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Abstract

Exploiting parallelism for industrial real-time applications has not received much
attention compared to scientific applications. The available real-time design methods
do not adequately address the issue of parallelism, resulting still in a strong need for
low-level tools such as debuggers and monitors. This need illustrates that developing
parallel real-time applications is indeed a difficult and tedious task. In this paper
we show how problems can be alleviated if an approach is followed that allows
for experimentation with designs and implementations. In particular, we discuss a
development system that integrates design, implementation, execution, and analysis of
real-time applications, putting emphasis on exploitation of parallelism. In the paper we
primarily concentrate on the support for application design, as we feel that parallelism
should essentially be addressed at this level.

Keywords: parallelism, real-time systems, application design, software development
experimentation.
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Introduction

In the last decade exploiting parallelism has received considerable attention from the
scientific research community. In many cases, research has focussed on exploiting
parallelism for solving problems of increasing size. In particular, solutions have
been targeted towards increase of scalability of scientific applications [22]. However,
the reasons for exploiting parallelism in real-time applications originate from the
demand to meet harder timing constraints rather than from scalability issues. Exploiting
parallelism in these cases leads to more intricate models by which one can analyze the
actual behavior of the application. Such an analysis is needed to determine a priori if the
required timing constraints will be satisfied. This type of analysis is generally obsolete
in the case of parallel scientific applications where meeting timing constraints is not
a hard requirement. The effect to date is that many tools for development of parallel
applications are not adequate when applied to real-time application development. On
the other hand, traditional development tools do not support exploitation of parallelism
as a design activity. In particular, they do not provide the right means for expressing
process replication and resource usage.

A solution to this problem can be obtained by first developing analytic models of an
application, and later using these models to support the actual design. Unfortunately,
this does imply that two separate activities, namely performance modeling and software
design, should later be integrated. In practice, this often turns out to be a hard and error-
prone process. A more elegant solution is to allow designs to be evaluated directly.
However, this approach is hardly supported by current design methods used in the realm
of parallel real-time application development. In this paper we describe how such an
integrated approach can be realized. In particular, we argue that adequate means are to
be provided to experiment with software designs. In this way, it is feasible to devise
solutions that adhere to standard criteria of well-engineered software, and at the same
time can meet the timing constraints imposed by their problems. In particular, we
describe an approach that is currently being implemented in the ESPRIT project Hamlet.

The paper is organized as follows. In Chapter 2 we briefly discuss the traditional
approaches towards software design, and address the question why they do not ade-
quately support development of parallel applications. In addition, we also present an
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outline of our approach which is based on experimentation. The bulk of the paper
is presented in Chapter 3 in which we further describe our approach by focusing on
design, implementation, execution, and analysis of applications. A main emphasis is
put on support for system design as we feel it is here that exploitation of parallelism in
a solution should primarily be addressed. We conclude our presentation in Chapter 4
by taking a look at related work.
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The design phase in a system
development cycle

System development life cycles are traditionally decomposed into five global phases
[6]: analysis, design, implementation, test, and maintenance. In this paper we mainly
concentrate on the design and implementation phases. We assume that requirements
analysis has resulted in a definition of what the system should do,and that a development
team has reached a point where it should decide how these requirements are to be met.

2.1 Traditional design approaches

When speaking in terms of system design, one can roughly distinguish three different
approaches [5]:

1. Functional structuring by which the structure of the system is described in terms
of functional interaction of the various components. Typically, data-flow based
techniques as introduced by Yourdon [29] and extended for real-time system
development by, for example, Ward/Mellor [28] and Hatley/Pirbhai [9] are ex-
amples of this approach.

2. Object structuring by which the system is decomposed into a collection of com-
municating objects, where each object is responsible for a specific function.
This has become more familiar as object-oriented design, and techniques such
as developed by Booch [2] and Rumbaugh et al. [20] are gaining wide-spread
popularity.

