
University of Windsor University of Windsor

Scholarship at UWindsor Scholarship at UWindsor

Electronic Theses and Dissertations Theses, Dissertations, and Major Papers

2004

Computer analysis of composite documents with non-uniform Computer analysis of composite documents with non-uniform

background. background.

Yasser Alginahi
University of Windsor

Follow this and additional works at: https://scholar.uwindsor.ca/etd

Recommended Citation Recommended Citation
Alginahi, Yasser, "Computer analysis of composite documents with non-uniform background." (2004).
Electronic Theses and Dissertations. 1517.
https://scholar.uwindsor.ca/etd/1517

This online database contains the full-text of PhD dissertations and Masters’ theses of University of Windsor
students from 1954 forward. These documents are made available for personal study and research purposes only,
in accordance with the Canadian Copyright Act and the Creative Commons license—CC BY-NC-ND (Attribution,
Non-Commercial, No Derivative Works). Under this license, works must always be attributed to the copyright holder
(original author), cannot be used for any commercial purposes, and may not be altered. Any other use would
require the permission of the copyright holder. Students may inquire about withdrawing their dissertation and/or
thesis from this database. For additional inquiries, please contact the repository administrator via email
(scholarship@uwindsor.ca) or by telephone at 519-253-3000ext. 3208.

https://scholar.uwindsor.ca/
https://scholar.uwindsor.ca/etd
https://scholar.uwindsor.ca/theses-dissertations-major-papers
https://scholar.uwindsor.ca/etd?utm_source=scholar.uwindsor.ca%2Fetd%2F1517&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.uwindsor.ca/etd/1517?utm_source=scholar.uwindsor.ca%2Fetd%2F1517&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarship@uwindsor.ca

COMPUTER ANALYSIS OF COMPOSITE DOCUMENTS WITH
NON-UNIFORM BACKGROUND

by

Yasser Alginahi

A Dissertation
Submitted to the Faculty of Graduate Studies and Research

through the Department of Electrical and Computer Engineering
in Partial Fulfillment of the Requirements for
the Degree of Doctor of Philosophy at the

University of Windsor

Windsor, Ontario, Canada

September 2004

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Library and
Archives Canada

Bibliotheque et
Archives Canada

Published Heritage
Branch

395 Wellington Street
Ottawa ON K1A 0N4
Canada

Your file Votre reference
ISBN: 0-494-00022-8
Our file Notre reference
ISBN: 0-494-00022-8

Direction du
Patrimoine de I'edition

395, rue Wellington
Ottawa ON K1A 0N4
Canada

NOTICE:
The author has granted a non
exclusive license allowing Library
and Archives Canada to reproduce,
publish, archive, preserve, conserve,
communicate to the public by
telecommunication or on the Internet,
loan, distribute and sell theses
worldwide, for commercial or non
commercial purposes, in microform,
paper, electronic and/or any other
formats.

AVIS:
L'auteur a accorde une licence non exclusive
permettant a la Bibliotheque et Archives
Canada de reproduire, publier, archiver,
sauvegarder, conserver, transmettre au public
par telecommunication ou par I'lnternet, preter,
distribuer et vendre des theses partout dans
le monde, a des fins commerciales ou autres,
sur support microforme, papier, electronique
et/ou autres formats.

The author retains copyright
ownership and moral rights in
this thesis. Neither the thesis
nor substantial extracts from it
may be printed or otherwise
reproduced without the author's
permission.

L'auteur conserve la propriete du droit d'auteur
et des droits moraux qui protege cette these.
Ni la these ni des extraits substantiels de
celle-ci ne doivent etre imprimes ou autrement
reproduits sans son autorisation.

In compliance with the Canadian
Privacy Act some supporting
forms may have been removed
from this thesis.

While these forms may be included
in the document page count,
their removal does not represent
any loss of content from the
thesis.

Conformement a la loi canadienne
sur la protection de la vie privee,
quelques formulaires secondaires
ont ete enleves de cette these.

Bien que ces formulaires
aient inclus dans la pagination,
il n'y aura aucun contenu manquant.

i * i

Canada
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

© 2004 Yasser Alginahi

All Rights Reserved.
No part of this document may be reproduced,

stored or otherwise retained in a retrieval system or transmitted
in any form, on any medium or by any means without the prior written

permission of the author.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Abstract

The motivation behind most of the applications of off-line text recognition is to

convert data from conventional media into electronic media. Such applications

are bank cheques, security documents and form processing. In this dissertation

a document analysis system is presented to transfer gray level composite

documents with complex backgrounds and poor illumination into electronic format

that is suitable for efficient storage, retrieval and interpretation. The

preprocessing stage for the document analysis system requires the conversion of

a paper-based document to a digital bit-map representation after optical scanning

followed by techniques of thresholding, skew detection, page segmentation and

Optical Character Recognition (OCR). The system as a whole operates in a

pipeline fashion where each stage or process passes its output to the next stage.

The success of each stage guarantees that the operation of the system as a

whole with no failures that may reduce the character recognition rate.

By designing this document analysis system a new local bi-level threshold

selection technique was developed for gray level composite document images

with non-uniform background. The algorithm uses statistical and textural feature

measures to obtain a feature vector for each pixel from a window of size

(2 « + 1) x (2 w + 1), where 77 > 1 . These features provide a local understanding of

pixels from their neighbourhoods making it easier to classify each pixel into its

proper class. A Multi-Layer Perceptron Neural Network is then used to classify

each pixel value in the image. The results of thresholding are then passed to the

block segmentation stage. The block segmentation technique developed is a

feature-based method that uses a Neural Network classifier to automatically

segment and classify the image contents into text and halftone images. Finally,

iv

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

University of Windsor

the text blocks are passed into a Character Recognition (CR) system to transfer

characters into an editable text format and the recognition results were compared

to those obtained from a commercial OCR.

The OCR system implemented uses pixel distribution as features extracted from

different zones of the characters. A correlation classifier is used to recognize the

characters. For the application of cheque processing, this system was used to

read the special numerals of the optical barcode found in bank cheques. The

OCR system uses a fuzzy descriptive feature extraction method with a correlation

classifier to recognize these special numerals, which identify the bank institute

and provides personal information about the account holder.

The new local thresholding scheme was tested on a variety of composite

document images with complex backgrounds. The results were very good

compared to the results from commercial OCR software. This proposed

thresholding technique is not limited to a specific application. It can be used on a

variety of document images with complex backgrounds and can be implemented

in any document analysis system provided that sufficient training is performed.

v

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

To my wife, Hoda and my children Abdullah, Hiba and Ala’a.

vi

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Acknowledgments

There are several people who deserve my sincere thanks for their generous

contribution to this dissertation.

I would first like to express my sincere gratitude and appreciation to my co

supervisors, Dr. Maher Sid-Ahmed and Dr. Majid Ahmadi for their invaluable

advice, guidance and constant encouragements throughout the course of this

thesis. I would also like to thank my committee members Dr. Yi Lu Murphey, Dr.

Luis Rueda, Dr. Xiang Chen and Dr. Shervin Erfani,

Finally, I would like to thank all my colleagues at the Signal Processing Lab for

their comments on this thesis and to Christine Sales for proofreading the thesis.

Vll

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Table of Contents

Abstract.. iv
Dedication.. vi
Acknowledgements...vii
List of Figures...xii
List of Abbreviations... xv

Chapter 1 Introduction..1

1.1 Introduction.. 1
1.2 Problem S tatem ent..2
1.3 The Document Analysis System.. 2

1.3.1 Thresholding.. 3
1.3.2 Skew Detection and Correction...5
1.3.3 Page Segmentation...5
1.3.4 Optical Character Recognition (OCR).................................. 6

1.4 Artificial Neural Network (ANN) and Document Analysis..................8

1.5 Research Objectives... 8

1.6 Thesis Organization...8

Chapter 2 Neural Networks...9

2.1 Introduction.. 9
2.2 How Do Neural Networks Work?..10
2.3 The History of ANNs.. 11
2.4 The Structures of ANNs.. 12

2.4.1 The Multi-Layer Feed-forward Network Model................ 12
2.4.2 Single Layered Connected Network Model...................... 12
2.4.3 Feed-forward / Feed-backward Network Model...............13
2.4.4 Organized Feature Map Models...14

2.5 Learning Methods of ANNs...14
2.5.1 Supervised Learning..15
2.5.2 Unsupervised Learning.. 15

2.6 Multi-Layer Perceptron (MLP)... 15
2.6.1 Derivation of Back-Propagation Training A lgorithm 16
2.6.2 Training Steps for MLP Neural N etw ork..........................23

2.7 Advantages and Disadvantages of ANNs.. 24

v iii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

University of Windsor

2.7.1 Advantages of ANNs... 24
2.7.2 Disadvantages of A N N s... 25

2.8 Applications of A N N s ... 25
2.8.1 Classification...26
2.8.2 Prediction...26
2.8.3 Data Mining.. 26
2.8.4 Association.. 26

2.9 Summary...27

Chapter 3 Thresholding Literature Survey...28

3.1 Introduction.. 28
3.2 Global and Local Thresholding Techniques.................................... 29

3.2.1 Global Thresholding Techniques..................................... 29
3.2.2 Local Thresholding Techniques...32

3.3 Neural Networks and Thresholding..37
3.4 Summary...37
3.5 Conclusion.. 40

Chapter 4 Neural Network Based Thresholding..42

4.1 Introduction... 42
4.2 Neural Networks and Thresholding.. 42
4.3 Statistical Texture Measures ..43

4.3.1 Actual Pixel V a lue ...44
4.3.2 Mean .. 44
4.3.3 Standard Deviation..44
4.3.4 Skewness ..45
4.3.5 Kurtosis ..45
4.3.6 Entropy .. 45
4.3.7 Relative Smoothness... 46
4.3.8 Uniformity.. 46

4.4 Description of Local NN Thresholding Method................................ 46
4.4.1 Data Preparation ..46
4.4.2 The MLP Neural Network System 48

4.5 Experimental R esu lts ... 50
4.6 Observations... 59
4.7 Summary ... 59

Chapter 5 Document Segmentation ... 60

5.1 Introduction.. 60
5.2 Literature S urvey...61

ix

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

University o f Windsor

5.3 Document Segmentation Steps ... 63
5.3.1 Skew Detection / Correction... 64
5.3.2 Block Segmentation.. 67
5.3.3 Block Labeling..71
5.3.4 Feature Extraction... 73
5.3.5 Block Classification... 74

5.4 Sum m ary..76

Chapter 6 Character Recognition Systems... 77

6.1 Introduction ... 77
6.2 History and Applications of OCR System s...................................... 78
6.3 Construction of OCR System s.. 79

6.3.1 Preprocessing ... 80
6.3.2 Feature Extraction .. 80
6.3.3 Learning ...80
6.3.4 Classification ...81

6.4 Feature Extraction M ethods.. 81
6.4.1 Global Transformation and Series Expansion

Representation ..82
6.4.2 Geometrical and Topological Representation................ 82

6.4.2.1 Coding...82
6.4.2.2 Outline Features... 83
6.4.2.3 Graphs and Trees ..83

6.4.3 Statistical Representation... 83
6.4.3.1 Zon ing ... 83
6.4.3.2 X-Y projections...83
6.4.3.3 Crossings and Distances.................................. 84

6.5 Training and Classification Methods...84
6.5.1 Template Matching Techniques...85
6.5.2 Minimum Distance C lassifiers... 85
6.5.3 Statistical Techniques...85
6.5.4 Structural Techniques...86
6.5.5 Neural Network Techniques ..86

6.6 Illustrative Example of an OCR System ..87
6.7 Implementation of an OCR System ...87

6.7.1 Preprocessing ...89
6.7.2 Character Segmentation ... 90
6.7.3 Extracting Fuzzy Features .. 91
6.7.4 Training ..93
6.7.5 Classification ...94
6.7.6 Results ...95

6.8 Sum m ary..96

x

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

University o f Windsor

Chapter 7 OCR Experimental Results ..97

7.1 Introduction ..97
7.2 Proposed OCR System ... 97

7.2.1 Feature Extraction .. 97
7.2.2 Training and Classification of Characters......................... 98

7.3 Experimental R esu lts.. 98
7.4 Sum m ary.. 108

Chapter 8 Conclusions and Contributions...109

8.1 Conclusions.. 109
8.2 Contributions... 110

References.. 112

Appendix A Source Code for Data Collection Program...............................121

