO PDP11

'

SORTING AND PLOTTING

OF RESULTS

Fig.6.15.

System Software Typical Operation.

FAULT/NO FAULT
CONTROL INPUT (X)

FAULT
INJECTION
LOGIC BLOCK |
l
UNFAULTED | FAULTED
ADDRESS ADDRESS
No FauLt ¥
LNE () | NoFRAULT 1 | UNE @)
™ INPUT R, OUTPUT
O FAULT
{
|
FAULT |
CONTROL!
INPUT |

CONDITION INPUT (Y)
S-A-0/5-A-1

Fig.6.16. Schematic of Fault Injection Logic.

INPUT (A) }3——
OUTPUT
CONTROL
INPUT (X) }
CONDITION
INPUT (Y)

Fig.6.17. Implementation of Address Fault Logic.

X SWITCH

FAULT

IZI% 0D
NO FAULT |
ov

5D

Y
DISABLE SWITCH
+5V
1K
DISABLE
—0
ENABLE i
oV
Y SWITCH
+5V
1K
S-A-1
O

B

S-A-0 T
\'

&

Fig.6.18. Control/Condition Input Circuitry.

“Juswsbuoiry Buiyd)mg uojdelu) 1oy ~61°9°B1y

(A) 4/

$
. Jo—+—0 (@)
() dA , Lo
(A) induj uotpuoy ‘aNOD — ..lhll %,
Q=0

() indu) Joauo) (@]e] (QIMS (A) d/1 FI.VI
pusBay €) % - -

*}jnDj $599ppy PPO UD JO UO|Y30}es
oYy Juesasdas 2By uj PIFDOIPU) SO SAPJIMS JO UOLIISOY

*3180) vogyeluy 4jnoy h
241 DIA PEIBUUCD 9 O QUL| POLINDY BYY S|ADUS YRS COF {MS SOYDIIMG) Oms 1 .

:G_-:vtou wwﬂ.-a& H —.OLO
uoyitpuo) peijaojun) : pasop) Ajjousony
13004 SO PRIDoUUCD ‘saydiims ajod o|Buis g x § yussaides (Q)MS

oF-(W)MS @19ym @inByy sy up A]jodgiowwniBolp umoys sp siyj

*dnosB 19d eu)| BUO Jo wWnWxOw B 0) dn ‘uoydsiu|

1{nD} 30§ PRII2|os A|IDNpiAlpuy 8q upd dnosB YOI Uy seuly |y 5
19ya)img UOJI53jeg)04 z 0 (OMs _IA\"'

(A) 3/t .
8 "aNOD SINIT NIAZ SNE “aav
*31607 uoyyoeju) 1jnoy y) o) o)qoy2e|3s dnoB yoo3 .- - - - |
seujj oo weA] @ dnoxy ., ! |
. Tms!
saug} oy : dno .]
| °i°Q PPO 2 O ' .\v‘TxO-ll | (vx)D
souj| Sseippy ueAy i g dnoxy \ . S
souy| ssosppy PPO ¢ v dnosy _ _< M) Firlx‘
ismofjoj so (5\3M AIA-\II.||
saut| g jo sdnosB snoy Jo sisisu0d wspuoydsew uoydaluy §jnoy ay) 8 SINI1 GO $Na *QQY
wsjuoyoayy uoyaelup 1jnoy ‘1 -— - - =
10N o/l aNvY —

AYOWIW T nao

*21607 $|np] PyoQ 40 UolypjusWwa [du

‘02°9°b14
i
379vsIda
/ A -—
. N -
Y | JLIWM/AV3IY
B B —
N
- —\ A
AW._ _ LNdNI NOILIONOD
11 »— | —(T =
X .
X | e
| LNdNI TOYINOD
- -
119 V1va ~d | —
B G v i
| 119 V1vd
‘r — pu— — -—
o/l ANV >
AYOWIW | NdD

mmvmnnmnmmmuummmimivimfmmmwmmiw

i

*5iBo7 wojidsfuy 1jnog "7z "9 Biy

_17nv4 ON
L —1nvd
orl
vyl
i
vy
I

||@|\ - 38YN3
~318vsIa

*31607 uopdalu| jnoy jo 4noko *gZ°9Bly
4]
v1X ZIX 01X 8X 9X 124 X
1o | L L L L L |
!
£y LLX 6X LX X £X LX
1y L L L L L L

LEVEL 1, TASKING SEQUENCE E.G. CALL TASK A
CALL TASK B

LEVEL 2. RECOVERY BLOCK [.E. ENSURET
BY P

ELSE Q
ELSE ERROR

LEVEL 3. CODE FOR EACH PRIMARY AND SECONDARY
ROUTINE AND ACCEPTANCE TEST,

Fig.7.1. Three Level Structure.

*sowi) Bopydippp j0 2 lpWAYOS FAVALY

S¥NDD0 1NO IWIL

SINDD0 11Nv4d

il | Pl

V $S3D0%d T\

JIVNELTY Vv $S3004d

1]
s
YIWIL Eﬂm\\.\

ANILNOY AYIAODIY INNOD ¥IWIL avOl
SNOILIONOD 11Nvd

IWIL

P V $53D0¥d

YIWIL .Emuy_\\‘

T
¥IWIL L3V1S \\\
b

INNOD ¥IWIL avO1l
SNOILIANOD TVYWION

INTERRUPT
ENTRY

Y

CLEAR INT,
FLIP FLOP

OPTIONAL LOG OF
INTERRUPT ENTRY

Y

READ PROCESS
NUMBER

PROCESS
NUMBER IN
RANGE

NO | JUMP TO
FAIL SAFE EXIT

LOOK UP PROCESS
RE-ENTRY POINT

y

JUMP TO
PROCESS RE-ENTRY.

Fig.7.3. Recovery Interrupt Service Routine.

"sng pypQ 4jn0yeq "y /Bl

20011 = LdN¥YILNI JIVMLIOS ¥O4 30040
AO
1
o/ ¥IAITDOSNVL 851
AYOWIW sN4 v1va 40553004d
aSW
¥ 3

AG+

MODULE N

TRAP AREA
LONGEST
INSTRUCTION
IN WORDS

TRAP AREA

}

MODULE O

Fig.7.5.

]

>

TYPICALLY
FILLED WITH
SOFTWARE
INTERRUPT
INSTRUCTIONS

Schematic of Trap Area.

START TIMER\

TIMER

|

- P
\
Q
P 7 COUNT
>n
\
N . R
COUNT
> m

Ensure T by time t - Else A

Else Error

Fig.7.6.

\

Else Q if Q has not been used n times

Else R if R has not been used m times
Else S

RESET
TIMER

Generalised Form of Recovery Block.

100 —
90 —
, 85 r-—=-1
80 - | :
I FAIL
' sSAFE |
70 | :
PERCENTAGE '
64
OF RUNS 60 —
SUCCESSFULLY
COMPLETED 50 -
40 4 2 FALC T
25 |SAFE
30 —
20 —
10 -
5
0
NO RECOVERY RECOVERY RECOVERY
STRATEGIES BLOCK BLOCK
AND TIMER

Fig.8.1.