3. Data structuring that puts a main emphasis on the data to be manipulated in a
system. Typically, when using a data structuring approach, a developer concen-
trates on data modeling, and modeling the events that change data. An example
of a data structuring method is JSD [13].
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But regardless of the actual approach taken, emphasis during the design phase in
each case is put on abstraction, structuring, information hiding, modularity, and con-
currency. Of these concepts, concurrency is extremely important when dealing with
(parallel) real-time systems. As mentioned by Jacobson [14], developing industrial
real-time systems requires that the three fundamental issues of processes, the means
of communication, and the method of synchronization should be taken into account.
The validity of this statement can certainly not be underestimated when it is decided
to exploit parallelism as a means for achieving performance demands.

Unfortunately, to our opinion, it is precisely with respect to these three fundamental
issues that traditional design methods lack sufficient support, although their inventors
often claim otherwise. As we see it, this is caused by failing to make a distinction
between parallelism (or concurrency for that matter) as, on the one hand, a means for
modeling a solution, and, on the other hand, as a means for achieving performance.

When addressing parallelism as a modeling vehicle, designers are, of course, con-
fronted with the traditional problems of concurrency: communication and mutual
exclusion. This means that effort has to be put in designing solutions that are, for
example, deadlock free or free from starvation. However, it is naive to state that from
the perspective of performance enhancement, one can then, for example, subsequently
map processes onto multiple processors: exploitation of parallelism is more than just
a resource allocation problem. Instead, additional design issues such as process repli-
cation, communication bandwidth, buffering capabilities, etc. need to be addressed as
well. And as these issues influence the design, they should be addressed at that level.
It is here that, to our opinion, traditional methods fail when applied to development of
parallel real-time applications.

2.2 Experimental development during design

So what additional support can we expect for designing parallel real-time applications?
In the first place, there should be a means for explicitly expressing exploitation of
parallelism. In the next chapter, we shall see how specifications for process replication
can address this aspect. Secondly, and at least as important, there should be a means
for obtaining preliminary insight in the effects of exploitation of parallelism. In other
words, we require a means for preliminary performance evaluation. This is a difficult
demand to meet for it requires that we at least have a fairly accurate model of the
behavior of the application in conjunction with its mapping onto a target parallel
platform.

Traditionally, analytic models such as (stochastic) Petri Nets [18] or (closed) queu-
ing networks [19] have been used for performance modeling and evaluation. As
examined by Jonkers [17], a problem with this approach is that a trade-off must be
made between analytical complexity and expressive power, a reason why combinations
of both formalisms are often sought. Another disadvantage, as we see it, is that analytic
models generally are only loosely related with the structural aspects of an application
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design. Design fundamentals such as abstraction, modularity, or information hiding
have no counterpart in such models.

So, if preliminary performance evaluation is to be incorporated in a design method,
its means should be integrated with the traditional structuring approaches mentioned
above. In the first place this implies that,at the least, unambiguous behavioral semantics
should form an integrated part of the design method. Expressing behavior can be
decomposed into two constituents:

1. A behavioral model of the application in terms of some abstract execution mech-
anism, incorporating parallelism, and thus also communication and synchroniza-
tion.

2. A description of the mapping of this behavioral model onto a (parallel) target
machine, such that the execution semantics are completely preserved.

In this paper, we advocate the use of state-transition machines to describe the behavior
of an application. In addition, communication between a collection of such machines
should adhere to unambiguous semantics.

In the second place, the actual evaluation of the behavior of a design should also
form part of the design method. As we have argued, analytic models are, in our
view, inappropriate as a general means to this end. (Of course, analytic methods
should be used to validate designs against those timing constraints which under no
circumstances may be violated.) Instead, we feel that a design method for parallel
real-time applications should allow for a high degree of experimentation with respect
to performance evaluation. This need for experimentation not only originates from
the practical intractability of analytic models. It is also motivated by the complexity
of deriving a priori exact behavior models of the final (parallel) implementation of an
application. By conducting experiments, designs can be gradually adapted as insight in
this behavior grows. This experimental approach towards parallel real-time software
development has been adopted in the ESPRIT project Hamlet.

In particular, a design in terms of Hamlet consists of a structure model combined
with a behavior model. The structure model describes a design as a collection of
hierarchically organized processes communicating by message-passing. The behav-
ior model consists of a state-transition machine for each lowest level process. This
integration of a structure model and a behavior model then allows us to simulate a
design, by taking a model of the parallel target machine into account. The result of
preliminary performance evaluation may then possibly lead to (1) an adaptation of
the design (either with respect to its structure or behavior model), (2) an adaptation
of the hardware model (e.g. by adding more processors), or (3), an adaptation of the
mapping of a design onto hardware resources. By experimentation through simulation,
a developer eventually arrives at an initially satisfactory design.