Appendix B Source Code for Training MLP Neural Network.......................131

Appendix C Source Code for Document Analysis System......................... 145

Vita Auctoris..187

XI

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

List of Figures

Figure 1.1 The Document Analysis System ...3

Figure 1.2 Example of an Image with Complex Background..............................4

Figure 1.3 The Block Segmentation Steps... 6

Figure 1.4 The Character Recognition Steps... 7

Figure 2.1 Supervised Learning of ANN... 10

Figure 2.2 Multi-Layer Feed-forward Network..12

Figure 2.3 Single-Layered Connected Network.. 13

Figure 2.4 Feed-forward / Feed-backward N etw ork...13

Figure 2.5 Organized Feature Map Network... 14

Figure 2.6 Multi-Layer Perceptron Neural Network..17

Figure 2.7 Training Steps for MLP Neural N etw ork... 24

Figure 3.1 Example Image with Non-Uniform Background.............................38

Figure 3.2 The Histogram for the Image in Figure 3.1 38

Figure 3.3 Example of an Image with Complex Background..........................39

Figure 3.4 The Histogram for the Image in Figure 3 .340

Figure 4.1 A Screen Capture of the Feature Extraction Program48

Figure 4.2 Block Diagram for Neural Network C lassifier................................. 49

Figure 4.3 The Proposed MLP NN classifie r.. 49

Figure 4.4 Example 1, Image with Bad Illum ination... 51

Figure 4.5 Example 2, Check Image with Complex Background51

Figure 4.6 Example 3, Composite Image with Complex Background 51

x ii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

University of Windsor

Figure 4.7 Example 4, Composite Image With Complex Background52

Figure 4.8 Binarization Result of Example 1 Using Proposed M ethod 53

Figure 4.9 Binarization Result of Example 1 Using Otsu M ethod................. 53

Figure 4.10 Binarization Result of Example 1 Using Niblack’s M ethod..........53

Figure 4.11 Binarization Result of Example 2 Using Proposed M ethod 54

Figure 4.12 Binarization Result of Example 2 Using Otsu’s M ethod 54

Figure 4.13 Binarization Result of Example 2 Using Niblack’s M ethod......... 55

Figure 4.14 Binarization Result of Example 3 Using Proposed M ethod 55

Figure 4.15 Binarization Result of Example 3 Using Otsu’s M ethod.............. 56

Figure 4.16 Binarization Result of Example 3 Using Niblack’s M ethod......... 56

Figure 4.17 Binarization Result of Example 4 Using Proposed M ethod 57

Figure 4.18 Binarization Result of Example 4 Using Otsu’s M ethod.............. 57

Figure 4.19 Binarization Result of Example 4 Using Niblack’s M ethod......... 58

Figure 5.1 Document Segmentation S teps... 64

Figure 5.2 Binary Image with Pixel Values of the Burst Im age......................65

Figure 5.3 Mapping from Plane xy to Hough Plane and Division of pO
Plane into Accumulator Cells .. 66

Figure 5.4 Rotation Transform ation...66

Figure 5.5 A Composite Image with Non-Uniform Background.....................68

Figure 5.6 Results of Thresholding the Image in Figure 5 .568

Figure 5.7 De-skewed Binary Im age ... 69

Figure 5.8 Horizontal Smearing of Figure 5 .7 ...69

Figure 5.9 Vertical Smearing of Figure 5 .7 ...70

Figure 5.10 Logical AND of Figures 5.8 and 5 .9 .. 70

Figure 5.11 Final Horizontal Smoothing Applied to Figure 5 .1 071

Figure 5.12 Example of a Binary P atte rn.. 72

Figure 5.13 Labelling Results for Figure 5 .1 2 ...72

Figure 5.14 Blocks of Text and Images Shown on Binary Im age................... 72

Figure 5.15 Blocks of Text and Images With the Corresponding Labels 73

Figure 5.16 MLP NN for Block Segmentation.. 75

x iii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

University o f Windsor

Figure 5.17 Blocks of Text Extracted from the Binary Im age.......................... 75

Figure 5.18 Blocks of Images Extracted from the Binary Im age.................... 76

Figure 6.1 OCR System S teps... 79

Figure 6.2 Illustrative Example of an OCR System ... 88

Figure 6.3 Cheque Image Showing the MICR C od e 89

Figure 6.4 MICR E13B Font... 89

Figure 6.5 Preprocessing Stage for Extracting Cheque Barcodes................ 90

Figure 6.6 Samples of Segmented Sym bols.. 91

Figure 6.7 The Number 3 Centered in a 20x16 W indow91

Figure 6.8 The Fuzzy Feature Vector for the Number 293

Figure 6.9 Non-Overlapping Clusters for the 14 C lasses............................... 94

Figure 6.10 Block Diagram for C lassification..95

Figure 7.1 Document Image Containing Text O n ly ..99

Figure 7.2 OCR Results for Figure 7.1 Using ABBYY OCR Software.......... 99

Figure 7.3 OCR Results for Figure 7.1 Using Proposed OCR System 100

Figure 7.4 Composite Document Image with Non-Uniform Background ... 100

Figure 7.5 OCR Results for Figure 7.4 Using ABBYY OCR Software.......101

Figure 7.6 OCR Results for Figure 7.4 Using Proposed OCR System 102

Figure 7.7 Composite Document Image with Non-Uniform Background ... 102

Figure 7.8 OCR Results for Figure 7.7 Using ABBYY OCR Software.......103

Figure 7.9 OCR Results for Figure 7.7 Using Proposed OCR System....... 104

Figure 7.10 Composite Document Image with Non-Uniform Background ... 105

Figure 7.11 OCR Results for Figure 7.10 Using ABBYY OCR Software...... 106

Figure 7.12 OCR Results for Figure 7.10 Using Proposed OCR System ... 107

x iv

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

List of Abbreviations

ANN Artificial Neural Networks

ART Adaptive Resonance Theory

ASCII American Standard Code for Information Interchange

BMU Best Matching Unit

CR Character Recognition

FNN Fuzzy Neural Network

HUM Hidden Markov Model

KLT Karhunen-Loeve Transform

LMS Least Mean Square

MLP Multi Layer Perceptron

NIST National Institute of Standards and Technology

NN Neural Networks

OCR Optical Character Recognition

QIR Quadratic Integral Ratio

RBF Radial Basis Function

RLSA Run Length Smearing Algorithm

SOFM Self Organizing Feature Map

SOM Self Organizing Map

VLSI Very Large Scale Integration

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 1
Introduction

1.1 Introduction

A document analysis system converts a paper-based document

into computerized form. Such a system must recognize characters

of a text block and identify non-text regions such as charts and

images. The use of computers can ease document processing and

filing through an electronic database. A computerized form of

documentation provides some advantages over paper-based

documentation including efficient document updates and revisions.

Conversion of a paper document to its electronic form requires a

number of steps that will be investigated in this thesis.

Transforming composite paper documents with non-uniform

background into electronic format in a form suitable for efficient

storage, retrieval and interpretation continues to be a challenging

problem. Non-uniform background is caused by watermarks and

complex patterns used in printing security documents. The

preprocessing stages to transform a digital bit-map representation

into an editable document are thresholding, skew detection, page

segmentation and Optical Character Recognition (OCR). The

success of converting documents with complex backgrounds

depends on eliminating the background by thresholding as well as

the correctness of page segmentation, which segments and labels

different blocks in the document image into text, lines and images.

Chapter 1: Introduction

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1

University o f Windsor

1.2 Problem Statement

Using commercial OCR software to read text from document images with non-

uniform backgrounds produced poor recognition rate. Bank cheques,

identification cards and security documents are applications for such documents.

The accuracy in reading the information on these documents is very crucial for

security in airports, banks and defence departments. The bi-level thresholding

techniques in literature do not produce good separation between background and

objects and the need for such technique is very important in bank and security

services. Therefore, the work in this dissertation will present a technique to

threshold grey level document images with non-uniform background, which will

be used in the design of a document analysis system to recognize text from

image documents with non-uniform backgrounds.

1.3 The Document Analysis System

The principle stages of document processing are

- Image thresholding

- Skew detection and correction

- Page segmentation

- Character recognition

Each of the above steps is a research field in itself and needs intensive study for

dealing with document images of complex backgrounds. Figure 1.1 shows the

different phases in document analysis and each phase may have several sub

phases, which are also considered separate research fields such as noise

removal, and character isolation. In this work, all of the stages of document

processing will be investigated and algorithms will be developed to tackle some

of the problems that still challenge document processing.

Chapter 1: Introduction

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2

University o f Windsor

1.3.1 Thresholding

In order to successfully analyze complex bit-mapped documents a thresholding

step is required to separate information from the background on which it is

superimposed. It is often desirable to represent grey scale bit-mapped

documents as binary images by specifying a threshold value. Thresholding can

be categorized into two main categories: global and local. Global thresholding

picks one threshold value for the entire document image, which is often based on

the estimation of the background level from the intensity histogram of the image.

On the other hand, local adaptive thresholding uses different values for each

pixel according to the local area information.

Paper Document

1
Optical Scanning &

Digitization

Skew Detection &
Correction

Electronic
Document

Graphical
Processing

Page Segmentation

Thresholdin

Figure 1.1: The Document Analysis System

Chapter 1: Introduction

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

University o f Windsor

Many of image thresholding techniques have been developed in this area and

the performance of each method depends on the type of document, image

illumination, contrast and the complexity of the image background. In [1], Trier

and Jain present a comparison of several common global and local thresholding

techniques by using an evaluation criterion that is goal-directed whereby the

occurrences of a character recognition system using different techniques were

compared. From the techniques used, the Niblack’s locally adaptive method [2]

produced the best results. In [3], Sahoo et al. compared 20 global thresholding

methods and the method produced by Otsu [4] outperformed all other methods.

All thresholding techniques developed do not perform well on all images and

most make some assumptions about the images to be used, which limit their

performance to such images. In this work, algorithms will be developed and

implemented for thresholding composite digitized documents with complex

background. Figure 1.2 shows an image of a cheque with complex background

where it is very difficult to accomplish successful thresholding using current

available techniques. Examples of composite documents used in this work

include security documents such as passports, cheques, and Identification

Cards, as well as images from magazines and scanned synthetic images printed

on complex backgrounds.

YASSF.H M AL'JIN'AIII

WINDSOR ON

Pat tow

/M lttD O L lA R S

■:□□□□ i u * : o sooa i inmmam" 5 a ? a

Figure 1.2: Example of an Image with Complex Background

Chapter I : Introduction

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4

University o f Windsor

1.3.2 Skew Detection and Correction

Many of the important document analysis algorithms, including OCR, region

segmentation and page analysis are sensitive to the orientation or skew of the

input document image. They rely upon operating on un-skewed images or

alternatively, have skew detection and correction as an early step before page

segmentation and character recognition. Skewed images will cause many

problems if they are not corrected which will result in the misclassification of text

blocks into image blocks and lower performance rate for character recognition

systems. Also skewed images do not compress as fast or as compactly as

images correctly registered to the page coordinate system, because of their

increased size and the failure of the structure to align with the implicit coordinate

system. Therefore, with the rapid growth of the document entry and

interpretation systems, the normalization of skewed document images becomes

one of the most important problems in document image processing. It is

important to develop algorithms to perform skew detection and correction

automatically. In this work, an algorithm based on the Hough [5] transform which

is a widely used and effective algorithm in detecting skew angles will be used to

de-skew document images.

1.3.3 Page Segmentation

Documents usually contain different types of data such as text, images, tables,

lines and graphs. Document image understanding is a goal oriented problem

that involves interpreting different types of data in such a way that the

interactions of the different components are accounted for. The different types of

data contained within the document, need to be separated or segmented for

subsequent processing and treatment of each region independently. This

process of page segmentation must be done after the skew detection and

correction step. It is very critical that the thresholding and page segmentation

steps are successful to ensure a higher performance rate at the character

recognition stage. A flowchart of the page segmentation steps is shown in

Chapter 1: Introduction

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5

University of Windsor

Figure 1.3. The resulting image after thresholding and skew correction is passed

to the page segmentation stage, which goes through block isolation, block

labeling, feature extraction and classification. In Chapter 5 an overview of the

available page segmentation techniques and the methods developed for this

work will be presented.

