
“Friedrich List” Faculty of Transport and Traffic Sciences Chair of Transportation Systems Engineering

term paper

SAFE SOFTWARE DEVELOPMENT FOR
A VIDEO-BASED TRAIN DETECTION IN
ACCORDANCE WITH EN 50128*
Moritz Dorka
born on March 18th, 1988 in Kirchen (Sieg)
matr. no. 3472533, moritz.dorka@mailbox.tu-dresden.de

Examined by:

Prof. Dr. rer. nat. Jörg Schütte and Dr.-Ing. Sven Scholz
Supervised by:

Dr.-Ing. Sven Scholz and Dipl.-Ing. Nils Kawan
Submitted on July 24th, 2013

mailto:moritz.dorka@mailbox.tu-dresden.de

*German title in conformance with the “Richtlinie für die Anfertigung der Studienarbeit”:

Untersuchung von Softwareimplementierungen für
sicherheitskritische Anwendungsfälle

Dresden, July 24th, 2013 signature of the student

Bibliographic Data

DORKA, Moritz:
Safe software development for a video-based train detection in accordance with EN 50128

Studienarbeit Dresden 2013, 59 pages, 16 Figures, 4 Tables, softbound

ABSTRACT

This paper intends to give an overview of selected parts of the software development process

for safety-relevant applications using the example of a video-based train detection. An IP-camera

and an external image processing computer were equipped with a custom-built, distributed soft-

ware system. Written in Ada and C, the system parts communicate via a dedicated UDP-based

protocol. Both programs were subject to intense analysis according to measures laid down in

the EN 50128 standard specifically targeted at software for railway control and protection sys-

tems.

Preceding each section, a structure resembling the standard document with references to the

discussed measures allows for easy comparison with the original requirements of EN 50128.

In summary, the techniques have proven to be very suitable for practical safe software develop-

ment in all but very few edge-cases. However, the highly abstract descriptive level of the stan-

dard requires the staff involved to accept an enormous personal responsibility throughout the

entire development process. The specific measures carried out for this project may therefore

not be equally applicable elsewhere.

Diese Studienarbeit gibt einen Überblick über ausgewählte Teile des Softwareentwicklungspro-

zesses für sicherheitsrelevante Applikationen am Beispiel eines videobasierten Zugerkennungs-

systems. Eine IP-Kamera und ein externer Bildverarbeitungscomputer wurden dazu mit einer

speziell entworfenen, verteilten Software ausgestattet. Die in Ada und C geschriebenen Teile

kommunizieren dabei über ein dediziertes, UDP-basiertes Netzwerkprotokoll. Beide Programme

wurden intensiv anhand verschiedener Techniken analysiert, die in der Norm EN 50128 festge-

legt sind, welche sich speziell an Software für Eisenbahnsteuerungs- und überwachungssyste-

me richtet.

Eine an der Norm orientierte Struktur mit Verweisen auf die diskutierten Techniken zu Beginn

eines jeden Abschnitts erlaubt einen schnellen Vergleich mit den originalen Anforderungen des

Normtexts.

Zusammenfassend haben sich die Techniken bis auf wenige Ausnahmen als sehr geeignet für

die praktische Entwicklung von sicherer Software erwiesen. Allerdings entbindet die Norm durch

ihre teils sehr abstrakten Anforderungen das am Projekt beteiligte Personal in keinster Weise

von seiner individuellen Verantwortung. Entsprechend sind die hier vorgestellten Techniken für

andere Projekte nicht ohne Anpassungen zu übernehmen.

THESES

1. Software exposed to high demands toward quality and freedom from defects is automati-
cally regarded “safety relevant”.

2. Software which is thoroughly examined by processes outlined in a standard document can
be regarded “safe” according to that standard.

3. By following the standard systematic faults in software cannot be eradicated, but only
minimized.

4. Train detection in software according to EN 50128 is not a simple use-case.

5. On his own, a single involved person is unable to give a cohesive set of requirements and
guidelines compliant with EN 50128 which, once implemented, will turn an “ordinary soft-
ware” into a “safe software”.

6. Transferring the imagedata to a dedicated external computer and process it there is a su-
perior approach compared to conducting this task on the camera itself.

7. A train detection algorithm may very well be parallelized for increased performance.

8. The embedded processor of an IP-camera is capable of serving uncompressed camera
images via a network interface at frame rates sufficient for real-time train detections.

CONTENTS

1 Introduction . 8

1.1 Motivation . 8

1.2 Description of the problem . 9

1.3 Real-time constraints . 10

1.4 Safety requirements . 10

2 Implementation details . 11

2.1 Camera type and output format . 11

2.2 Transfer Protocol . 14

2.3 Real-world constrains . 15

2.4 Train Detection Algorithm . 16

3 EN 50128 requirements . 18

3.1 Software architecture . 19

3.1.1 Defensive Programming . 20

3.1.2 Fully Defined Interface . 21

3.1.3 Structured Methodology . 21

3.1.4 Error Detecting and Correcting Codes 29

3.1.5 Modelling . 30

3.1.6 Alternative optionally required measures 34

3.2 Software Design and Implementation . 35

3.2.1 Structured Methodology . 35

3.2.2 Modular Approach . 36

3.2.3 Components . 38

3.2.4 Design and Coding Standards . 39

3.2.5 Strongly Typed Programming Languages 41

3.2.6 Alternative optionally required measures 44

3.3 Unit Testing . 45

4 Outlook . 47

5 Conclusion . 48

Contents 7

1 INTRODUCTION

During the last decades computers have more and more become an essential part of our ev-

eryday life. Ubiquitous computing is the buzzword here, an umbrella term for the exponentially

increasing cellphone hype and the urge to literally smarten up each and every toaster with some

embedded chip [Tec05]. However, applications of computer technology can also be found in

areas which perhaps will not come to mind as easily. One such field may be video-based train

detection, the topic of this paper. But the control of nuclear power plants, army combat mis-

siles, implanted pacemakers, steering-systems on commercial airplanes or high-frequency trad-

ing used in the financial sector fall into this category as well. What they all have in common is a

high demand of functional safety (section 1.4) while often also requiring computations to finish

within a given time, a task usually referred to as real-time computing (section 1.3).

The official definition of functional safety is rather complicated [Int10, part 4, page 23] but es-

sentially it boils down to safety, which itself is defined as the absence of a fatal risk, in the con-

text of a particular equipment which is to be controlled (so-called EUC).

Since this aim cannot be achieved easily, various standards have been created to cover not only

the actual software development process for the controlled equipment but also the entire lifecy-

cle of the overall system in which this particular equipment and hence also its supervising soft-

ware may be integrated. Among the most notable representatives of those norms in the trans-

port sector are DO-178B for aviation applications [RTC92] and the descendants of IEC 61508

[Int10], namely ISO 26262 [Int11b] for road vehicles and IEC 62279, which is more commonly

known over here under the title of its European derivative EN 50128 [CEN11], for software appli-

cations in the field of railways.

This paper intends to give a use case for such a safety-relevant software system performing

under real-time constraints for a railway application. The implications of the relevant norm EN

50128 on the development process are outlined.

1.1 Motivation

For surveillance purposes the interior of railway vehicles and the surrounding trackside infra-

structure are nowadays often equipped with numerous CCTV cameras. The images obtained

from those cameras are not only of interest to human operators, but may also be used as an

input to automatic processing algorithms. Their aim is to quickly and reliably extract features

from the image data, quantify them in some way and forward the result to other downstream

algorithms.

In the concrete case of this paper an automatic train detector is to be developed, which can re-

port back the presence of a train and its position in a track section on the basis of a single video

image captured by such a CCTV camera. The focus is hereby placed on the architecture of soft-

ware suitable for this task. The actual image analysis, however, is not a central part of this work

and therefore only a rudimentary implementation has been elaborated so far (see section 2.4).

As the train position only provides relevant information when available within a given time, the

resulting software must be capable of fulfilling real-time constraints (see section 1.3). This is

Introduction 8

Figure 1: A typical camera image in different stages

why, among other factors, which will be discussed later, Ada was chosen for a major part of this

project. Although merely a niche programming language when compared to C and C++, Ada

offers extensive build-in concurrent- and real-time execution support, thus lending itself for this

research issue.

1.2 Description of the problem

A camera (section 2.1) is mounted above the track in a station setting. The track itself may be

shaped arbitrarily (curved) but its predominant direction is parallel to the Y-axis, so that the head

of a train is clearly distinguishable on the camera images. The direction of movement on the

rail, toward the camera or away from it, is unknown. However, the former is assumed to be the

usual case. Image 1 on the left shows a typical picture obtained from such a camera.

The software analysis of this image is now supposed to identify the head of the train. The result

should be the Y-pixel at which the train was detected (red line on image 1, middle). Since it can

be assumed trains always move on rails, only the part of the image which contains the track, a

so-called Region of Interest, actually needs to be forwarded to the detection algorithm (image 1,

right).

The analysis itself is to be conducted on a per-picture basis. So the position of a train has to be

computed by only a single picture as the input. Making it very easy to detect movements by

differencing two consecutive images is not desirable because it would fail if the speed of the

train became very slow, which is a situation not uncommon at the railway stations where the

camera is to be installed. Differencing non-consecutive images is also impractical because n vs.

n-m (m > 1) comparisons (i.e. differencing the current image with one from the more distant

past) would only intensify the speed problem – at least if the framerate remained unchanged. A

comparison with an “empty track”-image (i.e. one without a train present) is theoretically fea-

sible but would mean quite some effort to constantly update this image at the right moment in

time, so that changes of lighting, which would otherwise falsify the differentiation, are reflected

correctly. Moreover, the edge-case of a non-moving train is not detectable by any of the differ-

encing approaches.

Introduction 9

1.3 Real-time constraints

Video images depict the outside world, which, of course, is not discrete in its nature but rather

completely analogue. Hence, if a close resemblance of that world is desired a high sampling

rate equalling many frames per second (fps) is inevitable. Each frame consists of numerous

data, so the software handling these frames has to be fast enough, while transferring as well

as while analyzing them and while printing the result subsequently (called fpsprocessed in the for-

mula below), in order to cope with the given rate of frames to be processed (fpsmin). So real-

time in this sense has nothing to do with “becoming as fast as nature” but rather with fulfilling

a given, man-made, boundary condition:

fpsprocessed � fpsmin.

Whether or not this inequation holds depends on many factors and essentially the entire system

must be analyzed to receive a valuable result1. Furthermore, some of these factors are by def-

inition invariant (e.g. the make of the camera and thus its onboard chip and processing speed)

and only a few can be altered in order to eventually obtain a sufficient result – which is not nec-

essarily the fastest in terms of speed as will be seen in section 1.4.

The only hard constraint given by the supervisors was 20 ms for the image-analysis part of the

software. This means fmin = 50 fps, which can easily be achieved on a modern PC. Tests con-

ducted with gprof on a fairly recent 2.5 GHz Intel Core i5 yielded almost unmeasurable 0.62 ms

for an average run of the corresponding function (detect_train_one_rail() in Adaimagepro-

cessor.Image.Analyze) under worst-case circumstances (no train present). But taking into ac-

count the rest of the system, particularly the image acquisition process (copying the image from

the internal memory on the camera, transferring it to the analyzing unit and similar tasks), the

processing rate may decrease dramatically.

Unfortunately, the final system which the software is eventually to become part of is not yet

fully defined. For instance, the camera images used so far were all non-live, static pictures with

a much smaller resolution than the actual camera output (see section 2.1). Neither is any know-

ledge available about the network link of the camera, through which the pictures have to be

transferred. Nor do any specifications exist regarding the computer responsible for the analysis

of the images. All of these factors greatly influence the processing speed and thus the overall

image refresh rate achievable. Therefore, a general answer on whether the inequation printed

above can be satisfied or not is impossible to give here. All that can be said at this point is: The

software has been designed in a way not to become the show-stopper.

1.4 Safety requirements

The position of a train on an image is defined as safety-relevant information. If for example this

image describing the area to surveil was used as an input for some downstream obstacle detec-

tion system, a correct value would become eminently crucial. Otherwise, the obstacle detector

1So a little lookahead onto the upcoming sections is unavoidable here.

Introduction 10

may identify the train itself as an obstacle, which is certainly not the desired behavior.

In order to achieve a commonly recognized level of safety, it is the aim of this paper to closely

obey the guidelines of EN 50128 [CEN11]. The necessary Safety Integrity Level (SIL) has been

identified as SIL 1 by the supervisors of this paper [SK12, p. 17].

As can be seen from the explanations in section 3, safety usually comes at the cost of a higher

running time resulting from the overhead associated with error handling and similar safety-rela-

ted measures, all of which contradict the aim of real-time performance as stated in section 1.3.

In addition to that, higher SI-Levels usually mean higher monetary costs as well due to higher

documentation, validation and verification demands by EN 50128. It should therefore be obvious

to use an SI-Level as low as reasonably possible while also keeping the software as simple as

possible.

2 IMPLEMENTATION DETAILS

There are two fundamentally different ways to implement a detection algorithm as it is required

to tackle the problem laid out in section 1.2. Either, this algorithm can be run directly on the

camera featuring an embedded Linux OS that comes with a suitable cross-compiler (see section

2.1). Or, the current video-image has to be extracted from the camera first and then processed

on a separate computer.

The first approach is very simple and would probably have worked out perfectly for the given

problem. However, the camera-processor is comparably slow and would at some point become

the bottleneck if additional algorithms were to run in parallel as well. Furthermore, the Ada pro-

gramming language, which is preferable over C for safety-relevant tasks (see section 3.2.5), is

not supported by the cross-compiler.

With the second approach the programmer is usually limited to the predefined interfaces to the

outside world implemented in the products by their vendors. These have proven to be imperfect

for the purpose of this work, mainly because of the impossibility to avoid preprocessing which

involves potentially dangerous code, and due to the limitation to data-intensive color images (for

details see section 2.1).

Hence, it was decided to follow a hybrid approach. The camera was equipped with a small “ser-

ver-program” which does not do anything but serve video-images in a predefined way to the

outside world. Along with that, a “client-program” was programed which obtains these images

and eventually processes them on a separate computer. Not only does this approach give maxi-

mum flexibility, but it also imposes the highest workload on the developer. In particular, a proto-

col (see section 2.2) must be developed to communicate between the server (camera) and the

client – a task which would otherwise be left to the vendor.

2.1 Camera type and output format

The camera used for this project is an IP-based surveillance camera of the type M3314-R manu-

factured by Axis Communications AB, Lund, Sweden [Axi13a]. The camera features an ARTPEC-

Implementation details 11

U0 V0Y0 Y1 U2 Y2 V2 Y3 Un Yn Vn Yn+1

raw image data

…

Y – luminance-component of the respective pixel (= the grayvalue)
U – chrominance-component of the respective pixel based on its blue-value
V – chrominance-component of the respective pixel based on its red-value

(each block Y, U, V is 8 bits wide)

Figure 2: The data structure of the UYVY-Format according to [Wil11]

3 SoC with 32 kB of cache and 92 MB of RAM which can be targeted by gcc’s crisv32-port.

According to its BogoMips-count the processor plays roughly in the league of a Pentium 1, al-

though such simplifying comparisons are very inaccurate [Dor06].

Since Cris-based processors are not used by any other companies than Axis, they form a rather

exotic build target. Cross-Compilers are hence only available from Axis directly and they are

limited to the support of C and C++ on a 32-bit Linux host. The more recent ARTPEC-4 based

cameras are built around an MIPS processor with numerous independent compilers existing.

Among other things they also feature support for the Ada programming language.

Due to the widescreen resolution of 1280 by 800 pixels, its ruggedized design and the lack of a

weatherproof protection, the camera is mainly targeted at applications inside railway vehicles.

However, versions with a weatherproof case exist as well, and the limitation to the impractical

resolution can be overcome by simply tilting the camera’s lens by 90 degrees and swapping the

output pixels accordingly. Marketed by Axis as their unique “Corridor Format” [Axi13b], this out-

come is much more suitable for the project.

Images are captured in color with UYVY being their raw binary-format. For easy access to the

camera’s images it features an extensive HTTP-based API which emits the images either as an

H.264 or an MJPEG encoded stream. Still images as BMPs or JPEGs are also available but they

are of little use for real-time applications because of the overhead associated with establishing

a new HTTP-connection for each transfer and the low frame-rate that would result from this ap-

proach. All requests to this API have to be made via the 100 Mbit/s ethernet interface of the

camera.

Since the train detection algorithm discussed in section 2.4 only requires the gray-value of the

pixels as its input, it makes sense to leave out all color-information right from the beginning.

This is only possible by circumventing the API and accessing the camera’s imagestore directly.

