284 research outputs found

    Handwritten and machine-printed text discrimination using a template matching approach

    Get PDF
    We propose a novel template matching approach for the discrimination of handwritten and machine-printed text. We first pre-process the scanned document images by performing denoising, circles/lines exclusion and word-block level segmentation. We then align and match characters in a flexible sized gallery with the segmented regions, using parallelised normalised cross-correlation. The experimental results over the Pattern Recognition & Image Analysis Research Lab-Natural History Museum (PRImA-NHM) dataset show remarkably high robustness of the algorithm in classifying cluttered, occluded and noisy samples, in addition to those with significant high missing data. The algorithm, which gives 84.0% classification rate with false positive rate 0.16 over the dataset, does not require training samples and generates compelling results as opposed to the training-based approaches, which have used the same benchmark

    Computer analysis of composite documents with non-uniform background.

    Get PDF
    The motivation behind most of the applications of off-line text recognition is to convert data from conventional media into electronic media. Such applications are bank cheques, security documents and form processing. In this dissertation a document analysis system is presented to transfer gray level composite documents with complex backgrounds and poor illumination into electronic format that is suitable for efficient storage, retrieval and interpretation. The preprocessing stage for the document analysis system requires the conversion of a paper-based document to a digital bit-map representation after optical scanning followed by techniques of thresholding, skew detection, page segmentation and Optical Character Recognition (OCR). The system as a whole operates in a pipeline fashion where each stage or process passes its output to the next stage. The success of each stage guarantees that the operation of the system as a whole with no failures that may reduce the character recognition rate. By designing this document analysis system a new local bi-level threshold selection technique was developed for gray level composite document images with non-uniform background. The algorithm uses statistical and textural feature measures to obtain a feature vector for each pixel from a window of size (2 n + 1) x (2n + 1), where n ≥ 1. These features provide a local understanding of pixels from their neighbourhoods making it easier to classify each pixel into its proper class. A Multi-Layer Perceptron Neural Network is then used to classify each pixel value in the image. The results of thresholding are then passed to the block segmentation stage. The block segmentation technique developed is a feature-based method that uses a Neural Network classifier to automatically segment and classify the image contents into text and halftone images. Finally, the text blocks are passed into a Character Recognition (CR) system to transfer characters into an editable text format and the recognition results were compared to those obtained from a commercial OCR. The OCR system implemented uses pixel distribution as features extracted from different zones of the characters. A correlation classifier is used to recognize the characters. For the application of cheque processing, this system was used to read the special numerals of the optical barcode found in bank cheques. The OCR system uses a fuzzy descriptive feature extraction method with a correlation classifier to recognize these special numerals, which identify the bank institute and provides personal information about the account holder. The new local thresholding scheme was tested on a variety of composite document images with complex backgrounds. The results were very good compared to the results from commercial OCR software. This proposed thresholding technique is not limited to a specific application. It can be used on a variety of document images with complex backgrounds and can be implemented in any document analysis system provided that sufficient training is performed.Dept. of Electrical and Computer Engineering. Paper copy at Leddy Library: Theses & Major Papers - Basement, West Bldg. / Call Number: Thesis2004 .A445. Source: Dissertation Abstracts International, Volume: 66-02, Section: B, page: 1061. Advisers: Maher Sid-Ahmed; Majid Ahmadi. Thesis (Ph.D.)--University of Windsor (Canada), 2004