System Availability Related to Recovery Strategies

*Uol}pdjuNWIWOY) Jossadolg Jaju Joy Aydosojlyq ubisag ‘[°6°B14

JAISSVd JALLDV
W3 LSASENS YILSYW WH1SASENS JAVTS

T02010dd SNOILYOINNWWOD
Ol 1253dS3¥ HLIM >._._n:._<>\,\ ///._.mm._. IONV1dIDOV
JO4 A34XD3HD AINO viva SSvd LSNW Vvivda

Y

FOVHIEINI ADVHAUIINI
SNOILVOINNWWOD SNOILVIOINNWWOD

- SNg SNOILLVOINNWWOD
ZO_._.Um_M__n_zmu_mZ<~_._.mO<mmm<<

PROPAGATION

OF FAULT
\\ COMMUNICATIONS BUS

/7 \
[\
| |
! i
SUBSYSTEM A SUBSYSTEM B
FAULT OCCURS PROPAGATION CAN LEAD
HERE TO SYSTEM CRASH

NO SUBSYSTEM RECOVERY

COMMUNICATIONS BUS

SUBSYSTEM A
(WITH RECOVERY) SUBSYSTEM B
FAULT OCCURS NO KNOWLEDGE
HERE OF FAULT
SUBSYSTEM RECOVERY

Fig.9.2. Local Recovery Strategy.

.Nmmtu.:m A13A008Yy [DqO|D)

INILNOY ILYNHLTV -y¥/V

1531 IDNVLdIDDY -1V

JIAVIS WOUH FOVSSIW - W
¥ILSYW A€ VLVaA ¥O4 1SINDIY - «
JWILIDAD - 21

[NEGER

VA4

INIL \\

e

SoE

LE|

(STv4
A¥IAODIY TVDOT)
*S¥NDD0 11NVA

\

L) |

) AN

[t

Y o e - -

21

e

=

4

l¢———— O] 2]

'

N e

9] ——4m8m ¢

*weysAg pejnqlusi ul suoijouny jo uolypindeg

"¥°6°b14

. | i
> WILSASENS o @ WILSASENS
1OT1dOLNY La | WTI04INOD | /
FTSSIW T | Lol

JTUSSIW
VI13IHL

dNVvWwid
IDONVAINO

NOILVYOINNWWOD
JOSSIDOOY4-HILNI

" t

I |

V W3ALSASENS

ONIIOWVYL
139¥v1

Wvie
V.13IHL

A
—_——g

vivd
13O¥vVL MVY

ADDRESS BUS

N

DATA BUS

1/

FAULT
ADDRESS
LATCH

4
N
FAULT.
ADDRESS

V]

A=B

COMPARATOR

LATCH PRIOR TO
OPERATION OF SYSTEM

Fig.9.5.

Z

Schematic of Real Time Fault Injection Mechanism.

INJECT
FAULT

/N

RETURN

Fig.9.6. Specific Cycle Fault Injection.

*wayskg Buissaooly paynqiusiq Joy woiboiq swoysAg |[pIBAD

AdNLS

JOSSIDOYd IT1ONIS NI d3sn

SY Qivd NOILVNTVAI 0008Z
ANNOY¥Y A3Svd WIALSASINS «

WA LSASINS

JOSS3IDOUd
A9ANVLS

TVNIWYIL
JLOW3Y

JOL123138
JANIN

W3LSASANS
4OSSIO0Ud
JAILDY

TVNIWYEL
11OW3Y

1Nd1lNO viva

“1°01°By

VIGIW o |

ve/11 dad

—¥ILSYWORDIW

W31SASENS
JOSSIDOOYd
JALLDY

WILSASENS
YOSSIDOUd
AAILDV «

TVNIWYL
1LOW3Y

YIT1OUINOD
snd

SNg 9€4961

iy Bissaig oA

AGH+

"°°Z°01 By

2]
T

@I_

3

_n_n

8EX

St
14

>o|.ﬂ
R 3}
RT3 sta I R B BT
6L i 14 et
VY&l | —9 =
38z |- —[s sx st}
Ve |- —Hr al
Sa - e ap
v |-/ 8d —{z si|— ./ sav
]
Ea S
5% \ —6 ot
vee - | 4@ I P I 0717
5at —¢ e}
T —e o, ni-
S} —s o~
vz}~ —r al-
oFC +— —|€ a8 o
veZ |- / oa \—Z & 8|/ oav
])
v A
fl '
ww__H Sty Hw“ W"H slav
St - —st -
Vil —Hua o
3501 }— —J6 X JH
Vol |- 9 ¢
26 }— — S r—
73 ~|z t|-/sav
1) '
1}
IV
]]
BN —fot e
ve |- —Ho1 a|— jav
571 st n}—
vi |- u e
- s ox sl
v9 - —1{9 L
St} s v
Vil / ov —z | ¢} oav

8333588 -~~m~nood on L
i

o~
e

[=3
-

2

8l
6t
oz
1z
N
0g

43

8 viz
st S 5 P
R a8 o
tgx 6 VoA Jr
¥l 9 A1 21
9l v I Vit
z 8t f bm_ 20Z
61 2
A0
T iy ﬁ 2 "
| |
T AL
0 > i B
] S 2151 vl
€t L TS 2LH
TR i RZ41
] U—o1mw 1 o5t
9 r —==—"vgi
3
v 91 m.w vl
z 8l m B
T

11uny Bupssasoyy jonue)

‘q°z0t "By

Sia

(34

1
61 0
124

)

(134

Lt

Errxrit
14 €L}
S "

Jo ot |-

4. sk
8

\ 4 v \

ez af\¢q
v Sif
¢ sif

1
0Z 8 |- v

Iy

v

BEEY

aa

4

oLv

\rror Sy

-\ ca

vé

aa

oy otv ({ s1 0

14

{
VITONCTHON=N QYO

~
X

3N -
—— . —

<lo

voe

268

vél

282

\4:4

9114

ol I
0EX

Ly

il

26

EA

ar

9A

1"
4]
gy X
4}

© B eoN~-
T
\b
-
<

“un uﬂmnuOUOh& —Uh-—-uu

ENATN:T]

_— N0
A0 1 /

1202 o1 e, 5/6% @
i e 142

I

=

&
Y
£

44 trx

ol]
INE-)
N Ne=N "
T T T
-
-
DA O TN -
LIRS LRI

|
m_xﬁr{c Gs.

Sl

LB

T

T

v8e

tl I

1 ;

6l
2t
st
[A]

6 0rX

X4

Vsl

pld)

LR

PO N ornnm R Y s g owean
1

vl

oIl

Vil

201

vol

PEX
ol _\Vn '

w =N O

)Y

26

vé

L),

44

v

L]

v8

L

Vi

29

ve

s

Y$

\r

N

J2

1] 1
wa| [X7] [x®
X16| |X>
X7
1 1
1
X15| [X24
X6 1 1
] X141 |x23
X5] 1
1 X13 X2
7 1
X4] 12
i3 x2
1
1 1
X[|y
X3 1 1
" ol X192
X210 EZ 1
1 1
X1 x9| [X18

TR1
R1 1]
s
i e
XTALl €2 Ix45
B @
] Rf6
1 R17
R18
<5 X44
C4]
X32
1 ':]5 X43
31 N 1
1]
D X3% 1 X42
] 1 1
wo| X
] 1 XA41
x| (X3 | !
: _
R10 RO kol |xe
R11 '
P1 1 1
P2 x®| Ix46
p3 LX27

Fig.10.3.

Layout of Central Processing Unit.

‘300§ 134u) ..o%muo..mo..ﬂi\mnnw_ jooyoways -y -biy
ﬂk, S 00082 U
IDVAILNI
0008Z
b 5 < w A
uoy_ﬂﬁv SNIVIS/aNVWWOD N
> 104INOD o -——
NGIS¥IANOD \mmmwwwuu
13NIVEVd/IVIEIS - gecs |
ETNEREL] 318vsia
/LIWSNVYL ~ /LIWSNVHL

SNg 9€66 L

SSTIAAV TVYNIWYIL

¥ TI0ULNOD
/IVNIWYIL 310W3Y

~N
=5

*{ pioog 8d0)1a4uy Jossasoidoniy /BESSt

‘o°g o1 81y

&

ot

AL RN

i)

stat uw" ._,M
pe
oal Je1 P4
Hu ©
oo X o
1a4 H6 @
8 4
_@ 8al Lygoiiy |
[ad>

g 4ot S8 e
4n 1
84 et w
dz €2
do1 Y™ 9
a 46 @
-8 14
a1 e 0

A0

0al

clat

£LQ

S

8al

dd]

oal

stai

oat

8a!