As direct access also minimizes the use of external, possibly dangerous code, for example Axis’s

RAPP-library [Axi10] which would otherwise be used to preprocess images, this is also the pref-

erable approach from a safety-point of view.

Axis allows this direct access via an IMAGE_UNCOMPRESSED interface in its SDK, which is

shipped along with the cross-compiler. Because the UYVY pixel format employs a color subsam-

pling focused on the abilities of the human eye [Sch05], color information (which is split into U

and V components, based on the blue- respectively red-value of the pixel) is only available for

each second pixel in a row (Figure 2). Hence, filtering out the remaining Y-information (the gray-

values) is not completely straightforward. A possible implementation is given in the code below:

Implementation details 12

Listing 1: Reading out imagedata via the native interface in C
1 #include " capture . h "
2
3 typedef struct {
4 in t width ;
5 in t he ight ;
6 char data [MAX_HEIGHT] [MAX_WIDTH] ;
7 } imagedata ;
8
9 void readcamera (imagedata �output) {

10 media_nat ive �nat = capture_open_nat ive (MAX_WIDTH, MAX_HEIGHT) ;
11 c a p t u r e _ s t a r t _ n a t i v e (nat) ;
12 unsigned char �data = capture_get_ image_nat ive (nat) ;
13 {
14 in t row , column ;
15 in t outcolumn = 0;
16 in t of fset_x1 = 0;
17 in t of fset_y1 = 0;
18 in t of fset_x2 = (� output) . width ;
19 in t of fset_y2 = (� output) . he ight ;
20 for (row = of fset_y1 ; row < of fset_y2 ; row++)
21 {
22 for (column = of fset_x1 �2+1; column < of fset_x2 �2; column=column

+2)
23 {
24 outcolumn = column >> 1;
25 (� output) . data [row] [outcolumn] = (unsigned char �) data [row � (�

output) . width � 2 + column] ;
26 }
27 }
28 }
29 captu re_c lose_nat i ve (nat) ;
30 }

This code implies a ROI (section 1.2) which extends over the entire image. But this can be al-

tered very easily by changing the variables in lines 16–19 accordingly and turning them into pa-

rameters to the function. Furthermore, the “Corridor Format”-issue mentioned earlier is not yet

dealt with, which could be accomplished by swapping row with outcolumn in the left part of the

assignment in line 252.

All called functions prepended with capture_� are defined in capture.h (line 1) which is a part of

the SDK provided by Axis.

At the moment the entire function is written in C because it would have to run directly on the

camera and remains unimplemented in the server-program, mainly due to the lack of a suit-

able test-installation of the camera. It was therefore easier to feed the downstream image-

processing with saved images from disk, instead. This is the job of camera_ReadImage() in

camera.c of the server-software which would have to be replaced by the code-snippet printed

above for a production system.

Except for an additional header, PGM-images [Bor97] read in by camera_ReadImage() consist

only of binary pixel values. Those can very easily be transformed into something suitable for the

data-component of the imagedata-struct of lines 3–7 in the code above.

2For black-and-white images this is unproblematic. For color-images it would make a difference because the UYVY-
subsampling (Figure 2) is not influenced by the rotation.

Implementation details 13

2.2 Transfer Protocol

To link the camera with the image-processing computer, i.e. the server-program with the client-

program, a suitable transmission protocol had to be developed. The requirements toward this

protocol essentially boiled down to these two simple points:

1. Very fast transfer of the image with as little overhead as possible because of the limiting

100 Mbit/s connection (see section 2.1).

2. Support of a Region of Interest (i.e. passing parameters to the server, see section 1.2).

As the other protocols (e.g. the Real-Time Transport Protocol [JFCS03]) are much more compli-

cated in this field and therefore would have required much higher development efforts, a pro-

prietary approach was followed. The resulting protocol is located somewhere between layers 5

to 7 of the OSI-model and is based upon UDP. Unlike its much more heavyweight counterpart

TCP, UDP does not guarantee successful data transmission and is therefore inherently inse-

cure. However, it also comes without the transmission initialization overhead (confer with sec-

tion 2.1) of TCP and was therefore favored to comply with the first requirement. The price paid

for using UDP is a higher workload on the developer’s side, as the disassembly of the data on

the server and the sequentially correct assembly on the client in order to fit this data into pack-

ages not exceeding the MTU of the underlying IP-network must all be coded into the software.

TCP, in contrast, would take care of all these points automatically. For this reason, TCP is of-

ten preferred over UDP for large file transfers which require guaranteed transmission [SFR03, p.

596] . However, a certain rate of erroneous transfers can be tolerated in a real-time application

since not receiving data at all (which is detectable and can be handled according to the fail-safe

principle) is better than using old ones3. Moreover, because of its simplicity UDP is a supporting

factor for the minimization of external code usage.

The protocol is based on a simple request/reply principle involving two letter codes as identifiers

for each operation to ensure indempotence, possibly accompanied by parameters to fulfill re-

quirement number two of the above list. For the actual data transfer only sequential numbers

are used, though. An in-depth discussion of this implementation may be found in section 3.1.5.

As socket programming is not natively supported by Ada, a compiler-specific extension (namely

the GNAT.Sockets package) had to be utilized. This creates a conflict with the portability require-

ment of section 3.2.44. But alternative implementations are available as well [sec13].

3In fact the client takes care of this via the second innermost loop, present in all but the very last (number 5) stages
of the imagetransfer (Figure 16).

4But this is still superior to the C approach since portability here only refers to using different compilers. In the case
of C the socket-implementation fails to stay portable even on the operating system’s level.

Implementation details 14

Figure 3: Helper program written in wxPython to manually collect slice data

2.3 Real-world constrains

In order to fulfill the real-time constraints mentioned in section 1.3 entirely unacademic real-

world constraints must be overcome first. The most important one is the camera itself: After

all, one main reason to dig into video-based train detection is the fact that cameras are usu-

ally already present at the site, and hence “pimping them up” with some automation is initially

a nice and cheap add-on to improve the safety of the railway system in some way or another.

Conversely, this means that neither mounting, viewing angle or overall lighting situation in which

the camera is embedded, nor the camera-model itself (especially regarding its resolution and

image-enhancement features) have usually been specifically selected to facilitate computer vi-

sion.

The second major hindrance is the track layout. As the fundamental idea of the detection algo-

rithm (see section 2.4 below) is to identify the train on the basis of the absence of the two rails

on the image, knowledge about their position is essential. Automatic track detection algorithms

for this purpose are indeed available (see section 4). However, they usually imply restrictions on

the layout of the tracks such as having to begin at Ymax (i.e. the lower edge of the image) which

does not hold for the example layout in Figure 1 where the left rail ends quite a few pixels ear-

lier.

To overcome this constraint and at the same time avoid developing another dedicated track de-

tection algorithm, a pixel-based approach was chosen. Each pixel belonging to the left, respec-

tively right rail is simply saved into a large data array of the client-program, which in the case of

Figure 1 may be found in Adaimageprocessor.Image.Trackdata. As it is terribly time consuming

and error-prone to collect this data by hand, a little helper program called “ImageTagger” was

Implementation details 15

written in wxPython5. It allows the user to easily generate groups of pixels, so-called slices (see

section 2.4 below), by simply clicking through a scaled picture obtained from the camera and

eventually saving the coordinates of the slice-pixels in a format understood by Ada. All neigh-

boring red, respectively yellow pixels make up one slice here. The rail itself is headed vertically,

slightly tilted to the right – just as in Figure 1.

This “ImageTagger” also equips each slice with metadata regarding a threshold (see section

2.4, point 2) and a so-called Link_Slice_Other_Rail. The latter is intended for situations where

a significant curvature in the track layout is present and hence a lot more slices are physically

distinguishable on the outer rail than on the inner. With the output module currently assuming

an approximately straight track layout by simply emitting the Y-pixel of the train position, this

field remains unused.

2.4 Train Detection Algorithm

As stated in the motivation, the detection algorithm used in the software, specifically the client-

part written in Ada, is not very sophisticated. Neither is it very accurate regarding the position of

the head of the train, nor is the algorithm designed to detect a train in all conceivable situations.

The former is partly due to the lack of a precise definition as to where a train actually begins (is

it the bumpers or rather the chassis?) and the latter can be viewed as a tribute to the limitation

of the single-picture analysis already discussed in section 1.2.

Slice 641

Slice 1

Figure 4: Working direction of

the detection algorithm

The fundamental idea behind the detection is to prove that the

track is not free – if this is the case, a train must be in the pic-

ture. To do so the algorithm takes one rail, divides it into small

slices and iterates over them from beginning to end. Each of

these slices consists of an array of points which form a part of

the rail orthogonal to its longitudinal direction. Figure 4 shows

the working direction of the algorithm for the right rail. Obvi-

ously, the number of pixels a slice consists of may vary due to

the three-dimensional nature of the images: In the very back,

the absolute (pixel-)width of the rail is significantly lower than in

the front. Memory-wise Ada handles this issue very efficiently

via the so-called ragged arrays (refer to the documentation of

Adaimageprocessor.Image.Trackdata for details). The helper

program discussed in section 2.3 automatically writes the pixel

coordinates in this ragged format.

Iterating over all these slices, the algorithm now calculates their

average pixel-value and out of the last ten slices the moving average, which is essentially a sim-

ple smoothing function6. The outcome of these operations for the case of the right rail of the

image shown in Figure 3 on the left is plotted in Figure 5. If the moving average pixel-value is

lower than any of its predecessors, its value is saved for later comparison (step 1 in Figure 5).

The iteration continues until the difference between the moving average of the current slice

5That is: Python plus the wxWidgets library for creating a graphical user interface.
6Computed for a slice m by taking the average of the average of the last n (a parameter set to 10 for this project)

slices relative to slice m.

Implementation details 16

0

51

102

153

204

255

6411

Moving Average
Average

Slices

G
ra

yv
al

ue

234

1

part not analyzed

Figure 5: Plot of the average pixel values per slice for the case of the right rail in figure 1

and its predecessor exceeds a certain threshold value. For the example plot in Figure 5 this is

the case at position 2. The algorithm now looks backwards until it finds a local minimum for the

moving average (step 3). If this value and the absolute minimum from step 1 are roughly iden-

tical, it continues looking backwards and now checks if the slope of the moving average func-

tion stays within a certain range for a certain number of slices (step 4). This slope describes

the shadow which is usually ahead of the train even in extreme lighting situations. If all those

checks are successfully passed, the algorithm breaks and returns the Y-pixel of the slice at po-

sition 3 as the position of the train. In all other cases the iteration is repeated until the very last

slice and eventually exits with “No train found”. This is the worst case in terms of running-time,

which was already discussed in section 1.3.

The same algorithm is now executed in parallel for the other rail as well and whichever of the

two returns the lower value (suspects the train at a position further in the back of the image)

wins. Only if both suggest that no train is present, the aforementioned message “No train

found” is actually forwarded to the user and printed on the screen (see Figure 15).

A more programmatically-oriented discussion of this algorithm is given in section 3.2.2.

The downsides of this simple approach outlined above should be fairly obvious:

1. The train is expected to be rather bright, at least compared to its shadow on the rails.

2. There is no robustness against non-static shadows (moving passengers, other vehicles,

. . .), static ones could be included via the individual thresholds of the slices in the Ada

data structure which remain unused at the moment.

3. A train can only be detected as long as its head and the shadow in front of that head is

visible. If the train occupies the entire image, the algorithm will not work. The case of a

Implementation details 17

System Development Phase

Software Requirements Phase

Software Architecture &
Design Phase

Software Component
Design Phase

Software Component
Testing Phase

Software Integration Phase

Software Validation Phase

Software Maintenance Plan

Software Planning Phase Software Assessment Phase

Software Component
Implementation Phase

Figure 6: V-Model of the software development lifecycle according to [CEN11, p. 23]

train very close to the lower edge of the image (i.e. the shadow and possibly even the lo-

cal minimum are not visible anymore) is not yet considered, either. However, the current

implementation (detect_train_one_rail() in Adaimageprocessor.Image.Analyze) offers

two exception-hooks to handle this situation.

The last point mentioned makes the algorithm in its current form unsuitable for production,

since it would yield erroneous results in cases where the head of a train is not visible but the

train is present, nevertheless. A straightforward solution to this dilemma would be to use image

differencing at least for the time when the train occupies the entire image (during its halt at the

platform). But this would violate the restriction regarding the exclusive use of single pictures for

the analysis mentioned in section 1.2.

3 EN 50128 REQUIREMENTS

The European Standard 50128 has been around since 1995 and aims to harmonize the existing

national procedures of approval for railway equipment (see section 3.2.5). This paper focuses

on the part related to the actual software development of the standard which is oriented to-

ward the so-called V-Model. Depicted in Figure 6 with the examined phases emphasized7, this

model describes the entire software lifecycle in a waterfall-like manner (i.e. one step after the

other, confer with section 3.1.3). The central point (Software Component Implementation Phase)

encompasses the actual coding of the software. Boxes on its left indicate preliminary checks

whose outcomes may perhaps be checked by other downstream measures (horizontal arrows)

on the right.

7The original version may be found in the standard here [CEN11, fig. 4, p. 23]

EN 50128 requirements 18

The core part of the Software Architecture & Design Phase and the Software Component De-

sign Phase are tables of measures which must be carried out in order to reach compliance with

a certain SI-Level for this phase8. The measures are divided into groups of not recommended

(NR), unspecified (�) recommended (R), highly recommended (HR) and mandatory (M) ones. The

last and the first group forbid, respectively require a certain measure to be undertaken [Bud11,

p. 6]. The difference of the other two lies in the documentation overhead for justifications why

they have not been considered [CEN11, p. 17]. Fortunately, each table comes with a set of ap-

proved combinations for each SIL which exempt from this rule and upon which the upcoming

sections will be based.

The application of the individual techniques will be presented by examples, primarily taken from

the client-program written in Ada, as this is considered to represent the integral safety-relevant

part of the project. As it has been stated in section 1.4 the SI-Level, on whose basis the respec-

tive measures have been selected, was assumed to be SIL 1. Each section is introduced by a

little gray box containing the respective part of the norm the explanations refer to.

Although the intentions of the measures overlap at times, and the sequence in which they are

mentioned in the standard does not necessarily correlate with the sequence of their execu-

tion in practice, it was decided to leave this order9 unchanged for easy comparison with the

standard. The downside of this approach comes with some redundancy and quite a few cross-

references which could have been avoided if the structure of the norm had been neglected.

If only a quick overview over the actual capabilities of the software is desired, the reader is ad-

vised to start with section 3.1.3 and concentrate on the external HTML-documentation there-

after.

Additional guidelines or papers for documentation purposes, such as those required for Mod-

elling [CEN11, A. 17, p. 76] or for the Coding Style (section 3.2.4), have not been produced.

3.1 Software architecture

Table:

A. 3, page 69

➜ EN 50128

This set of measures forms a part of the Architecture and Design require-

ments [CEN11, sec. 7.3, p. 40] focused on “minimizing the size and com-

plexity of the safety part of the application” [CEN11, l. 1373], and under-

standing the implications of these remaining parts by analyzing them on a

fairly abstract level. The techniques utilized should be sufficient to identify all components of the

software [CEN11, l. 1376] and thereby form a useful input document to the subsequent set of

less abstract measures discussed in section 3.2.

8However, the phases are not limited to these tables. On that score the titles of sections 3.1 and 3.2 differ slightly to
correspond exactly with the the naming of the tables.

9The upcoming sections are ordered according to the approved combinations in the respective tables of sections 3.1
and 3.2 with the mandatory measures first and the optionally required ones second.

EN 50128 requirements 19

3.1.1 Defensive Programming

Fulltext:

D. 14, page 97

➜ EN 50128

This requirement is divided into two parts. The first half entitled intrin-

sic error-safe software deals with measures to make software safer “un-

der the hood”. Fortunately, all points mentioned here, such as range- and

dimension-checking, are standard functionality of the Ada language.

To illustrate their use see the following code example:

Listing 2: Explicit conversion from bytes to numbers in Ada
1 function ToNatura l (Input : in STREAMLIB . Stream_Element) return Natu ra l i s

2 subtype Source i s STREAMLIB . Stream_Element ;
3 type Natura loutput i s new Natu ra l range 0 . . 2 5 5 ;
4 for Natura loutput ’ S ize use STREAMLIB . Stream_Element ’ S ize ;
5 subtype Target i s Natura loutput ;
6 function convert i s new Ada . Unchecked_Conversion (Source , Target) ;
7 Resul t : Na tu ra l ;
8 begin

9 Resul t := Natu ra l (convert (Input)) ;
10 return Resul t ;
11 exception

12 when others =>
13 ra ise CONVERSION_ERROR with " Cannot convert to numer ica l va lue . " ;
14 end ToNatura l ;

This little helper-function inside Adaimageprocessor.Image is by far the most frequently called

function in the entire client-program. Its purpose is to convert byte values received from the

server via the network into numbers, which represent grayscale pixel values. So it has to be

called for each and every pixel of the image to be analyzed. As line 6 suggests, the code is bas-

ed around an unchecked conversion which actually circumvents Ada’s strict type checking, and

therefore is dangerous in its nature. But in this case it is truly necessary to convert apples to or-

anges, since a byte value is simply not the same as a number. Ada allows for this kind of type

casting, it just asks for an extremely verbose declaration of it. Coping with the side-effects pos-

sibly implied by such an operation is essentially what the standard requires the programmer to

do.