    A Computational Theory of Contextual Knowledge in Machine Reading

    Get PDF
    Machine recognition of off–line handwriting can be achieved by either recognising words as individual symbols (word level recognition) or by segmenting a word into parts, usually letters, and classifying those parts (letter level recognition). Whichever method is used, current handwriting recognition systems cannot overcome the inherent ambiguity in writingwithout recourse to contextual information. This thesis presents a set of experiments that use Hidden Markov Models of language to resolve ambiguity in the classification process. It goes on to describe an algorithm designed to recognise a document written by a single–author and to improve recognition by adaptingto the writing style and learning new words. Learning and adaptation is achieved by reading the document over several iterations. The algorithm is designed to incorporate contextual processing, adaptation to modify the shape of known words and learning of new words within a constrained dictionary. Adaptation occurs when a word that has previously been trained in the classifier is recognised at either the word or letter level and the word image is used to modify the classifier. Learning occurs when a new word that has not been in the training set is recognised at the letter level and is subsequently added to the classifier. Words and letters are recognised using a nearest neighbour classifier and used features based on the two–dimensional Fourier transform. By incorporating a measure of confidence based on the distribution of training points around an exemplar, adaptation and learning is constrained to only occur when a word is confidently classified. The algorithm was implemented and tested with a dictionary of 1000 words. Results show that adaptation of the letter classifier improved recognition on average by 3.9% with only 1.6% at the whole word level. Two experiments were carried out to evaluate the learning in the system. It was found that learning accounted for little improvement in the classification results and also that learning new words was prone to misclassifications being propagated

    A novel image matching approach for word spotting

    Get PDF
    Word spotting has been adopted and used by various researchers as a complementary technique to Optical Character Recognition for document analysis and retrieval. The various applications of word spotting include document indexing, image retrieval and information filtering. The important factors in word spotting techniques are pre-processing, selection and extraction of proper features and image matching algorithms. The Correlation Similarity Measure (CORR) algorithm is considered to be a faster matching algorithm, originally defined for finding similarities between binary patterns. In the word spotting literature the CORR algorithm has been used successfully to compare the GSC binary features extracted from binary word images, i.e., Gradient, Structural and Concavity (GSC) features. However, the problem with this approach is that binarization of images leads to a loss of very useful information. Furthermore, before extracting GSC binary features the word images must be skew corrected and slant normalized, which is not only difficult but in some cases impossible in Arabic and modified Arabic scripts. We present a new approach in which the Correlation Similarity Measure (CORR) algorithm has been used innovatively to compare Gray-scale word images. In this approach, binarization of images, skew correction and slant normalization of word images are not required at all. The various features, i.e., projection profiles, word profiles and transitional features are extracted from the Gray-scale word images and converted into their binary equivalents, which are compared via CORR algorithm with greater speed and higher accuracy. The experiments have been conducted on Gray-scale versions of newly created handwritten databases of Pashto and Dari languages, written in modified Arabic scripts. For each of these languages we have used 4599 words relating to 21 different word classes collected from 219 writers. The average precision rates achieved for Pashto and Dari languages were 93.18 % and 93.75 %, respectively. The time taken for matching a pair of images was 1.43 milli-seconds. In addition, we will present the handwritten databases for two well-known Indo- Iranian languages, i.e., Pashto and Dari languages. These are large databases which contain six types of data, i.e., Dates, Isolated Digits, Numeral Strings, Isolated Characters, Different Words and Special Symbols, written by native speakers of the corresponding languages

    Reconnaissance de l'écriture manuscrite en-ligne par approche combinant systèmes à vastes marges et modèles de Markov cachés

