

University of Bath

PHD

Application of fault tolerant techniques to a real time control system.

Jackson, P. R.

Award date:
1983

Awarding institution:
University of Bath

Link to publication

Alternative formats
If you require this document in an alternative format, please contact:
openaccess@bath.ac.uk

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal ?

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 11. May. 2021

https://researchportal.bath.ac.uk/en/studentthesis/application-of-fault-tolerant-techniques-to-a-real-time-control-system(16d686d5-7f67-49f8-a8e6-23bc61577230).html

APPLICATION OF FAULT TOLERANT TECHNIQUES

TO A REAL TIME CONTROL SYSTEM

submitted by P.R. Jackson B. Sc.

for the degree of Ph.D .

of the University of Bath

1983

COPYRIGHT

Attention is drown to the fact that copyright of this thesis rests with the

author. This copy of the thesis has been supplied on condition that anyone

who consults it is understood to recognise that its copyright rests with its

author and that no quotation from this thesis and no information derived from

it may be published without the prior written consent of the author.

This thesis may not be consulted, photocopied or lent to other libraries

without the permission of the author for five years from the date of

acceptance of the thesis.

. R-. Ævs-kqfTX...

(!)

ProQuest Number: U641730

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

uest.

ProQuest U641730

Published by ProQuest LLC(2015). Copyright of the Dissertation is held by the Author.

All rights reserved.
This work is protected against unauthorized copying under Title 17, United States Code.

Microform Edition ® ProQuest LLC.

ProQuest LLC
789 East Eisenhower Parkway

P.O. Box 1346
Ann Arbor, Ml 48106-1346

CONTENTS

Synopsis. (ix)

Lîst of Symbols. (x)

List of Figures. (xî)

Chapter 1.

Chapter 2 .

Chapter 3.

Introduction. Page 1

1.1. Research O bjectives. 2

1 .2 . Researdi M ode!. 3

1 .3 . Systems Implementation and Investigation. 3

Techniques for Reliable Systems Design, 5

2 .1 . Failures, Errors and Faults. 5

2 .2 . Fault Avoidance. 5

2 .3 . Fault Removal, 8

2 .4 . Fault Tolerance. 9

2 .4 .1 . Characterisation of Faults. 10

2 .4 .2 . Redundancy Techniques. 11

2 .4 .3 . Fault Recovery. 12

2 .4 .4 . Fault Tolerant Software. 13

2 .4 .4 .1 . N-Version Programming. 13

2 .4 .4 .2 . The Recovery Block. 14

2 .5 . R eliability M odelling. 15

2 .5 .1 . Software R eliability M odelling. 16

2 .5 .2 . Hardware R eliability M odelling. 17

Analysis of a Single Microprocessor System, 19

3 .1 . Cause and Effect of Faults in a Typical 19

Microprocessor System.

3 .2 . Discussion of Failure Mode Effects. 25

(îO

Chapter 4 . Real Time Systems Description. Page 27

4 .1 . Design O verview . 27

4 .2 . Target Tracking. 28

4 .2 .1 . Target Data input. 28

4 .2 .2 . Azimuth Inhibit. 29

4 .2 .3 . Range Inhibit. 29

4 .2 .4 . Approach/Recede Identification. 29

4 .2 .5 . Missile Coverage. 30

4 .2 .5 .1 . Search Mode. 30

4 .2 .5 .2 . Track M ode. 30

4 .3 . Missile Guidance Loop. 30

Chapter 5 . Modelling of Real Time System. 32

5 .1 . Target Simulation. 32

5 .2 . Target Tracking Process. 33

5 .2 .1 . Read Routine. 33

5 .2 .2 . Process Azimuth Inhibit. 33

5 .2 .3 . Process Range Inhibit. 34

5 .2 .4 . Set Binaries. 34

5 .2 .5 . Process Binaries. 34

5 .2 .6 . Approach/Recede Assessment. 34

5 .2 .7 . Coverage Assessment. 35

5 .2 .8 . Baseline Performance. 35

5 .3 . Missile Guidance Loop. 36

5 .3 .1 , Floating Point Arithm etic. 37

5 .3 .1 .1 . Direct Realisation. 37

5 .3 .1 .2 . Cascade Realisation. 38

5 .3 .1 .3 . Parallel Realisation. 39

5 .3 .2 . Integer Arithm etic. 39

Chapter 6 . Implementation. 41

6 .1 . System Memory 41

6 .2 . System Input/Output. 42

(ii i)

6 .3 . System Software. Page 43

6 .4 . Fault Injection. 44

6 .4 .1 . Design of Fault Injection Logic 44

6 .4 .2 . Method of Fault Injection. 46

6 .5 . System Integration and Test. 46

Chapter 7 . Design Strategies: Single Processor System. 47

7 .1 . System with No Recovery. 47

7 .2 . Basic Recovery Block. 48

7 .2 .1 . Integrity ot Data. 49

7 .2 .2 . Design Discipline. 50

7 .2 .3 . System Performance. 50

7 .3 . Addition ot Watchdog Timer. 51

7 .3 .1 . Recovery Using a Watchdog Timer. 51

7 .3 .2 . System Performance. 52

7 .3 .3 . Summary. 52

7 .4 . Typical Fault Effects, 53

7 .5 . Further Additions to Recovery. 55

7 .5 .1 . Use of Unimplemented Instruction Trap. 55

7 .5 .2 . Default Data Bus, 56

7 .5 .3 , Trap Area, 57

7 .5 .4 , Performance Counter, 57

7 .6 . Extensions to the Recovery Block. 58

Chapter 8 . Single Microprocessor Study Conclusions. 60

8 .1 . Acceptance Test. 60

8 .2 . CPU Local Storage. 60

8 .3 . The Watchdog Timer. 60

8 .4 . Default Data Bus. 61

8 .5 . Microprocessor Dependent Facilities. 61

8 .6 . Use of Trap Areas. 62

8 .7 . Performance Counter. 62

8 .8 . Built in Test. 62

8 .9 . In Conclusion. 63

(iv)

Chapter 9 . Introduction to the Distributed Processing System. Page 64

9 .1 . Design Philosophy for Inter Processor 64

Communication.

9 .2 . Local Recovery Strategy. 65

9 .3 . Global Recovery Strategy. 65

9 .4 . Task Swapping. 67

9 .5 . Functional Decomposition of System. 67

9 .6 . Injection of Faults in Real Time. 68

9 .6 .1 . Mechanism of Fault Injection. 68

9 .6 .2 . Specific Cycle Fault Injection. 69

Chapter 10. The Distributed Processing System Description. 70

1 0 .1 . Central Processing U nit. 70

1 0 .2 . Microprocessor to 1553B Interface. 71

1 0 .2 .1 . Control and Status Register, 72

1 0 .2 .2 . Message from Bus Controller. 73

1 0 .2 .3 . Message to Bus Controller. 74

1 0 .2 .4 . Message to Remote Terminal. 75

1 0 .2 .5 . Message from Remote Terminal. 76

1 0 .2 .6 . 1553B Protocol Fault Injection. 77

1 0 .3 . Communication Software. 77

1 0 .3 .1 . Message from Bus Controller. 78

1 0 .3 .2 . Message to Bus Controller. 78

1 0 .3 .3 . Message to Remote Terminal. 78

1 0 .3 .4 . Message from Remote Terminal. 78

10 .4 . Systems Integration and Test. 79

Chapter 11, Design Strategies: Distributed System. 80

1 1 .1 . Target Characteristics. 80

1 1 .2 . Performance Index. 81

11 .3 . System with No Recovery. 82

1 1 .3 .1 . Data Corruption Type Faults. 82

1 1 .3 .2 . Controller Crashes. 84

(v)

1 1 .4 . Basic Recovery Block. Page 84

1 1 .4 .1 . Target Tracking Processor. 84

1 1 .4 .2 . Digital Controller Processor. 84

1 1 .4 .3 . Data Corruption Types. 85

1 1 .4 .4 . Controller Crashes. 86

1 1 .5 . Use of Software Traps. 86

1 1 .6 . Addition of Watchdog Timer, 86

11 .7 . Global Recovery. 87

1 1 .7 .1 . Transient Failure and Recovery. 87

1 1 .7 .2 . Example of Recovery. 88

Chapter 12. Standby Processing Systems. 89

1 2 .1 . Task Swapping, 89

1 2 .2 . Health Monitoring. 90

1 2 .3 . Use of Field Test Data. 90

1 2 .4 . Failure of a Remote Terminal. 91

1 2 .4 .1 . System Recovery. 91

1 2 .4 .2 . System Performance. 92

1 2 .5 . Failure of a Bus Controller. 93

1 2 .5 .1 . Use of Bus Monitor. 94

1 2 .5 .2 . Effect of Failure on Performance. 94

Chapter 13. Distributed Processing Conclusions. 97

1 3 .1 , Review of Design Philosophy, 97

1 3 .2 , Distributed Processing Recovery, 97

1 3 .2 .1 . Local Recovery. 98

1 3 .2 .2 . Global Recovery. 98

1 3 .2 .3 . Use of a Standby Processor, 98

1 3 .3 , Future Work. 99

Chapter 14. Towards an Integrated Approach to Design. 101

1 4 .1 . Guidelines for Design 101

1 4 .1 .1 . Functional Decomposition, 101

1 4 .1 .2 , Recovery Block. 101

(vi)

1 4 .1 .3 . Watchdog Timer. Page 102

1 4 .1 .4 . Run Time Overhead. 102

1 4 .1 .5 . System Traps. 102

1 4 .1 .6 . Reverionary Modes. 102

1 4 .1 .7 . MASCOT ACP Diagram. 102

1 4 .1 .8 . Fault Scenarios. 103

1 4 .1 .9 . Design Reviews. 103

1 4 .1 .1 0 . Structured Wolththroughs. 103

14.1 .11 . Testing. 104

Single Processor System. 104

1 4 .2 .1 . Functional Decomposition. 104

1 4 .2 .2 . Recovery Block. 104

1 4 .2 .3 . Watchdog Timer. 105

1 4 .2 .4 . Run Time Overhead. 105

1 4 .2 .5 . Trap Areas, 105

1 4 .2 .6 . Reversionary Modes. 105

1 4 .2 .7 . MASCOT ACP Diagram. 105

Review of Achievements. 107

Acknowledgements. 109

References. 110

Appendices; A . Digitisation of Guidance Loop. 113

B. The Z8000 Microprocessor 115

c. The Micromaster. 118

D. Z8002 Microprocessor Program Assembler. 119

E. Target Tracking Process: Acceptance Tests 128

and Alternate Routines.

F. An Overview of M IL-STD 1553B. 132

G . Worst Cose Limits for Parallel Realisation 134

of Digital Controller.

(v ii)

Figures.

Tables.

(v iii)

Synopsis.

The report describes a research investigation into fault tolerant

strategies w ithin a real time control system. Methods for increasing

the re lia b ility of a system other than through the use of fault tolerance

have also been reviewed. The study which concentrated on a Recovery

Block structure is separated into two parts, that is, a single and a

distributed processing system. The single processor study involved

modelling a subset of the control system; error recovery strategies

are presented here as additions to the basic Recovery Block structure.

Fault injection logic was specially designed and built in order that the

recovery strategies could be tested under extreme operating conditions.

The distributed processing study is an extension of the single

processor research. Three types of recovery ore investigated to

increase system ava ilab ility ; local recovery, global recovery and task

swapping. The philosophy used in the distributed processing study

was always to attempt recovery on a local basis, that is to prevent

the propagation of faults to other microprocessors within the system.

Global recovery is established as a method of maintaining continued

safe operation when local recovery or communication between processors

foils. The use of a standby processor system for dynamic task swapping

is shown to give continued systems operation under conditions which

would normally cause a catastrophic crash in non redundant systems.

The overall conclusion of the research is that fault recovery

must be localised to prevent fault propagation from one process to the

following process, with no distinction as to whether the communicating

processes are in the same or different microprocessor subsystems,

and that this can be successfully achieved in a real time environment by

the use of a Recovery Block structure.

(ix)

Lîst of Symbols

ACP A ctiv ity Channel Pool

A /D Analogue/D igital

BC Bus Controller

CPU Central Processing Unit

D /A Digital/Analogue

DMA Direct Memory Access

EMP Electromagnetic Pulse

FIFO First In First Out

FMEA Failure Modes Effects Analysis

I /O Input/Output

LED Light Emitting Diode

LSI Large Scale Integration

MASCOT Modular Approach to Software Construction Operation

and Test

RAM Random Access Memory

ROM Read only Memory

RT Remote Terminal

s -a -0 Stuck at logical 'O'

s -a - i Stuck a t logical

TMR Triple Modular Redundancy

VLSI Very Large Scale Integration

z Discrete Operator

Z () Z - Transform of ()

(x)

Lîst of Figures

ig .2 .1 . Cold Standby Redundancy

ig .2 .2 . Hot Standby Redundancy

ig .2 .3 . The Recovery Block

i g ,3 .1. A Typical Microprocessor System

ig .4 ,1 . Real Time System Schematic

ig .4 .2 . Range/Velocity Gate M atrix

ig .4 .3 . Taboo Channels

ig .4 .4 . Principle of Azimuth Inhibit

ig .4 .5 . Missile Guidance Loop

ig .4 ,6 .a . Gain Plot of Missile Guidance Loop

ig .4 .6 .b . Phase Plot of Missile Guidance Loop

ig .4 .7 . Step Response of Missile Guidance Loop

ig .5 ,1 . Target Tracking Process

ig .5 .2 . Read Routine

ig .5 .3 . Process Azimuth Inhibit

ig .5 .4 . Process Range Inhibit

ig .5 .5 . Set Binaries

ig .5 .6 . Process Binaries

ig .5 .7 . Approach/Recede Assessment

ig .5 .8 . Coverage Assessment

ig .5 .9 . Target Tracking Process Outputs

ig .5 .1 0 . Digitisation of Guidance Loop

ig .5 . n . Unit Step Response for Direct Realisation

ig .5 .1 2 . Unit Step Response for Direct Realisation:

Binary Rounded Coefficients

i g .5 .13. Cascade Realisation of Missile Guidance Loop

ig .5 .14. Unit Step Response for Cascade Realisation

(xi)

F ig .5 .1 5 . Unit Step Response for Cascade Realisation:

Binary Rounded Coefficients

F ig .5 .1 6 . Parallel Realisation of Guidance Loop

F ig .5 .1 7 . Unit Step Response for Parallel Realisation

F ig .5 .1 8 . Unit Step Response for Parallel Realisation:

Binary Rounded Coefficients

F ig .5 .1 9 . Unit Step Response for Parallel Realisation:

16 Bit Integer Arithmetic

F ig .5 .2 0 . Unit Step Response for Cascade Realisation:

16 Bit Integer Arithmetic

F ig .5 .2 1 . Unit Step Response for Parallel Realisation:

32 Bit Integer Arithmetic

F ig ,5 .2 2 . Unit Step Response for Cascade Realisation:

32 Bit Integer Arithmetic

F ig .6 .1 . O verall Systems Diagram

F ig .6 .2 . Photograph of Microprocessor Expansion Box

F ig .6 .3 . Memory Mop

F ig .6 .4 . Input/Output Map

F ig .6 .5 . Schematic of Error Correcting Memory

F ig .6 .6 . Error Correcting Memory Board 1

F ig .6 .7 . Error Correcting Memory Board 2

F ig .6 .8 . Layout of Error Correcting Memory Board 1

F ig .6 .9 . Layout of Error Correcting Memory Board 2

F ig .6 .1 0 . Input/Output Board

F ig .6 .1 1 . Layout of Input/Output Board

F ig .6 .1 2 . Buffer Card

F ig .6 .1 3 . Layout of Buffer Card

F ig .6 .1 4 . System Sottware Suite

F ig .6 .1 5 . System Software Topical Operation

F ig .6 .1 6 . Schematic of Fault Injection Logic

(xii)

î g . 6 . 17. Implementation of Address Fault Logic

i g .6 .18. Control/Condition Input Circuitry

i g .6 .19. Fault Injection Switching Arrangement

ig .6 .20. Implementation of Data Fault Logic

ig .6 .21. Photograph of Fault Injection Logic

ig .6 .2 2 . Fault Injection Logic

ig .6 .23. Layout of Fault Injection Logic

ig .7 .1 . Three Level Structure

ig .7 .2 . Schematic of Watchdog Timer

ig .7 .3 . Recovery Interrupt Service Routine

ig .7 .4 . Default Data Bus

ig .7 .5 . Schematic of Trap Area

ig .7 .6 . Generalised Form of Recovery Block

i g . 8 . 1. System A va ilab ility Related to Recovery Strategies

ig .9 .1 . Design Philosophy for Inter Processor Communication

ig .9 .2 . Local Recovery Strategy

ig .9 .3 . Global Recovery Strategy

ig .9 .4 . Separation of Functions in Distributed System

ig .9 .5 . Schematic of Real Time Fault Injection Mechanism

ig .9 .6 . Specific Cycle Fault Injection

ig. 10 .1 . O verall Systems Diagram for Distributed Processing System

ig. 10 .2 . Central Processing Unit

ig. 1 0 .3 . Layout of Central Processing Unit

ig. 1 0 .4 . Schematic of 1553B/Microprocessor Interface

ig. 1 0 .5 . 1553B/Microprocessor Interface Board 1

ig. 10 .6 . Layout of 1553B/Microprocessor Interface Board 1

ig. 10 .7 . 1553B/Microprocessor Interface Board 2

(xiii)

Fig. 0 .8 .

Fig. 0 .9 .

Fig. 0 .1 0 .

Fig. 0 .1 1 .

Fig. 0 .1 2 .

Fig. 0 .1 3 .

Fig. 0 .1 4 .

Fig. 0 .1 5 .

Fig. 0 .1 6 .

Fig. 0 .1 7 .

Fig. 0 .1 8 .

Fig. 0 .1 9 .

Fig. 0 .2 0 .

Fig. 1 .1 .

Fig. 1 .2 .

Fig. 1 .3 .

Fig. 1 .4 .

Fig. 1 .5 .

Fig. 1 .6 .

Fig. 1 .7 .

Fig. 1 .8 .

Fig. 1 .9 .

Fig. 1 .1 0 .

Fig. 1 .1 1 .

Fig. 1 .1 2 .

Fig. 1 .1 3 .

Fig. 2 .1 .

Fig. 2 .2 .

Fig. 2 .3 .

Layout of 1553B/Microprocessor Interface

Photograph of 1553B/Microprocessor Interface Boards

Message from Bus Controller: Hardware Operation

Connection of Terminal to 1553B Bus

Message to Bus Controller: Hardware Operation

Message to Remote Terminal: Hardware Operation

Message from Remote Terminal: Hardware Operation

1553B Protocol Fault Injection Board

Layout of 1553B Protocol Fault Injection Board

Message from Bus Controller: Software Operation

Message to Bus Controller: Software Operation

Message to Remote Terminal: Software Operation

Message from Remote Terminal: Software Operation

Missile Angle Plot

Missile Range Plot

System Configuration for Baseline Results

Data Corruption Type Fault in Gathering Phase (2 seconds)

Data Corruption Type Fault in Gathering Phase (4 seconds)

Data Corruption Type Fault in Gathering Phase (i second)

Data Corruption Type Fault in Terminal Phase (7^ seconds)

Data Corruption Type Fault in Terminal Phase (9 seconds)

Effect of O verflow in Digital Controller

Parallel Units of Digital Controller

Guidance Demand

Omission of Acceptance Test Due to a Fault

System Recovery

4K Memory Board

Layout of 4K Memory Board

System Configuration for Remote Terminal Failure

(xiv)

îg . 12 .4 . Schematic of Task Swapping

ig. 12 .5 . Failure of Target Tracking Processor

ig. 12 .6 . Remote Terminal Failure in Gathering Phase

ig . 12 .7 . Remote Terminal Failure in Terminal Phase

ig. 12 .8 . System Configuration for Bus Controller Failure

ig. 1 2 .9 . Bus inactivity Detection

ig. 12 .10 . Use ot Discrete to Disable Failed Bus Controller

ig . 12 .11 , Bus Control I er Failure

ig. 12 .12 . Bus Controller Failure

ig. 12 .13 . Bus Controller Failure

ig. 12 .14 . Bus Controller Failure

ig. 12 .15. Bus Controller Failure

ig . 12 .16 . Bus Controller Failure

n Gathering Phase (1 second)

n Gathering Phase (2 seconds)

n Gathering Phase (4 seconds)

n Terminal Phase (7 seconds)

n Terminal Phase (8 seconds)

n Terminal Phase (9 seconds)

ig. 1 4 .1 . MASCOT Diagram for Target Tracking Process

ig .B . 1. Z8000 Memory Read Cycle

ig .B .2 . Z8000 Memory W rite Cycle

ig. E. 1. Acceptance Test for Read Routine

ig .E .2 . Read Alternate Routine

ig .E .3 . Acceptance Test for Azimuth Inhibit

ig .E .4 . Azimuth Inhibit Alternate Routine

ig .E .5 . Acceptance Test for Range Inhibit

ig .E .6 . Range Inhibit Alternate Routine

ig .E .7 . Acceptance Test for Set Binaries

ig .E .8 . Acceptance Test for Process Binaries

ig .E .9 . Acceptance Test for Approach/Recede Assessment

ig. E. 10. Approach/Recede Assessment Alternate Routine

ig. E. 11. Acceptance Test for Coverage Assessment

ig .E . 12. Coverage Assessment Alternate Routine

(xv)

F îg .F . 1. 1553B Message Formats

F îg .F .2 . 1553B Word Formats

F îg .F .3. Data Encoding

Table 4 .1 . Angular Rate Information

Table 6 .1 . Parts List of Error Correcting Memory Boord 1

Table 6 .2 . Parts List of Error Correcting Memory Boord 2

Table 6 .3 . Parts List of Input/O utput Boord

Table 6 .4 . Parts List of Buffer Cord

Table 6 .5 . Parts List of Fault Injection Logic

Table 1 0 .1 . Baud Rate Selection

Table 1 0 .2 . Parts List of Central Processing Unit

Table 1 0 .3 . 1553B Interface Memory Addresses

Table 10 .4 . Parts List of 1553B/Microprocessor Interface Board 1

Table 1 0 .5 , Parts List of 1553B/Microprocessor Interface Board 2

Table 1 0 .6 . Frame Length Adjustment

Table 10 .7 . Parts List of 1553B Protocol Fault Injection Board

Table 11 .1 . Major Causes of Microprocessor System's Crash

Table 1 2 .1 . Parts List of 4K Memory Board

(xvi)

Chapter 1. introduction.

With the introduction of low cost sophisticated processing, the use

of microprocessors has become an important part of the industrial scene,

with LSI and VLSI devices often replacing analogue or large digital

equipment. In addition to small size and high processing power, a

microprocessor based system provides system fle x ib ility with the

capability of system reconfiguration. A growing realisation of the new

problems that the change to microprocessors has brought about is now

evident; the consequence of a system failure in applications such as

satellite attituds control is severe, leading to a need for analysis and

design techniques to be adopted in order to improve system re liab ility

and ava ilab ility . Such system failures can originate at either the

design or manufacturing stages or in operational use. Design errors

typically include systems analysis, hardware design, incomplete

specification, mismatch of hardware and software, software design and

coding. An analysis of program errors points to the fact that

incomplete, inconsistent or ambiguous software requirement

specifications are a significant problem,^

The re liab ility of a system may be improved by a combination of

different techniques which fall into three main categories, fault

avoidance, fault removal and fault tolerance. Chapter 2 reviews the

considered techniques which are summarised below.

The avoidance of faults at the analysis and design stage can be

carried out by the use of a formal specification language and associated

design techniques. Fault tree analysis and failure modes effects

analysis (FMEA) can be used to detect critical parts of the system;

certain failure modes can then be eliminated a t the design stage.

Fault removal techniques involve the construction and integrated

testing of hardware and software prototypes. In addition the use of

structured software enables a more thorough testing of the system to be

carried out. The use of correctness proofs of software is beginning to

emerge but îs unlikely to replace prototype testing.

Fault tolerance is a further technique whereby redundant hardware

and software is used for the protection and recovery from faults.

The need for high re liab ility can be justified in systems where human

life is at stake, where maintenance is not possible or in situations

where a large financial loss results from a system crash.

1 ,1 . Research Objectives.

A method ot increasing the ava ilab ility of a given system is by

the addition of redundant hardware and software to provide protection

against and recovery from faults within and external to the system.

It is important that the implementation of redundancy techniques is

considered in terms of cost effectiveness, weight and power requirements;

for example massive redundancy may not be a cost effective solution

if only a marginal increase in re lia b ility and ava ilab ility is obtained.

The aim of the research study was therefore to investigate the

possibility of increasing the ava ilab ility of a given system by the

inclusion of fault tolerant mechanisms for the protection and recovery

from predefined faults. The aim can best be divided into constituent

parts as follows:

(a) To establish good design practices based upon a practical

rather than a mathematical approach.

(b) To establish a simple but obvious structure for system

recovery.

(c) To establish design criteria for reliable inter-task

communication within a single microprocessor system.

(d) To establish a design philosophy for message passing between

microprocessors in a distributed system in order to inhibit the propagation

of faults.

The research entailed an in itial study of different strategies that could

be adopted os a starting point. The next stage was to choose a system

upon which the strategy could be applied. The aspects which govern

system recovery under faulted conditions become more critical as the

response time of the system decreases. With these factors in mind a

decision was made to choose a real time system as opposed to a batch

processing system since requirements for processing speed, critica lity of

system outputs and fault recovery time ore much more demanding.

1 .2 . Research M odel.

After careful consideration it was decided to base the study on a

notional ground defence system, which consisted of a target tracking and

missile guidance loop os described in Chapter 4 , in order to establish

the objectives previously mentioned.

The target tracking process consists of converting raw target data

into a plot of target positions. The raw target data is produced from a

radar whose aerial rotates at a constant rate, and consists of range and

velocity data extracted from the returning radar signals.

The missile guidance loop consists of a proportional plus integral

controller and the missile itself whose autopilot is represented by a

second order function.

The tracking process determines the angular position of the target

which is known os the target azimuth. This angle becomes the input for

the guidance loop, whose objective is to constrain the missile to lie

on a line joining the tracking system and the target.

The modelling of these functions in a microprocessor environment

is described in Chapter 5 .

1 .3 . Systems Implementation and Investigation.

A subset of the real time system was implemented on a single

microprocessor to establish how well it was capable of detecting and

recovering from faults within its system. The single microprocessor

system carried out the function of the target tracking process with raw

target data being provided from a PDF 11. The implementation of the

target tracking process in a microprocessor system is described in Chapter 6,

This system was then operated under fault conditions to provide a baseline

for the results. Following this a fault tolerant structure was implemented;

the results obtained from this ore discussed in Chapter 7 . The conclusions

of the single microprocessor study ore stated in Chapter 8.

Having gained valuable experience about the workings of the

system under fault conditions, a distributed processing system was then

investigated, this involved the choice of a communications link and the

method for injecting real time faults onto the system; these topics are

discussed in Chapter 9 , The implementation of the complete real time

system in a distributed processing environment is described in Chapter 10,

The study also involved looking at a three processor system with

protection and recovery methods for increased ava ilab ility under fault

conditions, the results of which are given in Chapter 11.

The use of a standby processor system is shown to give continued

systems operation under conditions which would normally cause a

catastrophic crash in non-redundant systems.

Chapter 12 looks at the question of when should such a redundant

processor subsystem be used and presents results for the recovery of the

system from the failure of a complete subsystem. The conclusions of the

distributed processing study con be found in Chapter 13. This is

followed by a review of guidelines for reliable systems design and the

in itia l design of a single microprocessor system within Chapter 14.

A final chapter reviews the achievements made from the research study.

Chapter 2 . Techniques for Reliable Systems Design.

The re liab ility of microprocessor based systems can be improved by a

combination of several strategies: fault avoidance, fault removal and fault

tolerance. The amount of work carried out in this area is considerable and

this chapter summarises a number of techniques which ore directed at

enhancing the re lia b ility of a system. In addition the problem of

re lia b ility prediction for microprocessor based systems is considered.

2 .1 . Failures, Errors and Faults .
2

To avoid ambiguity the terms failures, faults and errors are defined

and are used throughout this thesis.

Failure.

A failure o f a system occurs when the system does not perform its

service in the manner specified. This may be either because it is unable to

perform the service or because the system outputs ore not in accordance

with the specifications. Thus a failure is an event.

Error.

An error is a port of an erroneous state which constitutes a .

difference from a valid state.

Faults.

A fault is the mechanical or algorithmic cause of an error. This

Encompasses areas of design inadequacies such as incorrect choice of

component, system specification misinterpretation and incorrect inter­

relationship between system components (software and hardware),

2 .2 . Fault Avoidance.

The in itia l stage of a development process is the functional

specification stage; this generally involves determining the requirements

for both normal and abnormal operation of the system. Design faults that

can arise during this phase include inconsistent requirements and

misinterpretation or omission of requirements. Design inadequacies made

during the requirements definition phase which are found at a later stage

generally involve a redesign of software and/or system and repeat of the testing

process. A reduction in the number of errors resulting could possibly be

obtained by the introduction of formal system specification languages which

serve as a communication aid between systems design, implementation

and user. Research in this area is at an early stage; an exemple of a

formal specification language can be found in R e f.3.

There exists a number of semigrophical methods for systems analysis.

The most widely accepted of these methods is probably HIPO^ (Hierarchy,

Input, Process and Output) whereby functional specification is created

by naming the basic functions which hove to be performed and decomposing

them into hierarchically ordered sub-functions. A further technique is

the Structured Analysis and Design Technique^. This is basically a

diagramming language which is used to describe the relationship between

objects and activ ities. The amount of detail shown in a single diagram is

controlled and thus leads to diagrams which can be quickly understood by

management and users.

A technique gaining more acceptance is MASCOT^ which provides

a formalism for expressing the software structure o f a real time system which

can be independent of computer configuration and programming. It also

provides a disciplined approach to design, implementation and testing

of the system along with a strategy for documentation.

One of the most effective ways of avoiding design faults is to

keep the complexity of systems design under control. Many software

design methodologies based on this premise hove been developed.

They aim to structure software in a simple hierarchy of reasonably

independent software modules. Work in this area includes reliable soft­

ware through composite design^ and the decomposition of systems into

modules .

The use of small modules enables a complete understanding of their

operation, in addition the consequence of modifications con be more

easily seen than with one large program. Further, the use of structured

programming leads to more reliable software and significantly improves

the readability and m aintainability of a module since structured code is

read from top to bottom.

Consider now the hardware design; this is a task of selecting the

most appropriate microprocessor and associated circuitry. A hardware/

software trade-off has to be mode, this is a matter of deciding which tasks

are to be performed by software and which tasks by specialised hardware.

Performing a task with specialised hardware incurs an extra cost in

components and assembly for each product, whilst a software solution

incurs a high development cost but has the advantage of non-recurring

costs and ease of reconfiguration. A software solution to a problem w ill

generally slow down the task execution unlike specialised hardware which

can be designed to perform the task independently, for example a floating

point arithmetic unit. Thus when difficulties arise in achieving the

response time, then software should be replaced by hardware.