La1

6
A0
s
I.ﬂ
ol
z
o
— u
50 0
iy R Y
62 ¢ el
iy I PR
582 g iz tix g
vz Lig 14 9
BYZ4 o% N“ 4
. <R. 30" (4
[}
!
|
Wil —al g
362 29 1, £t
véZ 5Q 6 1"
ozl Hzsixg
Z
wmu wm .w" w
kmw og L8t z

0aql

ﬁ
.
[
.
[
L

st n o682
€1a
O 1R
] L[sl
49 L V8L
¢ ' old
%0 1.2
4z e —pa LY
[]]
[A”@ [} 1
[} [}
Iow— [} 8l 0} 74
401 A mm V9T
oon cq |25
B (4] €l a L 474
Lw X g ta 1212
b
19
{4 € o vee
Ir
(2
) 7Y 7
| =
z1 X g td o
L ? 1 e
o1 14 o e
&d
BLoLL ¢ 89 LYre
[[}
eI I '
e s 141 yzy IE2
A =
T 2 o
uo x n rd Y.
4] 8 £4 1212
qre e 74 | Y\
49t v 131 2%
18! [o4 LY0Z

43

1 pioog 900y ey 10516301d0ISIW/BESST "9°G 0L Bi3

o 0T
AG+

- -

vol

Al
i8] 00 ——4€9
o ey pE =T
vel I ¢nw o0 .
o] e
Vel
[t]

]
9
@Ijo [o4 x |= =
’ S BIRIR
)
AS+

o™ yi o1

—11 €l
]| d 2eX \ Jo74
o || e
ir
st oL Vi lv%
G - o

y

tt

Cix €
" 01

@;L. et 1y
12 N.llﬁ oV
x| w128
g

Y

(43

[=et]

ASt

“| pioog 850j131u| 1058556100 DWW /BESGT 376 D1 Bl

[
] 9£X
riy | 1" rt
S+ tex —H y X ¢ ¢
s 2 g {8 11 _— X
vn n_m | s £2X 0t
T A+

Zex |Amda_ - Act
&X
18
ol o.;ﬁ
—lllu’] |
' 1
Y575 i_ p Ly v
r 9 o8l
£ 1 o SSA “
vz)
Ly h_ AN o1z
1
1 voz
] 202
Vic
1)
20¢ o]t
Vot g VL
yid ¥z
262
tid VIt
V& I71d
28 I JET
v8Z ot veL
Y1 p77
&0
VZZ |5q 7
Ir

w7 !

‘| pioog e30y1aqu) Jossasoidoo iy /gEcsl PTG 0t By

€l [}
W] Aub 1 u

NG+

€6X .—I)c 1124

§6X

0€X

[1]1

6l

o9t

o’

43

1 pioog e30yia1u| J0ss3501doD I /gEss1

Scrl
u ? ¢
91X X
rex
, a3
.__ @ X
?
™ o|@ AG+
st Ty
€EX (7414

o8¢ i

r -

™

9

1144

4

S

£0aX

9 ¢

01 ¢

07601 B4

]
Vil
1S MAA
16X 5, |
6 01
|
s
AS |
1 vl I
€ |
[4 tA |
9%
[F3 1 SERLAAL
@ !
- |
Stex ©
R Lo
|
¥ !
i |
AS+ _ _
| |
! |
st €l V<]
azx v
o n s Vet
' (]
| |
st el o 29
ol ba 42
9 . oS
€ o 1_ve
15X
i z oK
S e K1
u . EX
ri 04 Yoz

43

32

n

32

J2

R1
] , 1 , 1 1 1
130 x| |x32 Ned
X7 x4l Ixso|
] 1 1 1 5 i 1
x12l (X211 x31 [ag| X3
” i]R2] X4] 1
X11 X55
1 x2d X309 |1 48] T
]]] X3 1 [
x5| [x10 wd b 1 X54
]] x3d X47) |
1 R9
X53|
X28]Ra 1
9 xid xas| |
52
1 %9 37 X45]
1 R1&
1] 1
X141 N X% X51
X44
R3 x2d 1]
X3 1]
1 ' 1 x4 | @5 43 38
R14
] X23 Ré R15
X9]] R14 {1 R13
X2 X15 XU
] 1 U . R4 R20
X8 1] N C2 X42 R21
R10 R18 R22
X1 X4 X23 Xg}y Cl R23
| R17 R24

Fig.10.6.

Layout of 1553B/Microprocessor Interface Board 1.

‘g ploog ©30)13)u) Jossadoidooiyy /gecs) ‘o7z 0t 61y

V&l
| A0 a0 | 9t A —T 11.%]
e —<&5N | st __ ||||o.oN _wJ (T : ozt |
olx { Ty x ¢ <5 m._ r a..,m V8T | er
1" " : 7R Q] 6 ox'g P
i 8 vl
6ot e s 6 ox Ol Yy ed 5
2wUX 9 L 9 [[tla YOt
TR YU S € z 1 oo
Y
L &2y ol _ 18
9 6 Vel
3]
1x AT 1 | 2%
Iy Y2l
[vee brls S|— 1 48] w:
g T
4L 1721 = [N,l_.-_ o |—4 . e
YL 31y a = z et
1 -7 u é 6 u T3¢
ol vzZ
cix iZ|
o o
< viz
. 8 4 ﬂ 202
Il ¢ voz
(s ~_ ZIX o E !
X £1X 5 s £ v
8 of U
(I
|.@H U et 5 o Yo
X I e G I
} |

{ |
st oyt |”—|>o
) ol €l P!

€T pon

¢ |1 I_HIH.,..;:L - S |

" + afp—I_—T |
il [JAsH] czd) |
S —at : o -

—ge 11 0 Rxs |k

V8l =3 Tt o el | 251
81 B

] 8t
a 2% . § [————n) P u

€l AO
t
ol 9 ¢

174}
ASH

*T p1oog e3ppeju fosa30.:d00IW/RECST a'Z 01 B

ASI+
12y
0zy
61y
81y
ASL-
C e IR
| !

nis 3A- 5]
|

ASL+ ’\—\ {44 | H I} :

|

8 1 AM_ "_
|
|

u
9 |
TP ¥ ez :
«q
58
X1
Ast XL 77
N + |
v
X 2x
Ao v € s L
9 sa
J— af 7S o | oﬂu L/Wm._
€3 X -
2 " As+
_:__, o4 o a

ASL+

*Z pioog 3d0ys34u) Jossadosdond iy /aESGL 2 °Z 01 B4

7 o SM 42t €l
39 16 w =
v9 |- K -
st | | Ji=a
vg ™ 1°¢ [
r o
1l
L BJ__ ot
— 1
S0t |- Tals} - uh_
voe - ['C 4ot af Sl B 777
262 da1 n} -+ 29z
véz |- 4 AN = — vz
o8z |- 6 pex 8 | oS2
v8e |- -9 “ - - vsz
ST ds | 4oz
vzl 4z 1 e} 7 N
) | I
| | | |
i I F AMUM._ ! |
I | L i)
2 N g < 1 etllal ﬁ wr 2
vz 19 a - vee
55z + 45t nf Y42
vsz 1o el vz
o174 4s 8l ST
iz ,szuﬁ ﬁn ViZ
o] A = - ¥ 502
vee) % 1z 1 e} 0d Oz
N | i
(14 | |
g ¢ -0
L LYol