To start at the very top of the example code, the standard dictates to check for access permis-

sions to parameters. This is done in line 1 via the in identifier which explicitly makes a parame-

ter read-only, and the return keyword which implicitly grants write-only access. Type, dimension

and range-checking for these two values are also implicitly handled by the Ada-runtime.

For the variable type Naturaloutput, whose only purpose is to force Ada into runtime range-check-

ing, the upper and lower boundaries of a valid pixel value (line 3) as well as the physical size of

such a value in memory (line 4) are explicitly stated10. Hence, this satisfies not only the require-

ment toward range-checking but also toward plausibility. In line 9 the result is cast into a normal

Natural, which is a base type of Ada with much looser boundaries. This has proven more conve-

nient for the further processing of the pixels than a dedicated variable type.

If any errors in between lines 2 and 10 are detected, they are directly handled by the exception

in lines 11-13 which will print a descriptive error message and cause the program to fall into a

10For a standard computer when 8 bits equal 1 byte this statement is redundant, but for more unconventional sys-
tems in which this is not the case it would rightfully introduce an exception. See also Setup() in Adaimageproces-
sor.Network.Protocol.Imagetransfer.

EN 50128 requirements 20

safe state, which currently means shutting down all running parts.

For the general use of Ada.Unchecked_Conversion see also [Sof95, sec. 5.9.1].

The second part of the requirement focuses on the communication with the outside world.

Since the software presented here does not directly interface with any hardware parts, only the

interaction with the operating system can hold for an appropriate example. The most error-prone

part here is the acquisition of resources. Consider the following snippet from the server pro-

gram (found in socket.c):

Listing 3: Binding to a socket in C
1 i f (b ind (sockethandler , (struct sockaddr �) &ownaddress , s izeof (ownaddress

)) < 0)
2 {
3 e r r o r (__FUNCTION__ , " Bind e r r o r . ") ;
4 }

This very simple if-construct will cause the server to bind (connect) to a given socket only with

exclusive access, thus preventing any forks of itself or other programs which would try for the

same. This is crucial because otherwise the operating system would not know to whom the

data received on the socket should be forwarded.

The last demand by the standard is to implement an inherent check by the software for self-

completeness. Currently, there is no such functionality in the client-program present. However,

a basic check for the availability of all modules including not only their headers but also their ac-

tual code is automatically undertaken by the Ada compiler.

3.1.2 Fully Defined Interface

Fulltext:

D. 38, page 111

➜ EN 50128

Despite its different name, the requirement refers to the exact same full-

text as the “Modular Approach” covered in section 3.2.2 below. In prac-

tice, different teams would be responsible for the different stages of the

V-Model (Figure 6) which this requirement is associated with [CEN11, sec.

5.1.2.11]. This is why it makes sense to list it twice and have it implemented redundantly by dif-

ferent people at different stages of the project.

3.1.3 Structured Methodology

Fulltext:

D. 52, page 117

➜ EN 50128

As the client-program is currently composed of roughly 22600 SLOCs

grouped into 50 different functions11, with the server adding another 750

SLOCs and contributing over 20 functions to the set, the chances of losing

track of their interoperation and of the data flow from one to another are

fairly high, especially when projects are becoming even larger.

11For this section the term function is universally used for any coherent part in a program. For C this basically trans-
lates directly into the programmatic structure of a function while in Ada it may also refer to procedures and (protected)
tasks.

EN 50128 requirements 21

Camera

Imagedata

Train detector Rest of the
world

Request Image

Error

Position of train

Figure 7: A context diagram as required by the Yourdon-method

Imagedata

1
Image

Acquisition

2
Image

Processing

Image request

Imagedata Position available

Get Position

Error
Error

Figure 8: A top level data flow diagram as required by the Yourdon-method

This requirement, which is not only applicable to software development but also to other highly

complex processes and machinery, asks for a structured approach in order to illustrate depen-

dencies and hierarchies between functional blocks so that chaos can be avoided right from the

beginning. Implementations exist in the form of different methodologies:

MASCOT was developed by the British Army and during its active use in the late 1980s and

early 1990s it suffered from little adoption in civilian projects. LSDM12 and especially its non-

commercial counterpart SSADM have remained in common use until today. However, they are

not very well suited for concurrent real-time systems. Hence, only JSD and the YOURDON-

method remain a worthwhile choice in EN 50128 [CEN11, D. 52]. The latter will be discussed

in detail further down in this section.

All of these methodologies originally date back to the 1970s when planning and structuring was

substantial to any kind of software development, since reading in from punch cards for a second

time after detecting a mistake in the code was extremely cumbersome. Today, the methodolo-

gies have been largely superseded by the ubiquitous UML which will be utilized in a different

context in section 3.1.5 below. Moreover, current agile approaches to programming based on

frequent software releases and only small incremental steps in between, such as Scrum or XP,

heavily contradict the waterfall model (see section 3), which all of the methodologies mentioned

above are based on [Sch09, p. 91].

The central idea in Yourdon-Modelling used here for the exemplification of the requirement is

the functional decomposition of the individual software parts in a strictly top-down manner in

order to eventually provide “a complete, unambiguous specification of what a system is to do”

[Pos86, p. 223]. In the first step a very abstract view is created, subsuming the entire system in

a single process (“bubble”) and indicating its interfaces to the outer world. This is called a con-

text diagram (Figure 7). In the next step this single process is divided into several separate ones

describing each part of the system with arrows symbolizing their interactions, a so-called top-

level data flow diagram (Figure 8). Similar to the context diagram continuous arrows denote data

12Note: EN 50128 erroneously refers to “LBMS” here, which is just the name of the company that invented LSDM.

EN 50128 requirements 22

flows, whereas their dashed versions stand for control flows which only transmit simple tokens

such as Boolean values. Depending on the complexity of the system, this top-level data flow di-

agram may now be broken down further into a second- or even third-level diagram until finally

each “bubble” becomes a primitive process, i.e. something so simple it cannot be decomposed

any further. Figure 9 shows this for the server (which was named Image Acquisition in Figure 8

because implementation details are not yet revealed at this level of abstraction). The numbering

attached to each process is not mandatory for the diagramming but it does simplify the correct

assignment of the “bubbles” in the context of the overall system. With Image a new kind of

entity symbolizing a data storage has been introduced here.

1.1
Wait for
request

1.2
Obtain Image

1.3
Send Image

Image request

Imagedata

Image

Get Image

Imagedata

Error

Figure 9: A second level data flow dia-
gram depicting the Image Acquisition
process of figure 8

Based on this final diagram, a data dictionary is de-

veloped which explains the internal structure of each

data flow and data storage (Listing 4). Lines 1–6 list

them in form of an assignment, with the primitive

parts of the respective entity shown on the right.

These primitive parts are then further defined in lines

7–12. Several different forms of notation exist, for this

example a concise version has been chosen [WM85,

p. 100f.] which is similar to that of regexes: Curly

brackets (lines 1, 2 and 8) denote the repeated use

of a primitive, the plus sign (lines 3 and 7) stands for a

concatenation, asterisks (lines 4–6, 9, 11) mark com-

ments including those referring to the unit of data of

the current entity. Comments may also be empty if

no valuable information can be added (line 4). Square

brackets (lines 10 and 12) symbolize an aggregate, i.e.

in line 10 a number may consist of a value in between

0 and 9. For line 12 the pipe symbol allows for several

such ranges with mutual exclusion, i.e. a character

may either be a number between 0 and 9 or a colon or in fact a letter of the alphabet.

Data dictionaries visualize the structure of data flows in a very sententious way. However, com-

plex structures are hard or even impossible to show (there is a maximum length of characters

to the Error, the Pixel_Tupel consists of exacly one X- and one Y-Pixel, units can only be de-

noted in comments, Imagedata and Image differ internally, with the former only consisting of

parts [”chunks”, section 2.2] of the latter etc.). Hence, minispecs, short verbal descriptions of

what a process does with its data, have been invented to overcome this drawback. They consist

of identifiers from the data dictionary, imperative verbs (“do”, “get”, . . .) and reserved keywords

(“if”, “otherwise”, . . .) to make up simple sentences which state decisions and/or repetitions

[PJ95, p. 195f.].

Consider the following example spec from process 1.3 depicted in Figure 9:

1.3 SEND IMAGE
Initialize an offset with 0.
For each call, do the following:
Write the current callcount to the first 4 bytes of “Imagedata”.
Initialize an offset2 with 5.

EN 50128 requirements 23

For the bytes of “Imagedata”, do the following:
Take the data from “Image” at offset and write it to “Imagedata” at offset2.
Increment offset and offset2.
If there is no data left in “Image” or “Imagedata” is full, stop the iteration.
Otherwise: Repeat.
Return “Imagedata”.

There is no definite syntax for the so-called structured English which was used in the minispec

other than the guidelines mentioned above. Moreover, those specs require strict length bound-

aries for the individual processes or they will soon become confusing due to their lack of group-

ing. For instance, in the above text, which maps to the function protocol_TransmitChunks()

in protocol.c, it is not formally stated where the two loops declared by the For-keyword effec-

tively end. The concrete spec should be unambiguous, nevertheless. But this claim cannot be

generalized.

Listing 4: A data dictionary for Yourdon-Modelling based on Figure 9
1 Imagedata = { P ixe l_Data }
2 Er ro r = { cha rac te r }
3 Image request = P ixe l_Tup le + P ixe l_Tup le
4 Get Image = ��

5 Image = � cur ren t image�
6 � un i t s : aggregate of 8 b i t s �
7 P ixe l_Tup le = P i x e l + P i x e l
8 P i x e l = { number }
9 � un i t s : p o s i t i v e number i n the range of the imagewidth/�he ight �

10 number = [0�9]
11 Pixe l_Data = � un i t s : aggregate of 8 b i t s �
12 cha rac te r = [A�Z | a�z | number | :]

Yourdon’s last step deals with the actual implementation of the software. For this purpose Struc-

ture Charts are to be drawn reflecting the hierarchical arrangement of the individual functions

and their interactions. As they give very concise insight about how a program is constructed,

these charts have not only been created on the basis of one single example but for all relevant

parts of the software. They are depicted in Figures 10, 11, 12, 13 and 14 on the following pages.

Rectangles symbolize individual functions. Their names ought to be consistent with the data

flow diagrams discussed above. However, since those were only drawn on an exemplary basis,

names of the actual functions as they appear in the software have been preferred here. Those

rectangles are connected by arrows which denote a subfunction call. In case of dashed arrow

lines (as in Figure 10) this call is invoked asynchronously. Despite the inherent orientation of the

arrow, control flow may also happen in reverse direction once those subfunctions return. Little

pointers adjacent to those arrows stand for data which are exchanged between the functions.

They may come with a circle- (arbitrarily complex data structures) or a bullet-tail (simple tokens

as discussed above). Arrows whose beginning and end are attached to the same function indi-

cate repetitive execution. Triangles on top of the rectangles make them “lexically included” with

their parent. Here, this is used for parent-functions which do not exist in the actual software but

either contain mutually exclusive decisions denoted by a little diamond at the lower end of the

rectangle, or simply facilitate the understanding of the grouping of their subfunctions. In Figure

12 there is also a rectangle with double lines along the vertical axis which stands for a prede-

fined module (i.e. a call to Put_Line() in Ada.Text_IO). Finally, Figure 11 contains a rectangle

EN 50128 requirements 24

adaclient

Adaimageprocessor.Network.Protocol.Imagetransfer Adaimageprocessor.Image.Analyze Adaimageprocessor.Output

Figure 10: A structure chart of the client-program as required by the Yourdon-method

with vertical lines rounded to indicate a data-only module. For an in-depth discussion of the dif-

ferent symbols refer to [YC79, app. B].

The main drawback of these Structure Charts is their lack of sequence. It is not defined in which

order the functions are called other than by the implicit presence of required input-values com-

puted by other functions before. With asynchronous calls as in Figure 10 this is unproblematic

(in fact all these Ada-tasks represented by the rectangles are started in parallel). This drawback

can only be overcome by the use of other diagramming techniques such as the UML Sequence

Diagram discussed in section 3.1.5.

Furthermore, the definition of a function or module which the rectangle is supposed to stand

for, does not necessarily match with the capabilities of a certain programming language. For the

outermost level in the client-program the name of the respective Ada packages has been used.

However, for Figure 10 this would imply a call of such a package which – strictly speaking – is

incorrect. The packages are rather withed which implicitly causes their individual tasks to start.

If one package contains only one task, this notation is unambiguous. But for Adaimageproces-

sor.Image.Analyze, which contains several such tasks including the two parallel rail-workers (Fig-

ure 15), this may lead to severe confusion.

Edward Yourdon, a computer engineer after whom this methodology was named, always con-

ceived it not only as a set of tools and diagrams but, indeed, as a philosophy to follow through-

out the entire development lifecycle. For him, it was a structured way of thought to approach

problems. Hence, for him there is much more to the whole story than what can be shown on a

few pages targeted only at reaching a compliance level with EN 50128. See [YC79, sec. 1.2].

EN 50128 requirements 25

Adaimageprocessor.Image.Analyze

Note: Error-handling and shutdown
routines are not shown here.

Acquire_Imagedata Analyze_Rail

Imagedata.Read Local_imagedata.
Set_Imagedata

tm
p_

im
ag

ed
ata

tm
p_

im
ag

ed
at

a

Imagedata ready

Local_imagedata.
Get_Imagedata

im
ag

ed
ata

detect_train_one_rail

im
ag

ed
at

a

S
lic

en
um

be
r

Slice_To_Pixel

SlicenumberY-pixel

Resulting_Position.
Write

Y-pixel

get_slice_mean

imagedatameanvalue

get_slice_moving_
average

m
ea

nv
al

ue

sl
op

ev
al

ue

numerical_derivation

sl
op

ev
al

ue

fir
st

_d
er

iv
at

io
n

Step 1:
calculate input

imagedata
slopevalue

Step 2:
analyzation

slopevalue

imagedata

find_local_minimum

trainposition

check_for_shadow_ahead_of_train
offset_local_minimum

Check for possible
train

slopevalue
trainposition

trainposition-offset_local_minimum

trainposition

slopevalue

slopevalue

offset_local_m
inim

um

Train found

Adaimageprocessor.
Image.Trackdata

trackdata

tra
ck

da
ta

Figure 11: A structure chart of the imageanalyze task in the client-program as required by the
Yourdon-method

Adaimageprocessor.Output

Timer.Start Adaimageprocessor.Image.Analyze.Resulting_Position.Read

Y-
pi

xe
l

Timer.Stop

time

Print result to
console

Y-position

time

Figure 12: A structure chart of the output task in the client-program as required by the Yourdon-
method

EN 50128 requirements 26

Adaimageprocessor.Network.Protocol.Imagetransfer

Imagetransfer_Controller

Note: Error-handling and shutdown routines are not shown here.

Get_Image_From_Remote

imagedata

Imagehandling.Imagedata.Write

imagedata

Request_Next_Image

Chunkscount

Process_Image_Size

Request_String

SOCKETCOMM.
Send_String

R
eq

ue
st

_S
tri

ng

Send_Data

re
qu

es
t

Receive_Data

SOCKETCOMMRCV.
Receive_Data

Raw_Receiver

R
et

ur
n_

A
rr a

y

R
etur n_A

rr ay

Return_Array

Request_Chunks

Chunkscount

SOCKETCOMM.
Send_String

Send_Data

re
qu

es
t

„IC“

Receive_Data

SOCKETCOMMRCV.
Receive_Data

Raw_Receiver

Return_Array

R
et

ur
n_

Ar
ra

y
R

et
ur

n_
A

rr
ay

Step 1: Setup Step 2:
data transfer

SOCKETCOMMRCV.
Receive_Data

Raw_Receiver

R
et

ur
n_

A
rr

ay
R

et
ur

n_
Ar

ra
y

Return_Record

Image_Data_Raw

Figure 13: A structure chart of the imagetransfer task in the client-program as required by the Yourdon-method

E
N

50128
requirem

ents
27

Server

imagetransfer_ServeImageRequest

protocol_GetRequest

protocol_PrepareNextImage

Perform action

request request

request

protocol_TransmitChunkssocket_ReceiveFromClient

request

camera_ReadImage

Dimensionsimagedata

socket_SendToClient

Chunkscount

socket_SendToClient

„IC
“

Send Imagedata

socket_SendToClientprotocol_GetNextChunk

chunkid
chunkdata

ch
un

kd
at

a

imagedata imagedata

imagedata

imagedata

camera_ReadImageRaw

D
im

en
si

on
s

im
ag

ed
at

a

im
ag

es
iz

e

protocol_ChunkidToString

C
hu

nk
sc

ou
nt

C
hu

nk
sc

ou
nt

protocol_DimensionConversion

request
Dimensions

protocol_ChunkidToString

ch
un

ki
d

ch
un

ki
d

Note: Error-handling routines are not shown here.