Binary Image

Block

Block Labeling

Feature Extraction

Block Classification

Figure 1.3: The Block Segmentation Steps

1.3.4 Optical Character Recognition (OCR)

OCR has been the focus of extensive research in the past five decades. The

United States Postal Services has been using OCR machines to pre-sort mail

since 1965 [6], Many commercial OCR systems are presently in service and/or

being developed. Examples of OCR applications include document reading;

cheque reading, credit card statements and revenue accounting. The research is

not limited to Latin characters only; there have been a lot of studies in the last 40

years on other alphabets such as, Arabic, Mandarin, Japanese, and Hindi.

There are two main methods used for OCR, they are matrix matching or template

matching, and feature extraction. Matrix matching compares scanned character

images to a library of character templates. By calculating the similarity distance

Chapter 1: Introduction

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

6

University of Windsor

measure or applying a Neural Network (NN) classifier the character images can

be matched. This method is slow since each pixel of the character is taken as an

input to the classifier. The feature extraction method depends on the type of

features used and the size of the feature vector. Some of the features, which

have been used for OCR, are: pixel distribution of each zone in a divided

character, Hu moment invariants, Zernike moment invariants, histogram

projection profiles and chain code. Also features can be extracted by

transforming the characters into different domains using the Fourier Transform or

the Discrete Cosine Transform.

There are several important processing steps between the input character image

acquisition and the output class membership decision. The process of character

recognition consists of a series of stages. Each stage passes its output to the

next stage in a pipeline fashion. The flowchart in Figure 1.4 shows the character

recognition process going through the following steps: character isolation, feature

extraction and classification.

Binary Text Image

Character Isolation
I

Feature Extraction
I

Classification
I

Output Text

Figure 1.4: The Character Recognition Steps

Chapter 1: Introduction

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

7

University o f Windsor

1.4 Artificial Neural Network (ANN) and Document Analysis

ANN is a powerful data-modeling tool that captures and represents complex

input/output relationships. ANN resembles the human brain in acquiring

knowledge through learning and storing knowledge within inter-neuron

connection strengths. ANN’S power lies in its ability to present both linear and

non-linear relationships and in the ability to learn these relationships directly from

the data being modeled. ANN has been used in many applications including

pattern recognition, which includes the areas of page segmentation and OCR. In

this work, the use of ANN in thresholding grey level images will be the focal point

of this dissertation. In Chapter 2, an overview of the different kinds of ANNs will

be presented.

1.5 Research Objectives

There are two main thrusts of the work presented in this thesis. The first is to

develop a novel local thresholding method based on Neural Network for

thresholding composite images with complex backgrounds. The second thrust

provides a feature-based page segmentation using NNs. Also investigated is the

performance of Character Recognition in such document images.

1.6 Thesis Organization

This thesis is organized into 8 chapters with this first chapter being an

introduction. Chapter 2 covers different kinds of ANN structures and their

applications. Chapter 3 represents some of the widely used thresholding

methods. Chapter 4 presents a novel local thresholding technique for composite

documents with complex backgrounds. Chapter 5 provides an overview on page

segmentation techniques and presents the techniques used in this research

work. Chapter 6 gives a brief literature survey on OCR and its implementation in

this work. Chapter 7 provides the verification and experimental results. Finally,

Chapter 8 presents the conclusion of this thesis.

Chapter 1: Introduction

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

8

Chapter 2
Neural Networks

2.1 Introduction

Artificial neural networks (ANNs) go by many names such as

connectionist models, parallel distributed processing models,

neuro-morphical systems, self-organizing systems and adaptive

systems. ANNs are composed of simple elements operating in

parallel. These elements are inspired by the biological nervous

systems. An ANN is an information processing structure that tries

to imitate human abilities in perceptron, vision, associative memory

and pattern recognition.

ANNs are being developed as a technological discipline that can

automatically develop operational capabilities to adaptively respond

to information environment. An ANN is either a hardware or a

computer program that strives to simulate the information

processing capabilities of its biological exemplar. ANNs are

typically composed of a great number of interconnected artificial

neurons, which are simplified models of their biological

counterparts. ANNs acquire knowledge through learning and store

this knowledge within the inter-neuron connection strengths known

as weights.

ANNs provide an analytical alternative to conventional techniques,

which are often limited by strict assumptions of normality, linearity,

Chapter 2: Neural Networks

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

9

University of Windsor

variable independence etc. The true power of ANNs lie in their ability to

represent both linear and non-linear systems and in their ability to learn the

relationships directly from the data being modeled.

2.2 How Do Neural Networks Work?

Commonly, ANNs are adjusted, or trained so that a particular input leads to a

specific desired or target output. Figure 2.1 shows the block diagram for a

supervised learning ANN, where the network is adjusted based on comparing the

neural network (NN) output to the desired output until the network output

matches the desired output. After the network is trained, the network can be

used to test new input data using the weights provided from the training session,

the input data is fed through a NN structure to get an output.

Desired
Output

Output /Neural Network
System Compare

Input

Adjust
Weights

Figure 2.1: Supervised Learning of ANNs

Chapter 2: Neural Networks

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

10

University of Windsor

2.3 The History of ANNs

The evolution of ANNs has not been smooth. The research in this field has been

under way since the 1940s, the decade of the first electronic computer. Most of

the mathematical models were developed in the 1950s and early 1960s. The

first significant step took place in 1957 when Rosenblatt introduced the first

concrete neural model, the perceptron. Rosenblatt also took part in constructing

the first neuro-computer, the Mark I Perceptron. The Rosenblatt original model

contained only one layer; from this a multi-layered perceptron (MLP) model was

derived in 1960. In the early 1960s to early 1980s, due to restrictions inherent in

the technology, the research in this area drastically came to halt. In the early

1980s the field of NNs led to a new resurgence due to the development of new

net topologies, new Very Large Scale Integration (VLSI) implementation

techniques, as well as a deeper understanding of how the human brain works [7],

The use of MLP was complicated by the lack of suitable learning algorithms and

it was not until 1974 when Werbos introduced the back-propagation algorithm for

the three-layered perceptron model. The application area of MLP networks

remained rather limited until 1986 when a general back-propagation algorithm

was introduced by Rummerlhart and Mclelland [7][8], In 1982, Hopfield [9]

introduced his idea of a NN, which consists of only one layer whose neurons are

fully connected to each other. Since then, new versions of the Hopfield model

were developed, such as the Boltzmann machine which was influenced by the

Hopfield and the MLP models. Adaptive Resonance Theory (ART) was first

introduced by Carpenter and Grossberg [10] in 1983, and advanced models were

developed since then, ART II, and ART III models. Radial Basis Function (RBF)

networks were first introduced by Broomhead and Lowe [11] in 1988 which was

based on the basic idea of RBF developed under the name potential function.

Self Organizing Maps (SOM) were introduced by Kohonen [12] in 1982. This

model organizes itself based on the input patterns with which it is trained.

Chapter 2: Neural Netw orks

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

I t

University o f Windsor

2.4 The Structures of ANNs

ANNs can be classified according to the structure that they exhibit. In this

section four commonly used structures will be presented [7],

2.4.1 The Multi-Layered Feed-forward Network Model

Figure 2.2 represents the structure of a multi-layered feed-forward network. The

neurons in this model are grouped in layers, which are connected to the direction

of passing signal. There are no lateral connections within each layer and no feed-

backward connections within the network. The commonly known type is the

perceptron.

Hidden Layer

Input Layer

Figure 2.2: Multi-Layer Feed-forward Network

2.4.2 Single-Layered Connected Network Model

The single layered fully connected network model shown in Figure 2.3 is laterally

connected to all neighboring neurons in the layer and the neurons are both input

and output neurons. An example of such a model is the Hopfield model.

Chapter 2: Neural Networks

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

12

University o f Windsor

Figure 2.3: Single-Layered Connected Network

2.4.3 Feed-forward / Feed-backward Network Model

In this model, the neurons are connected in both directions, Figure 2.4. As a

pattern is passed through the network it resonates a certain number of times

between the layers before a response is received from the output layer. An

example of such a system is the ART network.

* Y i

* y 2

* y u

Figure 2.4: Feed-forward / Feed-backward Network

Chapter 2: Neural Networks

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

13

University of Windsor

2.4.4 Organized Feature Map Models

In this model, which is shown in Figure 2.5, each neuron contains a feature

vector. As a pattern from the training data is passed to the network, the neuron

whose feature vector is closest to the input vector is activated. This is called the

Best Matching Unit (BMU) and is updated to reflect the input vector causing the

activation. An example of such a network is the Self-Organizing Map (SOM) of

Kohonen.

/ Output

Figure 2.5: Organized Feature Map Network

2.5 Learning Methods of ANNs

Children learn that green fruits are sour while yellowish/reddish ones are sweet.

The learning happens by adapting the fruit picking behavior. On the other hand,

ANNs learn by adjusting the synaptic strengths between neurons, eliminating

some synapses and building new ones. The learning methods used for ANNs

Chapter 2: Neural Networks

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

14

University of Windsor

can be classified into supervised and unsupervised learning. If the learning

phase is distinct from the operation phase then it is said that the network learns

off-line. If the learning phase and the operation phase are performed at the

same time then the network is learning on-line. Usually, supervised learning is

done off-line where as unsupervised learning is performed on-line.

2.5.1 Supervised Learning

In supervised learning, a desired output result for each input vector is required

when the network is trained. An ANN of supervised learning, such as the MLP,

uses the target result to guide the performance of the neural parameters. It is

thus possible to make the neural network learn the behavior of the model under

study.

2.5.2 Unsupervised Learning

Unsupervised learning is based on local information. This type of learning self-

organizes data presented to the network and detects its properties. Hebbian

learning and competitive learning models are paradigms of unsupervised

learning. Unsupervised learning of ANNs, such as the SOM, can be used for

clustering the input data and finding features inherent to the problem.

2.6 Multi-Layer Perceptron (MLP)

MLP is the most common NN model. MLP is a hierarchical structure of several

perceptrons, which uses supervised training methods to train the NN. The

training of such a network with hidden layers is more complicated than a single

perceptron which does not contain any hidden layers. This is because when

there exists an output error, it is hard to know how much error comes from the

input node, how much from other nodes and how to adjust the weights according

to their respective contributions to the output layer. The problem can only be

solved by finding the effect of all the weights in the network. This is solved by

using the back-propagation algorithm which is a generalization of the least-mean-

Chapter 2: Neural Networks

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

15

University of Windsor

square (LMS) algorithm. The back-propagation algorithm uses an iterative

gradient technique to minimize the mean-square-error between the desired

output and the actual output of the MLP. The training procedure is initialized by

selecting small random weights and internal thresholds. The training data are

repeatedly presented to the network and the weights are adjusted until they

stabilize which means the mean-square error is reduced to an acceptable value.

The whole training sequence involves forward phase and backward phase. The

forward phase estimates the error and the backward phase modifies the weights

to decrease the error. The back-propagation training algorithm [13]-[15] will be

explained in details next.

2.6.1 Derivation of Back-Propagation Training Algorithm

MLPs contain many layers: the input layer, the hidden layers and the output

layer. Figure 2.6 shows the MLP connections for a network with only one hidden

layer. The input nodes and the hidden nodes are connected via variable weights

using feed-forward connections. The output of the hidden layer nodes is

connected to the input of the output layer nodes via weights. The network has N
continuous inputs, M outputs, and in between is a hidden layer.

The outputs of the hidden layer are connected according to equation (2.1). The

inputs are weighted and passed through the activation function, the sigmoid

function, f s, equation (2 .2).

x j (0 = f s (- j (0) (2 .1)

Where f s(: / (*)) - (l) ~
\ - e

(2 .2)

and z y W = - Q j) (2.3)

Chapter 2: Neural Networks

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

16

University o f Windsor

where x) is the output of the hidden node j , x* is the input element of the input

node i of the training pattern 5 , is a threshold value of the hidden node j ,

and wv is the weights from neurons in the input node / to the hidden node j .

The hidden node values propagate in the forward direction to the output layer

nodes. The outputs of the output layer nodes are calculated in a similar fashion

as the output of the hidden nodes. The output of the network is shown in

equation (2.4).

