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Synopsis.

The report describes a research investigation into fault tolerant 

strategies w ithin a real time control system. Methods for increasing 

the re lia b ility  of a system other than through the use of fault tolerance 

have also been reviewed. The study which concentrated on a Recovery 

Block structure is separated into two parts, that is, a single and a 

distributed processing system. The single processor study involved 

modelling a subset of the control system; error recovery strategies 

are presented here as additions to the basic Recovery Block structure. 

Fault injection logic was specially designed and built in order that the 

recovery strategies could be tested under extreme operating conditions.

The distributed processing study is an extension of the single 

processor research. Three types of recovery ore investigated to 

increase system ava ilab ility ; local recovery, global recovery and task 

swapping. The philosophy used in the distributed processing study 

was always to attempt recovery on a local basis, that is to prevent 

the propagation of faults to other microprocessors within the system. 

Global recovery is established as a method of maintaining continued 

safe operation when local recovery or communication between processors 

foils. The use of a standby processor system for dynamic task swapping 

is shown to give continued systems operation under conditions which 

would normally cause a catastrophic crash in non redundant systems.

The overall conclusion of the research is that fault recovery 

must be localised to prevent fault propagation from one process to the 

following process, with no distinction as to whether the communicating 

processes are in the same or different microprocessor subsystems, 

and that this can be successfully achieved in a real time environment by 

the use of a Recovery Block structure.

(ix)
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Chapter 1. introduction.

With the introduction of low cost sophisticated processing, the use 

of microprocessors has become an important part of the industrial scene, 

with LSI and VLSI devices often replacing analogue or large digital 

equipment. In addition to small size and high processing power, a 

microprocessor based system provides system fle x ib ility  with the 

capability of system reconfiguration. A growing realisation of the new 

problems that the change to microprocessors has brought about is now 

evident; the consequence of a system failure in applications such as 

satellite attituds control is severe, leading to a need for analysis and 

design techniques to be adopted in order to improve system re liab ility  

and ava ilab ility . Such system failures can originate at either the 

design or manufacturing stages or in operational use. Design errors 

typically include systems analysis, hardware design, incomplete 

specification, mismatch of hardware and software, software design and 

coding. An analysis of program errors points to the fact that 

incomplete, inconsistent or ambiguous software requirement 

specifications are a significant problem,^

The re liab ility  of a system may be improved by a combination of 

different techniques which fall into three main categories, fault 

avoidance, fault removal and fault tolerance. Chapter 2 reviews the 

considered techniques which are summarised below.

The avoidance of faults at the analysis and design stage can be 

carried out by the use of a formal specification language and associated 

design techniques. Fault tree analysis and failure modes effects 

analysis (FMEA) can be used to  detect critical parts of the system; 

certain failure modes can then be eliminated a t the design stage.

Fault removal techniques involve the construction and integrated 

testing of hardware and software prototypes. In addition the use of 

structured software enables a more thorough testing of the system to be 

carried out. The use of correctness proofs of software is beginning to



emerge but îs unlikely to replace prototype testing.

Fault tolerance is a further technique whereby redundant hardware 

and software is used for the protection and recovery from faults.

The need for high re liab ility  can be justified in systems where human 

life  is at stake, where maintenance is not possible or in situations 

where a large financial loss results from a system crash.

1 ,1 . Research Objectives.

A method ot increasing the ava ilab ility  of a given system is by 

the addition of redundant hardware and software to provide protection 

against and recovery from faults within and external to the system.

It is important that the implementation of redundancy techniques is 

considered in terms of cost effectiveness, weight and power requirements; 

for example massive redundancy may not be a cost effective solution 

if  only a marginal increase in re lia b ility  and ava ilab ility  is obtained.

The aim of the research study was therefore to investigate the 

possibility of increasing the ava ilab ility  of a given system by the 

inclusion of fault tolerant mechanisms for the protection and recovery 

from predefined faults. The aim can best be divided into constituent 

parts as follows:

(a) To establish good design practices based upon a practical 

rather than a mathematical approach.

(b) To establish a simple but obvious structure for system 

recovery.

(c) To establish design criteria for reliable inter-task 

communication within a single microprocessor system.

(d) To establish a design philosophy for message passing between 

microprocessors in a distributed system in order to inhibit the propagation 

of faults.

The research entailed an in itial study of different strategies that could 

be adopted os a starting point. The next stage was to choose a system 

upon which the strategy could be applied. The aspects which govern



system recovery under faulted conditions become more critical as the 

response time of the system decreases. With these factors in mind a 

decision was made to choose a real time system as opposed to a batch 

processing system since requirements for processing speed, critica lity  of 

system outputs and fault recovery time ore much more demanding.

1 .2 . Research M odel.

After careful consideration it was decided to base the study on a 

notional ground defence system, which consisted of a target tracking and 

missile guidance loop os described in Chapter 4 , in order to establish 

the objectives previously mentioned.

The target tracking process consists of converting raw target data 

into a plot of target positions. The raw target data is produced from a 

radar whose aerial rotates at a constant rate, and consists of range and 

velocity  data extracted from the returning radar signals.

The missile guidance loop consists of a proportional plus integral 

controller and the missile itself whose autopilot is represented by a 

second order function.

The tracking process determines the angular position of the target 

which is known os the target azimuth. This angle becomes the input for 

the guidance loop, whose objective is to constrain the missile to lie  

on a line joining the tracking system and the target.

The modelling of these functions in a microprocessor environment 

is described in Chapter 5 .

1 .3 . Systems Implementation and Investigation.

A  subset of the real time system was implemented on a single 

microprocessor to establish how well it was capable of detecting and 

recovering from faults within its system. The single microprocessor 

system carried out the function of the target tracking process with raw 

target data being provided from a PDF 11. The implementation of the 

target tracking process in a microprocessor system is described in Chapter 6, 

This system was then operated under fault conditions to provide a baseline



for the results. Following this a fault tolerant structure was implemented; 

the results obtained from this ore discussed in Chapter 7 . The conclusions 

of the single microprocessor study ore stated in Chapter 8.

Having gained valuable experience about the workings of the 

system under fault conditions, a distributed processing system was then 

investigated, this involved the choice of a communications link and the 

method for injecting real time faults onto the system; these topics are 

discussed in Chapter 9 , The implementation of the complete real time 

system in a distributed processing environment is described in Chapter 10, 

The study also involved looking at a three processor system with 

protection and recovery methods for increased ava ilab ility  under fault 

conditions, the results of which are given in Chapter 11.

The use of a standby processor system is shown to give continued 

systems operation under conditions which would normally cause a 

catastrophic crash in non-redundant systems.

Chapter 12 looks at the question of when should such a redundant 

processor subsystem be used and presents results for the recovery of the 

system from the failure of a complete subsystem. The conclusions of the 

distributed processing study con be found in Chapter 13. This is 

followed by a review of guidelines for reliable systems design and the 

in itia l design of a single microprocessor system within Chapter 14.

A final chapter reviews the achievements made from the research study.



Chapter 2 . Techniques for Reliable Systems Design.

The re liab ility  of microprocessor based systems can be improved by a 

combination of several strategies: fault avoidance, fault removal and fault

tolerance. The amount of work carried out in this area is considerable and 

this chapter summarises a number of techniques which ore directed at 

enhancing the re lia b ility  of a system. In addition the problem of 

re lia b ility  prediction for microprocessor based systems is considered.

2 .1 .  Failures, Errors and Faults .
2

To avoid ambiguity the terms failures, faults and errors are defined 

and are used throughout this thesis.

Failure.

A  failure o f a system occurs when the system does not perform its 

service in the manner specified. This may be either because it is unable to 

perform the service or because the system outputs ore not in accordance 

with the specifications. Thus a failure is an event.

Error.

An error is a port of an erroneous state which constitutes a . 

difference from a valid  state.

Faults.

A  fault is the mechanical or algorithmic cause of an error. This 

Encompasses areas of design inadequacies such as incorrect choice of 

component, system specification misinterpretation and incorrect inter­

relationship between system components (software and hardware),

2 .2 .  Fault Avoidance.

The in itia l stage of a development process is the functional 

specification stage; this generally involves determining the requirements 

for both normal and abnormal operation of the system. Design faults that 

can arise during this phase include inconsistent requirements and 

misinterpretation or omission of requirements. Design inadequacies made 

during the requirements definition phase which are found at a later stage 

generally involve a redesign of software and/or system and repeat of the testing



process. A reduction in the number of errors resulting could possibly be 

obtained by the introduction of formal system specification languages which 

serve as a communication aid between systems design, implementation 

and user. Research in this area is at an early stage; an exemple of a 

formal specification language can be found in R e f.3.

There exists a number of semigrophical methods for systems analysis. 

The most widely accepted of these methods is probably HIPO^ (Hierarchy, 

Input, Process and Output) whereby functional specification is created 

by naming the basic functions which hove to be performed and decomposing 

them into hierarchically ordered sub-functions. A  further technique is 

the Structured Analysis and Design Technique^. This is basically a 

diagramming language which is used to describe the relationship between 

objects and activ ities. The amount of detail shown in a single diagram is 

controlled and thus leads to diagrams which can be quickly understood by 

management and users.

A  technique gaining more acceptance is MASCOT^ which provides 

a formalism for expressing the software structure o f a real time system which 

can be independent of computer configuration and programming. It also 

provides a disciplined approach to design, implementation and testing 

of the system along with a strategy for documentation.

One of the most effective ways of avoiding design faults is to 

keep the complexity of systems design under control. Many software 

design methodologies based on this premise hove been developed.

They aim to structure software in a simple hierarchy of reasonably 

independent software modules. Work in this area includes reliable soft­

ware through composite design^ and the decomposition of systems into 

modules .

The use of small modules enables a complete understanding of their 

operation, in addition the consequence of modifications con be more 

easily seen than with one large program. Further, the use of structured 

programming leads to more reliable software and significantly improves



the readability and m aintainability of a module since structured code is 

read from top to bottom.

Consider now the hardware design; this is a task of selecting the 

most appropriate microprocessor and associated circuitry. A hardware/ 

software trade-off has to be mode, this is a matter of deciding which tasks 

are to be performed by software and which tasks by specialised hardware. 

Performing a task with specialised hardware incurs an extra cost in 

components and assembly for each product, whilst a software solution 

incurs a high development cost but has the advantage of non-recurring 

costs and ease of reconfiguration. A software solution to a problem w ill 

generally slow down the task execution unlike specialised hardware which 

can be designed to perform the task independently, for example a floating 

point arithmetic unit. Thus when difficulties arise in achieving the 

response time, then software should be replaced by hardware.

Systems design may be realised by a multi-processing solution 

since the processing power of a single microcomputer may be insufficient 

to meet the system requirements. In this cose the software would be 

partitioned into independent tasks, each being located in the relevant 

subsystem. The communications protocol used between subsystems would 

then be determined by consideration of distance of transfer, data integrity  

and response requirements.

In applications where highly reliable systems are required, an 

analysis of failure modes is usually carried out following the design.
. 9An example of a technique for failure analysis is Fault Tree Analysis, 

which starts by specifying a total system failure or safety critical failure. 

The analysis then proceeds downwards from this failure to identify part 

failure modes which could lead to such an overall fa ilu re. The final 

result is a highly detailed logic diagram depicting basic faults and events 

that can lead to the critical failure a t the top ot the diagram. Each basic 

fault is given a probability from on analytical or an empirical approach. 

The probability of the critical failure occurring is then calculated by



appropriate means from probabilities of the basic part failures. This 

technique is often applied in safety analysis, particularly in situations 

where human life  is a t risk or where cost of failure is prohibitive, or where 

certain system failure modes must be eliminated at the design stage.

The choice of programming language is another consideration of 

reducting the number o f design faults and several high level languages have 

been introduced to meet the demanding requirements of a real time system. 

The choice of a language is made by considering language facilities such 

as interrupt handling, I /O  facilities, program structure inherent in language 

implementation, data structure appropriate to application, portability  

and efficiency of execution of obj ect code. Examples of this are languages 

such as Coral and RTL/2, which have been specifically designed for real 

time applications, although Coral suffers from lack of I /O  fac ilities.

Pascal has a good structure and is portable, whilst Concurrent Pascal has 

specifically been designed for multi tasking environments. Ada is still very 

new and may be too complicated to be re liab le . In contrast PLM, PLZ and 

MPL have been specifically designed by Intel, Z ilog  and Motorola for their 

own chips and hence there is a lack of portability.

2 .3 .  Fault Removal .

Despite efforts to avoid faults in the analysis and design stages, 

system failures w ill still occur due to residual design faults. Fault removal 

techniques can be applied during the design phase in order to remove as 

many of these faults as possible consistent with cost, development time 

scale and re liab ility  requirements.

In the case of hardware many well proven techniques exist; 

these include design reviews, the building and testing of prototypes, 

inspection and testing of printed circuit boards and the use of component 

Burn-In to elim inate early failures.

The correctness of a systems design is important and must be checked 

before software coding is started. The use of structured walk throughs and 

design reviews are desirable where the correctness of each design step can



be checked by the designer and project engineers.

A  structured software system has the advantage that testing can be 

modular and more thorough thus removing a greater percentage of design faults. 

In top down testing, the top level is tested first, a lower segment is added 

and the combination tested. This is repeated down to the lowest leve l.

Dummy segments temporarily replace the segment subordinate to the segment 

under test. These dummy segments can vary in complexity and may return 

constants or may be a primitive version of the segment being simulated.

To enhance structured testing the length of a segment should be limited to a 

manageable leve l, say fifty  statements to enhance readability and 

comprehension whilst minimising page turning. Usually each segment w ill 

correspond to one function and can be implemented as a procedure with a 

descriptive name corresponding to the function. Thus the limited size of 

segment in addition to single en try /e x it, top to bottom flow of control 

makes programs easier to extend and maintain. R eliab ility  is further 

enhanced because test plans for the segment are easier to specify and execute.

Techniques for formal proving of program correctness^^'  ̂  ̂

are unlikely to replace program testing, now or in the near future since 

there are many problems still to be overcome. It seems reasonable to 

doubt the ab ility  of correctness proofs as it is d ifficu lt to write long programs 

without errors and program proving has so far been more d ifficu lt than the 

construction of programs. The solution may lie  in the use of computer aids 

to check the proof or generate it . The problem that then arises is how do 

you check the proof checker. In addition, large program proofs probably 

have to be constructed of small modules which could lead to an interfacing 

problem between modules. The correctness proof must also include areas 

such as processor and system architecture, memory size and timing 

considerations.

2 .4 .  Fault Tolerance.

Microprocessor based systems of the future are unlikely to be 

designed and built so as to be free from faults during their operational life .



Residual software design faults and random hardware faults are like ly  to occur; 

these must be detected, corrected and the system restored to a working state 

which leads to a need for built in redundancy for highly reliable systems 

operation. However, such redundancy must be applied carefully and in the 

correct structure, otherwise increased system hardware and software could 

lead to a reduction in re liab ility .

There are certain applications areas where use of fault tolerance 

is v ita l. First, there are systems where maintenance is not possible such 

as in space vehicles whilst reconfiguration around a malfunction may be 

possible. Secondly, fault tolerance is important in systems where human 

life  is at stake, for example control of nuclear plants, ground defence  

systems and transport systems. F inally , there are applications in which 

computer downtime leads to financial losses such as automated process 

control and communication systems.

Having discussed the need for fault tolerance, consider now the 

types of faults that may occur during the operational life  of the system.

2 .4 .1 .  Characterisation of Faults.

Faults occurring in a system may be attributed to a number of 

factors, e .g . temporary, intermittent or permanent failure of hardware 

components, hardware or software design faults or manufacturing faults.

A fault causes an error if an incorrect state is entered; the fault does not 

always cause an error to occur immediately, for example a memory cell 

having a stuck-at 'logical 1 ' fault w ill not cause an error until a 

'logical O' is incorrectly read as 'logical T ,

Temporary or transient faults are those of limited duration and 

can be caused by malfunctions of components or by the introduction of 

interference. If the duration of a transient fault is longer than a pre­

determined time then it w ill be interpreted as a permanent fault; for example 

a communications link may allow  up to three re-transmissions of data 

before a permanent fault is reported.

Consider next the permanent failures of components; if  the fault is

10



not masked then it must be detected and recovery can then take place.

This may consist of a software algorithm for hardware reconfiguration along 

with program and data rollback.

Local faults can be described as those that only affect a single logic 

variable whereas distributed faults are those which affect two or more 

variables. The advent of LSI and VLSI chips means that distributed 

faults are much more like ly  to occur than in the past, as a single gate is 

unlikely to fail without affecting other gates in a complex closely packed 

integrated circuit. Distributed faults can also be caused by failure of a 

single critical element, for example processor clock or power supply.

2 .4 .2 .  Redundancy Techniques.

The detection of a fault during operational use is the starting point 

of a ll fault tolerant mechanisms except those which use fault masking.

In many systems it is important that these faults are detected quickly and 

are not allowed to propagate, otherwise system failure may occur.

In order to detect malfunctions the systems behaviour must be 

monitored in order to show deviations from the norm. This monitoring is 

generally performed by a combination of hardware and software techniques 

for detecting system malfunctions include the following:

(a) The pattern of states through which the system passes can be 

compared with expected or valid  state transition patterns in order to reveal 

the presence of hardware or software faults.

(b) The performance of the system can be monitored to indicate 

fau lt free operation; this monitoring includes response time, system 

throughput and process calculation time.

(c) A  malfunctioning system w ill often lead to the process trying 

to execute an invalid instruction or one that has an invalid address.

(d) The use of traps in processor software can be used to indicate, 

for example, division by zero or overflow conditions which may be caused 

by the propagation of a fault to the relevant instruction.

Hardware redundancy can be divided into two types, i . e .  masking

n



and standby redundancy as described below. Redundancy in the form of 

software is considered in section 2 .4 .4 .

Fault masking is a technique w idely used, whereby the fault is masked 

by the presence of additional hardware, the output remaining error free 

as long as the protection is adequate. One form of fault masking is the 

use of n -  modular redundancy where majority voting takes place on the 

outputs of an odd number of identical units. The use of error correcting 

codes is another form of fault masking, the most common code being the 

Hamming code^^.

Standby redundancy can either be classed as cold or hot standby; 

the terms cold and hot relate to whether the redundant units are powered up. 

in cold standby redundancy, only one unit is powered up and operational, 

whilst the remaining units are not powered up. A  schematic of cold 

standby redundancy is shown in F ig .2 .1 .  A  failure sensing and switchover 

device monitors the operation of the working unit and switches to one of the 

standby units when a failure of the working unit is detected.

In a hot standby redundancy scheme, a ll units are powered up, and 

are arranged typ ically  as shown in F ig .2 .2 .  This figure shows three units 

with the output of one of the units, chosen arb itrarily , providing the system 

output. If the comparator detects a disagreement, then the faulty unit 

must be identified and the system output taken from one of the other units.

The time taken to switch from a faulty unit to a fau lt-free  unit must be 

considered in the design phase.

2 .4 .3 .  Fault Recovery.

The detection of a fault provides the basis for the next step which is 

the correction and recovery of the system. Fault masking is a special case 

of system recovery which does not use separate fault detection.

In systems where high a va ilab ility  is necessary, the recovery from 

a fault must be automatic and not require human intervention.

Methods of recovery from a fault include:

(a) Re-try the operation that fa iled , if  successful then continue.

12



This is particularly valid in the presence of temporary faults.

(b) Rollback of system to a position where system operation was 

known to be correct and repeat execution.

(c) Reconstruct or correct data structures from redundant data 

or status information.

(d) R e-in itialise the system, with or without status information.

(e) Restore the system state to nominal or default values with 

the use of a status flag to indicate that output may contain inaccuracies.

(f) The use of standby spares either in a cold or a powered up 

condition.

System recovery can take one of three useful forms: full recovery, 

graceful degradation or safe shutdown. The techniques used in a 

particular system depend upon the extent of the damage, the possible 

cause of malfunction and the operating state of the system at the time of 

the fault.

2 .4 .4 .  Fault Tolerant Software.

The use of redundant elements is an established practice in fault 

tolerance of hardware. However, the use of redundant software for 

reliable operation requires special attention due to the nature of software, 

in contrast to hardware in which physical faults dominate, software defects 

are time invariant. Executing duplicate copies of a program in parallel 

does not improve the operation with respect to software defects, because 

software design faults w ill be inherent in both copies. The following 

paragraphs describe two methods of achieving fault tolerance in software:

N  -Version programming^^ and the Recovery Block^^.

2 .4 .4 .1 .  N-Version Programming.

This approach is analogous to the well known hardware method of 

replication and voting on the outputs of the hardware modules.

A  number (N  ]^2) of independently coded programs for a given process 

are run simultaneously on loosely coupled processors. The independent 

results are then compared, and in the case of a disagreement, a preferred

13



result is generated by m ajority voting (for N  > 2) or by a predetermined 

strategy. The success of this technique depends upon the level of 

independence that can be achieved in the N  Versions of the program. 

Independence is best obtained by the use of different algorithms and 

programming languages in each version. Different data structures could 

also be used to increase the independence. The critical areas for this 

technique are the voting algorithm and the housekeeping prior to and 

after voting.

A constraint on N-Version programming is the requirement for 

N  computers that are hardware independent, yet are able to communicate 

effic ien tly . The problem of synchronising arises here, a voter may have 

to w ait for a result or indeed a result may never arrive due to a fault.

2 .4 .4 .2 .  The Recovery Block.

This technique, in contrast to N-Version programming, can be 

applied to any configuration of processors, including a single processor.

The structure in its simplest form is shown in F ig .2 .3 . ,  where a process 

is described by a primary routine P. The output of the primary routine must 

pass an acceptance test T before passing control to the next process, 

i f  the acceptance test fails or i f  a set time has expired whilst executing 

the primary routine then a transfer to the alternate routine, Q , is in itia ted . 

If  the acceptance test fails after execution of the routine Q  or if  a time 

out occurs during Q  then an error return results. This technique does 

not preclude the use of several alternate routines if  necessary for critical 

parts of the system.

It follows that a critical feature of the Recovery Block is the 

acceptance test. The alternate routines are worthless i f  failure of the 

primary routine is not detected by the acceptance test, thus the acceptance 

test must be thorough without being too time consuming.

A number of different types of acceptance tests are described in 

the following paragraphs:

(a) In many cases the definitions of the process imposes conditions
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which must be met at the completion of the process. These conditions 

can be used to construct the acceptance test. For example, an acceptance 

test for a sorting process may be to check the order, produced by the 

primary or alternate routines, is correct.

(b) Accounting checks can be used in acceptance tests for 

processes that are transaction oriented. The acceptance test could 

independently generate a checksum and compare it with the one produced 

by a primary or alternate routine.

(c) Another class of tests are called reasonableness tests.

These tests are based on precomputed ranges of variables, expected sequences 

of program states or other occurrences that might be expected to occur in 

the system. Reasonableness tests are based on physical constraints whereas 

tests for requirements are based on mathematical or logical relationships.

Tests used for acceptance can typically examine whether a variable is in 

range, whether the increment or decrement of a variable is in range or 

correlation between different variables is in range. For example, a process 

might calculate the acceleration of a missile. The acceptance test might 

simply test whether this acceleration is within predetermined limits, say 

-  lOg in order to maintain structural integrity.

(d) In an important process such as a firing sequence, the use of 

flags is a good way to ensure the correct procedure has been followed.

In such a case, the acceptance test could check to see if  a ll the 

appropriate flags have been set before firing is allowed to occur.

2 .5 .  Reliability  Modelling.

The re liab ility  of microprocessor based systems has conveniently 

been divided into two areas, i .e .  that of hardware and software, due to the 

two disciplines involved in the design. Hardware re lia b ility  modelling 

has been an established practise for many years whilst software 

re lia b ility  modelling has only made an appearance in the last ten years.

Consider first the modelling of software re lia b ility .
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2 .5 .1 .  Software Reliability  M odel!îng.

Software has the unique property that it suffers no natural 

degradation, except in the special case of software stored on magnetic 

media. The purpose of an error prediction model is largely as a 

management aid to decide when enough testing has taken place and in 

assessing the confidence levels that can be placed in the software.

Many models that have been put forward use a bug counting 

approach. This approach has been used by Jelinski and Moranda^^ and 

by Schooman^^. Jel inski and Moranda developed a software re liab ility  

model which assumes exponential distribution of faults and a software 

failure rate, i . e .  the rate at which the software system foils to meet in­

formal system requirements, which decreases in discrete steps as a function 

of tim e. Schooman's model is based on the same underlying assumptions 

with the difference that failure rate is also dependent upon the debugging 

effort. These models imply that re liab ility  improvement can only take 

place at a system failure, since it is only here that a design error can be 

removed.

Musa^^ presents another model, using program execution time as 

the time variable rather than calender or debugging time as in the 

previously mentioned models. In addition he introduces a factor for non­

corrections of the cause of the failure.
18

Schick and Wolverton address the problem to a re liab ility  model 

by determining an analytic stochastic model for predicting the number of 

remaining errors in the software, the mean time to next fa ilure, the time 

to discover the remaining errors and the standard deviation associated 

with the error prediction.
19

Littlewood and Verrai I use a contrasting approach of no news 

being good news, where failure rate decreases between failures and 

periods of failure free working cause the re liab ility  to improve.

Even if  assumptions about failure rates being proportional to the 

number of errors remaining are accepted, then estimation of model
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parameters still poses great d ifficu lty . One objective should be to measure 

the quality of the behaviour of the software, its operational re liab ility  

(integrity) rather than the number of design errors left in the program.

It is considered by the author that instead of establishing a figure 

for software re lia b ility , in terms of number of remaining errors, that a 

range of software metrics be used for assessment of software integrity.

This assessment must depend upon the compexity of the software modules, 

the critica lity  of each module to system performance, the tolerance of 

each module to errors caused by environmental factors and the maintain­

a b ility  and testability of the software.

Consider now the modelling of hardware re lia b ility .

2 .5 .2 .  Hardware Reliability  Modelling

The effects of environmental stressing are known as random failures. 

These failures occur in a ll types of electronic equipment and are generally 

treated as exhibiting a constant failure rate. This constant failure rate 

in non-redundant systems is supported by the use of life  test and field data, 

after accounting for infant mortalities and the effects of maintenance.

In microprocessor based systems, malfunctions are dependant upon 

the component configuration, for example a failure may result from a 

transistor sinking excess current. Thus a re lia b ility  model must take 

account of prevalent failure modes.