Systems design may be realised by a multi-processing solution

since the processing power of a single microcomputer may be insufficient

to meet the system requirements. In this cose the software would be

partitioned into independent tasks, each being located in the relevant

subsystem. The communications protocol used between subsystems would

then be determined by consideration of distance of transfer, data integrity

and response requirements.

In applications where highly reliable systems are required, an

analysis of failure modes is usually carried out following the design.
. 9An example of a technique for failure analysis is Fault Tree Analysis,

which starts by specifying a total system failure or safety critical failure.

The analysis then proceeds downwards from this failure to identify part

failure modes which could lead to such an overall fa ilu re. The final

result is a highly detailed logic diagram depicting basic faults and events

that can lead to the critical failure a t the top ot the diagram. Each basic

fault is given a probability from on analytical or an empirical approach.

The probability of the critical failure occurring is then calculated by

appropriate means from probabilities of the basic part failures. This

technique is often applied in safety analysis, particularly in situations

where human life is a t risk or where cost of failure is prohibitive, or where

certain system failure modes must be eliminated at the design stage.

The choice of programming language is another consideration of

reducting the number o f design faults and several high level languages have

been introduced to meet the demanding requirements of a real time system.

The choice of a language is made by considering language facilities such

as interrupt handling, I /O facilities, program structure inherent in language

implementation, data structure appropriate to application, portability

and efficiency of execution of obj ect code. Examples of this are languages

such as Coral and RTL/2, which have been specifically designed for real

time applications, although Coral suffers from lack of I /O fac ilities.

Pascal has a good structure and is portable, whilst Concurrent Pascal has

specifically been designed for multi tasking environments. Ada is still very

new and may be too complicated to be re liab le . In contrast PLM, PLZ and

MPL have been specifically designed by Intel, Z ilog and Motorola for their

own chips and hence there is a lack of portability.

2 .3 . Fault Removal .

Despite efforts to avoid faults in the analysis and design stages,

system failures w ill still occur due to residual design faults. Fault removal

techniques can be applied during the design phase in order to remove as

many of these faults as possible consistent with cost, development time

scale and re liab ility requirements.

In the case of hardware many well proven techniques exist;

these include design reviews, the building and testing of prototypes,

inspection and testing of printed circuit boards and the use of component

Burn-In to elim inate early failures.

The correctness of a systems design is important and must be checked

before software coding is started. The use of structured walk throughs and

design reviews are desirable where the correctness of each design step can

be checked by the designer and project engineers.

A structured software system has the advantage that testing can be

modular and more thorough thus removing a greater percentage of design faults.

In top down testing, the top level is tested first, a lower segment is added

and the combination tested. This is repeated down to the lowest leve l.

Dummy segments temporarily replace the segment subordinate to the segment

under test. These dummy segments can vary in complexity and may return

constants or may be a primitive version of the segment being simulated.

To enhance structured testing the length of a segment should be limited to a

manageable leve l, say fifty statements to enhance readability and

comprehension whilst minimising page turning. Usually each segment w ill

correspond to one function and can be implemented as a procedure with a

descriptive name corresponding to the function. Thus the limited size of

segment in addition to single en try /e x it, top to bottom flow of control

makes programs easier to extend and maintain. R eliab ility is further

enhanced because test plans for the segment are easier to specify and execute.

Techniques for formal proving of program correctness^^' ̂ ̂

are unlikely to replace program testing, now or in the near future since

there are many problems still to be overcome. It seems reasonable to

doubt the ab ility of correctness proofs as it is d ifficu lt to write long programs

without errors and program proving has so far been more d ifficu lt than the

construction of programs. The solution may lie in the use of computer aids

to check the proof or generate it . The problem that then arises is how do

you check the proof checker. In addition, large program proofs probably

have to be constructed of small modules which could lead to an interfacing

problem between modules. The correctness proof must also include areas

such as processor and system architecture, memory size and timing

considerations.

2 .4 . Fault Tolerance.

Microprocessor based systems of the future are unlikely to be

designed and built so as to be free from faults during their operational life .

Residual software design faults and random hardware faults are like ly to occur;

these must be detected, corrected and the system restored to a working state

which leads to a need for built in redundancy for highly reliable systems

operation. However, such redundancy must be applied carefully and in the

correct structure, otherwise increased system hardware and software could

lead to a reduction in re liab ility .

There are certain applications areas where use of fault tolerance

is v ita l. First, there are systems where maintenance is not possible such

as in space vehicles whilst reconfiguration around a malfunction may be

possible. Secondly, fault tolerance is important in systems where human

life is at stake, for example control of nuclear plants, ground defence

systems and transport systems. F inally , there are applications in which

computer downtime leads to financial losses such as automated process

control and communication systems.

Having discussed the need for fault tolerance, consider now the

types of faults that may occur during the operational life of the system.

2 .4 .1 . Characterisation of Faults.

Faults occurring in a system may be attributed to a number of

factors, e .g . temporary, intermittent or permanent failure of hardware

components, hardware or software design faults or manufacturing faults.

A fault causes an error if an incorrect state is entered; the fault does not

always cause an error to occur immediately, for example a memory cell

having a stuck-at 'logical 1 ' fault w ill not cause an error until a

'logical O' is incorrectly read as 'logical T ,

Temporary or transient faults are those of limited duration and

can be caused by malfunctions of components or by the introduction of

interference. If the duration of a transient fault is longer than a pre­

determined time then it w ill be interpreted as a permanent fault; for example

a communications link may allow up to three re-transmissions of data

before a permanent fault is reported.

Consider next the permanent failures of components; if the fault is

10

not masked then it must be detected and recovery can then take place.

This may consist of a software algorithm for hardware reconfiguration along

with program and data rollback.

Local faults can be described as those that only affect a single logic

variable whereas distributed faults are those which affect two or more

variables. The advent of LSI and VLSI chips means that distributed

faults are much more like ly to occur than in the past, as a single gate is

unlikely to fail without affecting other gates in a complex closely packed

integrated circuit. Distributed faults can also be caused by failure of a

single critical element, for example processor clock or power supply.

2 .4 .2 . Redundancy Techniques.

The detection of a fault during operational use is the starting point

of a ll fault tolerant mechanisms except those which use fault masking.

In many systems it is important that these faults are detected quickly and

are not allowed to propagate, otherwise system failure may occur.

In order to detect malfunctions the systems behaviour must be

monitored in order to show deviations from the norm. This monitoring is

generally performed by a combination of hardware and software techniques

for detecting system malfunctions include the following:

(a) The pattern of states through which the system passes can be

compared with expected or valid state transition patterns in order to reveal

the presence of hardware or software faults.

(b) The performance of the system can be monitored to indicate

fau lt free operation; this monitoring includes response time, system

throughput and process calculation time.

(c) A malfunctioning system w ill often lead to the process trying

to execute an invalid instruction or one that has an invalid address.

(d) The use of traps in processor software can be used to indicate,

for example, division by zero or overflow conditions which may be caused

by the propagation of a fault to the relevant instruction.

Hardware redundancy can be divided into two types, i . e . masking

n

and standby redundancy as described below. Redundancy in the form of

software is considered in section 2 .4 .4 .

Fault masking is a technique w idely used, whereby the fault is masked

by the presence of additional hardware, the output remaining error free

as long as the protection is adequate. One form of fault masking is the

use of n - modular redundancy where majority voting takes place on the

outputs of an odd number of identical units. The use of error correcting

codes is another form of fault masking, the most common code being the

Hamming code^^.

Standby redundancy can either be classed as cold or hot standby;

the terms cold and hot relate to whether the redundant units are powered up.

in cold standby redundancy, only one unit is powered up and operational,

whilst the remaining units are not powered up. A schematic of cold

standby redundancy is shown in F ig .2 .1 . A failure sensing and switchover

device monitors the operation of the working unit and switches to one of the

standby units when a failure of the working unit is detected.

In a hot standby redundancy scheme, a ll units are powered up, and

are arranged typ ically as shown in F ig .2 .2 . This figure shows three units

with the output of one of the units, chosen arb itrarily , providing the system

output. If the comparator detects a disagreement, then the faulty unit

must be identified and the system output taken from one of the other units.

The time taken to switch from a faulty unit to a fau lt-free unit must be

considered in the design phase.

2 .4 .3 . Fault Recovery.

The detection of a fault provides the basis for the next step which is

the correction and recovery of the system. Fault masking is a special case

of system recovery which does not use separate fault detection.

In systems where high a va ilab ility is necessary, the recovery from

a fault must be automatic and not require human intervention.

Methods of recovery from a fault include:

(a) Re-try the operation that fa iled , if successful then continue.

12

This is particularly valid in the presence of temporary faults.

(b) Rollback of system to a position where system operation was

known to be correct and repeat execution.

(c) Reconstruct or correct data structures from redundant data

or status information.

(d) R e-in itialise the system, with or without status information.

(e) Restore the system state to nominal or default values with

the use of a status flag to indicate that output may contain inaccuracies.

(f) The use of standby spares either in a cold or a powered up

condition.

System recovery can take one of three useful forms: full recovery,

graceful degradation or safe shutdown. The techniques used in a

particular system depend upon the extent of the damage, the possible

cause of malfunction and the operating state of the system at the time of

the fault.

2 .4 .4 . Fault Tolerant Software.

The use of redundant elements is an established practice in fault

tolerance of hardware. However, the use of redundant software for

reliable operation requires special attention due to the nature of software,

in contrast to hardware in which physical faults dominate, software defects

are time invariant. Executing duplicate copies of a program in parallel

does not improve the operation with respect to software defects, because

software design faults w ill be inherent in both copies. The following

paragraphs describe two methods of achieving fault tolerance in software:

N -Version programming^^ and the Recovery Block^^.

2 .4 .4 .1 . N-Version Programming.

This approach is analogous to the well known hardware method of

replication and voting on the outputs of the hardware modules.

A number (N]^2) of independently coded programs for a given process

are run simultaneously on loosely coupled processors. The independent

results are then compared, and in the case of a disagreement, a preferred

13

result is generated by m ajority voting (for N > 2) or by a predetermined

strategy. The success of this technique depends upon the level of

independence that can be achieved in the N Versions of the program.

Independence is best obtained by the use of different algorithms and

programming languages in each version. Different data structures could

also be used to increase the independence. The critical areas for this

technique are the voting algorithm and the housekeeping prior to and

after voting.

A constraint on N-Version programming is the requirement for

N computers that are hardware independent, yet are able to communicate

effic ien tly . The problem of synchronising arises here, a voter may have

to w ait for a result or indeed a result may never arrive due to a fault.

2 .4 .4 .2 . The Recovery Block.

This technique, in contrast to N-Version programming, can be

applied to any configuration of processors, including a single processor.

The structure in its simplest form is shown in F ig .2 .3 . , where a process

is described by a primary routine P. The output of the primary routine must

pass an acceptance test T before passing control to the next process,

i f the acceptance test fails or i f a set time has expired whilst executing

the primary routine then a transfer to the alternate routine, Q , is in itia ted .

If the acceptance test fails after execution of the routine Q or if a time

out occurs during Q then an error return results. This technique does

not preclude the use of several alternate routines if necessary for critical

parts of the system.

It follows that a critical feature of the Recovery Block is the

acceptance test. The alternate routines are worthless i f failure of the

primary routine is not detected by the acceptance test, thus the acceptance

test must be thorough without being too time consuming.

A number of different types of acceptance tests are described in

the following paragraphs:

(a) In many cases the definitions of the process imposes conditions

14

which must be met at the completion of the process. These conditions

can be used to construct the acceptance test. For example, an acceptance

test for a sorting process may be to check the order, produced by the

primary or alternate routines, is correct.

(b) Accounting checks can be used in acceptance tests for

processes that are transaction oriented. The acceptance test could

independently generate a checksum and compare it with the one produced

by a primary or alternate routine.

(c) Another class of tests are called reasonableness tests.

These tests are based on precomputed ranges of variables, expected sequences

of program states or other occurrences that might be expected to occur in

the system. Reasonableness tests are based on physical constraints whereas

tests for requirements are based on mathematical or logical relationships.

Tests used for acceptance can typically examine whether a variable is in

range, whether the increment or decrement of a variable is in range or

correlation between different variables is in range. For example, a process

might calculate the acceleration of a missile. The acceptance test might

simply test whether this acceleration is within predetermined limits, say

- lOg in order to maintain structural integrity.

(d) In an important process such as a firing sequence, the use of

flags is a good way to ensure the correct procedure has been followed.

In such a case, the acceptance test could check to see if a ll the

appropriate flags have been set before firing is allowed to occur.

2 .5 . Reliability Modelling.

The re liab ility of microprocessor based systems has conveniently

been divided into two areas, i .e . that of hardware and software, due to the

two disciplines involved in the design. Hardware re lia b ility modelling

has been an established practise for many years whilst software

re lia b ility modelling has only made an appearance in the last ten years.

Consider first the modelling of software re lia b ility .

15

2 .5 .1 . Software Reliability M odel!îng.

Software has the unique property that it suffers no natural

degradation, except in the special case of software stored on magnetic

media. The purpose of an error prediction model is largely as a

management aid to decide when enough testing has taken place and in

assessing the confidence levels that can be placed in the software.

Many models that have been put forward use a bug counting

approach. This approach has been used by Jelinski and Moranda^^ and

by Schooman^^. Jel inski and Moranda developed a software re liab ility

model which assumes exponential distribution of faults and a software

failure rate, i . e . the rate at which the software system foils to meet in­

formal system requirements, which decreases in discrete steps as a function

of tim e. Schooman's model is based on the same underlying assumptions

with the difference that failure rate is also dependent upon the debugging

effort. These models imply that re liab ility improvement can only take

place at a system failure, since it is only here that a design error can be

removed.

Musa^^ presents another model, using program execution time as

the time variable rather than calender or debugging time as in the

previously mentioned models. In addition he introduces a factor for non­

corrections of the cause of the failure.
18

Schick and Wolverton address the problem to a re liab ility model

by determining an analytic stochastic model for predicting the number of

remaining errors in the software, the mean time to next fa ilure, the time

to discover the remaining errors and the standard deviation associated

with the error prediction.
19

Littlewood and Verrai I use a contrasting approach of no news

being good news, where failure rate decreases between failures and

periods of failure free working cause the re liab ility to improve.

Even if assumptions about failure rates being proportional to the

number of errors remaining are accepted, then estimation of model

16

parameters still poses great d ifficu lty . One objective should be to measure

the quality of the behaviour of the software, its operational re liab ility

(integrity) rather than the number of design errors left in the program.

It is considered by the author that instead of establishing a figure

for software re lia b ility , in terms of number of remaining errors, that a

range of software metrics be used for assessment of software integrity.

This assessment must depend upon the compexity of the software modules,

the critica lity of each module to system performance, the tolerance of

each module to errors caused by environmental factors and the maintain­

a b ility and testability of the software.

Consider now the modelling of hardware re lia b ility .

2 .5 .2 . Hardware Reliability Modelling

The effects of environmental stressing are known as random failures.

These failures occur in a ll types of electronic equipment and are generally

treated as exhibiting a constant failure rate. This constant failure rate

in non-redundant systems is supported by the use of life test and field data,

after accounting for infant mortalities and the effects of maintenance.

In microprocessor based systems, malfunctions are dependant upon

the component configuration, for example a failure may result from a

transistor sinking excess current. Thus a re lia b ility model must take

account of prevalent failure modes.

The laws of probability govern the outcome of a mission of a

redundant system and simple probability formulae clearly show the

advantage of redundancy. Consider a triple modular redundant (TMR)

system where three identical computers are used to give an output based

on a m ajority vote. This system w ill only give an improvement in the mean

time to error if maintenance is provided before the 'mean time before

fa ilure' of the individual modules. TMR systems are vulnerable to voting

and single point timing failures which reduce the re liab ility of such

systems.

Error detection and correction can be incorporated into integrated

17

circuits to extend their 'mean time between failure' provided a

comprehensive testing capability is also incorporated. An example of

the design for testability of error correction circu itry for memory arrays

is given in R ef.20. However, the effectiveness of any on chip redundancy

w ill always be limited by the high correlation between malfunctions and

the common thermal and structural failures.

In a complex system, the relationship between a random failure and

its manifestation as an error is apt to be obscured by ill defined propagation

paths. This is like ly to cause problems for analytic models based on

simple cause - effect relationships.

The modelling of some of the more complex redundant systems is often

carried out by the use of Markov process models. These models can be made

arbitrarily accurate by incorporating an arbitrary number of states.

Caution must be applied in using these models on processes other than

those with constant failure and recovery rates. A constant recovery

rate is hard to imagine for a real time system as the time taken to recover

depends upon configuration of the system at time of fau lt, the process

being executed and the critica lity of the fau lt.

A va ilab ility is measured as the percentage of time that a system is in

an operational state. In some applications, the penalty for a single long un-

operational period is much greater than that for many short periods, whereas

the ava ilab ility figure may be equal for the two instances. In this case,

another parameter is required to describe the performance, i .e . time.

This concept of penalising a slow recovery is discussed in Chapter 1 1 .2 .

Coverage of a system is the probability of the system recovering from

a malfunction, it is a complex architectural attribute and is influenced

by latency of fau lt, ambiguity in the perception ot the fault and by the

architectural anticipation of such a fault. An estimation of coverage

made before experimental verification is like ly to be largely inaccurate.

Retrospective coverage can be obtained but cannot accurately reflect

any system other than that for which it was gathered.

18

Chapter 3. Analysis of a single Microprocessor System.

Having discussed techniques for reliable systems design in

Chapter 2 an approach had to be chosen that could be used for single or

distributed processing systems. A requirement of the research was that

massive redundancy was to be avoided, if possible. The Recovery Block

meets this requirement and in the view of the author was a good basis for

further investigation, in itia lly on a single microprocessor and then fina lly

in a distributed processing environment.

in order to determine recovery mechanisms for a processor system

under fault conditions, it became necessary to identify the effect of faults

on system operation. An example of this identification is given here on

a typical processor system consisting of CPU, RAM R O M , A /D and D /A

convertors along with the necessary interconnecting and buffering logic,

as shown schematically in F ig .3 .1 . The data bus transceivers, address

and control buffers as shown in F ig .3 .1 . are permanently enabled and the

direction of the data bus transceivers defaults to drive away from the

CPU except when reading memory.

The approach of identifying failure modes and their effects is a

useful method of fault avoidance. As hazards are identified, software

and hardware defences can be developed using fault tolerant or self

checking techniques to reduce the probability of their occurrence once

the system has been implemented.

In the following section, typical causes and effect of faults are

given for the described system; in addition possible solutions are given

for the purpose of system recovery.

3 .1 . Cause and effect of Faults in a Typical Microprocessor System.

The following descriptions of causes and effects should be read

with reference to F ig .3 .1 . The list is not exhaustive, but sufficient to

identify typical fault effects in the view of the author.

Cause Effect Possible Solutions

1. No clock. The system w ill stop. The use of a fault tolerant

clock^’ .

19

Cause

2 . Address bit

failure.

Effect

incorrect addressing

occurs resulting in CPU

fetching data and/or

instructions from wrong

addresses.

Possible Solution

A time out can be used to

indicate that the program

sequence was not completed

in time.

By monitoring of bus with

other logic then it may be

possible to re-arrange

addressing of system, i . e .

move program and data to

another part of memory.

3 . Reset failure. System fails to reset

when required.

If reset fails then attempt

to carry on processing.

4 . Read/write

lin e .

If the line is stuck at

logical ' T , that is

always a read cycle,

then CPU is always

reading from memory and of the fau lt.

I /O . When attempting

to write then bus conflict

w ill occur with CPU and

memory buffers driving

against each other.

If the line is stuck at logical

'O' then the system always

sees a write cycle. When a

CPU read cycle occurs then

memory is loaded with garbage.

The effect of an undriven bus

w ill inevitably result in in­

correct program execution.

A time out w ill indicate

that a fault has occurred.

Monitoring logic could give

information on the nature

20

Cause Effect Possible Solutions

5 . Data bus If stuck at faults occur

transceivers, on the data bus, then bad

data is read from or written

to memory, if a fault in

the direction logic occurs

with direction always

towards the CPU then bus

conflict w ill occur; when

writing to memory no data

w ill be stored. If a

direction fault occurs with

direction always to memory,

then when reading from

memory the CPU w ill read

a bus which is not driven.

There is a possible

detection of an undriven

bus as the CPU w ill

probably read all I's;

alternatively the bus

could be made to

default to a particular

instruction. A conflict

on the data bus w ill

cause time-out or a trap

due to attempted

execution of invalid

instruction.

6 . Memory

fa ilure.

Incorrect instruction/data

is read from memory.

The fault can be masked

by automatic error detecting

correcting codes,although

CPU intervention or

special logic may be needed

to correct multiple faults.

7 . Address As address b it fa ilure,

bus buffer.

See solu tion 2 .

No memory accesses can

Clock fa ilu re, be made.

The duplication of

address and control buffers

is possible but not cost

effective .

21

Cause Effect

9 . V alid Memory If stuck a t logical 'T fault

Address

Signal.

occurs then memory is

accessed at wrong point in

time or spurious addressing

occurs. If stuck a t logical

'O' fault occurs then memory

is never accessed.

Possible Solution

The effect is probably

caught by a time out.

10. CPU. The effects of such a fault Repeated time-outs

are wide ranging and include may possibly occur but

stuck at faults on buses, CPU may not respond

invalid control signals and to them,

incorrect operations.

1 1 . Address

Decode

Logic.

If no outputs from the There is a possibility

address decode logic are of using self checking

enabled, then the CPU reads logic here,

an undriven bus.

If one output from the address

decode logic is enabled, but

it is the incorrect output then

incorrect addressing occurs.

If two outputs are enabled then

memory is corrupted on a write

cycle, and a bus conflict

occurs on a read cycle.

If the address decode logic is not

enabled then no memory accesses

w ill occur. If however the logic

is always enabled then accidental

addressing w ill probably occur.

22

Cause

12. Buffered

Read/w rite.

Effect

As for effect 4 .

Possible Solution

See solutions 4 and

8.

13. Memory

Enable.

Bus conflict w ill occur if

the enable occurs at the

wrong time.

Possible solutions in­

clude self checking or

monitoring by adaptive

logic.

14. Buffer for end

of conversion

of A /D

convertor.

If the buffer is always

enabled then bus conflict

w ill occur. If the

buffer is never enabled,

then the CPU reads an

undriven bus.

A bus conflict w ill

probably cause a time­

out in a program segment.

If the buffer is never

enabled then CPU w ill

believe that conversion

is not finished. The

CPU could w ait until

conversion should have

finished and then read

the data. This data

can then be compared

with the last value to

determine whether

'end of conversion'

has not appeared due

to a buffer or an A /D

convertor fau lt. If

an A /D convertor

fau lt has occurred then

set a flag and use

another A /D convertor.

23

Cause

15. End of

conversion

fau lt.

Effect

The conversion may

appear to have finished

early .

Possible Solution

When polling to look

for 'end of conversion'

then check that it

appears when

expected and not

before.

The fault may be due

to A /D convertor;

use another

convertor if necessary.

16. Conversion If accidental addressing

command occurs then an extra

fau lt. conversion command may

be generated.

Hov/ever, the con­

version command may

not be given due to

logic fau lt.

If accidental

addressing occurs then

an extra conversion

w ill probably not

matter.

If no conversion command

given then 'end of

conversion' may not

be cleared. The out­

put of the A /D convertor

can be compared with

last value; switch

to alternative

conversion if

necessary.

24

Cause

17. Data latch

for D /A

convertor.

Effect

If input or output lines

of latch have stuck at

type faults then in­

correct conversion w ill

occur. If the latch is

not clocked then the last

value clocked w ill be

converted. If the latch

is operated a t the wrong

point in time due to

accidental addressing

then an incorrect value

w ill be converted.

Possible Solution

The periodic connection

of the D /A convertor

output to the A /D convertor

input could detect faults.

If incorrect conversion

occurred then CPU w ill

detect the difference.

If the latch is not working

then the D /A convertor

output w ill remain at last

latched value and this

w ill be detected by the

CPU. If the latch is

operated at wrong point

in time then the D /A con­

vertor output is neither

correct (present) value

nor last value and the

CPU w ill detect this.

If the data bus is not

stuck then an alternative

D /A convertor can be

switched in .

3 .2 . Discussion of Failure Mode Effects.

The effects listed in the previous section for the faults considered

are generally quite severe and continued system operation is unlikely

if the faults are permanent. The most common of the effects appears

to be incorrect addressing, leading to execution of the wrong

instruction or use of the wrong data. The corruption of data within

25

memory may occur even if memory is error correcting, since correction

can only take place on faults within memory cells and not on incorrect

data given to the error correcting memory.

The effect of faults on the control lines is similar to the effect

of faults directly on the address and data lines. For example, a fault on

the address strobe line may result in the wrong address being read or

written to. This effect is similar to corruption of an address line, and

may result in the microprocessor's program counter being corrupted.

If the faults are transient in nature, then the effects suggest that

detection must include checking of data reasonableness, checking of

address sequences and the use of the time domain for checking system

operation. If permanent faults occur in a single microprocessor system,

then continued system operation w ill not be possible in the majority of

cases. Redundancy can be used to protect certain parts of the system,

e .g . clock, memory and possibly the address decode logic.

26

Qigpter 4 . Real Time Systems Description.

This chapter describes a small real time system to be used as a basis

for investigation into fault tolerant techniques. The system is complex

enough to model a real system, but is simple enough such that complexity

does not hinder the objectives of investigating the possibility of

increased system a v a ila b ility . It was with this view in mind that the

following operating characteristics were chosen.

4 .1 . Design O verv iew .

The system devised for the research investigation was a ground

based target tracking and guidance process which selectively tracks a single

target and determines whether the target is within missile coverage.

The system is shown diagram atically in F ig .4 .1 . with an explanation of

the component parts as follows.

The doppler radar consists of an aerial which rotates at a constant

rate. The nature of this radar means that target information from a single

rotation of the aerial is insufficient to determine whether the target is

approaching or receding. The decision on whether a target is approaching

or receding is made using intormation from successive scans of the aeria l.

In addition, the target tracking process determines whether the target is

within missile coverage, i .e . has a missile a high probability of reaching

and hitting the said target.

An operator can interact with the target tracking process and enter

the system into one of two modes, i . e . search or track modes. The former

mode of operation is used whilst waiting for a target detection.

The target tracking process constantly updates the azimuth on which

a target lies; thus azimuth is referred to as The ta Beam in F ig .4 .1 .

In order that only one target is tracked, the system uses an inhibition

mechanism whereby target detection is only considered within a window

around the last detected target position.

The target angle (Theta Beam) is used as the input to the missile

guidance loop; this loop is stabilised by a digital controller using

27

proportional plus integral control with a phase advance network.

The digital controller generates an output proportional to lateral

acceleration (I a tax) demand which is transmitted to the missile, which

in turn produces a lateral acceleration as a result of this guidance demand.

The guidance loop is closed by a simple relationship between the

acceleration and the missile angle. Consider first the target tracking

process.

4 .2 . Target Tracking.

This section describes the requirements of a target tracking process

which processes target aircraft data and determines whether the target is

within missile coverage. If a target is present on the same azimuth as the

radar, which scans through 360° in one second, then it appears in a range/

velocity channel. Target detection in a given channel defines the range

and velocity limits within which the target lies. The detection of a

target in a channel sets a pair of binaries; other binaries cannot become

set until the original pair have been reset. An alarm is then set

depending upon which pair of binaries has become set.

The azimuth and range at which a target is detected are used for

inhibition purposes on subsequent scans and provide control for setting

binaries. Due to the nature of the radar supplying target data, the system

must decide whether the target is approaching or receding and use this

information to determine whether the target is within missile coverage.

4 .2 .1 . Target Data Input.

Data input to the system consists of six range and four velocity

gates, giving a total of 24 channels. The range and velocity gates are

combined by means of a matrix, shown in F ig .4 .2 . Some of the gates

are arranged not to give an alarm, these correspond to slowly approaching

or fast receding targets at maximum range. The combination of range and

velocity gates which do not give an alarm are known as taboo channels

and are shown diagramatically in F ig .4 .3 .

28

4 .2 .2 . Azimuth inhibit.

Following a target detection, the target position is stored in terms

of azimuth,and range and velocity gates set. On subsequent scans a

target w ill only be detected if its azimuth position lies within - 24 degrees

of the stored target azimuth, which moves with each target detection.

The azimuth inhibit persists for four scans after the last detected target.

The principle of the azimuth inhibit is shown in F ig .4 .4 .

4 .2 .3 . Range Inhibit.

When a target is detected the target range is stored; on the two

scans following this detection the system w ill only detect targets at the

same range or within one range gate on either side of the stored target

range.

4 .2 .4 . Approach/Recede Identification.

The identification of the target as approaching or receding is carried

out by examining range and velocity data from successive scans.

In search mode only one missed scan is allowable before the approach/

recede decision is restarted, whereas up to four missing scans are allowable

in track mode. The decision is based on four criteria as follows:

1. New target detection

A new target is deemed to be approaching until a complete

evaluation is completed.

2 . Crossing target detection.

A crossing target is defined as a target whose component of

velocity towards the radar is close to zero.

3 . A changing target range pattern .

A target which has a rapidly changing range pattern is quickly

identified as approaching or receding.

4 . Doppler derived criteria .

If a target remains within a given range gate for a number of

scans then velocity gate information is used for the approach/

recede assessment.

29

The algorithms for each of these criteria are not described in this thesis.

4 .2 .5 . Missile Coverage.

Following the approach/recede algorithm the system identifies

whether a target being tracked is within missile coverage. An 'in cover'

indication represents a high probability that a target can be successfully

reached by a missile. The determination of the coverage is described

below.

4 .2 .5 .1 . Search Mode.

In search mode, 'out of cover' is indicated if the target is deemed

to be receding and the angular rate appropriate to the alarmed range and

velocity gate is zero. Table 4 .1 . shows the angular rate information for

range and velocity gate combinations.

4 .2 .5 . 2 . Track Mode.

In track mode. Table 4 .1 . is used to determine whether the target

is in or out of missile coverage for the appropriate range and velocity

gate combination. If the angular rate, calculated as below, is less

than the value in lookup table, then 'in cover' is set, otherwise

'out of cover' is set.

Angular Rate = 100 -(1 0 x Number of alarms on target) (4 .1 .)

Having described the target tracking process, now consider the missile

guidance loop.

4 .3 . Missile Guidance Loop.

The guidance loop used is a line of sight guidance loop where

the missile is constrained to lie as nearly as possible on the line joining

the defence system and the target.

The position of target is identified by a scanning radar aerial which

rotates once per second. The target tracking process described in the

previous section provides the position of a single target. The azimuth

position of the target being tracked is then used as the input to the missile

guidance loop which is taken from R ef.22 as shown diagram atically in

F ig .4 .5 . This consists of a controller, missile autopilot and a double

30

integrator for kinematic loop closure.