Figure 2.6: Multi-Layer Perceptron Neural Network

Chapter 2: Neural Networks

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

17

University of Windsor

y k (0 = f s (z k (0) (2.4)

where Js \ ~k V)) ~ i - z, (t)
l - e A

(2.5)

N

and (2.6)

k = 1, 2, . . . , M

where ^ is the output of the node k , is the output of the node j , Gk is the

threshold value of the output node k and w]k is the connection weight from the

hidden node j to the output node k . The calculated output is then compared

with the target output. The total square mean error, ETOT, is computed using all

the training patterns of the calculated and target outputs. The total error, ETOT, is

defined as:

where y sk is the calculated output for the training pattern s , fk is the target output

value for the pattern s, P is the number of training patterns and M is number of

output nodes in the output layer.

The delta rule computes the gradient of the total error with respect to each weight

and then the weights are altered in a direction opposite to the measured gradient.

The equation for updating the weights is defined as

| p M

(2.7)

Chapter 2: Neural Networks

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

18

University o f Windsor

w(t +1) = w(t) - i j
dw (2 .8)

where w(t) is the current weight, w(t + \) is the new weight, 77 is the learning rate

dETOTconstant and —- — is the gradient of the total error with respect to the updating
OW

weights. The calculations of the gradient of the error with respect to the weights

between the hidden layer and the output layer is given below. For simplicity, the

derivation is given for one training pattern.

Using the chain rule

dE dE dyk dzk
(2.9)

From equations (2.7) and (2.9)

(2 .10)

From equations (2.4), (2.5) and (2.9)

(2 .11)

2 e~z‘ (,)

(l + 1 + e~‘ ’ m J J 2 (1 -6v)2)

Chapter 2: Neural Netw orks

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

19

University of Windsor

Then (2.12)

8zk
Similarly, ^

jk
(2.13)

Combining equations (2.10), (2.11) and (2.12) the gradient of the error becomes

Equation (2.14) shows the gradient of one pattern error E (output node k) with

respect to weight wJt. For all training patterns the equation becomes

where P is the number of patterns in the training set and 8^ is the gradient of the

error for the training pattern s .

The weights between the hidden nodes and the output nodes are updated after

computing the gradient of the total error with respect to the weights. The

equation for updating the weights between the hidden nodes and the output

nodes is

where (2.15)

(2.16)

Chapter 2: Neural Networks

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

20

University of Windsor

(2.17)

To update the weights between the input and the hidden layers the gradient of

the error with respect to the weights between the input and the hidden layers can

be calculated as follows. First, the gradient of the error of one output node with

respect to the hidden nodes is calculated then the actual gradient error with

respect to the hidden nodes is calculated by summing all the gradients of error of

all the output nodes with respect to the hidden nodes. The gradient of the error

form one output node k , using the chain rule

dE dE dyk dzk

dx'j dyk dzk dx)

From equations (2.10), (2.12) and (2.15)

(2.18)

(2.19)

From equations (2.6) and (2.18)

(2 .20)

Then from equations (2.19) and (2.20)

dE
_ I

(2 .21)

Chapter 2: Neural Networks

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

21

University of Windsor

The above equation, equation (2.21), applies to one output node k . Therefore,

the actual gradient for the hidden node j is

dE M

dx k=l
(2 .22)

The gradient error with respect to the weights is
dE

dvt',.

Using the chain rule

dE _ dE dx j dzj

dwjf dx ■ dzf dwjf (2.23)

From equations (2.1), (2.2) and (2.12)

d x

dz (2.24)

From equations (2.3) and (2.12)

dz,
1 = x !

dwlf (2.25)

dE

dw_v V-V Z k = 1 J

x s = 5 x si j i (2.26)

Where ^ j
\ -

< W -
A-l

(2.27)

Chapter 2: Neural Networks

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

22

University of Windsor

Equation (2.26) shows the gradient of one pattern error, and for all training

patterns the equation becomes.

where P is the number of patterns in the training set and 8J is the gradient of the

error in the hidden node j with respect to the weights for the training pattern 5 .

The weights between the input nodes and the hidden nodes are updated after

computing the total error gradient with respect to the weights. Equation (2.29)

gives the updating of the weights

After all the weights are updated the NN is tested for error, if the error is

acceptable then the training is complete. Otherwise the training process is

repeated and the error is calculated using equation (2.7).

The recognition process uses the calculated weights then data is provided as an

input to the NN and the output is computed using equations (2.1) and (2.4). The

combination of 1 ’s and 0 ’s in the output resembling a trained pattern provides a

basis for recognition. Otherwise, the input is unknown to the NN.

2.6.2 Training Steps for MLP Neural Network

Figure 2.7 shows the training steps for the MLP Neural Network.

(2.28)

Chapter 2: Neural Networks

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

23

University of Windsor

N O

N O Y es
A ccep tab le Error

T raining D ata
S et E xhausted

Initial R andom W eight s

Train N etw ork

Com pute Output Error

A djust W eights

E valuate A verage
N etw ork Error

Figure 2.7: Training Steps for MLP Neural Network

2.7 Advantages and Disadvantages of ANNs

The major advantages and disadvantages of NNs in modeling applications are as

follows

2.7.1 Advantages of ANNs

• NNs have high tolerance to noisy data.

• NNs have the ability to model multi-dimensional nonlinear relationships.

• Neural models are simple and the model computation is fast.

Chapter 2: Neural Networks

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

24

University of Windsor

• Parallel implementation is easy.

• NNs Learn from example, are capable of generalizing data, which makes

it possible to process new, imperfect and distorted data.

• There is no need to assume an underlying data distribution such as

usually is done in statistical models.

• It is easier to update neural models whenever device or component

technology changes.

• NNs can handle different kinds of environments such as dynamic and

complex.

• NNs have the ability to implicitly detect complex nonlinear relationships

between dependent and independent variables.

2.7.2 Disadvantages of ANNs

• The individual relations between the input variables and the output

variables are not developed by engineering judgment, so the model tends

to be a black box or input/output table without analytical basis.

• Minimizing over fitting requires a great deal of computational effort.

• The back propagation networks tend to be slower to train than other types

of networks and some times require thousands of epochs. However, the

speed of most current machines is such that this is typically not an issue.

2.8 Applications of ANNs

ANNs have been successfully applied to broad spectrum of applications. This

section is based on reference [105], which gives an excellent overview on Neural

Networks and its applications. Four different areas of research that are of great

significance will be discussed to give some feel on the different kinds of problems

that can be solved using ANNs. These areas of research are:

Chapter 2: Neural Networks

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

25

University of Windsor

2.8.1 Classification

Classification involves dividing an n-dimensional space into various regions, and

given a point in space one should tell which region to which it belongs. The feed

forward types of networks are widely used in this area. Some examples of

classification include pattern recognition, character recognition, face recognition

voice recognition, target detection, and medical diagnosis.

2.8.2 Prediction

The feed-forward types of networks are widely used in this area to train networks

to produce outputs that are expected given a particular input. Some examples

of such applications are stock market prediction, bankruptcy prediction, sales

forecasting and dynamic system modeling.

2.8.3 Data Mining

ANNs can be used to analyze data that are complicated and there is no obvious

way to classify them into different categories. This is done by identifying special

features from the data then classifying them into different categories without prior

knowledge of the data. Applications are in clustering, data visualization and

data extraction. The types of networks used in data mining applications are

Simple Competitive Networks, ART networks, and Kohonen Self-Organizing

Maps.

2.8.4 Association

A network can be trained to remember a number of patterns, so that when a

distorted version of a particular pattern is presented, the network associates it

with the closest one in its memory and returns the original version of that

particular pattern. These kinds of networks are also useful in restoring noisy

data. Image compression is an example of an application that uses associative

networks.

Chapter 2: Neural Networks

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

26

University of Windsor

2.9 Summary

NNs are powerful data modeling tools that are able to capture and represent

complex input/output relationships. The motivation for the development of NN

technology stemmed from the desire to develop an artificial system that could

perform intelligent tasks similar to those performed by the human brain. Because

an ANN can capture many kinds of relationships it allows the user to quickly and

relatively easily model phenomena, which may have been very difficult or

impossible to explain otherwise. The feed-forward MLP NN structure is the most

popular model and has been used in many applications. Neural networks can

now pick stocks, approve loans, deny credit cards, tweak control systems, grade

coins, and inspect work. The use of NN in document analysis systems will be

shown in Chapters 4, 5 and 6.

Chapter 2: Neural Networks

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

27

Chapter 3
Thresholding Literature Survey

3.1 Introduction

Document images, as a substitute of paper documents, have been

the primary information medium in our society. This makes

document image analysis an important area of research in image

processing, pattern recognition and computer vision. The goal of

our research is to process gray level composite document images

with complex backgrounds, bad illumination and poor contrast by

applying thresholding to extract text from the background. Most of

the research in the area of Character Recognition (CR) has been

performed on documents with uniform distribution or documents

having plain background and few algorithms have dealt with

extracting text from composite images with complex backgrounds

or poor quality documents. Image thresholding still remains a

problematic source of errors in document image analysis system.

The thresholding technology is still rather fragile, especially in

removing background noise in images with poor quality or complex

structure, which in turn causes ambiguities that jeopardise the

character recognition rate.

Many researchers have investigated image thresholding and there

are many thresholding algorithms published in the literature, and

selecting an appropriate one can be a difficult task.

Chapter 3: Thresholding Literature Surv ey

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

28

University of Windsor

The problem is that different algorithms typically produce different results since

they make different assumptions about the image contents. For example, some

techniques require the class distributions to be normal others deal with text only.

Thresholding or binarization of documents can be categorized into two main

classes: global and local thresholding. Global thresholding techniques use a

single threshold; on the other hand local thresholding techniques compute a

separate threshold based on the neighbouring pixels.

3.2 Global and Local Thresholding Techniques

In order to convert a gray scale image to a binary image, a threshold is chosen.

The threshold is set at a certain value between black (0) and white (255). Pixels

with a gray level above the threshold are set to one or white (255) and all other

pixels are set to zero or black. This produces a binary image of black objects on

a white background (or white on black, depending on the original distribution).

Therefore; thresholding is used to segment an image depending on the threshold

value. The conventional thresholding operator uses a global threshold for all

pixels, but local thresholding changes the threshold over the image. This

adaptive thresholding can accommodate changing lighting conditions in the

image, such as strong illumination gradient.

3.2.1 Global Thresholding Techniques

The research in the area of image analysis and segmentation produced

hundreds of techniques for extracting text from gray scale images. Some of the

widely used global thresholding algorithms found in the literature are explained

below.

The Otsu [4] algorithm is the most popular global thresholding method and is

based on discriminant analysis and uses cumulative moments of the histogram to

calculate the optimal threshold value. The Otsu method works well when the

Chapter 3: Thresholding Literature Survey

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

29

University of Windsor

classes can be distinguished and fails in images with complex background or

degraded images.

The Ridler and Calvard [16] algorithm uses an iterative clustering approach

based on two-class Gaussian mixture models. At iteration n , a new threshold Tn

is established using the average of the foreground and background class means.

The optimal threshold, Toptikul , is defined as

TOPTIMAL ~ (3.1)W->00

^ _ M f (T n) + n b{Tn)
where l n+\ ~ -------------------------

where n f and juh are the mean values of the foreground and background

respectively. In practice, iterations terminate when \Tn- T n+x\ becomes

sufficiently small.

Reddi et al. [17] developed a fast search scheme for finding single and multiple

thresholds that maximize interclass variance between dark and bright regions

based on a criterion proposed by Otsu [4], Otsu reduced the problem to an

optimization problem. Reddi et al. provided an alternative search method to the

thresholding problem. Sid-Ahmed [18] proved that the problem could be reduced

to the simple iterative algorithms conjectured by Ridler and Calvared [16],

The Rosin [19] algorithm fits a straight line from the peak of the intensity

histogram to the last non-empty bin. The point of maximum deviation between

the line and the histogram curve will usually be located at a corner which is

selected as the threshold value. The Tsai [20] algorithm determines the

threshold so that the first three moments of the input image are preserved in the

output image. Both the Rosin and Tsai methods suffer from the shadow and the

compression / edge noise.