The laws of probability govern the outcome of a mission of a 

redundant system and simple probability formulae clearly show the 

advantage of redundancy. Consider a triple modular redundant (TMR) 

system where three identical computers are used to give an output based 

on a m ajority vote. This system w ill only give an improvement in the mean 

time to error if  maintenance is provided before the 'mean time before 

fa ilure' of the individual modules. TMR systems are vulnerable to voting 

and single point timing failures which reduce the re liab ility  of such 

systems.

Error detection and correction can be incorporated into integrated
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circuits to extend their 'mean time between failure' provided a 

comprehensive testing capability is also incorporated. An example of 

the design for testability of error correction circu itry  for memory arrays 

is given in R ef.20. However, the effectiveness of any on chip redundancy 

w ill always be limited by the high correlation between malfunctions and 

the common thermal and structural failures.

In a complex system, the relationship between a random failure and 

its manifestation as an error is apt to be obscured by ill defined propagation 

paths. This is like ly  to cause problems for analytic models based on 

simple cause -  effect relationships.

The modelling of some of the more complex redundant systems is often 

carried out by the use of Markov process models. These models can be made 

arbitrarily accurate by incorporating an arbitrary number of states.

Caution must be applied in using these models on processes other than 

those with constant failure and recovery rates. A  constant recovery 

rate is hard to imagine for a real time system as the time taken to recover 

depends upon configuration of the system at time of fau lt, the process 

being executed and the critica lity  of the fau lt.

A va ilab ility  is measured as the percentage of time that a system is in 

an operational state. In some applications, the penalty for a single long un- 

operational period is much greater than that for many short periods, whereas 

the ava ilab ility  figure may be equal for the two instances. In this case, 

another parameter is required to describe the performance, i .e .  time.

This concept of penalising a slow recovery is discussed in Chapter 1 1 .2 .

Coverage of a system is the probability of the system recovering from 

a malfunction, it is a complex architectural attribute and is influenced 

by latency of fau lt, ambiguity in the perception ot the fault and by the 

architectural anticipation of such a fault. An estimation of coverage 

made before experimental verification is like ly  to be largely inaccurate. 

Retrospective coverage can be obtained but cannot accurately reflect 

any system other than that for which it  was gathered.
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Chapter 3. Analysis of a single Microprocessor System.

Having discussed techniques for reliable systems design in 

Chapter 2 an approach had to be chosen that could be used for single or 

distributed processing systems. A  requirement of the research was that 

massive redundancy was to be avoided, if possible. The Recovery Block 

meets this requirement and in the view of the author was a good basis for 

further investigation, in itia lly  on a single microprocessor and then fina lly  

in a distributed processing environment.

in order to determine recovery mechanisms for a processor system 

under fault conditions, it became necessary to identify the effect of faults 

on system operation. An example of this identification is given here on 

a typical processor system consisting of CPU, RAM R O M , A /D  and D /A  

convertors along with the necessary interconnecting and buffering logic, 

as shown schematically in F ig .3 .1 .  The data bus transceivers, address 

and control buffers as shown in F ig .3 .1 .  are permanently enabled and the 

direction of the data bus transceivers defaults to drive away from the 

CPU except when reading memory.

The approach of identifying failure modes and their effects is a 

useful method of fault avoidance. As hazards are identified, software 

and hardware defences can be developed using fault tolerant or self 

checking techniques to reduce the probability of their occurrence once 

the system has been implemented.

In the following section, typical causes and effect of faults are 

given for the described system; in addition possible solutions are given 

for the purpose of system recovery.

3 .1 .  Cause and effect of Faults in a Typical Microprocessor System.

The following descriptions of causes and effects should be read 

with reference to F ig .3 .1 .  The list is not exhaustive, but sufficient to 

identify typical fault effects in the view of the author.

Cause Effect Possible Solutions

1. No clock. The system w ill stop. The use of a fault tolerant

clock^’ .
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Cause

2 . Address bit 

failure.

Effect 

incorrect addressing 

occurs resulting in CPU 

fetching data and/or 

instructions from wrong 

addresses.

Possible Solution 

A  time out can be used to 

indicate that the program 

sequence was not completed 

in time.

By monitoring of bus with 

other logic then it  may be 

possible to re-arrange 

addressing of system, i . e .  

move program and data to 

another part of memory.

3 . Reset failure. System fails to reset 

when required.

If reset fails then attempt 

to carry on processing.

4 . Read/write  

lin e .

If the line is stuck at 

logical ' T ,  that is 

always a read cycle, 

then CPU is always 

reading from memory and of the fau lt. 

I /O .  When attempting 

to write then bus conflict 

w ill occur with CPU and 

memory buffers driving 

against each other.

If the line is stuck at logical 

'O' then the system always 

sees a write cycle. When a 

CPU read cycle occurs then 

memory is loaded with garbage.

The effect of an undriven bus 

w ill inevitably result in in­

correct program execution.

A  time out w ill indicate 

that a fault has occurred. 

Monitoring logic could give 

information on the nature
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Cause Effect Possible Solutions

5 . Data bus If stuck at faults occur

transceivers, on the data bus, then bad 

data is read from or written 

to memory, if  a fault in 

the direction logic occurs 

with direction always 

towards the CPU then bus 

conflict w ill occur; when 

writing to memory no data 

w ill be stored. If a 

direction fault occurs with 

direction always to memory, 

then when reading from 

memory the CPU w ill read 

a bus which is not driven.

There is a possible 

detection of an undriven 

bus as the CPU w ill 

probably read all I's; 

alternatively the bus 

could be made to 

default to a particular 

instruction. A  conflict 

on the data bus w ill 

cause time-out or a trap 

due to attempted 

execution of invalid  

instruction.

6 . Memory 

fa ilure.

Incorrect instruction/data 

is read from memory.

The fault can be masked 

by automatic error detecting 

correcting codes,although 

CPU intervention or 

special logic may be needed 

to correct multiple faults.

7 . Address As address b it fa ilure, 

bus buffer.

See solu tion 2 .

No memory accesses can 

Clock fa ilu re, be made.

The duplication of 

address and control buffers 

is possible but not cost 

effective .
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Cause Effect

9 . V alid  Memory If stuck a t logical 'T  fault

Address

Signal.

occurs then memory is 

accessed at wrong point in 

time or spurious addressing 

occurs. If stuck a t logical 

'O' fault occurs then memory 

is never accessed.

Possible Solution 

The effect is probably 

caught by a time out.

10. CPU. The effects of such a fault Repeated time-outs

are wide ranging and include may possibly occur but

stuck at faults on buses, CPU may not respond

invalid control signals and to them,

incorrect operations.

1 1 . Address 

Decode 

Logic.

If no outputs from the There is a possibility

address decode logic are of using self checking

enabled, then the CPU reads logic here, 

an undriven bus.

If one output from the address 

decode logic is enabled, but 

it is the incorrect output then 

incorrect addressing occurs.

If  two outputs are enabled then 

memory is corrupted on a write 

cycle, and a bus conflict 

occurs on a read cycle.

If  the address decode logic is not 

enabled then no memory accesses 

w ill occur. If however the logic 

is always enabled then accidental 

addressing w ill probably occur.
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Cause

12. Buffered

Read/w rite.

Effect 

As for effect 4 .

Possible Solution 

See solutions 4 and 

8.

13. Memory 

Enable.

Bus conflict w ill occur if  

the enable occurs at the 

wrong time.

Possible solutions in­

clude self checking or 

monitoring by adaptive 

logic.

14. Buffer for end 

of conversion 

of A /D  

convertor.

If the buffer is always 

enabled then bus conflict 

w ill occur. If the 

buffer is never enabled, 

then the CPU reads an 

undriven bus.

A  bus conflict w ill 

probably cause a time­

out in a program segment. 

If  the buffer is never 

enabled then CPU w ill 

believe that conversion 

is not finished. The 

CPU could w ait until 

conversion should have 

finished and then read 

the data. This data 

can then be compared 

with the last value to 

determine whether 

'end of conversion' 

has not appeared due 

to a buffer or an A /D  

convertor fau lt. If 

an A /D  convertor 

fau lt has occurred then 

set a flag and use 

another A /D  convertor.
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Cause

15. End of

conversion

fau lt.

Effect 

The conversion may 

appear to have finished 

early .

Possible Solution 

When polling to look 

for 'end of conversion' 

then check that it 

appears when 

expected and not 

before.

The fault may be due 

to A /D  convertor; 

use another

convertor if  necessary.

16. Conversion If  accidental addressing 

command occurs then an extra

fau lt. conversion command may

be generated.

Hov/ever, the con­

version command may 

not be given due to 

logic fau lt.

If accidental 

addressing occurs then 

an extra conversion 

w ill probably not 

matter.

If  no conversion command 

given then 'end of 

conversion' may not 

be cleared. The out­

put of the A /D  convertor 

can be compared with  

last value; switch 

to alternative  

conversion if  

necessary.
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Cause

17. Data latch 

for D /A  

convertor.

Effect

If input or output lines 

of latch have stuck at 

type faults then in­

correct conversion w ill 

occur. If the latch is 

not clocked then the last 

value clocked w ill be 

converted. If the latch 

is operated a t the wrong 

point in time due to 

accidental addressing 

then an incorrect value 

w ill be converted.

Possible Solution 

The periodic connection 

of the D /A  convertor 

output to the A /D  convertor 

input could detect faults.

If incorrect conversion 

occurred then CPU w ill 

detect the difference.

If the latch is not working 

then the D /A  convertor 

output w ill remain at last 

latched value and this 

w ill be detected by the 

CPU. If  the latch is 

operated at wrong point 

in time then the D /A  con­

vertor output is neither 

correct (present) value 

nor last value and the 

CPU w ill detect this.

If the data bus is not 

stuck then an alternative  

D /A  convertor can be 

switched in .

3 .2 .  Discussion of Failure Mode Effects.

The effects listed in the previous section for the faults considered 

are generally quite severe and continued system operation is unlikely  

if  the faults are permanent. The most common of the effects appears 

to be incorrect addressing, leading to execution of the wrong 

instruction or use of the wrong data. The corruption of data within
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memory may occur even if  memory is error correcting, since correction 

can only take place on faults within memory cells and not on incorrect 

data given to the error correcting memory.

The effect of faults on the control lines is similar to the effect 

of faults directly on the address and data lines. For example, a fault on 

the address strobe line may result in the wrong address being read or 

written to. This effect is similar to corruption of an address line, and 

may result in the microprocessor's program counter being corrupted.

If  the faults are transient in nature, then the effects suggest that 

detection must include checking of data reasonableness, checking of 

address sequences and the use of the time domain for checking system 

operation. If permanent faults occur in a single microprocessor system, 

then continued system operation w ill not be possible in the majority of 

cases. Redundancy can be used to protect certain parts of the system, 

e .g . clock, memory and possibly the address decode logic.
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Qigpter 4 . Real Time Systems Description.

This chapter describes a small real time system to be used as a basis 

for investigation into fault tolerant techniques. The system is complex 

enough to model a real system, but is simple enough such that complexity 

does not hinder the objectives of investigating the possibility of 

increased system a v a ila b ility . It was with this view in mind that the 

following operating characteristics were chosen.

4 .1 .  Design O verv iew .

The system devised for the research investigation was a ground 

based target tracking and guidance process which selectively tracks a single 

target and determines whether the target is within missile coverage.

The system is shown diagram atically in F ig .4 .1 .  with an explanation of 

the component parts as follows.

The doppler radar consists of an aerial which rotates at a constant 

rate. The nature of this radar means that target information from a single 

rotation of the aerial is insufficient to determine whether the target is 

approaching or receding. The decision on whether a target is approaching 

or receding is made using intormation from successive scans of the aeria l.

In addition, the target tracking process determines whether the target is 

within missile coverage, i .e .  has a missile a high probability of reaching 

and hitting the said target.

An operator can interact with the target tracking process and enter 

the system into one of two modes, i . e .  search or track modes. The former 

mode of operation is used whilst waiting for a target detection.

The target tracking process constantly updates the azimuth on which 

a target lies; thus azimuth is referred to as The ta Beam in F ig .4 .1 .

In order that only one target is tracked, the system uses an inhibition  

mechanism whereby target detection is only considered within a window 

around the last detected target position.

The target angle (Theta Beam) is used as the input to the missile 

guidance loop; this loop is stabilised by a digital controller using
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proportional plus integral control with a phase advance network.

The digital controller generates an output proportional to  lateral 

acceleration (I a tax) demand which is transmitted to the missile, which 

in turn produces a lateral acceleration as a result of this guidance demand. 

The guidance loop is closed by a simple relationship between the 

acceleration and the missile angle. Consider first the target tracking 

process.

4 .2 .  Target Tracking.

This section describes the requirements of a target tracking process 

which processes target aircraft data and determines whether the target is 

within missile coverage. If a target is present on the same azimuth as the 

radar, which scans through 360° in one second, then it appears in a range/ 

velocity  channel. Target detection in a given channel defines the range 

and velocity limits within which the target lies. The detection of a 

target in a channel sets a pair of binaries; other binaries cannot become 

set until the original pair have been reset. An alarm is then set 

depending upon which pair of binaries has become set.

The azimuth and range at which a target is detected are used for 

inhibition purposes on subsequent scans and provide control for setting 

binaries. Due to the nature of the radar supplying target data, the system 

must decide whether the target is approaching or receding and use this 

information to determine whether the target is within missile coverage.

4 .2 .1 .  Target Data Input.

Data input to the system consists of six range and four velocity  

gates, giving a total of 24 channels. The range and velocity gates are 

combined by means of a matrix, shown in F ig .4 .2 .  Some of the gates 

are arranged not to give an alarm, these correspond to slowly approaching 

or fast receding targets at maximum range. The combination of range and 

velocity  gates which do not give an alarm are known as taboo channels 

and are shown diagramatically in F ig .4 .3 .
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4 .2 .2 .  Azimuth inhibit.

Following a target detection, the target position is stored in terms 

of azimuth,and range and velocity gates set. On subsequent scans a 

target w ill only be detected if  its azimuth position lies within -  24 degrees 

of the stored target azimuth, which moves with each target detection.

The azimuth inhibit persists for four scans after the last detected target.

The principle of the azimuth inhibit is shown in F ig .4 .4 .

4 .2 .3 .  Range Inhibit.

When a target is detected the target range is stored; on the two 

scans following this detection the system w ill only detect targets at the 

same range or within one range gate on either side of the stored target 

range.

4 .2 .4 .  Approach/Recede Identification.

The identification of the target as approaching or receding is carried 

out by examining range and velocity data from successive scans.

In search mode only one missed scan is allowable before the approach/ 

recede decision is restarted, whereas up to four missing scans are allowable  

in track mode. The decision is based on four criteria as follows:

1. New target detection

A new target is deemed to be approaching until a complete 

evaluation is completed.

2 . Crossing target detection.

A  crossing target is defined as a target whose component of

velocity towards the radar is close to zero.

3 . A  changing target range pattern .

A  target which has a rapidly changing range pattern is quickly  

identified as approaching or receding.

4 . Doppler derived criteria .

If a target remains within a given range gate for a number of 

scans then velocity  gate information is used for the approach/ 

recede assessment.
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The algorithms for each of these criteria are not described in this thesis.

4 .2 .5 .  Missile Coverage.

Following the approach/recede algorithm the system identifies 

whether a target being tracked is within missile coverage. An 'in cover' 

indication represents a high probability that a target can be successfully 

reached by a missile. The determination of the coverage is described 

below.

4 .2 .5 .1 .  Search Mode.

In search mode, 'out of cover' is indicated if the target is deemed 

to be receding and the angular rate appropriate to the alarmed range and 

velocity  gate is zero. Table 4 .1 .  shows the angular rate information for 

range and velocity gate combinations.

4 .2 .5 .  2 . Track Mode.

In track mode. Table 4 .1 .  is used to determine whether the target 

is in or out of missile coverage for the appropriate range and velocity  

gate combination. If the angular rate, calculated as below, is less 

than the value in lookup table, then 'in cover' is set, otherwise 

'out of cover' is set.

Angular Rate = 100 -(1 0  x Number of alarms on target) (4 .1 . )

Having described the target tracking process, now consider the missile 

guidance loop.

4 .3 .  Missile Guidance Loop.

The guidance loop used is a line of sight guidance loop where 

the missile is constrained to lie  as nearly as possible on the line joining 

the defence system and the target.

The position of target is identified by a scanning radar aerial which 

rotates once per second. The target tracking process described in the 

previous section provides the position of a single target. The azimuth 

position of the target being tracked is then used as the input to the missile 

guidance loop which is taken from R ef.22 as shown diagram atically in 

F ig .4 .5 .  This consists of a controller, missile autopilot and a double
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integrator for kinematic loop closure.

The controller consists of proportional plus integral control with
S€cs.

an integrating time constant of two ^ In addition a double phase advance 

network, giving a maximum phase advance of 6 2 .6 °  is used for loop 

stabilisation.

The missile autopilot is represented by dynamics defined by a natural 
-1 .frequency of 12 rads and a damping factor of 0 .6 .  The missile produces 

a lateral acceleration as a result of a guidance demand. Kinematic loop 

closure of the guidance loop from lateral acceleration to position results 

in 180° phase lag represented as a double integrator.

The Bode plot for this loop is shown in F ig .4 . 6 . giving a phase 

margin of 35° and a gain mcrgin of 10.5dBs. The step response of the 

analogue system is shown in F ig .4 .7 .  giving an overshoot of approximately 

55% .
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Chapter 5 . Modelling of Real Time System.

The system described in Chapter 4 consists of two distinct parts: 

the target identification process and the guidance loop. In order to 

model this system, it  became necessary to simulate a target being tracked 

by a radar. This chapter describes how the above processes were 

modelled in order to represent a realistic real time control system.

5 .1 .  Target Simulation.

Target simulation is performed by a program which was 

specifically w ritten for this study to run on the PDF 1 1 . The program 

is designed to handle multiple targets, but for the purpose of this 

study only a single target was considered. The target is characterised 

by a start co-ordinate (x, y , z ) , a heading co-ordinate (s, t, u) 

and a velocity; a straight line course is assumed between the two co­

ordinates. The range of the target from the tracking system, situated at

(0, 0 , 0) is given by equation (5 .1 . )  assuming the target is at 

ccrordinate (a, b, c)

Slant Range = (a^ +  b^ +  c ^ f   (5 .1 . )

The target is then tracked by a radar whose characteristics are given 

by:

Measurable Slant Range: 1 Km to 7 Km

Measurable Velocity: 50 m/s to 450 m/s.

A  complete revolution was in itia lly  divided into 30 equal segments.

If a target is seen in the aerial's beamwidth at a particular point in 

time then the appropriate range and velocity  gates are set.

Thus for each l/3 0 th  second the program gives an output of six range 

and four velocity gates, either set or unset as determined by the target 

position. Ten complete scans are simulated, representing ten seconds 

of target motion. This duration was chosen as this period of 

results of the target tracking process conveniently fills  the temporary 

storage available.
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The target chosen for the first part of the study has the following 

characteristics:

Start Position: 800 1500 200

Heading: -100 1400 190

Velocity: 400

The units for the start position and heading are metres whilst the 

velocity is in metres/second. This target was chosen as it represents 

a crossing target, i . e .  the target is lost by the radar for approximately 

two seconds due to the fact that after about five seconds from the 

start o f the run the target's component of velocity  towards the radar 

aerial is close to zero.

5 .2 .  Target Tracking Process.

The target tracking process consists of seven tasks interconnected 

as shown in F ig .5 .1 . ,  which is a top level diagram of an SADT 

(Structured Analysis and Design Technique) activ ity  model^.

The tasks are described briefly below followed by typical results of the 

process.

5 .2 .1 .  Read Routine.

The read routine reads range and velocity  data every l/3 0 th  

second. This data is precomputed by a simulation program and is 

stored in an area of microprocessor memory. If a target is detected, 

i . e .  i f  any gates are set then the appropriate range and velocity  

channel variables are set to the appropriate values and the ' target 

detected' flag is set. The radar azimuth position is updated when the 

read routine is entered and can take values from 0 to 29. A flow  

chart of this routine is shown in F ig .5 .2 .

5 .2 .2 .  Process Azimuth Inhibit.

On the four scans following a target detection, the system 

considers targets only within a given angle ( -  24°) of the last azimuth 

on which a target was detected. A flag , 'target azimuth valid* 

is used to signify if a target has been detected within the last four scans.
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A  flow chart of this routine is shown in F ig .5 .3 .

5 .2 .3 .  Process Range Inhibit.

On the two scans following a target detection, the system 

considers targets only within -  1 range gate of the gate set when the 

target was detected. If 'azimuth inhibit' is set at any time then 

'range inhibit' is also set. A flag 'target range valid ' is used to indicate 

if  a target has been detected within the last two scans.

If more than two missing scans occur then 'target range valid ' 

is set invalid awaiting a new target, or reappearance of an old target.

A  flow chart of this routine is shown in F ig .5 .4 .

5 .2 .4 .  Set Binaries.

The set binaries routine decides which pair of binaries (if  any) 

becomes set; only one pair of binaries can be set at any one time. 

Another pair of binaries cannot become set until a target appears in a 

range/velocity  channel and the 'range inhibit' is not present. The 

setting of new pair of binaries resets the old pair. A  flow chart of this 

routine is shown in F ig .5 .5 .

5 .2 .5 .  Process Binaries.

The routine determines if  the pair of binaries set are allowed to 

generate an alarm. This is performed by the use of a look up table of 

taboo channels.

Two types of alarm can be generated; internal and external.

The internal alarm is used for control of the approach/recede and 

coverage assessments whilst the external alarm is an indication to the 

operator. The external alarm is given to the operator only in search 

mode. A flew chart of this routine is shown in F ig .5 . 6 .

5 .2 .6 .  Approach/Recede Assessment.

The approach/recede algorithm in track mode is different from 

that performed in search mode, as previously described in Chapter 4 ,2 .4 .  

Before the algorithm is started several other variables are calculated, 

these include the number of scans at the same range, variations in range
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between successive scans and identification of crossing targets. A  flow  

chart of this routine is shown in F ig .5 .7 .

5 .2 .7 .  Coverage Assessment.

The coverage assessment is based upon a look up table which 

determines whether the target is in or out o f missile coverage. The entry 

within the table is identified by the particular range/velocity binary pair 

set and whether the target is deemed to be approaching or receding.

If no binaries are set then the previous coverage indication remains for 

four aerial scans or until a new pair of binaries become set when coverage 

is reassessed. A flow chart of this routine is shown in F ig .5 .8 .

5 .2 .8 .  Baseline Performance.

Using the target characteristics given in Chapter 4 . 1 . ,  the target 

tracking process was run for ten seconds to provide a baseline performance. 

F ig .5 .9 .  represents some of the outputs of the target tracking process.

An explanation of these graphs follows:

F ig .5 . 9(a) Azimuth Position. This represents the internal radar

azimuth position; the ramp up to 30 represents the rotation 

of the aerial through 30 sectors of 12 degrees each.

Target Detected. This is a flag used to inform the system 

that a target has been detected, i .e .  a combination of 

range and velocity  gates have been set. The absence of the 

flag at five seconds is due to the crossing target.

Target Azimuth. The target azimuth is a record of the current 

azimuth on which the target being tracked lies. This 

variable is used for azimuth inhibition if  'target azimuth 

valid ' is set. The target being tracked changes from 

appearing early in the aerial scan to late in the aerial scan 

as it moves from right to left across the sky.

F ig .5 .9(b) Range Inhibition. Information on the target is updated only

when range inhibition is not set. N o information on the targets 

range and velocity is updated during the period of crossing.
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Binaries Flag. This flag is used to identify whether the last 

stored pair of range/velocity binaries are valid . 

internal Alarm. This informs the system that a target has 

been detected within the last second. The alarm is set to 

zero at about five seconds due to the crossing target, 

although the system still remembers the target as up to four 

missing scans are allowed. The alarm is set again when 

the target reappears after approximately two seconds.

In Cover. This graph shows that the target being tracked 

is deemed to be within missile coverage.

5 .3 .  Missile Guidance Loop.

In order to implement the guidance loop on a microprocessor system, 

it became necessary to digitise the transfer function. From F ig .4 . 6 . a . ,  

it  can be seen that the analogue crossover frequency is 3 .4  rad.5 .

A  sampling frequency had to be chosen that was a compromise 

between a low sampling frequency resulting in aliasing and a high 

sampling frequency where inaccuracies occur due to fin ite word length.

The sampling frequency chosen was 30 Hz which conveniently ties in 

with the 30 sectors in 360° for the target tracking process. The guidance 

loop. F ig .5 .1 0 . was implemented on two microprocessors, one 

processor performing the digital controller process and the other 

simulating the missile autopilot. Thus in digitising the complete guidance 

loop it is necessary to include two zero-order hold circuits as shown in 

F ig .5 .1 0 .  Combining the missile autopilot with the kinematic loop 

closure, the guidance loop consists of two separate parts. Z  Transforms 

were used to digitise the two separate parts.

From F ig .5 .1 0 .

G  ( z ) = ( l  - 2 " ’ ) .Z  A .  10(S +  1 ) ( S + 1)(S +  0 . 5 ) \  ............. (5 .2 . )
' I s  S(S +  3 .16)(S  +  3 .1 6 ) I

and
G (z )= ( l  - z * ’ ) .z /  1. 144 \   (5.3.)

\  ^ S^($^ +  1 4 S + 1 4 4 ) /
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The transfer functions of the controller and the missile in terms 

of z is derived by taking partial fractions, and then Z  Transforms 

of the component parts, along with setting T = 1 /30  second.

A full derivation of G^(z) and G^(z) can be found in Appendix A .

This results in the following equations:

G ^ (z )=  10(1 -  2 .918785963z“ ’ +  2.839590856z"^...................... ..........( 5 .4 . )

_______________________ -  0.9207881866z

(1 -  2 .800048928z"’ +  2 .610092963z‘ ^

-  0.810044035z‘ ^)

and

G ^(z) = -0 .000903747z" ' +  0 .002798632z‘ ^.................................. ..........( 5 .5 . )

________________ -  0.002670325z~^ +  0 .0009156z~*

1 -  3 .500869446z"’ +  4 .628827977z '^

-  2.755048263z"^ +  0 .627089085z“ ^

Having derived Z  Transforms for each of the two parts of the system, it 

is necessary to transform these equations into difference equations so 

that they can be executed on a PDP 11 or a microprocessor.

5 .3 .1 .  Floating Point Arithm etic.