The controller consists of proportional plus integral control with
S€cs.

an integrating time constant of two ^ In addition a double phase advance

network, giving a maximum phase advance of 6 2 .6 ° is used for loop

stabilisation.

The missile autopilot is represented by dynamics defined by a natural
-1 .frequency of 12 rads and a damping factor of 0 .6 . The missile produces

a lateral acceleration as a result of a guidance demand. Kinematic loop

closure of the guidance loop from lateral acceleration to position results

in 180° phase lag represented as a double integrator.

The Bode plot for this loop is shown in F ig .4 . 6 . giving a phase

margin of 35° and a gain mcrgin of 10.5dBs. The step response of the

analogue system is shown in F ig .4 .7 . giving an overshoot of approximately

55% .

31

Chapter 5 . Modelling of Real Time System.

The system described in Chapter 4 consists of two distinct parts:

the target identification process and the guidance loop. In order to

model this system, it became necessary to simulate a target being tracked

by a radar. This chapter describes how the above processes were

modelled in order to represent a realistic real time control system.

5 .1 . Target Simulation.

Target simulation is performed by a program which was

specifically w ritten for this study to run on the PDF 1 1 . The program

is designed to handle multiple targets, but for the purpose of this

study only a single target was considered. The target is characterised

by a start co-ordinate (x, y , z) , a heading co-ordinate (s, t, u)

and a velocity; a straight line course is assumed between the two co­

ordinates. The range of the target from the tracking system, situated at

(0, 0 , 0) is given by equation (5 .1 .) assuming the target is at

ccrordinate (a, b, c)

Slant Range = (a^ + b^ + c ^ f (5 .1 .)

The target is then tracked by a radar whose characteristics are given

by:

Measurable Slant Range: 1 Km to 7 Km

Measurable Velocity: 50 m/s to 450 m/s.

A complete revolution was in itia lly divided into 30 equal segments.

If a target is seen in the aerial's beamwidth at a particular point in

time then the appropriate range and velocity gates are set.

Thus for each l/3 0 th second the program gives an output of six range

and four velocity gates, either set or unset as determined by the target

position. Ten complete scans are simulated, representing ten seconds

of target motion. This duration was chosen as this period of

results of the target tracking process conveniently fills the temporary

storage available.

32

The target chosen for the first part of the study has the following

characteristics:

Start Position: 800 1500 200

Heading: -100 1400 190

Velocity: 400

The units for the start position and heading are metres whilst the

velocity is in metres/second. This target was chosen as it represents

a crossing target, i . e . the target is lost by the radar for approximately

two seconds due to the fact that after about five seconds from the

start o f the run the target's component of velocity towards the radar

aerial is close to zero.

5 .2 . Target Tracking Process.

The target tracking process consists of seven tasks interconnected

as shown in F ig .5 .1 . , which is a top level diagram of an SADT

(Structured Analysis and Design Technique) activ ity model^.

The tasks are described briefly below followed by typical results of the

process.

5 .2 .1 . Read Routine.

The read routine reads range and velocity data every l/3 0 th

second. This data is precomputed by a simulation program and is

stored in an area of microprocessor memory. If a target is detected,

i . e . i f any gates are set then the appropriate range and velocity

channel variables are set to the appropriate values and the ' target

detected' flag is set. The radar azimuth position is updated when the

read routine is entered and can take values from 0 to 29. A flow

chart of this routine is shown in F ig .5 .2 .

5 .2 .2 . Process Azimuth Inhibit.

On the four scans following a target detection, the system

considers targets only within a given angle (- 24°) of the last azimuth

on which a target was detected. A flag , 'target azimuth valid*

is used to signify if a target has been detected within the last four scans.

33

A flow chart of this routine is shown in F ig .5 .3 .

5 .2 .3 . Process Range Inhibit.

On the two scans following a target detection, the system

considers targets only within - 1 range gate of the gate set when the

target was detected. If 'azimuth inhibit' is set at any time then

'range inhibit' is also set. A flag 'target range valid ' is used to indicate

if a target has been detected within the last two scans.

If more than two missing scans occur then 'target range valid '

is set invalid awaiting a new target, or reappearance of an old target.

A flow chart of this routine is shown in F ig .5 .4 .

5 .2 .4 . Set Binaries.

The set binaries routine decides which pair of binaries (if any)

becomes set; only one pair of binaries can be set at any one time.

Another pair of binaries cannot become set until a target appears in a

range/velocity channel and the 'range inhibit' is not present. The

setting of new pair of binaries resets the old pair. A flow chart of this

routine is shown in F ig .5 .5 .

5 .2 .5 . Process Binaries.

The routine determines if the pair of binaries set are allowed to

generate an alarm. This is performed by the use of a look up table of

taboo channels.

Two types of alarm can be generated; internal and external.

The internal alarm is used for control of the approach/recede and

coverage assessments whilst the external alarm is an indication to the

operator. The external alarm is given to the operator only in search

mode. A flew chart of this routine is shown in F ig .5 . 6 .

5 .2 .6 . Approach/Recede Assessment.

The approach/recede algorithm in track mode is different from

that performed in search mode, as previously described in Chapter 4 ,2 .4 .

Before the algorithm is started several other variables are calculated,

these include the number of scans at the same range, variations in range

34

between successive scans and identification of crossing targets. A flow

chart of this routine is shown in F ig .5 .7 .

5 .2 .7 . Coverage Assessment.

The coverage assessment is based upon a look up table which

determines whether the target is in or out o f missile coverage. The entry

within the table is identified by the particular range/velocity binary pair

set and whether the target is deemed to be approaching or receding.

If no binaries are set then the previous coverage indication remains for

four aerial scans or until a new pair of binaries become set when coverage

is reassessed. A flow chart of this routine is shown in F ig .5 .8 .

5 .2 .8 . Baseline Performance.

Using the target characteristics given in Chapter 4 . 1 . , the target

tracking process was run for ten seconds to provide a baseline performance.

F ig .5 .9 . represents some of the outputs of the target tracking process.

An explanation of these graphs follows:

F ig .5 . 9(a) Azimuth Position. This represents the internal radar

azimuth position; the ramp up to 30 represents the rotation

of the aerial through 30 sectors of 12 degrees each.

Target Detected. This is a flag used to inform the system

that a target has been detected, i .e . a combination of

range and velocity gates have been set. The absence of the

flag at five seconds is due to the crossing target.

Target Azimuth. The target azimuth is a record of the current

azimuth on which the target being tracked lies. This

variable is used for azimuth inhibition if 'target azimuth

valid ' is set. The target being tracked changes from

appearing early in the aerial scan to late in the aerial scan

as it moves from right to left across the sky.

F ig .5 .9(b) Range Inhibition. Information on the target is updated only

when range inhibition is not set. N o information on the targets

range and velocity is updated during the period of crossing.

35

Binaries Flag. This flag is used to identify whether the last

stored pair of range/velocity binaries are valid .

internal Alarm. This informs the system that a target has

been detected within the last second. The alarm is set to

zero at about five seconds due to the crossing target,

although the system still remembers the target as up to four

missing scans are allowed. The alarm is set again when

the target reappears after approximately two seconds.

In Cover. This graph shows that the target being tracked

is deemed to be within missile coverage.

5 .3 . Missile Guidance Loop.

In order to implement the guidance loop on a microprocessor system,

it became necessary to digitise the transfer function. From F ig .4 . 6 . a . ,

it can be seen that the analogue crossover frequency is 3 .4 rad.5 .

A sampling frequency had to be chosen that was a compromise

between a low sampling frequency resulting in aliasing and a high

sampling frequency where inaccuracies occur due to fin ite word length.

The sampling frequency chosen was 30 Hz which conveniently ties in

with the 30 sectors in 360° for the target tracking process. The guidance

loop. F ig .5 .1 0 . was implemented on two microprocessors, one

processor performing the digital controller process and the other

simulating the missile autopilot. Thus in digitising the complete guidance

loop it is necessary to include two zero-order hold circuits as shown in

F ig .5 .1 0 . Combining the missile autopilot with the kinematic loop

closure, the guidance loop consists of two separate parts. Z Transforms

were used to digitise the two separate parts.

From F ig .5 .1 0 .

G (z) = (l - 2 " ’) .Z A . 10(S + 1) (S + 1)(S + 0 . 5) \ (5 .2 .)
' I s S(S + 3 .16)(S + 3 .1 6) I

and
G (z)= (l - z * ’) .z / 1. 144 \ (5.3.)

\ ^ S^($^ + 1 4 S + 1 4 4) /

36

The transfer functions of the controller and the missile in terms

of z is derived by taking partial fractions, and then Z Transforms

of the component parts, along with setting T = 1 /30 second.

A full derivation of G^(z) and G^(z) can be found in Appendix A .

This results in the following equations:

G ^ (z)= 10(1 - 2 .918785963z“ ’ + 2.839590856z"^......................(5 .4 .)

_______________________ - 0.9207881866z

(1 - 2 .800048928z"’ + 2 .610092963z‘ ^

- 0.810044035z‘ ^)

and

G ^(z) = -0 .000903747z" ' + 0 .002798632z‘ ^..................................(5 .5 .)

________________ - 0.002670325z~^ + 0 .0009156z~*

1 - 3 .500869446z"’ + 4 .628827977z '^

- 2.755048263z"^ + 0 .627089085z“ ^

Having derived Z Transforms for each of the two parts of the system, it

is necessary to transform these equations into difference equations so

that they can be executed on a PDP 11 or a microprocessor.

5 .3 .1 . Floating Point Arithm etic.

The guidance loop was in itia lly modelled on a PDP 11 using floating

point arithmetic with seven significant decimal figures. Floating point

arithmetic was used to determine the best realisation of the Z Transform

equations before proceeding to execute the difference equations on a

microprocessor with integer arithm etic. Three realisations were used

and these are described in the following paragraphs.

5 .3 .1 .1 . Direct Realisation.

The first realisation used the Direct method for transferring the
“ 1 23

transfer functions in z into difference equations. Given that

U(z) = a^ + a^z ̂ + a^z ^ + a^z ^(5 .6 .)

E(z) Tj ZÔ : 3 "
1 + b Q Z + b ^ z + b ^ z

37

then by the Direct method

° 0 ^n ^ - 1 ° 2 ^n- 2 °3^ n -3

■ ‘’O^n-1 ■ ’’ l^ n -2 ■ ^ 2 ^ L -3 (5 .7 ,)

Inserting the coefficients of equation 5 .4 . into equation 5 .7 . gives

the following difference equation for the digital controller

U = 1 0 E - 29.18785963E = 28.39590856E ̂ - 9 .207881866E ^
n n n-1 n -2 n-3

+ 2.800048928U , - 2 .610092963U « + 0.810044035U _
" -2 . ." .- .^ .(5 .8 .)

Likewise inserting the coefficients of equation 5 .5 . into equation 5 .7 .

gives the following difference equation for the missile

Y = - 0.000903767U , + 0.002798632U ^ - 0.002670325U .
n n- 1 n- 2 n-o

+ 0.0009156U , + 3 .500869446Y ^ - 4 .628827977Y «
n -4 n-2 n-2

+ 2.755048263Y 0.627089085Y . (5 9)
n -3 n -4 ' ' /

The guidance loop step response for this realisation is shown in F ig .5 .1 1 .

and gives an overshoot of 61% with a settling time of approximately

six seconds to within 1% of the final va lu e .

To ensure that the simulation was not conditionally stable, the

binary representation of the coefficients was carried out. This

representation is necessary for the realisation of the loop in integer

arithm etic.

The resolution was set such that the smallest number which could

be represented was 2 ̂ \ The simulation was again run with a unit

step input and the output is shown in F ig .5 .1 2 . This shows that the

direct realisation of the guidance loop is unstable with a binary

representation of the coefficients.

5 .3 .1 .2 . Cascade Realisation.

The second approach was to use the Cascade method of realisation.

In this method the transfer function is expressed as a product of simple

block elements.

38

U (z) = g^D (z). D^(z) Dm(z) (5 .1 0 .)
E(z) ° ̂ ^

where m is less than n, the order of the system; Oq is a constant.

The block elements consist of either first or second order elements.

Using this method, the guidance loop was divided into block elements

as shown in F ig .5 .1 3 . The response to a unit step input is shown in

F ig .5 .1 4 . and is similar to that of the direct realisation shown in F ig .5 .11

The binary representation of the coefficients using the cascade

realisation was carried out using the same resolution as above and this

gave a step response as shown in F ig .5 .1 5 . This shows slightly less

overshoot than for the realisation with exact coefficients (F ig .5 .1 4 .) .

5 .3 .1 .3 . Parallel Realisation.

Finally the Parallel method of realisation was used to simulate the

guidance loop. In this method, the transfer function is expressed as the

sum of parallel units which are either first or second order, i . e .

U (z) = Oq + (z) + D^(z) + D j z) (5 .1 1 .)

where m is less than n, the order of the system; Oq is a constant.

Using this method, the guidance loop was divided into elements as shown

in F ig .5 .1 6 . Applying a unit step input, the output settles as shown in

F ig .5 .1 7 . The response shown in F ig .5 .1 8 . represents the same

realisation, except that the coefficients have been binary rounded as

above.

Under no fault conditions, the parallel and cascade structures

give similar results, however under conditions of a fault in a basic

elem ent, the cascade structure suffers from the fact that a fault is

m ultiplied by each successive unit. The direct realisation was unstable

with binary rounded coefficients and was le ft out of any further analysis.

5 .3 .2 . Integer Arithm etic.

Having obtained stable results from both cascade and parallel

realisations of the guidance loop, the next step was to perform the

difference equations in integer arithmetic on a microprocessor.

39

in itia lly in 16 b it arithm etic. Using a unit step input the parallel

realisation gave the output shown in F ig .5 .1 9 . and shows an overshoot less

than 50%. hbwever when the error signal becomes small the output

shows quantisation errors. The 16 bit cascade realisation, whose output

for a unit step input is shown in F ig .5 .2 0 . , suffers from quantisation

much more than the parallel realisation. The output is completely

unsatisfactory and shows that this realisation has no practical use, and

was therefore discarded.

In order to improve upon these results, the software for the two

realisations was converted to perform 32 b it integer arithm etic.

To increase the sampling frequency at this stage would only have increased

the quantisation due to a fin ite word length. Using the same input

as before, both realisations (F ig .5 .2 1 . and 5 .2 2 .) show improved

responses which agree with that of the continuous system shown in

F ig .4 .7 .

From the above results obtained, the parallel realisation of the

guidance loop using 32 b it arithmetic was chosen as the 16 b it cascade

realisation gave poor results and 'cascades' any error caused by hardware

or software.

40

Chapter 6, Implementation.

The system used in this study to assess the effectiveness of

redundant software and hardware for fault detection and recovery is

based on a single Z8000 microprocessor. This processor was used

throughout the research study and a description can be found in Appendix B.

The Z8000 is connected to a Micromaster (Appendix C refers), via a serial

link, which is in turn connected to a PDP 11 /34 . This chapter describes

the hardware and software which was designed and completed for this

study.

The software for the target tracking process is assembled on the

PDP 11 and then transferred to the Micromaster before being loaded

into the memory of the Z8000, as shown in the systems diagram in F ig .6 .1 .

Assembler code was used in order to effectively monitor the effects of

faults upon system execution.

The Micromaster acts as a terminal for the PDP 11 and controls flow

of programs and data to and from the Z8000 processor system, which is
24

situated on an Am 96/4016 Evaluation Card . In order to inject

faults onto the processor system, the processor buses are brought out from

this card into an expansion box shown in photograph F ig .6 .2 .

The expansion box contains the manual switch arrangement for the

injection of faults onto the processor bus, in addition to system memory

and input/output. The memory and I /O maps were designated as shown

in F ig .6 .3 . and 6 .4 . respectively.

6 .1 . System M em ory.

The Evaluation card contains 8K bytes of dynamic RAM which is

used to store the target data.

Memory organisation in the expansion box is such that any one RAM

chip is assigned to only one b it of a word in memory so that a memory

failure (either single cell or complete RAM) w II not cause more than one

b it to be in error.

The error correcting memory, shown schematically in F ig .6 .5 . is

41

situated on two double Eurocards. The first card consists of the data

memory, whilst the second consists of parity memory, error code

generation and the error correction circuitry. The two circuit diagrams

are shown in F ig .6 ,6 . and 6 .7 . respectively, whilst the layout diagrams

and parts list are shown in Figs 6 .8 . and 6 .9 . and Tables 6 .1 . and 6 .2 .

The operation of the error correcting memory is briefly described

for both the read and write conditions as follows. Consider the operation

of writing to memory. The data word is written directly into the data

memory whilst the parity bits are generated from the data bits by a set of

parity equations and are written into parity memory.

On a read operation, the data word is read from memory along

with the associated parity bits. Parity is then regenerated from the data

word. If an error has occurred in a memory cell that is being read, one

or several of the parity bits w ill be in error. The parity bits are then

decoded to determine which data b it is in error. The erroneous data b it is

then corrected by the exclusive OR operation and is buffered onto the data

bus by an inverting buffer. Note that the exclusive OR operation inverts

all bits except the bit in error (if any). The correct polarity is restored

by the use of the inverting buffers, as shown in F ig .6 .5 .

6 .2 . System Input/O utput.

System inputs can be divided into two types, firstly target data which

is produced on the PDP 11 and down loaded via the Micromaster.

Secondly inputs are provided in the form of switches on the front panel

of the expansion box; these inputs represent the mode of operation of the

tracking system and a system cancel fa c ility . System outputs are in the

form of LED's and consist of an operator alarm, an error signal and

indications to inform the operator that a target being tracked is within

missile coverage. The circuit diagram layout diagram and parts list of the

input/output card are shown in Figs.6 .1 0 . and 6 .1 1 . and Table 6 .3 .

The expansion box also houses a buffer card which buffers all

signals from the Z8000. The circuit diagram^ layout diagram and parts

42

list of this card are shown in Figs. 6 .1 2 . and 6 .1 3 . and Table 6 .4 .

6 .3 . System Software.

The system incorporates a suite of programs which are required

for the various tasks involved; these being shown diagramatically in

F ig .6 .1 4 . With the exception of the PDP 11 graphics and plotting

routines this software was developed by the author for this study.

The software is explained by means of following a typical run to generate

ten seconds of system results. A flow diagram of the software is shown

in F ig .6 .1 5 .

In itia lly fault data is produced by generating exponentially

distributed fault interval times and uniformly distributed faults across the

address and data bus.

Following this, the target data is generated by the target simulation

program described in Chapter 5 .1 . A Z8000 cross assembler was written

to generate assembly code listings and object code files for the target

tracking process. The cross assembler runs on a PDP 11 and is described in

detail in Appendix D. The object code file produced, approximately

3K bytes in size for the target tracking process, is transferred first to

the Micromaster and then loaded into memory in the expansion box.

The target data takes the same path to the Z8000 system and resides in the

memory on the Evaluation Card.

The target tracking process, described in Chapter 5 .2 . is then run by

commands to the Z8000 monitor via the Micromaster Keyboard. The

injection of faults is carried out during the operation of this software and

is described in the next section. Results are periodically sent from the

Z8000 to the Micromaster and are stored there until the end ot the ten second

run, when they are transferred to the PDP 11 and written into a disk f ile .

The disk file contains blocks of data which can then be sorted in a form ready

for the plotting routines. F ig .5 .9 . shows a typical set of graphs

produced in this manner.

43

6 .4 . Fault Infection.

Two alternatives existed for the injection of faults; these are

as follows:-

(a) Injection of faults within each of the memory and I /O

devices connected to the buses

or

(b) Injection of faults directly in the buses which are common to

all memory and I /O devices.

The second of these alternatives was chosen as it simplified the circuitry

required together with providing greater f le x ib ility .

Implementation of the fault injection logic was achieved by

intercepting the buses by a logic and switching c ircuit. This

arrangement allowed up to two bits of each of the address and data buses to

be injected with faults at any one time. The faults can be stuck at

logical 'O' (s -a -0), stuck at logical 'T (s -a -1) or open circuit.

Two timers were used so that faults injected onto the data bus could be of

different length to those on the address bus, and to ensure that faults

are injected onto the respective buses at the appropriate time in the cycle.

The design of logic to in ject faults with the previously mentioned properties

is described in the following section.

6 .4 .1 . Design of Fault Injection Logic.

Consider the design of fault injection logic for the single direction

address bus. The requirement for the logic was that the output be:

1 . As input

2 . s -a -0

3 . s-a-1

4 . Open circuit

The selection and injection of these conditions is shown diagram atically in

F ig .6 .1 6 . , where for simplicity of presentation a single pole switch selects

either a fault or no fault condition. Consider in itia lly the first three

requirements listed above, for the purposes of design let A be the input

44

of the block (see Fig. 6 .1 6 .) and Z be the output of the block.

The fault control consists of two inputs, one to decide if a fault is to be

applied (to be known as X) and the other to decide whether the fault is

stuck at logical 'O' or '1 ' (referred to as Y) .

The control input is defined as: X a t logical 'O' - No fault

X at logical '1 ' - Inject fault

The type of fault injected is determined by the condition of the Y input

which is defined as: Y a t logical 'O' - s -a -0 fault

Y at logical '1 ' - s-a-1 fault

Constructing a truth table it follows that the output of the block is given

by: Z = AX + AY + XY

. (6.1.)
Since three input OR gates are not ava ilab le , the equation 6 .1 . was

rewritten using De Morgans law to give:

Z = A X . Â Ÿ . (6 .2 .)

which can be implemented as shown in F ig .6 .1 7 .

The output Z can then be optionally open circuit by adding a tri-state

bus driver. Circuitry providing the control input (X), the condition

input (Y) and the tri-state buffer driver (disable) is shown in F ig .6 .1 8 .

Two of the above circuits were bu ilt so that up to two faults can be

injected onto the systems address bus. The two lines which are injected

with faults are switch selectable; the switching arrangement is shown in

F ig .6 .1 9 . which also shows the switching for the data lines. The switches

are shown in a position representing a typical fault injection path.

Since the data bus is bi-directional it required more logic to

implement fault injection compared with the address bus. This was

accomplished by using two of the circuits shown in F ig .6 .1 7 . , back to

back with a direction select (READ/WRITE) as shown in F ig .6 .2 0 .

A wait state is used to extend the memory access, as the circuitry

described above incurred a delay of approximately 40 nanoseconds.

The length of the applied faults is adjustable, via potentiometers on the

45

expansion box front panel, between approximately 100 nanoseconds and

1000 nanoseconds; although this does not preclude the possibility of

leaving the fault on for any number o f instructions. The length of the

open circuit fault is not adjustable and was fixed on a per instruction

basis; this was thought to be a flexible enough arrangement.

The fault injection logic is mounted behind the front panel on the

expansion box close to the fault selection switches, as shown in photograph

F ig .6 .2 1 . The circuit diagram, layout diagram and parts list can be

found in Figs 6 .2 2 . and 6 .2 3 and Table 6 .5 .

6 .4 .2 . Method of Fault Injection.

The procedure for the injection of faults onto the processor system

is as follows: the system is run for X instructions where X is an exponentially

distributed variable. This type of distribution was used as it is typical

in re liab ility studies. The system then halts and the fault is set up on the

front panel; the fault being introduced onto the processor bus when a single

step command is given. Although the system is not run at full speed, it

was time scaled to ensure that recovery from a fault takes place within a

given tim e . When the fault has been injected, the system is run for

another Y instructions, where Y is another exponentially distributed variable

with the same mean as above. It was decided that 90% of the faults should

be of s -a -0 or s-a-1 type, with the remaining 10% being open circuit faults.

A uniform distribution was used to determine which b it of the address bus

or the data bus was to be faulted.

6 .5 . System Integration and Test.

In conclusion to the chapter, system integration and testing was

carried out to establish that the design requirements had been satisfied.

These tests were extensive and consisted of procedures specially developed,

but which have not been included in this thesis.

46

Chapter 7 . Design Strategies: Single Processor System.

This chapter presents strategies for detection and recovery from

transient hardware faults, their implementation on a single microprocessor

system and their performance under extreme operating conditions.

The approach taken here was in itia lly to in ject faults on the target tracking

system with no recovery mechanisms to provide a baseline for the results.

Having obtained a baseline, the next step was to use the basic Block

Recovery structure and then build upon that structure to provide a recovery

mechanism for a greater proportion of faults.

The software described in this chapter was stored in RAM as this

gives less protection against faults than if the software were held in ROM;

thus results obtained are worst case, since program memory is not write

protected.

It was decided that a system run should last ten seconds, as

previously explained and that during this time a large number of faults

would be injected in order to keep down the number of runs. It was

decided that the interval between faults be exponentially distributed such

that the mean number of faults that were injected was thirty.

7 .1 . System with No Recovery.

In order to obtain a baseline set of results, the system was in itia lly

operated without any recovery or protection software or hardware.

The criteria for improved systems ava ilab ility taken here was the

percentage of runs that successfully complete ten seconds of operation,

to produce valid outputs at the end of that time.

A total of twenty runs were carried out, of which only one was

successfully completed. A further four runs completed the ten seconds, but

did not give correct outputs during that time. Without any protection,

system variables were often corrupted due to faults injected and these faults

were allowed to propagate unchecked. Once a variable has been corrupted

then, due to the lack of acceptance testing,it is passed onto the next

process which w ill also give incorrect outputs.

47

The most surprising effect of faults was that only a minority caused

the program counter to be badly corrupted immediately following the fault

contrary to in tu ition. Given that the program counter was at address X

before fau lt, then the effect of the m ajority of the faults was to leave

the program counter within the range X - 256 bytes. This is due to the

small percentage of the total instruction set that allow a large deviation

from the present program counter. Instructions that allow this large

deviation include jump to absolute address, call subroutine with absolute

address and reload program counter from memory. The consequence of

the program counter generally staying local immediately following a

fault is that it is not necessary to separate primary and alternate routine

software into separate blocks of memory with the provision of enabling

and disabling memory, but that it is sufficient to separate the two routines

by a trap area of 256 bytes.

Typically a fault can lead to execution of wrong instructions, due

to either an address or data fau lt. A fter one of these instructions the

program counter is often set to a non-instruction word boundary.

This then leads to corruption of register contents or a misinterpretation

of instruction. Although the fault may only have occurred for the

duration of a single instruction, an instruction word boundary may not

be reached for several instructions.

7 .2 . Basic Recovery Block.

Having established the baseline, the next step was to implement

the Recovery Block on the target tracking software. For each process,

an acceptance test and an alternate routine was devised for checking and

standby purposes. A brief description of this software can be found in

Appendix E. The acceptance tests used here were fa irly simple consisting

typ ically of checking that variables were in range and checking that certain

flags were set before generating an output to the system operator. The

alternate routines ranged from re-entry of primary routine, setting a variable

or variables to default values through to a less accurate method cf the

48

primary routine, for example the alternate routine for range inhibit

does not take into account the range at which the target is detected.

The overhead in software, caused by the use of a Recovery Block structure

depends upon the extensiveness of the acceptance tests and the alternate

routines structured within the system software; a typical value resulting from

this study was 30 - 40% , The run time overhead depends upon how often

the alternative routines are entered, this was found to be in the region

of 15 - 20% under the operating conditions of thirty faults (mean) in

ten seconds.

The approach of using acceptance tests to flag errors and then using

the alternate routines to correct them was avoided, as this quickly leads to

a large collection of flags which have to be set, reset and read.

This could result in a situation where no error flags are set or reset.

The approach taken was to use the acceptance test to flag an error

in the corresponding primary routine as complete failure of the routine and

in itia te transfer of control to an alternate routine. The assumption made

was that i f an error was found by the acceptance test then all values

generated by the appropriate primary routine were judged to be in error

and were regenerated or set to a predefined value.

7 .2 .1 . integrity of D ata.

In order to maintain the integrity of the data base, each variable

is only updated in memory after it has been confirmed to be correct.

At the beginning of each process the required variables are read into the

CPU registers after which the CPU performs the particular process.

O nly after the acceptance test passes are the updated variables written

into memory. This is for two reasons; first, register transfers were

considered to be more reliable than memory to register transfers during

the process and so were kept to a minimum. Secondly, if the acceptance

test foils, a correct copy of the variables is available in memory. The

concept of using registers during the process rather than reading the

variables from memory is not such a constraint as one might first think

49

as many assemblers allow the user to give registers labels a t assembly time.

Thus during the process the variable can be given a meaningful label rather

than say R6.

7 .2 .2 . Design Discipline.

The immediate implications of the Recovery Block technique imposes

an additional element of discipline upon the designer in that he has to

divide the total system task into subtasks each of which has an identifiable

function which is amenable to acceptance testing. This forces him to

think about the total system design and by virtue of packaging into sub tasks

introduces some element of structure into the program. The sub tasks are

each associated with a block of code corresponding to a Recovery Block of

the form shown in F ig .2 .3 . These can be linked together to perform a

complete software task in a three level system shown in F ig .7 . i .

The first level is task direction and points to tasks to be performed in their

proper sequence. Level 2 has the format of the Recovery Block for each

task, and level 3 contains the coding for each primary alternate and

acceptance test routine.

Note that the use of a Recovery Block structure does not preclude

the use of defensive programming techniques, often known as Exception

Handling^.

7 .2 .3 . System Performance.

Using the above three level structure a total of 14 runs were carried

out, each of 300 system cycles. O f thes^ five runs were successfully

completed with a further one run failing safe during the ten seconds.

This still left a total of eight runs which failed to complete due mainly to

the processor trampling through memory.

As previously stated five runs successfully completed the ten seconds,

all of these had at least one entry into an alternate routine which prevented

the propagation of the original fau lt. A further two runs had an entry into

an alternate routine during the ten seconds but 'crashed' before the ten

seconds was completed.

50

The Recovery Block was found to be capable of coping with data

type faults where corruption of data occurs but incapable of dealing with

system crashes which may occur due to execution of unimplemented

opcode, or execution of unidentified instruction (where operation is

uncertain) or by trampling through memory.

7 .3 . Addition of Watchdog Timer.

The use of the basic Recovery Block as used in the previous section

often led to a total loss of function. This loss of function was not

flagged by the acceptance test as the test was often not entered under

fault conditions. To overcome this the simple expedient of a hardware

timer was introduced. On entry to level 2 in the software structure, the

timer in the form of a free running counter is loaded with a process time

number which is directly proportional to the expected completion time of

the process. The task is then in itia ted , a successful exit from the primary

routine leading to a reset of the counter. If the primary routine does not

exit in a predetermined time (i .e . the value loaded at the beginning of

the process) then the counter goes through zero and triggers a system

interrupt, this concept is shown schematically in F ig .7 .2 .

7 .3 .1 . Recovery Using a Watchdog Tim er.

Although it is fa irly easy to time out a process due to a fa ilure,

the next problem is to return the system to either the alternate routine

of the same process or in itiate a safe shutdown of the system. Once the

interrupt routine has been entered it is not possible to use the program

counter contents immediately before the interrupt as a guide to the last

segment being processed.