Chapter 3: Thresholding Literature Survey 30

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

University of Windsor

Parker’s [21] Method, also called intensity gradient-based method is very useful

for badly illuminated document images, however; it cannot segment text

characters in documents with complex backgrounds.

The Kapur et al. [22] algorithm uses the entropy of the image; it considers the

image as two classes of events each characterized by a probability distribution

function. The method then maximizes the sum of the entropy to converge to a

single threshold value.

Abutaleb’s [23] method, also called entropic thresholding, uses spatial entropy

information to generate the optimal threshold followed by a two-dimensional

thresholding to classify the pixels.

The Quadratic Integral Ratio (QIR) method [24] is a global two-stage thresholding

approach. In the first stage, the image is divided into three classes of pixels:

foreground, background and a fuzzy class where it is hard to determine whether

a pixel actually belongs to the foreground or the background. During the second

stage, a final threshold value is chosen in the fuzzy region. This method works

quite well on images, which have constant or homogenous background. The

QIR depends on the bimodal histogram; therefore, it does not perform well on

noisy images or those with complex backgrounds.

In [25], Leedham et al. compared different global thresholding techniques for

multi-stage thresholding and concluded that the QIR method is more accurate in

separating foreground from background in complex images leaving a range of

undecided fuzzy pixels for later processing in a subsequent stage.

Sahoo et al. [3] compared the performance of more than 20 global thresholding

algorithms using uniformly or shape measures. The comparison showed that

Otsu’s class separability method gave best performance. On the other hand, in

an evaluation for change detection by Rosin [26], Ridler and Calvard, and Otsu

algorithms performed very poorly compared to other global methods. In [1], Trier

Chapter 3: Thresholding Literature Survey

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

31

University of Windsor

and Jain’s, OCR goal directed evaluation study, four global and 11 local

thresholding techniques were examined and from the global methods the Otsu’s

method outperformed the other three global methods. In [27], Fischer compared

15 global methods and also confirmed that the Otsu method is preferred in

document image processing.

3.2.2 Local Thresholding Techniques

Local thresholding methods developed in the literature are mainly developed for

specific applications and most of the time they do not perform well in different

applications. The results could be over thresholding or under thresholding

depending on the contrast and illumination. Some of the developed local

thresholding methods are Bernsen’s [28], which uses the threshold

T(x,y) = (PL +PH) /2 (3.2)

Where PL and PH are the lowest and highest gray level pixel values in a square

neighbourhood of size N x N about the pixel (x j;) . However, if the contrast

measure is below a certain parameter then the window consists of background

only.

The Chow and Kaneko’s [29] algorithm divides the image into non-overlapping

windows, and the histograms for each window are tested for bimodality. As part

of the bimodality test each histogram is approximated by a mixture of two

Gaussian distributions. A threshold is calculated based on the means and

standard deviations of the bimodal mixture distribution for each window. The

thresholds are then interpolated to estimate thresholds for the unimodal windows.

Finally, the window thresholds are smoothed and the thresholds for the individual

pixels are determined by a bilinear interpolation of the window thresholds.

The Nakagawa and Rosenfeld’s [30] method is a slight modification of Chow and

Kaneko's method, it divides the image into non-overlapping windows and the

Chapter 3: Thresholding Literature Surv ey

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

32

University of Windsor

histogram for each window is tested for bimodality. Each histogram is

approximated by a mixture of two Gaussian distributions. Let /ix and //, be the

estimated mean values, and a, and a 2 be the estimated standard deviations of

the two distributions. Also, let a tot be the total standard deviation and RlT be the

valley-to-peak ratio. Then the bimodality test requires the criteria’s in equations

3 .3 -3 .6 to hold.

^ t o t Limit (3-3)

f *2~ V \ > Rumi, (3.4)

r \

V *̂2 J Min Ratio
(3.5)

R, -o < RIT < 'P _ Limit (3.6)

For each bimodal window, a threshold is calculated based on the , //,, <j, and

cr2 parameters of the mixture distribution. Thresholds for the other windows are

calculated on basis of the thresholds for the bimodal windows. The thresholds

are first smoothed, and then interpolated to give a threshold surface, having a

single threshold value for each image pixel. The image is binarized using the

threshold surface.

The Niblack’s [2] algorithm calculates the threshold by shifting a window across

the image, and use local mean, / / , and standard deviation, 0 , for each centre

pixel in the window. The threshold value for a pixel within fixed neighbourhood is

a linear function of the mean and standard deviation of the neighbourhood pixels,

with a constant gradient of k , which is highly tuneable, to separate objects well.

Then the threshold T{x,y) is

T (t , y) = ju O , y) + k • ct(t, y) (3.7)

Chapter 3: Thresholding Literature Survey

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

University o f Windsor

The size of the neighbourhood should be small enough to serve local details, but

at the same time large enough to suppress noise. The value of k is used to

adjust how much of the total print object boundary is taken as a part of the given

object. Zhang and Tan [31] proposed an improved version of Niblack’s

algorithm:

T(x ,y) = ju(x,y)- [\ + k 1
R

] (3.8)

Where k and R are empirical constants. The improved Niblack’s method uses

parameters k and R to reduce its sensitivity to noise.

Sauvola et al. [32] method, which is a modification of the Niblack’s algorithm

adapts the threshold according to the local mean and standard deviation over a

size window n x n . The threshold value is defined as

1 + k
W

1
J)

(3.9)

Where //(/', j) and c r (i j) are the mean and standard deviations. Sauvola et al.

suggests the value of k = 0.5 and R = 128 to be used in stained and badly

illuminated documents.

Goto and Aso [33] developed a method based on local multilevel thresholding,

pixel labelling and region growing. The method has the following stages: local

multilevel thresholding and initial pixel labelling, edge compensation, creation of

merging inhibition tables, region growing based on label merging between

neighbouring sub images and finally decomposed images. This method omits

the discussion on text locating and requires that the thickness of the character

stroke to be more than 1.5 pixels.

Yanowitz and Bruckstein [34] suggested using the gray-level values at high

gradient regions as known data to interpolate the threshold surface of image

Chapter 3: Thresholding Literature Survey

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

34

University of Windsor

document texture features. The Yanowitz and Bruckstein technique uses a mean

filter in the processing stage to eliminate noise and the effect of this filter reduces

the handwriting contrast and fills the holes in both handwriting and printed

characters producing thickened characters. The resulting binary images produce

text that is undistinguished during OCR especially when the original image has

poor resolution as in cheque images and forms.

White and Rohrer’s [35] method compares the gray value of the pixel with the

average of the gray values in some neighbourhood. If the pixel is significantly

darker than the average, it is classified as foreground otherwise it is classified as

background. The method uses two parameters, one is the average

neighbourhood pixel in a nxn window, and the other is a bias value.

The threshold value is computed as follows:

i f H „ { i J) < I { i J) * b i a s

Otherwise (3 -10)

In [36], Liang et al. developed a morphological approach to character string

extraction from regular periodic text/background images that minimizes shape

distortion of characters. The underlying strategy of the algorithm is to maximize

the background removal while minimizing shape distortion of characters.

Although this algorithm is effective on periodic backgrounds there are some

requirements on the images such as periodic distribution of background,

character stroke width, and high resolution. These restrictions make it unsuitable

for images with lower resolution or non-uniformly distributed backgrounds.

nu) =

The background subtraction method [37] consists of several steps. First the

background is modeled by removing the handwritten from the original images

using a morphological closing algorithm with a small disk as a structuring

element. The closing algorithm is effective in removing darker areas, the

characters are darker than the background and this algorithm is effective in

removing the dark characters. The background is then subtracted from the

Chapter 3: Thresholding Literature Survey

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

35

University of Windsor

original image leaving only the handwritten text. Finally, the difference image is

segmented using a global threshold level produced by Otsu’s algorithm multiplied

by an empirical constant.

Yang and Yan [38] method considered the problem of poor quality document

images. The method is demonstrated to be effective for documents which are

highly deteriorated because of variable illumination, shadow, smears and

smudges. It is not likely to work well with images with complex background or

documents with handwriting and italic.

In the literature, several surveys compared different thresholding techniques.

Trier and Jain [1] evaluated the performance of 11 well-established locally

adaptive binarization methods. These techniques were compared using a

criterion based on the ability of an OCR module to recognize handwritten

numerals from hydrographical images. In this evaluation, the local thresholding,

Niblack’s method, appears to be the best. This observation was applied for a

specific application on certain hydro-graphic images using an OCR system which

uses Kuhl and Giardina’s elliptic Fourier descriptors [39], with a quadratic

classifier [40], Flowever, as concluded by Trier and Jain, if different sets of

images used with different feature extraction methods and classifiers, then this

observation may not be accurate and another method could outperform this

method.

In [41], Sankur and Sezgin conducted an exhaustive survey on bi-level

thresholding methods and categorized them into six different groups according to

the information they are exploiting, such as: histogram shape-based, clustering,

entropy, spatial, object attributes and local methods. In this survey, a

comparison was given without any evaluation on their performance to specific

applications. From this study, it is very clear that the research in this area has

been very extensive and is far from ending due to the complexity of images and

the fast progress in computer technology which produces complex backgrounds

and image patterns. The survey gives a brief description for over 40 bi-level

Chapter 3: Thresholding Literature Survey

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

36

University of Windsor

thresholding techniques, in addition to some techniques which are modifications

on the available methods. Some techniques are multi-stage; in the initial stage

they use a global thresholding technique to decide on the initial threshold value

then in the next stage further processing is done to decide on the fuzzy pixel

values in between. Other methods include parameters that are usually obtained

experimentally and needs to be adjusted for different types of images or

applications.

3.3 Neural Networks and Thresholding

The use of NNs in bi-level thresholding of gray level images has not been

thoroughly investigated and very few researchers have investigated the use of

NNs in image thresholding. In [42], Koker and Sari, use NNs to automatically

select a global threshold value for an industrial vision system.

The work of Papamarkos [43] produced a local thresholding method using the

Kohonen SOM classifier to define the two bi-level classes in order to reduce the

character blurring effect in blurred documents.

3.4 Summary

All the global algorithms need to have a prior knowledge of the image processed

about the number of peaks in the gray-level histogram. The modality of the

document image histogram, however, may change from image to image. Thus

an obvious drawback of these techniques is that they cannot separate those

areas, which have the same gray level, but do not belong to the same class.

These methods do not work well for document images with shadows and

complex backgrounds. In this case, a single threshold or some multilevel

thresholds could not result in an accurate binary document image no matter how

the threshold parameters are tuned. Figure 3.1, shows an example of a cheque

image and Figure 3.2 shows the corresponding image histogram. From the

Chapter 3: Thresholding Literature Survey

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

37

University of Windsor

images, it is obvious that there is only one peak in the histogram making it

possible to use any global thresholding method to binarize the image. In this

example the optimal threshold value will be some where on the left side the peak

of Figure 3.2.

m m r n r n a £ g ij$ m ii; - - ; ;

w m m o n o m '■ ■

Bmk „

!>Mvto the ,
s

..... n m ikm jm :

M BNA CAHM3A B-mm . :E'.

• : o a o o i * 3 i i « : Q i o o a 3 3 0 M i m ? i n i

Figure 3.1: Example Image with Non-Uniform Background

9000

8000

7000

6000
C
o 5000
o
"ai 4000
*

Q. ____
3000

2UUU

1000

0
0 50 100 150 200 250 300

Pixel Level

Figure 3.2: The Histogram for the Image in Figure 3.1

Chapter 3: Thresholding Literature Survey

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

38

University of Windsor

Most of the local thresholding methods use the mean and the standard deviation

in order to distinguish the background from the foreground and several of the

developed algorithms uses the Otsu algorithm to produce the initial threshold.

For local thresholding algorithms it appears that none could threshold all images

well with a set of operating parameters especially those with inhomogeneous or

complex backgrounds. An example of an image with complex background is

shown in Figure 3.3 [99] and its corresponding histogram is shown in Figure 3.4,

the histogram shows 3 peaks, which will make it impossible to use a global

thresholding method to binarize the image. Therefore, a local method is the

solution but current available methods do not give good results for such images.

Also if a threshold value is to be chosen manually for the image in Figure 3.3, no

threshold value will provide a good separation between the objects and the

background therefore in the next chapter the results of these images will be

shown using global, local thresholding methods and a new proposed local

thresholding method based a NN classifier and textural features.