The guidance loop was in itia lly  modelled on a PDP 11 using floating  

point arithmetic with seven significant decimal figures. Floating point 

arithmetic was used to determine the best realisation of the Z Transform 

equations before proceeding to execute the difference equations on a 

microprocessor with integer arithm etic. Three realisations were used 

and these are described in the following paragraphs.

5 .3 .1 .1 .  Direct Realisation.

The first realisation used the Direct method for transferring the
“ 1 23

transfer functions in z into difference equations. Given that

U(z) = a^ +  a^z  ̂ +  a^z ^ +  a^z ^ ..........(5 .6 . )

E(z) Tj ZÔ : 3 "
1 + b Q Z  + b ^ z  +  b ^ z
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then by the Direct method

° 0 ^n ^ - 1  ° 2 ^n- 2  °3^ n -3

■ ‘’O^n-1 ■ ’’ l^ n -2  ■ ^ 2 ^ L -3  ........... ( 5 .7 , )

Inserting the coefficients of equation 5 .4 .  into equation 5 .7 .  gives

the following difference equation for the digital controller

U = 1 0 E  -  29.18785963E = 28.39590856E  ̂ -  9 .207881866E ^
n n n-1 n -2  n-3

+ 2.800048928U , -  2 .610092963U « +  0.810044035U _
" -2  . ." .- .^ .(5 .8 .)

Likewise inserting the coefficients of equation 5 .5 .  into equation 5 .7 .

gives the following difference equation for the missile

Y  = -  0.000903767U , +  0.002798632U ^ -  0.002670325U .
n n- 1  n- 2  n-o

+  0.0009156U , +  3 .500869446Y ^ -  4 .628827977Y «
n -4  n-2 n-2

+  2.755048263Y 0.627089085Y  . (5 9 )
n -3  n -4     ' ' /

The guidance loop step response for this realisation is shown in F ig .5 .1 1 .

and gives an overshoot of 61%  with a settling time of approximately

six seconds to within 1% of the final va lu e .

To ensure that the simulation was not conditionally stable, the

binary representation of the coefficients was carried out. This

representation is necessary for the realisation of the loop in integer

arithm etic.

The resolution was set such that the smallest number which could 

be represented was 2  ̂ \  The simulation was again run with a unit 

step input and the output is shown in F ig .5 .1 2 . This shows that the 

direct realisation of the guidance loop is unstable with a binary 

representation of the coefficients.

5 .3 .1 .2 .  Cascade Realisation.

The second approach was to use the Cascade method of realisation. 

In this method the transfer function is expressed as a product of simple 

block elements.
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U (z) = g^D (z). D^(z)   Dm(z)  (5 .1 0 .)
E(z) °   ̂ ^

where m is less than n, the order of the system; Oq is a constant.

The block elements consist of either first or second order elements.

Using this method, the guidance loop was divided into block elements

as shown in F ig .5 .1 3 . The response to a unit step input is shown in

F ig .5 .1 4 . and is similar to that of the direct realisation shown in F ig .5 .11

The binary representation of the coefficients using the cascade

realisation was carried out using the same resolution as above and this

gave a step response as shown in F ig .5 .1 5 . This shows slightly less

overshoot than for the realisation with exact coefficients (F ig .5 .1 4 . ) .

5 .3 .1 .3 .  Parallel Realisation.

Finally the Parallel method of realisation was used to simulate the

guidance loop. In this method, the transfer function is expressed as the

sum of parallel units which are either first or second order, i . e .

U (z) = Oq +  (z) +  D^(z) +  D j z )   (5 .1 1 .)

where m is less than n, the order of the system; Oq is a constant.

Using this method, the guidance loop was divided into elements as shown 

in F ig .5 .1 6 . Applying a unit step input, the output settles as shown in 

F ig .5 .1 7 . The response shown in F ig .5 .1 8 .  represents the same 

realisation, except that the coefficients have been binary rounded as 

above.

Under no fault conditions, the parallel and cascade structures 

give similar results, however under conditions of a fault in a basic 

elem ent, the cascade structure suffers from the fact that a fault is 

m ultiplied by each successive unit. The direct realisation was unstable 

with binary rounded coefficients and was le ft out of any further analysis.

5 .3 .2 .  Integer Arithm etic.

Having obtained stable results from both cascade and parallel 

realisations of the guidance loop, the next step was to perform the 

difference equations in integer arithmetic on a microprocessor.
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in itia lly  in 16 b it arithm etic. Using a unit step input the parallel 

realisation gave the output shown in F ig .5 .1 9 . and shows an overshoot less 

than 50%. hbwever when the error signal becomes small the output 

shows quantisation errors. The 16 bit cascade realisation, whose output 

for a unit step input is shown in F ig .5 .2 0 . ,  suffers from quantisation 

much more than the parallel realisation. The output is completely 

unsatisfactory and shows that this realisation has no practical use, and 

was therefore discarded.

In order to improve upon these results, the software for the two 

realisations was converted to perform 32 b it integer arithm etic.

To increase the sampling frequency at this stage would only have increased 

the quantisation due to a fin ite word length. Using the same input 

as before, both realisations (F ig .5 .2 1 . and 5 .2 2 . )  show improved 

responses which agree with that of the continuous system shown in 

F ig .4 .7 .

From the above results obtained, the parallel realisation of the 

guidance loop using 32 b it arithmetic was chosen as the 16 b it cascade 

realisation gave poor results and 'cascades' any error caused by hardware 

or software.
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Chapter 6,  Implementation.

The system used in this study to assess the effectiveness of 

redundant software and hardware for fault detection and recovery is 

based on a single Z8000 microprocessor. This processor was used 

throughout the research study and a description can be found in Appendix B. 

The Z8000 is connected to a Micromaster (Appendix C refers), via a serial 

link, which is in turn connected to a PDP 11 /34 . This chapter describes 

the hardware and software which was designed and completed for this 

study.

The software for the target tracking process is assembled on the 

PDP 11 and then transferred to the Micromaster before being loaded 

into the memory of the Z8000, as shown in the systems diagram in F ig .6 .1 .  

Assembler code was used in order to effectively monitor the effects of 

faults upon system execution.

The Micromaster acts as a terminal for the PDP 11 and controls flow

of programs and data to and from the Z8000 processor system, which is
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situated on an Am 96/4016 Evaluation Card . In order to inject 

faults onto the processor system, the processor buses are brought out from 

this card into an expansion box shown in photograph F ig .6 .2 .

The expansion box contains the manual switch arrangement for the 

injection of faults onto the processor bus, in addition to system memory 

and input/output. The memory and I /O  maps were designated as shown 

in F ig .6 .3 .  and 6 .4 . respectively.

6 .1 .  System M em ory.

The Evaluation card contains 8K bytes of dynamic RAM which is 

used to store the target data.

Memory organisation in the expansion box is such that any one RAM  

chip is assigned to only one b it of a word in memory so that a memory 

failure (either single cell or complete RAM) w II not cause more than one 

b it to be in error.

The error correcting memory, shown schematically in F ig .6 .5 .  is
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situated on two double Eurocards. The first card consists of the data 

memory, whilst the second consists of parity memory, error code 

generation and the error correction circuitry. The two circuit diagrams 

are shown in F ig .6 ,6 .  and 6 .7 .  respectively, whilst the layout diagrams 

and parts list are shown in Figs 6 .8 .  and 6 .9 .  and Tables 6 .1 .  and 6 .2 .

The operation of the error correcting memory is briefly described 

for both the read and write conditions as follows. Consider the operation 

of writing to memory. The data word is written directly into the data 

memory whilst the parity bits are generated from the data bits by a set of 

parity equations and are written into parity memory.

On a read operation, the data word is read from memory along 

with the associated parity bits. Parity is then regenerated from the data 

word. If an error has occurred in a memory cell that is being read, one 

or several of the parity bits w ill be in error. The parity bits are then 

decoded to determine which data b it is in error. The erroneous data b it is 

then corrected by the exclusive OR operation and is buffered onto the data 

bus by an inverting buffer. Note that the exclusive OR operation inverts 

all bits except the bit in error ( if  any). The correct polarity is restored 

by the use of the inverting buffers, as shown in F ig .6 .5 .

6 .2 .  System Input/O utput.

System inputs can be divided into two types, firstly target data which 

is produced on the PDP 11 and down loaded via the Micromaster.

Secondly inputs are provided in the form of switches on the front panel 

of the expansion box; these inputs represent the mode of operation of the 

tracking system and a system cancel fa c ility . System outputs are in the 

form of LED's and consist of an operator alarm, an error signal and 

indications to inform the operator that a target being tracked is within  

missile coverage. The circuit diagram layout diagram and parts list of the 

input/output card are shown in Figs.6 .1 0 . and 6 .1 1 . and Table 6 .3 .

The expansion box also houses a buffer card which buffers all 

signals from the Z8000. The circuit diagram^ layout diagram and parts
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list of this card are shown in Figs. 6 .1 2 . and 6 .1 3 . and Table 6 .4 .

6 .3 .  System Software.

The system incorporates a suite of programs which are required 

for the various tasks involved; these being shown diagramatically in 

F ig .6 .1 4 . With the exception of the PDP 11 graphics and plotting 

routines this software was developed by the author for this study.

The software is explained by means of following a typical run to generate 

ten seconds of system results. A  flow diagram of the software is shown 

in F ig .6 .1 5 .

In itia lly  fault data is produced by generating exponentially  

distributed fault interval times and uniformly distributed faults across the 

address and data bus.

Following this, the target data is generated by the target simulation 

program described in Chapter 5 .1 .  A  Z8000 cross assembler was written  

to generate assembly code listings and object code files for the target 

tracking process. The cross assembler runs on a PDP 11 and is described in 

detail in Appendix D. The object code file  produced, approximately 

3K bytes in size for the target tracking process, is transferred first to 

the Micromaster and then loaded into memory in the expansion box.

The target data takes the same path to the Z8000 system and resides in the 

memory on the Evaluation Card.

The target tracking process, described in Chapter 5 .2 .  is then run by 

commands to the Z8000 monitor via the Micromaster Keyboard. The 

injection of faults is carried out during the operation of this software and 

is described in the next section. Results are periodically sent from the 

Z8000 to the Micromaster and are stored there until the end ot the ten second 

run, when they are transferred to the PDP 11 and written into a disk f ile .

The disk file  contains blocks of data which can then be sorted in a form ready 

for the plotting routines. F ig .5 .9 .  shows a typical set of graphs 

produced in this manner.
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6 .4 . Fault Infection.

Two alternatives existed for the injection of faults; these are 

as follows:-

(a) Injection of faults within each of the memory and I /O  

devices connected to the buses

or

(b) Injection of faults directly in the buses which are common to 

all memory and I /O  devices.

The second of these alternatives was chosen as it simplified the circuitry  

required together with providing greater f le x ib ility .

Implementation of the fault injection logic was achieved by 

intercepting the buses by a logic and switching c ircuit. This 

arrangement allowed up to two bits of each of the address and data buses to 

be injected with faults at any one time. The faults can be stuck at 

logical 'O' (s -a -0 ), stuck at logical 'T  (s -a -1 ) or open circuit.

Two timers were used so that faults injected onto the data bus could be of 

different length to those on the address bus, and to ensure that faults 

are injected onto the respective buses at the appropriate time in the cycle. 

The design of logic to in ject faults with the previously mentioned properties 

is described in the following section.

6 .4 .1 .  Design of Fault Injection Logic.

Consider the design of fault injection logic for the single direction 

address bus. The requirement for the logic was that the output be:

1 . As input

2 . s -a -0

3 . s-a-1

4 . Open circuit

The selection and injection of these conditions is shown diagram atically in 

F ig .6 .1 6 . ,  where for simplicity of presentation a single pole switch selects 

either a fault or no fault condition. Consider in itia lly  the first three 

requirements listed above, for the purposes of design let A  be the input
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of the block (see Fig. 6 .1 6 .)  and Z be the output of the block.

The fault control consists of two inputs, one to decide if  a fault is to be 

applied (to be known as X ) and the other to decide whether the fault is 

stuck at logical 'O' or '1 ' (referred to as Y ) .

The control input is defined as: X a t logical 'O' -  No fault

X at logical '1 ' -  Inject fault

The type of fault injected is determined by the condition of the Y  input

which is defined as: Y  a t logical 'O' -  s -a -0  fault

Y  at logical '1 ' -  s-a-1 fault

Constructing a truth table it  follows that the output of the block is given 

by: Z  = AX + AY +  XY

. .... (6.1.)
Since three input OR gates are not ava ilab le , the equation 6 .1 .  was 

rewritten using De Morgans law to give:

Z = A X .  Â Ÿ .  (6 .2 . )

which can be implemented as shown in F ig .6 .1 7 .

The output Z  can then be optionally open circuit by adding a tri-state  

bus driver. Circuitry providing the control input (X ), the condition 

input (Y) and the tri-state buffer driver (disable) is shown in F ig .6 .1 8 .

Two of the above circuits were bu ilt so that up to two faults can be 

injected onto the systems address bus. The two lines which are injected 

with faults are switch selectable; the switching arrangement is shown in 

F ig .6 .1 9 . which also shows the switching for the data lines. The switches 

are shown in a position representing a typical fault injection path.

Since the data bus is bi-directional it  required more logic to 

implement fault injection compared with the address bus. This was 

accomplished by using two of the circuits shown in F ig .6 .1 7 . ,  back to 

back with a direction select (READ/WRITE) as shown in F ig .6 .2 0 .

A  wait state is used to extend the memory access, as the circuitry  

described above incurred a delay of approximately 40 nanoseconds.

The length of the applied faults is adjustable, via potentiometers on the
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expansion box front panel, between approximately 100 nanoseconds and 

1000 nanoseconds; although this does not preclude the possibility of 

leaving the fault on for any number o f instructions. The length of the 

open circuit fault is not adjustable and was fixed on a per instruction 

basis; this was thought to be a flexible enough arrangement.

The fault injection logic is mounted behind the front panel on the 

expansion box close to the fault selection switches, as shown in photograph 

F ig .6 .2 1 . The circuit diagram, layout diagram and parts list can be 

found in Figs 6 .2 2 . and 6 .2 3  and Table 6 .5 .

6 .4 .2 .  Method of Fault Injection.

The procedure for the injection of faults onto the processor system 

is as follows: the system is run for X instructions where X is an exponentially 

distributed variable. This type of distribution was used as it is typical 

in re liab ility  studies. The system then halts and the fault is set up on the 

front panel; the fault being introduced onto the processor bus when a single 

step command is given. Although the system is not run at full speed, it 

was time scaled to ensure that recovery from a fault takes place within a 

given tim e . When the fault has been injected, the system is run for 

another Y  instructions, where Y  is another exponentially distributed variable  

with the same mean as above. It was decided that 90%  of the faults should 

be of s -a -0  or s-a-1 type, with the remaining 10% being open circuit faults. 

A  uniform distribution was used to determine which b it of the address bus 

or the data bus was to be faulted.

6 .5 .  System Integration and Test.

In conclusion to the chapter, system integration and testing was 

carried out to establish that the design requirements had been satisfied.

These tests were extensive and consisted of procedures specially developed, 

but which have not been included in this thesis.

46



Chapter 7 . Design Strategies: Single Processor System.

This chapter presents strategies for detection and recovery from 

transient hardware faults, their implementation on a single microprocessor 

system and their performance under extreme operating conditions.

The approach taken here was in itia lly  to in ject faults on the target tracking 

system with no recovery mechanisms to provide a baseline for the results. 

Having obtained a baseline, the next step was to use the basic Block 

Recovery structure and then build upon that structure to provide a recovery 

mechanism for a greater proportion of faults.

The software described in this chapter was stored in RAM as this 

gives less protection against faults than if  the software were held in ROM; 

thus results obtained are worst case, since program memory is not write 

protected.

It was decided that a system run should last ten seconds, as 

previously explained and that during this time a large number of faults 

would be injected in order to keep down the number of runs. It was 

decided that the interval between faults be exponentially distributed such 

that the mean number of faults that were injected was thirty.

7 .1 .  System with No Recovery.

In order to obtain a baseline set of results, the system was in itia lly  

operated without any recovery or protection software or hardware.

The criteria for improved systems ava ilab ility  taken here was the 

percentage of runs that successfully complete ten seconds of operation, 

to produce valid  outputs at the end of that time.

A total of twenty runs were carried out, of which only one was 

successfully completed. A further four runs completed the ten seconds, but 

did not give correct outputs during that time. Without any protection, 

system variables were often corrupted due to faults injected and these faults 

were allowed to propagate unchecked. Once a variable has been corrupted 

then, due to  the lack of acceptance testing,it is passed onto the next 

process which w ill also give incorrect outputs.
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The most surprising effect of faults was that only a minority caused 

the program counter to be badly corrupted immediately following the fault 

contrary to in tu ition. Given that the program counter was at address X  

before fau lt, then the effect of the m ajority of the faults was to leave 

the program counter within the range X -  256 bytes. This is due to the 

small percentage of the total instruction set that allow  a large deviation  

from the present program counter. Instructions that allow  this large 

deviation include jump to absolute address, call subroutine with absolute 

address and reload program counter from memory. The consequence of 

the program counter generally staying local immediately following a 

fault is that it is not necessary to separate primary and alternate routine 

software into separate blocks of memory with the provision of enabling 

and disabling memory, but that it is sufficient to separate the two routines 

by a trap area of 256 bytes.

Typically  a fault can lead to execution of wrong instructions, due 

to either an address or data fau lt. A fter one of these instructions the 

program counter is often set to a non-instruction word boundary.

This then leads to corruption of register contents or a misinterpretation 

of instruction. Although the fault may only have occurred for the 

duration of a single instruction, an instruction word boundary may not 

be reached for several instructions.

7 .2 .  Basic Recovery Block.

Having established the baseline, the next step was to implement 

the Recovery Block on the target tracking software. For each process, 

an acceptance test and an alternate routine was devised for checking and 

standby purposes. A  brief description of this software can be found in 

Appendix E. The acceptance tests used here were fa irly  simple consisting 

typ ically  of checking that variables were in range and checking that certain 

flags were set before generating an output to the system operator. The 

alternate routines ranged from re-entry of primary routine, setting a variable  

or variables to default values through to a less accurate method cf the
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primary routine, for example the alternate routine for range inhibit 

does not take into account the range at which the target is detected.

The overhead in software, caused by the use of a Recovery Block structure 

depends upon the extensiveness of the acceptance tests and the alternate  

routines structured within the system software; a typical value resulting from 

this study was 30 -  40% , The run time overhead depends upon how often 

the alternative routines are entered, this was found to be in the region 

of 15 -  20%  under the operating conditions of thirty faults (mean) in 

ten seconds.

The approach of using acceptance tests to flag errors and then using 

the alternate routines to correct them was avoided, as this quickly leads to 

a large collection of flags which have to be set, reset and read.

This could result in a situation where no error flags are set or reset.

The approach taken was to use the acceptance test to flag an error 

in the corresponding primary routine as complete failure of the routine and 

in itia te  transfer of control to an alternate routine. The assumption made 

was that i f  an error was found by the acceptance test then all values 

generated by the appropriate primary routine were judged to be in error 

and were regenerated or set to a predefined value.

7 .2 .1 .  integrity of D ata.

In order to maintain the integrity of the data base, each variable  

is only updated in memory after it has been confirmed to be correct.

At the beginning of each process the required variables are read into the 

CPU registers after which the CPU performs the particular process.

O nly  after the acceptance test passes are the updated variables written  

into memory. This is for two reasons; first, register transfers were 

considered to be more reliable than memory to register transfers during 

the process and so were kept to a minimum. Secondly, if the acceptance 

test foils, a correct copy of the variables is available in memory. The 

concept of using registers during the process rather than reading the 

variables from memory is not such a constraint as one might first think
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as many assemblers allow the user to give registers labels a t assembly time. 

Thus during the process the variable can be given a meaningful label rather 

than say R6.

7 .2 .2 .  Design Discipline.

The immediate implications of the Recovery Block technique imposes 

an additional element of discipline upon the designer in that he has to 

divide the total system task into subtasks each of which has an identifiable  

function which is amenable to acceptance testing. This forces him to 

think about the total system design and by virtue of packaging into sub tasks 

introduces some element of structure into the program. The sub tasks are 

each associated with a block of code corresponding to a Recovery Block of 

the form shown in F ig .2 .3 .  These can be linked together to perform a 

complete software task in a three level system shown in F ig .7 . i .

The first level is task direction and points to tasks to be performed in their 

proper sequence. Level 2 has the format of the Recovery Block for each 

task, and level 3 contains the coding for each primary alternate and 

acceptance test routine.

Note that the use of a Recovery Block structure does not preclude 

the use of defensive programming techniques, often known as Exception 

Handling^.

7 .2 .3 .  System Performance.

Using the above three level structure a total of 14 runs were carried 

out, each of 300 system cycles. O f  thes^ five runs were successfully 

completed with a further one run failing safe during the ten seconds.

This still left a total of eight runs which failed to complete due mainly to 

the processor trampling through memory.

As previously stated five runs successfully completed the ten seconds, 

all of these had at least one entry into an alternate routine which prevented 

the propagation of the original fau lt. A further two runs had an entry into 

an alternate routine during the ten seconds but 'crashed' before the ten 

seconds was completed.
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The Recovery Block was found to be capable of coping with data 

type faults where corruption of data occurs but incapable of dealing with 

system crashes which may occur due to execution of unimplemented 

opcode, or execution of unidentified instruction (where operation is 

uncertain) or by trampling through memory.

7 .3 .  Addition of Watchdog Timer.

The use of the basic Recovery Block as used in the previous section 

often led to a total loss of function. This loss of function was not 

flagged by the acceptance test as the test was often not entered under 

fault conditions. To overcome this the simple expedient of a hardware 

timer was introduced. On entry to level 2 in the software structure, the 

timer in the form of a free running counter is loaded with a process time 

number which is directly proportional to the expected completion time of 

the process. The task is then in itia ted , a successful exit from the primary 

routine leading to a reset of the counter. If  the primary routine does not 

exit in a predetermined time ( i .e .  the value loaded at the beginning of 

the process) then the counter goes through zero and triggers a system 

interrupt, this concept is shown schematically in F ig .7 .2 .

7 .3 .1 .  Recovery Using a Watchdog Tim er.

Although it  is fa irly  easy to time out a process due to a fa ilure, 

the next problem is to return the system to either the alternate routine 

of the same process or in itiate  a safe shutdown of the system. Once the 

interrupt routine has been entered it is not possible to use the program 

counter contents immediately before the interrupt as a guide to the last 

segment being processed.

In order for the interrupt service routine to determine the interrupted 

process, the appropriate process number is loaded into a RM^ location at 

the beginning of each primary and alternate routine. A  lookup table 

can then be used to determine the setting of the program counter which is 

then loaded to transfer to alternate or fail safe routine, depending upon 

which routine (primary or alternate) was being processed.
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It is possible that if a fault occurs then the task number may be 

corrupted. To overcome this, the integrity of the recovery mechanism was 

improved by use of a simple check on the process number to determine 

whether it is within a predetermined range. If it is found to be out of 

range then a fail safe routine can be entered. A flow chart of the 

recovery interrupt service routine is shown in F ig .7 .3 .

7 .3 .2 .  System Performance.

The target tracking system, with the watchdog timer was run for a 

total of fourteen times. O f  the fourteen runs, nine successfully completed 

the 300 system cycles with valid  outputs, with a further three runs failing  

safe during this period. This left two runs which failed to complete with 

valid outputs, due either to a system crash or data corruption.

The proportion of runs that completed ten seconds was significantly  

improved over the basic Recovery Block. This was due to the system 

recognising that under fault conditions some processes failed to complete 

within a predetermined time lim it. An analysis of the two runs that 

failed to finish shows that the first would have been able to recover from a 

particular fault i f  the unimplemented instruction trap had been used.

The second run failed to finish as the timer had not been started when the 

fault occurred and the fault led the program counter to be set into memory 

that was not present, and thus recovery never occurred.

7 .3 .3 .  Summary.

The results obtained for the watchdog timer are encouraging when 

compared with the strategies so far examined, as summarised below.

(a) No Recovery System -  5%  of runs successfully completed.

(b) Basic Block Recovery -  35%  of runs successfully completed

7%  of runs failed safe

(c) Block Recovery with Watchdog Timer

64%  of runs successfully completed

21 % of runs failed safe.
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7 .4 .  Typical Fault Effects.

As a result of injecting hundreds of faults on a microprocessor 

system, there emerged a number of different fault effects. Before 

proceeding to further protection and recovery mechanisms, these fault 

effects are briefly discussed below:

(a) Execution of Wrong Instruction.

An address fault led to execution of instruction at location other 

than program counter. Following this instruction the program counter 

was set to a non-instruction word boundary. When fault removed next 

instruction was an address which corresponded to an instruction for a 

software interrupt.

(b) Condition Code Error.

A data fault led to a conditional jump based on the wrong condition

code.

(c) Opcode Error.

A data fault completely changed meaning of instruction. Instead 

of loading a register from memory, a different memory location was 

cleared.

(d) Offset Error in Jump.

A data fault led to a relative jump made to wrong address due to 

incorrect reading of offset in instruction.

(e) Execution of Wrong Instruction.

An address fault led to execution of instruction at location other 

than program counter. This instruction (actually an address) led to a 

reloading of program counter and status register, leading to system crash.

(f) Recovery Block Error.

With the basic Recovery Block, a fault at the end of the primary 

routine caused the processor to miss the return from subroutine instruction. 

The processor carried out through the acceptance test, following the 

primary routine, until it encountered a return instruction which caused 

a return to the instruction following the call to primary routine which was
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call acceptance test. This acceptance test actually performed twice 

on primary routine outputs.

(g) Memory Read Error.

A  fault occurred during reading of variables from memory into 

registers; the registers were left as they were from previous process. 

Acceptance test failed and recovery occurred by alternate routine which 

correctly read variables, performed process and passed acceptance test.

(h) Acceptance Test Failure.

After returning successfully from acceptance test, a fault occurred 

when acceptance test error flag was being checked, the program counter 

was updated and entry into alternate routine occurred.

(i) Execution of Wrong Instruction.

A  fault led to execution of wrong instruction, the program counter 

was set to a non instruction word boundary and the next instruction was an 

unimplemented instruction. A trap occurred whose vector had not been 

set and a system crash followed.

([) Acceptance Test Failure.

A fault occurred within the acceptance test which led to its failure  

on good data.

(k) Memory Read Error.

A  register was loaded from an incorrect memory address due to a data

fault.