    Get PDF
    Handwriting recognition is one of the leading applications of pattern recognition and machine learning. Despite having some limitations, handwriting recognition systems have been used as an input method of many electronic devices and helps in the automation of many manual tasks requiring processing of handwriting images. In general, a handwriting recognition system comprises three functional components; preprocessing, recognition and post-processing. There have been improvements made within each component in the system. However, to further open the avenues of expanding its applications, specific improvements need to be made in the recognition capability of the system. Hidden Markov Model (HMM) has been the dominant methods of recognition in handwriting recognition in offline and online systems. However, the use of Gaussian observation densities in HMM and representational model for word modeling often does not lead to good classification. Hybrid of Neural Network (NN) and HMM later improves word recognition by taking advantage of NN discriminative property and HMM representational capability. However, the use of NN does not optimize recognition capability as the use of Empirical Risk minimization (ERM) principle in its training leads to poor generalization. In this thesis, we focus on improving the recognition capability of a cursive online handwritten word recognition system by using an emerging method in machine learning, the support vector machine (SVM). We first evaluated SVM in isolated character recognition environment using IRONOFF and UNIPEN character databases. SVM, by its use of principle of structural risk minimization (SRM) have allowed simultaneous optimization of representational and discriminative capability of the character recognizer. We finally demonstrate the various practical issues in using SVM within a hybrid setting with HMM. In addition, we tested the hybrid system on the IRONOFF word database and obtained favourable results.Nos travaux concernent la reconnaissance de l'écriture manuscrite qui est l'un des domaines de prédilection pour la reconnaissance des formes et les algorithmes d'apprentissage. Dans le domaine de l'écriture en-ligne, les applications concernent tous les dispositifs de saisie permettant à un usager de communiquer de façon transparente avec les systèmes d'information. Dans ce cadre, nos travaux apportent une contribution pour proposer une nouvelle architecture de reconnaissance de mots manuscrits sans contrainte de style. Celle-ci se situe dans la famille des approches hybrides locale/globale où le paradigme de la segmentation/reconnaissance va se trouver résolu par la complémentarité d'un système de reconnaissance de type discriminant agissant au niveau caractère et d'un système par approche modèle pour superviser le niveau global. Nos choix se sont portés sur des Séparateurs à Vastes Marges (SVM) pour le classifieur de caractères et sur des algorithmes de programmation dynamique, issus d'une modélisation par Modèles de Markov Cachés (HMM). Cette combinaison SVM/HMM est unique dans le domaine de la reconnaissance de l'écriture manuscrite. Des expérimentations ont été menées, d'abord dans un cadre de reconnaissance de caractères isolés puis sur la base IRONOFF de mots cursifs. Elles ont montré la supériorité des approches SVM par rapport aux solutions à bases de réseaux de neurones à convolutions (Time Delay Neural Network) que nous avions développées précédemment, et leur bon comportement en situation de reconnaissance de mots

    Computers and the lawyer

    Get PDF

    Recognizing Visual Object Using Machine Learning Techniques

    Get PDF
    Nowadays, Visual Object Recognition (VOR) has received growing interest from researchers and it has become a very active area of research due to its vital applications including handwriting recognition, diseases classification, face identification ..etc. However, extracting the relevant features that faithfully describe the image represents the challenge of most existing VOR systems. This thesis is mainly dedicated to the development of two VOR systems, which are presented in two different contributions. As a first contribution, we propose a novel generic feature-independent pyramid multilevel (GFIPML) model for extracting features from images. GFIPML addresses the shortcomings of two existing schemes namely multi-level (ML) and pyramid multi-level (PML), while also taking advantage of their pros. As its name indicates, the proposed model can be used by any kind of the large variety of existing features extraction methods. We applied GFIPML for the task of Arabic literal amount recognition. Indeed, this task is challenging due to the specific characteristics of Arabic handwriting. While most literary works have considered structural features that are sensitive to word deformations, we opt for using Local Phase Quantization (LPQ) and Binarized Statistical Image Feature (BSIF) as Arabic handwriting can be considered as texture. To further enhance the recognition yields, we considered a multimodal system based on the combination of LPQ with multiple BSIF descriptors, each one with a different filter size. As a second contribution, a novel simple yet effcient, and speedy TR-ICANet model for extracting features from unconstrained ear images is proposed. To get rid of unconstrained conditions (e.g., scale and pose variations), we suggested first normalizing all images using CNN. The normalized images are fed then to the TR-ICANet model, which uses ICA to learn filters. A binary hashing and block-wise histogramming are used then to compute the local features. At the final stage of TR-ICANet, we proposed to use an effective normalization method namely Tied Rank normalization in order to eliminate the disparity within blockwise feature vectors. Furthermore, to improve the identification performance of the proposed system, we proposed a softmax average fusing of CNN-based feature extraction approaches with our proposed TR-ICANet at the decision level using SVM classifier
    corecore