In order for the interrupt service routine to determine the interrupted

process, the appropriate process number is loaded into a RM^ location at

the beginning of each primary and alternate routine. A lookup table

can then be used to determine the setting of the program counter which is

then loaded to transfer to alternate or fail safe routine, depending upon

which routine (primary or alternate) was being processed.

51

It is possible that if a fault occurs then the task number may be

corrupted. To overcome this, the integrity of the recovery mechanism was

improved by use of a simple check on the process number to determine

whether it is within a predetermined range. If it is found to be out of

range then a fail safe routine can be entered. A flow chart of the

recovery interrupt service routine is shown in F ig .7 .3 .

7 .3 .2 . System Performance.

The target tracking system, with the watchdog timer was run for a

total of fourteen times. O f the fourteen runs, nine successfully completed

the 300 system cycles with valid outputs, with a further three runs failing

safe during this period. This left two runs which failed to complete with

valid outputs, due either to a system crash or data corruption.

The proportion of runs that completed ten seconds was significantly

improved over the basic Recovery Block. This was due to the system

recognising that under fault conditions some processes failed to complete

within a predetermined time lim it. An analysis of the two runs that

failed to finish shows that the first would have been able to recover from a

particular fault i f the unimplemented instruction trap had been used.

The second run failed to finish as the timer had not been started when the

fault occurred and the fault led the program counter to be set into memory

that was not present, and thus recovery never occurred.

7 .3 .3 . Summary.

The results obtained for the watchdog timer are encouraging when

compared with the strategies so far examined, as summarised below.

(a) No Recovery System - 5% of runs successfully completed.

(b) Basic Block Recovery - 35% of runs successfully completed

7% of runs failed safe

(c) Block Recovery with Watchdog Timer

64% of runs successfully completed

21 % of runs failed safe.

52

7 .4 . Typical Fault Effects.

As a result of injecting hundreds of faults on a microprocessor

system, there emerged a number of different fault effects. Before

proceeding to further protection and recovery mechanisms, these fault

effects are briefly discussed below:

(a) Execution of Wrong Instruction.

An address fault led to execution of instruction at location other

than program counter. Following this instruction the program counter

was set to a non-instruction word boundary. When fault removed next

instruction was an address which corresponded to an instruction for a

software interrupt.

(b) Condition Code Error.

A data fault led to a conditional jump based on the wrong condition

code.

(c) Opcode Error.

A data fault completely changed meaning of instruction. Instead

of loading a register from memory, a different memory location was

cleared.

(d) Offset Error in Jump.

A data fault led to a relative jump made to wrong address due to

incorrect reading of offset in instruction.

(e) Execution of Wrong Instruction.

An address fault led to execution of instruction at location other

than program counter. This instruction (actually an address) led to a

reloading of program counter and status register, leading to system crash.

(f) Recovery Block Error.

With the basic Recovery Block, a fault at the end of the primary

routine caused the processor to miss the return from subroutine instruction.

The processor carried out through the acceptance test, following the

primary routine, until it encountered a return instruction which caused

a return to the instruction following the call to primary routine which was

53

call acceptance test. This acceptance test actually performed twice

on primary routine outputs.

(g) Memory Read Error.

A fault occurred during reading of variables from memory into

registers; the registers were left as they were from previous process.

Acceptance test failed and recovery occurred by alternate routine which

correctly read variables, performed process and passed acceptance test.

(h) Acceptance Test Failure.

After returning successfully from acceptance test, a fault occurred

when acceptance test error flag was being checked, the program counter

was updated and entry into alternate routine occurred.

(i) Execution of Wrong Instruction.

A fault led to execution of wrong instruction, the program counter

was set to a non instruction word boundary and the next instruction was an

unimplemented instruction. A trap occurred whose vector had not been

set and a system crash followed.

([) Acceptance Test Failure.

A fault occurred within the acceptance test which led to its failure

on good data.

(k) Memory Read Error.

A register was loaded from an incorrect memory address due to a data

fault.

(I) Execution of Wrong Instructions .

A register was loaded from memory a t wrong point in program due

to execution of wrong instruction due to address fault.

(m) Program Corruption.

A corruption of a program location led to an unimplemented

instruction trap.

(n) System Data Corruption.

A safe shutdown on the system occurred when primary and alternate

routines both failed acceptance test. During execution of primary routine a

54

variable was corrupted in memory and incorrect outputs were given.

The alternate routine was to perform primary routine again when incorrect

results were also given. This highlights the care necessary when using

a repeat of primary routine as the alternate routine.

(o) Subroutine Call Error

A situation occurred where timer was of no use for recovery.

A fault occurred a t level 2, i . e . CALL PRIMARY, instead of a primary

routine being called a subroutine was called whose address was in

memory which was not implemented. The timer was set running as

primary routine was never entered.

(p) Execution of Wrong Instructions

A fault occurred at the end of a primary routine on instructions to

reset timer, time out occurred soon after and alternate routine was

successfully entered.

(q) Timer Reset Fault

As a precaution to the above effect, the timer was reset at the

beginning and end of every primary routine. A situation arose where,

due to a fault the timer was not reset at the beginning of a primary

although the task time was loaded and the timer set running. However,

there was no ill effect of the missed timer reset as it would

have been reset at the end of the preceding process.

7 .5 . Further Additions to Recovery .

The use of the watchdog timer provided system recovery in 85% of

the runs carried out. In order to improve system recovery coverage it

is necessary to look at additional facilities which are discussed in the

following paragraphs.

7 .5 .1 . Use of Unimplemented Instruction Trap.

One of the runs with the watchdog timer, as summarised in

Section 7 .3 .3 . showed that the unimplemented instruction trap

can be used for recovery purposes. The Z8000 has a built in

unimplemented instruction trap and this can be used for recovery if the

55

vector is set equal to that of the interrupt for the hardware timer.

Thus if either an interrupt due to timeout or an unimplemented instruction

trap occurs then the same recovery mechanism w ill be used, as previously

described. The run which failed due to this fa c ility not being used was

carried out again with its vector set and with the same faults injected,

resulting in a successful completion.

O n ly some microprocessors have this built in fac ility for detecting

unimplemented instructions, though this fa c ility can usually be added by

the addition of external hardware. For example, the Texas 9900 which

has about 2% of its opcode fie ld as unimplemented can use external

hardware as given in Ref. 25.

In addition most processors have a software interrupt fa c ility .

If this is not required by the system software then the software interrupt

vector should be set equal to that of the hardware timer, so that an

unexpected software interrupt due to a fault w ill not cause a system crash.

7 .5 .2 . Default Data Bus.

In most real time systems there are areas of the memory map that are

not filled by memory devices. Thus if the program counter is inadvertantly

set somewhere w ithin this unimplemented area then during a read operation

the data bus w ill be floating. This can be made use of by attaching

resistors onto the data bus, in the form of pull up and pull down resistors,

so that the data bus defaults to an instruction such as software interrupt

when not driven. This is shown by example in F ig .7 .4 . for a 4 b it data

bus where a software interrupt is represented by 1100 (binary).

The resistors should be of sufficiently high value in order to prevent

excessive current drain. During normal operation the bus w ill be driven

high and low as required by CPU and memory devices. The first

instruction that the processor executes after jumping into unimplemented

memory is a software interrupt whose vector is set equal to that of the

timer and thus initiates a recovery. This mechanism provides an earlier

fault indication than the watchdog timer in the situation of the processor

56

jumping into unimplemented area, although the timer is still invaluable

for recovery if the processor executes an incorrect section of code.

In addition this mechanism provides a fault indication if the processor

jumps into an unimplemented area of memory before the timer is started.

7 .5 .3 . Trap Area .

It was found that on many occasions, due to faults, that the return

statement at the end of a process was missed and the processor continued

into the next section of code. In this situation recovery would still take

place by watchdog timer or by execution of an unimplemented instruction.

However to speed recovery and to reduce still further any inadvertant

action, a trap area can be used after each return statement, i . e . between

each process. This trap area, shown schematically in F ig .7 .5 . , would

consist of a gap equal to the maximum length opcode in words of the

processor. This trap area would consist of software interrupt instructions

whose vector was set equal to the timer recovery procedure. Thus i f a

return was missed due to a fault then a software interrupt would occur

and recovery take place.

7 .5 .4 . Performance Counter.

It has been shown that with certain additions to the Recovery Block,

it is possible in a single microprocessor system to recover from a ll , as

far as can be seen, transient hardware faults. However, in many real time

systems it is not sufficient to use an alternate routine cycle after cycle

in the case of a prolonged fault or software design error as degraded

performance may only be acceptable for a lim ited period of time before

a different system strategy is required. This is almost certainly true in

a situation with recursive calculation where an alternate routine may use

last value or a default value. Thus it is suggested here that in many

applications a counter be used within the alternate routine to count

consecutive or total entries into the routine. If the count is exceeded

then another alternate, for example use of another sensor, or fail

safe routine can be entered.

57

7 .6 . Extensions to the Recovery Block

This section summarises the possible extensions mode by the

author, the majority of which have been implemented.

(a) An unimplemented instruction trap can be used to speed

response to faults. This trap is internally implemented on processors

such as the Z8000, 68000 and can be readily implemented in hardware

on others such as the TMS 9900.

(b) A timer can be used to ensure that primary and alternate

routines do not take longer than expected to execute or finish before

a minimum time.

(c) A set number of automatic retries can be used before

classifying the fault as permanent or transient.

(d) The use of pull up and pull down resistors to provide

recovery when program counter is set into an unimplemented memory

area.

(e) For system critical variables, it may be re cessary to keep

a copy in both memory and allocated register within CPU. This can

obviously only be used for one or two variables.

(f) In some instances it may not be possible to perform the

acceptance test on the alternate routine due to time constraints.

(g) In some instances it is not advisable to carry out an

acceptance test on the alternate routine, i f the size of the routine is

less than that o f the acceptance test.

(h) A count may be necessary within the alternate routine as

degraded system performance may only be acceptable for a limited period

of time.

(i) A trap area can be used between processes to eliminate the

possibility of inadvertantly going from one process to another through

omission of a return.

A more generalised form of the Recovery Block can be found in

F ig .7 .6 . which covers some of the points mentioned above, which are

58

not covered by the basic Recovery Block. In this figure block A is

general, the output of A may be to P or Q or output or other

alternates.

59

Chapter 8 . Single Microprocessor Study Conclusions.

The single microprocessor study has shown that by observing

certain formats for software layout, most transient hardware bus faults

are recoverable. This recovery strategy produces a small overhead in

running time and memory. The Recovery Block technique used also enforces

a degree of design discipline onto the software engineer to produce a

structured format to his software.

8 .1 . Acceptance Test.

It has been found that care must be taken in designing the acceptance

test for a particular process. A compromise must therefore be made between

the amount of testing in the acceptance test, and the overhead incurred.

8 .2 . CPU Local Storage.

The Recovery Block, in its simplest form provides protection and

recovery mainly from faults that lead to data corruption. The integrity of

the data is improved by a procedure where variables are read into CPU

registers, followed by the particular process, and fin a lly the updating of

variables only after the acceptance test has been passed. This method leads

to a greater probability that data within memory is un corrupted, and is

already available in some high level language compilers.

8 .3 . The Watchdog Timer.

The introduction of a watchdog timer resulted in a small software

overhead, additional software was used for setting up, starting and resetting

the timer. The overhead was less than one per cent for software, in addition

to a simple counter for tuning system operation. The use of a watchdog

timer highlights the importance of a system approach to fault tolerance

through the combined use of hardware and software to increase the ava ilab ility

of the system. The increase in ava ilab ility that was obtained by the use of a

Recovery Block structure and a watchdog timer is shown in F ig .8 .1 .

The recovery mechanism used consisted of entry to an alternate

routine either by failure of the relevant acceptance test or following

execution of a fault detection interrupt service routine. A simple

60

interrupt service routine kept recovery time to a minimum. The number of

the process being executed at the time of the fault was read, and a

check was made that it was within an expected range. The process

number was then used as an entry to a process re-entry look up table

stored in RO M , followed by a jump to the relevant process re-entry point.

System variables are only updated following successful completion of the

relevant acceptance test; it is assumed that a copy of valid system

variables remains within the RAM area. If this assumption is invalidated,

for example by a momentary power failure, then a fail safe state is

entered shortly afterwards through the mechanism of a count being

exceeded within an alternate routine.

8 .4 . Default Data Bus.

The use of a watchdog timer generally provides recovery when the

microprocessor's program counter is corrupted to a value outside the

segment being processed. In addition, there are situations when the

program counter stays within the segment, but the segment is either

completed too quickly or not within time; this latter case is particularly

important in real time systems. If the program counter is corrupted

to a value outside of the segment being processed, then it can be

situated in one of two areas of memory. First, the program counter

can be corrupted to a value which corresponds to another segment, and

secondly the program counter can be set to a value which corresponds

to unimplemented memory. This latter situation arose in the study

and recovery time was decreased by the use of default resistors on the

data bus. These resistors were used to trigger a software interrupt

when the microprocessor attempted to execute an instruction from

unimplemented memory. Furthermore the same recovery routine can be

used as that for the watchdog timer.

8 .5 . Microprocessor Dependent Facilities.

A growing number of microprocessors have traps for detection of

illegal conditions such as attempted execution of illegal instruction.

61

bus error and division by zero. System recovery can take place under

these conditions if the trap vectors are set equal to the vector of the

hardware timer.

8 .6 . Use of Trap Areas.

The majority of real time systems have critical areas of software

where a correct procedure must be carried out before an action can be

taken. The Recovery Block technique is useful in this situation whereby

the setting of flags can be checked within an acceptance test.

However, this situation can be improved by the use of trap areas

between segments in a critical area of software. This prevents the

microprocessor from running on from one segment into another.

Recovery takes place i f the program counter is set equal to an address

within the trap area, provided that the trap is filled with a suitable

software interrupt.

8 .7 . Performance Counter.

In real time control systems it is important that a counter is

provided within alternate routines as degraded performance may be

acceptable only for a certain period before a different system strategy is

required.

8 .8 . Built in Test.

A built in test fac ility is often used for operator confidence and

for diagnosing faults in the fie ld . The Recovery Block technique can

be used as an aid in testing and diagnosing faults. It was previously

mentioned that a counter can be used within certain alternate routines

so that continued degraded performance is prevented. Whilst the

system is in a standby state, the counts from the alternate routines can

be used as an input to the built in test equipment and provide information

on possible faults. For example, a certain alternate routine entry may

be associated with the defective reception of information from

a peripheral; this information can aid test equipment in diagnosing

a fault.

62

8 .9 . In Conclusion.

The use of a Recovery Block structure established that the

mechanism is a useful tool which can be integrated into the design of

real time system for improved a v a ilab ility . The most important

additions to the basic structure are the use of a watchdog timer and a

simple counter within alternate routines. It has been stated that the

Recovery Block is not capable of recovering from software errors due to

incomplete or inconsistent requirements specification. This situation

can be improved by the use of independent design of alternate

routines to simulate an N-Version Programming approach without the

need for massive redundancy, although this is very d ifficu lt to

achieve in practice.

63

Chapter 9 . Introduction to the Distributed Processing System.

The single processor study demonstrated that increased ava ilab ility

under prescribed fault conditions was obtained using protective

redundancy. This confirmed that the propagation of faults from one

process to another could be stemmed by the use of a fault detection

and recovery strategy. The next objective of the research study was to

investigate the possibility of increased a va ilab ility for a distributed

processing system undertaking the tasks of target tracking and missile

guidance, as described in Chapter 4 . The nature of the increased

system complexity required to undertake these tasks, together with the

locations in which they would normally be undertaken involved the

decomposition of the system into subsystems.

The first objective was to establish a design philosophy for

communication between the subsystems; this being described in the

following section.

9 .1 . Design Philosophy for Inter Processor Communication.

The Recovery Block technique ensures that only valid data is passed

from one process to the next, by use of the acceptance test. The

following process simply takes the data and uses it without any need for

testing its va lid ity . This approach can then be extended to a distributed

processing environment in the following manner.

Consider the transmission of data from one microprocessor subsystem

to another using a communications link. The use of a Recovery Block

structure within each subsystem ensures that only valid data is transmitted.

The design philosophy for message passing follows im plic itly , i . e . that

data testing is carried out at the point of maximum information

(transmission) with the absence of testing data on reception. This is

shown schematically in F ig .9 .1 . The testing of data is carried out by

an acceptance test prior to transmission, the data is assumed to be valid

if it is received correctly with respect to the particular communications

protocol. If a transmission failure occurs, for example incorrect parity,

then a request for re-transmission can be made.

64

When message passing is carried out between subsystems then the

transmitting subsystem is said to be active whilst the receiving subsystem is

passive. The transmitting subsystem has a responsibility to provide valid data

with the use of local recovery if necessary, while the receiving subsystem

need only w ait for data.

9 .2 . Local Recovery Strategy.

The in itia l aim for recovery from a fault within a distributed

processing system is the attempted recovery on a local basis, that is within

the subsystem. A schematic diagram of local recovery is shown in

F ig .9 .2 . This figure shows the importance of localising the effect of a

fault and the prevention of propagation to other subsystems.

In view of the experience and results obtained for the single

processor study, it was decided to continue with a similar strategy for each

of the microprocessors within the distributed system. The Recovery

Block structure was discussed in Chapter 7 and when implemented within

each microprocessor subsystem provide the basis for local recovery.

The absence of reception of expected data leads to another

principle, i . e . the message transfer proceeds only in one direction.

If a message fails to arrive then the receiving subsystem must not attempt

to diagnose the failure to transmit, instead it must in itiate global recovery

after a predetermined time period.

The concept of global recovery is introduced in the following

section.

9 .3 . Global Recovery Strategy.

In a real time distributed processing system, it is possible that

local recovery may fail or that communication between processors may fa il.

Under these circumstances, in a master/slave system then the master can

w ait only for a predetermined time before action has to be taken.

This action of global recovery can take place in the event of failing to

receive data from a slave. Global recovery can simply be seen as failing

to pass the acceptance test of a routine in the master which is requesting

65

data, and the subsequent transfer to an alternate routine.

The above strategy is illustrated in F ig .9 .3 . , which is described

below;

Cycle Time

1

AAaster

Request for data

Request for data

Request for data

Request for data

Slave

Satisfactory

response

Satisfactory

response

Unable to

send data

Satisfactory

response

(slave sub­

system able to

transmit valid

data)

Remarks

(a) Acceptance test

in master passes:

no communication

faults.

(a) Acceptance test

in master passes.

(b) Fault occurs in

slave after

transfer of data.

(c) Local Recovery

attempted in slave

but fails.

(a) Master requests

data, four

retries are carried

out.

(b) Acceptance test

in master fails as

no data ava ilab le .

(c) Alternate routine

in master entered.

(a) Acceptance test

in master passes.

66

This alternate routine then provides data that can be used by the

system for continued operation. This data may be a default value or the

last correct value received. The action of transfer to an alternate routine

prevents the maximum system latency being exceeded. However,

continued entry of this routine may be dangerous to the system and may

occur in the presence of a permanent failure of one of the microprocessor

subsystems. This type of failure is considered in the following section.

9 .4 . Task Swapping .

If a permanent failure occurs in a slave then global recovery is not

possible over a prolonged period, due to the repeated entry of an alternate

routine within the master. Such a failure would only be retrieved if

redundancy were to be included. Under these conditions it becomes

necessary to use an alternative processor to carry out the function of the

failed slave.

Having described a recovery strategy for the distributed processing

system, the next point for consideration is the manner in which the system

is distributed. The criteria governing this,together with the approach

which was adopted is discussed in the following section.

9 .5 . Functional Decomposition of System.

The manner in which the functional decomposition is carried out is
26

an essential feature of the system recovery strategy . The factors

to be considered in this respect being as follows:

1. Inter processor communications to be kept to a minimum.

2 . Separation by function or process

3. Considerations of physical locality of functions.

The function of the distributed processing system was to perform

the target tracking process and the missile guidance loop equations,

which are divided into those of the digital controller and the missile

autopilot. This provided a natural split into three sub-functions, each

of which could be perfom.ed by a separate microprocessor. This natural

division also meets the three criteria stated above which is shown

67

schem atically in F ig .9 .4 . , with the realisation of the sub-functions being

described in Chapter 5 . The generation of raw target data is carried

out by a Fortran program running on the PDF 11 in a similar manner to that

used in the single processor study. Intercommunication between the

subsystems was carried out using a high integrity data highway lin k .

For continuity of design and use o f existing software, the Z8000

microprocessor was chosen as the processing element for each of the

subsystems.

In order to effective ly monitor the detection and recovery from

faults, it was necessary to inject faults onto the distributed processing

system. A description o f how this was achieved is given in the following

section.

9 .6 . Injection of Faults in Real Time.

In the single processor study faults were injected by halting the

processor, selecting the fault by switches and then single stepping,

one system instruction being executed with a corrupt address or data bus.

This approach, when extended into a distributed processing system would

require the synchronisation of a ll the processors, which was considered

to be an over complicated solution. The problem then was how to inject

faults in real time on one of the microprocessor subsystems.

In itia lly , faults were to be injected by means of pseudorandom
27

generators . This was dropped in favour of the following approach as it

was considered that it would be more informative by injecting repeatable

faults in known positions of the software, in so far that the type of fault

injected is directly correlated to the observed failure at a systems leve l.

9 .6 .1 . Mechanism of Fault Injection.

The mechanism of fault injection used in the distributing processing

research was as follows. A hardware register is loaded by the micro­

processor with a fault address, prior to the operation of the system.

When the processor reaches this address in the software, a comparator

is activated by the two addresses (i .e . hardware register and address bus)

68

being identical. This is shown schematically in F ig .9 .5 . A non-maskable

interrupt is then generated and the interrupt service routine activates

the fault.' For example, the interrupt service routine may either read a

variable and corrupt it , or corrupt the stack or stack pointer.

A t the end of the short interrupt service routine the microprocessor

loads the hardv\are register with the next fault address. Finally the

'return from interrupt' instruction returns control to the module being

executed prior to the interrupt, or to another address if the stack has

been corrupted. Provided that the interrupt service routine is short

enough, say less than 1% of a system cycle, then a fault can be injected

in real time.

9 .6 .2 . Specific Cycle Fault Injection.

This mechanism can be used to in ject a fault within a specific

predetermined cycle as shown in F ig .9 .6 . The interrupt service routine

then reads the cycle number; if the cycle number is the one in which the

fault is to be injected then the predetermined fault is allowed to occur.

On every other cycle, the cycle number is found not to be equal to the

required cycle number and a 'return from interrupt' instruction is then

executed. The overhead incurred in adopting this procedure was in the

order of a few tens ot micoseconds which was generally short enough not

to invalidate the system operation for the research model.

An alternative method of injecling a fault onto a specific system

cycle would be the use ot a maskable interrupt which could then be

enabled on the specific cycle. This approach was not used as it

involved modifying the system software, that is, it requires the addition

of enable and disable interrupt instructions and a recompilation of

software i f a different fault address is required.

69

Chapter 10. The Distributed Processing System Description.

As described previously the distributed processing system used in

this study is based on three active processor subsystems which perform the

system function, together with a standby processor subsystem for failure

recovery v iz . task swapping as shown in Fig. 1 0 .1 . Communication

between subsystems was carried out using a high integrity serial data

highway, a description of which is contained in this chapter.

The microprocessor used in the single processor study was utilised as the

basis for one of the subsystems. The other three subsystems consisted

of identical processor cards which were constructed to the author's design.

The facilities offered by these common processor cards are described in

Chapter 1 0 .1 . The link selector shown also in Fig. 1 0 .1 . comprises a

manual switch arrangement for routing the program loading of the subsystems

via the RS 232 data lin k .

The requirement for the data highway between the microprocessor

subsystem was based on the following criteria:

1. Distributed processing power

2 . High communication bit rate

3 . A b ility for system expansion

4 . High integrity communications

It was considered important to make a choice of data communication system

which had an established message format and protocol. This led to the
28

decision to implement M IL - STD 1553B , which has been developed

for high integrity data communications between aircraft subsystems.

An overview of M IL - STD 1553B can be found in Appendix F.

1 0 .1 . Central Processing U n it.

The subsystem processor card designed for the real time control

system is based around the Z8000 microprocessor. An RS232 serial

interface is included on the card to provide communication with a visual

display unit. The default baud rate was set to 9600, but different

rates can be selected by the interconnection of wire wrap pins on the card.

70

Details of the baud rate selection can be found in Table 1 0 , 1 ,

The card contains 4K bytes ot static RAM and allows for up to 8 K

bytes of EPROM. A 4K byte monitor on the card is derived from that
24

on the Am 96/4016 Evaluation Card. The memory maps of each

processor subsystem are identical and are as shown in F ig .6 .3 .

The card also contains the logi c, as described in Chapter 9 .6 . for

the injection of faults in real time.

The circuit diagram, layout diagram and parts list are shown in

Figs. 1 0 .2 . and 1 0 .3 . and Table 1 0 .2 .

1 0 .2 . Microprocessor to 1553B Interface.

The data highway interface was designed to meet the requirements of

M IL - STD 1553B for communication with a Z8000 microprocessor.

The interface was capable of acting as either a bus controller or as a

remote terminal. The position of a d u a l-in -lin e switch on one of the

interface cards decided which mode of operation was to be used for the

term inal. The design uses a single twisted pair bus, although the standard

allows up to three redundant buses, in addition to the active bus.

The interface appears to the Z8000 as a number of memory addresses as shown

in Table 1 0 .3 .

A schematic of the microprocessor to 1553B interface can be found

in Fig. 1 0 .4 . and shows that the message path between the serial bus and

the Z8000 is achieved by the use of a 32 word F IFO . A control register

decides whether the word to be sent or received is a command, data or

status word. The interface was designed on the principle that a remote

terminal is always ready to receive a message but is not always ready to send

a message.

A simple time out circuit on the transmitter of the interface precludes

continuous transmission longer than 800 microseconds, implemented as a

monostable which is triggered by a request to send a message.

Thus the failure of a bus controller results in a quiet bus with no transmissions,

due to the tim e out. The 1553B standard allows ten message formats although

71

only two of these are required for this study, these being bus controller to

remote terminal transfer and remote terminal to bus controller transfer.

1 0 .2 .1 . Control and Status Register.

Control and status information within the interface consists of two

registers, one for read and one for w rite, having the same address.

The function of the control and status register bits is shown below;

these bits form the data word which is either read from or written to

the status register. Each b it of the status register is valid only when the

terminal is either a bus controller (BC) or a remote terminal (RT). The

exception is b it 9 in the read status which is valid in both modes of operation,

Read Status;

Bit N o . Title Function

0 - 7

8

10

11

12

13

14

15

Not used.

ME(RT) A logical *1* indicates that the last

message was invalid .

C/RT A logical '1 ' indicates that the terminal is

configured as a bus controller.

A logical 'O' indicates that the terminal is

configured as a remote terminal

BUSY(BC) A logical '1* indicates that a busy status

return was received from a remote terminal.

BUSY(RT) A logical '1 ' indicates that the remote

terminal is unable to send data.

Not used.

ME(BC) A logical '1 ' indicates that the message error

b it was set in the last status return.

OR(RT) A logical '1 ' indicates that the FIFO contains

valid data.

T/R (RT) A logical '1 ' indicates that a request for data

has arrived. A logical 'O' indicates that

data has arrived in the interface.

72

Write Status:

Bit N o . T itle Function

0 BUSY(RT) A logical '1 ' sets the busy b it within the

status word.

1 DBCA(RT) A logical 'T sets the dynamic bus conlrol

acceptance b it within the status word.

2 SUBFLG(RT) A logical 'T sets the subsystem flag w ith in

the status word.

3 SERREQ(RT) A logical sets the service request b it

within the status word.

4 - 1 5 N ot used.

The interface was built on two Eurocards; the circuit diagrams,

layout diagrams and parts list can be found in Figs. 1 0 .5 . , 1 0 .6 . , 1 0 .7 . ,

1 0 , 8 . and Tables 1 0 .4 . and 1 0 .5 . Figure 1 0 .9 . shows a photograph

o f the two interface cards.

The operation of the interface is best described by considering

its use as a bus controller and then as a remote terminal under the operations

of sending and receiving messages.

1 0 . 2 . 2 . Message from Bus Controller.

Consider the interface configured as a bus controller, and requiring

to send a message to a remote terminal. In itia lly the microprocessor

loads the FIFO with the message to be sent followed by the loading of the

command word with the transmit/receive b it set to receive. Note the

transmit/receive b it is set depending upon the direction of the message w ith,

relation to the remote terminal being addressed. When the command word has

been loaded, the microprocessor then initiates the transfer, as shown in

the timing diagram in Fig. 10 .10 . The low to high transition of the in itiate

command enables the Manchester Bi-Phase encoder, which sets

the SEND DATA output high when it is ready to receive data. The

command word is converted into serial data, which is clocked into the

encoder at a rate of one b it a microsecond. After the sync and encoded

73

data are output, the encoder adds on an additional b it which corresponds to

the parity for that word.

The encoder produces bipolar outputs which are used to drive an

isolating transformer via a long tailed pair as shown in Fig. 1 0 .7 .b .

The connection between the isolating transformer and the bus is achieved by

means of a stub and a coupling transformer as shown in Fig. 1 0 .1 1 . The

coupling transformer for each interface is housed in a shielded box at the

back of the expansion box.

When SEND DATA goes high after transmission of the command word

the first data word is clocked out of the F IFO , The data word is

converted into serial data and then clocked into the encoder when the

encoder is ready to accept data. The converted serial data word is

preceded by a data sync which is different from the sync which precedes

the command word, as shown in F ig .F .2 . After the last word has been

transmitted, the bus controller then expects to receive a status word

from the addressed terminal to confirm that the message has been received.

If this status word is not received within 15 microseconds of the last data

word being sent, then a response time out occurs. Note the 1553B standard

requires that a bus controller w ait at least 14 .0 microseconds before

allowing a no response time out to occur; no maximum time period is

specified within the standard. The time out can be used to inform the

microprocessor that message handshaking has failed; which can then be

followed by a re-transmission or other predetermined course of action.

1 0 .2 .3 . Message to Bus Controller.

Consider now the operation of a bus controller requesting a message

from a remote term inal. A subaddress field of five bits within the command

word can be used to signify, for example, a request for a particular data

type. The controller sets the word count field equal to the required

message length, the transmit/receive b it equal to transmit, and the

address and subaddress fields to their relevant values. This command word

is loaded into the command register followed by an in itiate transfer command

74

from the microprocessor subsystem. The low to high transition of the

in itiate command enables the Manchester Bi Phase encoder;

the timing diagram is shown in Fig. 1 0 .1 2 . The serial form of the command

word is clocked into the encoder when it sets SEND DATA high.

The addressed terminal identifies its own address within the command

word and signals the subsystem processor that a message is required.

If the message has not been preloaded into the interface then the subsystem

would have set the busy bit within the status word which is transmitted

to the bus controller. The status word is decoded by the AAanchester

Bi-Phase decoder which sets TAKE DATA high. The bus controller

recognises that the remote terminal was unable to transmit the message

at that time, it then waits for a predetermined period, before re-transmitting

the command under subsystem control. The period of waiting is under

control o f the subsystem processor, and was typically set between fifty

to a hundred microseconds.