( I)  Execution of Wrong Instructions .

A  register was loaded from memory a t wrong point in program due 

to execution of wrong instruction due to address fault.

(m) Program Corruption.

A  corruption of a program location led to an unimplemented 

instruction trap.

(n) System Data Corruption.

A safe shutdown on the system occurred when primary and alternate

routines both failed acceptance test. During execution of primary routine a
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variable was corrupted in memory and incorrect outputs were given.

The alternate routine was to perform primary routine again when incorrect 

results were also given. This highlights the care necessary when using 

a repeat of primary routine as the alternate routine.

(o) Subroutine Call Error

A  situation occurred where timer was of no use for recovery.

A fault occurred a t level 2, i . e .  CALL PRIMARY, instead of a primary 

routine being called a subroutine was called whose address was in 

memory which was not implemented. The timer was set running as 

primary routine was never entered.

(p) Execution of Wrong Instructions

A fault occurred at the end of a primary routine on instructions to 

reset timer, time out occurred soon after and alternate routine was 

successfully entered.

(q) Timer Reset Fault

As a precaution to the above effect, the timer was reset at the 

beginning and end of every primary routine. A  situation arose where, 

due to a fault the timer was not reset at the beginning of a primary 

although the task time was loaded and the timer set running. However, 

there was no ill effect of the missed timer reset as it would 

have been reset at the end of the preceding process.

7 .5 . Further Additions to Recovery .

The use of the watchdog timer provided system recovery in 85% of 

the runs carried out. In order to improve system recovery coverage it 

is necessary to  look at additional facilities which are discussed in the 

following paragraphs.

7 .5 .1 .  Use of Unimplemented Instruction Trap.

One of the runs with the watchdog timer, as summarised in 

Section 7 .3 .3 .  showed that the unimplemented instruction trap 

can be used for recovery purposes. The Z8000 has a built in 

unimplemented instruction trap and this can be used for recovery if  the
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vector is set equal to that of the interrupt for the hardware timer.

Thus if  either an interrupt due to timeout or an unimplemented instruction 

trap occurs then the same recovery mechanism w ill be used, as previously 

described. The run which failed due to this fa c ility  not being used was 

carried out again with its vector set and with the same faults injected, 

resulting in a successful completion.

O n ly  some microprocessors have this built in fac ility  for detecting 

unimplemented instructions, though this fa c ility  can usually be added by 

the addition of external hardware. For example, the Texas 9900 which 

has about 2%  of its opcode fie ld  as unimplemented can use external 

hardware as given in Ref. 25.

In addition most processors have a software interrupt fa c ility .

If this is not required by the system software then the software interrupt 

vector should be set equal to that of the hardware timer, so that an 

unexpected software interrupt due to a fault w ill not cause a system crash.

7 .5 .2 .  Default Data Bus.

In most real time systems there are areas of the memory map that are 

not filled  by memory devices. Thus if  the program counter is inadvertantly 

set somewhere w ithin this unimplemented area then during a read operation 

the data bus w ill be floating. This can be made use of by attaching 

resistors onto the data bus, in the form of pull up and pull down resistors, 

so that the data bus defaults to an instruction such as software interrupt 

when not driven. This is shown by example in F ig .7 .4 .  for a 4 b it data 

bus where a software interrupt is represented by 1100 (binary).

The resistors should be of sufficiently high value in order to prevent 

excessive current drain. During normal operation the bus w ill be driven 

high and low as required by CPU and memory devices. The first 

instruction that the processor executes after jumping into unimplemented 

memory is a software interrupt whose vector is set equal to that of the 

timer and thus initiates a recovery. This mechanism provides an earlier 

fault indication than the watchdog timer in the situation of the processor
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jumping into unimplemented area, although the timer is still invaluable  

for recovery if  the processor executes an incorrect section of code.

In addition this mechanism provides a fault indication if  the processor 

jumps into an unimplemented area of memory before the timer is started.

7 .5 .3 .  Trap Area .

It was found that on many occasions, due to faults, that the return 

statement at the end of a process was missed and the processor continued 

into the next section of code. In this situation recovery would still take 

place by watchdog timer or by execution of an unimplemented instruction. 

However to speed recovery and to reduce still further any inadvertant 

action, a trap area can be used after each return statement, i . e .  between 

each process. This trap area, shown schematically in F ig .7 .5 . ,  would 

consist of a gap equal to the maximum length opcode in words of the 

processor. This trap area would consist of software interrupt instructions 

whose vector was set equal to the timer recovery procedure. Thus i f  a 

return was missed due to a fault then a software interrupt would occur 

and recovery take place.

7 .5 .4 .  Performance Counter.

It has been shown that with certain additions to the Recovery Block, 

it  is possible in a single microprocessor system to recover from a ll ,  as 

far as can be seen, transient hardware faults. However, in many real time 

systems it is not sufficient to use an alternate routine cycle after cycle 

in the case of a prolonged fault or software design error as degraded 

performance may only be acceptable for a lim ited period of time before 

a different system strategy is required. This is almost certainly true in 

a situation with recursive calculation where an alternate routine may use 

last value or a default value. Thus it is suggested here that in many 

applications a counter be used within the alternate routine to count 

consecutive or total entries into the routine. If the count is exceeded 

then another alternate, for example use of another sensor, or fail 

safe routine can be entered.
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7 .6 .  Extensions to the Recovery Block

This section summarises the possible extensions mode by the 

author, the majority of which have been implemented.

(a) An unimplemented instruction trap can be used to speed 

response to faults. This trap is internally implemented on processors 

such as the Z8000, 68000 and can be readily implemented in hardware 

on others such as the TMS 9900.

(b) A timer can be used to ensure that primary and alternate  

routines do not take longer than expected to execute or finish before

a minimum time.

(c) A  set number of automatic retries can be used before 

classifying the fault as permanent or transient.

(d) The use of pull up and pull down resistors to provide 

recovery when program counter is set into an unimplemented memory 

area.

(e) For system critical variables, it may be re cessary to keep 

a copy in both memory and allocated register within CPU. This can 

obviously only be used for one or two variables.

(f) In some instances it may not be possible to perform the 

acceptance test on the alternate routine due to time constraints.

(g) In some instances it is not advisable to carry out an 

acceptance test on the alternate routine, i f  the size of the routine is 

less than that o f the acceptance test.

(h) A  count may be necessary within the alternate routine as 

degraded system performance may only be acceptable for a limited period 

of time.

(i)  A  trap area can be used between processes to eliminate the 

possibility of inadvertantly going from one process to another through 

omission of a return.

A  more generalised form of the Recovery Block can be found in 

F ig .7 .6 . which covers some of the points mentioned above, which are
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not covered by the basic Recovery Block. In this figure block A  is 

general, the output of A  may be to P or Q  or output or other 

alternates.
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Chapter 8 . Single Microprocessor Study Conclusions.

The single microprocessor study has shown that by observing 

certain formats for software layout, most transient hardware bus faults 

are recoverable. This recovery strategy produces a small overhead in 

running time and memory. The Recovery Block technique used also enforces 

a degree of design discipline onto the software engineer to produce a 

structured format to his software.

8 .1 .  Acceptance Test.

It has been found that care must be taken in designing the acceptance 

test for a particular process. A  compromise must therefore be made between 

the amount of testing in the acceptance test, and the overhead incurred.

8 .2 .  CPU Local Storage.

The Recovery Block, in its simplest form provides protection and 

recovery mainly from faults that lead to data corruption. The integrity of 

the data is improved by a procedure where variables are read into CPU 

registers, followed by the particular process, and fin a lly  the updating of 

variables only after the acceptance test has been passed. This method leads 

to a greater probability that data within memory is un corrupted, and is 

already available in some high level language compilers.

8 .3 .  The Watchdog Timer.

The introduction of a watchdog timer resulted in a small software 

overhead, additional software was used for setting up, starting and resetting 

the timer. The overhead was less than one per cent for software, in addition  

to a simple counter for tuning system operation. The use of a watchdog 

timer highlights the importance of a system approach to fault tolerance 

through the combined use of hardware and software to increase the ava ilab ility  

of the system. The increase in ava ilab ility  that was obtained by the use of a 

Recovery Block structure and a watchdog timer is shown in F ig .8 .1 .

The recovery mechanism used consisted of entry to an alternate  

routine either by failure of the relevant acceptance test or following 

execution of a fault detection interrupt service routine. A simple
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interrupt service routine kept recovery time to a minimum. The number of 

the process being executed at the time of the fault was read, and a 

check was made that it was within an expected range. The process 

number was then used as an entry to a process re-entry look up table 

stored in RO M , followed by a jump to the relevant process re-entry point. 

System variables are only updated following successful completion of the 

relevant acceptance test; it is assumed that a copy of valid  system 

variables remains within the RAM area. If this assumption is invalidated, 

for example by a momentary power failure, then a fail safe state is 

entered shortly afterwards through the mechanism of a count being 

exceeded within an alternate routine.

8 .4 . Default Data Bus.

The use of a watchdog timer generally provides recovery when the 

microprocessor's program counter is corrupted to a value outside the 

segment being processed. In addition, there are situations when the 

program counter stays within the segment, but the segment is either 

completed too quickly or not within time; this latter case is particularly  

important in real time systems. If the program counter is corrupted 

to a value outside of the segment being processed, then it can be 

situated in one of two areas of memory. First, the program counter 

can be corrupted to a value which corresponds to another segment, and 

secondly the program counter can be set to a value which corresponds 

to unimplemented memory. This latter situation arose in the study 

and recovery time was decreased by the use of default resistors on the 

data bus. These resistors were used to trigger a software interrupt 

when the microprocessor attempted to execute an instruction from 

unimplemented memory. Furthermore the same recovery routine can be 

used as that for the watchdog timer.

8 .5 . Microprocessor Dependent Facilities.

A growing number of microprocessors have traps for detection of 

illegal conditions such as attempted execution of illegal instruction.
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bus error and division by zero. System recovery can take place under 

these conditions if the trap vectors are set equal to the vector of the 

hardware timer.

8 .6 .  Use of Trap Areas.

The majority of real time systems have critical areas of software 

where a correct procedure must be carried out before an action can be 

taken. The Recovery Block technique is useful in this situation whereby 

the setting of flags can be checked within an acceptance test.

However, this situation can be improved by the use of trap areas 

between segments in a critical area of software. This prevents the 

microprocessor from running on from one segment into another.

Recovery takes place i f  the program counter is set equal to an address 

within the trap area, provided that the trap is filled  with a suitable 

software interrupt.

8 .7 .  Performance Counter.

In real time control systems it is important that a counter is 

provided within alternate routines as degraded performance may be 

acceptable only for a certain period before a different system strategy is 

required.

8 .8 .  Built in Test.

A  built in test fac ility  is often used for operator confidence and 

for diagnosing faults in the fie ld . The Recovery Block technique can 

be used as an aid in testing and diagnosing faults. It was previously 

mentioned that a counter can be used within certain alternate routines 

so that continued degraded performance is prevented. Whilst the 

system is in a standby state, the counts from the alternate routines can 

be used as an input to the built in test equipment and provide information 

on possible faults. For example, a certain alternate routine entry may 

be associated with the defective reception of information from 

a peripheral; this information can aid test equipment in diagnosing 

a fault.

62



8 .9 .  In Conclusion.

The use of a Recovery Block structure established that the 

mechanism is a useful tool which can be integrated into the design of 

real time system for improved a v a ilab ility . The most important 

additions to the basic structure are the use of a watchdog timer and a 

simple counter within alternate routines. It has been stated that the 

Recovery Block is not capable of recovering from software errors due to 

incomplete or inconsistent requirements specification. This situation 

can be improved by the use of independent design of alternate  

routines to simulate an N-Version Programming approach without the 

need for massive redundancy, although this is very d ifficu lt to 

achieve in practice.
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Chapter 9 . Introduction to the Distributed Processing System.

The single processor study demonstrated that increased ava ilab ility  

under prescribed fault conditions was obtained using protective 

redundancy. This confirmed that the propagation of faults from one 

process to another could be stemmed by the use of a fault detection 

and recovery strategy. The next objective of the research study was to 

investigate the possibility of increased a va ilab ility  for a distributed 

processing system undertaking the tasks of target tracking and missile 

guidance, as described in Chapter 4 . The nature of the increased 

system complexity required to undertake these tasks, together with the 

locations in which they would normally be undertaken involved the 

decomposition of the system into subsystems.

The first objective was to establish a design philosophy for 

communication between the subsystems; this being described in the 

following section.

9 .1 .  Design Philosophy for Inter Processor Communication.

The Recovery Block technique ensures that only valid data is passed 

from one process to the next, by use of the acceptance test. The 

following process simply takes the data and uses it without any need for 

testing its va lid ity . This approach can then be extended to a distributed 

processing environment in the following manner.

Consider the transmission of data from one microprocessor subsystem 

to another using a communications link. The use of a Recovery Block 

structure within each subsystem ensures that only valid  data is transmitted. 

The design philosophy for message passing follows im plic itly , i . e .  that 

data testing is carried out at the point of maximum information 

(transmission) with the absence of testing data on reception. This is 

shown schematically in F ig .9 .1 .  The testing of data is carried out by 

an acceptance test prior to transmission, the data is assumed to be valid  

if  it is received correctly with respect to the particular communications 

protocol. If a transmission failure occurs, for example incorrect parity, 

then a request for re-transmission can be made.
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When message passing is carried out between subsystems then the 

transmitting subsystem is said to be active whilst the receiving subsystem is 

passive. The transmitting subsystem has a responsibility to provide valid  data 

with the use of local recovery if  necessary, while the receiving subsystem 

need only w ait for data.

9 .2 .  Local Recovery Strategy.

The in itia l aim for recovery from a fault within a distributed 

processing system is the attempted recovery on a local basis, that is within  

the subsystem. A  schematic diagram of local recovery is shown in 

F ig .9 .2 .  This figure shows the importance of localising the effect of a 

fault and the prevention of propagation to other subsystems.

In view of the experience and results obtained for the single 

processor study, it  was decided to continue with a similar strategy for each 

of the microprocessors within the distributed system. The Recovery 

Block structure was discussed in Chapter 7 and when implemented within 

each microprocessor subsystem provide the basis for local recovery.

The absence of reception of expected data leads to another 

principle, i . e .  the message transfer proceeds only in one direction.

If a message fails to arrive then the receiving subsystem must not attempt 

to diagnose the failure to transmit, instead it must in itiate global recovery 

after a predetermined time period.

The concept of global recovery is introduced in the following

section.

9 .3 .  Global Recovery Strategy.

In a real time distributed processing system, it is possible that 

local recovery may fail or that communication between processors may fa il.  

Under these circumstances, in a master/slave system then the master can 

w ait only for a predetermined time before action has to be taken.

This action of global recovery can take place in the event of failing to 

receive data from a slave. Global recovery can simply be seen as failing  

to pass the acceptance test of a routine in the master which is requesting
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data, and the subsequent transfer to an alternate routine.

The above strategy is illustrated in F ig .9 .3 . ,  which is described

below;

Cycle Time 

1

AAaster 

Request for data

Request for data

Request for data

Request for data

Slave

Satisfactory

response

Satisfactory

response

Unable to 

send data

Satisfactory 

response 

(slave sub­

system able to 

transmit valid  

data)

Remarks

(a) Acceptance test 

in master passes: 

no communication 

faults.

(a) Acceptance test 

in master passes.

(b) Fault occurs in 

slave after 

transfer of data.

(c) Local Recovery 

attempted in slave 

but fails.

(a) Master requests 

data, four 

retries are carried 

out.

(b) Acceptance test 

in master fails as 

no data ava ilab le .

(c) Alternate routine 

in master entered.

(a) Acceptance test 

in master passes.
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This alternate routine then provides data that can be used by the 

system for continued operation. This data may be a default value or the 

last correct value received. The action of transfer to an alternate routine 

prevents the maximum system latency being exceeded. However, 

continued entry of this routine may be dangerous to the system and may 

occur in the presence of a permanent failure of one of the microprocessor 

subsystems. This type of failure is considered in the following section.

9 .4 .  Task Swapping .

If a permanent failure occurs in a slave then global recovery is not 

possible over a prolonged period, due to the repeated entry of an alternate  

routine within the master. Such a failure would only be retrieved if  

redundancy were to be included. Under these conditions it becomes 

necessary to use an alternative processor to carry out the function of the 

failed slave.

Having described a recovery strategy for the distributed processing 

system, the next point for consideration is the manner in which the system 

is distributed. The criteria governing this,together with the approach 

which was adopted is discussed in the following section.

9 .5 .  Functional Decomposition of System.

The manner in which the functional decomposition is carried out is
26

an essential feature of the system recovery strategy . The factors 

to be considered in this respect being as follows:

1. Inter processor communications to be kept to a minimum.

2 . Separation by function or process

3. Considerations of physical locality  of functions.

The function of the distributed processing system was to perform 

the target tracking process and the missile guidance loop equations, 

which are divided into those of the digital controller and the missile 

autopilot. This provided a natural split into three sub-functions, each 

of which could be perfom.ed by a separate microprocessor. This natural 

division also meets the three criteria stated above which is shown
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schem atically in F ig .9 .4 . ,  with the realisation of the sub-functions being 

described in Chapter 5 . The generation of raw target data is carried 

out by a Fortran program running on the PDF 11 in a similar manner to that 

used in the single processor study. Intercommunication between the 

subsystems was carried out using a high integrity data highway lin k .

For continuity of design and use o f existing software, the Z8000  

microprocessor was chosen as the processing element for each of the 

subsystems.

In order to effective ly  monitor the detection and recovery from 

faults, it was necessary to inject faults onto the distributed processing 

system. A  description o f how this was achieved is given in the following  

section.

9 .6 .  Injection of Faults in Real Time.

In the single processor study faults were injected by halting the 

processor, selecting the fault by switches and then single stepping, 

one system instruction being executed with a corrupt address or data bus. 

This approach, when extended into a distributed processing system would 

require the synchronisation of a ll the processors, which was considered 

to be an over complicated solution. The problem then was how to inject 

faults in real time on one of the microprocessor subsystems.

In itia lly , faults were to be injected by means of pseudorandom 
27

generators . This was dropped in favour of the following approach as it  

was considered that it would be more informative by injecting repeatable 

faults in known positions of the software, in so far that the type of fault 

injected is directly correlated to the observed failure at a systems leve l.

9 .6 .1 .  Mechanism of Fault Injection.

The mechanism of fault injection used in the distributing processing 

research was as follows. A  hardware register is loaded by the micro­

processor with a fault address, prior to the operation of the system.

When the processor reaches this address in the software, a comparator 

is activated by the two addresses ( i .e .  hardware register and address bus)
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being identical. This is shown schematically in F ig .9 .5 .  A  non-maskable 

interrupt is then generated and the interrupt service routine activates 

the fault.' For example, the interrupt service routine may either read a 

variable and corrupt it ,  or corrupt the stack or stack pointer.

A t the end of the short interrupt service routine the microprocessor 

loads the hardv\are register with the next fault address. Finally the 

'return from interrupt' instruction returns control to the module being 

executed prior to the interrupt, or to another address if  the stack has 

been corrupted. Provided that the interrupt service routine is short 

enough, say less than 1% of a system cycle, then a fault can be injected 

in real time.

9 .6 .2 .  Specific Cycle Fault Injection.

This mechanism can be used to in ject a fault within a specific 

predetermined cycle as shown in F ig .9 .6 .  The interrupt service routine 

then reads the cycle number; if  the cycle number is the one in which the 

fault is to be injected then the predetermined fault is allowed to occur.

On every other cycle, the cycle number is found not to be equal to the 

required cycle number and a 'return from interrupt' instruction is then 

executed. The overhead incurred in adopting this procedure was in the 

order of a few tens ot micoseconds which was generally short enough not 

to invalidate the system operation for the research model.

An alternative method of injecling a fault onto a specific system 

cycle would be the use ot a maskable interrupt which could then be 

enabled on the specific cycle. This approach was not used as it 

involved modifying the system software, that is, it requires the addition 

of enable and disable interrupt instructions and a recompilation of 

software i f  a different fault address is required.
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Chapter 10. The Distributed Processing System Description.

As described previously the distributed processing system used in 

this study is based on three active processor subsystems which perform the 

system function, together with a standby processor subsystem for failure  

recovery v iz . task swapping as shown in Fig. 1 0 .1 . Communication 

between subsystems was carried out using a high integrity serial data 

highway, a description of which is contained in this chapter.

The microprocessor used in the single processor study was utilised as the 

basis for one of the subsystems. The other three subsystems consisted 

of identical processor cards which were constructed to the author's design. 

The facilities offered by these common processor cards are described in 

Chapter 1 0 .1 . The link selector shown also in Fig. 1 0 .1 . comprises a 

manual switch arrangement for routing the program loading of the subsystems 

via the RS 232 data lin k .

The requirement for the data highway between the microprocessor 

subsystem was based on the following criteria:

1. Distributed processing power

2 . High communication bit rate

3 . A b ility  for system expansion

4 . High integrity communications

It was considered important to make a choice of data communication system

which had an established message format and protocol. This led to the
28

decision to implement M IL -  STD 1553B , which has been developed 

for high integrity data communications between aircraft subsystems.

An overview of M IL -  STD 1553B can be found in Appendix F.

1 0 .1 . Central Processing U n it.

The subsystem processor card designed for the real time control 

system is based around the Z8000 microprocessor. An RS232 serial 

interface is included on the card to provide communication with a visual 

display unit. The default baud rate was set to 9600, but different 

rates can be selected by the interconnection of wire wrap pins on the card.
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Details of the baud rate selection can be found in Table 1 0 , 1 ,

The card contains 4K bytes ot static RAM and allows for up to 8 K

bytes of EPROM. A  4K byte monitor on the card is derived from that
24

on the Am 96/4016 Evaluation Card. The memory maps of each 

processor subsystem are identical and are as shown in F ig .6 .3 .

The card also contains the logi c, as described in Chapter 9 .6 .  for 

the injection of faults in real time.

The circuit diagram, layout diagram and parts list are shown in 

Figs. 1 0 .2 . and 1 0 .3 . and Table 1 0 .2 .

1 0 .2 . Microprocessor to 1553B Interface.

The data highway interface was designed to meet the requirements of 

M IL -  STD 1553B for communication with a Z8000 microprocessor.

The interface was capable of acting as either a bus controller or as a 

remote terminal. The position of a d u a l-in -lin e  switch on one of the 

interface cards decided which mode of operation was to be used for the 

term inal. The design uses a single twisted pair bus, although the standard 

allows up to three redundant buses, in addition to the active bus.

The interface appears to the Z8000 as a number of memory addresses as shown 

in Table 1 0 .3 .

A  schematic of the microprocessor to 1553B interface can be found 

in Fig. 1 0 .4 . and shows that the message path between the serial bus and 

the Z8000 is achieved by the use of a 32 word F IFO . A  control register 

decides whether the word to be sent or received is a command, data or 

status word. The interface was designed on the principle that a remote 

terminal is always ready to receive a message but is not always ready to send 

a message.

A  simple time out circuit on the transmitter of the interface precludes 

continuous transmission longer than 800 microseconds, implemented as a 

monostable which is triggered by a request to send a message.

Thus the failure of a bus controller results in a quiet bus with no transmissions, 

due to the tim e out. The 1553B standard allows ten message formats although
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only two of these are required for this study, these being bus controller to 

remote terminal transfer and remote terminal to bus controller transfer.

1 0 .2 .1 .  Control and Status Register.

Control and status information within the interface consists of two 

registers, one for read and one for w rite, having the same address.

The function of the control and status register bits is shown below; 

these bits form the data word which is either read from or written to 

the status register. Each b it of the status register is valid  only when the 

terminal is either a bus controller (BC) or a remote terminal (RT). The 

exception is b it 9 in the read status which is valid in both modes of operation, 

Read Status;

Bit N o . Title  Function

0 - 7

8

10

11

12

13

14

15

Not used.

ME(RT) A  logical *1* indicates that the last 

message was invalid .

C/RT A  logical '1 ' indicates that the terminal is

configured as a bus controller.

A  logical 'O' indicates that the terminal is 

configured as a remote terminal

BUSY(BC) A  logical '1* indicates that a busy status

return was received from a remote terminal.

BUSY(RT) A  logical '1 ' indicates that the remote 

terminal is unable to send data.

Not used.

ME(BC) A logical '1 ' indicates that the message error

b it was set in the last status return.

OR(RT) A  logical '1 ' indicates that the FIFO contains

valid data.

T/R (RT) A  logical '1 ' indicates that a request for data

has arrived. A  logical 'O' indicates that 

data has arrived in the interface.
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Write Status:

Bit N o . T itle  Function

0 BUSY(RT) A  logical '1 ' sets the busy b it within the

status word.

1 DBCA(RT) A  logical 'T  sets the dynamic bus conlrol

acceptance b it within the status word.

2 SUBFLG(RT) A  logical 'T  sets the subsystem flag w ith in

the status word.

3 SERREQ(RT) A  logical sets the service request b it

within the status word.

4 - 1 5  N ot used.

The interface was built on two Eurocards; the circuit diagrams, 

layout diagrams and parts list can be found in Figs. 1 0 .5 . ,  1 0 .6 . ,  1 0 .7 . ,

1 0 , 8 . and Tables 1 0 .4 . and 1 0 .5 . Figure 1 0 .9 . shows a photograph 

o f the two interface cards.

The operation of the interface is best described by considering 

its use as a bus controller and then as a remote terminal under the operations 

of sending and receiving messages.

1 0 . 2 . 2 . Message from Bus Controller.

Consider the interface configured as a bus controller, and requiring 

to send a message to a remote terminal. In itia lly  the microprocessor 

loads the FIFO with the message to be sent followed by the loading of the 

command word with the transmit/receive b it set to receive. Note the 

transmit/receive b it is set depending upon the direction of the message w ith, 

relation to the remote terminal being addressed. When the command word has 

been loaded, the microprocessor then initiates the transfer, as shown in 

the  timing diagram in Fig. 10 .10 . The low to high transition of the in itiate  

command enables the Manchester Bi-Phase encoder, which sets 

the SEND DATA output high when it is ready to receive data. The 

command word is converted into serial data, which is clocked into the 

encoder at a rate of one b it a microsecond. After the sync and encoded
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data are output, the encoder adds on an additional b it which corresponds to 

the parity for that word.

The encoder produces bipolar outputs which are used to drive an 

isolating transformer via a long tailed pair as shown in Fig. 1 0 .7 .b .