W ar in Iraq
After months of heated debate about
how tc pressure IfLtqi leader
Saddam Hlussein, the U.S.-led
' ..ilitien <n March 19 attacked the : ■
Middle I :r> errs country, ensuing
military' nmpainn mriudrd the large-
■ ■ le aerial bombing of Baghdad
dubbed "shock and awe,** the
controversial rescue of ROW Army ;
Rfc J > C O Lyr.-oh . no iho tjII <y

Hn'jhd.-jcj Hysnmnnt mid nto the tali U.S. RrevOnril George W
Bs.-.n ,,r-d his chief innuruiiicinal ally Unush Rrimt M.nistei Eoriv
Blair, ferdeo off criticism about a lack df recovered chemical,
biologicm or nuclear weapons and continued bloodshed. But
they, and much of the world, rejoiced m December after
Saddam's capture.
lip' ; '■ c : i.'. §:• v.' -

Figure 3.3: Example of an Image with Complex Background

Chapter 3: Tliresholding Literature Survey

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

39

University of Windsor

E 1500

100 150 200

Pixel Level
300

Figure 3.4: The Histogram for the Image in Figure 3.3

3.5 Conclusion

From the global and local thresholding techniques, the Otsu method is the most

preferred global thresholding method according to most of the surveys in the

literature. On the other hand, it is impossible to give a clear-cut decision in

regard to the best local thresholding technique. The difficulty arises from the fact

that images are scanned using scanners with different properties and resolutions

on images with different properties and backgrounds. The local thresholding

algorithms also depend on the parameters extracted from images with complex

background, which will vary from one image to another depending on the

illumination, contrast and background complexity. Although many thresholding

techniques have been proposed most cannot work on the entire image with

complex backgrounds and in most cases sections or sub-regions of interest are

processed separately [44], Therefore, no thresholding method is accurate and

Chapter 3: Thresholding Literature Survey

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

40

^493

80092415450152

University of Windsor

no thresholding method works for all applications or all images. Most of the

research has proven this point and mainly techniques are being developed for

certain applications.

NNs have not been extensively used in the area of image thresholding and very

few researches have been published in literature such as Koker et al [42] and

Papamarkos [43],

In conclusion, the global and local thresholding methods may perform well in

case of images with uniform distribution or poor contrast, but they fail in

composite images with complex background. In the next chapter, a new

approach for local thresholding using Neural Networks is developed to handle

images with non-uniform and complex backgrounds.

Chapter 3: Thresholding Literature Survey

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

41

Chapter 4
Neural Network Based Thresholding

4.1 Introduction

Bi-level thresholding of document images with poor contrast, non-

uniform illumination, complex background patterns and non-

uniformly distributed background is a challenging problem that

researchers have been trying to solve. The problem is that different

algorithms tend to yield different results based on the assumptions

made to the images contents. A new binarization algorithm is

proposed to deal with a wide variety of documents with non-uniform

background and illumination. The algorithm proposed uses

statistical and textural feature measures to obtain a feature vector

from a pixel window of size (2w + l)x(2w + l), where t i> 1. It then

uses a Multi-Layer Perceptron Neural Network (MLP NN) to classify

each pixel value in the image. This technique takes a different

approach from current methods and its performance is better than

existing global and local thresholding techniques. This method

works on a variety of images obtained from different applications.

The algorithm is considered a local thresholding technique since it

provides a local understanding of pixels from its neighbourhood.

4.2 Neural Networks and Thresholding

The use of NNs in thresholding grey scale images into two

Chapter 4: Neural Network Based Thresholding

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

42

University of Windsor

levels has not been widely used and very few methods have been developed.

The technique proposed by Koker and Sari [42], uses NNs to automatically select

a global threshold value for an industrial vision system. The image is

preprocessed by using a median filter to eliminate the effects of noise. The input

to the NN is the frequency of the 256 image grey levels and the output result is

the threshold value. This method works for a specific application and will not be

suitable for composite images with complex backgrounds since it depends on the

histogram of the image.

The method developed by Papamarkos [43] uses SOFM to define two bi-level

classes. Then, using the contents of these classes fuzzy membership functions

are obtained to be used with the fuzzy C-mean algorithm in order to reduce the

character blurring effect. This local thresholding technique uses the Laplacian

and mean values from a 3x3 window as input features to the network. This

method is suitable for binarization of blurring documents and is not suitable for

images with complex backgrounds.

In this chapter, a new threshold selection algorithm is proposed that can handle

images with non-uniform and complex backgrounds. The new method uses a

MLP NN with statistical and textural feature measures as inputs to the network.

The features are extracted from neighbourhood pixels in a window of size

(2ti + 1) x (2n +1), where n > 1. This means each pixel is considered as the center

of the window and a feature vector is calculated from its neighbourhood pixels.

The classification is decided depending on the feature vector calculated from the

neighbourhood pixels.

4.3 Statistical Texture Measures

Features are extracted for each cantered pixel in a window of size

(2m + 1) x (2m + 1) , where m > 1, then fed to the NN for training, followed by testing

the network to classify each pixel into its appropriate class. The proposed NN

local thresholding method, which will be explained in detail in the next section,

Chapter 4: Neural Network Based Thresholding

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

43

University of Windsor

takes advantage of the document’s textural characteristics by considering the

statistical texture descriptors in a neighbourhood of pixels. The statistical textural

features are useful in characterizing the set of neighbourhood values of pixels,

which are related to its moments. These features are mean, variance, standard

deviation, skewness and kurtosis. The texture descriptors also produce

measures of properties such as smoothness, uniformity and variability [37], The

values used in training a MLP NN, which are obtained from windows of size

(2w + l)x (2 « + l), where n > 1, taken from various parts of one image and

repeated over many images are:

4.3.1 Actual Pixel Value

The center pixel p { i j) in a window of size (2/? +1) x (2« +1), where n > \ , was

taken as the first feature.

4.3.2 Mean

The mean, p i}, of the pixel values in the defined window, estimates the value

around the pixel in which central clustering occurs.

4.3.3 Standard Deviation

The Standard deviation, crt] , is the estimate of the mean square deviation of grey

pixel value, p(x,y), from its mean value, p1}. Standard deviation describes the

dispersion within a local region. As the mean depends on the first moment of the

data, so does the standard deviation depend on the second moment. The

standard deviation is defined as:

Chapter 4: Neural Network Based Thresholding 44

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

(4.1)

University of Windsor

i+ n J+n

a .j = (2w+l) x=/-;? v = j - n
(4.2)

4.3.4 Skewness

Skewness, Z , , or third moment, characterizes the degree of asymmetry of a

pixel distribution in the specified window around its mean. Skewness is a pure

number that characterizes only the shape of the distribution.

1 j+n j+n

Sn = Y" (2« + l) y~]t„
p (x , y) - p .

(4.3)

4.3.5 Kurtosis

Kurtosis, K tJ, fourth moment, is also a non-dimensional quantity. It measures the

relative peakness or flatness of a distribution relative to a normal distribution.

The conventional definition of kurtosis is

K ,
| i+ n j+ n

(2 n + 1)2 , 5 ,

P (x , y) - U i ,

<7.
>•-3 (4.4)

The -3 term makes the value zero for a normal distribution.

4.3.6 Entropy

Entropy, , can also be used to describe the distribution variation in a region.

Overall entropy of neighbourhood pixels in the window can be calculated as

L - 1

S = “ Z P rA 1oS T (4.5)
k=0

Chapter 4: Neural Network Based Thresholding

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

45

University of Windsor

Where Pty is the probability of the kth grey level, which can be calculated as

total number of grey levels in the window [45],

4.3.7 Relative Smoothness

Relative Smoothness, , is a measure of grey-level contrast that can be used to

establish relative smoothness.

4.3.8 Uniformity

Uniformity, Uv , is a texture measure based on histogram and is defined as:

L - 1

Before computing any of the descriptive texture features above, the pixel values

of the image were normalized by dividing each pixel by 255 (maximum pixel

value) in order to achieve computation consistency.

4.4 Description of Local NN Thresholding Method

In this section, the data preparation for training the network is explained followed

by the training and testing procedures for the NN.

4.4.1 Data Preparation

The aim of this research is to transfer a grey-level image into a bi-level image

that preserves the textual information of the original grey-level image. The

=k/ (2n + 1)2 , zk is the total number of pixels with the kth grey level and L is the

(4.6)

(4.7)

Chapter 4: Neural Network Based Thresholding

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

46

University o f Windsor

proposed technique uses a MLP NN to classify document images into

background and foreground. In the learning phase, a set of input patterns, called

the training set, are presented at the input layer as feature vectors, together with

their corresponding desired output pattern, which usually represents the

classification for the input pattern. The multi-layer feed-forward neural network is

trained by supervised learning using the iterative back-propagation algorithm

[13], which minimizes the mean square error between the network's output and

the desired output for all input patterns.

Data preparation for training is the first step in any Neural Network design.

Figure 4.1 shows a screen capture of the data preparation program. The first

step is to load an image then a point or a pixel in the image is chosen. The user

then clicks on the background or foreground buttons in order to calculate the

feature vector of that point. By choosing background or foreground, the user

knows what the desired value of that pixel should be, for background 1 and for

foreground 0 is selected. Figure 4.1 shows the features extracted from a window

of size 9x9. Finally, the process is repeated for different random points in

different images with complex backgrounds to get a wide variety of features. Ten

images were used for the data collection, a total of about 1000 feature vectors

were collected for training. These feature vectors were automatically stored in a

file then used as inputs to the NN to train the network to produce the weights

needed for testing the classifier. The possible training data feature could have a

combination of any of the following set of normalized values:

{ /T A ,/)) Mij i Gy ’ ^ ij > ^ ij > ^ I] > ^ ij > Uy }

Chapter 4: Neural Network Based Thresholding

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

47

University of Windsor

D 11 ilin iii)' l>luj-Vdi.t fm NN Ll.iM tl 1I i>“,h ili| iii!

Loadlmage [

Pixel Coordinates

X.pHo- ,,^1^—

Foreground i |[Background]| Save Feature^
FEATURES EXTRACTED

Loss of space shuttle
Columbia
Sixteen days alter the space
shuttle Columbia launched
from Kennedy Space Center

- f C t ' S h I ’ K S C - 1. M A S A ' . ' S ’
-■ o n 1. ? . . ' a t ?*- n v s n a r e r s -

minutes before its scheduled
Florida landmg. Seven

astronauts died when the shuttle broke apart in what one witness
v=s-ri!.*' r'=. u3\ r i U r ’ if- '- iic.'. if ■ -.o !'!■■ I f: /■' ■ <

id -j: :>r NAV. oicrrn---- cm.- t!-it«r- tr-j: *
the shuttle’s wing shortly after lift-off and called for major
“structural changes'' in the U.S. space program.

Pixel Value

Mean

Standard Deviation

Variance

Entropy

Skewness

Kurtosis

Relative Smoothness

Uniformity

Desired Output

10.828182280063629

j 0.0109772337600589

10.000120493658805784

jj 0.0848254263401031

13.62346395377244E -6

d o o m 20485143270344"

0.000119013886433095

1

=d mi

p r “ T s r - " l 21~ " " " s i T "
J 212 2' 6 216 [Z 14 1214 . . 2;:7 1212 :212 213
.(213 ;210 209 1213 i 213 JG12 211 i 213 = 215
|212 1215 211 [211 213 j .216 ■210 213 . . 213 . . / A * .

Center Pixel and j '212 ' " i '210 . . 208. . . 212. . . 209 [208... . [210” . . . 208. .. i212”
■

Its Neighbourhood
: | 2 1 2

| 207'
1206

b i o
1209

" i 211
.211

210

.237

211

[209
”'■210

'210

;210’

:211

205
1210

I 2O8 1 ^ l l l t

Pixels J2IO i 206 207 1211 211 [211 212 210 1211
209... |209 1209 ..[205... 211 ... 208.. '21O212... ...207

Figure 4.1: A Screen Capture of the Feature Extraction Program*

4.4.2 The MLP Neural Network System

A block diagram of the NN is shown in Figure 4.2, the features (A , / , , , f N) are

passed as inputs to the NN classifier (i.e. MLP) and the output is the bi-level

threshold value either 1, white, or 0, black.