During the period ot w aiting, the transmitting subsystem processor

identifies the relevant message and loads it into the interface. The busy

bit in the status register of the remote terminal is also reset so that when

the request is received again then the message is automatically transmitted.

On this occasion, the bus controller decodes the status word and recognises

that the required message follows the status word. The data is loaded,

one word at a time into the FIFO; after the last data word

C O N T IG U IT Y FAIL goes high since there was no bus activ ity for a

period of four microseconds since the last data word. The length of the

message requested is checked with the number of words received to confirm

that the message has been correctly received.

1 0 .2 .4 . Message to Remote Terminal.

Consider the operation of a remote terminal receiving a message.

The first word received is the command word which is decoded by the

remote terminal. Having ensured that the message has the correct

address, the interface loads the word count into a latch and clears the FIFO

75

ready for the message. In addition a signal VALID COAAAAAND SYNC

goes high which starts the receive cycle; the timing diagram is shown

in Fig. 10 .13.

As each word arrives it is decoded into serial data with the decoder

setting a VALID WORD signal high if the word is valid . The serial word

is converted into a parallel 16 b it word, loaded into the FIFO and the

word counter is incremented. At the end of the message the interface

recognises a period without data syncs, and sets C O N T IN G U IT Y FAIL

high. The value of the word counter is then compared with the word

count from the command word. If these two values are equal then the

message has been correctly received and the subsystem processor is

interrupted to indicate the presence of a message. The Manchester Two

BrPhase encoder is enabled and the status word is sent to the bus controller.

If the word counts are not equal then an error has occurred and the

subsystem processor is not interrupted. The occurrence of an error sets the

message error b it in the status register and the status word transmission

is suppressed.

1 0 .2 .5 . AAessage from Remote Terminal.

Consider the operation of a remote terminal sending a message.

When a request for data is received, a signal VALID COMAAAND SYNC

goes high, as shown in the timing diagram in Fig. 10 .14 . The encoder is

enabled and the status word is clocked into the encoder and transmitted.

On the falling edge of SEND DATA, the interface determines whether a

message has been loaded into the F IFO .

If a message has been loaded then one word is read at a time from

the FIFO; each word is converted into serial data before being sent

as part of a contiguous message. However, i f no message has previously

been loaded into the FIFO the busy b it is set w ithin the status word return.

This indicates to the bus controller that the remote terminal was unable

to send a message in response to the request. Due to the time constraints

of the 1553B standard (i .e . respond with status word within 12 microseconds)

76

there is insufficient time to load a message into the FIFO after receiving

a transmit command and before it is necessary to send the status word.

The subsystem processor is then interrupted and can then load the required

message into the FIFO and release the busy within the status register.

On the next request to transmit the message is sent to the bus controller.

1 0 .2 .6 . 1553B Protocol Fault Injection.

The encoding and decoding of Manchester Two Bi-Phase Level

data within the interface was carried out by a customised integrated
29

circuit, the Harris 15530. This integrated circuit sets the word

length to 20 bits os defined by the 1553B standard. An alternative
30

integrated circuit similar to that above, the Harris 15531 was used

within one of the interfaces and allows 1553B protocol faults to be injected

onto the bus. The integrated circuit is similar to that described above

except that the frame length and parity are programmable for both the

encoder and the decoder. A frame length of between six and thirty

two bit periods can be obtained with this device, which is set up by

writing to address 6FEJ2Ï. The b it pattern and the corresponding frame

length can be found in Table 1 0 ,6 .

This interface was also constructed on two Eurocards, whose circuit

diagrams are found in Figs. 1 0 .5 . and 1 0 .1 5 . The corresponding layout

diagrcm and parts list for F ig .10 .15 . are to be found in F ig .1 0 .1 6 . and

Table 1 0 .7 .

1 0 .3 . Communications Software.

The available time for designing and building the 1553B interface

was lim ited, therefore the decision was made to use the Z8000 processor to

pass data in and out of the interface rather than use DM A which would

have been more elegant. However, this decision did not affect the

performance of the distributed processing system as sufficient free time

was available to allow the processor to transfer the data.

The communications software written for this study is described

by considering the sending and receiving of messages to and from the

77

bus controller and a remote terminal, as follows:

1 0 .3 .1 . Message from Bus Controller.

The sending of a message is performed as shown in Fig. 1 0 .17 .

The processor clears the FIFO prior to writing the message one 16 b it word

at a time into the FIFO . When the message has been loaded, the command

word is loaded into the command register. This command word contains

the address of th e remote terminal which w ill receive the message and the

word count of the message. F inally , a send command is given and the

message is sent under control of the interface.

Under normal conditions the message transfer is then complete;

however, if no status return is received from the remote terminal in

question, then an interrupt is generated and the sequence can be repeated.

1 0 .3 .2 . Message to Bus Controller.

The request and reception of data is performed as shown in

Fig. 1 0 .1 8 . The message sequence starts with the processor loading the

command word register and then in itiating the transmission. If the

busy b it is set in the status word from the remote terminal then an interrupt

occurs. The interrupt service routine increments the busy count (number

of requests given a busy reply), clears the interrupt flip flop and returns

to the calling program which repeats the sequence. If the busy is not

set in the status word then no interrupt occurs and the message is read from

the FIFO within the interface after a short delay.

1 0 .3 .3 . Message to Remote Terminal.

The reception of a message is performed as shown in Fig. 1 0 .19 .

When data is expected from the controller the interrupt is enabled.

On reception of a receive command, an interrupt is generated and the

message is loaded into memory. On return from interrupt the remote

terminal then disables the interrupt.

1 0 .3 .4 . Message from Remote Terminal.

The sending of a message by a remote terminal is performed as

shown in Fig. 10 .20 , It is assumed that the busy b it within the status

78

register is set; when a request for data first appears the busy reply is given.

The request for data triggers an interrupt; the interrupt service routine

then loads the message into the interface. When the request appears

again the message is sent, this condition is recognised by the subsystem

processor which then sets busy for the next request.

1 0 .4 . Systems In tegration and Test.

As for the single processor case, system integration and test

programs were developed for this phase. These consisted partly

of programs written for the single processor togehter with communications

test schedules. These programs have not been included in this thesis.

79

Qiopter 1] . Design Strategies: Distributed System.

This chapter presents strategies for detection and recovery from

transient and permanent hardware faults,and their implementation in

hardware and software within a real time distributed processing system.

The approach was, first to inject faults onto the control system which had

no recovery mechanism. Having gained experience from the single

processor study on the effect of faults, i t was fe lt unnecessary to inject

a large number of random faults but instead to inject faults to give

typical or specific faults. Having obtained a baseline, the basic

Recovery Block was implemented upon the target tracking and digital

controller software.

Other techniques, for example the use of a watchdog timer,

developed in the single processor study were then implemented in order

to localise the effect of faults. Global recovery was used to prevent a

system crash or an unsafe system state when the localisation of the

effect of faults was not possible.

The performance of the distributed processing system was obtained

using the results of tracking a single target, whose characteristics are

described in the following section. The subsystem is operated wholly in

track mode and for the purposes of the distributed system, a run is

considered to start at missile launch.

1 1 .1 . Target Characteristics.

The target used for the distributed processing study was different

from that of the single processor study and had the following characteristics:

START P O SIT IO N 4000 4700 200 (metres)

H E A D IN G - 100 4000 200 (metres)

VELO C ITY 250 (metres/second)

This target was chosen as it gave a missile angle characteristic, as shown

in Fig. 1 1 . 1 . , which has two phases of missile fligh t, i .e . that of

gathering and the terminal phase. In addition, the missile range is not

equal to the target range until approximately 1 0 . 8 seconds, as shown

80

în Fîg.n . 2 . , thus allowing the system to recover under d ifficu lt fault

conditions.

The target tracking software was modified slightly from that used in

the single processor study, and involved the use of 1 2 0 sectors to represent

360° instead of the 30 sectors previously used. This increase in the

number of sectors allows more accuracy to be obtained in target tracking,

due to the higher resolution.

The use of 120 sectors gives a sector spacing of 3 ° , and the effect of

this can be seen in Fig. 11 . 1 . The missile does not lie on the exact angle

as the target during the terminal phase but can still said to be tracking

the target. Tracking can be justified as the missile lies within the same 3 °

sector as the target, and the system cannot distinguish one edge of this

sector from the other edge. Thus during the terminal phase the missile

believes it is on the same azimuth as the ta rget, and a target hit is

considered to have occurred if the missile angle is within the same 3°

sector when the ranges are equal. This situation is adequate for the

purposes of demonstrating system recovery, but can be improved by the use

of smaller sectors and the use of feedforward terms in the missile guidance

loop.

The operation time of a single run was extended from ten to fifteen

seconds, this was simply a convenient time which was greater than the time

for the missile range to be equal to the target range. In taking results the

criterion taken was to compare the missile angle under fault conditions with

the true missile angle obtained under no fault conditions. Each run was

continued to fifteen seconds even if a target hit occurred before this time.

The measurement of performance is described in the following section.

1 1 .2 . Performance Index.

A quanti ta ti/e measure of performance was required to assess the

performance of the system under different fault conditions. The use of

ava ilab ility as a measure is quite good but does not differentiate between

a single long unoperational period and many short periods. In many

81

applications, it is not sufficient just to recover from a fault but it is

important that fast recovery takes place as in the case of a missile

tracking a target. In addition, the time at which a fault occurs is

important, for example, a fault occurring at nine seconds after missile

launch has a higher probability of disrupting system performance than a

fault occurring a t three seconds.

The missile flight consisted of two distinct phases, that is the

gathering and the terminal phases. During the gathering phase the missile

to target angles are large in contrast to the small angles obtained during

the terminal phase. Since the guidance control is closed loop, the system

recovers naturally from propagated data corruption type faults. However,

the natural recovery period is like ly to be significant and may result in a

failure of the mission particularly if the fault occurs during the terminal

phase. Thus it is important that data corruption type faults are not

allowed to propagate and that the system is always in a known state.

In order to penalise slow recovery and large errors from the expected

performance, the following measure, called a Performance Index was used

Performance Index = / ^ \2 m i \
/q t(error) dt (I i . l .)

The upper time lim it of the integral occurs when missile range is

equal to target range.

1 1 .3 . System with No Recovery .

In itia lly the system was configured as shown in Fig. 1 1 .3 . without

any protection or recovery schemes to provide a baseline set of results.

Two types of faults were considered, that of data corruption and faults that

caused the digital controller to crash.

1 1 .3 .1 . Data Corruption Type Faults.

Using the mechanism described in Chapter 9 .6 . faults were in itia lly

injected to produce data corruption effects. First, consider faults

introduced during the gathering phase, i .e . up to about eight seconds

after the start of the run. The effect of corrupting the target angle

presented to the missile guidance loop can typically be as shown

82

în Fîgs. 1 1 .4 . and 11 .5 . Fîg, 11 .4 . shovs the effect of corrupting the

target angle to a value of - 3° for a period of eight iterations (l /1 5 th second)

at two seconds after the start of the run. This value is a legal target angle,

however such a jump in target angle is un likely to occur under no fault

conditions. This results in a maximum deviation of 6 .0 5 ° and a performance
2

index of 6 5 .0(seconds. degrees) . Fig. 1 1 .5 . shows the effect ot

corrupting the target angle to a value of - 6 ° for the same period a t four

seconds after the start o f the run. This also gives a maximum deviation

of 6 .0 5 ° with a performance index of 112.3(seconds. degrees)^.

A data corruption type fault occurring in the output of the digital

controller corresponds to the missile being given an incorrect guidance

demand. The effect of setting the guidance demand to zero a t 1 /4 second

from the start for eight iterations is shown in Fig. 1 1 .6 . This figure

shows a maximum deviation of 8 .4 9 ° and represents a performance index
2

of 152 .2(seconds, degrees) . The effect of data corruption occurring

during the gathering phase, as shown in Figs 1 1 . 4 . , 1 1 .5 . and 1 1 , 6 .

is to change the plot of missile angle but does not affect the terminal

phase of the missile.

The time taken to recover from a data corruption fault within the

gathering phase was between two and six seconds. If this recovery period

is repeated during the terminal phase then the effect of the fault is to

cause the missile to miss the target. In the terminal phase the recovery

period was generally shorter as shown in Figs. 1 1 .7 . and 1 1 . 8 . which

indicates that tracking was lost for between one and three seconds.

The effect of an uncontrolled overflow, due to a large target angle, in

the controller's calculation of lateral acceleration is shown in Fig. 1 1 .9 .

This effect is quite severe causing the missile to slew rapidly, giving a

maximum deviation of 1 4 .0 ° with a corresponding performance index of
2

14195.8(seconds, degrees) . Tracking is regained three seconds after

the fault was introduced during which time the target was missed. The

overall effect of data corruption in the terminal phase in a system without

83

recovery is that there is a high probability that the target w ill be missed,

1 1 ,3 .2 , Controller Crashes.

The next stage was to consider the type of fault that led to a

controller crash, i . e . a total loss of system function. Typical causes

of system crashes were found by studying the single processor results;

a list of these causes can be found in Table 1 1 .1 ,

Twelve runs of the system were carried out, each run was faulted

by one of the fau lt types listed in Table 1 1 .1 , The faults were injected

within the calculation of the difference equations by substituting one of

the instructions in Table 1 1 .1 . for a system instruction. O f these

twelve faults, a ll caused a loss of system function except fault type

number 2 , The introduction of a relative jump meant that the program

counter stayed local to the correct value and a system crash did not occur;

the effect was one of data corruption. This cause was eliminated from

further consideration of faults that cause the system to crash if no protection

or recovery is applied.

1 1 .4 . Basic Recovery Block.

The previous section identified two different types of fault and their

effects; the next step was to implement the basic Recovery Block and

monitor its effectiveness in a distributed processing environment under

these fault conditions. The basic Recovery Block was implemented within

the target tracking processor and the digital controller processor to localise

the effect of faults on total system performance. The implementation is

described below followed by the resulting effect of the faults.

1 1 .4 .1 , Target Tracking Processor.

The basic Recovery Block implementation used was the same as for the

single processor study (see Chapter 7 .2 .) except that the software was

modified to allow 1 2 0 sectors per revolution,

1 1 .4 .2 , D igital Controller Processor,

The digital controller, as described in Chapter 5 ,3 . consisted of the

addition of four difference equations. Each of the five units (four difference

84

equations plus the addition) had its own Recovery Block with the acceptance

test defined as ensuring the output is within the worst case limits.

The estimation of worst case limits can be found in Appendix G .

The outputs of the four parallel units and their addition can be found in

Figs. n . lO . and 1 1 .11 . and satisfy the results obtained in Appendix G .

In addition to acceptance testing, any overflow following an

arithmetic operation resulted in the entry of the appropriate alternate

routine. For simplicity, the alternate routine was to re-execute the

primary routine.

1 1 .4 .3 . Data Corruption Faults.

The data corruption faults as described in Chapter 1 1 .3 .1 . were

introduced into the system with the basic Recovery Block. O f the faults

introduced into the target tracking processor all were captured by the

relevant acceptance tests. This resulted in no degradation in the plot

of missile angle, even though a default or last value was used on several

occasions. The explanation for this is that the output of the target

tracking process is slow moving, with the target azimuth being updated once

per second.

Now consider faults injected into the controller software, as before,

the output of the digital controller difference equations was corrupted and

set to zero. The acceptance test was entered and the output passed the

test. The resulting missile angle plot was the same as for the system with

no protection, i . e . as in F ig ,1 1 .6 . However, the effect of this fault

occurring during the gathering phase does not influence the system's ab ility

to enter the terminal phase.

The effect of allowing a large transitory target azimuth appear

as input to the missile guidance loop was shown in Fig, 1 1 .9 . This caused

overflow in the digital controller's difference equations. However, with

the basic Recovery Block implemented within the target tracking

processor, then the acceptance test trapped the large swing away from

the target being tracked. The alternate routine was then entered and the

85

previous value used; this resulted in the plot o f the missile angle being

equal to that under no fault conditions. Thus, the extent of the fault

was localised within the target processor and was not allowed to

propagate to the digital controller.

1 1 . 4 .4 . Controller Crashes.

The causes ot system crashes, as listed in Table 1 1 .1 . except

fault type number 2 , were introduced into the controller software

with a basic Recovery Block structure. All the runs failed to complete

i . e . a system crash occurred, except number ten (POP instruction).

This was due to the structure of the Recovery Block. The POP instruction

results in the correct return address of a subroutine being taken off the

stack, this led to the processor pointing to the wrong calling address

when a return from subroutine was executed as shown in Fig. 1 1 .12 .

This led to omission ot the acceptance test following calculation of one

of the difference equations. This omission was not a hazard to the system

as the addition of the four parallel units is checked later in the cycle before

a guidance demand is sent to the missile.

1 1 .5 . Use of Software Traps.

Some microprocessors, including the Z8000, have built in software

traps to detect potentially hazardous situations, in addition to a software

interrupt call for user software. The use of these traps was described in

Chapter 7 .5 . ; using this technique the system was run using the faults

listed in Table 1 1 .1 .

In addition to those recovered from by the basic Recovery Block,

numbers one and five did not cause a system crash using the technique of

reading the process number and returning control to the appropriate

alternate routine.

1 1 .6 . Addition of Watchdog Timer.

A watchdog timer, as previously described in Chapter 7 .3 . , was

added to the structure of the Recovery Block within the digital controller.

The remaining faults from Table 1 1 .1 . (instructions most like ly to cause

86

a system crash) that were not recovered from using the mechanisms in

Qiapter 1 1 .4 . (Basic Recovery Block) and 1 1 .5 . (Software Traps) were

introduced into the controller software. A time out occurred on each

occasion leading to entry of the alternate routine. No degradation in

system performance resulted from the injection of these faults.

1 1 .7 . Global Recovery.

Under fault conditions the 1553B bus controller may request data

and repea tab I y receive a busy response. A lternatively the failure of a

remote terminal may lead to the message error b it being set and the

suppression of the status word. In a real time system, the controller ccnnot

continually accept this situation and must take steps to maintain the

integrity of the system. This section describes how the system can deal

with the transient failure of a remote terminal, in this case the terminal

attached to the target tracking processor. The permanent failure of this

processor is covered in Chapter 1 1 . 8 .

1 1 .7 .1 . Transient Failure and Recovery.

Consider the transient failure of the remote terminal belonging to

the target tracking processor for one system cycle. The transient

failure was simulated using the 1553B protocol fault injection interface

described in Chapter 1 0 .2 .6 . At the required time of fa ilure, the frame

length was adjusted to twenty one bits for a single cycle only. The target

tracking process is a slow moving one, therefore the last correct value

received by the controller is a reasonable estimate of the true position of

the target.

The recovery of the system is explained by following the run of the

above fa ilu re, with the aid of Fig. 11 .13 . On the fault cycle, the bus

controller receives an invalid status word each time a request for data is

made. This is allowed to occur a maximum of four times; this figure being

set by the maximum latency allowed in the system. At this stage the digital

controller assumes that the remote terminal is not going to reply and

enters an alternate routine. This routine is a stepping stone between

87

fault free operation and the permanent failure of a remote terminal or

subsystem, thus a transient failure is first assumed.

11 . 7 .2 . Example of Recovery.

For this example the system entered the alternate routine and the last

correct data from the target tracking process was used. In addition, a

counter was updated for the purposes of counting the number of times the

alternate routine was entered; a maximum value of five was allowed before

a permanent failure was diagnosed. The use of the last correct data

corresponds to the target azimuth position which is used as the input to the

missile guidance loop.

On the next cycle the target tracking processor responded correctly

to the bus controller's request for data, and the target azimuth was sent from

the remote terminal to the controller. This cycle and the following cycles

were successfully completed.

The fault was induced in a cycle on which the target azimuth did

not change, and as recovery took place the missile angle was exactly as in

the fault free operation. If the fault had occurred on a cycle when the

target azimuth had changed, the digital controller would have used the

previous value on the faulted cycle and the true value on the next cycle.

This would have resulted in the step change in target azimuth appearing

1/ 12 0 th second later than it should have done.

88

Chapter 12. Standby Processing Systems.

The previous chapter demonstrated the improvement ot ava ilab ility

that can be obtained in a distributed processing system under fault

conditions.

Consider now a system which decomposes into a given number of

processor subsystems due to factors such as complexity, allowed latency,

distribution of system peripherals and prevention of propagation of faults.

How then is the decision made to include a further processor to increase

system ava ilab ility and performance under fault conditions and what

function w ill it undertake.

The decision to add an extra microprocessor subsystem and the

amount of fault tolerance within the other microprocessor subsystems, is

based largely on system requirements, i .e . how is the system expected to

operate under certain specified conditions. The operating conditions

may include environmental conditions such as EMP radiation, permanent

or transient fau lt conditions, and difficu lty of maintenance whilst in

fie ld use.

The processing power of an additional microprocessor system may be

used for task swapping and/or health monitoring; these functions are

described below.

1 2 .1 . Task Swapping.

The concept of using a standby microprocessor system is not a new

idea, however it is not sufficient to obtain a better performance under

fau lt conditions. The additional processor may need to gain access

to peripherals or transducers within the system, and this access w ill

depend upon the physical system distribution and the ava ilab ility of

transducers . The use of the terminal attached to the standby unit as

a remote terminal or os a standby bus controller w ill depend upon the

number and nature of the remote terminals and the attached subsystems,

and the requirement for continued system operation. For example, it may

be imperative that a bus controller failure does not cause system fa ilure.

89

1 2 .2 . Health Monitoring.

In many real time systems it is important to give on operator

confidence that the system is functioning fu lly or in a degraded mode.

The importance of this confidence may vary depending upon environment

and skill level of operator. In order to gain confidence that the system

is operational it is necessary to carry out routine health monitoring;

this monitoring must be integrated into the design of the system.

In the system described the digital controller could send its immediate

outputs of the difference equations to a standby processor on a regular

basis. The reception of this data can then be used for health monitoring,

that is, a signal from the bus controller to confirm the functional state

of the system. In the event of a bus controller or digital controller

subsystem, the standby processor can use the last valid set of intermediate

outputs rather than restart the difference equations from zero.

1 2 .3 . Use ot Field Test Data.

The system requirements may or may not be sufficient to determine

the system configuration; additional data in the form of field test data, i f

availab le , can be used for the basis of the decision. This field test

data can be gathered, if possible, from existing equipment using for

example the same transducers and/or operating in similar environmental

conditions. From this data, it may be deduced, for example, that

transient faults predominate or that a certain transducer is critical

to the operation of the system or that the communications link is prone

to burst errors. The fie ld test data can be used to decide whether the

system operational requirements are like ly to be met with a certain

configuration and determine the level of fault tolerance within the

subsystem and the need for a standby microprocessor system.

Having considered aspects of a standby processing subsystem, the

following sections describe the recovery process that takes place

following a subsystem failure and the associated achieved performance.

90

12 .4 . Failure of a Remote Terminai.

The addition of a fourth processor subsystem was provided in order

that system recovery could take place when a complete processor subsystem

fa iled . This section describes the recovery that takes place following

a remote terminal failure whilst the system is tracking a target.

During the four processor study the raw target data was loaded

into the memory of the missile processor, as this processor is assumed fault

free. This involved the building of an additional memory card whose

circuit diagram, layout diagram and parts list can be found in Figs. 1 2 .1 .

and 1 2 .2 . and Table 1 2 .1 . The placement of this raw data within the

memory of the missile processor enabled the system to obtain target data

even in the presence of the digital controller or target tracking processor

fa ilure. This involved a small modification to the software, that is on

each cycle the bus controller has to get the raw data and give it to the

target tracking processor. This involved a time overhead but it was small

compared to the cycle time, thus having no effect on system performance.

The arrangement of the four processor subsystems and the software is shown

schematically in Fig. 1 2 .3 . , where the fourth processor contains a copy of

the target tracking process and is idle during fault free operation.

1 2 .4 .1 . System Recovery.

Consider the permanent failure of the target tracking processor and

the associated recovery. For this example, the failure of the target tracking

processor results in a busy reply when a request for data is made. On the

first cycle of the fa ilu re, a maximu m number of busy status returns are

received, leading to entry of an alternate routine shown in F ig .1 2 .4 .

The last correct value of target azimuth is used and the guidance demand

calculated. System considerations determine that no more than six

consecutive entries of the first alternate routine were allowed. The

fau lt, being permanent, after five cycles causes the system to enter the

alternate routine for a sixth time and then assumes a permanent

failure.

91

The second alternate routine is then entered and this effects the

use of the fourth processor to take over the failed processor's function.

On the first cycle in this alternate routine, the digital controller has to

give the standby processor sufficient information to take over the failed

function. In this case, the bus controller sends the radar azimuth position

and the azimuth on which the target lies. The reception of these variables

by the standby processor acts as a wake up signal, with these variables

being used as a starting point of the function.

It is assumed that time is limited on this sixth cycle and so the

digital controller again uses the last stored value of the target azimuth.

On subsequent cycles the digital controller enters the a lte rn a te routine,

sends raw data to and receives target azimuth positions from the standby

processor.

1 2 .4 .2 . System Performance.

If the failure of the target tracking processor occurs at least six

cycles before a change in target azimuth then no difference in the

resultant missile angle is obtained. The digital controller has no

knowledge of the targets range or velocity characteristics and so a

period of graceful degradation occurs for a period less than one second

until the standby processor identifies the target.

If the failure of the target tracking processor occurs less than

six cycles before the target azimuth position is due to be updated, then

the resulting missile angle plot w ill be different from that of the unfaulted

one. This is due to the effect which can be seen schematically in

Fig. 1 2 .5 . The standby processor does not identify a target on a

particular cycle until approximately one second after the fau lt, and

uses the target azimuth value prior to the fau lt.

Two runs were carried out with a failure of the target tracking

processor occurring less than six cycles before the target azimuth was due

to change. In the first run, the fault was introduced at one second after

the start of the run. The resultant missile angle plot can be found

92

in Fig. 1 2 .6 . and shows that only the gathering phase is affected and the

missile still enters the terminal phase successfully. A maximum deviation

of 2 ° was recorded with a performance index of 4 6 .5(seconds, degrees)^.

The second run involved a fault at approximately eight seconds, i . e .

during the terminal phase. The resultant missile angle plot can be found

in Fig. 1 2 .7 . and shows that the system regained tracking within three
2

seconds, giving a performance index of 1 5 4 .9 féconds, degrees) , and a

maximum deviation ot 1 .4 4 ° . As the angle was within three degrees of the

true un foul ted angle at eleven seconds, then the run was considered to be

successful . Eight seconds from the start of the run, was found to be the

latest time that such a fault could occur without affecting mission success.

1 2 .5 . Failure of a Bus Controller.

The failure of the target tracking processor during system operation

did not cause system failure due to recovery taking place with the aid of a

standby processor. Intu itively, the failure of the bus controller is like ly

to have a much greater effect on system performance. This section

shows by way of examples how the recovery from such a failure can take

place and its effect upon system performance.

The configuration of the four processor systems, was as shown in

Fig. 1 2 .8 . with the standby processor idle under no fault conditions.

Consider then the failure of the digital controller whilst tracking a target.

The function of the digital controller is to execute a number of

difference equations to calculate the guidance demand of the missile,

if another processor has to take over then it is advantageous to use a good

estimate of the past values of the four parallel units rather than restart

the difference equations from zero. The outputs of the four parallel units

can be seen in Fig. 1 1 .1 0 . which shows that the best estimate for

previous outputs is in fact zero.

It was assumed that the failure of a bus controller would result in

a prolonged period of inactiv ity or a prolonged period in which invalid

commands are being transmitted on the bus. This period was detected by

93

the failure to retrigger a monostable by the val id command sync pulse

derived from the bus monitor. The output of the monostable was then polled

by the microprocessor subsystem to detect the bus controller failure.

For the purposes of the study the minimum period of inactiv ity was set to

four milliseconds from the receipt of the last valid command sync pulse,

this being shown in Fig. 12 .9 .

Thus the detection mechanism consisted of a retriggerable monostable

which was continually retriggered during normal bus operation giving a

logical ' 1 ' output. Following bus controller failure the monostable is not

triggered and the output falls to a logical 'O'.

1 2 .5 .1 . Use of Bus Monitor.

The failure of the bus controller was carried out by the use of the

non-maskable interrupt mechanism as previ ously described. The subsystem

processor (digital controller) was put into a halt condition, thus taking

no further part from the time of failure to the end of the run. In practice

the failed bus controller must not be allowed to issue further commands,

after it has deemed to have failed by a bus monitor. This can be carried

out, as shown schematically in Fig. 12 .10 . by the use of a discrete

which disables the output of the bus controller. This discrete is set by

the bus monitor on detection of a prolonged inactive bus period.

Having detected prolonged bus inactiv ity the bus monitor

then assumes bus control. The standby processor must then obtain the

target azimuth from the target tracking processor and read the missile

angle. The missile to target error angle is used as input to the

difference equations, setting previous inputs equal to the present input, and

the previous outputs of the four parallel units equal to zero. The system

then continues as normal during which time coverage is still given by the

target tracking processor.

1 2 .5 .2 . Effect of Failure on Performance.

The effect of the bus controller failure on the missile angle depends

upon when the failure occurs during the run. The greatest deviation in

94

in the missile angle occurred when the failure took place in the

gathering phase. This occurred due to the starting up of the difference

equations immediately after bus controller fa ilure. During the

gathering phase the target to missile error angle is large and not equal to

zero, even if zero is the best estimate. A failure at one second after

the start of the run results in the missile angle plot as shown in Fig. 1 2 .1 1 .

This shows a large deviation from the true missile angle (9 .5 °) with

recovery taking about eight seconds, resulting in a performance index
2

of 7 3 8 .5^econds. degrees) . This large deviation affects the missile

angle during the gathering phase but shows that tracking still occurs before

the target is reached.

The effect of the failure occurring later in the gathering phase

results in a smaller excursion from the true missile angle as can be seen

from Figs. 12 .12 . and 1 2 .1 3 ., which show the effect of a failure at two

seconds and four seconds respectively. The failure at two seconds gives a

maximum deviation of 4 .0 1 ° with a performance index of 140.5(seconds.
2

degrees) , whilst the failure at four seconds resulted in a maximum

deviation of 2 .6 5 ° and a corresponding performance index of
2

128.90econds. degrees) .

During the terminal phase of the missile, the missile to target error

angle is small, and the outputs of the four parallel units are close to zero.

Thus i f a failure occurs during this phase the effect of setting the parallel

outputs to zero (in the standby processor) is like ly to be less than that

in the gathering phase. This is like ly to result in a shorter recovery

time and a smaller excursion from the true missile angle. Failure of the

bus controller was carried out at seven, eight and nine seconds after the

start of the run, giving maximum deviations of 2 .3 5 ° , 1 .9 9 ° and 1 .2 4 °

respectively. The resulting plots can be found in Figs. 1 2 .1 4 ., 12 .15 . and

1 2 .1 6 ., these represent performance indices of 3 9 .1 , 20 .5 and
2

1 2 .7 féconds, degrees) . The graphs show that the time to recovery and

the maximum excursion ore less than that in the gathering phase and

95

that mission success is not affected by a bus controller failure even in the

terminal phase of the missile.