1)

32

] 1 1 1
X1l X2
X9 R28 X22
] .
3 1 1
; X8 é]g X8
1
R26 i b4
1 1
R27 X1
- X7 X15 X2
! 1
1 1 1 s
x5 1| [xwe
R
1 R2 1
wa | R6 X7
C7.
32 1 1
] D4-D1 X2
cll 18
R21-R18 R22
R3 [
] A
X B8 Ixp
R17 Ri2
12 17 RiZ R
RI5 €9
A
o5 re beol
R24 RII
ciz R
R D5
| Dé
1 T1
Fig.10.8. Layout of 1553B/Microprocessor Interface Board 2.

e Bo

co

0o

uoypiad(SIOMPIDH :J3|joLUC)) SNQ WOl abpssapy

—— snuvis

‘0L°01 °Byd

;
viva

vivad

vivd

ANVWWQOD

SNg 4e561

viva
aNas

318VN4
43AOONA

ANVWWOD
J1VILINI

1553B BUS

A r—- -~ -~ ~-=1 . A
NN NN
. 1 _ |
N7 + VI 1 \V4 4
ISOLATION ! _ I
RESISTORS | D _’D |=— SCREEN
P T
o= _ ! COUPLING
, T TRANSFORMER
_ - e —
- — - - N == e - - 2 o
———— ISOLATION
< TRANSFORMER MOUNTED
ON INTERFACE CARD
Y Y
TO TERMINAL
TRANSMIT/RECEIVE

Fig.10.11, Connection of Terminal to 1553B Bus.

*uolpId() SIDMPIDL :J9|joJjucT) sSng of bDssOpY

"ZL°0l By

viva

vivdad

vivd

SNLviS

ANVWWOO|—— SNg 9es91

v
ALINOIINOD

vivda
PVl

JT9VN3
d300OON1

viva
_ aN3s
Y
I

ANVWWOD
J1VILINI

*uolypsad() SIDMpID| :|pUIWIB] 9 jowdy O} ebDssaYy

— SNLVIS

‘e1°0l 614

vivd

viva

viva

INVWWOD ——

k\

~ v’

I

SNg 9€661

viva
aN3s

379vN13
430ODNA

1iv4
ALINDIINOD

QoM
driva

ONAS
ANVWWOD
alvA

*uolypiad() 2IDMPIDL| :|pUWIS| djowsy woy abossapy

viva

vivd

vivd

SNLv1S

“yL-0L°B1g

ANVWWOD |

<

sNg 9e551

vivda
aN3s

379VN3
43QODNA

ONAS
ANVWWOD
diTvA

*pioog uoi>3u) 1oy (090101d RESSI

CRIRT]

61
s S A0]

é

L

64-QD A0 Ao nu_
X £l __ ,
6 ;
yix 624 six S
vel z AGt 9
h rierzLieot s £
Y& I'yid

o sttt

yriusee

eix Ot

9

OId

{1a

¢ia

t1a

¥ia

AO—— Sig

Fﬁ

Gl

j2)

14}

74§

1 4

11y

d

(]
X

“pmog Uojiae]uj §jnoy (0561019 BESSE ‘951 01 B1Y

TASI+
AO 124
Z Ya Za
é
(EN:
9
[t
o Ast 4 oz

ASL+

Fig.10.15.¢c.

1553B Protocol Fault Injection Board.

10A [E5 "]\X27
—R/W), 3 N
10C PO :_2_/ | DO
20— 3 1 2 D—{23A
20C 7 4 5 21123C
21A 7 X25 6 D3 24A |
21C —3 8 9 D3 _T24c
22A P4 13 12 25A
22¢ |—BS 14 15 gg 25C
23A |—E6 17 16 ——{26A
23C P7 7 18 11 19 26C
T e ‘ !
} . —'———] I
24A 58 31 2 28_T77A]
24C P90 4 5 e 12zC
25A P} 7 vog 6 STT128A
25C 1 8 9 ST5128C_
26A P12 13 12 ST512A
26C_|—F13 14 15 SR
27A —Ll4 17 16 =—{30A
27C —£12 18 1, 19 RIS I30¢
1
1 | — |
LC
17C 1 WO J2
DO /3 11 2 Wi 5A
—4 5 Wé 5C
g™ "9 W3 Fec |
D4 {137 12 W4 _17A
I |
+5V +5V ~—0v | l
R33 R32 [—R34 | |
- | |
31 13 27 3 DO 3aA
5 X29 —
@ | L | g 1
@——]]4 —:-[— 12 13
——ov ~ov
X27
4 "\
Tyl

32

1 1 1 1 1|
wa| 22l |4 B |2@'
CI3 R0 1 Egg
XTALl R31 XD 3
) 1]
R27 X11 1
XB
] X21
1
X12 X2
X7 ~
1 1 ?
] s 1
1 1
X5 X2
X1]
1]
X 14
X4 «
32 1 1
D4-D1 X2]
Cll
R21-RI8 Rp2 X2
TR3 R28
;Q} BZ] [X25
. R5
T
T R T
Cl0 TR2 X4
R25 R4 IXIZ
R24 RI1]
B
R9 D5 |xi8| BZ
D6

—
—
—

Fig.10.16, Layout of 1553B Protocol Fault Injection Board.

RESET FIFO
LOAD MESSAGE

LOAD
COMMAND
REGISTER

INITIATE
TRANSMISSION

Fig.10.17. Message from Bus Controller: Software Operation.

LOAD COMMAND
- WORD

SET BUSY FLAG

INITIATE
TRANSMISSION
SHORT DELAY

OCCURRED

INCREMENT BUSY

COUNT

CLEAR INTERRUPT
FLIP FLOP

READ MESSAGE
FROM FIFO

Fig.10.18.

RETURN

Message to Bus Controller: Software Operation.

ENABLE LOAD MESSAGE

INTERRUPT FROM FIFO
INTO MEMORY

CLEAR
INTERRUPT
FLIP FLOP

DISABLE
INTERRUPT

Fig.10.19. Message to Remote Terminal: Software Operation.

INT.

ENTRY
ENABLE LOAD MESSAGE
INTERRUPT RESET BUSY
> >
HAS
ESSAGE
INTERRUPT
OCCURRED SENT
| YES
SET BUSY
nleSé?:biT CLEAR INTERRUPT
FLIP FLOP

S

Fig.10.20. Message from Remote Terminal: Software Operation,

‘Jo]d o|Buy apissiy | ° 1164

Gl

Gg°cl

1]}

(SANOD3S) IWIL
G/ o ¢z 0

$S300¥d ONDIDVYL 13D¥VL 40 HIAIM
40103S Ol INA NOILVYvdIS £

ISVHd
TVNIWYIL

1303v1

JTISSIW

ISVHd
ONIIHLYD

oL-

(=]
<t

(S33¥93a) I1ONYV

o
Te]

09

0L

‘0|4 9bupby aIsSsiy ‘Z || B!