This design can then subsequently be used for deriving an implementation. How-
ever, in our approach, we anticipate that further adaptations may be necessary on
account of actual performance results when executing the implementation on the target
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machine. Therefore, it is essential that the transition from design to implementation
proceeds as seamless as possible. To this aim, we have tailored our design technique
towards one which enables (partially) automated generation of efficiently executable
parallel code.

In the next chapter we shall take a closer look at how this experimental approach
towards parallel application development is realized in practice.
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The Hamlet approach

Within Hamlet, we roughly distinguish four different activities as part of the develop-
ment process: design, implementation, execution, and analysis. These four activities
are highly integrated, but each is supported by different tools. In this chapter we con-
sider each of these activities in more detail, thereby putting the most emphasis on the
actual support for constructing and evaluating designs. The global architecture of our
Application Development System is shown in Figure 3.1. The following components
are distinguished:

• A graphical hardware modeler (1) that allows a developer to describe the global
architecture of the target parallel (transputer) system. The modeler is connected
to a configuration file generator (2) which generates the necessary files to con-
figure a transputer network.

• A graphical software development tool (3) by which so-called ADL designs can
be made. Designs expressed in this application design language, can be used to
automatically generate software configuration files (4) for transputer systems, as
well as skeleton target code (5). Any additional textual information is provided
by means of standard text editor (6).

• Compilers: one for the actual target system (7), and one to compile a design for
simulation on the host system (8).

• A runtime support system, consisting of a discrete event simulator (9) by which
the behavior of an application can be evaluated before executing it on an actual
target machine. In addition, there is also a parallel debugger (10,12) and a
performance monitor (11), both used when the application is running on the
target system.

• A trace analysis system (13) and accompanying visualizer (14) for displaying
performance measurements during simulation, as well as actual target execution.

In the following sections we shall a closer look at these components.
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Figure 3.1: The global architecture of the Hamlet Application Development System.

3.1 System design

System design in Hamlet consists of two subactivities. The most prominent one is the
design of the software components of an application. In addition, attention is paid to
the design of the parallel target hardware. The position of the design components in
the development system is shown in Figure 3.2.

Software designs are expressed in the so-named Hamlet Application Design Lan-
guage, or ADL for short [24, 26]. ADL is a graphical-based language that allows a
developer to express a design in terms of a collection of communicating processes
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Figure 3.2: The design components.
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Figure 3.3: The structure model of a simple fuel tank system.

quite similar to the CSP-model of communication [12]. A distinction is made between
a structure model and a behavior model, as we shall briefly explain next.

3.1.1 An ADL structure model

An ADL structure model reflects the structure of an application expressed in terms of a
collection of processes that communicate by means of communication media based
on a message-passing paradigm. Similar to data flow diagrams, a process is used to
model a logical entity capable of transforming incoming data or tokens which can then
be passed to another process. Contrary to data flow diagrams, however, we have made
the means of communication more explicit. For example, synchronous channels in
ADL are used to model unbuffered, blocking communication between several senders
and receivers. In addition, message queues in ADL can be used to express buffered
communication.

As a simple example, consider a part of a flight simulator which manages the fuel
system. In particular, we assume that this subsystem calculates the consumed fuel
at regular intervals. To this aim, it receives the current engine speed from a control
unit whenever the speed of the aircraft changes. At the same time, it should be able
to supply the amount of fuel left to other units, in particular a display and a unit
which periodically calculates the weight of the aircraft. The structure model of this
small system can be constructed as shown in Figure 3.3. All communication has been
expressed in terms of synchronous channels, which are denoted by the symbol “ ”.

Formally, diagrams such as shown in Figure 3.3 are referred to as designs. A
process in a design can be decomposed into a collection of constituent processes,
yielding a subdesign. Similar to the approach followed in Mascot [21], the interface of
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Figure 3.4: A simple producer-consumer system based on various forms of timed
communication.

a process is made explicit by means of so-called input and output gates. They allow
for specifying when communication through that gate should commence. Three types
of communication at gates are distinguished in ADL:

• In the case of blocked communication at a gate g, a process which is waiting
for communication via g will not proceed until data or token transfer through g
has actually taken place. (Blocked communication is represented by the symbols
“•” and “ ”, respectively.)