Figure 14: A structure chart of the server-program as required by the Yourdon-method

E
N

50128
requirem

ents
28

3.1.4 Error Detecting and Correcting Codes

Fulltext:

D. 19, page 98

➜ EN 50128

This requirement is supposed to prevent any unintentional alteration of

data. Since such alteration may occur even at hardware level with its ef-

fects propagating upstream until they eventually lead to anomalies in the

safety-critical software, it is suggested to use functions which store a foot-

print of the data and can later compare this footprint to the current state of the data whenever

they are read, thus ensuring their integrity.

Easily computable, some of these functions may be directly implemented in hardware and main-

ly provide protection against physical influences (e.g. electromagnetic interference). RAM with

“error-checking and correcting support”, the so-called ECC-RAM, and the UDP-checksum dis-

cussed below, fall into this category. Other more complex algorithms, especially those of cryp-

tographic origins, primarily recommend themselves for an implementation in software and may

also protect from man-made attacks intended to corrupt the system.

A famous example of successfully exploiting software-based footprinting is Stuxnet, a computer

worm revealed in 2010 which was targeted at Iranian nuclear power plants running real-time,

safety-critical control code on Siemens Simatic S7 PLCs [Lan10]. In order to infiltrate these au-

tomation systems the worm first had to gain full execution rights on the computers used to pro-

gram them. To accomplish this it turned itself into a scheduled task13 and altered the control

file associated with this task in such a way that it gained the necessary rights on the computer

it was running on. Preventing the operating system (Windows Vista and higher) from detect-

ing this manipulation, the worm also changed the checksum for this file, which was in the form

of a CRC32 hash, to match the original sum. This can be done by appending certain bytes to

the file until its polynomial representation (which is used as the CRC input dividend) becomes

a multiple of the CRC generator polynomial (a constant value used as the divisor), constitut-

ing an operation which forces a collision with the original quotient (the actual CRC hash) and

hence a (false-)positive data integrity check [SPMR06, sec. 3]. Microsoft, the vendor of Win-

dows, later replaced CRC32 with SHA256 for those control files to stop future attacks of this

manner [Dan10, time 17:38]. By the definition of EN 50128, CRC checksums fall into the cate-

gory of cyclic codes, whereas SHA belongs to the family of cryptographic codes [CEN11, D. 19].

According to a recent statement by former NSA employee Edward Snowden, Stuxnet is be-

lieved to have been heavily backed by the American and Israeli governments in order to pur-

posely delay Iranian Nuclear Weapon proliferation [AP13]. Its success remains controversial.

What the above example impressively shows is that hash algorithms with a high probability of

collisions (i.e. different input values result in the same output hash) are not very well suited for

detecting data corruption and their use should therefore be carefully justified.

A good example of the incorporation of the requirement in the software developed for this proj-

ect, the UDP-based network transmission (see section 2.2) is targeted at preventing physical

data corruption. Each single network packet comes with an 8 bit wide checksum generated in

hardware on the NIC of the sender and checked thereafter by the NIC on the receiving side. If

the check fails the packet is silently discarded. This makes the checksum only an error detecting

but not an error correcting code.

13Not to be confused with Ada tasks. Here task has a more general meaning and essentially refers to everything that
can happen periodically.

EN 50128 requirements 29

part meaning value value as 16 bit Hex
1 pseudo header Source IP 192.168.1.200 0xC0A8 0x01C8

2 Destination IP 192.168.1.15 0xC0A8 0x010F

3 UDP protocol type 17 0x0011

4 Packet length [bytes] 11 0x000B

5 UDP packet Source port 12345 0x3039

6 Destination port 33990 0x84C6

7 Packet length [bytes] 11 0x000B

8 Checksum as zeros 0 0x0000

9 payload data IC\0 0x4943

Table 1: Relevant fields for the UDP checksum calculation

To illustrate how the checksum computation works consider packet number 4 from Table 2,

respectively Figure 16. The physical structure of this packet just before it is transported over

the wire is depicted in lines 5 through 9 of Table 1. Lines 1 through 4 form a so-called pseudo

header of UDP. In contrast to the physical header of lines 5 through 8 it is not actually transmit-

ted but rather composed of fields belonging either to the physical UDP-header itself or the IP

transport layer (see section 2.2). Its only purpose is the checksum computation.

To actually execute the computation first convert every byte to its hexadecimal representation.

Then group every two consecutive bytes together. The result is shown in the last column of

Table 1. Now take the sum of all these values (0x28290) and add the higher eight bits (0x0002)

to the lower ones (0x8290). The result (0x8292) must finally be complemented (0x7D6D) to form

the checksum. Substitute it for the dummy value in line 8 of Table 1 and send the packet.

The receiver again has to sum up all values in the last column of Table 1, but now with line 8 be-

ing the real checksum and no longer a zero value (0x2FFFD). After that, the high and low halves

are added (0xFFFF). This result is defined to be correct by the underlying standard [BPB88]. All

other outcomes would cause the packet to be discarded.

As stated before, this checksum is only intended to prevent physical damage to the data. For

any purposely altered payload (Table 1, line 9) simply a new and correct checksum could be gen-

erated. Referring to the case of Stuxnet, this does not protect in any way from people intention-

ally intercepting and corrupting the transferred image pixels (a so-called “Man in the middle”-

attack).

3.1.5 Modelling

Table:

A. 17, page 76

➜ EN 50128

The requirement toward modelling lists eleven different techniques, two

of which are marked as highly recommended for SIL 1: State Transition

Diagrams and Sequence Diagrams. Even though only one of those two

would be sufficient for the fulfillment of this requirement, both can be il-

lustrated very well by the software created for this project and hence will be discussed here.

Some of the remaining recommended modelling techniques, such as Structure Diagrams and

Data Flow Diagrams, have been shown elsewhere in this document when talking about the

Yourdon-method in section 3.1.3.

EN 50128 requirements 30

A State Transition Diagram may be modelled in a number of different ways. For reasons of con-

formity with the Sequence Diagrams discussed below, an UML State-Machine Diagram has

been chosen here. It supplements the structure charts used for the Yourdon-method (section

3.1.3) by giving information about the order in which certain blocks of code are to be executed.

The basic idea behind such diagrams lies in the different states a program may be in. With the

exception of orthogonal regions (see below), only one state at a time may be active.

The example in Figure 15 depicts a view of the task-level14 on the client-program. The circles

describe entry - and exit-points to and from the system. The arrows in-between them show

the control flow. The text in square brackets that may come along with those arrows is called a

guard and contains a Boolean condition which has to evaluate to true before the flow continues.

In the case of Ada these guards translate either to semaphores ([Analyze_Semaphore. . .]) or

to guards of protected tasks (all other cases). Both of these structures are very limited in their

functionality due to the use of the Ravenscar-profile (refer to section 3.2.6). Client program and

Train detection form so-called superblocks which group certain cases of functionality. For the lat-

ter, this superblock contains two orthogonal regions to depict the concurrent nature of the train

detection which involves both rails being examined in parallel. However, the comparison of the

outcome of both detection algorithms is hidden inside the Resulting_Position object and thus

not shown in this very abstract diagram.

All states (the rectangles with rounded corners) may come with entry -, exit-, and do-actions

which describe what has to be done when entering, leaving or while remaining in this state.

The snapped rectangles are used for commentary.

Another member of the family of UML dynamic diagrams, the Sequence Diagram, can be seen

in Figure 16 exemplifying the UDP-based protocol used for the transmission of data between

the server- and the client-program (see section 2.2). The central aspect is the communication

between different entities. In the case of Figure 16 these are simply :Client and :Server. The

lifelines attached to them (dashed vertical lines spanning over the entire diagram) depict the

temporal course in which actions are executed by each entity. Phases of activation (longish rect-

angles on the lifeline) indicate specifically when this happens. Due to the connectionless nature

of UDP all the requests by the client (arrows pointing to the right) are asynchronous and hence

end with only half an arrowhead. Server responses, in contrast, are symbolized by left bound

dashed arrows. Each of these arrows represents a specific packet of the underlying protocol,

whose internal structure is shown in Table 2. Blocks entitled with loop or alt stand for either re-

curring operations or decision alternatives. Both come with guards in the same notation as for

the State-Machine Diagram discussed above. For the former these guards describe the looping-

condition (continue as long as the guard evaluates to true), for the latter they decide upon which

alternative is chosen (the upper if the guard is true, the lower if not).

In summary, the Sequence Diagram in Figure 16 is located at a much lower level of abstraction

than the State-Machine Diagram in Figure 15. Specifically, the former describes only a part of

Get_Image_From_Remote() which is the entry point in the Imagetransfer_Controller -state of the

latter.
14In the sense of an Ada task.

EN 50128 requirements 31

Entry/Get_Image_From_Remote()
Exit/Imagedata.Write()

Imagetransfer_Controller

get next image [!Error]

Entry/Imagedata.Read()
Exit/Local_imagedata.Set_Imagedata()

Acquire_Imagedata

Handles internal
copying of the
image

Requests the
image from the
server

[Ready_For_Read]

[Analyze_Semaphore[n] = TRUE]

Client program

Train detection

Exit/Resulting_Position.Write()

Analyze_Rail [left rail]

Exit/Resulting_Position.Write()

Analyze_Rail [right rail]

Entry/Resulting_Position.Read()
Do/Print out position

Print

[position_available]

[Error]

Figure 15: An UML statechart diagram of the client-program

EN 50128 requirements 32

[!error]loop

[n < #tries roundtrip]loop

Create socket

Bind the socket to
the server port

Create socket

Bind the socket to the own
IP + given Port

Close socket

1. request next image

[!error]

[else]

alt

[n < #conn.tries non-burst]loop

2. number of chunks

[!error]

[else]

alt

:Server

Wait timespan
non-burst mode

errormessage

[n < #tries burst mode]loop

3. request chunks

[n < #conn.tries burst]loop

Wait timespan
burst mode

4. ACK

errormessage

[n < #Chunks]loop

[n < #conn.tries burst]loop

:Client

5. data of the current image chunk

Close socket

Figure 16: UML Sequence Diagram of the UDP-based protocol

EN 50128 requirements 33

name of step structure of the respective packet

1 request next image IN <top left X padded to 4 characters> <top left Y padded
to 4 characters> <bottom right X padded to 4 characters>
<bottom right Y padded to 4 characters>

2 number of chunks IN <number of chunks padded to 4 characters>

3 request chunks IC

4 ACK IC

5 data of the current image
chunk

<sequence number padded to 4 characters> <data>

errormessage ER <errormessage trimmed to 53 characters>

Table 2: The structure of the packets associated with the different steps shown in Figure 16

3.1.6 Alternative optionally required measures

Annotation number 2 of the standard’s table referred to in section 3.1 lists seven optionally re-

quired measures one of which has to be selected. As Error Detecting and Correcting Codes

(section 3.1.4) and Modelling (section 3.1.5) are among them, the coverage in the sections above

was, strictly speaking, more than sufficient.

Nevertheless, here is a short summary of the other possible measures including the reasons

why they have not been taken into account for this project.

Table:

D. 26, page 101

➜ EN 50128

Fault Detection and Diagnosis requires a system to deliver either correct

results or no results at all. This must be achieved by assertion program-

ming, N-version programming or the Safety-Bag technique. The first two

are mentioned en passant further down in section 3.3 with the assertion

corresponding to the Assert statement provided by aunit and the N-version to the testing code

presented in Listing 9 which computes the same result as the code to be tested differently.

However, a general use of N-version programming outside of the testing-routines would require

additional developers and/or a different programming language to proof useful. Neither was fea-

sible for this project. Likewise, the Safety-Bag technique which asks for an external supervisor

(i.e. a second computer) [CEN11, D. 47, p.115] would have required too much effort here.

Fulltext:

D. 24, page 100

➜ EN 50128

Failure Assertion Programming is headed in the same direction as the

assertion programming mentioned in the previous paragraph. To extend

a little upon it, SPARK [Alt11, sec. 3.4] and the most recent incarnation of

the Ada language (Ada 2012) provide special pre- and postconditions to

functions and procedures which allow for an easy way of assertion programming (see section

4). However, SPARK is aimed at much higher SI-Levels, and Ada 2012 features have simply not

yet been incorporated into the client-program.

EN 50128 requirements 34

Fulltext:

D.,16, page 97

➜ EN 50128

Diverse Programming is merely a combination of the N-version program-

ming and the Safety-Bag technique, both mentioned above. Unfortunately,

benefits of applying this extensive requirement in the field have remained

doubtful until this day. In summary, there is no guarantee that a certain

algorithm being implemented by different people on different computers, running different op-

erating systems will provide any more reliable results than a single one on a single machine. In-

stead, the overhead resulting from the comparison of their results might even cause new faults.

Fulltext:

D. 36, page 110

➜ EN 50128

Memorising Executed Cases requests for a set of predefined execution

paths against which the running program is compared before any output

operation takes place. As there are no real large-scale decisions in the

client-program (confer with the structure charts of section 3.1.3), com-

pared to an interlocking-system for instance, and the programmatic check against the validity

of those execution paths is not trivial, the measure has not been considered.

Fulltext:

D. 25, page 100

➜ EN 50128

Software Error Effect Analysis is an application of the FMEA on software

development. As software may only contain systematic faults [Red06, p.

339], the analysis essentially boils down to three stages: Determination

of the necessary thoroughness of the examination (consider each line of

code or just each function?), identification of the errors possibly resulting from those entities

and eventually the weighing of those errors, combined with a presentation of hazardous scenar-

ios ignored by the current software implementation. As this is required to be carried out by an

independent team of examiners and demands for a lot of paperwork, it has not been considered

for this project, either.

3.2 Software Design and Implementation

Table:

A. 4, page 70

➜ EN 50128

Although this set of measures is already referenced in the section about

Architecture and Design of the standard [CEN11, sec. 7.3.4.24, p. 44], it

does officially belong to the subsequent section titled Component De-

sign [CEN11, sec. 7.4.4.6, p. 47] (confer with the V-Model in Figure 6). The

measures are generally more specific to the actual coding of the software than those discussed

previously (section 3.1). Their aim is to identify whether the coding will be feasible and the re-

sult maintainable and testable [CEN11, sec. 7.4.4.13, p. 48], with the last requirement being a

prerequisite for the following section 3.3.

3.2.1 Structured Methodology

Fulltext:

D 52, page 117

➜ EN 50128

This requirement exactly doubles with the one from section 3.1.3. How-

ever, the statement from section 3.1.2 regarding intentional redundancy

does not apply here, since the Structured Methodology is more of a fun-

damental approach to software development which simply has to be fol-

lowed throughout the entire development process as outlined by the V-Model in Figure 6.

EN 50128 requirements 35

3.2.2 Modular Approach

Fulltext:

D .38, page 111

➜ EN 50128

Contrary to most other requirements of EN 50128, which state their goals

in a rather abstract, implementation-independent form, this particular one

names eight specific points to be taken care of. However, due to the com-

prehensiveness of some of them, additional measures such as those out-

lined in section 3.2.4 should also be carried out.

The aforementioned eight points are printed here verbatim in bold letters, with their explana-

tions following.

a module shall have a single well defined task or function to fulfil This has already

been stated as a requirement of the so-called minispecs in the Yourdon method discussed

in section 3.1.3 and can therefore be seen as inherently fulfilled.

connections between modules shall be limited and strictly defined, coherence [. . .]

shall be strong This is also required by Yourdon (section 3.1.3) and implicitly enforced

by the Ada programming language and its fine-grained variable scopes as well as its Raven-

scar-Profile which requires the programmer to use protected objects to avoid race-condi-

tions with different tasks and thus implicitly limiting connections between them.

collections of subprograms shall be built providing several levels of modules Ada

enforces this through its sophisticated inheritance features. See the structure charts 13,

11 and 12 in section 3.1.3 for how it is done in the client-program.

subprograms shall have a single entry and a single exit only For the entry point and

for simple procedures and functions this is guaranteed by the Ada language itself. Each

call inevitably has to start at the very beginning of those subprograms. For tasks Raven-

scar [Ada06, D.13.1] limits their entry points to none, which means the task can only be-

have like a procedure. Protected objects may have one single entry with a maximum of

one waiter. Both limitations lead to full compliance with the first part of the requirement

(see also section 3.2.6).