The connection between the isolating transformer and the bus is achieved by 

means of a stub and a coupling transformer as shown in Fig. 1 0 .1 1 . The 

coupling transformer for each interface is housed in a shielded box at the 

back of the expansion box.

When SEND DATA goes high after transmission of the command word 

the first data word is clocked out of the F IFO , The data word is 

converted into serial data and then clocked into the encoder when the 

encoder is ready to accept data. The converted serial data word is 

preceded by a data sync which is different from the sync which precedes 

the command word, as shown in F ig .F .2 . After the last word has been 

transmitted, the bus controller then expects to receive a status word 

from the addressed terminal to confirm that the message has been received.

If this status word is not received within 15 microseconds of the last data 

word being sent, then a response time out occurs. Note the 1553B standard 

requires that a bus controller w ait at least 14 .0  microseconds before 

allowing a no response time out to occur; no maximum time period is 

specified within the standard. The time out can be used to inform the 

microprocessor that message handshaking has failed; which can then be 

followed by a re-transmission or other predetermined course of action.

1 0 .2 .3 . Message to Bus Controller.

Consider now the operation of a bus controller requesting a message 

from a remote term inal. A  subaddress field of five bits within the command 

word can be used to signify, for example, a request for a particular data 

type. The controller sets the word count field  equal to the required 

message length, the transmit/receive b it equal to transmit, and the 

address and subaddress fields to their relevant values. This command word 

is loaded into the command register followed by an in itiate transfer command
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from the microprocessor subsystem. The low to high transition of the 

in itiate command enables the Manchester Bi Phase encoder; 

the timing diagram is shown in Fig. 1 0 .1 2 . The serial form of the command 

word is clocked into the encoder when it  sets SEND DATA high.

The addressed terminal identifies its own address within the command 

word and signals the subsystem processor that a message is required.

If the message has not been preloaded into the interface then the subsystem 

would have set the busy bit within the status word which is transmitted 

to the bus controller. The status word is decoded by the AAanchester 

Bi-Phase decoder which sets TAKE DATA high. The bus controller 

recognises that the remote terminal was unable to transmit the message 

at that time, it then waits for a predetermined period, before re-transmitting 

the command under subsystem control. The period of waiting is under 

control o f the subsystem processor, and was typically set between fifty  

to a hundred microseconds.

During the period ot w aiting, the transmitting subsystem processor 

identifies the relevant message and loads it into the interface. The busy 

bit in the status register of the remote terminal is also reset so that when 

the request is received again then the message is automatically transmitted. 

On this occasion, the bus controller decodes the status word and recognises 

that the required message follows the status word. The data is loaded, 

one word at a time into the FIFO; after the last data word 

C O N T IG U IT Y  FAIL goes high since there was no bus activ ity  for a 

period of four microseconds since the last data word. The length of the 

message requested is checked with the number of words received to confirm 

that the message has been correctly received.

1 0 .2 .4 . Message to Remote Terminal.

Consider the operation of a remote terminal receiving a message.

The first word received is the command word which is decoded by the 

remote terminal. Having ensured that the message has the correct 

address, the interface loads the word count into a latch and clears the FIFO
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ready for the message. In addition a signal VALID  COAAAAAND SYNC  

goes high which starts the receive cycle; the timing diagram is shown 

in Fig. 10 .13.

As each word arrives it is decoded into serial data with the decoder 

setting a VALID WORD signal high if  the word is valid . The serial word 

is converted into a parallel 16 b it word, loaded into the FIFO and the 

word counter is incremented. At the end of the message the interface 

recognises a period without data syncs, and sets C O N T IN G U IT Y  FAIL 

high. The value of the word counter is then compared with the word 

count from the command word. If these two values are equal then the 

message has been correctly received and the subsystem processor is 

interrupted to indicate the presence of a message. The Manchester Two 

BrPhase encoder is enabled and the status word is sent to the bus controller. 

If the word counts are not equal then an error has occurred and the 

subsystem processor is not interrupted. The occurrence of an error sets the 

message error b it in the status register and the status word transmission 

is suppressed.

1 0 .2 .5 . AAessage from Remote Terminal.

Consider the operation of a remote terminal sending a message.

When a request for data is received, a signal VALID  COMAAAND SYNC  

goes high, as shown in the timing diagram in Fig. 10 .14 . The encoder is 

enabled and the status word is clocked into the encoder and transmitted.

On the falling edge of SEND DATA, the interface determines whether a 

message has been loaded into the F IFO .

If a message has been loaded then one word is read at a time from 

the FIFO; each word is converted into serial data before being sent 

as part of a contiguous message. However, i f  no message has previously 

been loaded into the FIFO the busy b it is set w ithin the status word return. 

This indicates to the bus controller that the remote terminal was unable 

to send a message in response to the request. Due to the time constraints 

of the 1553B standard ( i .e .  respond with status word within 12 microseconds)

76



there is insufficient time to load a message into the FIFO after receiving

a transmit command and before it is necessary to send the status word.

The subsystem processor is then interrupted and can then load the required

message into the FIFO and release the busy within the status register.

On the next request to transmit the message is sent to the bus controller.

1 0 .2 .6 . 1553B Protocol Fault Injection.

The encoding and decoding of Manchester Two Bi-Phase Level

data within the interface was carried out by a customised integrated
29

circuit, the Harris 15530. This integrated circuit sets the word

length to 20 bits os defined by the 1553B standard. An alternative
30

integrated circuit similar to that above, the Harris 15531 was used 

within one of the interfaces and allows 1553B protocol faults to be injected  

onto the bus. The integrated circuit is similar to that described above 

except that the frame length and parity are programmable for both the 

encoder and the decoder. A  frame length of between six and thirty 

two bit periods can be obtained with this device, which is set up by 

writing to address 6FEJ2Ï. The b it pattern and the corresponding frame 

length can be found in Table 1 0 ,6 .

This interface was also constructed on two Eurocards, whose circuit 

diagrams are found in Figs. 1 0 .5 . and 1 0 .1 5 . The corresponding layout 

diagrcm and parts list for F ig .10 .15 . are to be found in F ig .1 0 .1 6 . and 

Table 1 0 .7 .

1 0 .3 . Communications Software.

The available time for designing and building the 1553B interface 

was lim ited, therefore the decision was made to use the Z8000 processor to 

pass data in and out of the interface rather than use DM A which would 

have been more elegant. However, this decision did not affect the 

performance of the distributed processing system as sufficient free time 

was available to allow the processor to transfer the data.

The communications software written for this study is described 

by considering the sending and receiving of messages to and from the
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bus controller and a remote terminal, as follows:

1 0 .3 .1 . Message from Bus Controller.

The sending of a message is performed as shown in Fig. 1 0 .17 .

The processor clears the FIFO prior to writing the message one 16 b it word 

at a time into the FIFO . When the message has been loaded, the command 

word is loaded into the command register. This command word contains 

the address of th e  remote terminal which w ill receive the message and the 

word count of the message. F inally , a send command is given and the 

message is sent under control of the interface.

Under normal conditions the message transfer is then complete; 

however, if  no status return is received from the remote terminal in 

question, then an interrupt is generated and the sequence can be repeated.

1 0 .3 .2 .  Message to Bus Controller.

The request and reception of data is performed as shown in 

Fig. 1 0 .1 8 . The message sequence starts with the processor loading the 

command word register and then in itiating the transmission. If the 

busy b it is set in the status word from the remote terminal then an interrupt 

occurs. The interrupt service routine increments the busy count (number 

of requests given a busy reply), clears the interrupt flip  flop and returns 

to the calling program which repeats the sequence. If the busy is not 

set in the status word then no interrupt occurs and the message is read from 

the FIFO within the interface after a short delay.

1 0 .3 .3 .  Message to Remote Terminal.

The reception of a message is performed as shown in Fig. 1 0 .19 . 

When data is expected from the controller the interrupt is enabled.

On reception of a receive command, an interrupt is generated and the 

message is loaded into memory. On return from interrupt the remote 

terminal then disables the interrupt.

1 0 .3 .4 . Message from Remote Terminal.

The sending of a message by a remote terminal is performed as 

shown in Fig. 10 .20 , It is assumed that the busy b it within the status
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register is set; when a request for data first appears the busy reply is given. 

The request for data triggers an interrupt; the interrupt service routine 

then loads the message into the interface. When the request appears 

again the message is sent, this condition is recognised by the subsystem 

processor which then sets busy for the next request.

1 0 .4 . Systems In tegration and Test.

As for the single processor case, system integration and test 

programs were developed for this phase. These consisted partly  

of programs written for the single processor togehter with communications 

test schedules. These programs have not been included in this thesis.
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Qiopter 1 ] . Design Strategies: Distributed System.

This chapter presents strategies for detection and recovery from 

transient and permanent hardware faults,and their implementation in 

hardware and software within a real time distributed processing system.

The approach was, first to inject faults onto the control system which had 

no recovery mechanism. Having gained experience from the single 

processor study on the effect of faults, i t  was fe lt unnecessary to inject 

a large number of random faults but instead to inject faults to give  

typical or specific faults. Having obtained a baseline, the basic 

Recovery Block was implemented upon the target tracking and digital 

controller software.

Other techniques, for example the use of a watchdog timer, 

developed in the single processor study were then implemented in order 

to localise the effect of faults. Global recovery was used to prevent a 

system crash or an unsafe system state when the localisation of the 

effect of faults was not possible.

The performance of the distributed processing system was obtained 

using the results of tracking a single target, whose characteristics are 

described in the following section. The subsystem is operated wholly in 

track mode and for the purposes of the distributed system, a run is 

considered to start at missile launch.

1 1 .1 . Target Characteristics.

The target used for the distributed processing study was different 

from that of the single processor study and had the following characteristics: 

START P O SIT IO N  4000 4700 200 (metres)

H E A D IN G  -  100 4000 200 (metres)

VELO C ITY 250 (metres/second)

This target was chosen as it gave a missile angle characteristic, as shown 

in Fig. 1 1 . 1 . ,  which has two phases of missile fligh t, i .e .  that of 

gathering and the terminal phase. In addition, the missile range is not 

equal to the target range until approximately 1 0 . 8  seconds, as shown
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în Fîg.n . 2 . ,  thus allowing the system to recover under d ifficu lt fault 

conditions.

The target tracking software was modified slightly from that used in 

the single processor study, and involved the use of 1 2 0  sectors to represent 

360° instead of the 30 sectors previously used. This increase in the 

number of sectors allows more accuracy to be obtained in target tracking, 

due to the higher resolution.

The use of 120 sectors gives a sector spacing of 3 ° , and the effect of 

this can be seen in Fig. 11 . 1 . The missile does not lie  on the exact angle 

as the target during the terminal phase but can still said to be tracking 

the target. Tracking can be justified as the missile lies within the same 3 °  

sector as the target, and the system cannot distinguish one edge of this 

sector from the other edge. Thus during the terminal phase the missile 

believes it  is on the same azimuth as the ta rget, and a target hit is 

considered to have occurred if  the missile angle is within the same 3°  

sector when the ranges are equal. This situation is adequate for the 

purposes of demonstrating system recovery, but can be improved by the use 

of smaller sectors and the use of feedforward terms in the missile guidance 

loop.

The operation time of a single run was extended from ten to fifteen  

seconds, this was simply a convenient time which was greater than the time 

for the missile range to be equal to the target range. In taking results the 

criterion taken was to compare the missile angle under fault conditions with  

the true missile angle obtained under no fault conditions. Each run was 

continued to fifteen seconds even if  a target hit occurred before this time. 

The measurement of performance is described in the following section.

1 1 .2 . Performance Index.

A  quanti ta ti/e  measure of performance was required to assess the 

performance of the system under different fault conditions. The use of 

ava ilab ility  as a measure is quite good but does not differentiate between 

a single long unoperational period and many short periods. In many
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applications, it  is not sufficient just to recover from a fault but it  is 

important that fast recovery takes place as in the case of a missile 

tracking a target. In addition, the time at which a fault occurs is 

important, for example, a fault occurring at nine seconds after missile 

launch has a higher probability of disrupting system performance than a 

fault occurring a t three seconds.

The missile flight consisted of two distinct phases, that is the 

gathering and the terminal phases. During the gathering phase the missile 

to target angles are large in contrast to the small angles obtained during 

the terminal phase. Since the guidance control is closed loop, the system 

recovers naturally from propagated data corruption type faults. However, 

the natural recovery period is like ly  to be significant and may result in a 

failure of the mission particularly if  the fault occurs during the terminal 

phase. Thus it  is important that data corruption type faults are not 

allowed to propagate and that the system is always in a known state.

In order to penalise slow recovery and large errors from the expected 

performance, the following measure, called a Performance Index was used

Performance Index = /  ^  \2 m  i \
/q t(error) dt  ( I i . l . )

The upper time lim it of the integral occurs when missile range is 

equal to target range.

1 1 .3 . System with No Recovery .

In itia lly  the system was configured as shown in Fig. 1 1 .3 .  without 

any protection or recovery schemes to provide a baseline set of results.

Two types of faults were considered, that of data corruption and faults that 

caused the digital controller to crash.

1 1 .3 .1 .  Data Corruption Type Faults.

Using the mechanism described in Chapter 9 .6 .  faults were in itia lly  

injected to produce data corruption effects. First, consider faults 

introduced during the gathering phase, i .e .  up to about eight seconds 

after the start of the run. The effect of corrupting the target angle 

presented to the missile guidance loop can typically be as shown
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în Fîgs. 1 1 .4 . and 11 .5 .  Fîg, 11 .4 . shovs the effect of corrupting the

target angle to a value of -  3° for a period of eight iterations ( l /1 5 th  second)

at two seconds after the start of the run. This value is a legal target angle,

however such a jump in target angle is un likely  to occur under no fault

conditions. This results in a maximum deviation of 6 .0 5 °  and a performance
2

index of 6 5 .0(seconds. degrees) . Fig. 1 1 .5 . shows the effect ot

corrupting the target angle to a value of -  6 °  for the same period a t four

seconds after the start o f the run. This also gives a maximum deviation

of 6 .0 5 °  with a performance index of 112.3(seconds. degrees)^.

A  data corruption type fault occurring in the output of the digital

controller corresponds to the missile being given an incorrect guidance

demand. The effect of setting the guidance demand to zero a t 1 /4  second

from the start for eight iterations is shown in Fig. 1 1 .6 . This figure

shows a maximum deviation of 8 .4 9 °  and represents a performance index
2

of 152 .2(seconds, degrees) . The effect of data corruption occurring

during the gathering phase, as shown in Figs 1 1 . 4 . ,  1 1 .5 .  and 1 1 , 6 .

is to change the plot of missile angle but does not affect the terminal

phase of the missile.

The time taken to recover from a data corruption fault within the

gathering phase was between two and six seconds. If this recovery period

is repeated during the terminal phase then the effect of the fault is to

cause the missile to miss the target. In the terminal phase the recovery

period was generally shorter as shown in Figs. 1 1 .7 . and 1 1 . 8 . which

indicates that tracking was lost for between one and three seconds.

The effect of an uncontrolled overflow, due to a large target angle, in

the controller's calculation of lateral acceleration is shown in Fig. 1 1 .9 .

This effect is quite severe causing the missile to slew rapidly, giving a

maximum deviation of 1 4 .0 ° with a corresponding performance index of
2

14195.8(seconds, degrees) . Tracking is regained three seconds after 

the fault was introduced during which time the target was missed. The 

overall effect of data corruption in the terminal phase in a system without
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recovery is that there is a high probability that the target w ill be missed,

1 1 ,3 .2 ,  Controller Crashes.

The next stage was to consider the type of fault that led to a 

controller crash, i . e .  a total loss of system function. Typical causes 

of system crashes were found by studying the single processor results; 

a list of these causes can be found in Table 1 1 .1 ,

Twelve runs of the system were carried out, each run was faulted 

by one of the fau lt types listed in Table 1 1 .1 , The faults were injected  

within the calculation of the difference equations by substituting one of 

the instructions in Table 1 1 .1 . for a system instruction. O f  these 

twelve faults, a ll caused a loss of system function except fault type 

number 2 , The introduction of a relative jump meant that the program 

counter stayed local to the correct value and a system crash did not occur; 

the effect was one of data corruption. This cause was eliminated from 

further consideration of faults that cause the system to crash if  no protection 

or recovery is applied.

1 1 .4 . Basic Recovery Block.

The previous section identified two different types of fault and their 

effects; the next step was to implement the basic Recovery Block and 

monitor its effectiveness in a distributed processing environment under 

these fault conditions. The basic Recovery Block was implemented within  

the target tracking processor and the digital controller processor to localise 

the effect of faults on total system performance. The implementation is 

described below followed by the resulting effect of the faults.

1 1 .4 .1 , Target Tracking Processor.

The basic Recovery Block implementation used was the same as for the 

single processor study (see Chapter 7 .2 . )  except that the software was 

modified to allow  1 2 0  sectors per revolution,

1 1 .4 .2 ,  D igital Controller Processor,

The digital controller, as described in Chapter 5 ,3 .  consisted of the 

addition of four difference equations. Each of the five units (four difference
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equations plus the addition) had its own Recovery Block with the acceptance 

test defined as ensuring the output is within the worst case limits.

The estimation of worst case limits can be found in Appendix G .

The outputs of the four parallel units and their addition can be found in 

Figs. n . lO .  and 1 1 .11 . and satisfy the results obtained in Appendix G .

In addition to acceptance testing, any overflow following an 

arithmetic operation resulted in the entry of the appropriate alternate  

routine. For simplicity, the alternate routine was to re-execute the 

primary routine.

1 1 .4 .3 . Data Corruption Faults.

The data corruption faults as described in Chapter 1 1 .3 .1 . were 

introduced into the system with the basic Recovery Block. O f  the faults 

introduced into the target tracking processor all were captured by the 

relevant acceptance tests. This resulted in no degradation in the plot 

of missile angle, even though a default or last value was used on several 

occasions. The explanation for this is that the output of the target 

tracking process is slow moving, with the target azimuth being updated once 

per second.

Now consider faults injected into the controller software, as before, 

the output of the digital controller difference equations was corrupted and 

set to zero. The acceptance test was entered and the output passed the 

test. The resulting missile angle plot was the same as for the system with 

no protection, i . e .  as in F ig ,1 1 .6 . However, the effect of this fault 

occurring during the gathering phase does not influence the system's ab ility  

to enter the terminal phase.

The effect of allowing a large transitory target azimuth appear 

as input to the missile guidance loop was shown in Fig, 1 1 .9 . This caused 

overflow in the digital controller's difference equations. However, with 

the basic Recovery Block implemented within the target tracking 

processor, then the acceptance test trapped the large swing away from 

the target being tracked. The alternate routine was then entered and the
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previous value used; this resulted in the plot o f the missile angle being 

equal to that under no fault conditions. Thus, the extent of the fault 

was localised within the target processor and was not allowed to 

propagate to the digital controller.

1 1 . 4 .4 .  Controller Crashes.

The causes ot system crashes, as listed in Table 1 1 .1 . except 

fault type number 2 , were introduced into the controller software 

with a basic Recovery Block structure. All the runs failed to complete 

i . e .  a system crash occurred, except number ten (POP instruction).

This was due to the structure of the Recovery Block. The POP instruction 

results in the correct return address of a subroutine being taken off the 

stack, this led to the processor pointing to the wrong calling address 

when a return from subroutine was executed as shown in Fig. 1 1 .12 .

This led to omission ot the acceptance test following calculation of one 

of the difference equations. This omission was not a hazard to the system 

as the addition of the four parallel units is checked later in the cycle before 

a guidance demand is sent to the missile.

1 1 .5 . Use of Software Traps.

Some microprocessors, including the Z8000, have built in software 

traps to detect potentially hazardous situations, in addition to a software 

interrupt call for user software. The use of these traps was described in 

Chapter 7 .5 . ;  using this technique the system was run using the faults 

listed in Table 1 1 .1 .

In addition to those recovered from by the basic Recovery Block, 

numbers one and five did not cause a system crash using the technique of 

reading the process number and returning control to the appropriate 

alternate routine.

1 1 .6 . Addition of Watchdog Timer.

A  watchdog timer, as previously described in Chapter 7 .3 . ,  was 

added to the structure of the Recovery Block within the digital controller. 

The remaining faults from Table 1 1 .1 . (instructions most like ly  to cause
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a system crash) that were not recovered from using the mechanisms in 

Qiapter 1 1 .4 . (Basic Recovery Block) and 1 1 .5 . (Software Traps) were 

introduced into the controller software. A  time out occurred on each 

occasion leading to entry of the alternate routine. No degradation in 

system performance resulted from the injection of these faults.

1 1 .7 . Global Recovery.

Under fault conditions the 1553B bus controller may request data 

and repea tab I y receive a busy response. A lternatively the failure of a 

remote terminal may lead to the message error b it being set and the 

suppression of the status word. In a real time system, the controller ccnnot 

continually accept this situation and must take steps to maintain the 

integrity of the system. This section describes how the system can deal 

with the transient failure of a remote terminal, in this case the terminal 

attached to the target tracking processor. The permanent failure of this 

processor is covered in Chapter 1 1 . 8 .

1 1 .7 .1 .  Transient Failure and Recovery.

Consider the transient failure of the remote terminal belonging to 

the target tracking processor for one system cycle. The transient 

failure was simulated using the 1553B protocol fault injection interface 

described in Chapter 1 0 .2 .6 . At the required time of fa ilure, the frame 

length was adjusted to twenty one bits for a single cycle only. The target 

tracking process is a slow moving one, therefore the last correct value 

received by the controller is a reasonable estimate of the true position of 

the target.

The recovery of the system is explained by following the run of the 

above fa ilu re, with the aid of Fig. 11 .13 . On the fault cycle, the bus 

controller receives an invalid status word each time a request for data is 

made. This is allowed to occur a maximum of four times; this figure being 

set by the maximum latency allowed in the system. At this stage the digital 

controller assumes that the remote terminal is not going to reply and 

enters an alternate routine. This routine is a stepping stone between
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fault free operation and the permanent failure of a remote terminal or 

subsystem, thus a transient failure is first assumed.

11 . 7 .2 .  Example of Recovery.

For this example the system entered the alternate routine and the last 

correct data from the target tracking process was used. In addition, a 

counter was updated for the purposes of counting the number of times the 

alternate routine was entered; a maximum value of five was allowed before 

a permanent failure was diagnosed. The use of the last correct data 

corresponds to the target azimuth position which is used as the input to the 

missile guidance loop.

On the next cycle the target tracking processor responded correctly 

to the bus controller's request for data, and the target azimuth was sent from 

the remote terminal to the controller. This cycle and the following cycles 

were successfully completed.

The fault was induced in a cycle on which the target azimuth did 

not change, and as recovery took place the missile angle was exactly as in 

the fault free operation. If the fault had occurred on a cycle when the 

target azimuth had changed, the digital controller would have used the 

previous value on the faulted cycle and the true value on the next cycle. 

This would have resulted in the step change in target azimuth appearing 

1/ 12 0 th second later than it should have done.
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Chapter 12. Standby Processing Systems.

The previous chapter demonstrated the improvement ot ava ilab ility  

that can be obtained in a distributed processing system under fault 

conditions.

Consider now a system which decomposes into a given number of 

processor subsystems due to factors such as complexity, allowed latency, 

distribution of system peripherals and prevention of propagation of faults. 

How then is the decision made to include a further processor to increase 

system ava ilab ility  and performance under fault conditions and what 

function w ill it undertake.

The decision to add an extra microprocessor subsystem and the 

amount of fault tolerance within the other microprocessor subsystems, is 

based largely on system requirements, i .e .  how is the system expected to 

operate under certain specified conditions. The operating conditions 

may include environmental conditions such as EMP radiation, permanent 

or transient fau lt conditions, and difficu lty  of maintenance whilst in 

fie ld  use.

The processing power of an additional microprocessor system may be 

used for task swapping and/or health monitoring; these functions are 

described below.

1 2 .1 . Task Swapping.

The concept of using a standby microprocessor system is not a new 

idea, however it  is not sufficient to obtain a better performance under 

fau lt conditions. The additional processor may need to gain access 

to peripherals or transducers within the system, and this access w ill 

depend upon the physical system distribution and the ava ilab ility  of 

transducers . The use of the terminal attached to the standby unit as 

a remote terminal or os a standby bus controller w ill depend upon the 

number and nature of the remote terminals and the attached subsystems, 

and the requirement for continued system operation. For example, it may 

be imperative that a bus controller failure does not cause system fa ilure.
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1 2 .2 . Health Monitoring.

In many real time systems it  is important to give on operator 

confidence that the system is functioning fu lly  or in a degraded mode.

The importance of this confidence may vary depending upon environment 

and skill level of operator. In order to gain confidence that the system 

is operational it  is necessary to carry out routine health monitoring; 

this monitoring must be integrated into the design of the system.

In the system described the digital controller could send its immediate 

outputs of the difference equations to a standby processor on a regular 

basis. The reception of this data can then be used for health monitoring, 

that is, a signal from the bus controller to confirm the functional state 

of the system. In the event of a bus controller or digital controller 

subsystem, the standby processor can use the last valid  set of intermediate 

outputs rather than restart the difference equations from zero.

1 2 .3 . Use ot Field Test Data.

The system requirements may or may not be sufficient to determine 

the system configuration; additional data in the form of field test data, i f  

availab le , can be used for the basis of the decision. This field  test 

data can be gathered, if possible, from existing equipment using for 

example the same transducers and/or operating in similar environmental 

conditions. From this data, it may be deduced, for example, that 

transient faults predominate or that a certain transducer is critical 

to the operation of the system or that the communications link is prone 

to burst errors. The fie ld  test data can be used to decide whether the 

system operational requirements are like ly  to be met with a certain 

configuration and determine the level of fault tolerance within the 

subsystem and the need for a standby microprocessor system.

Having considered aspects of a standby processing subsystem, the 

following sections describe the recovery process that takes place 

following a subsystem failure and the associated achieved performance.
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12 .4 . Failure of a Remote Terminai.

The addition of a fourth processor subsystem was provided in order 

that system recovery could take place when a complete processor subsystem 

fa iled . This section describes the recovery that takes place following  

a remote terminal failure whilst the system is tracking a target.