(SANOD3S) IWIL
Gl Gzl ol S/ S (R4 0

_ | 0001

' . 000¢

_ | 000€

L 000¥%

(SFY1IW) IONVYY

7 _

JUSSIW— >
L 0009

- 000

*sj|nsay au||espg 104 UoHDINBIjUOY) waysAg TG

V1iva 139¥v1I MVY
ANV 30SS300¥d
ONDIDVYL 1393¥VL

TVNIWY3L
JLOW3IY
JOSSIDOUd YITTOULNOD
JTISSIW vLOId
TVNIWY3L JITTOUINOD
J1OWIY sne

SNg 9€6¢1

(Spucdas z) asobyy Buiieyyogy uj 4|nog adA| uondniio) bpyog

*¥°11°614

(SANOD3S) IWIL
6L 9 S’y

1 1

ISNOJS3Y
airnviaNn

ISNOJS3Y

ailinvid
7

- 9€l

L ¥0C

_ CLC

- OvE

— 80¥

- 9LV

— Vvs

— 219

— 089

(s33¥93a |_0L) HINWIZV

*(spuodas §) asbyy bujsayips uj j)nbg 8dA| uoiydniion) bipQg G°11°Py

(SANOD3S) IWIL

Gl G'el ¢l ¢grol 6 V4 9 2 4 £

ISNOdS3Y
aiiinvd

ISNOJSIY
airinviNn

— 9€1
- yoz
— CLC
— OvE
— 80V
— 9LV
— ¥vS

. Z19

— 089

(§33¥93a | _ol) HINWIZY

*(puodas ¥) asoyq Buliayipg uy jjnoy adf| uoydniio piog ‘9°11°by

(SANOD3S) IWIL
Gl G'el 4 G ol 6 G/ 9 Gy £ Gl

1 1 1 1

— 89 -

ISNOJSTY
aiLnviaNn

v

A7

ISNOJSTY
a3linvd

— 9€1

- ¥0C

— ¢LC

— OvE

— 80¥

— 9LV

— ¥vS

- 219

— 089

(S33¥93Q (-01) HINWIZV

*(Spuod3as £/) asbyq |ouiwis| ul j|noy adX| uondnuioy pjpg

AT

(SANOD3S) IWIL
Gl G'cl A g0l 6 G/

— 3 1 1 1 1

A

ISNOJSIY
ailinvid

P

ISNOJSIY
diLinNviNn

— 9¢€1

I
&

(5339930 | _01) HINWIZY

— C2/C

|- OvE
- 80¥

— 9Ly

~ Cl9

— 089

*(spuodas g) aspbyy |purwid] u} j|no4 8dA) uoidniio) byoQ ‘g8°11°b14

(SANOD3S) IWIL — 89 =
Gl G el zZl s°0l 6 G/ 9 Sy £ G'1 0

L 1 1 1 1 1 1 1 1 ~ 0

ISNOJSTY

a3invid L 9€1

— ¥0C

— CLC

ISNCISHY — OvE

dilinviNn
— 80V

L 9Ly

— Y¥s

- CL9

— 089

($33¥930 | _01) HINWIZY

“19||0djucy) [o41BIQ Ul MO[JIBAQ 40 193433 ‘6°[1 B4

(SANOD3S) IWIL
Gl G'el zZl G0l 6 G/ 9 S’y £ oad |

[L 1 I 1) ~L 1 3 P

P /-
ISNOJSIY
ailTnviNn

ISNOdJS3y
ailinvd

- 9€1

I I

N I

N (9]
0l) HINWIZV

l I |

0 o] (=]
N [« <t
~ < ™

(533¥93a

— ¥¥S

AN

— 089

l

‘19| |oyuoy) |o41B1Qq 40 SHUN |9]|piog

‘ol 1L By

- 012- - 9L-
| 891- - /G-
L 9Z1- (SAN OD3S) IWIL - 8¢~
(SANOD3S) IWIL | yg- . 6l- O
Gl | 6 24 € of > &
T AN e e e VR T
S A ‘P/f\ A + 0 u - 61 m
-V C - 88
-
™ .Vw < . /G m
L 9C1 p= 9L v,
- 891 1 g6
¥ LINN - 0LZ "€ LINN Ll
- 25¢ eel
91- - V9 1-
(SANOD3S) IWIL 801- L €21
vS- -
Lot T g | o[(SaN©D3s) awiL o
. . < _ = - O
o AT, o §
L 801 M "V 1_/ =]
o - VY C
- 291 g o
L 91z = e x
F 04T & i o
L pze - V9L N
"Z 1IINN - 8.8 T LINN - 50¢
L Zed - 9vC

"pubwaq @duopIng | |"|1°Bl4

(,.01%) 3DNVY FTISSIW/NOLLVEITIOOV VALV

_ €9-
L Th-
(SANOD3S) IWIL
A
S Al AL A0 s AL @8 ASY o o
— b ——— | S ﬁl\\r\\ R S o~ <
L 12
| ¥
L €9
L V8
. GOl
. 921
— /¥yl

MOV WY3O 0¥d a3fnvyd i —-—
MOTI WYIO OUd aILNVINNR © —
¥IINIOd ADVIS dS

*1j704 © of onp 53] 3duDjdaIdY JO YOS

7772 7 "133
ll lae— dS [4}
oI ST | o a5 | A¥VWIN U NSVL

e
0

V27— o

NOILVY¥3dO NOLLV¥IdO
annvy a3nviIiNn

JE—— mnv4 o1 3ana -
- NOMDNYISNI 1dOd.

ZUUBy

ZASVL MvD
Tl

HNSYL

AYYWIEd JSVL 1VD

_

LASYL VD
‘1

////

»~

REQUEST FOR
DATA

PRIMARY ROUTINE

ACCEPTANCE TEST

Y

UPDATE
COUNTER

YES

COUNT

EXCEEDED

USE LAST
VALID DATE

N

N\
ALTERNATE

ROUTINE 1

RETURN

Fig.11

.13. System Recovery.

Y

JUMP TO FAIL
SAFE EXIT

AN

-

N\

ALTERNATE
ROUTINE 2

‘pioog Xiowopy Ny *{-z1-Bi4

[8 Gl

it
/___c NQ_\..N___X

ov otv oly olv 91

Ll
-~
7
N
LB

tt
m_c_\ Jda 6X

I

L
-~ 80 ra

ol

]

" O N TM N
- ™
-
IR

" ONw™DN -
i 1

4
€
_/ 42 v
-t Lt
Zia p
<

A

ﬁ 4
ﬁ J

av %_\;_ o or 31 4 {ET o1
! J

oo o/ NI

o1 St

o 1% ol Yoy owv (” 9

a Qa . Qar q 0

1: ' q:

staf Yl Zf ootk Yo | g A 2 dz o ub Neo
_\sw.man 4n§~_rJ _\la_uxnr lnaxzr/_
~Her v} 4r af da +F 15 4r
N_cr-: 123 1« :1L8 3_/1: Ll 4, zu_S
14 of 39 OW 15
g I XX I R w7,
|
B3
~

v 4ol
@ rb— 41 26
1x L4 v
£X -2
1 _¥8
1 o2
K7
159
1 o8
ov o\ _ ve

r

32

1 1 1
X4 X8| |Xx12
:]
1
X3
J " x71 X
X2] 1
1
x6| [X10
X1
1 1
1
xX5| |x9

32

J2

Fig.12.2.

Layout of 4K Memory Board.

*2IN|ID] [DUIWIS] 9j0WIY Joj UOHIDINGIJUOT) WAYSAG

viva 130yvl
MVY ANV
4OSS3ID0Ud ITISSIW

TVNIWYIL
JLOW3Y

JOSSIDOYd
ONIADVYL 139¥VL
304 dN ADvd

TVNIWYIL
J1OWIY

‘€°z1°by

YITTOYLNOD
vliolda

JITTOILINOD
sSng

JOSSID0Ud
ONPIDVL
139Vl

TVNIWYL
JICWIY

SNg 9es5 1

-

WAIT FOR
DATA

ANY

PRIMARY ROUTINE

/

ACCEPTANCE TEST

ERRORS IN M_YES
MESSAGE
y
UPDATE
NO COUNTER
COUNT \ YES
EXCEEDED
Y
e WAKE UP STANDBY
N PROCESSOR
;{ USE IT FROM NOW ON
=
ALTERNATE ALTERNATE
ROUTINE 1 ROUTINE 2
- V \
|
RETURN

Fig.12.4.