96

Chapter 13. Distributed Processing Conclusions.

The implementation of fault tolerant techniques within a

distributed processing environment has resulted in an increase in ava ilab ility

under extreme operating conditions. However, it must be stressed that

redundancy does not automatically increase the re lia b ility ot a system.

A poor implementation of a fault tolerant technique may actually result

in a decrease of system re lia b ility .

13 .1 . Review of Design Philosophy.

The use of a Recovery Block within subsystems which form part of a

distributed system provides recovery on a local basis. This ab ility to

recover locally has led the author to establish a design philosophy for

message passing between processors. This philosophy is based on

testing data at the point of maximum information, i . e . at the point of

transmission of the message, and the absence of testing data on reception.

The testing of data is carried out by an acceptance test prior to

transmission; the data is assumed to be valid i f it is received correctly

with respect to the particular communications protocol.

The absence of reception of expected data leads to another principle,

i . e . that message transfers proceed only in one direction. If a message

fails to arrive then the receiving subsystem must not attempt to diagnose

the failure to transmit; instead it must in itiate global recovery after a

predetermined time period. If the receiving device were allowed to

attempt fault diagnosis of the transmitting subsystem a loop would be

closed around the communications link, and the system would become more

complex and probably more unreliable.

1 3 .2 . Distributed Processing Recovery.

The distributed processing research has shown that by using the

Recovery Block as a basis, transient and permanent faults can be recovered

from generally without a severe loss of performance. System recovery was

shown to take place whilst real time control was being performed, without

massive redundancy as in triple modular redundancy.

97

The faults injected were divided into two groups, i . e . data

corruption type faults and system crash type faults. The distributed

processing system without a recovery mechanism was still able to track

targets when the data corruption type faults were injected during the

gathering phase. The effect of data corruption in the terminal phase

let to a high probability of missing the target being tracked.

By definition this sytem was unable to recover from system crash type faults.

1 3 .2 .1 . Local Recovery.

The implementation of the basic Recovery Block within the

distributed processing system ensured that recovery took place when data

corruption type faults were injected into the target tracking and digital

controller processes. This implementation was unable to recover from

system crash type faults; this confirmed the results of the single processor

study. The use of the time domain in the form of a watchdog timer and

the use ot system traps for illegal conditions led to recovery from the system

crash type faults.

1 3 .2 .2 . Global Recovery.

If local recovery from a particular fault was not possible, then

global recovery was shown to maintain the system functional. Global

recovery was performed by the use of an alternate routine in the master

processor subsystem, and is necessary it transient faults prevent the master

from receiving valid data. The use of local recovery means that there is

a high probability that the processor's communication interface is loaded

with data, but cannot guarantee correct communication of data.

Under these conditions, global recovery is necessary to ensure valid

data and continued system operation.

1 3 .2 .3 . Use of a Standby Processor.

If system ava ilab ility is required to be high then the use of a standby

processor system may be justified. The failure of a slave subsystem was

performed and dynamic task swapping was shown to give good results when

the system was tracking a target. The task swapping was initiated vben a

98

counter exceeded a predetermined lim it within an alternate routine in the

master processor subsystem. This was followed by enabling the standby

processor with the necessary starting values. The failed subsystem took

no further part and all communication with the particular function was

made to the standby processor. This type of failure did not affect system

success provided it occurred more than three seconds from the target.

In a master/slave system, the master is critical for continued

operation and high a va ilab ility . A bus controller failure was carried out

which did not lead to a system crash due to bus inactivity detection

circuitry within the bus monitor. Assuming that the bus controller fails

quietly, i .e . no bus communication traffic , then this effect can be used

to in itiate take over of bus control. The new bus controller must ensure

that the failed bus controller takes no further part in the operation of the

system. The results showed that failure of the bus controller, even in the

terminal phase of the missile did not affect the obj ective to h it a target.

System performance was only slightly impaired as shown by the low

performance indices recorded in the terminal phase, as shown in

Chapter 1 2 .5 .

The take over of control by the bus monitor was fast and occurred

within one system cycle. The degradation in performance was due to the

of the digital controller's difference equations in the new master

subsystem. This performance can be improved if the intermediate outputs

of the difference equations are regularly transmitted to the bus monitor.

The transmission of these outputs can also act as a health monitoring signal

to the bus monitor. In the event of the bus controller not failing quiet,

the absence of a health monitoring signal can be used to signify a failure

of the bus controller, without waiting for a quiet period on the bus.

1 3 .3 . Further W ork.

The modelling of hardware re liab ility is well established, unlike

the field of software re lia b ility modelling which is a comparatively new one.

However, in the view of the author the problem is being tackled incorrectly

99

since the all important point is the re liab ility of the system. Few

researchers (if any) have tackled the self imposed problem of combining

hardware and software models to give a system re liab ility model. This area

needs consideration before too much time is spent on developing software

re liab ility models.

The system described in this thesis was operated without need for

an operating system. Some real time systems may require a kernel to

supervise the operation of parallel co-operating processes. Such a kernel

would also require fault tolerance for high re liab ility .

Further work is required to establish the implementation of a Recovery

Block structure within such a system. It is like ly that the kernel would

be considered as the highest level of software and perform acceptance

on processes either running or to be run.

The single processor study involved applying mainly single faults

with a small percentage of double faults. This was considered to be

sufficient within the time ava ilab le , however further work could be

usefully spent by studying the implementation of a Recovery Block

structure under multiple fault conditions. An important area for

investigation is the development of robust software specifically for areas

where input data is like ly to be corrupt.

In the distributed processing study, a standby processor was

effectively used for continued systems operation under the conditions of a

failed subsystem. Under normal operating conditions the standby processor

is idle and could be used for system health monitoring, that is to monitor

and record the state of the system.

100

Chapter 14. Towards an integrated Approach to Design.

The approach used in this report was to investigate different

strategies including the assessment of their performance in order to arrive

a t a system with high ava ilab ility under prescribed fault conditions.

The experience gained from the study is used here to discuss guidelines

for the design of a re liab le system. In addition, these guidelines

have been applied to the design of a single microprocessor target

tracking system; this design is illustrated using a MASCOT methodology.

14 .1 . Guidelines for Design.

The use of redundancy is often necessary in order to achieve

system re lia b ility and ava ilab ility requirements. However redundancy

must be applied methodically to ensure that system complexity is not

unnecessarily increased. This section presents guidelines for the design

of reliable systems.

1 4 .1 .1 . Functional Decomposition.

The functional decomposition of a system is an essential feature

of the system recovery strategy. The factors to be considered

are:

1. Separation by function or process.

2 . Interprocess communication kept to a minimum.

3. Consideration of physical locality of functions.

4 . Functions need to be a manageable size for a complete

understanding of the total system.

1 4 .1 .2 . Recovery Block.

The use of a Recovery Block structure must be justified within the

systan to be designed. Consideration should be given to the overhead

incurred with relation to the increase in ava ilab ility obtained. The

single processor study gave an increase from 5% to 42% ava ilab ility

(with fail safe). This must be weighed against the overhead in sottware

resulting from the use ot the structure; a figure of 30% additional software

was found to be typ ica l.

101

1 4 .1 .3 . Watchdog Timer.

The use of the time domain for im plicit fault detection was

considered to be an essential feature of any real time system. The

watchdog timer is simple in hardware terms, consisting of a programmable

timer which can set an interrupt flip flop. An interrupt service routine

must be written to determine the process which was being performed at the

time of the fault and transfer control to the relevant re-entry point.

Results from the single processor study showed an ava ilab ility of 85% ,

an increase of 43% over the basic Recovery Block structure.

1 4 .1 .4 . Run Time Overhead.

The overhead in time, incurred by using a Recovery Block structure

is dependant upon the complexity of the acceptance tests and the

environment in which the system operates. If the environment is noisy

e lectrica lly then transfer of control into alternate routines is like ly to

be common.

1 4 .1 .5 . System Traps.

Any unused software or hardware traps available within the

processor must be restored to the same address as that for the hardware

timer. A log of fault interrupt causes can be kept for continuous

monitoring and maintenance purposes.

1 4 .1 .6 . Reversionary Modes.

Systems design must take account of reversionary modes of

operation upon fault detection. A safe shutdown of the system is

often desirable i f a hazardous condition is detected.

1 4 .1 .7 . MASCOT A C TIV ITY CHA NNEL POOL (ACP) Diagram.

An in itia l design is illustrated using an ACP diagram, which

shows the Activities of the system and the Intercommunication Data Areas.

The reader is referred to R ef.6 . for information on MASCOT. An

inadequate decomposition of the system w ill result in a large ACP

diagram with highly interconnected activ ities.

102

The overall system design is illustrated as a hierarchical set of

ACP diagrams. Decomposition is carried out to a depth necessary to

achieve a reasonable level of functional modularity.

1 4 .1 .8 . Fault Scenarios.

Having decided upon a hierarchical set of ACP diagrams then

system designers should study the diagrams to identify situations which

might compromise safe system operation. If a hazardous situation is

identified then a fail safe mechanism or alternative strategy is necessary.

1 4 .1 .9 . Design Reviews.

Design Reviews should be carried out to ensure that the system

specification requirements are adequately stated and can be feasably met.

A design Review should cover the following points:

(i) C larity of software structure.

(ii) Tolerance o f software to hardware errors.

(i i i) Design proving requirements.

(iv) Requirements for configuration control.

(v) Safety.

(v i) System development tools.

(v ii) Acceptance procedures.

(v iii) Reversionary modes of operation.

(ix) Software/Hardware trade offs.

1 4 .1 .1 0 . Structured Walkthroughs.

The structured Walkthrough is similar to a Design Review except

that it is carried out with greater frequency. It is concerned with the

design of a subsystem or part of a subsystem and covers the following points:

(i) Function.

(ii) C larity of structure.

(ii i) Speed of operation.

(iv) Test requirements.

(v) Fault detection and recovery.

(vi) Size of software.

103

1 4 .1 ,1 1 . Testing.

The use of a Recovery Block structure has the advantage that testing

of software can be modular and more thorough thus removing a greater

percentage of design errors. In top down testing, the top level is

tested first, a lower segment is added and the combination tested.

This is repeated down to the lowest leve l. Dummy segments temporarily

replace the segment subordinate to the segment under test. These dummy

segments can vary in complexity and may return constants or may be a

primitive version of the segment being simulated. To enhance structured

programming the length of a segment should be lim ited to a mangeable

leve l, say fifty statements to enhance readability and comprehension

whilst minimising page turning. Usually each segment w ill correspond

to one function and can be implemented as a procedure with a descriptive

name corresponding to the function. Thus the use of small segments makes

programs easier to extend and maintain; re lia b ility is further enhanced

since test plans for the segments are easier to specify and execute.

14 .2 . Single Processor System.

Having discussed guidelines for reliable systems design, this section

describes the in itia l design of a single microprocessor target tracking

system. It is assumed here that the microprocessor to be used is capable

o f the real time processing necessary.

1 4 .2 .1 . Functional Decomposition.

Using the factors detailed in Section 1 4 .1 .1 . it was decided to use

the same decomposition as previously used. However the sub tasks w ill

no longer be processed in a sequential order, due to the operation of the

system in a MASCOT environment.

1 4 .2 .2 . Recovery Block.

It was considered that the use of a Recovery Block structure could

be justified in order to obtain a high a v a ilab ility . The inclusion of a

Recovery Block structure is not sufficient to increase system availab ility ;

it is necessary to ensure that the implementation is robust. The implementation

104

of the Recovery Block structure on a particular processor system w ill result

in a particular overhead, which is application dependent. The estimated

overhead in software and hardware can be weighed against the increase

in ava ilab ility obtained. At present, as far as is known, this study

represents the only source of information on the increase in ava ilab ility

that can (not necessarily w ill) be obtained by using a Recovery Block structure.

1 4 .2 .3 . Watchdog Timer.

The introduction of a watchdog timer can be justified here, as it

involves litt le overhead in software and hardware terms.

1 4 .2 .4 . Run Time Overhead.

The target tracking system is operated with an angular separation

of 12°. The time taken for the processing w ill depend upon the

processor chosen. A correct choice of processor w ill allow a Recovery

Block structure to be used.

1 4 .2 .5 . Trap Areas.

The use of trap areas between code segments does not necessarily

result in an increase of a va ilab ility . However, this feature can be

effectively used for safety purposes, that is to ensure that a routine is

correctly entered. It is considered sufficient for this system to include

a trap area immediately before each primary routine.

1 4 .2 .6 . Reversionary Abodes.

The reversionary modes of operation in the target tracking system

simply consist of alternate routines relevant to the particular process.

The system is shutdown if any alternate routine is entered on four

consecutive cycles. This is considered to be the point at which the

system can no longer give valid outputs. No hazardous states exist

within the target tracking system.

1 4 .2 .7 . MASCOT ACP Diagram.

The top level ACP diagram for the target tracking process is shown

in Fig. 1 4 .1 . Whilst the system is in a standby state, i . e . SEARCH mode,

then time is available for checking of system hardware. Using a

105

priority scheduler then the ac tiv ity for hardware checking can run at the

lowest priority. The design of an activ ity scheduler is not considered

here.

106

Qiapter 15. O verall Review of Achievements.

This chapter reviews the research study in terms of the objectives

set out in Chapter 1 . 1 . The study has conclusively shown that the

ava ilab ility of a system can be improved by a combination of measures

as outlined in the following paragraphs.

For completeness the constituent parts of the main objective are

repeated below, together with reference to the relevant chapters where

they are achieved.

(a) 'To establish good design practices based upon a

practical rather than a mathematical approach'.

Guidelines to design are discussed in Chapter 14

which presents an integrated approach. This

approach is applied to the design of a target

tracking system as described in Chapter 1 4 .2 ,

(b) 'To establish a simple but obvious structure for system

recovery'.

The Recovery Block was shown to be a basis

for the design of reliable real time systems

as described in Chapters 7 and 8 .

(c) 'To establish design criteria for reliable inter-task

communication w ithin a single processor'.

The integrity of data was improved by a method

wheréby system variables were not updated

until the appropriate acceptance test had been

successful. The system variables were then

passed to the next task by the use of CPU

internal registers as described in Chapter 7 .

107

(d) 'To establish a design philosophy for message passing

between microprocessors in a distributed system in order

to inhibit the propagation of faults'.

The concept of checking data before passing

it to the next task was extended to the

distributed processing environment where the

receiving processor accepts data as valid unless

otherwise indicated by the transmitting processor.

This philosophy is described in Chapter 9 with

results in Chapter 1 1 .

The overall conclusion of the research study was that for reliable

systems operation, fault recovery must be localised to minimise the

propagation of faults to the next task in a single processor system or to

another processor in a distributed system. The conclusions for the single

processor study are presented in Chapter 8 , whilst the distributed

processing conclusions are presented in Chapter 13.

The in itia l objectives were to investigate recovery from transient

faults; however opportunity was taken to extend the study to investigate

failures of a catastrophic nature whereby a subsystem fails permanently.

As described in Chapter 1 2 , the strategy adopted in this respect was to

introduce a standby processor in a task swapping mode. Conclusions

drawn from the results obtained are presented in Chapter 13.

108

Acknowledgements.

The author would like to thank British Aerospace and the Science

and Engineering Research Council for support and funding of the research

study. The author would also like to thank Prof. J .F . Eastham for

the use of the laboratory and Dr. B .A . White for his guidance and

assistance throughout the study. Thanks are also due to A W .M .G . Brown

and M r. S .C . Dunn of British Aerospace for their assistance with the

research,and M r. R .V .S . Penfold and his team, also from British

Aerospace, for hardware support.

Thanks are fin a lly due to Mrs. P. Jackson for the typing of

this thesis.

109

References

1. FISCHER K .F . , WALKER M .G . : 'Improved Software R eliab ility

Through Requirements V erification '; IEEE Trans. Reliab. R -28,

pp. 233 - 240, August 1979.

2 . MELLIAR-SMITH P .M . , RANDELL B .: 'Software R eliability:

The Role of Programmed Exception Handling', SIGPLAN Notices

12(3). p p .95 - 100, AAarch 1977.

3 . BALZER R ., G O LD M A N N . , WILE D. : 'Inform ality in Program

Specification*, IEEE Trans. Software Engr. SE-4, pp. 94 -1 0 3 ,

March 1978.

4 . MYERS G .J . : 'Software R e liab ility ', John W iley , 1970,

5 . ROSS D .T . , 'Structured Analysis (SA): A Language for

Communicating Ideas', IEEE Trans. Software Engr. SE-3,

pp. 16 -34 , January 1977.

6 . The O ffic ia l Handbook of M ASCOT, M ASCOT Suppliers

Association, December 1980.

7 . MYERS G .J . : 'Reliable Software through Composite Design'

Van Nostrand Reinhold Company, 1975.

8 . PAR NAS D .L .: 'O n the Criteria to be Used in Decomposing

Systems into Modules', Communications of the A C M 15(2),

pp. 1053 - 1058, December 1972.

9 . FUSSELL J .B ., POWERS G .J . , BENNETTS R .G .: 'Fault

Trees - A State of the Art Discussion', IEEE Trans. Reliab. R -23,

pp. 51 - 5 5 , April 1974.

10. L O N D O N R .L .: 'Proving Programs Correct: Some Techniques

and Examples', BIT 10, 1970.

11. WENSLEY J .H . et a l: 'SIFT: Design and Analysis of a Fault

Tolerant Computer for A ircraft Control' , IEEE Proceedings

V o l.6 6 , pp. 1240-1255, October 1978.

12. PETERSON W .W . , W ELDON E .J . i 'Error Correcting Codes'

2nd Ed., M IT Press 1972.

110

13. CHEN L . , A V IZ IE N IS A . : 'N-Versîon Programming: A Fault

Tolerance Approach to R eliab ility of Software Operation*,

D ig . FTCS-8 , Eighth Ann. In tl. Conf. on Fault Tolerant

Computing, pp. 3 -9 , 1978.

14. RANDELL B.: 'System Structure for Software Fault Tolerance',

IEEE Trans. Software Engr. SE-1 , pp. 220-232 , June 1975,

15. JELINSKI Z . , M O R A N DA P. : 'Software R eliability Research,

Academic Press, pp. 465-468 , 1972.

16. S C H O O M A N M .L . : 'Probabilistic Modes for Software

R eliab ility Prediction', Int. Symp. Fault Tolerant Computing,

p p .2 11 -215 , June 1972.

17. MUSA J .D . : 'A Theory of Software R eliability and its

A pplication ', IEEE Trans. Software Engr. SE-1, p p .312-327,

September 1975.

18. SCHICK G .J . , W OLVERTON R .W .: 'Assessment o f Software

R e lia b ility ', Proc. Operations Res. p p .395-422, 1973.

19. LITTLEW OOD B . , VERRALL J .L .: 'A Bayesian R eliab ility Model

with a Stockastically Monotone Failure Rate', IEEE Trans.

Reliab. R -23, p p .lo 8 -1 1 4 , June 1974.

20. Q U IN N M .D . , RICHTER D .: 1980 IEEE Test Conference,

pp. 238 -253 , 1980.

21. M OORE W .R .: Electronic Letters V o l. 15 N o .22, p p .722-724,

1979.

22. GAR NELL P ., EAST D .J .: 'Guided Weapon Control Systems'

Pergamon Press, 1977.

23. KATZ P .: 'D ig ita l Control Using Microprocessors',

Prenti ce /H a I I , 1981.

24. Am 96/4016 Users Manual, Advanced Micro Devices, 1979.

25. TMS 9900 Family System Development M anual, Texas Instruments,

Bulletin MP702, p .58, 1977.

I l l

26. BERGLAND G .D .: 'A Guided Tour of Program Design

Methodologies', Computer, pp. 19-37 , October 1981.

27 . HARTLEY M .G . e d .: 'D ig ita l Simulation AAethods',

Peter Pereguins L td ., 1975.

28. M IL-STD 1553B: A ircraft Internal Time Division Command/

Response M ultip lex Data Bus, Department of Defence,

September 1978.

29 . H D -15530 CMOS Manchester Encoder - Decoder, Harris

Corporation, 1978.

30. HD-15531 CMOS Manchester Encoder - Decoder, Harris

Corporation, 1978.

31. Z 8 0 0 1 /Z 8 0 0 2 Product Specification, Z i lo g ., 1979.

32. Principles of Operation A m Z8001/2 Processor Instruction Set,

Advanced Micro Devices, An-PUB086, 1979.

33. Principles of Operation Am Z8001/2 Processor Interface,

Advanced Micro Devices, AmPUB089, 1979.

112

APPENDIX A

Digitisation of Guidance Loop.

In the following derivations the sampling period of the digitised

system Is 1 /30 second.

A . I . D igital Controller: G^(z)

G (z) = (1 - z " ’) .Z / K 1 0 (s + 1) (s + l) (s + 0 . 5) \
\ s s(s + 3 . 16)(s + 3 .1 6) I

= 0 - z ' h . Z h . G ,(s) j (A . I .)

By Partial Fractions

G (s) = 1.685972102 + 0.500721038
s 2

s s

+ 8.314027898 - 12.42839289

(s + 3 ,1 6) (s + 3 .16)^ (A .2 .)

Then Z . / G , (s) \ = 1.685972102z + 0.016690701z

+ 8.314027898Z - 0.372861921z
z - 0.900024464 _ 0.900024464)^ . . . (A .3 .)

F inally G ^(z) = (1 - z ') . Z /G ^ (s) \

s '

= 1.685972102 + 0.016690701
(z - 1)

+ 8 .314027898(z - 1) - 0.372861921 (z - 1)
z - 0.900024464 _ 0.900024464)^

= 10 - 29 .18785963z"’ + 28 .39590856z '^

______________________ - 9 .207881866z~^

1 - 2 .800048928z“ ’ + 2 .610092963z

- 0 .810044035z '^ (A .4 .)

113

A .2 . Missile Autopilot: 0 2 (2)

0 2 (2) = (1 - z \ z U I]44________

' ̂ s V + 14s + 144)

= (1 - z " ’) .Z I I . G^iS) \ (A ,5 .)

By Partial Fractions

G^(s) = 0.002507716 - 0.097222222 + 1
— 2 3

s s s

- (0.002507716s - 0.062114198)

s + 1 4 s + 1 4 4 (A . 6 .)

Then Z . [G J s) \ = 0.002507716z - 0.00324074z

(4 - / (z-l)2
+ 0.000555555z (z + 1)

(z - 1)^

- (0 .002507716z - 0 .003037504z)

z^ - 1.500869446Z + 0.627089085 (A . 7 .)

F inally G g(z) = (1 - z ') . Z / G 2 (s)

\ s '

= 0.002507716 - 0.00324078 + 0.000555555 (z + 1)

(z - 1)^

+ (z - 1)(- 0 .002507716z + 0.003037504)

z - 1.500869446Z + 0.627089085

= - 0 .000903767z"’ +0 .002798632z

- 0 . 002670325z'^ + 0 .000915696z'^

1 - 3 .500869446z"’ + 4.628827977z"^

- 2.755048263z"^ + 0 .627089085z"* (A .8 .)

114

APPENDIX B

The Z8000 Microprocessor.

This appendix contains a brief description of the Z8000

microprocessor; further information can be obtained from Refs. 31,

32 and 33.

B . l . Architecture.

The Z8000 is a single chip 16 b it microprocessor using N-Channel

MOS technology and provides a multiplexed data/address bus.

The Z8000 CPU is a t present offered in two versions: the Z8001

segmented version and the Z8002 non-segmented version;

future versions w ill include a virtual memory capability. The Z8001 can

directly address 8 megabytes of memory, whereas the Z8002 directly

addresses 64 kilobytes. The two operating modes of the microprocessor,

system and normal modes, and the distinction between code, data and stack

spaces within each mode allows memory extension up to 48 megabytes

for the Z8001 and 384 kilobytes for the Z8002.

The Z8000 CPU contains sixteen 16 b it general purpose registers,

a status register (Flag and Control Word), a program counter, a program

status area pointer and a refresh counter register.

B .2 . Interrupts and Trap Structure.

The Z8000 provides three types of interrupts (non maskable, vectored

and non vectored) and four traps (system c a ll, unimplemented instruction,

privileged instruction and segmentation trap). The segmentation trap is

only available on the Z 8001 .

When an interrupt or trap occurs, the current program status is

autom atically pushed onto the system stack. The program status consists of

program counter, the Flag and Control Word, and a 16 bit identifier.

The identifier contains the reason or source of the trap or interrupt.

After saving the current program status, the new program status is

automatically loaded from the program status area in memory which is

directed to by the program status area pointer.

115

B .3 . Memory.

The Z8000 uses four control signals in association with four status

signals during memory read or write cycles. The multiplexed bus contains

a valid address on the rising edge of Address Strobe (AS). The Data Strobe

signal (DS) is used to indicate either valid data on a cycle or that

the CPU expects valid data on a read cycle. A memory request

signal (MREQ) is active during all memory cycles.

Consider first a memory read cycle, the timing diagram is

shown in Fig .B . 1. which assumes that the memory used has an access time

comparable to one clock period. Slower memories can be used by the

addition of w ait states. At the beginning of the cycle the Read/W rite (R/W)

signal goes high. The rising edge of AS indicates a valid read address,

data can be placed on the bus after DS becomes active and is read by the

CPU on the rising edge of DS.

O n a memory write cycle (shown in F ig .B .2 .) the R /W line is low,

and valid memory address is indicated as for the read cycle. Valid data

may be taken o ff the bus whilst Data Strobe is low.

B .4 . Input/O utput.

Input/O utput is carried out in a similar manner to memory accesses

with the exceptions that the memory request line is not active , an automatic

w ait state is inserted, and the status lines indicate an I /O reference.

I /O devices are addressed with a 16 b it port address.

Direct memory access (DM A) can be carried out over the Z8000

multiplexed bus during which time the bus is driven by a DM A device.

B .5 . Instruction Set.

The Z8000 provides the following types of instructions:

Load and exchange

Arithmetic

Logical

Program control

Bit manipulation

116

Rotate and shift

Block transfer and string manipulation

Input/output

CPU control

117

APPENDIX C

The Micromaster.

The Micromaster was developed by the Control Group at the

University o f Bath, School of Electrical Engineering, for use as a

microcomputer teaching a id . Its use as a teaching aid Is not described

here since the Micromaster was simply used as an Intelligent terminal

for the duration of this study.

The Micromaster contains a Z80 microprocessor and this was used

to communicate with the PDP 11 through an RS232 port and with the

Z8000 microprocessors through the other RS232 port. Temporary

storage of system results was carried out using 32K bytes of dynamic

RAM within the Micromaster.

The communication software written for the Micromaster

basically consists of polling the serial Interface parts but Is not

described w ithin this report.

118

APPENDIX D

Z8002 Microprocessor Program Assembler.

This appendix describes the two pass assembler which produces an

object code file and an assembly listing for the Zllog Z8002. This program

runs on the PDP 11 under th e R S X -llM operating system.

D . l . Statement Format.

A Z8002 assembly language statement Is defined as follows:

label: opcode operand(s) comments

The label and comment fields are optional, and no continuation

lines are allow ed.

D. 1 .1 . Label F ie ld .

The label fie ld may contain a user-defined symbol containing up

to six characters, the first of which must be alphabetic. The assembler

allocates the current location to the label, so that a user may make

further references to the label without knowing Its address. A symbol used

In a label fie ld may not be redefined In the label field of another

statement.

D . l . 2 , Opcode F ield .

The opcode field follows the label fie ld and contains one of the

following:

1. Mnemonic operation code of a machine Instruction

2 . Assembler directive operation code.

The opcode fie ld Is terminated by a space, tab, semi-colon when there are

no operands or a carriage return when there are no operands or comments.

D, 1 .3 . Operand F ie ld .

The operand may contain up to four expressions or terms, depending

upon the type or requirements of the opcode. The operand field must

follow an opcode and can be terminated by a semi-colon when a comment

Is to follow or by a carriage return when there are no comments.

D . l . 4 . Comment Field.

The comment field Is used purely to help the user or future users

119

on the workings of the assembly language program. It may be preceded

by any or more of the fields previously mentioned. The comment field

has no effect on the assembly and must be preceded by a semi-colon and

terminated by a carriage return.

D .2 . Z8002 Expressions.

This section describes the components of legal Z8002 expressions

which Include the Instruction set, numbers and characters.

D .2 .1 . Character Set

The following characters are valid In Z8002 source

1 . The letters A to Z .

2 . The digits 0 to 9 .

3 . The special characters as below:

Character Designation

(left parenthesis

) right parenthesis

r comma

<SP> space

<HT> horizontal tab

/ \ up arrow

$
1

dollar

apostrophe
* asterisk

+ plus sign

- minus sign

. full stop

/ slash

<LF> line feed

< V T > vertical tab

< F F > form feed

<CR> carriage return

hash

120

If any character other than those above is encountered the line being

assembled w ill be terminated and an *1' w ill occur on that line in the

listing.

D .2 .2 . Numbers.

Numbers used in the assembly language problem may be decimal,

hexadecimal, octal or binary. Any number must be preceded by

and one of the following; (denotes octal number), / \H (hexadecimal),

$ (h ex ad e c im a l),/\D (decimal) or no characters.

If ' is followed by a number then the number defaults to decim al.

O ctal numbers consist of the digits 'O' to '7 ' only.

Hexadecimal numbers consist of the digits 'O' to '9 ' and the

letters 'A ' to 'F '.

Decimal numbers consist of the digits 'O' to '9 '.

Binary numbers consist of 'O' and 'T only.

A truncation error ('T ' on the assembly listing) w ill occur if the

converted number is too large to fit into eight bits for byte operations,

sixteen bits for word operations or thirty two bits for long word operations.

All numbers are considered to be in two's complement arithm etic.

The binary representation of a number is not implemented for thirty two bit

operations.

D .3 . Assembler Directives.

These are statements which are used at assembly time for ease o f

programming such as set a label equal to a constant, and are non

executable as far as the Z8002 microprocessor is concerned.

D .3 .1 . T it le .

The title directive is used to print a heading on the output listing.

The heading w ill be printed on the first line of each page of the listing.

For example,

TITLE PRO GRAM TO CALCULATE SQUARE ROOTS

The 'TITLE' directive appears in the opcode fie ld , if omitted the

title defaults to 'M A IN ',

121

D .3 .2 . Page Ejection.

Apart from the automatic page e jec t after 61 line counts, a form

feed may also be used to cause a page e je c t.

D .2 .3 . O R G .

The location a t which the machine code is to be placed may be

changed by the O R G d irective.

For example,

label: O R G $3000 ; comment

w ill place the following code in memory locations starting at 3000^^.

D .3 .4 . E Q U .

The EQU directive assigns a value to a symbol name, which w ill

be used when that symbol is further encountered in the program. The

directive is of the form:

name EQU value ; comment

The symbol name must appear in the label fie ld without a following

colon and cannot be re-defined within an EQU directive.

D .3 .5 . SET.