• In the case of non-blocked communication at gate g, a process will never wait
until communication through g takes place, unless it can take place immedi-
ately. (Non-blocked communication is represented by the symbols “
” and
“2”, respectively.)

• Finally, delayed communication indicates that a process is willing to wait
for communication until a specified amount of time has elapsed. (Delayed
communication is represented by the symbols “⊕” and “2+”, respectively.)

It is important to note that these forms of communication relate to the moment when
communication should take place as required by the communicator, and if this require-
ment could not be met communication is cancelled all together. This is different from
(a)synchronous communication which involves all communicating parties, and which
is, in principle, never cancelled.

To illustrate the semantics of timed communication, consider a simple producer-
consumer system as shown in Figure 3.4. In this case, we have modeled two producers
and a single consumer that communicate by means of a synchronous channel. The
timing at gate p gate1 is subject to non-blocked communication, whereas the timing at
gate c gate is subject to a 5 second delayed communication. From the perspective of
the consumer, communication proceeds as follows. If one of the producers is prepared
to send data within 5 seconds from the moment that the consumer is prepared to receive
data, communication succeeds. Otherwise, after 5 seconds have elapsed, the consumer
withdraws its willingness to communicate, so that no data exchange can take place.
Similarly, producer1 will only send its data if the consumer is waiting for the data the
instant that producer1 wants to communicate. Otherwise, communication is cancelled
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all together. It should now be clear that producer2 will always wait until it can send its
data to the consumer.

ADL further supports various forms of group communication by means of multicast
constructs for each of the available communication media. Again, we shall not go into
any further details here, but refer to [24].

3.1.2 Expressing behaviors

Modeling the behavior of an activity in ADL is done by means of state-transition
machines. Each process which is not further decomposed has precisely one associated
state-transition machine. State-transition machines normally consist of a single notion
of a state, and transitions between states can only occur as the result of an event.
In ADL, however, we have chosen to use a form by which a developer can focus on
communication entirely. This means that we are not initially interested in control flow
and data transformations that do not immediately relate to parallelism. In the following
we shall briefly describe our notion of state-transition machines, and conclude with a
simple example.

Processing states.

Processing states (drawn as rectangles in ADL) are used for exclusively modeling data
transformations. This means that while a process is residing in a such a state no
communication with other processes takes place. The question that comes to mind
is how one can describe the actual behavior that takes place within a processing
state. As state-transition machines in ADL are primarily intended to support design
of communication, further specification of data transformations is not possible in our
language. Instead, a developer may directly attach source code to a processing state.
(We note that we are currently investigating how adding data transformations in this
way can be adequately supported.) As we shall see, this code will later be inserted
directly when generating an implementation (either for simulation or target execution
purposes) from a design.

Communication states.

Communication states describe the situation in which a process is involved in commu-
nicating data or tokens through one of its gates. Each communication state is associated
with exactly one of the gates attached to the process. This leads to a further distinction
between input states (designated as “ ”) and output states (designated as “ ”).
While a process is residing in a communication state, it attempts to send or receive
information via the gate to which the state is associated. How communication proceeds
is entirely dependent on the communication medium to which the gate is connected.
When communication takes place is determined by the timing of the state, which, just
as in the case of gates, can either be blocked, non-blocked, or delayed.
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Transitions.

Possible transitions between states are shown as arcs in state-transition machines.
However, which transition will be made can only be partially specified in our language.
In particular, processing states may have multiple outgoing transitions and the one
actually selected can be dependent on the data transformations within such a state. As
we have mentioned above, these transformations cannot be modeled at the level of
state-transition machines. We shall return to this issue further below.

The situation is different in the case of communication states. Here, there are only
two possibilities for making a state transition depending on whether the communication
could take place or not. To this aim, gates can raise a so-called event:

• a transfer event is raised by a gate whenever data or a token has passed through
that gate,

• a timeout event is raised whenever communication through the gate cannot take
place because the timing constraints cannot be met.