Schematic of Task Swapping.

SNVDS

JAISSIDONS I3YHL NO

NOILISOd 1393¥VL
\\<
——g

/7

2

130¥vL

YOSSIDOUd
ONDIDVYL 1393vV1 40
3NV ININVWEId

<lossgooig Buppoi) jeBud) jo eanpoy Gz Biy
SNYOS
vidv L+N 7“
. I e - .
'] ' |
JINTIv4
WO 31DAD HIXIS 1V
40SS3D0¥d AGANVLS
*ZV 139¥v1 SILIVEINIO dn VM
YOSSID0Ud AGANVIS 1
- - 1
'
= — = = Y9 ¢ v "¢ 2 —J_~\.
{
. v1va aivA |
]

Qiilvadn “Zv 139¥vl—=— 15V S3SN WILSAS

+
+ t t

SNOILIANOD ONIddVMS JSVL 304 HINWIZYV 139¥VL

-

_ ol

aalvadn “zv 1308vL—=—, 2y
1
+ —— t - —— |

1
dilvadn “zv 1393vi—=)

NOILIGNOD 3334 1INV4 304 HINWIZV 13D3¥VL

HINWIZVY
139¥v1
ﬁ o
Vv
. HLNWIZY
139¥v1l
e

*asbyq mc_._.ofco U] 8INjID4 |DUIWID) Sj0WRY

*9°Z1°614

(SANOD3S) IWIL
G ol 6 G/ 9

1

ISNOJSIY
ailnvd

A
%

ISNOdS3Y
aiaLlnNviNn

- 9€1
B ¥0C
- /T
— OvE
— 80V
L 9LV
4

19

L. 089

(533¥93a |_01) HINWIZV

.Omnve_& joulwia] ul ainjiby |pUlWId | SJOWY

WAANE

(SANOD3S) IwWIL

Gl Gg'el ¢l gol 6 VA

ISNOJS3Y
aarinviNn

A

ISNOJSIY
ailinvd

1 |] 1}
< 0 @ (=}
3 5 8 3
(S33¥03a l_OL) HINWIZV

R
o~
0

— 089

*2in|ID4 J9||04u0Y) Sng Ioj uolpINBIjuc) waysAg

Viva 139dvl
MVY ANV

JOSSIDOUd FTISSIW

TVNIWY3L
JLOWIY

Y3TTOUINOD
viiol1d
A9ANVLS

(¥YI110¥LNOD
SN9 A9ANVLS)
YOLINOW-SNg

‘8°Z1°b14

43TTOYINOD
wviiold

YITTOILNOD
sng

JOSSIDOUd
ONDIDVIL
130¥vl

TVNIWYL
JLCOW3Y

SNg 9€561

BUS CONTROLLER
TRAN SMISSIONS

VALID COMMAND
SYNC. PULSES

H

BUS CONTROLLER FAILURE

A

t

OUTPUT FROM
MONOSTABLE

e ——

! —

NOTE: TIME PERIODS NOT TO SCALE

Fig.12.9.

Bus Inactivity Detection.

4 millisec

O TRARLTE

-._0__0._.—COU mDm pa]ing m_n_nvm_Q (o7} OthUm_Q jJo OmD

W3ILSASENS
b |
“ j 313¥D51d
\. ¥ _~7131vis omlL
- W3LSASENS
1ndino |+~
318vS1a OL HOLIMS ——
YOLDONANOD IW3S , R YOLINOW
= sng
[¥ITTOUINOD —
. sne : , U
N\ A N\ A ! Prat
e P e e e
A 8 \"g 'z

SNg 9E6S1

*(puodas |) aspyq Bujieyipg uf ainjipg Jdjjoyucy) sng *11°Z1° 614

Gl G el 4 g ol

(SANODIS) IWIL
6 G/ 9

1

'y € Gl

ISNOJSTY
VY a3lnv4

ISNOJS3Y
a3iLlinviNn

— Ovl
— 0l¢
L 08¢
— 05€
oo
- 06V
— 099

~ 0£9

— 00

(S33¥93Q | _0L) HLNWIZY

*(5puodas z) aspyq Buisayipg uj ain|ipg Bjjoyuc) sng “Z|°ZL b1

(SANOD3S) IWIL
ZL G'ol 6 S/ 9 Sy £

1 i 1 1 1

=

ISNOJS3Y
ailnviaNn

\

A
ISNOJSIY
aiilinvid

— 89
— 9€1
— ¥0¢
— /L
— 0ve
ﬁ 80y
A4
— Vvs

- 219

— 089

(S33¥93a l_01) HLNWIZY

*(spuodss §) esoyq Bulseyipg uj sinjipg s8|jo44u0y) sng ‘e1°z1°614
(SANOD3S) IWIL — 89 -
Gl G'el zl G'ol 6 G/ 9 Gy £ Gl 0
L [i i . 1 A 1 1 1 O
. 89
- 9¢1
ISNOJSITY - ¥0C %
ailnv4Nn S
_\ .2/ T
3
: - 0vE L.
_\ o
m
ISNOJS3Y ~ 80V @
aiLnvid m
o/ &
L ¥¥G
. 219

— 089

*(spuodas /) @spyq [pulwid] Ui din|IDJ J9||OHUOY) SN

‘¥1°2Z1°PY

(SANOD3IS) IWIL
Gl Gl zZl G0l 6 G/

1

9

ISNOJSIY
airinvd

ISNOdJSIY
a3aLinviNn

L VG

- L9

ﬁ. 089

"(Spucdas g) asoyq [pUlWIa) Ul 9IN|IDg J9|joluoc) sng ‘G| Z| Bl

(SANOD3S) IWIL
Gl G'el A G0l 6 G/ 9 Gy £ Gl

ISNOdJS3IY

ailnvd
—1

T

ISNOJSIY
a3alnv4aNn

- 9€1

— ¥0C

- C4C

- 0VE

- 80¥

- 9LV

44

- C L9

— 089

($33¥93Q | 01) HINWIZV

*(Spuooas &) asbyq [pulwid| ul IN|ID4 J9|joyuoc)) sng TR AR

(SANOD3S) IWIL — 89-
Gl c'el A G0l 6 G/ 9 Gy € 1 0

— | | 1 1

ISNOJSTY

ailnviNn
—1

- 9€1

- ¥0C

\—\
ISNOJS3Y

ailnvid - eLe

- OvE
- 80V
mhZA4
— VS

- C19

— 089

(s33¥993q |-0l) HINWIZY

“ssas04q Bujypoiy §36.0 oy woiboiq 1 OJSYW

NIVMAIVH
vivd WILSAS

11nvd

ONIOLINOW
WILSAS

JOVIIAOD . viva
JNSSIW 303033/HOVO¥ddY Wiv1v
T JOVIIAOD T 203034 _ T
- /HOVOUddV |«
$S3ISSY SsISSY x_.
STINNVHD
oosvL
.._l SIYVYNIA SIIVNIG
135 $$300ud
1 T
LISIHNI S31AvNIg
JONVY
HLNWIZY
{ _ B 1
LI9IHNI |_. LIGIHNI

SS3ID0Yd ALIDOMA/IONVY

T

._n $5320ud
LEIHNI
HINWIZY .

=\ =

AD MEMORY j)_ _ [pAata__ _
READ ADDRESS IN

DS

READ) ;

R/W ' :

READ _ | __

Fig.B.1. Z8000 Memory Read Cycle.

CLOCK |

:

AD MEMORY | -
WRITE X ADDRESS X DATA OUT X'

DS \ [
WRITE ' ‘ f
/W "_\ 5 [
WRITE

Fig.B.2. Z8000 Memory Write Cycle.