During the four processor study the raw target data was loaded 

into the memory of the missile processor, as this processor is assumed fault 

free. This involved the building of an additional memory card whose 

circuit diagram, layout diagram and parts list can be found in Figs. 1 2 .1 .  

and 1 2 .2 . and Table 1 2 .1 . The placement of this raw data within the 

memory of the missile processor enabled the system to obtain target data 

even in the presence of the digital controller or target tracking processor 

fa ilure. This involved a small modification to the software, that is on 

each cycle the bus controller has to get the raw data and give it to the 

target tracking processor. This involved a time overhead but it was small 

compared to the cycle time, thus having no effect on system performance.

The arrangement of the four processor subsystems and the software is shown 

schematically in Fig. 1 2 .3 . ,  where the fourth processor contains a copy of 

the target tracking process and is idle during fault free operation.

1 2 .4 .1 . System Recovery.

Consider the permanent failure of the target tracking processor and 

the associated recovery. For this example, the failure of the target tracking 

processor results in a busy reply when a request for data is made. On the 

first cycle of the fa ilu re, a maximu m number of busy status returns are 

received, leading to entry of an alternate routine shown in F ig .1 2 .4 .

The last correct value of target azimuth is used and the guidance demand 

calculated. System considerations determine that no more than six 

consecutive entries of the first alternate routine were allowed. The 

fau lt, being permanent, after five cycles causes the system to enter the 

alternate routine for a sixth time and then assumes a permanent 

failure.
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The second alternate routine is then entered and this effects the 

use of the fourth processor to take over the failed processor's function.

On the first cycle in this alternate routine, the digital controller has to 

give the standby processor sufficient information to take over the failed  

function. In this case, the bus controller sends the radar azimuth position 

and the azimuth on which the target lies. The reception of these variables 

by the standby processor acts as a wake up signal, with these variables 

being used as a starting point of the function.

It is assumed that time is limited on this sixth cycle and so the 

digital controller again uses the last stored value of the target azimuth.

On subsequent cycles the digital controller enters the a lte rn a te  routine, 

sends raw data to and receives target azimuth positions from the standby 

processor.

1 2 .4 .2 . System Performance.

If the failure of the target tracking processor occurs at least six 

cycles before a change in target azimuth then no difference in the 

resultant missile angle is obtained. The digital controller has no 

knowledge of the targets range or velocity  characteristics and so a 

period of graceful degradation occurs for a period less than one second 

until the standby processor identifies the target.

If the failure of the target tracking processor occurs less than 

six cycles before the target azimuth position is due to be updated, then 

the resulting missile angle plot w ill be different from that of the unfaulted 

one. This is due to the effect which can be seen schematically in 

Fig. 1 2 .5 . The standby processor does not identify a target on a 

particular cycle until approximately one second after the fau lt, and 

uses the target azimuth value prior to the fau lt.

Two runs were carried out with a failure of the target tracking 

processor occurring less than six cycles before the target azimuth was due 

to change. In the first run, the fault was introduced at one second after 

the start of the run. The resultant missile angle plot can be found
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in Fig. 1 2 .6 . and shows that only the gathering phase is affected and the

missile still enters the terminal phase successfully. A  maximum deviation

of 2 ° was recorded with a performance index of 4 6 .5(seconds, degrees)^.

The second run involved a fault at approximately eight seconds, i . e .

during the terminal phase. The resultant missile angle plot can be found

in Fig. 1 2 .7 . and shows that the system regained tracking within three
2

seconds, giving a performance index of 1 5 4 .9 féconds, degrees) , and a 

maximum deviation ot 1 .4 4 ° . As the angle was within three degrees of the 

true un foul ted angle at eleven seconds, then the run was considered to be 

successful . Eight seconds from the start of the run, was found to be the 

latest time that such a fault could occur without affecting mission success.

1 2 .5 . Failure of a Bus Controller.

The failure of the target tracking processor during system operation 

did not cause system failure due to recovery taking place with the aid of a 

standby processor. Intu itively, the failure of the bus controller is like ly  

to have a much greater effect on system performance. This section 

shows by way of examples how the recovery from such a failure can take 

place and its effect upon system performance.

The configuration of the four processor systems, was as shown in 

Fig. 1 2 .8 . with the standby processor idle under no fault conditions. 

Consider then the failure of the digital controller whilst tracking a target.

The function of the digital controller is to execute a number of 

difference equations to calculate the guidance demand of the missile, 

if  another processor has to take over then it is advantageous to use a good 

estimate of the past values of the four parallel units rather than restart 

the difference equations from zero. The outputs of the four parallel units 

can be seen in Fig. 1 1 .1 0 . which shows that the best estimate for 

previous outputs is in fact zero.

It was assumed that the failure of a bus controller would result in 

a prolonged period of inactiv ity  or a prolonged period in which invalid  

commands are being transmitted on the bus. This period was detected by
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the failure to retrigger a monostable by the val id command sync pulse 

derived from the bus monitor. The output of the monostable was then polled 

by the microprocessor subsystem to detect the bus controller failure.

For the purposes of the study the minimum period of inactiv ity  was set to 

four milliseconds from the receipt of the last valid command sync pulse, 

this being shown in Fig. 12 .9 .

Thus the detection mechanism consisted of a retriggerable monostable 

which was continually retriggered during normal bus operation giving a 

logical ' 1 ' output. Following bus controller failure the monostable is not 

triggered and the output falls to a logical 'O'.

1 2 .5 .1 . Use of Bus Monitor.

The failure of the bus controller was carried out by the use of the 

non-maskable interrupt mechanism as previ ously described. The subsystem 

processor (digital controller) was put into a halt condition, thus taking 

no further part from the time of failure to the end of the run. In practice 

the failed bus controller must not be allowed to issue further commands, 

after it has deemed to have failed by a bus monitor. This can be carried 

out, as shown schematically in Fig. 12 .10 . by the use of a discrete 

which disables the output of the bus controller. This discrete is set by 

the bus monitor on detection of a prolonged inactive bus period.

Having detected prolonged bus inactiv ity  the bus monitor 

then assumes bus control. The standby processor must then obtain the 

target azimuth from the target tracking processor and read the missile 

angle. The missile to target error angle is used as input to the 

difference equations, setting previous inputs equal to the present input, and 

the previous outputs of the four parallel units equal to zero. The system 

then continues as normal during which time coverage is still given by the 

target tracking processor.

1 2 .5 .2 . Effect of Failure on Performance.

The effect of the bus controller failure on the missile angle depends 

upon when the failure occurs during the run. The greatest deviation in
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in the missile angle occurred when the failure took place in the

gathering phase. This occurred due to the starting up of the difference

equations immediately after bus controller fa ilure. During the

gathering phase the target to missile error angle is large and not equal to

zero, even if  zero is the best estimate. A  failure at one second after

the start of the run results in the missile angle plot as shown in Fig. 1 2 .1 1 .

This shows a large deviation from the true missile angle (9 .5 ° )  with

recovery taking about eight seconds, resulting in a performance index
2

of 7 3 8 .5^econds. degrees) . This large deviation affects the missile

angle during the gathering phase but shows that tracking still occurs before

the target is reached.

The effect of the failure occurring later in the gathering phase

results in a smaller excursion from the true missile angle as can be seen

from Figs. 12 .12 . and 1 2 .1 3 ., which show the effect of a failure at two

seconds and four seconds respectively. The failure at two seconds gives a

maximum deviation of 4 .0 1 °  with a performance index of 140.5(seconds.
2

degrees) , whilst the failure at four seconds resulted in a maximum

deviation of 2 .6 5 °  and a corresponding performance index of
2

128.90econds. degrees) .

During the terminal phase of the missile, the missile to target error

angle is small, and the outputs of the four parallel units are close to zero.

Thus i f  a failure occurs during this phase the effect of setting the parallel

outputs to zero (in the standby processor) is like ly  to be less than that

in the gathering phase. This is like ly  to result in a shorter recovery

time and a smaller excursion from the true missile angle. Failure of the

bus controller was carried out at seven, eight and nine seconds after the

start of the run, giving maximum deviations of 2 .3 5 ° , 1 .9 9 °  and 1 .2 4 °

respectively. The resulting plots can be found in Figs. 1 2 .1 4 ., 12 .15 . and

1 2 .1 6 .,  these represent performance indices of 3 9 .1 , 20 .5  and
2

1 2 .7 féconds, degrees) . The graphs show that the time to recovery and 

the maximum excursion ore less than that in the gathering phase and
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that mission success is not affected by a bus controller failure even in the 

terminal phase of the missile.

96



Chapter 13. Distributed Processing Conclusions.

The implementation of fault tolerant techniques within a 

distributed processing environment has resulted in an increase in ava ilab ility  

under extreme operating conditions. However, it must be stressed that 

redundancy does not automatically increase the re lia b ility  ot a system.

A poor implementation of a fault tolerant technique may actually result 

in a decrease of system re lia b ility .

13 .1 . Review of Design Philosophy.

The use of a Recovery Block within subsystems which form part of a 

distributed system provides recovery on a local basis. This ab ility  to 

recover locally  has led the author to establish a design philosophy for 

message passing between processors. This philosophy is based on 

testing data at the point of maximum information, i . e .  at the point of 

transmission of the message, and the absence of testing data on reception.

The testing of data is carried out by an acceptance test prior to 

transmission; the data is assumed to be valid i f  it is received correctly 

with respect to the particular communications protocol.

The absence of reception of expected data leads to another principle, 

i . e .  that message transfers proceed only in one direction. If a message 

fails to arrive then the receiving subsystem must not attempt to diagnose 

the failure to transmit; instead it must in itiate  global recovery after a 

predetermined time period. If the receiving device were allowed to 

attempt fault diagnosis of the transmitting subsystem a loop would be 

closed around the communications link, and the system would become more 

complex and probably more unreliable.

1 3 .2 . Distributed Processing Recovery.

The distributed processing research has shown that by using the 

Recovery Block as a basis, transient and permanent faults can be recovered 

from generally without a severe loss of performance. System recovery was 

shown to take place whilst real time control was being performed, without 

massive redundancy as in triple modular redundancy.
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The faults injected were divided into two groups, i . e .  data 

corruption type faults and system crash type faults. The distributed 

processing system without a recovery mechanism was still able to track 

targets when the data corruption type faults were injected during the 

gathering phase. The effect of data corruption in the terminal phase 

let to a high probability of missing the target being tracked.

By definition this sytem was unable to recover from system crash type faults.

1 3 .2 .1 . Local Recovery.

The implementation of the basic Recovery Block within the 

distributed processing system ensured that recovery took place when data 

corruption type faults were injected into the target tracking and digital 

controller processes. This implementation was unable to recover from 

system crash type faults; this confirmed the results of the single processor 

study. The use of the time domain in the form of a watchdog timer and 

the use ot system traps for illegal conditions led to recovery from the system 

crash type faults.

1 3 .2 .2 . Global Recovery.

If local recovery from a particular fault was not possible, then 

global recovery was shown to maintain the system functional. Global 

recovery was performed by the use of an alternate routine in the master 

processor subsystem, and is necessary it transient faults prevent the master 

from receiving valid  data. The use of local recovery means that there is 

a high probability that the processor's communication interface is loaded 

with data, but cannot guarantee correct communication of data.

Under these conditions, global recovery is necessary to ensure valid  

data and continued system operation.

1 3 .2 .3 . Use of a Standby Processor.

If system ava ilab ility  is required to be high then the use of a standby 

processor system may be justified. The failure of a slave subsystem was 

performed and dynamic task swapping was shown to give good results when 

the system was tracking a target. The task swapping was initiated vben a
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counter exceeded a predetermined lim it within an alternate routine in the 

master processor subsystem. This was followed by enabling the standby 

processor with the necessary starting values. The failed subsystem took 

no further part and all communication with the particular function was 

made to the standby processor. This type of failure did not affect system 

success provided it occurred more than three seconds from the target.

In a master/slave system, the master is critical for continued 

operation and high a va ilab ility . A  bus controller failure was carried out 

which did not lead to a system crash due to bus inactivity detection 

circuitry within the bus monitor. Assuming that the bus controller fails 

quietly, i .e .  no bus communication traffic , then this effect can be used 

to in itiate  take over of bus control. The new bus controller must ensure 

that the failed bus controller takes no further part in the operation of the 

system. The results showed that failure of the bus controller, even in the 

terminal phase of the missile did not affect the obj ective to h it a target. 

System performance was only slightly impaired as shown by the low 

performance indices recorded in the terminal phase, as shown in 

Chapter 1 2 .5 .

The take over of control by the bus monitor was fast and occurred 

within one system cycle. The degradation in performance was due to the 

of the digital controller's difference equations in the new master 

subsystem. This performance can be improved if  the intermediate outputs 

of the difference equations are regularly transmitted to the bus monitor.

The transmission of these outputs can also act as a health monitoring signal 

to the bus monitor. In the event of the bus controller not failing quiet, 

the absence of a health monitoring signal can be used to signify a failure  

of the bus controller, without waiting for a quiet period on the bus.

1 3 .3 . Further W ork.

The modelling of hardware re liab ility  is well established, unlike 

the field of software re lia b ility  modelling which is a comparatively new one. 

However, in the view  of the author the problem is being tackled incorrectly
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since the all important point is the re liab ility  of the system. Few 

researchers (if any) have tackled the self imposed problem of combining 

hardware and software models to give a system re liab ility  model. This area 

needs consideration before too much time is spent on developing software 

re liab ility  models.

The system described in this thesis was operated without need for 

an operating system. Some real time systems may require a kernel to 

supervise the operation of parallel co-operating processes. Such a kernel 

would also require fault tolerance for high re liab ility .

Further work is required to establish the implementation of a Recovery 

Block structure within such a system. It is like ly  that the kernel would 

be considered as the highest level of software and perform acceptance 

on processes either running or to be run.

The single processor study involved applying mainly single faults 

with a small percentage of double faults. This was considered to be 

sufficient within the time ava ilab le , however further work could be 

usefully spent by studying the implementation of a Recovery Block 

structure under multiple fault conditions. An important area for 

investigation is the development of robust software specifically for areas 

where input data is like ly  to be corrupt.

In the distributed processing study, a standby processor was 

effectively used for continued systems operation under the conditions of a 

failed subsystem. Under normal operating conditions the standby processor 

is idle and could be used for system health monitoring, that is to monitor 

and record the state of the system.
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Chapter 14. Towards an integrated Approach to Design.

The approach used in this report was to investigate different 

strategies including the assessment of their performance in order to arrive  

a t a system with high ava ilab ility  under prescribed fault conditions.

The experience gained from the study is used here to discuss guidelines 

for the design of a re liab le  system. In addition, these guidelines 

have been applied to the design of a single microprocessor target 

tracking system; this design is illustrated using a MASCOT  methodology.

14 .1 . Guidelines for Design.

The use of redundancy is often necessary in order to achieve 

system re lia b ility  and ava ilab ility  requirements. However redundancy 

must be applied methodically to ensure that system complexity is not 

unnecessarily increased. This section presents guidelines for the design 

of reliable systems.

1 4 .1 .1 . Functional Decomposition.

The functional decomposition of a system is an essential feature 

of the system recovery strategy. The factors to be considered 

are:

1. Separation by function or process.

2 . Interprocess communication kept to a minimum.

3. Consideration of physical locality  of functions.

4 . Functions need to be a manageable size for a complete 

understanding of the total system.

1 4 .1 .2 . Recovery Block.

The use of a Recovery Block structure must be justified within the 

systan to be designed. Consideration should be given to the overhead 

incurred with relation to the increase in ava ilab ility  obtained. The 

single processor study gave an increase from 5%  to 42%  ava ilab ility  

(with fail safe). This must be weighed against the overhead in sottware 

resulting from the use ot the structure; a figure of 30%  additional software 

was found to be typ ica l.
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1 4 .1 .3 . Watchdog Timer.

The use of the time domain for im plicit fault detection was 

considered to be an essential feature of any real time system. The 

watchdog timer is simple in hardware terms, consisting of a programmable 

timer which can set an interrupt flip  flop. An interrupt service routine 

must be written to determine the process which was being performed at the 

time of the fault and transfer control to the relevant re-entry point.

Results from the single processor study showed an ava ilab ility  of 85% , 

an increase of 43%  over the basic Recovery Block structure.

1 4 .1 .4 . Run Time Overhead.

The overhead in time, incurred by using a Recovery Block structure 

is dependant upon the complexity of the acceptance tests and the 

environment in which the system operates. If the environment is noisy 

e lectrica lly  then transfer of control into alternate routines is like ly  to 

be common.

1 4 .1 .5 . System Traps.

Any unused software or hardware traps available within the 

processor must be restored to the same address as that for the hardware 

timer. A  log of fault interrupt causes can be kept for continuous 

monitoring and maintenance purposes.

1 4 .1 .6 . Reversionary Modes.

Systems design must take account of reversionary modes of 

operation upon fault detection. A  safe shutdown of the system is 

often desirable i f  a hazardous condition is detected.

1 4 .1 .7 . MASCOT A C TIV ITY  CHA NNEL POOL (ACP) Diagram.

An in itia l design is illustrated using an ACP diagram, which

shows the Activities of the system and the Intercommunication Data Areas. 

The reader is referred to R ef.6 . for information on MASCOT. An 

inadequate decomposition of the system w ill result in a large ACP 

diagram with highly interconnected activ ities.
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The overall system design is illustrated as a hierarchical set of 

ACP diagrams. Decomposition is carried out to a depth necessary to 

achieve a reasonable level of functional modularity.

1 4 .1 .8 . Fault Scenarios.

Having decided upon a hierarchical set of ACP diagrams then 

system designers should study the diagrams to identify situations which 

might compromise safe system operation. If a hazardous situation is 

identified then a fail safe mechanism or alternative strategy is necessary.

1 4 .1 .9 . Design Reviews.

Design Reviews should be carried out to ensure that the system 

specification requirements are adequately stated and can be feasably met.

A  design Review should cover the following points:

(i) C larity  of software structure.

(ii) Tolerance o f software to hardware errors.

( i i i )  Design proving requirements.

(iv) Requirements for configuration control.

(v) Safety.

(v i) System development tools.

(v ii) Acceptance procedures.

(v iii)  Reversionary modes of operation.

(ix ) Software/Hardware trade offs.

1 4 .1 .1 0 . Structured Walkthroughs.

The structured Walkthrough is similar to a Design Review except 

that it is carried out with greater frequency. It is concerned with the

design of a subsystem or part of a subsystem and covers the following points:

(i) Function.

(ii)  C larity  of structure.

( ii i)  Speed of operation.

(iv) Test requirements.

(v) Fault detection and recovery.

(vi) Size of software.
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1 4 .1 ,1 1 . Testing.

The use of a Recovery Block structure has the advantage that testing 

of software can be modular and more thorough thus removing a greater 

percentage of design errors. In top down testing, the top level is 

tested first, a lower segment is added and the combination tested.

This is repeated down to the lowest leve l. Dummy segments temporarily 

replace the segment subordinate to the segment under test. These dummy 

segments can vary in complexity and may return constants or may be a 

primitive version of the segment being simulated. To enhance structured 

programming the length of a segment should be lim ited to a mangeable 

leve l, say fifty  statements to enhance readability and comprehension 

whilst minimising page turning. Usually each segment w ill correspond 

to one function and can be implemented as a procedure with a descriptive 

name corresponding to the function. Thus the use of small segments makes 

programs easier to extend and maintain; re lia b ility  is further enhanced 

since test plans for the segments are easier to specify and execute.

14 .2 . Single Processor System.

Having discussed guidelines for reliable systems design, this section 

describes the in itia l design of a single microprocessor target tracking 

system. It is assumed here that the microprocessor to be used is capable 

o f the real time processing necessary.

1 4 .2 .1 . Functional Decomposition.

Using the factors detailed in Section 1 4 .1 .1 . it was decided to use 

the same decomposition as previously used. However the sub tasks w ill 

no longer be processed in a sequential order, due to the operation of the 

system in a MASCOT environment.

1 4 .2 .2 . Recovery Block.

It was considered that the use of a Recovery Block structure could 

be justified in order to obtain a high a v a ilab ility . The inclusion of a 

Recovery Block structure is not sufficient to increase system availab ility ; 

it  is necessary to ensure that the implementation is robust. The implementation
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of the Recovery Block structure on a particular processor system w ill result 

in a particular overhead, which is application dependent. The estimated 

overhead in software and hardware can be weighed against the increase 

in ava ilab ility  obtained. At present, as far as is known, this study 

represents the only source of information on the increase in ava ilab ility  

that can (not necessarily w ill)  be obtained by using a Recovery Block structure.

1 4 .2 .3 . Watchdog Timer.

The introduction of a watchdog timer can be justified here, as it  

involves litt le  overhead in software and hardware terms.

1 4 .2 .4 . Run Time Overhead.

The target tracking system is operated with an angular separation 

of 12°. The time taken for the processing w ill depend upon the 

processor chosen. A  correct choice of processor w ill allow  a Recovery 

Block structure to be used.

1 4 .2 .5 . Trap Areas.

The use of trap areas between code segments does not necessarily

result in an increase of a va ilab ility . However, this feature can be

effectively  used for safety purposes, that is to ensure that a routine is 

correctly entered. It is considered sufficient for this system to include 

a trap area immediately before each primary routine.

1 4 .2 .6 . Reversionary Abodes.

The reversionary modes of operation in the target tracking system 

simply consist of alternate routines relevant to the particular process.

The system is shutdown if  any alternate routine is entered on four 

consecutive cycles. This is considered to be the point at which the 

system can no longer give valid  outputs. No hazardous states exist 

within the target tracking system.

1 4 .2 .7 . MASCOT ACP Diagram.

The top level ACP diagram for the target tracking process is shown 

in Fig. 1 4 .1 . Whilst the system is in a standby state, i . e .  SEARCH mode, 

then time is available for checking of system hardware. Using a
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priority scheduler then the ac tiv ity  for hardware checking can run at the 

lowest priority. The design of an activ ity  scheduler is not considered 

here.

106



Qiapter 15. O verall Review of Achievements.

This chapter reviews the research study in terms of the objectives 

set out in Chapter 1 . 1 . The study has conclusively shown that the 

ava ilab ility  of a system can be improved by a combination of measures 

as outlined in the following paragraphs.

For completeness the constituent parts of the main objective are 

repeated below, together with reference to the relevant chapters where 

they are achieved.

(a) 'To establish good design practices based upon a 

practical rather than a mathematical approach'.

Guidelines to design are discussed in Chapter 14 

which presents an integrated approach. This 

approach is applied to the design of a target 

tracking system as described in Chapter 1 4 .2 ,

(b) 'To establish a simple but obvious structure for system 

recovery'.

The Recovery Block was shown to be a basis 

for the design of reliable real time systems 

as described in Chapters 7 and 8 .

(c) 'To establish design criteria for reliable inter-task  

communication w ithin a single processor'.

The integrity of data was improved by a method 

wheréby system variables were not updated 

until the appropriate acceptance test had been 

successful. The system variables were then 

passed to the next task by the use of CPU 

internal registers as described in Chapter 7 .
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(d) 'To establish a design philosophy for message passing

between microprocessors in a distributed system in order 

to inhibit the propagation of faults'.

The concept of checking data before passing 

it to the next task was extended to the 

distributed processing environment where the 

receiving processor accepts data as valid unless 

otherwise indicated by the transmitting processor. 

This philosophy is described in Chapter 9 with 

results in Chapter 1 1 .

The overall conclusion of the research study was that for reliable  

systems operation, fault recovery must be localised to minimise the 

propagation of faults to the next task in a single processor system or to 

another processor in a distributed system. The conclusions for the single 

processor study are presented in Chapter 8 , whilst the distributed 

processing conclusions are presented in Chapter 13.

The in itia l objectives were to investigate recovery from transient 

faults; however opportunity was taken to extend the study to investigate 

failures of a catastrophic nature whereby a subsystem fails permanently. 

As described in Chapter 1 2 , the strategy adopted in this respect was to 

introduce a standby processor in a task swapping mode. Conclusions 

drawn from the results obtained are presented in Chapter 13.
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APPENDIX A

Digitisation of Guidance Loop.

In the following derivations the sampling period of the digitised 

system Is 1 /30  second.

A . I .  D igital Controller: G^(z)

G  (z) =  (1 - z " ’ ) .Z  /  K  1 0 (s + 1 ) (s + l) (s  +  0 . 5 ) \
\ s s(s +  3 . 16)(s +  3 .1 6 ) I

= 0  - z ' h . Z  h .  G ,(s ) j ................................... ............ ( A . I . )

By Partial Fractions

G  (s) = 1.685972102 +  0.500721038
s 2

s s

+  8.314027898 -  12.42839289

(s +  3 ,1 6 ) (s +  3 .16 )^   (A .2 . )

Then Z . / G , ( s ) \ =  1.685972102z +  0.016690701z

+ 8.314027898Z -  0.372861921z
z  -  0.900024464 _ 0.900024464)^ . . .  (A .3 . )

F inally  G ^(z) =  (1 -  z  ' ) . Z  /G ^ (s) \

s '

= 1.685972102 +  0.016690701
(z -  1 )

+  8 .314027898(z -  1) -  0.372861921 (z -  1) 
z  -  0.900024464 _ 0.900024464)^

= 10 -  29 .18785963z"’ +  28 .39590856z '^

______________________ -  9 .207881866z~^

1 -  2 .800048928z“ ’ + 2 .610092963z

-  0 .810044035z '^    (A .4 . )
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A .2 . Missile Autopilot: 0 2 (2 )

0 2 (2 ) = (1 -  z \ z  U  I  ]44________

'   ̂ s V  +  14s +  144)

= (1 - z " ’ ) .Z  I  I .  G^iS) \  (A ,5 . )

By Partial Fractions

G^(s) = 0.002507716 -  0.097222222 +  1
—  2 3

s s s

-  (0.002507716s -  0.062114198)

s + 1 4 s + 1 4 4   (A . 6 . )

Then Z . [ G J s) \ =  0.002507716z -  0.00324074z

( 4 - /  (z-l)2
+  0.000555555z (z +  1 )

( z -  1)^

-  (0 .002507716z -  0 .003037504z) 

z^ -  1.500869446Z +  0.627089085  (A . 7 . )

F inally G g(z) = (1 -  z ' ) . Z  /  G 2 (s)

\ s '

= 0.002507716 -  0.00324078 +  0.000555555 (z +  1)

(z -  1 )^

+  (z -  1 )(- 0 .002507716z +  0.003037504) 

z -  1.500869446Z +  0.627089085

= -  0 .000903767z"’ +0 .002798632z

-  0 . 002670325z'^ +  0 .000915696z'^

1 -  3 .500869446z"’ +  4.628827977z"^

-  2.755048263z"^ + 0 .627089085z"*  (A .8 . )
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APPENDIX B 

The Z8000 Microprocessor.