The demand for a single exit point is mostly honored throughout the program as well ,

but exceptions form a notable and deliberate deviation from the rule. The need to quickly

react to a malfunctioning software and the attempt to recover from this state should

supersede this guideline here. Sometimes several exit points also make an algorithm

clearer. Consider the following abridged version of the function detect_train_one_rail():

Listing 5: Shortened version of the train detection algorithm in Ada
1 function d e t e c t _ t r a i n _ o n e _ r a i l (. . .) return I n teger i s

2 begin

3 for S l i c e in r a i l _ o f _ i n t e r e s t ’ Range loop

4 s lopeva lue (S l i c e) := [. . .] ;
5
6 get_absolute_minimum ;
7 compute_gradient ;
8
9 i f grad ien t >= thresho ld . de r i va t i on_upper then

10 poss ib l e_ t r a i n_ found :

EN 50128 requirements 36

11 begin

12 f ind_local_minimum ;
13
14 i f delta_of_absolute_and_loca l_minimum_is_smal l_enough

then

15 check_for_shadow_ahead_of_tra in :
16 begin

17 while s lopeva luechange_in_acceptable_range loop

18 offset_shadow := offset_shadow +1;
19 i f offset_shadow =

minimum_sections_for_shadow_occurrence
then

20 return S l i ce�offset_ local_minimum ;
21 end i f ;
22 end loop ;
23 end check_for_shadow_ahead_of_tra in ;
24 end i f ;
25 end poss ib l e_ t r a i n_ found ;
26 end i f ;
27 end loop ;
28
29 �� no t r a i n detected
30 return �1;
31 end d e t e c t _ t r a i n _ o n e _ r a i l ;

The function may exit in both lines 20 and 30. This is directly linked to the fact that this

function will stop executing as soon as it finds a train (line 20). Only if there is absolutely

no train present, execution will proceed until line 30. Of course, the same algorithm could

be implemented by replacing line 20 with an exit when ... construct15 and saving the re-

turn value in some temporary variable, thus allowing for a single exit at the very end. But

in this special case it would not necessarily aid program comprehension16.

modules shall communicate with other modules via their interfaces. Where global or

common variables are used they shall be well structured, access shall be controlled

and their use shall be justified in each instance Data common to tasks are used

in read-only mode exclusively to avoid race-conditions. This can be very well achieved

by either getter-functions (i.e. Local_imagedata.Get_Imagedata in Adaimageproces-

sor.Image.Analyze) in conjunction with semaphores [Ada06, D.10] or Protected entries

(i.e. Resulting_Position.Write in the same package).

For ordinary procedures and functions information encapsulation via getters and setters

applies as well (see section 3.2.3). In addition, the compiler switch -gnatwk (Table 4) was

used to make sure all constant values are always declared constant.

all module interfaces shall be fully documented Extensive documentation covering

parameters, discriminants and return values of each module is provided in HTML–form.

any modules interface shall contain the minimum number of parameters necessary

for the modules function Ada guarantees this automatically. Only simpler languages

like C with its extern statements to declare functions outside of the current file could po-

tentially violate this requirement. But even for the server, which is written in C, this has
15Or simply a goto – but this is considered the double return’s equally evil twin. Refer to section 3.2.4.
16The Ada Quality and Style Guide generally recommends the exit when-variant – but does allow for the if/then-

construct as well [Sof95, sec. 5.6.5].

EN 50128 requirements 37

at least been excepted partly by using gcc’s -Wimplicit-function-declaration and

-Wstrict-prototypes switches. “Partly” because C still does not check if the number

of parameters and their types is consistent everywhere, it now only forces the program-

mer to explicitly state the parameters wherever the function is externally declared and/or

called.

a suitable restriction of parameter number shall be specified, typically 5 The motiva-

tion for this requirement remains somewhat unclear, since even when sticking to the rule

one could simply pass many more parameters hidden inside records or behind access

variables17 to subprograms. Ada, in addition, allows for named parameters to remove any

ambiguity in calling a subprogram [Ada06, 6.4] even with many parameters. Neverthe-

less, the number of five parameters is not exceeded anywhere in the client-software.

3.2.3 Components

Table:

A. 20, page 77

➜ EN 50128

The standard only mentions two highly recommended measures here.

The first one titled Fully Defined Interface was discussed in section 3.1.2,

respectively 3.2.2. Therefore, the only technique left to fulfill this require-

ment is Information Encapsulation [CEN11, D. 33, p. 109].

Its aim is to minimize direct access to globally used data and to provide dedicated methods for

their alteration instead (see also module interfaces in section 3.2.2), with the advantage of lim-

iting code adaptions in case of changes of the underlying data structure. The simplest forms of

such Encapsulations are so-called Getter - and Setter -Methods. In Ada those may be grouped

usefully in their own subpackages, whose private-parts contain the actual data, so that bypass-

ing the access methods is impossible. Consider the example below taken from the specs of

Adaimageprocessor.Network.Socket:

Listing 6: Information encapsulation in Adaimageprocessor.Network.Socket
1 package SettingsManager i s

2 procedure Burst_Transfer_On (Chunknumber : in Number_Of_Chunks) ;
3 procedure Burst_Transfer_Off ;
4 function Get_Roundtr ip_Tr ies return P o s i t i v e ;
5 function Get_Connect ion_Tr ies return P o s i t i v e ;
6 private

7 SOCKET_TIMEOUT_MAX : constant Durat ion := 1 . 0 ;
8 SOCKET_TIMEOUT_MIN : constant Durat ion := 0 . 7 ;
9 CONNECTION_TRIES_MAX : constant P o s i t i v e := 2;

10 CONNECTION_TRIES_MIN : constant P o s i t i v e := 3;
11 ROUNDTRIP_TRIES : constant P o s i t i v e := 3;
12 connec t i on_ t r i es : P o s i t i v e := CONNECTION_TRIES_MAX ;
13 end SettingsManager ;

As the name suggests, this package handles the current settings of the socket-connection. Dur-

ing different phases of the data transfer, different timeouts (the period it takes to wait for a re-

ply by the server) and different retry-counts apply (Figure 16). Here, the Setter -methods are

the procedures in lines 2 and 3, Getters are the functions in lines 3 and 4, encapsulated data

17respectively structs and pointer constructions in C

EN 50128 requirements 38

follow in lines 7 to 12. The burst transfer is active during the actual transmission of the image

data, while the less restrictive non-burst transfer is used for the initialization and handshaking

which happens prior to that. High-level routines in Adaimageprocessor.Network.Protocol call

the two procedures during the respective phases of the transfer and immediately afterwards

read out the resulting round trip number (the retry-counts returned by Get_Roundtrip_Tries()).

Get_Connection_Tries(), in contrast, is only used by very low-level socket-functions in Adaim-

ageprocessor.Network.Socket. The Setters in lines 2 and 3 simply alter connection_tries in

line 12 and set it to either the value of line 9 (non-burst mode) or 10 (burst mode). As ROUNDTRIP_

TRIES is not changed during the different phases of the transfer, Get_Roundtrip_Tries() can

remain without such a variable and only returns a constant value.

The Encapsulation of the necessary socket-parameters by introducing this package collects

all data at one central point and thus greatly simplifies code maintainability and enhances ro-

bustness, just as expected by the standard. Other examples of such Encapsulations may be

found in the protected tasks and in various other conventional child-packages such as Local_

Imagedata of Adaimageprocessor.Image.Analyze or OperationIdentifiers of Adaimagepro-

cessor.Network.Protocol.

A counterexample of the technique is the package Adaimageprocessor.Image.Trackdata whose

data are by no means encapsulated. However, since it consists only of constant values and

there is just one very dedicated method, namely get_slice_mean() in Adaimagprocessor.

Image.Analyze, which actually accesses it, this can very well be tolerated.

Abstract data types, as suggested by the standard, do exist in Ada as well. But a reimplemen-

tation (inheritance) of the same functionality for a different data-layout was not required at any

point of the project, so no use has been made of them.

3.2.4 Design and Coding Standards

Table:

A. 12, page 73

➜ EN 50128

Code becomes easier to understand and maintain if a certain coding style

is followed. So the first part of this requirement asks the developer to es-

tablish such a style together with a coding standard and obey both hence-

forward. What this paper should comprise exactly, is defined only vaguely

by EN 50128, though [CEN11, D. 15]. Style refers to what the code looks like. Naming conven-

tions for variables or a requirement toward strict functional decomposition are examples of what

falls under this term. A coding standard is more of a language-specific analysis regarding its

portability (will a code run on different operating systems, will it be understood by different com-

pilers?), possible shortcomings of the language (C has no array-bounds checking) and how to

treat them (the programmer should always make sure memory is allocated for a certain array

element before writing to it). Restrictions on how to avoid faults caused by this behavior (code

must be able to properly handle an access error when reading from an unallocated array ele-

ment) eventually make it complete.

The second part of the requirement is slightly more tangible and essentially asks for a formal

proof that the rules from section 3.2.2, plus the coding style and coding standard from above

are actually obeyed throughout the entire code. The exact measures to be taken care of are

given in [CEN11, A. 12]. Points 3 and 4 of that list are already honored by the Ravenscar pro-

EN 50128 requirements 39

file. The other lines which are marked highly recommended are printed together with the ap-

propriate rule switches of gnatcheck in Table 3. Gnatcheck is a part of the GNAT compiler suite

which can be used to testify compliance with certain language restrictions and was originally

developed to tackle the coding guidelines of DO-178B (section 1). It comes with an extensive

set of predefined rules which can be parametrized, chained together and run against the source-

code. If the program does not print any output other than its progress bar, everything is fine.

Otherwise, it will give the exact location of where the code violated one of the restrictions ref-

erenced in Table 3 (i.e. FileX:LineY:ColumnY: goto statement found; not allowed because of

+RGOTO_Statements).

Table 3 states several embraced rules. Those are actually required by EN 50128, but fail against

the code for various reasons: +RForbidden_Pragmas:GNAT, which comes from the coding stan-

dard discussed in the very beginning of this section, would prohibit to use of pragma Unreserve_

All_Interrupts ;. This pragma is specific to the GNAT compiler and forces it to forward all in-

terrupts by the operating system to the program. In the case of the client these are SIGINT,

SIGTERM and SIGHUP (defined in Adaimageprocessor) which should all cause the client to

shutdown immediately [Ada12a]. +RMisnamed_Identifiers:Default refers to the naming con-

ventions of program entities in the style guide mentioned above. Those conventions would

replace the Default-parameter printed here [Ada13c, sec. 8.1.6.3]. Since a style guide was not

written for the purpose of this paper and the restrictions implied by Default are fairly rigid, the

rule remains unused.

+RUnconditional_Exits fails because of its inherent simplicity. Consider the example in Listing

7 below (taken from Request_Chunks() in Adaimageprocessor.Network.Protocol):

Listing 7: Demonstration of an unconditional exit in Ada
1 I n i t i a l i z e _ L o o p :
2 loop

3 Do_Something ;
4 declare

5 Process_ Ind ica to r : constant Sometype := Somevalue ;
6 begin

7 case Process_ Ind ica to r i s

8 when O p e r a t i o n I d e n t i f i e r s . Request_Chunks =>
9 exi t I n i t i a l i z e _ L o o p ; �� f ine , l e t s proceed

10 end case ;
11 end ;
12 end loop I n i t i a l i z e _ L o o p ;

The rule would object to this because of the missing when clause in line 9. However, the exit is

hidden inside a case construct and therefore entirely conditional. Line 9 could easily be changed

into exit Initialize_Loop when True; to comply with the rule, but that would contradict code sim-

plicity.

The parameters of +RMetrics_Cyclomatic_Complexity, +RMetrics_Essential_Complexity,

+RMetrics_LSLOC and +ROverly_Nested_Control_Structures have been arbitrarily set, so the

code complies with them. The last rule is merely a subset of the first two, which describe much

more sophisticated measures to identify code complexity. +RImproper_Returns enforces single

exit points in functions, something which has already been discussed along with Listing 5 in

section 3.2.2. +RMultiple_Entries_In_Protected_Definitions is enforced by the Ravenscar

subset as well and therefore doubles here (see section 3.2.6).

Unfortunately, gnatcheck does not provide sufficient checks for clause 10 in Table 3, although

EN 50128 requirements 40

this requirement may sound oddly simple at first. +RNon_Visible_Exceptions only covers a

very specific case here, which was probably not even thought of by the authors of EN 50128.

However, with adactl (full program name: Adacontrol, [Ada13d]) a second heavyweight code

checker exists providing several checks that can tackle this requirement, namely:

Listing 8: Example of a rule file for use with Adacontrol
1 check d i rec t l y_accessed_g loba l s ;
2 search reduceable_scope (v a r i a b l e , type) ;
3 search g loba l_ re fe rences (mu l t ip le , task , protected) ;

The above notation is in the form of a rule file as required by adactl, see [Eur13]. The check

and search identifiers describe different consequences of the tests. The former reports every

violation as crucial and forces adactl to exit with a failure code, while the latter only informs

about the violation. Gnatcheck uses a similar input file which is a simple concatenation of the

rules as specified in the right column of Table 3 with every violation treated as crucial.

Lines 2 and 3 in Listing 8 currently produce a fair number of violation messages. For line 2 this

is due to the fact that all variables and types worth of documentation are declared in the pack-

age specs (the files ending with *.ads) because NaturalDocs, the tool used to generate the fi-

nal HTML documentation [Val11], currently does not process the package bodies (the files end-

ing with *.adb) correctly. Line 3 rightly reports various uses of external variables by protected

objects and tasks. However, their use can be justified in each case and does not lead to race-

conditions, which this rule is designed to prevent.

In the case of gnatcheck all the deviations described in the last paragraphs can be directly jus-

tified in the source code by using the following annotation pragma: pragma Annotate (gnatcheck,

exemption_control, Rule_Name, [justification]);. This turns off the rule given by Rule_Name for a given

code section [Ada13c, sec. 7.1]. Adactl provides a similar facility by using Ada code comments

[Eur13, sec. 4.2.4].

Explanations of the gnatcheck rules listed in Table 3 but not mentioned in the above text can be

found in [Ada13c, sec. 8]. Similarly, the adactl documentation covers them here [Eur13, sec. 5].

For a comparison of Ada rule checkers and the rationale behind coding rules in general refer to

[Ros08].

3.2.5 Strongly Typed Programming Languages

Fulltext:

D. 49, page 115

➜ EN 50128

Ada was used for the development of the client-program and by definition

of the standard that is a strongly typed language. The example given in

Listing 2 of section 3.1.1 should provide sufficient proof by emphasizing

the challenges of an intentional circumvention of the strict type checking

imposed on each variable by the Ada-language. Note especially the keyword new (line 3) which

declares a type based on Natural but is incompatible with its parent18 and hence forces an ex-

plicit conversion (line 9) afterwards. This facility of the language which commonly results in nu-

merous different types to accommodate all the incomparable and otherwise divergent variables,

18Contrary to subtype which would create a compatible type. – For a more detailed description refer to [Sof95, sec.
5.3.1].

EN 50128 requirements 41

requirement appropriate switch

1. Coding Standard +RForbidden_Attributes:GNAT

(+RForbidden_Pragmas:GNAT)

2. Coding Style Guide (+RMisnamed_Identifiers:Default)

7. No Unconditional Jumps +RGOTO_Statements (+RUnconditional_Exits)

8. Limited size and complexity
of Functions, Subroutines and
Methods

+RFunction_Style_Procedures

+RGenerics_In_Subprograms

+RMetrics_Cyclomatic_Complexity:10

+RMetrics_LSLOC:130

+RMetrics_Essential_Complexity:8

+ROverly_Nested_Control_Structures:4

9. Entry/Exit Point strategy for
Functions, Subroutines and
Methods

(+RImproper_Returns)
+RMultiple_Entries_In_Protected_Definitions

+RImplicit_IN_Mode_Parameters

+RUnassigned_OUT_Parameters

+RParameters_Out_Of_Order

10. Limited use of Global Vari-
ables

(+RNon_Visible_Exceptions)

Table 3: Rules of gnatcheck to fulfill the requirements in EN 50128, table A.12

also caused aunit, which will be introduced in section 3.3, only to allow for simple Boolean as-

sertion methods. Other testing frameworks of the xUnit-family usually offer such methods for

each single variable type [Ada13a, footnote 1].