This is identical to the EQU directive, except that the symbol

name may be redefined.

D .3 .6 . EN D .

The END directive indicates the end of the source program. It may

have an optional label and/or comment fie ld . Any statement following

this d irective w ill be ignored by Z8002.

D .3 .7 . DEFINE WORD.

The Define Word (DW) directive is used to set a memory location

to a user determined value and is of the following form:

label: DW value ; comment

D .4 . Instruction Set.

The instruction set for use with the assembler may be found in

01 /2 Processor Instruction Set A/

for use with the Z8002 microprocessor.

32
A m Z8001/2 Processor Instruction Set Manual , and is fu lly implemented

122

1 .
2.
3 .

4 .

5 .

6.
7.

8.
D .6 .

Addressing Mode

Register

Indirect Register

Direct Address

Immediate

Indexed

Base Address

Base Indexed

Program Relative

D .5 . Addressing Modes.

This section describes the addressing modes available for use with

Z8002 , see R ef.32. for details of which addressing modes can be used with

each instruction.

Example

R6

(R3)

FRED

4

FRED (Rl)

R6 { ^ 5)

R5 (R4)

BILL

Permanent Symbol Table.

The assembler contains a permanent symbol table whose entries

may be not redefined. The explanation of these symbols follows:

Symbol Meaning

RLO

RLl

RL2

RL3

RL4

RL5

RL6

RL7

RHO

RHl

RH2

RH3

RH4

RH5

RH6

RH7

Byte Registers

123

Symbol

RO

Rl

R2

R3

R4

R5

R6

R7

R8

R9

RIO

R ll

R12

R13

R14

R15

Meanî ng

Word Registers

RRO

RR2

RR4

RR6

RR8

RRIO

RR12

RR14

32 b it Registers

RQO

RQ4

RQ8

RQ12

64 b it Registers

124

Symbol Meaning

N Z Not zero

ZR Zero

N C No carry

CY Carry

PO Parity odd

PE Parity even

PL Plus

M l Minus

NE N ot equal

EQ Equal

N O V Overflow Is reset

O V Overflow Is set

GE Greater than or equal

LT Less than

GT Greater than

LE Less than or equal

LGE Logical greater than or equal

LLT Logical less than

LGT Logical greater than

LLE Logical less than or equal

Blank Unconditional

C Carry

Z Zero

S Sign

PV Parity/O verflow

Condition Codes

Used in Flag

instructions such

as SETFLG

V

N

Vectored interrupt

Non vectored interrupt

Enable/disable

interrupts

125

Symbol Meaning

FCW Flag and control word

REF Refresh register

OFF NPSAP offset

SP Stack Pointer

Used in

LDCTL instruction

FLGB Flag byte - used in LDCTLB instruction.

D .7 . Using Z8002.

The assembler may be run as follows:

y Run Z8002.

Z8002 > FILE, FILE = FILE

Where FILE = program to be assembled which must have a

The above command generates an object file and a list file which is sent

to the printer. O n ly an object file is created if the command line is

as follows:

Z8002 > FILE = FILE

D .8 . Error Codes.

Two types of error can occur.

1 . Errors which halt assembly are as follows:

? BAD SWITCH ? The switch specified was not

recognised.

? T O O M A N Y INPUT FILES ? O n ly one input file may be

processed a t a time.

? N O INPUT FILE ? No input file was specified.

? T O O M A N Y OUTPUT FILES ? Too many output files were

specified.

? WRITE ERROR ?

? SYMBOL TABLE FULL ?

? INTERNAL FAULT ?

An error occurred when attempting

to write to output file .

All the available symbol table

space has been used.

A software fault has occurred.

126

2 . Errors which terminate assembly of single statement only and

are as follows:

Q Questionable syntax error.

T Truncation error.

* An assembler directive was encountered which is

not va lid in Z8002.

P A phase error occurred, i . e . a label's definition or

value differed from first pass to second.

I An illegal character was encountered.

U An undefined symbol was encountered.

E No END directive was encountered.

L Statement length was greater than 92 characters;

extra characters were ignored.

127

APPENDIX E

Target Tracking Process - Acceptance Tests and Alternate Routines.

This appendix describes the acceptance tests and the alternate

routines for the following processes:

Read

Azimuth Inhibit

Range Inhibit

Set Binaries

Process Binaries

Approach/Recede Assessment

Coverage Assessment.

E .1 .1 . Read: Acceptance Test (see F ig .E . 1 .)

The following tests were carried out:

1. Check range gate w ithin range, i . e . range g a t e 6 .

2 . Check velocity gate within range, i . e . velocity gate.^ 4 .

3 i Check that range and velocity channel valid flags are

set i f 'target detected' flag is set.

4 . Check that azimuth position counter within range,

i . e . 0 ^ azimuth.^ 29,

E .1 .2 . Read: Alternate Routine (F ig .E .2 .)

O n failure of the primary read routine, the last azimuth position

is read and updated. The 'target detected' flag is reset indicating no

target.

E .2 .1 . Azimuth Inhibit: Acceptance Test (F ig .E .3 .)

The following tests were carried out:

1. An error is signalled it 'ta rget azimutb' is not valid and the

flag 'w ithin azimuth limits' is set.

2 . Check that 'target azimuth' is within limits,

i . e . 0 ^ target azim uth^ 29 .

3 . Check that missing scans counter (for approach/recede

assessment) is greater than or equal to zero. If less than zero for any reason

then an error is flagged.

128

E .2 .2 . Azimuth Inhibit: Alternate Routine (F ig .E .4 .)

The alternate routine for processing azimuth inhibit is based on a

target detection decision. If no target is detected on the azimuth on

which the alternate routine is entered, then a ll parameters are unmodified.

If a target is detected then 'target azimuth' is updated and the missing

scans count is set to zero. In addition, the 'w ithin azimuth limits' flag

is cleared and cannot become set again until the radar has rotated 360^

minus half the width ot the azimuth inhibit arc . As a target has been

detected then coverage information w ill be given, determined by a later

process.

E .3 .1 . Range Inhibit: Acceptance Test (F ig .E .5 .)

The following tests were carried out:

1. An error is indicated i f 'azimuth inhibit' is set and

'range inhibit' is not set.

2 . If 'target range' is valid and the missing scans count is

larger than two, then an error is indicated if 'target range' does not

equal the range gate set, or i f 'range inhibit' is not set.

E .3 .2 . Range Inhibit: Alternate Routine (F ig .E .6 .)

The alternate routine sets 'range inh ib it' i f 'azimuth inhibit'

is set. I f a target is detected and is not inhibited by azimuth

considerations then 'target range' is updated.

In this simpler routine, range inhibition rules (i .e . - 1 range gate)

are not used. Thus i f a target is detected following a system error

(an error must have occurred in order to enter the alternate routine)

then it is tracked, A target being tracked at the time of the error may

be lost if multiple targets exist. It was thought better to track a

target whose position is known exactly then use the position of a target

whose characteristics may have been corrupted.

E .4 .1 . Set Binaries: Acceptance Test (F ig .E .7 .)

The following tests were carried out:

1 . Check that velocity binary is within limits,

i . e . 1 ^ velocity b in ary^ 4 .

129

2 . Check that range binary is w ithin limits,

i . e . range binary^^ 6 .

E .4 .2 . Set Binaries; Alternate Routine .

The alternate routine in this case is to re-execute the primary

routine to set the appropriate binaries.

E .5 .1 . Process Binaries; Acceptance Test (F ig .E .8 .)

The following tests were carried out:

1. If either alarm is set, ensure that 'binaries' flag is set.

2 . I f provisional external alarm is set, ensure that system is in

search mode.

If the acceptance test passes and the provisional external alarm is set, then

the external alarm is set.

E .5 .2 . Process Binaries: Alternate Routine.

The alternate routine would attempt a re-execution of the primary

routine to determine whether the binaries are allowed to signal an alarm .

E .6 .1 . ApproacK/Recede Assessment: Acceptance Test (F ig .E .9 .)

The following tests were carried out:

1. An error is indicated if both approach and recede are

indicated^

2 . An error is indicated if neither approach nor recede is

indicated whilst the system is in track mode.

E .6 .2 . Approach/Recede Assessment: Alternate Routine (F ig .E . 1 0 .)

The alternate routine is a clean up and get out procedure, and is

simply the setting of the approach/recede assessment to approach.

E .7 .1 . Coverage Assessment: Acceptance Test (Fig. E. 1 1 .)

The following tests were carried out:

1 . I f 'no coverage' flag is set, check that no provisional

coverage indications are set.

2 . Check that one and only one provisional coverage

indication is set.

If the acceptance test passes, then set 'out of cover' or 'in cover' as

appropriate.

130

E .7 .2 . Coverage Assessment; Alternate Routine (F îg .E . 1 2 .)

If either 'no coverage' or 'cancel' is set then coverage

indications are set, otherwise a fail safe procedure is carried out by

setting missile coverage to 'in cover'.

131

APPENDIX F

An Overview of M IL-STD 1553B

The 1553B standard was developed largely for aircraft internal

transfers and defines a master slave communications protocol over a twisted

pair. The exchange of messages along the twisted pair (bus) is

precisely defined w ith ten allowable formats; the two formats which were

used in this study are shown in Fig. F. i . Message formats can be divided

into two groups, i . e . mode commands and data transfers. Mode commands

are used to communicate with the bus hardware to aid the management of

information flow , for example to shutdown a transmitter on a particular

bus, as redundant buses are allowed. Data transfers along the bus

consist of a message of not more than 32 words.

The standard allows three types of terminal to be connected to the

bus. A terminal is defined within the standard as *the electronic module

necessary to interface the data bus with the subsystem and the subsystem with

the data bus', w hile a subsystem is the combination of hardware and

software required to perform a specific function. A master-slave protocol

requires a master and is called a bus controller in the context of the

1553B standard. The bus controller is in charge of a ll communication

over the bus, i . e . any message must be initiated by the bus controller.

The second type of terminal is called a monitor; this terminal being

assigned the task of receiving bus traffic and extracting selected

information if required. A bus monitor is permitted to assume bus control if

a set of predetermined bus transmission defects is detected. Finally a

remote terminal is any terminal which is neither a bus controller nor a

bus monitor.

O n ly three types of word are permitted with the standard.

A word is a sequence of 16 bits plus sync (3 b it times) and parity

(1 b it time) as shown in F ig .F .2 . The first type of word is the command

word which is always the first word of a message and is transmitted by the

bus controller. The command word defines the type of message that w ill

132

fo llow . A transmît/receive b it within the command word establishes

whether the message is to or from the remote terminal being addressed,

A five b it address fie ld specifies a unique address of a remote terminal

for the purposes of the message. This address field allows a system to

contain up to 31 remote terminals; the remaining address is used to

communicate with a ll remote terminals. The second type of word is the

status word, which is always the first word that is transmitted by a remote

terminal in response to a message. This word contains the status

condition of the remote terminal. The busy b it can be used by the

remote terminal to indicate that it is unable to move data to or from the

subsystem in compliance with the bus controllers command.

The message error bit indicates to the controller that one or more of the

data words associated with the preceding receive command failed to pass

the remote terminal's va lid ity test. Finally a data word is used as

part or whole of a message that may be up to 32 words in length.

The method of transmission along the bus is Manchester Two

Bi-Phase level a t a rate of 1 .0 megabit per second. A logical '1 ' is

transmitted as a positive pulse followed by a negative pulse, while a

logical 'O' is transmitted as a negative pulse followed by a positive

pulse. A transition through zero occurs at the midpoint of each b it

time as shown in F ig .F .3 .

A 1553B word is valid i f it conforms to the following criteria:

1. The word begins with a valid sync fie ld .

2 . The bits are in a valid Manchester Two Bi-Phase level

code.

3 . The information field has 16 bits plus parity.

4 . The word parity is odd.

133

APPENDIX G

Worst Cose Limits for Parallel Realisation of Digital Controller.

The parallel realisation of the digital controller results in four

parallel units which are added to give a guidance demand. The acceptance

test for each of these four units was based on worst case outputs of the

units. The worst case value for the guidance demand was achieved by the

addition of the worst case values for the units.

The worst case outputs were obtained by using an input which is

equivalent to a 90^ step. A simulation run was then carried out on the

PDP n and the following results were obtained.

Worst Case Value used in

Output Acceptance test

Unit 1 - 5 . 2 7 - 6

Unit 2 - 0 .814 ± 1

Unit 3 - 24 .8 - 2 5

Unit 4 Ï 4 . 5 t s

Guidance Demand - 3 7

134

OUTPUTINPUT
U N IT 2

U N IT 1

U N IT 3

FAILURE
DETECTION A N D

SWITCHOVER

F ig .2 .1 . Cold Standby Redundancy.

CONTROL Y

ACTIVE
U N IT 2

ACTIVE
U N IT 1

ACTIVE
UN IT 3

U N IT
SELECT

COM PARATOR/
FAULTY U N IT

ID E N TIF IC A TIO N

INPUT OUTPUT

F ig .2 .2 . Hot Standby Redundancy.

N O
TEST O K

YES

YES
TEST O K

N O

TASK IN
, EXIT >

TASK IN
. ENTRY

ALTERNATE
ROUTINE

ACCEPTANCE
TEST T

FAIL SAFE
ROUTINE

M A IN ROUTINE

ACCEPTANCE
TEST

F ig .2 .3 . The Recovery Block.

<

o es
I I

ss
§ 8
< O

I I

II
S i
§§ < Q

LU CO

£ 5

0
§

1
<D
E

c
s .

Ô)

iLliû O ̂ u
i < i1—

is
OuO

h

siÛ

RANGE VELOCITY
BINARIES

u
O

II
CD

R1 R2 R3 R4 R5 R6

V I

V2

V3

V4

F ig .4 .2 . Range/Velocîty Gate AAatrix.

I
Dz

uu
o z

6

5

4

3

2

2 3 4

VELOCITY GATE NUMBER

THESE CHANNELS
DO N O T G IVE A N
ALARM

F ig .4 .3 . Taboo Channels.

TARGET LAST DETECTED
PO SITIO N / t a r g e t p o s it io n

/\

M/

TARGET N O T DETECTED
(N O T W IT H IN -2 4 ° OF PREVIOUS TARGET)

LAST DETECTED
, TARGET P O SIT IO NTARGET

PO SITIO N

V

TARGET DETECTED

F ig .4 .4 . Principle of Azimuth Inhibit.

CO
to

LU

2

ii to

I—

2
CL

o
I— COZ)<

<N
to

LU
_ U
_ l

i
VO

o

COz
8

CO
CM

CO

O

-J OdO o
Z g
• < LU

CQ

I—

a
8

_ u

8
CoT3

VO

Q>

s

o

o
00

o 8O o CN
I

(aa) Nivo
CN

§<
S
XuzUJ
Z)
O

8
OU
c

■8

%
s
u-
O

Jo
Cu
C
8

o
'O

rô

o

LT>

O
ooCO S R OOo

j j
aoc

-§

3
0)

0
_o
ou1
-Û
>o

6)

CN

(S33ÜG3a) 3DNVAaV3SVHd

o

00

to

CO

CN

■O OCN 00
O

CN
O

8
—I

8c
■%

S
o

0

1

I
I
IN .

àiC

3SNOcjS3y indino

ENTER

RETURN

READ RANGE A N D
VELOCITY DATA

SET CHANNELS AS
APPROPRIATE

UPDATE A ZIM U TH
IN ITIALISE FOR

DATA

F ig .5 .2 . Read Routine.

90

m

< "

5 <

N Z

OU
N >

N >

I

II-
50

o wO

; - - - - - - - - - - - - - - ----------
\ s " o /

\ /

i k A

0 gz z

ENTER

YESCANCEL
SET

N O

TARGET
RANGE
 ̂VALID

N O

YES

CLEAR
BINARIESRANGE

INHIBIT
V SET ^

YES

N O

CLEAR
BINARIES

SET
BINARIES

A C C O R D IN G LY

RETURN'

F ig .5 . S. Set Binaries.

ENTER

ARE ^
BINARIES
\S E T X

T Y E S

N O

N O TPERFORM
LOOKUP EQUAL

EQUAL

YES
SEARCH

SET ^

N OSET PROVISIONAL
EXTERNAL
ALARM

SET INTERNAL
ALARM

RETURN

F ig .5 .6 . Process Binaries.

ENTER

CALCULATE
M IS S IN G

SCANS

YES
CANCEL
V SET .

N O

YES
SEARCH
^ SET . SET APPROACH

N O

CALCULATE
SEARCH SCAN

C O U N T

CALCULATE
TRACK SCAN

C O U N T

SEARCH
ASSESSMENT

TRACK
ASSESSMENT

RETURN

F ig .5 .7 . Approach/Recede Assessment.

ENTER

^ N O ^
COVERAGE
\ S E T /

YES

N O

YESCANCEL
SET

N O

IDENTIFY ENTRY
IN LOOKUP

TABLE

CLEAR
COVERAGE

IN D IC A T IO N S

YES
SEARCH
V SET >

N O

DETERMINE
ANGULAR RATE

PERFORM
LOOKUP

PERFORM
LOOKUP

SET
COVERAGE

A C C O R D IN G LY

RETURN

F ig .5 .8 . Coverage Assessment

LULU
< LU to

•O o

Ü

LU

•00 00X
H -
3

N<
O
LUH-u
LU
H-
UJ

H—
UJ
O

<

Q
h-
UJ
Oen'

O
00co

o

00 00

z
o LU

h-
'OLO

2
S3

X
h-

CM CN

O
CN O -O ro O00 o

IDo

<D
03

O
O*
>o
ô>

UJ (J UJ (J

13o

g

o

oO)

_a
o*
•o
Q>

^ y
— CO

o

U
< LU .— to

CO
Xz
UJ
oz
g

.'O

i I i I I I I

00

<N

O

00

>o

<

CN

O

o
o_oh-
3<
oo
co

2
h -

Z

8
<
h -

O
Q

CN

IT)
O 'O

CO

CO

CO

CO

o

S l Ê
N o X

CQ CQ

&O

s
c

s

s

O)
Û

lo
à)

IT)

O

o

o CN'O O 00<NCO

CO
oz
O
u
LU
CO

LU
:E

1
u
2

5

o
%
c0

1
1CO
5

3

lO

iC

- o o
3SNOdS3^ in d in o

oI

lo

CO

to
O
Z
o
uLJJ
to

c
2

*0
£

■g
■g

J
CD

J
I
0

£
s1
I
c

3

CM

f)
Ô)

lO UO
I

3SNOdS3^ iD d inO

o
I

uo
I

o

p

II

o

o
o 00

o
CN
O

00 o CN

Ln
ûzo
u
LU
LO

J
O"O
8

£

IO
I
f
LO

«o
6i

3SNOdS3>i indino

U->

o

o o CN00 CN

to
Q
z
8
LUto

C

.2*ü
£

J

"S
gG:

CQ

0
cS
*8
8

(5

£

1O
I
I

lo

;

O O O
3SNOciS3y in d in o

oI

<N CN

CN Tt-
CN O
5 R
S 8

i i
o o

CN

CN

i.
o

CNO

I

CN CN

CN

I
8

SCNO

00
R
CO

o
CO

00

I
8c

g

(5

J
0)

<£

'O

in
TO

U-)

oO O00 <N CNCN00

co
o
Z
8
LUto

LU

0
cg

1
c2

cO

10
I
1en

lO
à)

o o
3SNOcJS3y inano

oI

«o

o

o

o o00 oCM 00 CN CN

to
Q
Z
O
u
LU
to

â
■g
§

CQ

I
_o

“s
cE

i0
1
I]
to

*E
3

00

q
à)

- — o o
3SNOcJS3̂ incJino

oI

CN

CO

CO

LU

•O

CO

o
o
CN s 00

«
g

CO
o

J
1
tS.

%

I
a.
i?

CO

c
3

Os

D)

(, 01 X) 3SNOdS3a indino

o

s
to

S 8
LU
to

O

>o«o oo s 00
CN S

0)
g

OQ

J
■S
8

I
&
a
iî

to

3

O
CN
m

(0 1 X) 3SNOdS3a indino

CO»o

o

CN

LO

LU

00O

CO

o

CO
IT)

o CN 00O OCO

a>J
og>

cg

S

I
—

I
I0
1
I
c

D

CN
IT)
6i

Loi 4 3SNOdS3îi indino

R

CO
U -)

O

CN

CO

CO

Oso
8

0>
S’

CÛ
%

J
■s
8I/I
a
è

I01
I
c

D

N
in

uZ

(, 01 4 3SNOdS3a indino

z

/ \

o
CÛ

zo
COz
X

zg
O < Û

t

1
1

m
LU 1

1

^ 2 2

CO
3
CO

OLU

< E
2O)o

to

I

§o

'O
CJ>

alU
:E

3
Q_
I—
3o
*
o

mmimmtmnianmmniimmiiumimNiiuiiiUiniimii

m iH iiiiim iiiiii iiiim iiiiiiiii iiiiiiiiii i

u im u n m m n m » • i . n i i u m in in i i i s in a im n n i f i j

kWt/ -fmUiaifUanifnilsmSiUiinjllljllilfNUiillfininUliniiiO'iWiiim}

%

#

HEX ADDRESS
FFFF

7000

6000

40FF

4000

3000

UNUSED EPROM
SPACE

1056
1000

EXPANSION BOX
STATIC RAM

8000

PROGRAM LOADER

MONITOR

WORKING STORAGE FOR MONITOR

RAM

EVALUATION BOARD MEMORY : 0 - 6000 (HEX)

F ig .6 .3 . Memory Map.

HEX ADDRESS
FFFF

JL

EVALUATION CARD I /O
OFFC
OFCO

SYSTEM I /O
OOFE
OOFO

SYSTEM I /O

OOFE - TIMER
OOFC - SEARCH/TRACK SWITCH
OOFA - CANCEL PUSH BUTTON
00F8 - ALARM LED
00F6 - IN COVER LED
00F4 - O UT OF COVER LED
00F2 - ERROR LED
OOFO - TIME OUT RESET

F ig .6 .4 . Input/Output Map.

Z
o

O
h—u
LU

LU Ou

LO
t o
LU

Q
LU
Q

Q o
< u
(22

LUa
CQ

o

I
g
u<D

I
u

1
lO
'O
Ù)

u u < < u < u < v; < u < u < u < u <
*5 R S % a a a a a a a a

< (.J < U < U<u < u <u < U <00 oCN CN en

X U < u< u < u < u AX < u < XCN U1 -o

i?w%
< b{% 1Si)À wCs*j<MfS <N r> « % ;î k : 35 1

______ -------- ^

otCM|ra|ini<oio>ioi(N|(n

^ I" ^ ^ M ^
Oh M ^v-oteoi^ I—'ml

X32 X40X16 X24

X23 X39X31X15

X22 X30 X38X14

X5
X21 X37X I 3 X29

X4

X36X I 2 X20 X28

X3

X35xn X27X I 9

X2

X34X I 0 X26X18

X25X17 X33X9

F ig .6 .8 . Layout of Error Correcting Memory Board 1

X32X 8 X27
X I6 X22

X7 X31iX26
X I5

X30X25X6

X I4X5 X24 X29

X4 X2EX23
X I 3

X3 X20X I2

xn X I9

X I0

X I7 X21

F îg .6 .9 . Layout of Error Correcting Memory Board 2,

“ z

< <

l

u < u < u V
" a _

f

î

F ig .6 .1 1 . Layout of Input/Output Board.

< u < y << u

G0<O'«CN>r>.>nn

ea 'O V (N » N m n

X8

X5

X4

X3

X7

X2

X6

F ig .6 .1 3 , Layout of Buffer Card,

u _

Ou

LU
LU
U_ 00

to

Od

00§iii
5 K >-

iiilLU

I
00

oo

û -

o 5

J?

I
I

o
à>

START

GENERATION OF
TARGET DATA

TRANSFER OF OBJECT CODE
FROM PDF 11 TO Z8000 V IA MM

FAULT
IN JE C T IO N

FINISH

TRANSFER OF RESULTS
TO MICROMASTER

ASSEMBLY OF G RO U N D
DEFENCE SOFTWARE

OPERATION OF G R O U N D
DEFENCE SOFTWARE

TRANSFER OF TARGET DATA
FROM PDF 11 TO Z8000 V IA M M

TRANSFER OF RESULTS
FROM M M TO PD Pll

GENERATION OF
FAULT DATA

SORTING A N D PLO TTIN G
OF RESULTS

F ig .6 .1 5 . System Software Typical Operation,

F A U L T /N O FAULT
CO NTRO L INPUT (X)

UNFAULTED
ADDRESS
LINE (A) ^

I

FAULT
IN JE C T IO N
L O G IC BLOCK

N O FAULT '
........... .. c m '7V

FAULTED
ADDRESS
LINE (Z)

INPUT /K OUTPUT

9 FAULT
1

FAULT
CONTROL
INPUT

C O N D IT IO N INPUT (Y)
S -A -O /S -A -1

F ig .6 .1 6 . Schematic of Fault Injection Logic.

INPUT (A)

OUTPUT

CONTROL
INPUT (X)

C O N D IT IO N
INPUT (Y)

F ig .6 .1 7 . Implementation of Address Fault Logic.

X SWITCH

FAULT
o m z oAF. XA

N O FAULT

OV

XD

DISABLE SWITCH

+5V

DISABLE

ENABLE ^

OV

Y SWITCH

IK

-H5V

r S -A -1
I O C=1S -A -

■ e >

F ig .6 .1 8 . Control/Condition Input Circuitry.

!î

1

2 -

u Q -5

2 S

J l ;

- 2-e = ■p ^
l U

; > U

il
1 §
1 J

_ a

i l

II

II!

g:

<!g'
X z z 1 Z ^ 1

<9 \ ® \ a N 1\
V \ N N\ 1U

l\

É Z

S ,

S s ^

t i

11

J ï "

GO
 ̂0

: r f ,

L L - . j

u î

Sà
^0

' \ ‘ 5 \

d
- iz -

'8 ^

V

d
- : | î

7

il cû 1
â

d

VV V

A V

A

d A A A

g

o

C
0)

Ia
E

° .
>o
.êl
u_

ü A
I
21
OU

<co

mmvmnnmnmmmuummmimiuimfmmmwmmiwii

rnmmmm

■ ; ■ ■ K . ' i . ' i v ■

à îd ‘3 ' '

J

M <

CNi— CO «O

CN

OO

00

O

CO

CN

§
>v
o

CO
CN
N)
O)

LEVEL 1 T A S K IN G SEQUENCE E .G . CALL TASK A

CALL TASK B

LEVEL 2. RECOVERY BLOCK I.E . ENSURE T

BY P

ELSE Q

ELSE ERROR

LEVEL 3. CODE FOR EACH PRIMARY A N D SECONDARY

ROUTINE A N D ACCEPTANCE TEST.

F ig .7 .1 . Three Level Structure.

LO
Z
g

o
z
Ou

O
z

UJ

oo
UJCK:

O'Ûu

oo
z
g
H;
û
z
ou

LÜ
Z
I—
3
Oa

S>
O
U
UJQi:

Q_

OO
ô:

oo

u_

I—
z
3

8
UJ

I—
oo

8>"O

i
u -
O
U
O
E«

S

C N
N
O)

llT

INTERRUPT
ENTRY

N O

YES

PROCESS
NUMBER IN

RANGE ^

JUMP TO
FAIL SAFE EXIT

READ PROCESS
NUMBER

JUMP TO
PROCESS RE-ENTRY

O P TIO N A L LO G OF
INTERRUPT ENTRY

LO O K UP PROCESS
RE-ENTRY PO IN T

CLEAR IN T.
FLIP FLOP

F ig .7 .3 . Recovery Interrupt Service Routine.

CïL

i O

'2 r ~ K

17

! ï ïil

$

coco
s

a .
3
g

O
Q

3
£
Q

N
à)

u_
O

ou
o
co
co
LU
U
oQd
Q .

CO

O

Q
OuÛL
O

TRAP AREA
LONGEST
INSTRUCTION
IN WORDS

TRAP AREA

MODULE O

MODULE N

TYPICALLY
FILLED WITH
SOFTWARE
INTERRUPT
INSTRUCTIONS

F ig .7 ,5 . Schematic of Trap Area.

START TIMER

> n

> m

RESET
TIMER

Ensure T by time t - Else A

C O U N T

TIMER

C O U N T

By P

Else Q if Q has not been used n times

Else R i f R has not been used m times

Else S

Else Error

F ig ,7 .6 . Generalised Form of Recovery Block.

100 n

90 -
-------1

80 -
I FAIL
' SAFE

70 -
PERCENTAGE

OF RUNS 60 —

SUCCESSFULLY

COMPLETED 50 -

FAIL
SAFE

40 -

30 -

20 -

N O RECOVERY RECOVERY RECOVERY
STRATEGIES BLOCK BLOCK

A N D TIMER

F ig .8 . 1 . System A va ilab ility Related to Recovery Strategies

ou

LU
CO

CO

LU a:

co

co

II
co

LU
co

LU

CO

co
co
co

z co

CQ
co co

LU

CO

c0

1
*cD
E

ê

8 -

cO)

I
o
ôh

PROPAGATION
OF FAULT

C O M M U N IC A T IO N S BUS

SUBSYSTEM A SUBSYSTEM B

FAULT OCCURS
HERE

PROPAGATION C A N LEAD
TO SYSTEM CRASH

N O SUBSYSTEM RECOVERY

C O M M U N IC A T IO N S BUS

SUBSYSTEM A
(WITH RECOVERY) SUBSYSTEM B

FAULT OCCURS
HERE

N O KNOW LEDGE
OF FAULT

SUBSYSTEM RECOVERY

F ig .9 .2 . Local Recovery Strategy.

CO

to
LU

5
CO

o
LL.
LU
o

CO

00

u
z

a.
LU
U
W

LU
z
I—
3
0
02:
LU
I—

1
cK:

I

S’
CO
>s

I
£

I
o

CO

c>
0)1

to
to

to

to
CO

to

y z

=) O

CQ

to

to
CQ

to

CQ LU

to

to

LU

Qi Z

g B
LU
u u

I

I

I3
JQ

Û
C

I
o’
O)

ADDRESS BUS

DATA BUS

M

FAULT
ADDRESS
LATCH

N

1/K
FAULT

ADDRESS

1/1

A = B

COMPARATOR

N M

LATCH PRIOR TO
OPERATION O F SYSTEM

F ig .9 .5 . Schematic of Real Time Fault Injection Mechanism.

N M I
ENTRY

YESCYCLE
N O . = X

N O

INJECT
FAULT

RETURN

F ig .9 .6 . Specific Cycle Fault injection.