This appendix contains a brief description of the Z8000  

microprocessor; further information can be obtained from Refs. 31,

32 and 33.

B . l .  Architecture.

The Z8000 is a single chip 16 b it microprocessor using N-Channel 

MOS technology and provides a multiplexed data/address bus.

The Z8000 CPU is a t present offered in two versions: the Z8001 

segmented version and the Z8002 non-segmented version; 

future versions w ill include a virtual memory capability. The Z8001 can 

directly address 8  megabytes of memory, whereas the Z8002 directly  

addresses 64 kilobytes. The two operating modes of the microprocessor, 

system and normal modes, and the distinction between code, data and stack 

spaces within each mode allows memory extension up to 48 megabytes 

for the Z8001 and 384 kilobytes for the Z8002.

The Z8000 CPU contains sixteen 16 b it general purpose registers, 

a status register (Flag and Control Word), a program counter, a program 

status area pointer and a refresh counter register.

B .2 . Interrupts and Trap Structure.

The Z8000 provides three types of interrupts (non maskable, vectored 

and non vectored) and four traps (system c a ll, unimplemented instruction, 

privileged instruction and segmentation trap). The segmentation trap is 

only available on the Z 8001 .

When an interrupt or trap occurs, the current program status is 

autom atically pushed onto the system stack. The program status consists of 

program counter, the Flag and Control Word, and a 16 bit identifier.

The identifier contains the reason or source of the trap or interrupt.

After saving the current program status, the new program status is 

automatically loaded from the program status area in memory which is 

directed to by the program status area pointer.
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B .3 . Memory.

The Z8000 uses four control signals in association with four status 

signals during memory read or write cycles. The multiplexed bus contains 

a valid address on the rising edge of Address Strobe (AS). The Data Strobe 

signal (DS) is used to indicate either valid data on a cycle or that 

the CPU expects valid  data on a read cycle. A  memory request

signal (MREQ) is active during all memory cycles.

Consider first a memory read cycle, the timing diagram is 

shown in Fig .B . 1. which assumes that the memory used has an access time 

comparable to one clock period. Slower memories can be used by the

addition of w ait states. At the beginning of the cycle the Read/W rite (R/W ) 

signal goes high. The rising edge of AS indicates a valid  read address, 

data can be placed on the bus after DS becomes active and is read by the

CPU on the rising edge of DS.

O n a memory write cycle (shown in F ig .B .2 . )  the R /W  line is low, 

and valid memory address is indicated as for the read cycle. Valid  data 

may be taken o ff the bus whilst Data Strobe is low.

B .4 . Input/O utput.

Input/O utput is carried out in a similar manner to memory accesses 

with the exceptions that the memory request line is not active , an automatic 

w ait state is inserted, and the status lines indicate an I /O  reference.

I /O  devices are addressed with a 16 b it port address.

Direct memory access (DM A) can be carried out over the Z8000  

multiplexed bus during which time the bus is driven by a DM A device.

B .5 . Instruction Set.

The Z8000 provides the following types of instructions:

Load and exchange

Arithmetic

Logical

Program control 

Bit manipulation
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Rotate and shift

Block transfer and string manipulation

Input/output

CPU control
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APPENDIX C

The Micromaster.

The Micromaster was developed by the Control Group at the 

University o f Bath, School of Electrical Engineering, for use as a 

microcomputer teaching a id . Its use as a teaching aid Is not described 

here since the Micromaster was simply used as an Intelligent terminal 

for the duration of this study.

The Micromaster contains a Z80 microprocessor and this was used 

to communicate with the PDP 11 through an RS232 port and with the 

Z8000 microprocessors through the other RS232 port. Temporary 

storage of system results was carried out using 32K bytes of dynamic 

RAM within the Micromaster.

The communication software written for the Micromaster 

basically consists of polling the serial Interface parts but Is not 

described w ithin this report.

118



APPENDIX D 

Z8002 Microprocessor Program Assembler.

This appendix describes the two pass assembler which produces an 

object code file  and an assembly listing for the Zllog Z8002. This program 

runs on the PDP 11 under th e R S X -llM  operating system.

D . l .  Statement Format.

A  Z8002 assembly language statement Is defined as follows:

label: opcode operand(s) comments

The label and comment fields are optional, and no continuation 

lines are allow ed.

D. 1 .1 . Label F ie ld .

The label fie ld  may contain a user-defined symbol containing up 

to six characters, the first of which must be alphabetic. The assembler 

allocates the current location to the label, so that a user may make 

further references to the label without knowing Its address. A  symbol used 

In a label fie ld  may not be redefined In the label field of another 

statement.

D . l . 2 , Opcode F ield .

The opcode field follows the label fie ld  and contains one of the 

following:

1. Mnemonic operation code of a machine Instruction

2 . Assembler directive operation code.

The opcode fie ld  Is terminated by a space, tab, semi-colon when there are 

no operands or a carriage return when there are no operands or comments.

D, 1 .3 . Operand F ie ld .

The operand may contain up to four expressions or terms, depending 

upon the type or requirements of the opcode. The operand field  must 

follow an opcode and can be terminated by a semi-colon when a comment 

Is to follow or by a carriage return when there are no comments.

D . l . 4 . Comment Field.

The comment field Is used purely to help the user or future users
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on the workings of the assembly language program. It may be preceded 

by any or more of the fields previously mentioned. The comment field  

has no effect on the assembly and must be preceded by a semi-colon and 

terminated by a carriage return.

D .2 . Z8002 Expressions.

This section describes the components of legal Z8002 expressions 

which Include the Instruction set, numbers and characters.

D .2 .1 .  Character Set

The following characters are valid  In Z8002 source

1 . The letters A  to Z .

2 . The digits 0  to 9 .

3 . The special characters as below:

Character Designation

( left parenthesis

) right parenthesis

r comma

<SP> space

<HT> horizontal tab

/ \ up arrow

$
1

dollar

apostrophe
* asterisk

+ plus sign

- minus sign

. full stop

/ slash

<LF> line feed

< V T > vertical tab

< F F > form feed

<CR> carriage return

hash
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If  any character other than those above is encountered the line being 

assembled w ill be terminated and an *1' w ill occur on that line in the 

listing.

D .2 .2 .  Numbers.

Numbers used in the assembly language problem may be decimal, 

hexadecimal, octal or binary. Any number must be preceded by 

and one of the following; (denotes octal number), / \H  (hexadecimal),

$ (h ex ad e c im a l),/\D  (decimal) or no characters.

If  ' is followed by a number then the number defaults to decim al.

O ctal numbers consist of the digits 'O' to '7 ' only.

Hexadecimal numbers consist of the digits 'O' to '9 ' and the 

letters 'A ' to 'F '.

Decimal numbers consist of the digits 'O' to '9 '.

Binary numbers consist of 'O' and 'T  only.

A  truncation error ('T ' on the assembly listing) w ill occur if  the 

converted number is too large to fit into eight bits for byte operations, 

sixteen bits for word operations or thirty two bits for long word operations. 

All numbers are considered to be in two's complement arithm etic.

The binary representation of a number is not implemented for thirty two bit 

operations.

D .3 . Assembler Directives.

These are statements which are used at assembly time for ease o f 

programming such as set a label equal to a constant, and are non 

executable as far as the Z8002 microprocessor is concerned.

D .3 .1 .  T it le .

The title  directive is used to print a heading on the output listing. 

The heading w ill be printed on the first line of each page of the listing. 

For example,

TITLE PRO GRAM TO CALCULATE SQUARE ROOTS 

The 'TITLE' directive appears in the opcode fie ld , if omitted the 

title  defaults to 'M A IN ',
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D .3 .2 .  Page Ejection.

Apart from the automatic page e jec t after 61 line counts, a form 

feed may also be used to cause a page e je c t.

D .2 .3 .  O R G .

The location a t which the machine code is to be placed may be 

changed by the O R G  d irective.

For example,

label: O R G  $3000 ; comment

w ill place the following code in memory locations starting at 3000^^. 

D .3 .4 .  E Q U .

The EQU directive assigns a value to a symbol name, which w ill 

be used when that symbol is further encountered in the program. The 

directive is of the form:

name EQU value ; comment

The symbol name must appear in the label fie ld  without a following  

colon and cannot be re-defined within an EQU directive.

D .3 .5 .  SET.

This is identical to the EQU directive, except that the symbol 

name may be redefined.

D .3 .6 .  EN D .

The END directive indicates the end of the source program. It may

have an optional label and/or comment fie ld . Any statement following  

this d irective w ill be ignored by Z8002.

D .3 .7 .  DEFINE WORD.

The Define Word (DW) directive is used to set a memory location  

to a user determined value and is of the following form:

label: DW value ; comment

D .4 . Instruction Set.

The instruction set for use with the assembler may be found in 

01 /2  Processor Instruction Set A/ 

for use with the Z8002 microprocessor.

32
A m Z8001/2 Processor Instruction Set Manual ,  and is fu lly  implemented
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1 .
2.
3 .

4 .

5 .

6.
7.

8.
D .6 .

Addressing Mode 

Register

Indirect Register 

Direct Address 

Immediate 

Indexed 

Base Address 

Base Indexed 

Program Relative

D .5 .  Addressing Modes.

This section describes the addressing modes available for use with 

Z8002 , see R ef.32. for details of which addressing modes can be used with  

each instruction.

Example 

R6  

(R3)

FRED 

# 4  

FRED (Rl)

R6  { ^ 5 )

R5 (R4)

BILL

Permanent Symbol Table.

The assembler contains a permanent symbol table whose entries 

may be not redefined. The explanation of these symbols follows:

Symbol Meaning 

RLO 

RLl 

RL2 

RL3 

RL4 

RL5 

RL6  

RL7 

RHO 

RHl 

RH2 

RH3 

RH4 

RH5 

RH6  

RH7

Byte Registers
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Symbol

RO

Rl

R2

R3

R4

R5

R6

R7

R8

R9

RIO

R ll

R12

R13

R14

R15

Meanî ng

Word Registers

RRO

RR2

RR4

RR6

RR8

RRIO

RR12

RR14

32 b it Registers

RQO

RQ4

RQ8

RQ12

64 b it Registers

124



Symbol Meaning

N Z  Not zero

ZR Zero

N C  No carry

CY Carry

PO Parity odd

PE Parity even

PL Plus

M l Minus

NE N ot equal

EQ Equal

N O V  Overflow  Is reset

O V  Overflow Is set

GE Greater than or equal

LT Less than

GT Greater than

LE Less than or equal

LGE Logical greater than or equal

LLT Logical less than

LGT Logical greater than

LLE Logical less than or equal

Blank Unconditional

C Carry

Z  Zero

S Sign

PV Parity/O verflow

Condition Codes

Used in Flag 

instructions such 

as SETFLG

V

N

Vectored interrupt 

Non vectored interrupt

Enable/disable

interrupts
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Symbol Meaning

FCW Flag and control word

REF Refresh register

OFF NPSAP offset

SP Stack Pointer

Used in

LDCTL instruction

FLGB Flag byte -  used in LDCTLB instruction.

D .7 . Using Z8002.

The assembler may be run as follows: 

y  Run Z8002.

Z8002 > FILE, FILE = FILE 

Where FILE = program to be assembled which must have a 

The above command generates an object file  and a list file  which is sent 

to the printer. O n ly  an object file  is created if  the command line is 

as follows:

Z8002 > FILE = FILE

D .8 . Error Codes.

Two types of error can occur.

1 . Errors which halt assembly are as follows:

? BAD SWITCH ? The switch specified was not

recognised.

? T O O  M A N Y  INPUT FILES ? O n ly  one input file  may be

processed a t a time.

? N O  INPUT FILE ? No input file  was specified.

? T O O  M A N Y  OUTPUT FILES ? Too many output files were

specified.

? WRITE ERROR ?

? SYMBOL TABLE FULL ?

? INTERNAL FAULT ?

An error occurred when attempting 

to write to output file .

All the available symbol table 

space has been used.

A  software fault has occurred.
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2 . Errors which terminate assembly of single statement only and 

are as follows:

Q  Questionable syntax error.

T Truncation error.

*  An assembler directive was encountered which is

not va lid  in Z8002.

P A  phase error occurred, i . e .  a label's definition or

value differed from first pass to second.

I An illegal character was encountered.

U An undefined symbol was encountered.

E No END directive was encountered.

L Statement length was greater than 92 characters;

extra characters were ignored.
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APPENDIX E

Target Tracking Process -  Acceptance Tests and Alternate Routines.

This appendix describes the acceptance tests and the alternate  

routines for the following processes:

Read

Azimuth Inhibit 

Range Inhibit 

Set Binaries 

Process Binaries 

Approach/Recede Assessment 

Coverage Assessment.

E .1 .1 . Read: Acceptance Test (see F ig .E . 1 .)

The following tests were carried out:

1. Check range gate w ithin range, i . e .  range g a t e 6 .

2 . Check velocity  gate within range, i . e .  velocity  gate.^ 4 . 

3 i Check that range and velocity  channel valid flags are

set i f  'target detected' flag is set.

4 . Check that azimuth position counter within range,

i . e .  0 ^  azimuth.^ 29,

E .1 .2 . Read: Alternate Routine (F ig .E .2 . )

O n failure of the primary read routine, the last azimuth position 

is read and updated. The 'target detected' flag is reset indicating no 

target.

E .2 .1 . Azimuth Inhibit: Acceptance Test (F ig .E .3 .)

The following tests were carried out:

1. An error is signalled it 'ta rget azimutb' is not valid  and the 

flag 'w ithin azimuth limits' is set.

2 . Check that 'target azimuth' is within limits,

i . e .  0 ^  target azim uth^ 29 .

3 . Check that missing scans counter (for approach/recede 

assessment) is greater than or equal to zero. If  less than zero for any reason 

then an error is flagged.
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E .2 .2 . Azimuth Inhibit: Alternate Routine (F ig .E .4 . )

The alternate routine for processing azimuth inhibit is based on a 

target detection decision. If  no target is detected on the azimuth on 

which the alternate routine is entered, then a ll parameters are unmodified.

If  a target is detected then 'target azimuth' is updated and the missing 

scans count is set to zero. In addition, the 'w ithin azimuth limits' flag 

is cleared and cannot become set again until the radar has rotated 360^ 

minus half the width ot the azimuth inhibit arc . As a target has been 

detected then coverage information w ill be given, determined by a later 

process.

E .3 .1 . Range Inhibit: Acceptance Test (F ig .E .5 . )

The following tests were carried out:

1. An error is indicated i f  'azimuth inhibit' is set and 

'range inhibit' is not set.

2 . If  'target range' is valid and the missing scans count is 

larger than two, then an error is indicated if  'target range' does not 

equal the range gate set, or i f  'range inhibit' is not set.

E .3 .2 . Range Inhibit: Alternate Routine (F ig .E .6 . )

The alternate routine sets 'range inh ib it' i f  'azimuth inhibit' 

is set. I f  a target is detected and is not inhibited by azimuth 

considerations then 'target range' is updated.

In this simpler routine, range inhibition rules ( i .e .  -  1 range gate) 

are not used. Thus i f  a target is detected following a system error 

(an error must have occurred in order to enter the alternate routine) 

then it  is tracked, A  target being tracked at the time of the error may 

be lost if  multiple targets exist. It was thought better to track a 

target whose position is known exactly then use the position of a target 

whose characteristics may have been corrupted.

E .4 .1 . Set Binaries: Acceptance Test (F ig .E .7 . )

The following tests were carried out:

1 . Check that velocity binary is within limits,

i . e .  1 ^  velocity b in ary^  4 .
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2 . Check that range binary is w ithin limits,

i . e .  range binary^^ 6 .

E .4 .2 . Set Binaries; Alternate Routine .

The alternate routine in this case is to re-execute the primary 

routine to set the appropriate binaries.

E .5 .1 . Process Binaries; Acceptance Test (F ig .E .8 . )

The following tests were carried out:

1. If  either alarm is set, ensure that 'binaries' flag is set.

2 . I f  provisional external alarm is set, ensure that system is in 

search mode.

If the acceptance test passes and the provisional external alarm is set, then 

the external alarm is set.

E .5 .2 . Process Binaries: Alternate Routine.

The alternate routine would attempt a re-execution of the primary 

routine to determine whether the binaries are allowed to signal an alarm . 

E .6 .1 . ApproacK/Recede Assessment: Acceptance Test (F ig .E .9 . )

The following tests were carried out:

1. An error is indicated if  both approach and recede are 

indicated^

2 . An error is indicated if  neither approach nor recede is 

indicated whilst the system is in track mode.

E .6 .2 . Approach/Recede Assessment: Alternate Routine (F ig .E . 1 0 .)

The alternate routine is a clean up and get out procedure, and is 

simply the setting of the approach/recede assessment to approach.

E .7 .1 . Coverage Assessment: Acceptance Test (Fig. E. 1 1 .)

The following tests were carried out:

1 . I f  'no coverage' flag is set, check that no provisional 

coverage indications are set.

2 . Check that one and only one provisional coverage 

indication is set.

If the acceptance test passes, then set 'out of cover' or 'in cover' as 

appropriate.
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E .7 .2 . Coverage Assessment; Alternate Routine (F îg .E . 1 2 .)

If  either 'no coverage' or 'cancel' is set then coverage 

indications are set, otherwise a fail safe procedure is carried out by 

setting missile coverage to 'in  cover'.
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APPENDIX F 

An Overview  of M IL-STD 1553B

The 1553B standard was developed largely for aircraft internal 

transfers and defines a master slave communications protocol over a twisted 

pair. The exchange of messages along the twisted pair (bus) is 

precisely defined w ith ten allowable formats; the two formats which were 

used in this study are shown in Fig. F. i . Message formats can be divided 

into two groups, i . e .  mode commands and data transfers. Mode commands 

are used to communicate with the bus hardware to aid the management of 

information flow , for example to shutdown a transmitter on a particular 

bus, as redundant buses are allowed. Data transfers along the bus 

consist of a message of not more than 32 words.

The standard allows three types of terminal to be connected to the 

bus. A  terminal is defined within the standard as *the electronic module 

necessary to interface the data bus with the subsystem and the subsystem with 

the data bus', w hile  a subsystem is the combination of hardware and 

software required to perform a specific function. A  master-slave protocol 

requires a master and is called a bus controller in the context of the 

1553B standard. The bus controller is in charge of a ll communication 

over the bus, i . e .  any message must be initiated by the bus controller.

The second type of terminal is called a monitor; this terminal being 

assigned the task of receiving bus traffic  and extracting selected 

information if  required. A  bus monitor is permitted to assume bus control if  

a set of predetermined bus transmission defects is detected. Finally a 

remote terminal is any terminal which is neither a bus controller nor a 

bus monitor.

O n ly  three types of word are permitted with the standard.

A  word is a sequence of 16 bits plus sync (3 b it times) and parity  

(1 b it time) as shown in F ig .F .2 . The first type of word is the command 

word which is always the first word of a message and is transmitted by the 

bus controller. The command word defines the type of message that w ill
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fo llow . A  transmît/receive b it within the command word establishes 

whether the message is to or from the remote terminal being addressed,

A  five b it address fie ld  specifies a unique address of a remote terminal 

for the purposes of the message. This address field allows a system to 

contain up to 31 remote terminals; the remaining address is used to 

communicate with a ll remote terminals. The second type of word is the 

status word, which is always the first word that is transmitted by a remote 

terminal in response to a message. This word contains the status 

condition of the remote terminal. The busy b it can be used by the 

remote terminal to indicate that it is unable to move data to or from the 

subsystem in compliance with the bus controllers command.

The message error bit indicates to the controller that one or more of the 

data words associated with the preceding receive command failed to pass 

the remote terminal's va lid ity  test. Finally a data word is used as 

part or whole of a message that may be up to 32 words in length.

The method of transmission along the bus is Manchester Two 

Bi-Phase level a t a rate of 1 .0  megabit per second. A  logical '1 ' is 

transmitted as a positive pulse followed by a negative pulse, while a 

logical 'O' is transmitted as a negative pulse followed by a positive 

pulse. A  transition through zero occurs at the midpoint of each b it 

time as shown in F ig .F .3 .

A  1553B word is valid i f  it  conforms to the following criteria:

1. The word begins with a valid  sync fie ld .

2 . The bits are in a valid Manchester Two Bi-Phase level

code.

3 . The information field has 16 bits plus parity.

4 . The word parity is odd.
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APPENDIX G

Worst Cose Limits for Parallel Realisation of Digital Controller.

The parallel realisation of the digital controller results in four 

parallel units which are added to give a guidance demand. The acceptance 

test for each of these four units was based on worst case outputs of the 

units. The worst case value for the guidance demand was achieved by the 

addition of the worst case values for the units.

The worst case outputs were obtained by using an input which is 

equivalent to a 90^ step. A  simulation run was then carried out on the 

PDP n  and the following results were obtained.

Worst Case Value used in

Output Acceptance test

Unit 1 - 5 . 2 7 -  6

Unit 2 -  0 .814 ± 1

Unit 3 -  24 .8 - 2 5

Unit 4 Ï 4 . 5 t s

Guidance Demand - 3 7
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OUTPUTINPUT
U N IT  2

U N IT  1

U N IT  3

FAILURE 
DETECTION A N D  

SWITCHOVER

F ig .2 .1 .  Cold Standby Redundancy.



CONTROL Y

ACTIVE 
U N IT  2

ACTIVE  
U N IT  1

ACTIVE 
UN IT 3

U N IT
SELECT

COM PARATOR/ 
FAULTY U N IT  

ID E N TIF IC A TIO N

INPUT OUTPUT

F ig .2 .2 .  Hot Standby Redundancy.



N O
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YES

YES
TEST O K

N O

TASK IN  
, EXIT >

TASK IN  
. ENTRY

ALTERNATE
ROUTINE

ACCEPTANCE 
TEST T

FAIL SAFE 
ROUTINE

M A IN  ROUTINE

ACCEPTANCE
TEST

F ig .2 .3 . The Recovery Block.
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RANGE VELOCITY
BINARIES

u
O

II
CD

R1 R2 R3 R4 R5 R6

V I

V2

V3

V4

F ig .4 .2 .  Range/Velocîty Gate AAatrix.
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F ig .4 .3 . Taboo Channels.



TARGET LAST DETECTED
PO SITIO N  / t a r g e t  p o s it io n

/\

M/

TARGET N O T  DETECTED 
(N O T  W IT H IN -2 4 °  OF PREVIOUS TARGET)

LAST DETECTED
, TARGET P O SIT IO NTARGET

PO SITIO N

V

TARGET DETECTED

F ig .4 .4 .  Principle of Azimuth Inhibit.
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ENTER

RETURN

READ RANGE A N D  
VELOCITY DATA  

SET CHANNELS AS 
APPROPRIATE

UPDATE A ZIM U TH  
IN ITIALISE FOR 

DATA

F ig .5 .2 .  Read Routine.
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ENTER

YESCANCEL
SET

N O

TARGET 
RANGE  
 ̂VALID

N O

YES

CLEAR
BINARIESRANGE  

INHIBIT  
V  SET ^

YES

N O

CLEAR
BINARIES

SET
BINARIES

A C C O R D IN G LY

RETURN'

F ig .5 . S. Set Binaries.



ENTER

ARE ^  
BINARIES 
\S E T  X

T Y E S

N O

N O TPERFORM
LOOKUP EQUAL

EQUAL

YES
SEARCH 

SET ^
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F ig .5 .6 .  Process Binaries.
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F ig .5 .7 .  Approach/Recede Assessment.
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F ig .5 .8 .  Coverage Assessment
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HEX ADDRESS
FFFF

7000

6000

40FF

4000

3000

UNUSED EPROM 
SPACE

1056
1000

EXPANSION BOX 
STATIC RAM

8000

PROGRAM LOADER

MONITOR

WORKING STORAGE FOR MONITOR

RAM

EVALUATION BOARD MEMORY : 0 -  6000 (HEX)

F ig .6 .3 .  Memory Map.



HEX ADDRESS
FFFF

JL

EVALUATION CARD I /O
OFFC
OFCO

SYSTEM I /O
OOFE 
OOFO

SYSTEM I /O  

OOFE -  TIMER
OOFC -  SEARCH/TRACK SWITCH 
OOFA -  CANCEL PUSH BUTTON  
00F8 -  ALARM LED 
00F6 -  IN  COVER LED 
00F4 -  O UT OF COVER LED 
00F2 -  ERROR LED 
OOFO -  TIME OUT RESET

F ig .6 .4 .  Input/Output Map.
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X32 X40X16 X24

X23 X39X31X15

X22 X30 X38X14

X5
X21 X37X I 3 X29

X4

X36X I 2 X20 X28

X3

X35xn X27X I 9

X2

X34X I 0 X26X18

X25X17 X33X9

F ig .6 .8 .  Layout of Error Correcting Memory Board 1



X32X 8 X27
X I6 X22

X7 X31iX26
X I5

X30X25X6

X I4X5 X24 X29

X4 X2EX23
X I 3

X3 X20X I2

xn X I9

X I0

X I7 X21

F îg .6 .9 . Layout of Error Correcting Memory Board 2,
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F ig .6 .1 1 . Layout of Input/Output Board.
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F ig .6 .1 3 , Layout of Buffer Card,



u _

Ou

LU
LU
U_ 00

to

Od

00§iii
5  K  >-

iiilLU

I
00

oo

û -

o 5

J?

I
I

o
à>



START

GENERATION OF 
TARGET DATA

TRANSFER OF OBJECT CODE  
FROM PDF 11 TO  Z8000 V IA  MM

FAULT
IN JE C T IO N

FINISH

TRANSFER OF RESULTS 
TO MICROMASTER

ASSEMBLY OF G RO U N D  
DEFENCE SOFTWARE

OPERATION OF G R O U N D  
DEFENCE SOFTWARE

TRANSFER OF TARGET DATA 
FROM PDF 11 TO Z8000 V IA  M M

TRANSFER OF RESULTS 
FROM M M  TO PD Pll

GENERATION OF 
FAULT DATA

SORTING A N D  PLO TTIN G  
OF RESULTS

F ig .6 .1 5 . System Software Typical Operation,



F A U L T /N O  FAULT 
CO NTRO L INPUT (X)

UNFAULTED  
ADDRESS 
LINE ( A ) ^

I

FAULT 
IN JE C T IO N  
L O G IC  BLOCK

N O  FAULT '
...........  .. c m '7V

FAULTED 
ADDRESS 
LINE (Z )

INPUT /K OUTPUT

9  FAULT
1

FAULT
CONTROL
INPUT

C O N D IT IO N  INPUT (Y) 
S -A -O /S -A -1

F ig .6 .1 6 . Schematic of Fault Injection Logic.