Contrary to Ada, the C language utilized for the server-program does not fall into the category

of a strongly typed language. Hence, a short summary of possible measures to improve the

server not only toward stronger typing but also toward a generally safer Coding Style (see sec-

tion 3.2.4) will be given here as well.

Prior to the implementation of EN 50128, the so-called Mü 8004 by the Federal Railway Admin-

istration (EBA) was the dominant guideline for all safety-relevant machinery in the railway sector

in Germany. Today, it still remains in use, but primarily in the role of a “national extension” to

the internationally approved standard. Mü 8004 also encompasses a directive regarding the use

of the C language. However, the available version was so outdated and vague that implemen-

tation seemed infeasible [Eis94b]. An example requirement from this paper reads: “[. . .] daß

der Zugriff auf globale Variablen und Referenzparameter in richtiger Weise durchgeführt wird.”19

[Eis94b, point 3]. Furthermore, this and the other four (!) requirements must be [automatically]

checked by an authorized [computer-]program [Eis94b, point 5]. How to define “richtige Wei-

se” (correct way) and how to possibly check non-conforming behavior via a lint-like software,

which is supposedly referred to by the second statement, is left to the reader’s imagination. Ap-

parently, more recent versions of the directive have gained significantly in size and now contain

precise rules regarding which language constructs in C are actually allowed and which are not,

but their meaningfulness still remains dubious at times. For example, one rule cited in a harsh

critique of the directive forbids the use of non-terminating loops [Lot09, p. 14]. As this is a core

19Translation: “[. . .] that access to global variables and reference parameters will be executed in a correct way.”

EN 50128 requirements 42

server-program (C) client-program (Ada)
1. -Wall 1. -fstack-check

2. -Wextra 2. -gnat05

3. -pedantic 3. -gnatwk

4. -Wmissing-prototypes 4. -gnatf

5. -Wfloat-equal 5. -gnato

6. -Wswitch-default 6. -gnatE

7. -Wstrict-prototypes

8. -Wundef

9. -std=c99

Table 4: gcc-switches used for compiling the server- and client-program

functionality of every server, no further attempts have been made to implement this new direc-

tive in any way, either.

Aside from the railway sector, there is a well-regarded Coding Style by the British MISRA as-

sociation, targeted mainly at embedded software in the automotive sector. Since the server

makes use of C99-functions like snprintf(), it is not compatible with the former C90-standard

which the available MISRA-guidelines are based on [The98]. Newer versions incorporating the

updated language specifications do exist, though. As no free tools are available to automati-

cally check sourcecode against the guidelines and manual checking is infeasible, only a subset

testable by the compiler-switches of gcc was taken into account (Table 4). The generic switches

(lines 1 and 2) are based on this paper [Kar11], while other more specific ones (lines 4–8) origi-

nate from another thesis [Kai07, p. 34ff.]. -Wunreachable-code mentioned there had to be omit-

ted, as it has proven to yield erroneous results [Tay11]. Similarly -ansi was not used since it

contradicts with line 9 in the current versions of gcc which still treat the older C90 as the ANSI

standard, regardless of the intermittent ratification of C99. The other checks listed in the thesis

are already included in -Wall (line 1). For a description of the effects of the individual switches

refer to the gcc manual [Sta08, ch. 3].

Despite the efforts undertaken by incorporating the compiler switches, the server-program still

remains non-MISRA-compliant. For example, the usage of <errno.h> to check for failed conver-

sions of strtol() in protocol_ DimensionConversion() is not allowed due to a poor defini-

tion of its behavior in the C standard [The98, rule 119]. Likewise, <time.h> used for determining

the time of an error occurrence in error() (file generic.[c|h]) is not permitted [The98, rule 127].

However, contrary to similar20 constraints by the Ada Ravenscar-subset (section 3.2.6), no safe

alternative exists.

The Ada-switches turned on for the compilation of the client have also been shown in Table 4.

However, these are mainly targeted at the conformance with the Ada-standard [Ada06] (lines

1, 5 and 6) [Ada12c, sec. 13.6] and prohibit certain programming practices (line 3), rather than

enforcing safer coding styles. This is achieved by gnatcheck instead, which was introduced in

section 3.2.4. For a full explanation of the individual switches refer to [Ada12b, sec. 3.2].

20but differently motivated – the expelled Ada.Calendar -package does allow for leap seconds and leap years which is
simply not desirable for calculating time offsets in a real-time system [Ada06, sec. 9.6.1]. <time.h>, on the other hand,
simply suffers from undefined behavior.

EN 50128 requirements 43

3.2.6 Alternative optionally required measures

There are two more optionally required measures in the standard’s table mentioned in section

3.2 which are to be briefly discussed here.

Fulltext:

D. 53, page 117

➜ EN 50128

Structured Programming is targeted at component-oriented software

development. By splitting up the software in small, easy to maintain parts,

structural complexity should be cut down to a minimum while simplifying

analysis in downstream (Figure 6) processes. This requirement will not be

discussed here in detail, as complexity on a macroscopic-level (functional grouping) is enforced

by the package-functionality of the Ada language itself (refer to the structure charts presented

in Figures 10, 11, 12 and 13). On the microscopic-level, the requirement was tackled by line 8 in

Table 3 of section 3.2.4.

The requirement towards the looping [CEN11, line 3381] remains incomprehensible, especially

with the added “where possible”. The client-program contains several loops which are com-

pletely unrelated to the input-values (because their number of iterations is obtained from Set-

tingsManager for instance – see Listing 6).

Preference of structured programming over speed has been followed throughout the entire pro-

gram. A counterexample would be to implement the unchecked conversion shown in Listing 2

by a much shorter address-overlay, which could then be inlined to avoid any calling overheads,

like so: for Target’Address use Source’Address;

Of course, this is even more dangerous than an unchecked conversion and, on top of that, it

does not physically copy the data.

Table:

A. 15, page 75

➜ EN 50128

Programming Language again just requires to stress the fact that this

software is written in Ada for compliance (confer with section 3.2.5). But

to add some new information here: The Ravenscar-profile intended espe-

cially for high-integrity systems has also been utilized while developing

the client-software. It is composed of a set of language restrictions whose aim is a static de-

terminability of memory usage [Ada06, sec. D. 13.1]. This has great advantages both while de-

ploying software to memory-constrained embedded-systems as well as during possible down-

stream verification processes, since mathematical proofs of correctness will become much

easier [BDV03, p. 7f.]. The limiting factor of the profile regarding task synchronization has al-

ready been shown in sections 3.1.5, 3.2.2 and 3.2.4. Another important measure which had to

be taken care of was the banning of Ada.Calendar by Ravenscar. So the error-handling Error()

in Adaimageprocessor had to use the compiler-specific package GNAT.Time_Timestamp instead

to print out the time of a specific error occurrence. Furthermore, Ada.Real_Time was utilized to

implement the stopwatch which calculates the fps-counter in Adaimageprocessor.Output.

For a general introduction to the Ravenscar-profile refer to [Dob10].

EN 50128 requirements 44

3.3 Unit Testing

Table:

A. 5, page 71

➜ EN 50128

Requirements towards testing fall into the “Software Component Testing

Phase” (Figure 6) and are therefore no central part of this paper. However,

a brief introduction to the unit-testing capabilities of Ada is given here,

nonetheless. Besides a few commercial tools, two freely available test-

frameworks for Ada exist: ahven and aunit. A comparison may be found here [Car11]. For the

purpose of demonstration the latter has been chosen, mainly because it features a tighter inte-

gration into the development workflow of the GNAT suite aimed at university use.

The first step for larger software projects like the one developed for this paper is to run gnattest,

a little helper program which creates a plethora of skeleton files to store the required test code

[Ada13b]. A manual creation of these files is also possible but rather tedious [Ada09]. During

this process each package is turned into four such skeleton files: <Package-Name>-test_data.

[ads|adb] and <Package-Name>-test_data-tests.[ads|adb]. The former holds so-called Set_

Up and Tear_Down routines intended for the test fixtures. These fixtures encompass everything

needed to set up a test environment (e.g. create fake input values, attach hardware, set it to a

certain state, etc.). The latter is intended for the actual test code. Since aunit is heavily influ-

enced by the xUnit test framework, which exists for many major programming languages, this

test code is based around assertions. These are simple Boolean statements which have to be

proven right during test execution to make the test succeed.

Suppose the conversion results of Streamconverter.ToStream() in Adaimageprocessor.Net-

work, an especially error-prone function due to its use of an unchecked conversion (see section

3.1.1), are to be tested. The specification21 is as follows:

function ToStream (Input: in String) return STREAMLIB.Stream_Element_Array;

So a suitable test would be to feed the function with an arbitrary string, use some other mech-

anism to cast it into the target format (or use a static value if conversion is not feasible) and fi-

nally compare the result with what was obtained from the examined function. A possible test

code for this use case is printed below:

Listing 9: Possible test code for Adaimageprocessor.Network.Streamconverter.ToStream
1 procedure Test_ToStream (Gnattest_T : in out Test) i s

2 package STREAMLIB renames Ada . Streams ;
3 Input : S t r i n g := " He l lo World " ;
4 Output : STREAMLIB . Stream_Element_Array := ToStream (Input) ;
5 Output_As_Str ing : S t r i n g (Input ’ Range) ;
6 begin

7 for I in Output_As_Str ing ’ Range loop

8 Output_As_Str ing (I) := Character ’ Va l (Output (STREAMLIB .
Stream_Element_Offset (I))) ;

9 end loop ;
10 Assert (Input = Output_As_Str ing , " Conversion y ie lded erroneous r e s u l t . "

) ;
11 end Test_ToStream ;

The actual assertion is executed in line 10 of Listing 9 with the Boolean expression to be proven

as the first argument. If it evaluates to true, the test program compiled out of all the test cases
21The part which can be found in the respective file of the package whose name ends with *.ads

EN 50128 requirements 45

will emit a simple “PASSED” for this test. If not, “FAILED” plus the message given as the sec-

ond argument will be printed out. A test may also “CRASH” if an exception occurred during ex-

ecution.

To specifically check if procedures raise the exceptions they are intended to, aunit offers a

second, dedicated assertion statement. Its application is demonstrated below for the Send_

String() procedure in Adaimageprocessor.Network.Socket. Listing 11 represents the actual

test code and can therefore be found in adaimageprocessor-network-socket-test_data

-tests.adb – just analogous to Listing 9. However, since this procedure interacts with the out-

side world (it depends on a working socket-connection), a corresponding fixture must be set up

first. This is done in Listing 10. Along with the two fixture functions discussed before, Call_

Send_String() has been added to the set. It is a wrapper needed for technical reasons to equip

Send_String() with adequate parameters [Ada13a, sec. 2]. In this specific case the parameter

is a very long string which does not fit into a single network packet. Send_String() should de-

tect this and raise an exception. Whether that actually happens is checked in line 3 of Listing

11. Only if such an exception is detected will the test be passed. Hence, this test case makes a

good example of the Error-seeding technique mentioned in EN 50128 [CEN11, D. 21].

Listing 10: Test fixture for Adaimageprocessor.Network.Socket.Send_String
1 procedure Set_Up (Gnattest_T : in out Test) i s

2 begin

3 Open_Socket (" 127 .0 .0 .1 " , 12345) ;
4 end Set_Up ;
5
6 procedure Tear_Down (Gnattest_T : in out Test) i s

7 begin

8 Close_Socket ;
9 end Tear_Down ;

10
11 procedure Ca l l _Send_St r ing i s

12 data : S t r i n g (1 . . 1 0 0 0) := (others => ’X ’) ;
13 begin

14 Send_Str ing (data) ;
15 end Ca l l _Send_St r ing ;

Listing 11: Test code for Adaimageprocessor.Network.Socket.Send_String
1 procedure Test_Send_Str ing (Gnattest_T : in out Test) i s

2 begin

3 Assert_Except ion (Ca l l_Send_Str ing ’ Access , " Except ion not r a i sed . ") ;
4 end Test_Send_Str ing ;

A downside of Assert_Exception as it was presented here is its inability to check for the occur-

rence of a specific exception. In the case of Listing 10 and 11 only LENGTH_EXCEPTION is of

interest. But since this exception is local to the Send_String()-procedure, there is no way to

handle it outside (confer with line 10 in Table 3). Only for the case of library-level exceptions22

and with a runtime which supports exception propagation such a differentiation would be possi-

ble via a tricky use of the normal Assert statement. See [Ada13a, sec. 2] for an example.

22exceptions defined on a more global level visible to the test code

EN 50128 requirements 46

4 OUTLOOK

The first and most important thing to mention here is the fact that the server-program has been

successfully compiled for the camera (section 2.1) but until now fails to respond to any requests

made via the network (section 2.2). As the same program has proven to run flawlessly on other

embedded systems, it remains dubious what might be the cause of this misbehavior. Unfortu-

nately, tracing the problem has turned out to be rather complicated since the camera’s BusyBox-

based23 embedded Linux does come with a useless TCP-only version of netcat, a program to

set up a very simple client- / server-architecture for network-debugging, and alternatives such

as socat or even tcpdump, which is merely a network sniffer, were not readily available, either.

Gdbserver, a network-enabled version of gdb to debug the server-program directly on the cam-

era, is also a tool not shipped by default. Instead, it has to be enabled first by flashing the cam-

era with a custom kernel (the heart of a Linux-system; referred to as “firmware” by Axis) whose

sources are only available to accredited developers24 [Axi07].

If eventually the server does run successfully in the future, it will remain limited to serving im-

ages to one client at a time. Depending on the practical use-case, this might not be sufficient.

Via its support for Multicasting (a one-to-many mode of transfer) UDP would form a good start-

ing point for this. In contrast, the TCP-based image-streams provided by the camera by default

fail in the case of many simultaneous accesses due to the limited network bandwidth (see sec-

tion 2.1) which is quickly used up if each client is served individually [Axi09].

The network protocol itself (section 2.2) is currently based on a static, and therefore very con-

servatively chosen MTU. A higher value would result in fewer packets, which in turn would mean

faster transmission. However, an MTU set too highly would cause the packets to be split up by

intermediate network-equipment which makes the transfer significantly slower – if it remains

in a working state at all. As the MTU is network-dependent, calculating it correctly is far from a

trivial task. A significant part of the TCP connection setup overhead is spent just on this matter.

Switching to the new version 6 of the Internet Protocol (IPv6) could possibly provide some addi-

tional speed gains since it allows for much larger packets [BDH99]. However, such performance

enhancements always come at the cost of less protection against network failures. To be pre-

cise, the time for retransmitting a lost packet becomes larger as the packet size is growing. And

hence it gets more difficult to stay within the given real-time boundaries (section 1.3).

Another approach to higher network throughput is a (lossless-)compression of the image be-

fore transmission. But as this would have to be carried out in software25 the combined time of

compression, transmission and decompression would probably be higher than a plain uncom-

pressed transfer, even for very efficient compression algorithms [Hin11, sec. 4.4].

Technically, the protocol currently suffers from the inconsistent use of NULL-terminators to mark

the end of payload data in packages (compare Table 1, line 926 with Table 2, line 4, respectively

3). This is mainly due to the C language whose standard library-functions handle those charac-

ters very differently. However, it remains merely a cosmetic problem as Ada does not rely upon

these terminating characters but rather on the length of the package itself which is encoded

separately (Table 1, line 7).

23A collection of stripped-down versions of standard Linux-tools in a single binary.
24Whether this is compliant with the GPL-License of the kernel will not be discussed here.
25contrary to standard (lossy) compression for JPEG and H.264 which is presumably implemented in hardware on the

camera
26“\0” stands for the NULL-terminator here

Outlook 47

To make the protocol implementation compliant not only with the requirements of EN 50128 but

also with its sister standard EN 50159 [CEN10], an encryption of the transfer may be necessary.

It is often suggested to use a Message Authentication Code for this purpose [Eis94a], [FE08,

ch. 4]. However, this should only be advisable for a one-to-one communication as this encryp-

tion involves a shared secret and hence becomes obsolete as soon as this secret is known to

everyone.

As for the client-program, improvements could involve replacing the pointer-rich data-structures

in Adaimageprocessor.Image.Trackdata with some more modern structures found in Ada.Con-

tainers [Bar06, p. 641ff.]. Moreover, the entire program could be updated by using the most re-

cent Ada 2012 language standard instead of the currently utilized Ada 2005 version. This would

allow for pre- and postconditions to functions (see section 3.1.6) [Bar13, sec. 2.3] and type in-

variants to provide more sophisticated variable range checking [Bar13, sec. 2.4].

The train detection algorithm (section 2.4) would significantly benefit from an accompanying

track detection algorithm which could ideally allow for a plug n’ play installation of the entire

software package and hence make the “ImageTagger” introduced in section 2.3 obsolete. Sev-

eral such algorithms exist: [KA09], [NHG+08], [QTS12], [Woh11].