CO
3
CO
CO
CO

8

__l
LU ■<il >o3

CQ (/) 1—iil

ii
LU O^
O^ LU

1—

LU O LU^8|
o f —)
o_ co

il
1—

g S ilii
û_ co

— I

çq O

Z
o
u

s s iiil
■le û . co

Q
z
3
o
<
S
CO<
CO

<si
6
Z
O
I—<
3

U
O
o_

o
z

sip
CO N ^ ^

NCN I

CO O/ I

3o_
I—
3
o <

Û
UJ

A

IX
CO

g

3
J 3

I
§>

I
§

o

O

0̂
LU
1—

g
\

' O Q_

u
c
a

:E

< u < u < u < u

- / 1:$

< V < u < y

/

< u < u l < u < u
f 5 S % S

u < < u < u < i; < < i; <CO o <N CN

u < y
CN

< U < (.J < u < u <
< u

%
< U < U < U < U < U < < (.J < V

O
OI <s tN CN CN CN CN (N m

m
w

I

< u < u < < V < U g y < u
-c 'O o.

< u < u < < u < V < u < u <
R R R R R S S R R R a a a a

TR2
TRI

xæX17 X25
X 8

C2XTALl X45

RI 7

R18
X25X16

X7
C5

X44

C4
X24XT5

X32

R15
X43X I4 X23

X27IX5
X22

X13
X30 X42X36

X4 K12
X21

X35

X41X I 1 X20
X34X2B

X19 RIO|X M X40
R ll

X46X27X18X9

Fîg. 10 ,3 . Layout of Central Processing Unît.

/1 _ J \

\ T

I
5Q O

HiI» N t-
Nl

/ Ui z z

is

SIS

A A ©

< u < u < u < *S S % a S
Eco I

A
A ®

V J < u < u < u < U < u u <
P o

CM CM CM IM IM

u
~

s “ =

^ iO fS M 'O

1

V
^ ® w

îzds 15!si 2 1
i ir

y 1

X
< V < u % i ;
<N

X57X13 X22 X32
X41 X50X7

X21 X31
X49

X4)X 6

X55X30 X48X2C
X39 R ll

X54XIOX5 X29
X I 9

X47X3£

X53
X28

X I 8 X46
X4 X521X3/

X27

X I 7 X51X35
X44

X26
X3

X35 X58
X43 R14

R15
R13

X25

X9 R14
X2

X]5 X34 R20

R21X42
R22
R23
R24

R18RIO X33X14 X2

R17

Fig. 10 .6 , Layout of 1553B/Microprocessor Interface Board 1 .

y < y yCN ^ O* > 'O u < u ■ ■< <u < < U < y I<- o -O o. «
z. (N 04 04

4

H h è

<* u < u <u <u < u < u < u < <8 a a a a - 8 Sa a a a

o

-w-s

i

u

r - r — i— I ! 1 *7

u

r i I !
< u <
rm

CM U-> -o fN

C M U I'O O 'C N IO 'C O '«N m «o o»

o '«t rv. 00

o

Is

xn
X22X9

X K X13
Cl 3
R26

X8 X 3

XT4R27

X 7

X25
X16

V>(I I'O i A1/I2SU C7
M - D , I Q p ~

ÇJ.1 X18
R21-R18 R22

TR3 n—

E] “ M
'r1^ 'c's' R29

R13 % r

R25 RfJ ^

C 12RIO K .

Fig. 1 0 .8 . Layout o f 1553B/Microprocessor Interface Board 2 .

g

8OQ
0)O

O

co
cololo

o
o
CT>

Q
Z

ou

0)
a

0

1
j)

1
c

(3

â

i

<u
g

O

o

D>

LU

O
Z

1 8

u
û UJ

o m

Z Z
UJ UJ

O <

- im Q

LO
3
CD

R
«

1553B BUS

ISO LA TIO N
RESISTORS SCREEN

C O U P LIN G
TRANSFORMER

STUB

ISO LA TIO N
TRANSFORMER M O U N TED
O N INTERFACE CARD

TO TERMINAL
TRANSMIT/RECEIVE

Fîg. 10. n . Connection of Terminal to 1553B Bus.

0)
a

0
£1

I

j)

1
c

u
(/)3

CQ

(DI
CN

O

"%

LU

o
z oc
<

LU
Û LU

> O m O < LU ■<
U < Z A h-

o z z 6 < < <u LU LU LO O 1- O

>
(2
3
O

z
o
u

LO
3
CQ

S

A
I—

a QIÏ
3
o
h-
z
8

Û ULj

8 #
Z Z
LU UJ

Q <

LO O

g

LO
3cû

«

2
i

"2o
X

0

1

I
co
o
6

<
û

0)CL
0
21

i

É

C O
3SL O

0
è

1
cfc

0)I
O

6

\J L O

O LU

O m

i |L O û

L O
3C D
CÛC O
S

\ — —/ Æ
5 </_

u < u < () < u < u 'd

o -

t-C D

X27
lOA

DO 23A20A
23C20C
24A2 1 A X25 24C2 1 C
25A22A 05 25C22C 06 26A23A

0 723C 26C

m :

27A24A D9
27C24C 010PIO 28A25A X26 O i lP ll 28C25C 012P12 29A26A 013m 29C26C

014 30A27A 015£ 1 5 30C27C

LC
17C

WO00 / _ 5A
W1

5C
W2

6 AX24 m
W 4

6 C
7A0 4

OV
4 5 V4-5V

R34R32R33

00
23A

X29
X28

r r C 8

OVOV

X27
R O

Fîg. 1 0 .1 5 .c. 1553B Protocol Fault Injection Board.

XTALl

D4-D1

R21-R18 R22

0

Fîg. 10 .16 . Layout of 1553B Protocol Fault Injection Board.

RESET FIFO
LOAD MESSAGE

LOAD
C O M M A N D

REGISTER

INITIATE
TRANSM ISSION

Fig. 1 0 .1 7 . Message from Bus Controller: Software Operation.

ENTER

LOAD C O M M A N D
• WORD

INITIATE
TRANSM ISSION

SHORT DELAY

/ H A S \
YES I n t e r r u p t

\O C C U R R E D

N O

READ MESSAGE
FROM FIFO

RETURN

IN T .
ENTRY

SET BUSY FLAG

INCREMENT BUSY
C O U N T

CLEAR INTERRUPT
FLIP FLOP

Fîg. 10 .18 . Message to Bus Controller: Software Operation.

(ENTER 1

\ /

ENABLE
INTERRUPT

\ s \
r u p t \

Mr.
N O /^ N T E R

IN T .
ENTRY

LOAD MESSAGE
FROM FIFO

IN T O MEMORY

DISABLE
INTERRUPT

f RETURNS

CLEAR
INTERRUPT
FLIP FLOP

Fig. 10 .19 . Message to Remote Terminal: Software Operation.

IN T .
ENTRY

ENTER

ESSAGE
SENT

N O H a

YES YES

RETURN RETURN

X H A S \
INTERRUPT
OCCURRED

SET BUSY
CLEAR INTERRUPT

FLIP FLOP

DISABLE
INTERRUPT

ENABLE
INTERRUPT

LOAD MESSAGE
RESET BUSY

Fîg. 10 .20 . Message from Remote Terminal: Software Operation.

Wi
CO

LU
CO

LU

LU

CO

O

< Q.

CO
CO

lU

<N

o
oOOO

CO
o
CN

OO
«0

ON O

_o
Q -
0)

Î
<D

O)

(53351030) 310 NV

CO
CO

o
<

o oI I OI CN

r If)

lO
<N

CO
O
Z

to o
' - y

CO

0)
g

(g
0)

CN

D)

lO

IT)

CN

(S3Ü13W) 3G N V ^

CO

cû
CO
COuolo

iiCO

à

£

DOi
Co

U

§s
CO

O)

CN

CO

L U

UJ
LO

u_

CO

to

5 2
■ < UJ
LL.

Oso I
CN

OCN

■o
c
8
S

e
8

I

a
o

_ c

ë

Q)
&

aJ
Q

0)1
LÜ

(533^030 . 01) HinWIZV

C M

O

CO

U
N UJ

CO

-O
CO

UJ
ÛI
U_ Q /

CO

° S8O
COs s

CM

œ
o

CMCM
% oCM

"Dc
8O

0
£

1I
I
c0

1

a

O

lo

CJ3

(S33H03Q i_Ol) HinWIZV

CN

O

to

U->
N

to

LU

O

CO

LL. to
IT)

O
s§o

S8
CN § S

CNCO O

■g
8
S

0>
0

±

. 11
3

.2
0)
&

J
O

o

O)

($33^030 [-01) HinWIZV

C M

to

O

to

to

to

LU

C O

O 00■oI
C N CO

S8 OC O C N

"U
c
8
S

>-|tNN

I
o_

g
1
0)

3

o
&
co
Q .J

O

O)

(5 3 3^ 0 3 0 j_O l) H in W IZ V

«o
CO

<N

to

u_

o

LU
to O

LU
to

a .
to

«o
N to

(O

° S8§ CVJ § 00
'O o lo co CM CM — "O

■D
C

8
%

2 ;
o
0

±

1
1
Q)

0)
&
Co
a
2

a

Q

00

O)

(S33îl03a J_0l) H in w izv

LU LUII
C N

O

LO

LO

C O

° S8O
%

OC N O§>o co C N

_©

"5
c

u

O)
o
c

J
ï
o

LU

C7)

(S33îl03a .01) Hinwizv

1 ^\ O
) Z
) o^ uy * LU

f LO
CNH-
z

L LU \ ^
3 J H-

•00 y

1— 1— I I I "1 "1 1—4
o
’-■ ■I - I— 1

C N O O X f O ' O C N C O T j - O ' ^ O O C N CON.Cs|l^ — '0 0 « 0 lO O ^ O
Tf" CO CO CN CN »— •— I »— I—

(g_oix) indino

CN O 00 O CN O CN T f O 00 O
l O i — N 3 C N C 0 '^ 'N’ O O C N 'O —
CN CN ^ I I •— p— CN

(_ 014 indino

_0)
~5
c

U

Q

c
D

"2

U->

CN

L O

LUL O
LU

O

o

o in
N" O
CN CN

C O O

I .

O)

i r) O N O O O O O s O O N O O l ^ l O C O — .— COUOhs
I I I I

(g-oi 4 indino (1-01 4 indino

•o

CO

to

to

LU

•o

CO

o

o COoCN CN8 CN CN

"D

I
8
c

-8
S

O)

(, O l4 3 0 N V Ü 31 IS S IW /N O IiV H 313D D V I V f f l iV I

I \
\

$
2
i

 ̂ i
5 g

ENTER

PRIMARY ROUTINE

ACCEPTANCE TEST

YES

N O

YESC O U N T
EXCEEDED

N O

ALTERNATE
ROUTINE 1

ALTERNATE
ROUTINE 2

RETURN

/ A N Y N
ERRORS IN
sMESSAGE.

JUMP TO FAIL
SAFE EXIT

UPDATE
COUNTER

REQUEST FOR
DATA

USE LAST
VALID DATE

Fig. n . 13. System Recovery.

«A 'O rs. ^ m fs

U U

X4
X 8 X12

X3

X7 xn

X I 0X6

X5 X9

Fîg. 1 2 .2 . Layout of 4K Memory Board.

CO

CO
CO
CO

«
u_

CO
CO

i i
LU

CO
CO

CO

o
E

£

co

3O)
wZc0
u

1

CO

<N

6

ENTER

PRIMARY ROUTINE

ACCEPTANCE TEST

YES

N O

YESC O U N T
EXCEEDED

N O

ALTERNATE
ROUTINE 2

ALTERNATE
ROUTINE 1

RETURN

/ A N Y N
ERRORS IN
.MESSAGE,

UPDATE
COUNTER

USE LAST
VALID DATE

W AIT FOR
DATA

WAKE UP STANDBY
PROCESSOR

USE IT FROM N O W O N

Fig. 1 2 .4 . Schematic of Task Swapping.

ü ;
O UJ

g i s
2 § 5

II
u

i!

il
O

O g

z ^ v>
z o uil

<

S!

<N

O
to

O

LU to

iî
U-)

s z

< LU
U_

CO

o 00'Os 00
n!
CN

CN O
CN O

J
CL

I
J
6

<D
_2

[s
1
1
0

1

N3
CN

6

(533)1030 [.01) H inw iZV

U-)

<N

to

to
LU
OL

O
to

3 Zii
lO

CO

O 00oo 'O
CO

CO N
CN

J
o _

1

1
£

_2
*5
LL.

1
1
0

1

N
CN

6i

(533^030 ^_0l) HinWIZV

to
3cû
NU-)
IT)

J)
"5
j=
c

u
«A

I ^< s z 8
O Z o 5 a
S 5 ^ y u
s s ^ | 21— •— Û.

LU LU
__l _ l - 1

00 O
o ^

z Q Zo ^ o
(J u

3O)wZ

J

I

00
CN

BUS CONTROLLER
TRANSMISSIONS

- / ■

/

BUS CONTROLLER FAILURE

VALI D C O M M A N D
S Y N C . PULSES \
OUTPUT FROM
MONOSTABLE.

4 mîliisec

NOTE: TIME PERIODS N O T TO SCALE

Fig. 1 2 .9 . Bus Inactivity Detection.

CO
3
CD
CD
CO
IT)lO

CD

CO

lO

{ = }
CO

CO
CDC D -
CO

LU
— I
_ l

A

a

CO

CO
CD

CO

i i

co
u

V»
D

CD

■ua

“is
2
2
I

SU-O
O

3

o

g
rô

üZ

«o

CM

to
O

to

t o

COto

§ o o
CM

O
CM

O
R O

"a
c
8
O

%
1
CL

I
O

S

_0)

1
c

J

«g

CM

Ô)

(S33ao3a . _oi) Hinwizv

CN

»o
O

to

LU

to
>o

CL,
to

u_ QC
to

CO

O 00oo
Eg

CN § % OCO

■g
ou«

0)
o

_ c
Q -

?

(5

o>

c

U
V)

(g

CN

(s33ao3a . 01) H in w izv

«o

CN

O-

to LU
CO

to u_ co

co

s
CN

CN 00 CN
S S8 OCN

"D
COu
(D

1
o _

.5
Oî
0>

I
_ 2

~ô
iz
co

u
D

Cû

CO

g
Ô)

(533)1030 , 01) HinWIZV
l -

U->

CO

LU

CO

O 00
oo

CO
ooCN 00

o o

■g0 u
0)

%D
_ c
o _

1
'I
o

J)
"5
i=
c

U

CN

UL

($33)1030 01) H inw iZV

>n

«o

CO

CN

LUi
Z a/

O
to

to

LU

CO

o 00 o00
o% co oCN

■D
C0
u
%

s

8
_ c
o _

1
E
k

c
ouuy

lo

;

(S338O30 . 0 1) H inW IZV

m
CO

CN
to

to

to

LL.
to O

to

CO

s
CN ° S8I CN § O»o

"D
C

8Q)iO
—
<D

_0)
“o
c

U
3

CQ

(S33^03a i-Ol) H in w izv

il

o t
y z

tn X

O u

il
il

il

il

il

CLOCK

AS

MREQ

AD
READ

MEMORY
ADDRESS) —

I DATA \
\ I

DS
READ

R /W
READ

Fig. B. 1. Z8000 Memory Read Cycle.

CLOCK

AS

MREQ

MEMORY
ADDRESS

AD
WRITE

DATA O UT

WRITE

R/W
WRITE

F ig .B .2 . Z8000 Memory W rite Cycle.

JSii,p.
.91

ENTER

RETURN

RESET TARGET
DETECTED

FLAG

UPDATE
A ZIM U TH

Fig. E .2 . Read Aiternate Routine,

ENTER

YES

N O

NO,TARGET A ZIM U TH
W IT H IN RANGE

YES

YESM IS S IN G SCANS
COUNTER < 0

N O

RETURN

TARGET A ZIM U TH
N O T VALID A N D

s lIM IT S FLAG SEL

SET PASS SET FAIL

Fig. E .3 . Acceptance Test for Azimuth Inhibit.

ENTER

TARGET
DETECTED

N O

YES

RETUR

SET TARGET A ZIM U TH = AZIM U TH
SET TARGET A ZIM U TH IN V A LID

CLEAR LIMITS FLAG
CLEAR M IS S IN G SCANS COUNTER

RESET N O COVERAGE FLAG

Fig. E .4 . Azimuth Inhibit Alternate Routine,

ENTER

AZIM U TH ^
INH IB IT SET A N D
RANGE INHIBIT

\ N O T SET ^

YES

N O

N O ^ TARGET R A N G E ^
VALID A N D M IS S IN G
^ S C A N S C O U N T ^

YES

TARGET
RANGE

= RANGE

N O

YES

RANGE
INHIBIT

SET

YES

N O

SET PASS SET FAIL

RETURN

Fig. E .5 . Acceptance Test for Range Inhibit

ENTER

^ IM U T H
INH IB IT

\ S E T ^

YES

N O

N O

YES

RETURN

TARGET
DETECTED

SET TARGET
RANGE VALID

UPDATE TARGET
RANGE

SET
RANGE
INHIBIT

Fîg. E. 6 . Range Inhibit Alternate Routine.

Ill

ENTER

N O INTERNAL
ALARM

SET

PRO VISIONAL
EXTERNAL

ALARM SET

N O

YES YES

BINARIES
FLAG
SET

N O

N OSEARCH
M ODE

r YES

RETURN

SET FAIL

SET PASS

SET EXTERNAL
ALARM

Fîg. E ,8 . Acceptance Test for Process Binaries.

< T CANCEL >

a p p r o a c h

SET

CALCULATE N A N D
OF APPROACH
A N D RECEDE

RESULT
TRUE

SET PASS SET FAIL

f RETURN)

Fîg. E .9 . Acceptance Test for Approach/Recede Assessment.

ENTER

SET APPROACH

RETURN

Fîg. E. 10. Approach/Recede Assessment Alternate Routine.

ENTER

YES

N O

YESCANCEL
SET

YESN O

N O

RESULT
TRUE

N O

N OYES

RETURN

/ N O \
COVERAGE
V SET /

O U T O f
COVER

. SET

COVER
\ SET

CALCULATE N A N D
OF IN COVER A N D

OUT OF COVER

SET COVERAGE
IN D IC A T IO N S

SET PASS
SET FAIL

Fîg. E. n . Acceptance Test for Coverage Assessment.

ENTER

YES

N O

YESCANCEL
SET

N O

RETURN

X N O X
COVERAGE
X SET /

SET IN COVER
CLEAR

COVERAGE
IN D IC A T IO N S

Fig. E. 12. Coverage Assessment Alfernafe Routine.

r | - - i
o IÎIO

L _ ^ « J
s .

to
3 Q

< o
u

Q
z

“ I

Q

Î

i L

a .

6

i O

ii
M ^

0)O)o

CÛ

R

O)

O
LU

z o
8 Î

< “
II
LU

2 S
<
Z

Z ^
o

3 c2
CO

o
CN

O

00

O

lO

CO

CN

O

00

•O

CO

CN

VO
LU

g
I—
t—
CO

lo

lO

»o

Q
O'

i z
D
o
u

i i<
CD
3
to

•< to

ifI— <

uz
to

a

i
Qz

8

CO

U->

U
Z
>-
to

ÛQC

ii
Qod

i
to
3

<
to

PARITY

TERMINAL FLAG

D Y N A M IC BUS CO NTRO L

£UB SYSTEM FLAG

^USY

BROADCAST RECEIVED

RESERVED

SERVICE REQUEST

INSTRUM ENTATION

MESSAGE ERROR

«< VOiî ,
LU
U

I
CO

g

CN
LL.

rô

uz ^ > z t=
< ^ QC <
j— o_
II II

oz

g

1
£

(E

C O

o>

i§ ii >+
m o
U
m uj1*15

LU>

Range Gate
N o.

1

1

1

1

2

2

2

2

3

3

3

3

4

4

4

4

5

5

5

5

6

6

6

6

V elocity Gate
N o._____

1

2

3

4

1

2

3

4

1

2

3

4

1

2

3

4

1

2

3

4

1

2

3

4

Approach

180

160

50

20

105

90

60

20

50

52

40

25

0

34

30

24

0

12

20

15

0

0
13

13

Recede

0

0
0

150

0

0

0

50

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

Table 4 .1 . Angular Rote Information.

Integrated Circuits

X I 74LS04 X2 74LS20 X3 74LS32

X4 74LS32 X5 74LS74

X9 - X43 M M 2102A N

Table 6 .1 . Parts List of Error Correcting Memory Board 1

Integrated Circuits

X I 74LS86

X4 74LS86

X7 74LS157

X I 0 74LS280

X I 3 74LS154

X I 6 74LS240

X I9 74LS126

X22 74LS244

X33 74LS00

X2

X5

X 8

74LS86

74LS157

74LS157

X I 1 74LS280

X14 74LS154

X I 7 74LS280

X20 74LS126

X3

X 6

X9

74LS86

74LS157

74LS280

X I 2 74LS86

X I 5 74LS240

X I 8 74LS04

X21 74LS280

X23 - X32 M M 2102A N

Table 6 .2 . Parts List of Error Correcting Memory Board 2.

Integrated Circuits

XI 74276 X2 74LS32 X3 74LS04

X4 74LS32 X5 74LS08 X6 74LS125

X7 74LS27 X8 74LS20 X9 74LS138

XIO 74LS00 x n 74LS74 X I2 74LS00

X I3 74LS93 X14 74LS00 X I5 74LS74

X16 4020B X17 74LS74 X I8 74LS08

X I9 74LS32

X22 74LS138

Resistors (- 5%)

X20 74LS374 X21 74LS151

R1 - R12 IK

Table 6 .3 . Parts List of Input/Output Board.

Integrated Circuits

X I 74LS244

X4 74LS244

X7 74LS374

X2 74LS244

X5 74LS193

X 8 74LS374

X3 74LS244

X 6 74LS02

X9 74LS195

Resistor (- 5%)

R1 IK

Table 6 .4 . Parts List of Buffer Card.

Integrated Circuits

X I 74LS00

X4 74LS125

X7 74LS00

XIO 74LS125

X14 74LS123

X2 74LS00

X5 74LS10

X8 74LS00

x n 74LS32

X3 74LS04

X 6 74LS00

X9 74LS04

X I 2 74LS10

Resistors (- 5%)

R1 5 . IK

R4 50K POT

R2

R5

50K POT

IK

R3 5 . IK

+
Capacitors (- 2 0 %)

Cl 22pF C2 22pF

Note : R2 and R4 mounted on front panel of expansion box .

Table 6 .5 . Parts List of Fault Infection Logic.

Connections of P I, P2 and P3 on CPU Card determine baud rate

as follows:

9600 baud - a ll open

2400 baud - connect PI to P3

300 baud - connect P2 to P3

100 baud - connect PI to P2 to P3

Table 1 0 .1 . Baud Rate Selection.

Integrated Circuits

X I 74LS32

X4 74LS44

X7 74LS374

XIO 74LS139

X I 3 74LS32

X I 6 M M 2114

X I 9 74LS164

X22 74LS32

X25 M M 2 U 4

X28 74LS30

X31 74LS00

X34 74LS138

X37 74LS08

X40 74LS273

X43 2516

X46 75189

X2 74LS10

X5 74LS245

X 8 74LS374

X I 1 74LS138

X I4 M M 2114

X I 7 M M 2114

X20 74LS02

X23 M M 2114

X26 M M 2114

X29 25LS2521

X32 AmZ8002

X35 74LS138

X38 74LS123

X41 Am8253

X44 2516

X47 74LS273

X3 74LS244

X 6 74LS245

X9 74LS74

X I 2 74LS27

X I5 M M 2114

X I 8 74LS244

X21 25LS2521

X24 MM 2114

X27 Am9551

X30 74LS04

X33 Not Used

X36 74LS74

X39 75188

X42 2516

X45 2516

Resistors (- 5%)

R1 120

R4 22

R7 390

RIO IK

R13 IK

R16 IK

R19 22

R2

R5

R8

R ll

R14

R17

R20

480

22

39K

IK

IK

IK

240

R3

R6

R9

R12

R15

R18

R21

470

240

IK

IK

IK

IK

390

Capacitors (- 2 0 %)

Cl 100 nF C2 47 pF

C4 220 pF C5 120 pF

C3 330 pF

Table 1 0 .2 .a . Parts List of Central Processing Unit.

Transistors

TRI 2N2905 TR2 2N 2906

Crystal

XTALl 4M Hz

Table 1 0 .2 .b . Parts List of Central Processing Unit.

Hex Address Function

6FE0 Frame Length Register.

6FF0 Command Word W rite ,

6 FF2 FIFO W rite.

6FF4 FIFO Read.

6 FF6 Control and Status Register.

6 FF8 In itiate Command.

6 FFA Command Word Read.

6 FFC Interrupt Flip Flop.

6 FFE Reset Interface.

Table 1 0 .3 . 1553B Interface Memory Addresses.

X I 74LS244 X2 74LS244 X3 Am2812

X4 Am2812 X5 74LS374 X6 74LS374

X7 74LS138 X8 74LS165 X9 74LS165

XIO 74LS04 X I I 74LS08 X12 74LS32

X I 3 74LS30 X I4 74LS165 X I5 74LS165

X I 6 74LS00 X I 7 74LS244 X I 8 74LS244

X19 74LS02 X20 74LS08 X21 74LS74

X22 74LS157 X23 74LS11 X24 74LS74

X25 74LS74 X26 74LS174 X27 9324

X28 74LS193 X29 74LS00 X30 74LS279

X31 74LS74 X32 74LS08 X33 74LS123

X34 74LS08 X35 74LS74 X36 74LS04

X37 74LS193 X38 74LS00 X39 74LS02

X40 74LS32 X 4 l 74LS74 X42 74LS154

X43 74LS260 X44 74LS193 X45 DIL SWITCH

X46 74LS74 X47 74LS11 . X48 74LS74

X49 74LS74 X50 74LS244 X51 74LS74

X52 74LS08 X53 74LS74 X54 74LS74

X55 74LS08 X56 74LS74 X57 74LS157

X58 DIL SWITCH

Resistors (- 5%)

RI - R16 IK

R17 150K

R18 lOK

R19 - R24 I K

Cgpaci tors C" 20%)

a lOnF

C2 lOOpF

Table 1 0 .4 . Parts List of 1553B/Microprocessor Interface Board 1.

Integrated Circuits

X I 74LS00 X2 75452 X3 HA2522

X4 HA4905 X5 74LS00 X 6 -

X7 15530 X 8 74LS124 X9 74LS374

XIO 74LS157 X I I 74LS164 X12 9324

X I 3 74LS164 X14 74LS164 X15 74LS08

X I 6 74LS04 X I 7 74LS00 X18 74LS00

X19 74LS74 X20 74LS00 X21 -

X22 74LS374 X23 74LS374 X24 74LS374

X25 74LS32

Resistors (- 5%)

R1 10K R2 10K R3 -

R4 47 R5 270 R6 IK

R7 10 R8 27 R9 22K

RIO 22K R11 47 R12 270

R13 4K7 R14 - R15 10K

R16 10K R17 IK R18 2K2

R19 2 2 R20 2 2 R21 2K2

R22 2 K2 R23 10K R24 10K

R25 10K R26 IK R27 IK

R28 IK R29 IK

Capacitors (- 20%)

Cl lOpF C2 lOOpF C3 lOOpF

C4 680pF C5 6 8 pF C6 lOpF

C7 lOpF

Diodes

D1 - D4 IN 916

D5 - D8 C 0 4 6

Table 1 0 .5 .g. Parts List of 1553B/Microprocessor Interface Board 2 ,

Transistors

TRI 2N 2905A TR2 2N 2905A TR3 2N 2221A

Crystals

XTALl 12MHz

Transformer

T1 DDC25679

Table 1 0 .5 .b . Parts List of 1553B/Microprocessor Interface Board 2 ,

C4

0

0

0

0

0

0
0

0

0

0
0

C3 C2 Cl CO Frame length

0 1 0 1

(Bit Periods)

6

0 1 1 0 7

0 1 1 1 8

1 0 0 0 9

1 0 0 1 10

1 0 1 0 11

1 0 1 1 12

1 1 0 0 13

1 1 0 1 14

1 1 1 0 15

1 1 1 1 16

0 0 0 0 17

0 0 0 1 18

0 0 1 0 19

0 0 1 I 2 0

0 1 0 0 21

0 1 0 1 2 2

0 1 1 0 23

0 1 1 1 24

1 0 0 0 25

1 0 0 1 26

1 0 1 0 27

1 0 1 1 28

1 1 0 0 29

1 1 0 1 30

1 1 1 0 31

1 1 1 1 32

Table 1 0 .6 . a . Frame Length Adjustment.

Data Bit Number Titli Function

6 DECODER PARITY A logical '1 ' sets even parity

5 ENCODER PARITY A logical *1 ' sets odd parity

4 C4)

3 C3 \ These bits set the frame

2 C2
\ length as overleaf.

1 C l)
)

0 CO)

Table 1 0 .6 .b. Frame Length Adjustment.

Integrated Circuits.

X I 74LS00 X2 75452 X3 HA2522

X4 HA4905 X5 74LS00 X 6 -

X7 15531 X 8 74LS124 X9 74LS30

X IO 74LS138 X I 1 74LS374 X12 74LS374

X I 3 74LS157 X14 74LS157 X15 9324

X I 6 74LS164 X17 74LS00 X18 74LS08

X19 74LS04 X20 74LS00 X21 74LS00

X22 74LS74 X23 74LS00 X24 74LS374

X25 74LS374 X26 74LS374 X27 74LS32

X28 74LS123 X26 74LS125

Resistors (- 5%)

R1 lOK R2 lOK R3

R4 47 R5 270 R6 IK

R7 10 R8 27 R9 22K

RIO 22K R ll 47 R12 270

R13 4K7 R14 - R15 lOK

R16 lOK R17 IK R18 2K2

R19 2 2 R20 2 2 R21 2K2

R22 2 K2 R23 lO K R24 lOK

R25 lOK R26 IK R27 IK

R28 IK R29 IK R30 IK

R31 IK R32 9K1 R33 IK

R34 IK

Capacitors (- 2 0 %)

C l lOpF C2 lOOpF C3 lOOpF

C4 680pF C5 6 8 pF C6 lOpF

C7 lOpF C8 1 uF

Table 10. 7 .a . Parts List of 1553B Protocol Fault Injection

Diodes

D1 - D4 IN 916

D5 - D8 C 0 4 6

Transistors

TRl 2N 2905A TR2 2N 2905A TR3 2N 2221A

Crystals

XTALl 12M Hz.

Transformer

T1 DDC25679

Table 1 0 .7 .b. Parts List of 1553B Protocol Fault Injection Board.

1 . Software Interrupt i f vector not set,

2 . Jump Relative to Program Counter.

3 . Call subroutine relative to Program Counter.

4 . Call subroutine with direct address.

5 . Unimplemented instruction.

6 . Invalid instruction (known action).

7 . Invalid instruction (unknown action).

8 . Load Program Counter and Status Word.

9 . H alt

10. POP stack

11. PUSH stack.

12. Jump to direct address.

Table 11 .1 . Major Causes of Microprocessor System Crash.

Integrated circuits

X I 74LS32

X4 74LS08

X7 MM 2114

XIO M M 2114

X2 74LS00

X5 M M 2114

X8 M M 2114

x n M M 2114

X3 74LS32

X6 AAM2114

X9 M M 2114

X12 M M 2114

Table 12.1. Parts List of 4K Memory Board.