Now, whenever a process is residing in a communication state it can only make a
transition to a next state on the occurrence of an event. Which transition is made is
specified by means of an arc from that communication state to the next state. In the case
of a timeout event, the next state is designated according to a dashed arc; otherwise, in
the case of a transfer event, the transition represented by a solid arc is made.

Select states.

In many cases, a process in a parallel application may reach a point in which it should
select from a set of alternative communications. These situations can be modeled
in ADL by means of a single select state. A single select state consists of two or
more communication states, represented by enclosing them in a dashed box. Upon the
occurrence of an event associated with one of these constituent states, a transition will
be made from that state to the specified next state. In this sense, single select states in
ADL resemble the select statement in Ada, or the alt statement in OCCAM. The main
difference lies in the fact that select states in ADL may contain input as well as output
states. In Ada and OCCAM it is only possible to select from a number of incoming
messages.

Alternatively, total select states are used to describe the behavior of a process
waiting for a number of communications to take place. The difference with a single
select state is that a next transition will only be made as soon as all communications have
succeeded. The order, however, in which communication takes place, is irrelevant.

To illustrate our notion of state-transition machines, consider the behavior description
of our fuel tank system which is shown in Figure 3.5. By modeling the communication
with the outside world as a single select state select, we now have the following
situation:
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Figure 3.5: A state-transition machine for the process FuelTank of example system.

• Due to the fact that the select state contains a delayed input state, FuelTank will
never indefinitely wait until communication with outside world takes place. In
particular, if no other activity wants to communicate, FuelTank will occasionally
update the fuel level by making a transition to state adjustFuel.

• Issuing a request for the current fuel level is modeled by means of unidirectional
blocked synchronous communication: if FuelTank can pass on the current fuel
level via gate fGate while residing in the select state, it will do so. Otherwise,
it will eventually respond to communication via gate sGate, or a timeout at that
gate. In other words, we need not explicitly model a request for the current fuel
level by means of datum or token sent from the requesting activity to the fuel
tank.

3.1.3 Process replication

Although a structure and a behavior model reflect inherent, functional parallelism [15]
it would be erroneous to state that this parallelism is targeted towards achieving per-
formance. In this sense, the modeling support presented so far captures the traditional
support that is provided by most design methods used today. And as we have argued
in Section 2.1, we need more when dealing with the design of applications that exploit
parallelism for the sake of meeting performance demands. To this aim, ADL provides
a means for specifying process replication. Process replication in ADL is entirely
constructed by means of model annotations. These annotations are not considered as
part of the language core, but instead, are merely abbreviations to concisely express
repetitive structures. These structures are expressed by using so-called replicators and
connection statements.

A replicator consists of a replication factor which is a positive integer, say N, and a
replication variable which is an integer variable taking values from the set f0,…, N�1g.
A replicator with replication factor N and replication variable j is graphically denoted
as

N
j
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Figure 3.6: The result of applying a replicator with replication factor 4.

A replicator can be applied within a design by selecting a number of processes and
communication media. Such a set is identified by drawing a dashed arc from the
replicator to each object that takes part in the replication. The only restriction we
impose is that a communication medium can only be selected if all processes that are
connected to it, are selected for replication as well (we shall return to this later). The
effect of replication on a collection of processes and communication media effectively
boils down to replicating the complete substructure. In addition, each communication
medium that is not part of the replication but that was connected to a process P subject
to replication, is subsequently connected to each replica Pi.

To illustrate, consider the replication specification shown in Figure 3.6(a), consist-
ing of three processes S, R, and A. Also, there are three communication media SM,
RM, and M. (For the sake of clarity, we have omitted further specification of the type
of the respective communication media, and have also not specified any gates.) The
replicator (N, j) is applied to A and M, which results in the altered design shown in
Figure 3.6(b) in the case that N = 4.

The condition that a communication medium can only be selected for replication if
all processes connected to it are selected as well, may seem rather restrictive. What it
establishes is that no additional connections will ever be made to a process on account
of replication. Consequently, the interface of a process is left intact.

Replication introduced so far is not sufficient to be used as a means for specifying
regular communication structures. Examples of such structures are pipelines, meshes,
hypercubes, etc. To that aim, we need a means of specifying how the actual connections
between processes and communication media should be provided. In ADL, this can be
done by annotating connections with so-called connection statements. Connection
statements come in two forms: redirection statements and attachment constraints.