Possibly, there are also better single-image based train detectors available which may be more

robust against different weather and lighting conditions. However, no research has been con-

ducted yet.

Finally, there is much work left to as what needs to be done regarding compliance with EN 50128.

Above all, this concerns documentation. So the next steps following this paper would be to

actually write both the Software Architecture Specification on the basis of section 3.1 [CEN11,

sec. 7.3.3, p. 40] and the Software Component Design Specification based on section 3.2 [CEN11,

sec. 7.4.3, p. 46].

5 CONCLUSION

This paper has given some insight into what has to be done to make a software system com-

pliant with recent safety standards of the railway industry, namely EN 50128. On the basis of a

given practical problem concerning the detection of a train on a video image two example pro-

grams were created (section 2), whose code was later used to exemplify selected requirements

of EN 50128 (section 3). The standard turned out to pose very excessive demands on the differ-

ent stages of the development process and thus it was only feasible to discuss a very small part

of it in this paper. Moreover, the scattered and redundant nature of some of the measures men-

tioned in the standard caused various difficulties toward a clear and compelling analysis in this

paper. For instance, it is certainly questionable why the underlying table of section 3.2 highly

recommends the more demanding technique titled “Strongly Typed Programming Language”

(section 3.2.5) as well as the much more general “Programming Language” 3.2.6. Likewise, the

reasons for listing certain measures several times under different names can only be speculated

upon (section 3.1.2).

Although the current version of the standard has only 128 pages, it certainly leaves work for

Conclusion 48

generations of students to come as it contains such a large set of all sorts of possible mea-

sures to facilitate safety, all waiting for thorough examination. However, it has to be understood

there is no silver bullet to safe software. For different problems different measures apply – a

fact which is also represented by the standard when demanding for a lot of different mutual in-

spections by the different people involved in a project. Furthermore, except for a very few cases

(e.g. the recommended measures in the tables referred to by sections 3.1 and 3.2), the stan-

dard leaves the decision for or against a certain action to the reader. Or to put it bluntly: The

standard is certainly not written like a cookbook.

As safety is an extremely serious issue, some more best-practice examples, perhaps in the

style of this paper, would surely be helpful to prevent the inexperienced engineer from making

improper decisions.

The actual coding of the software, which, contrary to what the standard expects, preceded the

writing of this paper in order to make for exemplary code, was straightforward, indeed. For Ada

a relatively small but exceptionally good documentation ecosystem exists. Due to its well de-

fined and publicly available standard, there are simply not as many traps and pitfalls as with C

for which an enormous amount of resources exist both on the web and in print – with a good

part of it containing misleading or imperfect information. Nevertheless, the measures of the

standard, especially those from section 3.2.4 involving the use of gnatcheck / adactl for the

case of Ada and those from section 3.2.5 concerning the numerous gcc-switches for partial

MISRA-compliance for the case of C, caused quite a few changes in the respective codebases

and hence are believed to have effectively influenced the overall safety-level of the software in a

positive way, even during the process of writing this paper.

In summary, the measures from EN 50128, if followed rigorously, describe a good way of in-

creasing software-safety and help avoiding hazards originating from it. Moreover, the harmoniza-

tion efforts, which must have preceded the development of this internationally approved stan-

dard, are deeply admirable – taking into account how narrow-minded and nationally-oriented the

railway industry always used to be. As software development is an abstract task very much sep-

arated from the actual field of application, even a harmonization with other safety-standards of

computer systems, such as those mentioned in section 1, may be conceivable in the future.

Conclusion 49

LIST OF FIGURES

1 A typical camera image in different stages . 9

2 The data structure of the UYVY-Format . 12

3 Helper program written in wxPython to manually collect slice data 15

4 Working direction of the detection algorithm . 16

5 Plot of the average pixel values per slice for the case of the right rail in figure 1 . . 17

6 V-Model of the software development lifecycle . 18

7 A context diagram as required by the Yourdon-method 22

8 A top level data flow diagram as required by the Yourdon-method 22

9 A second level data flow diagram as required by the Yourdon-method 23

10 A structure chart of the the client-program . 25

11 A structure chart of the imageanalyze task in the client-program 26

12 A structure chart of the output task in the client-program 26

13 A structure chart of the imagetransfer task in the client-program 27

14 A structure chart of the server-program . 28

15 An UML statechart diagram of the client-program 32

16 UML Sequence Diagram of the UDP-based protocol 33

LIST OF TABLES

1 Relevant fields for the UDP checksum calculation 30

2 The structure of the packets associated with the different steps shown in Figure 16 34

3 Rules of gnatcheck to fulfill the requirements in EN 50128 42

4 gcc-switches used for compiling the server- and client-program 43

Indexes 50

LIST OF LISTINGS

1 Reading out imagedata via the native interface in C 12

2 Explicit conversion from bytes to numbers in Ada 20

3 Binding to a socket in C . 21

4 A data dictionary for Yourdon-Modelling based on Figure 9 24

5 Shortened version of the train detection algorithm in Ada 36

6 Information encapsulation in Adaimageprocessor.Network.Socket 38

7 Demonstration of an unconditional exit in Ada . 40

8 Example of a rule file for use with Adacontrol . 41

9 Possible test code for Adaimageprocessor.Network.Streamconverter.ToStream . . 45

10 Test fixture for Adaimageprocessor.Network.Socket.Send_String 46

11 Test code for Adaimageprocessor.Network.Socket.Send_String 46

List of Listings 51

ABBREVIATIONS

ACK Short for “acknowledged”.

Ada A programming language developed for the US Department of Defense in the 1980s.
Named after Ada Lovelace.

ANSI American National Standards Institute

API Application Programming Interface

BMP A lossless image format created by Microsoft for its Windows operating system.

BogoMips A term blended from “bogus” and “mips”, which is short for million instructions per
second. Used in the Linux kernel to estimate processing speed.

C A programming language originally developed for use in the UNIX operating system
during the 1970s.

C++ A more-or-less superset of C extending it mainly with object-oriented features.

CCTV Closed-circuit television

compiler A computer program which translates source code into something understandable by
a computer (so called object code). Another program, the linker, can then transform
this object code into an executable program.

CRC Cyclic redundancy check

EBA Eisenbahnbundesamt

EN European Norm

EUC Equipment under Control, a term from ISO 61508 [Int10]

fail-safe In the event of failure react in a way that causes no or only minimal harm to the sur-
roundings.

FMEA Failure mode and effects analysis

fps frames per second

gcc The GNU Compiler Collection

gdb The GNU Debugger, part of the gcc

gprof The GNU profiler, a program to conduct performance measures on other programs.

GNAT An Ada compiler, part of the gcc

H.264 An efficient inter-frame video compression standard. Also known as MPEG-4 AVC.

Hex Hexadecimal. A numeral system with a base of 16.

HTML Hypertext Markup Language

HTTP Hypertext Transfer Protocol

IEC International Electrotechnical Commission

interrupt An external signal of interest which may come at any time and should be handled in
some way by the receiver.

IP Internet Protocol

ISO International Organization for Standardization

JPEG A lossy image format created by the Joint Photographics Experts Group based on
Discrete Cosine Transforms and the Huffman-coding.

JSD Jackson System Development Method

Lint A sourcecode checker originally developed for the C language. It flags suspicious
lines of code.

Abbreviations 52

Linux An operating system inspired by UNIX.

LSDM Learmonth Structured Development Method, see [JPH07, p. 18]

MAC Message Authentication Code, see [Int11a]

MASCOT Modular Approach to Software Construction Operation and Test, see [JOI87]

MISRA Motor Industry Software Reliability Association

MJPEG A bytestream of consecutive JPEG-images.

ms Millisecond

MTU Maximum Transmission Unit

NIC Network interface controller

NSA National Security Agency

OSI Open Systems Interconnection

PLC Programmable Logic Controller, see [CEN11, p. 13]

PGM Portable Graymap, a very simple image-format developed in the 1980s.

Python A versatile, interpreted scripting language

race-condition Describes a condition where several independent tasks (or “threads” in non-Ada-
terminology) alter a common resource. Because of the concurrent nature of tasks
it cannot be predicted in which order the resource is going to be accessed. This
potentially leads to unwanted results.

RAM Random-access memory, a volatile storage

Ravenscar A subset of the Ada language for high integrity real-time software systems.

regex A regular expression. It denotes a search pattern used predominantly for text
searches in all sorts of software applications.

ROI Region of Interest. This region forms the input pixels to any downstream image
processing algorithms.

runtime The (Ada-)Runtime is a special kind of library which can be accessed by the Ada-
program through an API. It is responsible basic functionality specific to the Ada-
language, the compiler and the target architecture such as range-checking and
exception-propagation. For a detailed description of the runtime supplied with GNAT
see [GB94].

SDK Software Development Kit

SHA Secure Hash Algorithm

SIL Safety Integrity Level as defined in [CEN11].

SLOC (physical) Source Lines of Code. Estimations have been performed using sloccount

[Whe12].

SoC System on a Chip, a complete computer on a single chip.

socket An endpoint for an inter-process communication flow provided by the operating sys-
tem.

SSADM Structured Systems Analysis & Design Methodology, see [AS93]

TCP Transmission Control Protocol

UDP User Datagram Protocol, see [Pos80].

UYVY a packed pixel format composed of the luminance Y and the chrominance U and V
with special subsampling, see section 2.1.

UML Unified Markup Language

XP Extreme Programming, an agile software methodology

Abbreviations 53

DECLARATION OF AUTHORSHIP

I hereby certify that the work presented here is, to the best of my knowledge, original and the
result of my own investigations, except where otherwise indicated.

Dresden, July 24th, 2013

BIBLIOGRAPHY

[Ada06] ADA WORKING GROUP: Ada Reference Manual. http://www.adaic.org/resources/

add_content/standards/05rm/html/RM-TTL.html. Version: 2006

[Ada09] ADACOMMONS: AUnit Calculator Example. http://commons.ada.cx/AUnit_

Calculator_Example. Version: 2009

[Ada12a] ADA IN DENMARK: catching_and_handling_interrupts_in_ada. http://wiki.ada-dk.

org/catching_and_handling_interrupts_in_ada. Version: 2012, last checked:
21.02.13

[Ada12b] ADACORE: GNAT GPL User’s Guide. Document revision level 247945. 2012. – p. 528.

[Ada12c] ADACORE: GNAT Reference Manual. Document revision level 247883. 2012. – p. 336.

[Ada13a] ADACORE: AUnit Cookbook. http://docs.adacore.com/aunit-docs/aunit.html.
Version: 2013, last checked: 14.07.13

[Ada13b] ADACORE: GNAT Pro User’s Guide: Creating Unit Tests with gnattest. http://docs.

adacore.com/gnat-unw-docs/html/gnat_ugn_28.html. Version: 2013, last checked:
14.07.13

[Ada13c] ADACORE: GNATcheck Reference Manual: GNATcheck Reference Manual. http:

//docs.adacore.com/asis-docs/gnatcheck_rm.html. Version: 2013, last checked:
11.07.13

[Ada13d] ADALOG: AdaControl. http://www.adalog.fr/adacontrol2.htm. Version: 2013, last
checked: 12.07.13

[Alt11] ALTRAN PRAXIS LIMITED: SPARK Proof Manual. http://docs.adacore.com/

sparkdocs-docs/Proof_Manual.htm. Version: 2011, last checked: 20.07.13

[AP13] APPELBAUM, Jacob; POITRAS, Laura: Als Zielobjekt markiert. In: Der Spiegel (2013),
July, No. 28, pp. 22–24. – ISSN 0038–7452

[AS93] ASHWORTH, Caroline; SLATER, Laurence: An Introduction to SSADM Version 4. Maid-
enhead : McGRAW-HILL Book Company Europe, 1993. – pp. 225. – ISBN 0–07–
707725–3

[Axi07] AXIS COMMUNICATIONS AB: The Gdbserver. http://developer.axis.com/wiki/

doku.php?id=axis:gdb-server. Version: 2007, last checked: 22.07.13

[Axi09] AXIS COMMUNICATIONS AB: Product performance ARTPEC-3 case. http://www.axis.
com/files/whitepaper/wp_tech_prod_performance_artpec3_37588_en_0912_lo.

pdf. Version: 2009, last checked: 22.07.13

[Axi10] AXIS COMMUNICATIONS AB: RAPP: RAPP User’s Manual. http://www.nongnu.org/

rapp/doc/rapp/. Version: 2010, last checked: 08.07.13

[Axi13a] AXIS COMMUNICATIONS AB: AXIS M3114-R Network Camera, an HDTV IP camera
for buses and trains. http://www.axis.com/en/products/cam_m3114r/index.htm.
Version: 2013, last checked: 08.07.13

[Axi13b] AXIS COMMUNICATIONS AB: Axis’ Corridor Format - Technical guide. http://

www.axis.com/en/products/video/about_networkvideo/corridor_format.htm.
Version: 2013, last checked: 08.07.13

[Bar06] BARNES, John: Programming in Ada 2005. 1st Edition. Harlow : Pearson Education,
Ltd., 2006. – pp. 828. – ISBN 978–0–321–34078–8

Bibliography 55

http://www.adaic.org/resources/add_content/standards/05rm/html/RM-TTL.html
http://www.adaic.org/resources/add_content/standards/05rm/html/RM-TTL.html
http://commons.ada.cx/AUnit_Calculator_Example
http://commons.ada.cx/AUnit_Calculator_Example
http://wiki.ada-dk.org/catching_and_handling_interrupts_in_ada
http://wiki.ada-dk.org/catching_and_handling_interrupts_in_ada
http://docs.adacore.com/aunit-docs/aunit.html
http://docs.adacore.com/gnat-unw-docs/html/gnat_ugn_28.html
http://docs.adacore.com/gnat-unw-docs/html/gnat_ugn_28.html
http://docs.adacore.com/asis-docs/gnatcheck_rm.html
http://docs.adacore.com/asis-docs/gnatcheck_rm.html
http://www.adalog.fr/adacontrol2.htm
http://docs.adacore.com/sparkdocs-docs/Proof_Manual.htm
http://docs.adacore.com/sparkdocs-docs/Proof_Manual.htm
http://developer.axis.com/wiki/doku.php?id=axis:gdb-server
http://developer.axis.com/wiki/doku.php?id=axis:gdb-server
http://www.axis.com/files/whitepaper/wp_tech_prod_performance_artpec3_37588_en_0912_lo.pdf
http://www.axis.com/files/whitepaper/wp_tech_prod_performance_artpec3_37588_en_0912_lo.pdf
http://www.axis.com/files/whitepaper/wp_tech_prod_performance_artpec3_37588_en_0912_lo.pdf
http://www.nongnu.org/rapp/doc/rapp/
http://www.nongnu.org/rapp/doc/rapp/
http://www.axis.com/en/products/cam_m3114r/index.htm
http://www.axis.com/en/products/video/about_networkvideo/corridor_format.htm
http://www.axis.com/en/products/video/about_networkvideo/corridor_format.htm

[Bar13] BARNES, John: Rationale for Ada 2012 Draft 7a. http://www.ada-auth.org/

standards/12rat/html/Rat12-TTL.html. Version: 2013, last checked: 22.07.13

[BDH99] BORMAN, David A.; DEERING, Stephen E. ; HINDEN, Robert M.: RFC 2675 - IPv6 Jum-
bograms. http://tools.ietf.org/html/rfc2675. Version: 1999

[BDV03] BURNS, Alan; DOBBING, Brian ; VARDANEGA, Tullio: Guide for the use of the Ada
Ravenscar Profile in high integrity systems. http://www.sigada.org/ada_letters/

jun2004/ravenscar_article.pdf. Version: 2003

[Bor97] BORN, Günter: Die PBM-Formate (PBM, PGM, PPM). In: Referenzhandbuch Dateifor-
mate. 5. Auflage. Bonn : Addison-Wesley Publishing Company, 1997. – ISBN 3–8273–
1241–8, Kapitel 62, pp. 1068–1070

[BPB88] BORMAN, D.; PARTRIDGE, C. ; BRADEN, R.: RFC 1071 - Computing the Internet check-
sum. http://tools.ietf.org/html/rfc1071. Version: 1988, last checked: 12.07.13

[Bud11] BUDAPEST UNIVERSITY OF TECHNOLOGY AND ECONOMICS: Software in safety - crit-
ical systems. http://www.inf.mit.bme.hu/sites/default/files/materials/

category/kateg%C3%B3ria/oktat%C3%A1s/v%C3%A1laszthat%C3%B3-t%C3%A1rgyak/

kritikus-be%C3%A1gyazott-rendszerek/11/KBR-2011_EA04a_Software.pdf.
Version: 2011, last checked: 18.07.13

[Car11] CARREZ, Stephane: Aunit vs Ahven. http://blog.vacs.fr/index.php?post/2011/

11/27/Aunit-vs-Ahven. Version: November 2011

[CEN10] CENELEC: EN 50159 - Railway applications - Communication, signalling and process-
ing systems - Safety-related communication in transmission systems. 2010

[CEN11] CENELEC: EN 50128 - Railway applications - Communication, signalling and process-
ing systems - Software for railway control and protection systems. 2011

[Dan10] DANG, Bruce: CCC-TV - Adventures in analyzing Stuxnet. http://media.ccc.de/

browse/congress/2010/27c3-4245-en-adventures_in_analyzing_stuxnet.html.
Version: 2010, last checked: 13.07.13

[Dob10] DOBBING, Brian: The Ravenscar Tasking Profile for High Integrity Real-Time Programs.
In: Ada User Journal 31 (2010), No. 1, 47–54. http://www.ada-europe.org/archive/
auj/auj-31-1.pdf

[Dor06] DORST, Wim van: BogoMips mini-Howto. http://tldp.org/HOWTO/BogoMips/.
Version: 2006, last checked: 10.07.13

[Eis94a] EISENBAHNBUNDESAMT: Informationstechnik - Sicherheitstechnik - Datensicher-
heitsmechanismus mit Chiffriercheck unter Anwendung eines Algorithmus zur Ver-
und Enschlüsselung von Datenblöcken. Bonn, 1994

[Eis94b] EISENBAHNBUNDESAMT: Mü 8004 - Leitlinie mit ergänzenden Bestimmungen für die
Prüfung der Software in C. Bonn, 1994

[Eur13] EUROCONTROL/ADALOG: AdaControl User Guide V1.15r5. http://www.adalog.fr/

compo/adacontrol_ug.html. Version: 2013, last checked: 12.07.13

[FE08] FAIRHURST, Godred; EGGERT, Lars: RFC 5405 - Unicast UDP Usage Guidelines for
Application Designers. (2008). http://tools.ietf.org/html/rfc5405

[GB94] GIERING, E. W.; BAKER, T. P.: The GNU Ada runtime library (GNARL). In: Proceedings
of the eleventh annual Washington Ada symposium & summer ACM SIGAda meet-
ing on Ada - WADAS ’94. New York, New York, USA : ACM Press, July 1994. – ISBN
0897916840, 97–107

[Hin11] HINTERMAIER, Wolfgang: An IP-based System Architecture for camera-based Driver
Assistance Services, TU München, Dissertation, 2011. – p. 139.