“aulinoy poay Joj 53] eoumidarsy 173 By

[1

Nvid 13s SSVd 135

JONWVY
NIHLM

NOILISOd
HINWIzy

13§
SOV AIVA
ALDOBA ONV

JONVY

35 OV
a310313a

ENTER

N

UPDATE
AZIMUTH

RESET TARGET
DETECTED

FLAG

Fig.E.2. Read Alternate Routine.

TARGET AZIMUTH

YES
-

NOT VALID AND
LIMITS FLAG SET

TARGET AZIMUTH
WITHIN RANGE

MISSING SCANS YES

COUNTER < 0

SET PASS

!

!

SET FAIL

Fig.E.3. Acceptance Test for Azimuth Inhibit.

TARGET NO

DETECTED

SET TARGET AZIMUTH = AZIMUTH
SET TARGET AZIMUTH INVALID
CLEAR LIMITS FLAG
CLEAR MISSING SCANS COUNTER
RESET NO COVERAGE FLAG

N

Fig.E. 4. Azimuth Inhibit Alternate Routine.

AZIMUTH
INHIBIT SET AND
RANGE INHIBIT
NOT SET

TARGET RANGE

VALID AND MISSING
SCANS COUNT

RANGE
INHIBIT
SET

SET PASS SET FAIL

T -

Fig.E.5. Acceptance Test for Range Inhibit.

AZIMUTH
INHIBIT
SET

YES

TARGET
DETECTED

A\ 4
SET TARGET SET
RANGE VALID RANGE
UPDATE TARGET INHIBIT
RANGE

Fig.E.6. Range Inhibit Alternate Routine.

*$a1iouy g 155 Joj 53] 9aubjdaddy 773 °Biy

Ninily
Tv4 135 SSvd 13S
] - 13
- - LON 9v14
mu>‘ ON SINVNIE

13s oV
SINHVNIS

INTERNAL NO
ALARM
SET

PROVISIONAL
EXTERNAL
ALARM SET

BINARIES
FLAG
SET

SET FAIL

SET EXTERNAL
ALARM

i

SET PASS
Y

RETURN

Fig.E.8. Acceptance Test for Process Binaries.

IS
CANCEL > YES >

SET
NO IS
APPROACH
SET

CALCULATE NAND
OF APPROACH
AND RECEDE /

RESULT NO
TRUE »
SET PASS SET FAIL
Y
-

Fig.E.9. Acceptance Test for Approach/Recede Assessment.

SET APPROACH

Fig.E.10. Approach/Recede Assessment Alternate Routine.

COVERAGE >YES

SET

Y

CANCEL YES

SET

Y

CALCULATE NAND
OF IN COVER AND
OuUT OF COVER

| YES

.-~ RESULT NO
TRUE

" YES NO

N

SET COVERAGE
INDICATIONS SET FAIL
SET PASS

- |

Fig.E.11. Acceptance Test for Coverage Assessment.

NO
COVERAGE
SET

YES

A4

CANCEL YES

SET

v

\J

’ CLEAR
SET IN COVER COVERAGE

INDICATIONS

N

Fig.E.12. Coverage Assessment Alternate Routine.

dVO JOVSSIWUILINI #
IWIL ISNOJSIY «

r—= ="
1 QYIOM !

laNVWWOD 1 7
e — — —
IXAN

I |
I JYOM

_
lanvwwod | #
I |

IX3N

*sjpwiio] abpssapy gecet

“1°4°6Y

ayom QIOM QIoOM ayom ONVWWOD
viva vivd vivad SNLV1S LIWSNWVYL
QIOM QIOM QYoM aiom ANVWWOD
SNLV1S viva viva vivad EVA\EOED.

434SNVUL
dIT10YINOD SN4
Ol TVNIW¥3L
J1OW3Y

YIISN VUL
TVYNIWY3L

11OW3Y Ol
YATOJINOD SN

’sipuiio] pIop 9ess1

*Z°4°614

ALl¥vd = d
JAIIOIY/LIWSNVYL = ¥/1 31ON

-
Q
0O
Z S z
O O o] -~ O
O LV <) v o ox
< 39 oz > < 9
“ = 3 7 g z &
o Q) w5
> Z 2 3 a S 8 35 %
E s 3 0 5 < & Sz 3
= 2 £ a0 4 2 b 8 $S3¥AqV
IS E1al 31 31 S o 181213 TYNIWY¥IL 1 DNAS |
oo fe]te]t € L]t G
| d | viva I DNAS |
L 91
INNOD JAOW ss3yaqv
I d1 QYoM viva | /ss3¥aavans 1y/1l TYNIW¥IL | DNAS |
L G G G
oz|est|st]|zt|otlst|vi|et |zt |tt|ol] 6 Llolslvlele|

d4OM SNLVLS

YoM viva

QYOM ANVWWOD

SIWIL 114

"Butpoduz ojpg g 3°Bly

A -

TAAIT
ISVHdI4
A0 OML
YILSTHONVW

— A+

vivda
VIS

A00T1D
ZHWI

Approach Recede

Velocity Gate

Range Gate

No.

180

160

50
20

105

150

90
60

50

20
50
52
40

25

30
24

12
20
15

13
13

Angular Rate Information.

Table4.1.

Integrated Circuits
X1 74LS04 X2 74LS20 X3 741532

X4 74LS532 X5 74LS74
X9 — X43 MM2102AN

Table 6.1. Parts List of Error Correcting Memory Board 1.

Integrated Circuits

X1 74LS586 X2 74LS86 X3 74LS86
X4 74L586 X5 74LS157 X6 74LS157
X7 74LS157 X8 74L5157 X9 7415280
X10 74LS280 X11 74LS280 X12 74L586
X13 74LS154 X14 74LS154 X15 7415240
X16 7415240 X17 7415280 X18 74LS04
X19 74L5126 X20 74LS126 X21 7415280
X22 7415244 X23 — X32 MM2102AN

X33 74LS00

Table 6.2. Parts List of Error Correcting Memory Board 2.

Integrated Circuits

X1
X4
X7
X10
X13
X16
X19
X22

74276
74L532
74L527
74L500
74L593
40208
741532
74L5138

Resistors (t 5%)

RT —

R12 1K

Table 6.3.

X2
X5
X8
X11
X14
X17
X20

741532 X3
74L508 X6
741520 X9
74L574 X12
741500 X15
74L574 X18
74L5374 X21

741504
74L5125
74L5138
74LS00
74L574
741508
74LS151

Parts List of Input/Output Board.

Integrated Circuits

X1 74L5244 X2
X4 7415244 X5
X7 74LS374 X8

Resistor (pa 5%)
R1T 1K

Table 6.4.

741L5244 X3 74L5244
74L5193 X6 741502
74L5374 X9 7415195

Parts List of Buffer Card.

Integrated Circuits

X1 74LS00 X2
X4 7415125 X5
X7 74LS00 X8

X10 74LS125 X11

X14 7415123

Resistors (i- 5%)
R1 5.1K R2
R4 50K POT RS

Capacitors (= 20%)
Cl 22F C2

741500 X3 741504
74LS10 X6 74LS00
741500 X9 741504
741532 X12 74LS10
50K POT R3 5.1K
IK

22pF

Note: R2 and R4 mounted on front panel of expansion box.

Table 6.5.

Parts List of Fault Injection Logic.

Connections of P1, P2 and P3 on CPU Card determine baud rate

as follows:

9600 baud = all open

2400 baud = connect P1 to P3
300 baud
100 baud

connect P2 to P3

connect P1 to P2 to P3

Table 10,1, Baud Rate Selection.