A redirection statement can be attached to a connection from a source object S to a
target object T, where both S and T should be subject to replication. Such a statement
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takes the general form

i → E(i), with 0 ≤ i < N

where we assume that N is the replication factor. E(i) is an integer function denoting
the target object after replication. To illustrate, assume there was a connection from
process P to a communication medium c, and both P and c are subject to replication.
Assuming that we annotated this connection with the redirection statement “i → i + 1”,
then, after replication, the connection will be directed from Pi to ci+1, instead of the
default connection from Pi to ci. In those cases that E(i) < 0 or E(i) ≥ N, the connection
is discarded all together.

An attachment constraint can be attached to a connection from a source object S to
a target object T, where either S or T should be subject to replication, but not both. A
constraint takes the general form

i relop C(i), with 0 ≤ N

where, again, N is assumed to be the replication factor. In this case, relop denotes
a standard mathematical relationship operator, and C(i) is an integer expression. To
illustrate, assume that process P is connected to a communication medium c, and that
only P is subject to replication. The attachment constraint “i = (i ÷ 2) × 2” implies that
after replication, there will only be a connection from those replica’s Pi to c for which
the index is even. All other connections from Pi to c are discarded. In those cases that
not a single connection can be made, the constraint is considered to be at fault.

In both cases, i.e. when using redirection statements or attachment constraints,
communication media are also discarded if replication leads to incorrect designs.

To illustrate, reconsider the replication specification shown in Figure 3.6(a). In
order to specify a pipeline of processes, we attach connection statements as shown in
Figure 3.7(a). Now assume in this case that the replication factor N = 5. Then, because
no redirection statement has been attached to the connection from A to M, there will be
a connection from each replicated process A[j] to M[j], where 0 ≤ j ≤ 4. The redirection
statement

j → j + 1

attached to the connection from M to A, specifies that, after replication, for each j,
with 0 ≤ j ≤ 4, M[j] should be connected to A[j+1]. However, because M[4] cannot
be connected to A[5] for the simple reason that A[5] does not exist, this connection is
discarded. This would imply that only the connection A[4] to M[4] would exist which
violates the syntax rules of ADL. Consequently, M[4] is discarded all together. This
single redirection statement then leads to the pipeline of processes A[0] … A[4] shown
in Figure 3.7(b).

Now consider the two connection constraints. In the first place, the constraint
“j = 0” attached to the connection from SM to A, specifies that the only connection
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Figure 3.7: The specification of a pipeline of processes using replication.

that is to be made after replication, is the one from SM to A[0]. Similarly, “j = N � 1”
implies that there will only be a connection from A[4] to RM.

Complex replications can also be formulated in ADL, but are not considered here.
For such replications, as well as formal definitions of replications in general, we again
refer to [24].

3.1.4 Designing the target architecture

So far, we have concentrated on designing the software components of a system. In
the case of parallel application development, it is also necessary to pay attention to
designing the target hardware. In particular, it is necessary to describe the parallel
machine in terms of processor characteristics, topology, etc., as these aspects will
generally influence the performance of the application. To this aim, Hamlet provides
a graphical form of the INMOS Network and Description Language [10], referred to
as GNDL. For example, a simple transputer network consisting of six T805 transputers
can be described as shown in Figure 3.8.

Detailed information on the actual performance of a transputer platform is supplied
by our system. In particular, we have made detailed models of various transputer
configurations, and use these models in order to properly simulate a design. The
developer need merely provide the topology and some global characteristics such as
transputer type, memory size, etc.
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Figure 3.8: An example of a simple transputer network expressed in GNDL.
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Figure 3.9: The implementation components.

3.2 System implementation

Implementation in Hamlet is primarily supported by means of automated code genera-
tion. The place of the corresponding tools within the development system is shown in
Figure 3.9.

Our system design languages ADL and GNDL have been purposefully designed in
such a way that automated code generation can be supported. To start with, using
GNDL we immediately generate the hardware configuration files necessary to configure
a target transputer platform. It is thus no longer necessary to construct these files by
hand, which is generally considered as a harsh and error-prone process. By providing an
easy-to-use graphical interface, a developer is encouraged to experiment with various
configurations.