* The image if Figure 4.1 is from Reference [100],

Chapter 4: Neural Network Based Thresholding

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

48

University o f Windsor

/,
f l

>

-►

f lN

Neural
Network -------- ► 0 or 1

Classifier

Figure 4.2: Block Diagram for Neural Network Classifier

MLP is the most common NN model; Figure 4.3 shows the proposed network

with an input layer, a hidden layer and an output layer. MLP is a hierarchical

structure of several perceptrons, which uses supervised training methods to train

the NN.

Output Layer

Hidden Layer

Figure 4.3: The Proposed MLP NN Classifier

The training data with the desired output values are repeatedly presented to the

network and the weights are adjusted until they stabilize which means the mean-

square error is reduced to an acceptable value. The whole training sequence

Chapter 4: Neural Network Based Thresholding

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

49

University o f Windsor

involves forward phase and backward phase. The forward phase estimates the

error and the backward phase modifies the weights to decrease the error. After

all the weights are updated the NN is tested for error, if the error is acceptable

then the training is complete. Otherwise, the training process is repeated and the

error is recalculated using equation (4.8).

Where y sk is the calculated output for the training pattern s , t sk is the target

output value for the pattern s, P is the number of training patterns and M is the

number of output nodes in the output layer. Once the NN has been trained, the

weights are used in the classification phase. During classification, image data

feature vectors extracted from each pixel and its neighbourhood in the image are

fed into the network that performs classification by assigning a class number,

either 1 or 0, for each pixel.

4.5 Experimental Results

The NN thresholding method was applied to several images from different

applications with complex backgrounds. The weights calculated during the

training process were used in the classification stage to test 120 images. The

ten images used for the training were also used during testing. The result for

four different grey level images will be shown, Figure 4.4, shows an image with

bad illumination scanned at 150dpi, Figure 4.5, shows a cheque image with

complex background scanned at 150dpi, Figure 4.6 [99] and Figure 4.7 [101]

show composite images with complex backgrounds scanned at 200dpi and 100

dpi respectively. These images will be referred to as Example 1, Example 2,

Example 3 and Example 4 respectively. The results for each example will show

how each image was thresholded using the proposed NN local thresholding

Chapter 4: Neural Network Based Thresholding 50

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

(4.8)

University of Windsor

method and comparing it to the Otsu [4] and Niblack’s methods [2], The

thresholding results are shown in Figures 4.8 -4.19.

THE U N I VE R S I T Y OF WINDSOR I S READY FOR
INCOMING STUDENTS WHO ARE UNDER THE LEGAL
DRI NKI NG AGE, 19 YEARS OLD. IN CANADA. THE
DIRECTOR OF CAMPUS POLI CE 0 F THE U N I V E R S I T Y
SAID ALTHOUGH HE A N T I C I P A T E S A GREATER NUMBER
OF UNDERAGE DRUNKEN OFFENDERS, THE INCREASE
DOES NOT POSE A GREATER PROBLEM THAN PREVIOUS
YEARS.

E XT ENSI VE PREPERATION FROM VARIOUS AREAS ON
CAMPUS INCLUDI NG RESIDENCE L I F E SERVICES, CAMPUS
POLICE , MANAGEMENT AT THE THI RSTY SCHOLAR AND
t h e U N I V E R S I T Y OF WINDSOR STUDENTS. ALL 1ENCE
CAN BE CREDITED FOR THE CONSIDERATION.

Figure 4.4: Example 1, Image with Bad Illumination

lAhSrhK V AJ.UJN M!i
CRBS

V\ INLiSUHt 'In N*\\ OLO'J

302

mm(II!

■:□□□□ iu : oEoosaaM i@ o»sea7B

V \ r . t ii*
o

C a n a d a B a n k

M

Figure 4.5: Example 2, Cheque Image with Complex Background

Chapter 4: Neural Network Based Thresholding

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

51

University of Windsor

In early 2003, Californians pointed §
fingers as their state struggled with a
$38 billion budget deficit and a
continuing energy crisis. Republicans
set their sights on Democratic Gov.
Gray Davis, attemoting to make him the
second governor in U.S. testpry to be

ailed. On Octbber 7, the majority of voters decided to oust

Davis, then chose a successor from among 135 candidates.
One of Hollywood's own took Davis' place - bodybuiIder-turned-
actor Republican Arnold Schwarzenegger.

^ ________________JL__________ - ...___________________ uttd........ ■UUuv,.. .;C
■

Figure 4.6: Example 3, Composite Image with Complex Background

Love Him, H a te Him
P re s id e n t

Tnere is an axiom in
American p o l i t ic s tha t
says whenever a s i t t in g
President is running
fo r a second term, the
e lection is more a
referendum on him than
a judgment on his
opponent.

president George w. Bush has taken th is
truism to a new le v e l , w ith ju s t under
a year to go before Nov. 2, 200-4,
Americans are a"ready find ing ways to
show how passionately they feel abogt
th e i r President.

Figure 4.7: Example 4, Composite Image With Complex Background

From Figure 4.8, the proposed local NN thresholding method gave the best

results, followed by the Otsu method [4], Figure 4.9. The NN thresholding

method completely removed the background from the whole image leaving only

text. The Otsu method failed to remove some small parts, circled in Figure 4.9

Chapter 4: Neural Network Based Thresholding

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

52

University o f Windsor

due to the non-uniform background and bad illumination of the original image.

On the other hand, the Niblack method [2], Figure 4.10, performed the worst

since it failed to remove most of the background from the image.

THE U N I V E R S I T Y OF WI ND
I N C O M I N G S TU D EN T S WHO
D R I N K I N G AGE 19 YEARS
D 1R E c r u n OF COMPOS POL
S A I D ALTHOUGH HE A N T I C
Or UNDERAGE DRUNKEN OT
DUE S NO 1 I’ OSI A GKi A l i
YEARS.

E X T E N S I V E PRF
AREAS ON COMPUS I N C L U D
S ERVI CES, CAMPUS P O L I C E
T H I R S T Y SCHOLAR AND TH
STUDENTS, A L L I E N C E CAN
C O N S I D E R A T I O N ,

SOR I S READY FOR
ARE UNDER THE LEGAL

OLD. I N CANADA. THE
ICE' Ol' *1 HF. U N I V E R S I T Y
I P A T E S A CREATE RE NUMBER
TENDERS. THE I NCREAS E
R PROUKEM THAN P R E V I O U S

PF K A I Jl)N I ROM V Al i i OHS
I NG R E S I D E N C E L I F E

, MANAGEMENT AT THE
t U N I V E R S I T Y OT WI NDSOR
BE C R E D I T E D FOR THE

Figure 4.8: Binarization Result of Example 1 Using Proposed Method

THE U N I V E R S I T Y O F WI NDSOR I S READY FOR
I N C O M I N G S T U D E N T S WHO ARE UNDER THE LEGAL
D R I N K I N G AGE, 1 9 YEARS OLD, I N CANADA. THE
D I R E C T O R OF COMPUS P O L I C E O f THE U N I V E R S I T Y
S A I D ALTHOUGH HE A N T I C I P A T E S A GREATERE NUMBER
OF UNDERAGE DRUNKEN OFFENDERS, THE I NCREASE. . . —
D OE S NOT P O S E A G R E A T E R P R O G K E M T H A N P R ^ ' l O U S
YEARS, ’ / . \

(' * - I
E X T E N S I V E PREP EftA T I O N FROM V A R I O U S '

ARE.rSt.S--&N— COMPUS I N C L U D I N G R E S I D E N C E L I F E \ - „
/ S E f v U E S . C A M P U S r p Q L I C E , MANAGEMENT AT T H E "

{ T H I R S T Y SCHOLAR A N ti\ THE U N I V E R S I T Y OF WI NDSOR
i -STUDENTS, A L L I E N C E citN BE C R E D I T E D FOR THE

\£ O N S 1 DEJIAT ION.

Figure 4.9: Binarization Result of Example 1 Using Otsu Method

Chapter 4: Neural Network Based Thresholding

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

53

University o f Windsor

/,THE U N I V E R S I T Y OF WI NDSOR I S READY FOR
I N C O M I N G STUDENT S WHO ARE UNDER THE LEGAL
D R I N K I N G AGE, 19 YEARS OLD, I N CANADA. THE
D I R E C T OR O F * C A M P U S P O L I C E OF THE U N I V E R S I T Y
S A I D ALTHOUGH HE A N T I C I P A T E S A GREATER NUMDE
OF UNDERAGE DRUNKEN 0 F F E N D E R S, T H E I N C R E A S E
DOES NOT POSE A GREATER PROBLEM THAN P R E V I O U S
Y E A JLS.— ^ -------

/

R

t

E X T E N S I V E PREPERAT I ON FROM V A R I O U S AREAS ON |>
CAMPUS I N C L U D I N G R E S I D E N C E L I F E SERVI CES, CAFl'fU
P O L I C E , MANAGEMENT AT THE T H I R S T Y SCHOLAR AND
THE U N I V E R S I T Y OF WI NDSOR STUDENTS, A L L I E N C E . \r.
CAN BE C R E D I T E D FOR THE C ON S I D E R A T I O N . . . f . . U

Figure 4.10: Binarization Result of Example 1 Using Niblack’s Method

Figure 4.12 and Figure 4.13, show both the Otsu [4] and the Niblacks [2]

methods performing very poorly on Example 2 with the resulting images not

suitable for further processing. For the Niblacks method the result shows all the

characters merged together which make it impossible to recognize those

characters during OCR. The Local NN method showed some minor

misclassifications which occurred at the edge of the cheque image and do not

interfere with the fields of the cheque giving results suitable for further processing

such as OCR.

V .

YASSER M ALG INAill
r e s

WINDSOR ON NSW 5K6

P a y t o th e
o R m a i o f

► C a n a d a B a n k

. /TOO DOIL-LAS

iSQDDD Q 50 Of i?3

Figure 4.11: Binarization Result of Example 2 Using Proposed Method

Chapter 4: Neural Network Based Thresholding

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

54

University of Windsor

YASSER M ALGINAtU
7-1207 LABOUR CRES
WINDSOR ON N8W 5K 6^H i

MBNA C a n a d a B a n k
*@t t a w a (O n t a r io)

SIGNATURE

M B Q O O O 1“ ' ,0 EOOfl 3.30 SaQQJai" 5 3 7 3

n o o D o llar s

Figure 4.12: Binarization Result of Example 2 Using Otsu’s Method

Figure 4.13: Binarization Result of Example 2 Using Niblack’s Method

Figure 4.14 - 4.16 show the thresholded images for Example 3. Here the Local

NN method outperformed the other two methods. The text is very clear since the

resolution of this image is higher than the other examples.

Chapter 4: Neural Network Based Thresholding

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

55

University o f Windsor

In early 2003, Californians pointed
fingers as their state struggled with a
$38 billion budget deficit and a
continuing energy crisis. Republicans
set their sights on Democratic Gov.
Gray Davis, attempting to make him the
second governor in U.S. history to be

recalled. On October 7, the m ajority o f voters decided to oust
Davis, then chose a successor from among 135 candidates.
One o f Hollywood's own took Davis' place — bodybuilder-turned-
actor Republican Arnold Schwarzenegger.

Figure 4.14 Binarization Result of Example 3 Using Proposed Method

In early 2003, Californians pointed
fingers state struggied with a /<?
$38 b illfe m ild ^ e t deficit saWa j ("
continuirjg-errbrgy crisis.'sR©pbblicans
set their sights on Democratic Gov.
Gray Davis, attempting to make him the,,—

^ second ̂ g ^ ^ n o r in U.S.H£Ppfy to b e ^

. recalled. On October 7, the majdrify b f voters deCided to oust
Davis, then chase a successor from among 135 candidates.
jO n e g f H ollyw pod'^own took pavis^ place - bpdyhiJilder-turned”

(actor Republican Arhold Schvvarzenegger. (\ (

J

Figure 4.15: Binarization Result of Example 3 Using Otsu’s Method

In early 23Q3, Californians pointed ■ / :
f ,n0or £ r3'̂ i the!r,elaie'rd.r.uo-g4ed with a—t ~
333 biilio.n budget deficit and a i j
continuing energy crisis. Republicans!
sot their sights on Democratic Gov. j »■
Gray Davis, attempting to make him the
second governor in U.S. history to be

recalled. On October 7, the majority of voters decided to ovist
j Davi$, then chose a successor from among 135 candidates*.
\ O n e JtytHoJ lyweed-s-ewn-t eok- -Etavts-ptaee— bodybuiiclaMurjp:-

Republican Arnold Schwarzenegger. . , \
:-d- v

 ’.