Integrated Circuits
X1 741832

X4 741544
X7 74L5374
X10 74LS139
X13 741532
X16 MM2114
X19 74LS164
X22 74L532
X25 MM2114
X28 74LS30
X31 74LS00
X34 74LS138
X37 74LS08
' X40 7415273
X43 2516

X46 75189

Resistors (Is %)

R1 120
R4 22
R7 390
R10 1K
R13 1K
R16 1K
R19 22

Capacitors (: 20%)

o] 100 nF
C4 220 pF
Table 10.2,qa.

X2

X8

X11
X14
X17
X20
X23
X26
X29
X32
X35
X38
X41
X44
X47

R2

R8

R11
R14
R17
R20

G Q

74LS10
7415245
74L5374
7415138
MM2114
MM2114
741502
MM2114
MM2114
25152521
AmZ8002
74LS5138
74L5123
Am8253
2516
7415273

480
22
39K
1K
1K
1K
240

47 pF
120 pF

X3 7415244
X6 74L5245
X9 74LS574
X12 74LS527
X15 MM2114
X18 7415244
X21 25152521
X24 MM2114
X27 Am9551
X30 74LS04
X33 Not Used
X36 74LS74
X39 75188
X42 2516

X45 2516

R3 470
R6 240
R9 1K
R12 1K
R15 1K
R18 1K
R21 390

C3 330 pF

Parts List of Central Processing Unit.

Transistors

TR1 2N2905 TR2 2N2906
Crystal
XTALI 4MHz

Table 10.2.b. Parts List of Central Processing Unit.

Hex Address Function

6FEQ Frame Length Register.
6FF0 Command Word Write.
6FF2 FIFO Write.

6FF4 FIFO Read.

6FF6 Control and Status Register.
6FF8 Initiate Command.

6FFA Command Word Read.

6FFC Interrupt Flip Flop.

6FFE Reset Interface.

Table 10.3. 1553B Interface Memory Addresses.

Integrated Circuits

X1 7415244 X2 7415244 X3 Am2812
X4 Am2812 X5 74LS374 X6 74LS374
X7 74LS5138 X8 74LS165 X9 74LS165
X10 74LS04 X11 74LS08 X12 74LS32
X13 74LS30 X14 74LS165 X15 74LS165
X16 74LS00 X17 7415244 X18 74L5244
X19 74LS02 X20 74L508 X21 74LS74
X22 74LS157 X23 74LSI1 X24 74LS74
X25 74LS74 X26 74LS174 X27 9324
X28. 74L5193 - X29 74LS00 X30 74L5279
X31 74LS74 X32 74L508 X33 74LS123
X34 74L508 X35 74LS74 X36 74LS04
X37 74L5193 X38 74LS00 X39 74L502
X40 74L532 X41 74L574 X42 74LS154
X43 7415260 X44 74L5193 X45 DIL SWITCH
X46 74LS74 X47 74LS11. X48 74L574
X49 741574 X50 74L5244 X51 74LS74
X52 74L508 X53 74L574 X54 74LS74
X55 741508 X56 74LS74 X57 74LS157

X58 DIL SWITCH

Resistors (t 5%)

R1 - R16 IK
R17 150K
R18 [0K
R19 - R24 I K

Capacitors (+- 20%)
C1 IOnF
c2 100pF

Table 10.4. Parts List of 1553B/Mijcroprocessor Interface Board 1.

Integrated Circuits

X1 74L.500
X4 HA4905
X7 15530
X10 74LS157
X13 74LS164
X16 74L504
X19 74L574
X22 74LS374
X25 741532

Resistors (: 5%)

R1 10K
R4 47
R7 10
R10 22K
R13 4K7
R16 10K
R19 22
R22 2K2
R25 10K
R28 1K

Capacitors (I 20%)

C1 10pF
C4 680pF
c7 10pF
Diodes

Dl - D4 IN916
D5 - D8 CO46

Table 10.5.a.

X2

X8

X11
X14
X17
X20
X23

R2

R8

R11
R14
R17
R20
R23
R26
R29

C2

75452
74LS00
7415124
7415164
74L5164
74500
74L500
7415374

10K
270
27
47

1K
22
10K
1K
1K

100pF
68pF

X3
X6
X9
X12
X15
X18
X21
X24

R3
R6
R9
R12
R15
R18
R21
R24
R27

C3
Cé

HA2522
7415374
9324
741508
74L500

7415374

1K

22K
270
10K
2K2
2K2
10K
1K

100pF
10pF

Parts List of 1553B/Microprocessor Interface Board 2.

Transistors

TRT 2N2905A TR2 2N2905A TR3 2N2221A

Crystals
XTALI1 12MHz

Transformer
T DDC25679

Table 10. 5.b. Parts List of 1553B/Microprocessor Interface Board 2.

Frame length
(Bit Periods)

C2 Cl Co

C3

C4

10
11
12
13
14
15
16
17
18
19
20
21

22
23
24
25
26
27
28

30
31

32

Frame Length Adjustment.

Table 10.6.a.

Data Bit Number Title Function

6 DECODER PARITY Alogical '1' sets even parity
5 ENCODRER PARITY Alogical '1' sets odd parity
4 C4)

3 C3 g These bits set the frame
2 C2) length as overleaf.

1 ci)

0 co)

Table 10.6.b. Frame Length Adjustment.

Integrated Circuits.

X1 74LS00
X4 HA4905
X7 15531

X10 74LS138
X13 74LS157

X16 74LS164
X19 74LS04
X22 741574

X25 74L5374
X28 74LS123

Resistors (i 5%)

R1 10K
R4 47
R7 10
R10 22K
R13 4K7
R16 10K
R19 22
R22 2K2
R25 10K
R28 1K
R31 1K
R34 1K

Capacitors (¥ 20%)

Cl 10pF
C4 680pF
C7 10pF

Table 10.7.a.

X2 75452 X3 HA2522
X5 74LS00 X6 -

X8 74LS124 X9 74LS30
X11 74LS374 X12 74LS374
X14 74LS157 X15 9324
X17 74LS00 X18 74LS08
X20 74LS00 X21 74LS00
X23 74LS00 X24 74LS374
X26 7415374 X27 74LS32

X26 74L5125

R2 10K R3 -

R5 270 R6 IK
R8 27 R9 22K
R11 47 R12 270
R14 - R15 10K
R17 1K R18 2K2
R20 22 R21 2K2
R23 10K R24 10K
R26 IK R27 1K
R29 IK R30 1K
R32 9K1 R33 1K
C2 100pF C3 100pF
C5 68pF C6 10pF
c8 1uF

Parts List of 1553B Protocol Fault Injection Board.

Diodes
DI - D4 IN916
D5 - D8 CO46

Transistors

TR1 2N2905A TR2 2N2905A TR3 2N2221A

Crystals
XTAL1 12MHz.

Transformer
T1 DDC25679

Table 10.7.b. Parts List of 1553B Protocol Fault Injection Board.

p—
.

~0m\10~f.h-hwl\)

— — —
N — O
. . .

Software Interrupt if vector not set.
Jump Relative to Program Counter.
Call subroutine relative to Program Counter.
Call subroutine with direct address.
Unimplemented instruction.

Invalid instruction (known action).
Invalid instruction (unknown action).
Load Program Counter and Status Word.
Halt

POP stack

PUSH stack.

Jump to direct address.

Table 11.1. Major Causes of Microprocessor System Crash.

Integrated circuits

X1 741532 X2 74L500 X3 74LS32

X4 741508 X5 MM2114 X6 MM2114
X7 MM2114 X8 MM2114 X? MM2114
X10 MM2114 X111 MM2114 X12 MM2114

Table 12.1. Parts List of 4K Memory Board.