In a similar fashion, we use an ADL structure model to generate the software
configuration files. To this aim, a developer must specify to which transputer each
ADL process is to be mapped. In a future version of our support environment, we shall
provide heuristic algorithms that generate a (sub)optimal mapping automatically. Apart
from the mapping information, all other configuration information such as process
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descriptions, process connections, etc., are generated automatically from a structure
model.

The structure model also provides all necessary information to generate skeleton
target code containing static information. Roughly speaking, this means that we have all
the information available to generate declarations of variables and function signatures,
as well as the initialization and finalization sections of executable code. Furthermore,
due to the fact that communication structures can be directly derived from a structure
model, we are also capable of generating the necessary interface to communication
libraries. At present, we are using C as our target language, augmented with calls to
the RTSM real-time communication library [4].

But problems start to arise when code needs to be generated for either (1) data-
dependent control flow structures, or (2) communication structures that do not have an
equivalent construct in our communication library. Let us take a closer look at these
two issues.

Data-dependent control flow.

To solve the first problem, we explicitly need to consider the state-transition machines
that constitute a behavior model. It should be clear that we can generate the necessary
target code for data-independent control flow structures on a per process basis by
simply considering a state-transition machine. In order to generate fully executable
code, we currently only permit a developer to attach statistical information on expected
computational delays and branching in processing states. This information will then
allow us to generate executable simulation code for an application. At present, we
are working towards an adequate means for attaching minimal source code in order
generate a complete implementation.

Advanced communication structures.

ADL supports a number of communication structures that have no direct equivalent in
any communication library. Amongst these are multiple senders and receivers com-
municating via a synchronous channel, network-wide message queues, multicasting
constructs, etc. The question is, if each communication media can be adequately
supported by an efficient implementation. Also, select states in state-transition ma-
chines which contain output states, generally have no counterpart in implementation
languages. Because we are dealing with real-time applications, we shall not impose
any implementation that could possibly have an adverse effect on performance. Con-
sequently, our system will not generate code for those communication structures that
cannot be supported by an application-independent efficient implementation. In these
cases, we leave it up to the developer to provide an implementation. In all other cases,
however, our system will generate target code, possibly directed towards a specific
implementation through annotations provided by the developer.
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Figure 3.10: The execution components.

3.3 System execution

As we have already indicated, the Hamlet approach is based on two execution schemes:
one by which a design is simulated, and one by which an implementation is executed
on a target machine. The position of the supporting tools are shown in Figure 3.10.

Simulation proceeds by simply compiling and linking an application to a library
with approximately the same interface as the actual communication library. Additional
functions merely address simulation aspects (such as delays and distribution functions).
The simulator assumes a configuration file, generated from a GNDL model. During
simulation, experiments can be conducted such as interactively changing the network
model or the mapping of processes onto processors. In the end, the simulator will
generate a trace file for further analysis.

The actual execution on a target platform is supported by a debugging and monitor-
ing system which is based on the INMOS Inquest Toolset. During actual execution of
an application, the same information is gathered as can be done by means of simulation.
Consequently, the simulator and monitoring system produce (post-mortem) trace files
that have exactly the same format. These trace files can subsequently be processed by
an analysis system which is discussed next.

3.4 System analysis

A prominent component that supports our experimental design approach, is formed by
an advanced trace analysis system, as shown in Figure 3.11. This subsystem, named
TATOO is based on the analysis and visualization tools PATOP and VISTOP developed as
part of the TOPSYS environment [1].

The functionality of the analysis system is quite comparable to other behavior
analysis tools such as, for example, ParaGraph [11]. By installing a software monitor
on each processor of the target machine, measurement figures can be provided for active
times of processes or processors; delays with respect to ready queues, communication
calls, and I/O; as well as information on communication bandwidth. Monitoring need
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Figure 3.11: The analysis components.

not be done globally. Instead, restricted monitoring in time (e.g. functions and marked
areas) or in space (e.g. for a number of processes or processors) is supported.

The analysis system is organized into three separate layers: a universal layer, a
control layer, and a display layer.

The universal layer.