INPUT (A)

OUTPUT

CONTROL  
INPUT (X)

C O N D IT IO N
INPUT (Y)

F ig .6 .1 7 . Implementation of Address Fault Logic.



X SWITCH

FAULT
o m z oAF. XA

N O  FAULT

OV

XD

DISABLE SWITCH

+5V

DISABLE

ENABLE ^

OV

Y SWITCH

IK

-H5V

r  S -A -1  
I O C=1S -A -

■ e >

F ig .6 .1 8 . Control/Condition Input Circuitry.
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LEVEL 1 T A S K IN G  SEQUENCE E .G . CALL TASK A  

CALL TASK B

LEVEL 2. RECOVERY BLOCK I.E . ENSURE T 

BY P

ELSE Q

ELSE ERROR

LEVEL 3. CODE FOR EACH PRIMARY A N D  SECONDARY  

ROUTINE A N D  ACCEPTANCE TEST.

F ig .7 .1 .  Three Level Structure.
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INTERRUPT
ENTRY

N O

YES

PROCESS 
NUMBER IN  

RANGE ^

JUMP TO 
FAIL SAFE EXIT

READ PROCESS 
NUMBER

JUMP TO 
PROCESS RE-ENTRY

O P TIO N A L LO G  OF  
INTERRUPT ENTRY

LO O K UP PROCESS 
RE-ENTRY PO IN T

CLEAR IN T. 
FLIP FLOP

F ig .7 .3 .  Recovery Interrupt Service Routine.
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TRAP AREA 
LONGEST 
INSTRUCTION  
IN  WORDS

TRAP AREA

MODULE O

MODULE N

TYPICALLY  
FILLED WITH  
SOFTWARE 
INTERRUPT 
INSTRUCTIONS

F ig .7 ,5 . Schematic of Trap Area.



START TIMER

>  n

>  m

RESET
TIMER

Ensure T by time t -  Else A

C O U N T

TIMER

C O U N T

By P

Else Q  if  Q  has not been used n times 

Else R i f  R has not been used m times

Else S 

Else Error

F ig ,7 .6 .  Generalised Form of Recovery Block.



100 n
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-------1
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I FAIL 
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COMPLETED 50 -

FAIL
SAFE

40 -

30 -

20 -

N O  RECOVERY RECOVERY RECOVERY
STRATEGIES BLOCK BLOCK 

A N D  TIMER

F ig .8 . 1 . System A va ilab ility  Related to Recovery Strategies
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PROPAGATION
OF FAULT

C O M M U N IC A T IO N S  BUS

SUBSYSTEM A SUBSYSTEM B

FAULT OCCURS 
HERE

PROPAGATION C A N  LEAD 
TO SYSTEM CRASH

N O  SUBSYSTEM RECOVERY

C O M M U N IC A T IO N S  BUS

SUBSYSTEM A  
(WITH RECOVERY) SUBSYSTEM B

FAULT OCCURS 
HERE

N O  KNOW LEDGE  
OF FAULT

SUBSYSTEM RECOVERY

F ig .9 .2 . Local Recovery Strategy.
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ADDRESS BUS

DATA BUS

M

FAULT
ADDRESS
LATCH

N

1/K
FAULT

ADDRESS

1/1

A =  B

COMPARATOR

N M

LATCH PRIOR TO  
OPERATION O F  SYSTEM

F ig .9 .5 .  Schematic of Real Time Fault Injection Mechanism.



N M I
ENTRY

YESCYCLE 
N O . = X

N O

INJECT
FAULT

RETURN

F ig .9 .6 .  Specific Cycle Fault injection.



CO
3
CO
CO
CO

8

__l 
LU ■<il >o3

CQ ( / )  1—iil

ii
LU O^ 
O^ LU 

1—

LU O  LU^8| 
o f  —)
o_ co

il
1—

g S ilii
û_ co

— I

çq O

Z
o
u

s s iiil
■le û . co

Q
z
3
o
<
S
CO<
CO

<si
6
Z
O
I—<
3

U
O
o_

o
z

sip
CO N  ^  ^

NCN I

CO O/ I

3o_
I—
3
o <

Û
UJ

A

IX
CO

g

3
J 3

I
§>

I
§

o

O

0̂
LU
1—

g
\

' O Q_

u
c
a

:E



< u < u < u < u

- /  1:$

< V < u < y

/

< u < u l < u < u
f 5 S % S

u < < u < u < i; < < i; <CO o <N CN



u < y
CN

< U < (.J < u < u <
< u

%
< U < U < U < U < U < < (.J < V

O
OI <s tN CN CN CN CN (N m



m
w

I

< u < u < < V < U g y < u
-c 'O o.

< u < u < < u < V < u < u <
R R R R R S S R R R a a a a



TR2
TRI

xæX17 X25
X 8

C2XTALl X45

RI 7 

R18
X25X16

X7
C5

X44

C4
X24XT5

X32

R15
X43X I4 X23

X27IX5
X22

X13
X30 X42X36

X4 K12
X21

X35

X41X I 1 X20
X34X2B

X19 RIO|X M X40
R ll

X46X27X18X9

Fîg. 10 ,3 . Layout of Central Processing Unît.
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X57X13 X22 X32
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X55X30 X48X2C
X39 R ll

X54XIOX5 X29
X I 9
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Fig. 10 .6 , Layout of 1553B/Microprocessor Interface Board 1 .
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Fig. 1 0 .8 . Layout o f 1553B/Microprocessor Interface Board 2 .
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1553B BUS

ISO LA TIO N
RESISTORS SCREEN

C O U P LIN G
TRANSFORMER

STUB

ISO LA TIO N
TRANSFORMER M O U N TED  
O N  INTERFACE CARD

TO TERMINAL 
TRANSMIT/RECEIVE

Fîg. 10. n  . Connection of Terminal to 1553B Bus.
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24A2 1 A X25 24C2 1 C
25A22A 05 25C22C 06 26A23A

0 723C 26C

m :

27A24A D9
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Fîg. 1 0 .1 5 .c. 1553B Protocol Fault Injection Board.
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Fîg. 10 .16 . Layout of 1553B Protocol Fault Injection Board.



RESET FIFO  
LOAD MESSAGE

LOAD
C O M M A N D

REGISTER

INITIATE
TRANSM ISSION

Fig. 1 0 .1 7 . Message from Bus Controller: Software Operation.



ENTER

LOAD C O M M A N D  
• WORD

INITIATE  
TRANSM ISSION  

SHORT DELAY

/ H A S \  
YES I n t e r r u p t  

\O C C U R R E D

N O

READ MESSAGE 
FROM FIFO

RETURN

IN T . 
ENTRY

SET BUSY FLAG

INCREMENT BUSY 
C O U N T

CLEAR INTERRUPT 
FLIP FLOP

Fîg. 10 .18 . Message to Bus Controller: Software Operation.



( ENTER 1

\ /

ENABLE
INTERRUPT

\ s \
r u p t \

Mr.
N O /^ N T E R

IN T .
ENTRY

LOAD MESSAGE 
FROM FIFO  

IN T O  MEMORY

DISABLE 
INTERRUPT

f RETURNS

CLEAR 
INTERRUPT 
FLIP FLOP

Fig. 10 .19 . Message to Remote Terminal: Software Operation.



IN T .
ENTRY

ENTER

ESSAGE
SENT

N O H a

YES YES

RETURN RETURN

X H A S  \
INTERRUPT
OCCURRED

SET BUSY 
CLEAR INTERRUPT 

FLIP FLOP

DISABLE
INTERRUPT

ENABLE
INTERRUPT

LOAD MESSAGE 
RESET BUSY

Fîg. 10 .20 . Message from Remote Terminal: Software Operation.
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ENTER

PRIMARY ROUTINE

ACCEPTANCE TEST

YES

N O

YESC O U N T
EXCEEDED

N O

ALTERNATE 
ROUTINE 1

ALTERNATE 
ROUTINE 2

RETURN

/  A N Y  N  
ERRORS IN  
sMESSAGE.

JUMP TO FAIL 
SAFE EXIT

UPDATE
COUNTER

REQUEST FOR 
DATA

USE LAST 
VALID  DATE

Fig. n  . 13. System Recovery.
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X4
X 8 X12

X3

X7 xn

X I 0X6

X5 X9

Fîg. 1 2 .2 . Layout of 4K Memory Board.
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ENTER

PRIMARY ROUTINE

ACCEPTANCE TEST

YES

N O

YESC O U N T
EXCEEDED

N O

ALTERNATE 
ROUTINE 2

ALTERNATE 
ROUTINE 1

RETURN

/  A N Y  N 
ERRORS IN  
.MESSAGE,

UPDATE
COUNTER

USE LAST 
VALID DATE

W AIT FOR 
DATA

WAKE UP STANDBY  
PROCESSOR 

USE IT FROM N O W O N

Fig. 1 2 .4 . Schematic of Task Swapping.
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BUS CONTROLLER 
TRANSMISSIONS

- / ■

/

BUS CONTROLLER FAILURE

VALI D C O M M A N D  
S Y N C . PULSES \
OUTPUT FROM 
MONOSTABLE.

4 mîliisec

NOTE: TIME PERIODS N O T TO SCALE

Fig. 1 2 .9 . Bus Inactivity Detection.
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CLOCK

AS

MREQ

AD
READ

MEMORY
ADDRESS ) —

I DATA \
\  I

DS
READ

R /W
READ

Fig. B. 1. Z8000 Memory Read Cycle.



CLOCK

AS

MREQ

MEMORY
ADDRESS

AD
WRITE

DATA O UT

WRITE

R/W
WRITE

F ig .B .2 . Z8000 Memory W rite Cycle.
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ENTER

RETURN

RESET TARGET 
DETECTED 

FLAG

UPDATE
A ZIM U TH

Fig. E .2 . Read Aiternate Routine,



ENTER

YES

N O

NO,TARGET A ZIM U TH  
W IT H IN  RANGE

YES

YESM IS S IN G  SCANS 
COUNTER <  0

N O

RETURN

TARGET A ZIM U TH  
N O T VALID A N D  

s lIM IT S  FLAG SEL

SET PASS SET FAIL

Fig. E .3 . Acceptance Test for Azimuth Inhibit.



ENTER

TARGET
DETECTED

N O

YES

RETUR

SET TARGET A ZIM U TH  = AZIM U TH  
SET TARGET A ZIM U TH IN V A LID  

CLEAR LIMITS FLAG  
CLEAR M IS S IN G  SCANS COUNTER  

RESET N O  COVERAGE FLAG

Fig. E .4 . Azimuth Inhibit Alternate Routine,



ENTER

AZIM U TH  ^  
INH IB IT SET A N D  
RANGE INHIBIT  

\  N O T SET ^

YES

N O

N O ^  TARGET R A N G E ^  
VALID  A N D  M IS S IN G  
^ S C A N S  C O U N T ^

YES

TARGET 
RANGE  

= RANGE

N O

YES

RANGE
INHIBIT

SET

YES

N O

SET PASS SET FAIL

RETURN

Fig. E .5 . Acceptance Test for Range Inhibit



ENTER

^ IM U T H  
INH IB IT  

\ S E T  ^

YES

N O

N O

YES

RETURN

TARGET
DETECTED

SET TARGET 
RANGE VALID  

UPDATE TARGET 
RANGE

SET
RANGE
INHIBIT

Fîg. E. 6 . Range Inhibit Alternate Routine.
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ENTER

N O INTERNAL
ALARM

SET

PRO VISIONAL  
EXTERNAL 

ALARM SET

N O

YES YES

BINARIES
FLAG
SET

N O

N OSEARCH
M ODE

r YES

RETURN

SET FAIL

SET PASS

SET EXTERNAL 
ALARM

Fîg. E ,8 . Acceptance Test for Process Binaries.



< T  CANCEL >

#  a p p r o a c h

SET

CALCULATE N A N D  
OF APPROACH 
A N D  RECEDE

RESULT
TRUE

SET PASS SET FAIL

f RETURN)

Fîg. E .9 . Acceptance Test for Approach/Recede Assessment.



ENTER

SET APPROACH

RETURN

Fîg. E. 10. Approach/Recede Assessment Alternate Routine.



ENTER

YES

N O

YESCANCEL
SET

YESN O

N O

RESULT
TRUE

N O

N OYES

RETURN

/  N O \  
COVERAGE 
V  SET /

O U T O f 
COVER 

.  SET

COVER 
\  SET

CALCULATE N A N D  
OF IN  COVER A N D  

OUT OF COVER

SET COVERAGE  
IN D IC A T IO N S  

SET PASS
SET FAIL

Fîg. E. n  . Acceptance Test for Coverage Assessment.



ENTER

YES

N O

YESCANCEL
SET

N O

RETURN

X  N O  X  
COVERAGE  
X  SET /

SET IN  COVER
CLEAR

COVERAGE
IN D IC A T IO N S

Fig. E. 12. Coverage Assessment Alfernafe Routine.



r | - - i
o  IÎIO

L _ ^ « J
s .

to
3 Q

< o
u

Q
z

“ I

Q

Î

i L

a .

6

i  O

ii
M ^

0)O)o

CÛ

R

O)

O
LU

z o
8 Î

< “ 
II
LU

2 S
<
Z

Z ^
o

3  c2
CO



o
CN

O

00

O

lO

CO

CN

O

00

•O

CO

CN

VO
LU

g
I—
t—
CO

lo

lO

»o

Q
O'

i z
D
o
u

i i<
CD
3
to

•<  to

ifI— <

uz
to

a

i
Qz

8

CO

U->

U
Z
>-
to

ÛQC

ii
Qod

i
to
3

<
to

PARITY

TERMINAL FLAG  

D Y N A M IC  BUS CO NTRO L  

£UB SYSTEM FLAG  

^USY

BROADCAST RECEIVED 

RESERVED

SERVICE REQUEST 

INSTRUM ENTATION  

MESSAGE ERROR

«< VOiî ,
LU
U

I
CO

g

CN
LL.

rô

uz ^  >  z  t=
<  ^  QC <
j— o_
II II

oz



g

1
£

(E

C O

o>

i§ ii >+
m o
U
m uj1*15

LU>



Range Gate 
N o.

1

1

1

1

2

2

2

2

3

3

3

3

4  

4  

4

4

5 

5 

5

5

6 

6 

6 

6

V elocity  Gate 
N o._____

1

2

3

4  

1 

2

3

4 

1 

2

3

4  

1 

2

3

4  

1 

2

3

4  

1 

2

3

4

Approach

180

160

50

20

105

90

60

20

50

52

40

25

0

34

30

24

0

12

20

15

0

0
13

13

Recede

0

0
0

150

0

0

0

50

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

Table 4 .1 .  Angular Rote Information.



Integrated Circuits

X I 74LS04 X2 74LS20 X3 74LS32

X4 74LS32 X5 74LS74

X9 -  X43 M M 2102A N

Table 6 .1 .  Parts List of Error Correcting Memory Board 1



Integrated Circuits 

X I 74LS86 

X4 74LS86 

X7 74LS157 

X I 0 74LS280 

X I 3 74LS154 

X I 6  74LS240 

X I9 74LS126 

X22 74LS244 

X33 74LS00

X2

X5

X 8

74LS86

74LS157

74LS157

X I 1 74LS280

X14 74LS154 

X I 7 74LS280 

X20 74LS126

X3

X 6

X9

74LS86

74LS157

74LS280

X I 2 74LS86 

X I 5 74LS240 

X I 8  74LS04 

X21 74LS280

X23 -  X32 M M 2102A N

Table 6 .2 .  Parts List of Error Correcting Memory Board 2.



Integrated Circuits

XI 74276 X2 74LS32 X3 74LS04

X4 74LS32 X5 74LS08 X6 74LS125

X7 74LS27 X8 74LS20 X9 74LS138

XIO 74LS00 x n 74LS74 X I2 74LS00

X I3 74LS93 X14 74LS00 X I5 74LS74

X16 4020B X17 74LS74 X I8 74LS08

X I9 74LS32 

X22 74LS138

Resistors (- 5%)

X20 74LS374 X21 74LS151

R1 -  R12 IK

Table 6 .3 .  Parts List of Input/Output Board.



Integrated Circuits 

X I 74LS244 

X4 74LS244 

X7 74LS374

X2 74LS244 

X5 74LS193 

X 8  74LS374

X3 74LS244 

X 6  74LS02 

X9 74LS195

Resistor ( -  5% ) 

R1 IK

Table 6 .4 .  Parts List of Buffer Card.



Integrated Circuits 

X I 74LS00 

X4 74LS125 

X7 74LS00 

XIO  74LS125 

X14 74LS123

X2 74LS00 

X5 74LS10 

X8  74LS00 

x n  74LS32

X3 74LS04 

X 6  74LS00 

X9 74LS04 

X I 2 74LS10

Resistors ( -  5% ) 

R1 5 . IK  

R4 50K POT

R2

R5

50K POT 

IK

R3 5 . IK

+
Capacitors ( -  2 0 %) 

Cl 22pF C2 22pF

Note : R2 and R4 mounted on front panel of expansion box .

Table 6 .5 .  Parts List of Fault Infection Logic.



Connections of P I, P2  and P3 on CPU Card determine baud rate 

as follows:

9600 baud -  a ll open 

2400 baud -  connect PI to P3 

300 baud -  connect P2 to P3 

100 baud -  connect PI to P2 to P3

Table 1 0 .1 . Baud Rate Selection.



Integrated Circuits 

X I 74LS32 

X4 74LS44 

X7 74LS374 

XIO  74LS139 

X I 3 74LS32 

X I 6  M M 2114  

X I 9 74LS164 

X22 74LS32 

X25 M M 2 U 4  

X28 74LS30 

X31 74LS00 

X34 74LS138 

X37 74LS08 

X40 74LS273 

X43 2516 

X46 75189

X2 74LS10 

X5 74LS245 

X 8  74LS374 

X I 1 74LS138 

X I4 M M 2114  

X I 7 M M 2114  

X20 74LS02 

X23 M M 2114  

X26 M M 2114  

X29 25LS2521 

X32 AmZ8002 

X35 74LS138 

X38 74LS123 

X41 Am8253 

X44 2516 

X47 74LS273

X3 74LS244 

X 6  74LS245 

X9 74LS74 

X I 2 74LS27 

X I5 M M 2114  

X I 8  74LS244 

X21 25LS2521 

X24 MM 2114  

X27 Am9551 

X30 74LS04 

X33 Not Used 

X36 74LS74 

X39 75188 

X42 2516 

X45 2516

Resistors ( -  5% ) 

R1 120

R4 22

R7 390

RIO IK

R13 IK

R16 IK

R19 22

R2

R5

R8

R ll

R14

R17

R20

480

22

39K

IK

IK

IK

240

R3

R6

R9

R12

R15

R18

R21

470

240

IK

IK

IK

IK

390

Capacitors ( -  2 0 %)

Cl 100 nF C2 47 pF

C4 220 pF C5 120 pF

C3 330 pF

Table 1 0 .2 .a . Parts List of Central Processing Unit.



Transistors

TRI 2N2905 TR2 2N 2906

Crystal

XTALl 4M Hz

Table 1 0 .2 .b . Parts List of Central Processing Unit.



Hex Address Function

6FE0 Frame Length Register.

6FF0 Command Word W rite ,

6 FF2 FIFO W rite.

6FF4 FIFO Read.

6 FF6 Control and Status Register.

6 FF8 In itiate Command.

6 FFA Command Word Read.

6 FFC Interrupt Flip Flop.

6 FFE Reset Interface.

Table 1 0 .3 . 1553B Interface Memory Addresses.



X I 74LS244 X2 74LS244 X3 Am2812

X4 Am2812 X5 74LS374 X6 74LS374

X7 74LS138 X8 74LS165 X9 74LS165

XIO 74LS04 X I I 74LS08 X12 74LS32

X I 3 74LS30 X I4 74LS165 X I5 74LS165

X I 6 74LS00 X I 7 74LS244 X I 8 74LS244

X19 74LS02 X20 74LS08 X21 74LS74

X22 74LS157 X23 74LS11 X24 74LS74

X25 74LS74 X26 74LS174 X27 9324

X28 74LS193 X29 74LS00 X30 74LS279

X31 74LS74 X32 74LS08 X33 74LS123

X34 74LS08 X35 74LS74 X36 74LS04

X37 74LS193 X38 74LS00 X39 74LS02

X40 74LS32 X 4 l 74LS74 X42 74LS154

X43 74LS260 X44 74LS193 X45 DIL SWITCH

X46 74LS74 X47 74LS11 . X48 74LS74

X49 74LS74 X50 74LS244 X51 74LS74

X52 74LS08 X53 74LS74 X54 74LS74

X55 74LS08 X56 74LS74 X57 74LS157

X58 DIL SWITCH

Resistors ( -  5% )

RI -  R16 IK

R17 150K

R18 lOK

R19 -  R24 I K

Cgpaci tors C" 20%) 

a  lOnF

C2 lOOpF

Table 1 0 .4 . Parts List of 1553B/Microprocessor Interface Board 1.



Integrated Circuits

X I 74LS00 X2 75452 X3 HA2522

X4 HA4905 X5 74LS00 X 6 -

X7 15530 X 8 74LS124 X9 74LS374

XIO 74LS157 X I I 74LS164 X12 9324

X I 3 74LS164 X14 74LS164 X15 74LS08

X I 6 74LS04 X I 7 74LS00 X18 74LS00

X19 74LS74 X20 74LS00 X21 -

X22 74LS374 X23 74LS374 X24 74LS374

X25 74LS32

Resistors ( -  5% )

R1 10K R2 10K R3 -

R4 47 R5 270 R6 IK

R7 10 R8 27 R9 22K

RIO 22K R11 47 R12 270

R13 4K7 R14 - R15 10K

R16 10K R17 IK R18 2K2

R19 2 2 R20 2 2 R21 2K2

R22 2 K2 R23 10K R24 10K

R25 10K R26 IK R27 IK

R28 IK R29 IK

Capacitors ( -  20% )

Cl lOpF C2 lOOpF C3 lOOpF

C4 680pF C5 6 8 pF C6 lOpF

C7 lOpF

Diodes

D1 -  D4 IN 916

D5 -  D8  C 0 4 6

Table 1 0 .5 .g. Parts List of 1553B/Microprocessor Interface Board 2 ,



Transistors

TRI 2N 2905A  TR2 2N 2905A  TR3 2N 2221A

Crystals

XTALl 12MHz

Transformer 

T1 DDC25679

Table 1 0 .5 .b . Parts List of 1553B/Microprocessor Interface Board 2 ,



C4

0

0

0

0

0

0
0

0

0

0
0

C3 C2 Cl CO Frame length

0 1 0 1

(Bit Periods) 

6

0 1 1 0 7

0 1 1 1 8

1 0 0 0 9

1 0 0 1 10

1 0 1 0 11

1 0 1 1 12

1 1 0 0 13

1 1 0 1 14

1 1 1 0 15

1 1 1 1 16

0 0 0 0 17

0 0 0 1 18

0 0 1 0 19

0 0 1 I 2 0

0 1 0 0 21

0 1 0 1 2 2

0 1 1 0 23

0 1 1 1 24

1 0 0 0 25

1 0 0 1 26

1 0 1 0 27

1 0 1 1 28

1 1 0 0 29

1 1 0 1 30

1 1 1 0 31

1 1 1 1 32

Table 1 0 .6 . a . Frame Length Adjustment.



Data Bit Number Titli Function

6 DECODER PARITY A logical '1 ' sets even parity

5 ENCODER PARITY A logical *1 ' sets odd parity

4 C4 )

3 C3 \ These bits set the frame

2 C2
\ length as overleaf.

1 C l )
)

0 CO )

Table 1 0 .6 .b. Frame Length Adjustment.



Integrated Circuits. 

X I 74LS00 X2 75452 X3 HA2522

X4 HA4905 X5 74LS00 X 6 -

X7 15531 X 8 74LS124 X9 74LS30

X IO 74LS138 X I 1 74LS374 X12 74LS374

X I 3 74LS157 X14 74LS157 X15 9324

X I 6 74LS164 X17 74LS00 X18 74LS08

X19 74LS04 X20 74LS00 X21 74LS00

X22 74LS74 X23 74LS00 X24 74LS374

X25 74LS374 X26 74LS374 X27 74LS32

X28 74LS123 X26 74LS125

Resistors ( -  5% ) 

R1 lOK R2 lOK R3

R4 47 R5 270 R6 IK

R7 10 R8 27 R9 22K

RIO 22K R ll 47 R12 270

R13 4K7 R14 - R15 lOK

R16 lOK R17 IK R18 2K2

R19 2 2 R20 2 2 R21 2K2

R22 2 K2 R23 lO K R24 lOK

R25 lOK R26 IK R27 IK

R28 IK R29 IK R30 IK

R31 IK R32 9K1 R33 IK

R34 IK

Capacitors ( -  2 0 %) 

C l lOpF C2 lOOpF C3 lOOpF

C4 680pF C5 6 8 pF C6 lOpF

C7 lOpF C8 1 uF

Table 10. 7 .a . Parts List of 1553B Protocol Fault Injection



Diodes

D1 -  D4 IN 916

D5 -  D8  C 0 4 6

Transistors

TRl 2N 2905A  TR2 2N 2905A  TR3 2N 2221A

Crystals

XTALl 12M Hz.

Transformer 

T1 DDC25679

Table 1 0 .7 .b. Parts List of 1553B Protocol Fault Injection Board.



1 . Software Interrupt i f  vector not set,

2 . Jump Relative to Program Counter.

3 . Call subroutine relative to Program Counter.

4 . Call subroutine with direct address.

5 . Unimplemented instruction.

6 . Invalid instruction (known action).

7 . Invalid instruction (unknown action).

8 . Load Program Counter and Status Word.

9 . H alt

10. POP stack

11. PUSH stack.

12. Jump to direct address.

Table 11 .1 .  Major Causes of Microprocessor System Crash.



Integrated circuits 

X I 74LS32 

X4 74LS08 

X7 MM 2114  

XIO  M M 2114

X2 74LS00 

X5 M M 2114  

X8 M M 2114  

x n  M M 2114

X3 74LS32 

X6 AAM2114 

X9 M M 2114  

X12 M M 2114

Table 12.1.  Parts List of 4K Memory Board.