Bibliography 56

http://www.ada-auth.org/standards/12rat/html/Rat12-TTL.html
http://www.ada-auth.org/standards/12rat/html/Rat12-TTL.html
http://tools.ietf.org/html/rfc2675
http://www.sigada.org/ada_letters/jun2004/ravenscar_article.pdf
http://www.sigada.org/ada_letters/jun2004/ravenscar_article.pdf
http://tools.ietf.org/html/rfc1071
http://www.inf.mit.bme.hu/sites/default/files/materials/category/kateg%C3%B3ria/oktat%C3%A1s/v%C3%A1laszthat%C3%B3-t%C3%A1rgyak/kritikus-be%C3%A1gyazott-rendszerek/11/KBR-2011_EA04a_Software.pdf
http://www.inf.mit.bme.hu/sites/default/files/materials/category/kateg%C3%B3ria/oktat%C3%A1s/v%C3%A1laszthat%C3%B3-t%C3%A1rgyak/kritikus-be%C3%A1gyazott-rendszerek/11/KBR-2011_EA04a_Software.pdf
http://www.inf.mit.bme.hu/sites/default/files/materials/category/kateg%C3%B3ria/oktat%C3%A1s/v%C3%A1laszthat%C3%B3-t%C3%A1rgyak/kritikus-be%C3%A1gyazott-rendszerek/11/KBR-2011_EA04a_Software.pdf
http://blog.vacs.fr/index.php?post/2011/11/27/Aunit-vs-Ahven
http://blog.vacs.fr/index.php?post/2011/11/27/Aunit-vs-Ahven
http://media.ccc.de/browse/congress/2010/27c3-4245-en-adventures_in_analyzing_stuxnet.html
http://media.ccc.de/browse/congress/2010/27c3-4245-en-adventures_in_analyzing_stuxnet.html
http://www.ada-europe.org/archive/auj/auj-31-1.pdf
http://www.ada-europe.org/archive/auj/auj-31-1.pdf
http://tldp.org/HOWTO/BogoMips/
http://www.adalog.fr/compo/adacontrol_ug.html
http://www.adalog.fr/compo/adacontrol_ug.html
http://tools.ietf.org/html/rfc5405

[Int10] INTERNATIONAL ELECTROTECHNICAL COMMISSION: IEC 61508 - Functional safety of
electrical/electronic/programmable electronic safety-related system. 2010

[Int11a] INTERNATIONAL ELECTROTECHNICAL COMMISSION: IEC 9797 - Information technology -
Security techniques - Message Authentication Codes (MACs). 2011

[Int11b] INTERNATIONAL ORGANIZATION FOR STANDARDIZATION: ISO 26262 - Road vehicles.
Functional safety. 2011

[JFCS03] JACOBSON, V.; FREDERICK, R.; CASNER, S. ; SCHULZRINNE, H.: RTP: A Transport Proto-
col for Real-Time Applications. (2003). http://tools.ietf.org/html/rfc3550

[JOI87] JOINT IECCA & MUF COMMITTEE ON MASCOT: THE OFFICIAL HANDBOOK OF
MASCOT. Version 3. Malvern : Royal Signals and Radar Establishment, 1987. – p. 324.
http://async.org.uk/Hugo.Simpson/MASCOT-3.1-Manual-June-1987.pdf

[JPH07] JOHNSON, Brian; PUBLISHING, Van H. ; HIGGINS, John: Itil (R) and the Software Lifecy-
cle: Practical Strategy and Design Principles. Van Haren Publishing, 2007. – pp. 122. –
ISBN 9087530498

[KA09] KALELI, Fatih; AKGUL, Yusuf S.: Vision-based railroad track extraction using dynamic
programming. In: 2009 12th International IEEE Conference on Intelligent Trans-
portation Systems (2009), October, 1–6. http://dx.doi.org/10.1109/ITSC.2009.

5309526. – DOI 10.1109/ITSC.2009.5309526. ISBN 978–1–4244–5519–5

[Kai07] KAISER, Guido: Exemplarisches Eclipse-Plugin zur statischen C-Syntaxanalyse am
Beispiel von Misra-C Regeln, Hochschule für Angewandte Wissenschaften Hamburg,
bachelor thesis, 2007. http://opus.haw-hamburg.de/volltexte/2007/354/pdf/

Bachelorarbeit_Final.pdf

[Kar11] KAREL DE GROTE-HOGESCHOOL TERA LABS: Coverage of MISRA - C 2004 by
gcc warnings. http://www.iwt-kdg.be/teralabs/sites/default/files/

SomenotesongccwarningsV3.pdf. Version: 2011, last checked: 05.07.13

[Lan10] LANGNER, Ralph: The short path from cyber missiles to dirty
digital bombs. http://www.langner.com/en/2010/12/26/

the-short-path-from-cyber-missiles-to-dirty-digital-bombs/. Version: 2010,
last checked: 17.07.13

[Lot09] LOTTERMOSER, Martin: Mängel der Programmierregeln des Eisenbahn-Bundesamtes.
http://home.htp-tel.de/lottermose2/Maengel-EBA.pdf. Version: 2009

[NHG+08] http://homepages.ucalgary.ca/~gjhay/geobia/GEOBIAPaperslinkedPDF/6718_

Neubert_Proc_Pap.pdf

[PJ95] PAGE-JONES, Meilir: Strukturiertes Systemdesign - ein praktischer Leitfaden. München
: Hanser, 1995. – pp. 378. – ISBN 3–446–16302–6

[Pos80] POSTEL, J.: RFC 768 - User Datagram Protocol. http://tools.ietf.org/pdf/

rfc768.pdf. Version: 1980

[Pos86] POST, Julian: Application of a structured methodology to real-time industrial software
development. In: Software Engineering Journal 1 (1986), No. 6, pp. 222–235. http:

//dx.doi.org/10.1049/sej:19860035. – DOI 10.1049/sej:19860035. – ISSN 0268–
6961

[QTS12] QI, Zhiquan; TIAN, Yingjie ; SHI, Yong: Efficient railway tracks detection and turnouts
recognition method using HOG features. In: Neural Computing and Applications
(2012), February. http://dx.doi.org/10.1007/s00521-012-0846-0. – DOI
10.1007/s00521–012–0846–0. – ISSN 0941–0643

Bibliography 57

http://tools.ietf.org/html/rfc3550
http://async.org.uk/Hugo.Simpson/MASCOT-3.1-Manual-June-1987.pdf
http://dx.doi.org/10.1109/ITSC.2009.5309526
http://dx.doi.org/10.1109/ITSC.2009.5309526
http://opus.haw-hamburg.de/volltexte/2007/354/pdf/Bachelorarbeit_Final.pdf
http://opus.haw-hamburg.de/volltexte/2007/354/pdf/Bachelorarbeit_Final.pdf
http://www.iwt-kdg.be/teralabs/sites/default/files/SomenotesongccwarningsV3.pdf
http://www.iwt-kdg.be/teralabs/sites/default/files/SomenotesongccwarningsV3.pdf
http://www.langner.com/en/2010/12/26/the-short-path-from-cyber-missiles-to-dirty-digital-bombs/
http://www.langner.com/en/2010/12/26/the-short-path-from-cyber-missiles-to-dirty-digital-bombs/
http://home.htp-tel.de/lottermose2/Maengel-EBA.pdf
http://homepages.ucalgary.ca/~gjhay/geobia/GEOBIA Papers linked PDF/6718_Neubert_Proc_Pap.pdf
http://homepages.ucalgary.ca/~gjhay/geobia/GEOBIA Papers linked PDF/6718_Neubert_Proc_Pap.pdf
http://tools.ietf.org/pdf/rfc768.pdf
http://tools.ietf.org/pdf/rfc768.pdf
http://dx.doi.org/10.1049/sej:19860035
http://dx.doi.org/10.1049/sej:19860035
http://dx.doi.org/10.1007/s00521-012-0846-0

[Red06] REDER, H.-J.: Cross-acceptance of safety approvals in the rail industry: a manufac-
turer’s viewpoint. In: 1st IET International Conference on System Safety vol. 2006,
IEE, 2006. – ISBN 0 86341 646 2, 338–343

[Ros08] ROSEN, J.-P.: A comparison of industrial coding rules. In: Ada User Journal 29 (2008),
No. 4, 277–281. http://www.ada-europe.org/archive/auj/auj-29-4.pdf

[RTC92] RTCA INC.: Software Considerations in Airborne Systems and Equipment Certification.
http://www.rtca.org/store_product.asp?prodid=581. Version: 1992

[Sch05] SCHMITT, E.: Die Varianten des YUV Komponenten-Signals. http://www.cine4home.

de/knowhow/ChromaUpsampling/ChromaUpsampling.htm. Version: 2005, last checked:
03.04.13

[Sch09] SCHIEL, James: Enterprise-Scale Agile Software Development. Hoboken : CRC Press,
2009. – ISBN 9781439803226

[sec13] SECUNET SECURITY NETWORKS AG: Anet. http://www.codelabs.ch/anet/index.

html. Version: 2013, last checked: 21.07.13

[SFR03] STEVENS, W. R.; FENNER, Bill ; RUDOFF, Andrew M.: The Sockets Networking API:
UNIX R
 Network Programming Volume 1. 3. Edition. Boston, MA : Addison-Wesley
Professional, 2003. – pp. 993. – ISBN 0–13–141155–1

[SK12] SCHÜTTE, Jörg; KAISER, Hans-Christian: Ein neues Verfahren zur automatisierten
Erkennung von Hindernissen im Bahnsteiggleis. In: Signal+Draht 104 (2012), No. 12,
pp. 15–20

[Sof95] SOFTWARE PRODUCTIVITY CONSORTIUM: Ada 95 Quality and Style Guide: Guidelines
for Professional Programmers. http://www.adaic.org/resources/add_content/

docs/95style/html/cover.html. Version: 1995, last checked: 12.07.13

[SPMR06] STIGGE, Martin; PLÖTZ, Henryk; MÜLLER, Wolf ; REDLICH, Jens-Peter: Reversing
CRC - Theory and Practice. http://sar.informatik.hu-berlin.de/research/

publications/SAR-PR-2006-05/SAR-PR-2006-05_.pdf. Version: 2006

[Sta08] STALLMAN, Richard M.: Using the GNU Compiler Collection. For GCC Version 4.5.4.
2008. – p. 702.

[Tay11] TAYLOR, Ian L.: Re: gcc -Wunreachable-code option. http://gcc.gnu.org/ml/

gcc-help/2011-05/msg00360.html. Version: 2011, last checked: 19.07.13

[Tec05] TECHNOLOGY SYSTEMS: NetBSD Toaster with the TS-7200 ARM9 SBC. http://www.

embeddedarm.com/software/arm-netbsd-toaster.php. Version: 2005, last checked:
09.07.13

[The98] THE MOTOR INDUSTRY RESEARCH ASSOCIATION: Guidelines For The Use Of The C
Language In Vehicle Based Software. (1998), No. July

[Val11] VALURE, Greg: Natural Docs. http://www.naturaldocs.org/. Version: 2011, last
checked: 12.07.13

[Whe12] WHEELER, David A.: SLOCCount. http://www.dwheeler.com/sloccount/.
Version: 2012, last checked: 19.07.13

[Wil11] WILSON, Dave: YUV pixel formats. http://www.fourcc.org/yuv.php#UYVY.
Version: 2011, last checked: 03.04.13

[WM85] WARD, Paul T.; MELLOR, Stephen J.: Structured Development for Real-Time Systems -
Volume 2: Essential Modeling Techniques. Englewood Cliffs, N.J. : Prentice Hall, 1985.
– pp. 163. – ISBN 0–13–854795–5

Bibliography 58

http://www.ada-europe.org/archive/auj/auj-29-4.pdf
http://www.rtca.org/store_product.asp?prodid=581
http://www.cine4home.de/knowhow/ChromaUpsampling/ChromaUpsampling.htm
http://www.cine4home.de/knowhow/ChromaUpsampling/ChromaUpsampling.htm
http://www.codelabs.ch/anet/index.html
http://www.codelabs.ch/anet/index.html
http://www.adaic.org/resources/add_content/docs/95style/html/cover.html
http://www.adaic.org/resources/add_content/docs/95style/html/cover.html
http://sar.informatik.hu-berlin.de/research/publications/SAR-PR-2006-05/SAR-PR-2006-05_.pdf
http://sar.informatik.hu-berlin.de/research/publications/SAR-PR-2006-05/SAR-PR-2006-05_.pdf
http://gcc.gnu.org/ml/gcc-help/2011-05/msg00360.html
http://gcc.gnu.org/ml/gcc-help/2011-05/msg00360.html
http://www.embeddedarm.com/software/arm-netbsd-toaster.php
http://www.embeddedarm.com/software/arm-netbsd-toaster.php
http://www.naturaldocs.org/
http://www.dwheeler.com/sloccount/
http://www.fourcc.org/yuv.php#UYVY

[Woh11] WOHLFEIL, Jürgen: Vision based rail track and switch recognition for self-localization
of trains in a rail network. In: 2011 IEEE Intelligent Vehicles Symposium (IV) (2011),
June, No. Iv, 1025–1030. http://dx.doi.org/10.1109/IVS.2011.5940466. – DOI
10.1109/IVS.2011.5940466. ISBN 978–1–4577–0890–9

[YC79] YOURDON, Edward; CONSTANTINE, Larry L.: Structured Design - Fundamentals of a
Discipline of Computer Program and Systems Design. Englewood Cliffs, N.J. : Pren-
tice Hall, 1979. – pp. 471. – ISBN 0–13–854471–9

Bibliography 59

http://dx.doi.org/10.1109/IVS.2011.5940466

	Introduction
	Motivation
	Description of the problem
	Real-time constraints
	Safety requirements

	Implementation details
	Camera type and output format
	Transfer Protocol
	Real-world constrains
	Train Detection Algorithm

	EN 50128 requirements
	Software architecture
	Defensive Programming
	Fully Defined Interface
	Structured Methodology
	Error Detecting and Correcting Codes
	Modelling
	Alternative optionally required measures

	Software Design and Implementation
	Structured Methodology
	Modular Approach
	Components
	Design and Coding Standards
	Strongly Typed Programming Languages
	Alternative optionally required measures

	Unit Testing

	Outlook
	Conclusion