The lowest layer is concerned with mapping the events associated with logical mea-
surements (such as e.g. processor utilization or lengths of system queues) to actual
physical measurements that have to be provided by the software monitor for each pro-
cessor. Typically, the universal layer provides a number of trace buffers which contain
the actual data generated by the software monitors.

The control layer.

The control layer lies at the heart of the analysis system and is responsible for interpret-
ing the traces generated through the universal layer. In this sense, the control layer is
responsible for transforming logical events into actual measures that can subsequently
be displayed in a later stage. For example, the control layer may relate changes in the
lengths of various ready queues to a global ordering in time, so that weighted averages
of queue lengths in time-intervals can actually be measured.

The display layer.

The display layer provides a variety of diagrams for displaying measurements. Dis-
plays include multicurve diagrams to relate multiple time-dependent measurements,
histograms, distribution graphs, and Gantt charts. In addition, matrix diagrams are used
to reflect “hot spots” per measurement/per processor by using value-related colors for
each element in the matrix.

Clearly, the analysis tool is the primary means to provide feedback to a developer on

21



the actual performance of the application. An important aspect is that the analysis tool
provides exactly the same interface for both execution modes supported in Hamlet (i.e.
simulation or target execution).

22



4

Discussion and conclusions

The distinctive feature of the Hamlet approach towards computer-aided support for
developing parallel real-time applications is that an integrated experimentation envi-
ronment is provided. Unlike many other approaches, our goal is to support experimen-
tation starting at the level of system design, as we believe that it is here that exploitation
of parallelism manifests itself for the first time as a development criterion. To this aim,
we have developed a new design method that takes exploitation of parallelism explic-
itly into account. To our knowledge, only a very few design methods currently exist
that share this feature, and most of them, just as ours, are still in a research phase (see
e.g. [16, 23]). Unique in our design approach is the fact that we support development
of parallel real-time applications.

In order to allow for flexible experimentation, we have recognized that at least two
demands should be met:

1. preliminary evaluation of designs, implying that incomplete implementations
should be amenable to performance analysis.

2. seamless integration of design and implementation in order to avoid that the
(usually manual) transformations of a design into an implementation lead to
target code that later has to be considerably modified.

The first requirement is supported in our approach by applying discrete simulation
techniques. This idea is, of course, not new. The important aspect, however, is that the
models we simulate are exactly those that are used during the actual process of system
design. To this aim, hardware models are provided by a developer and are used as
additional input for the simulator.

The second requirement is supported by automated code generation. To this aim, we
needed to carefully construct our design technique to include unambiguous behavioral
semantics, and which could be used to generate efficiently executable parallel code.
To a certain extent, this approach has also been successfully applied in the STATEMATE

environment [8]. STATEMATE uses the concept of statecharts [7], a form of finite
state machines which have been used to generate prototype Ada programs. And
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although STATEMATE does address the problem of real-time application development,
exploitation of parallelism is not explicitly supported.

Our experimentation approach is further completed by, more or less traditional
support for monitoring, debugging, and analysis of executions.

A prototype version of our Application Development System has been installed
at the developer’s sites for evaluation. The prototype system consists of a graphical
support system for (a restricted version of) ADL and GNDL, including generation of
hardware and software configuration files.

The feedback we have received so far indicates that our approach may indeed be
successfully applicable for parallel real-time application development. Yet, much work
still needs to be done. In particular, automated generation of industrial-quality parallel
target code and support for accurate simulations needs further attention. On the other
hand, the generation of configuration files from ADL and GNDL designs have proven to
be extremely useful. The more traditional tools (i.e. for debugging and analysis) have
also shown to suffice quite well. Based on this feedback, we are now concentrating on
the following items:

• Further development of ADL, in particular its support for automated code gener-
ation.

• Development of realistic hardware models for various transputer systems, and
incorporation of these models into the simulation system.

• Fine-tuning of the analysis system, in particular by extending its functionality
with respect to displaying information.

• Full integration of the tools by means of a Broadcast Message Server, comparable
to Hewlett-Packard’s Softbench [3].

At the moment of this writing, we have installed the second version of our design entry
system at the application developer’s sites. Work with respect to the aforementioned
issues is ongoing. For example, ADL is currently being augmented with data typing
facilities [27], and (distributed) algorithms for supporting its implementation are under
way [25].
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