Figure 4.16: Binarization Result of Example 3 Using Niblack’s Method

Chapter 4: Neural Network Based Thresholding

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

56

University of Windsor

Finally, Figures 4.17 - 4.19 show the results for Example 4. The local NN

thresholding method outperformed the other two methods. Figure 4.17 shows a

small area that was misclassified as foreground instead of background, but this

area is very small and does not affect the text on the image. With some post

processing this can be eliminated depending on the application. The Otsu [4]

resulted in very clear text, but with some parts of the background classified as

foreground. On the other hand, the Niblacks [2] method produced noise for most

of the background that was misclassified as foreground.

p r e s i d e n t George W. Bush h a s t a k e n t h i s
t r u i s m t o a new l e v e l , w i t h j u s t u n d e r
a y e a r t o go b e f o r e Nov. 2 , 2 004 ,
A m e r i c a n s a r e a l r e a d y f i n d i n g ways t o
show how p a s s i o n a t e l y t h e y f e e l a b o u t
t h e i r P r e s i d e n t .

Figure 4.17: Binarization Result of Example 4 Using Proposed Method

^ Love H im , H a te Him
"1 .",.^!. P r e s i d e n t

T h e r e i s an ax iom i n
A m e r i c a n p o l i t i c s t h a t
s a y s w h e n e v e r a s i t t i n g
P r e s i d e n t i s r u n n i n g
f o r a s e c o n d t e r m , t h e
e l e c t i o n i s more a
r e f e r e n d u m on him t h a n
a j u d g m e n t on h i s
o p p o n e n t .

"\

Chapter 4: Neural Network Based Thresholding

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

57

University of Windsor

L o ve H im , H a te Him
P r e s id e n t

T h e re i s an a x io m in
A m e ric a n p o l i t i c s t h a t
s a y s w h e n e v e r a s i t t i n g
P r e s id e n t i s ru n n in g
f o r a seco n d te r m , th e
e l e c t i o n i s m ore a
re fe re n d u m on h im th a n
a ju d g m e n t / i5 f i \h i s
o p p o n e n t , / * J

P r e s i d e n t G e o rg e W. Bush h a s ta k e n t h i s
trbisTn t o a new l e v e l , w i t h j u s t u n d e r

y e ^ r t o g o b e f o r e N ov. 2 , 2 0 0 4 ,
^Jk irter^cans a r e a l r e a d y f i n d i n g w a y s , t o

sh o w /h o w p a s s io n a t e ly th e y f e e l a b d y t-
t h e j i * P r e s id e n t .

Figure 4.18: Binarization Result of Example 4 Using Otsu’s Method

Love
P re s id e n t >/■

■ ' F t

i i ■

\

There is an axioti
American p o l i t ic s th a t

i - !says whenever a s i t t in g
President is running j
fo r a second te rn , the
e le c tio n is more a -
referendum on h i t tha
a j u d g r e n t his.— i
opponent;'/ ,/ ■: -, ' '

- N i
pres iden t Georgs W. Bush has taken t h i ^ s

ruism to a new le v e l ; w ith ju s t under
h year to go before Nov. 2, 2004, •

:k m e r ic a n s are a lready f in d in g ways . to
/show how passionate ly they fe e l abc:rt

.UiT-h^TT“' i 3T ie ^ id e h t . =. * ‘ 1 ~
• /., ' - ; I ■ f

■ s . .

■■ a
■ , *

’ Ij

Figure 4.19: Binarization Result of Example 4 Using Niblack’s Method

Chapter 4: Neural Network Based Thresholding 58

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

University o f Windsor

4.6 Observations

The inputs to the NN can take all of the features, explained in section 4.3, as a

feature vector, but the more features used the slower the feature extraction

process, especially when calculating the skewness and kurtosis. Also, the

window size affects the speed, the larger the window size the slower the feature

extraction process since this has to be done for each pixel in the image.

Therefore, through exhaustive experiments, a window size of 3x3 and a feature

vector containing five features were sufficient to provide the desired results and

comparing this to using more features or larger window size did not show any

significant differences. The five features experimentally chosen where, the

center pixel value of the window, mean, standard deviation, smoothness and

entropy. Therefore, the MLP NN contained three layers, 5 features for the input

layer, 11 nodes in the hidden layer and 1 node in the output layer. The Niblack’s

method varies the threshold value over the image based on the local mean and

standard deviation in a neighbourhood window. A window of size 25x25 was the

best window giving results for Examples 1-4 with less noise. Therefore, the

Niblacks method is not suitable for images with complex backgrounds.

4.7 Summary

Thresholding grey level images has been extensively researched, but the use of

NN to aid in solving this problem was not widely used. This chapter focused on

using NN in finding a solution to binarizing grey level images. A new method was

developed, which used statistical textural descriptors as inputs to the MLP NN

and outputs either a 1 or 0 value to classify each pixel in the image either as

background or foreground. The results from using this method were outstanding

compared to other local and global thresholding methods. This method can be

used in different applications dealing with images containing complex

backgrounds provided that sufficient training is performed. Post-processing of

images resulting from this method is minimal or even not needed which makes it

an excellent method to be used in page segmentation and OCR.

Chapter 4: Neural Network Based Thresholding

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

59

Chapter 5
Document Segmentation

5.1 Introduction

Automatic knowledge acquiring from documents is an important

subject and since the 1960s most of the research on document

processing has been done based on OCR. The study of automatic

text segmentation started about three decades ago with the rapid

development of modern computers and the demanding need for

storing large volumes of data [46],

Documents usually contain different types of data such as text,

images, tables, lines and graphs. The different types of data

contained within the document, need to be separated or segmented

for subsequent processing and treatment of each region

independently. Document image physical layout or document

segmentation is the partitioning of documents into sub-regions or

blocks, which ideally contain only one type of data. A document

image is first divided into blocks which are then classified as text,

halftone images or line drawings.

Document segmentation is very crucial in document processing and

the correctness of the segmentation stage is necessary for higher-

level analyses such as Character Recognition (CR).

Chapter 5: Document Segmentation

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

60

University o f Windsor

5.2 Literature Survey

Document segmentation can be classified into three broad categories: top-down,

bottom-up and hybrid techniques. The top-down methods recursively segment

large regions in a document into smaller sub-regions. The segmentation stops

when some criterion is met and the ranges obtained at that stage constitute the

final segmentation results. On the other hand, the bottom-up methods start by

grouping pixels of interest and merging them into larger blocks or connected

components such as characters, which are then clustered into words, lines or

blocks of text. The hybrid method is the combination of both top-down and

bottom-up strategies.

Many methods have been developed in this area. The Docstrum algorithm of

O’Gorman [47], the Run-Length Smearing Algorithm (RLSA) of Wahl et al. [48],

the recursive X-Y cut algorithm of Wang et al. [49], and the segmentation

algorithm of Jain and Yu [50] are examples of bottom-up document segmentation

techniques. The recursive X-Y cut based algorithm of Nagy et al [51], and the

algorithm of Drivas and Amin [52] are examples of bottom-up segmentation

techniques. Examples of hybrid methods are the segmentation approach of

Pavlidis and Zhou [53], and the Kruatrachue and Suthaphan technique [54],

The Docstrum algorithm of O’Gorman [47] uses k-nearest neighbour clustering to

group characters into text lines and blocks.

The RLSA [48] technique is one of the most widely used top-down algorithms. It

is used on binary images (setting 1 for white pixels and 0 for black pixels), by

linking together the neighbouring black pixels that are within a certain threshold.

This method is applied row-by-row and column-by-column, then both results are

combined in a logical AND operation and finally a smoothing threshold is used to

produce the final segmentation result. From the RLSA results, black blocks of

text lines and images are produced. Finally a statistical classifier is used to

classify these blocks.

Chapter 5: Document Segmentation

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

61

University o f Windsor

The recursive X-Y cuts [49] algorithm of Wang et al. scans through every row

and column of the image and counts the number of black pixels. The horizontal

and vertical profiling is performed to frame up separate characters then each

character is checked against certain thresholds to decide if they are to be

grouped together. Finally some of the groups are merged together to form text

line blocks. The classification is performed by following certain rules depending

on the layout of the document.

The Jain and Yu [50] approach utilizes a NN to train a set of masks which is

optimal for discriminating the three main texture classes in the page

segmentation problem: halftone, background, and text and line drawing regions.

The text and line drawing regions are further discriminated based on activity

analysis.

The recursive X-Y cut based bottom-up algorithm of Nagy et al. [51], which is

also known as the projection profile cuts assumes documents are presented in a

form of a tree of nested rectangular blocks. Although the recursive X-Y cuts

could decompose a document image into a set of rectangular blocks no details

were given on how to define cuts. Later Jaekyu et al. improved this method by

applying connected component labeling algorithm to obtain the bounding boxes

of the connected components.

The bottom-up algorithm of Drivas and Amin [52] is performed on skew corrected

binary images. It is composed of two stages; the first is the creation of

connected components by bounding together regions of connected black pixels

to form rectangles around distinct components on the page whether they are text

or image. The second stage is the grouping or merging of neighbouring

connected components of similar dimensions. Finally, the classification step is

done by using a frequency histogram technique to classify text and graphics.

The hybrid segmentation approach of Pavlidis and Zhou [53] uses a split and

merge strategy and the technique of Kruatrachue and Suthaphan [54] consists of

two steps, a top down block extraction method followed by a bottom-up multi

chapter 5: Document Segmentation

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

62

University of Windsor

column block detection and segmentation method. The segmentation is based

on blocks of columns extracted by a modified edge following algorithm, which

uses a window of 32 x 32 pixel so that a paragraph can be extracted instead of a

character.

The above are only a few examples and hundreds of methods were developed

for document layout segmentation. To ensure the performance of most of these

algorithms a skew detection and correction algorithm is required in the

preprocessing stage. Jain and Yu, in [50] gave a brief survey of geometric and

logical page layout analysis methods. In literature, the surveys by Mao et al. [55]

and Tang et al. [46] give detailed explanation on document analysis and layout

representation algorithms.

Most of the techniques explained are time consuming and are not effective for

processing documents with high geometrical complexity. Specifically the top-

down approach can process only simple documents, which have specific format

or contain some a priori information about the document. It fails to process the

documents that have complicated geometric structures. The research in this

area concentrates on binary images and grey images with uniform backgrounds.

The images used were mainly scanned from technical journals and magazines

that usually have specific formats. Document segmentation on grey-level images

with complex or non-uniform backgrounds have not been widely investigated due

to the complications in thresholding these images. Therefore, techniques are

mainly geared to specific applications with specific formats and they tend to fail

when specific parameters do not match.

5.3 Document Segmentation Steps

The document segmentation process goes through several steps; these steps

are shown in Figure 5.1.

Chapter 5: Document Segmentation

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

63

University o f Windsor

Binary Image
— y—

Skew Detection/Correction
 * — '

Block Isolation

Block Labeling

Feature Extraction
I

Block Classification

Figure 5.1: Document Segmentation Steps

The binary image is the input to the document segmentation stage. It is the

result of thresholding the grey-level image. A skew detection and correction

algorithm is needed if the original scanned image was not scanned properly. A

procedure based on the Hough Transform algorithm proposed by Hinds et al. [5]

is used to detect the skew angle.

5.3.1 Skew Detection/ Correction

Skew angle detection is necessary for further processing since the segmentation

algorithm is very sensitive to documents skewed more than 2 degrees. Using the

Hough Transform based method by Hinds et al. [5], the principle is to transform

points in an image space xy to a new space domain p 6 , using the following

transform equation.

p. = x cos0. + y sin0t. ,
^ s (5.1)

An accumulator array was used to count the number of intersections at various

p and 6 values. The number of rows, R , of the accumulator array corresponds

Chapter 5: Document Segmentation

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

64

University o f Windsor

to p values effects how well the Hough Transform resolves lines. Therefore, to

detect lines, R should be such that each xy point along a straight column can

be mapped to a unique row.

* = (* ’ + A ’ F (5 2)

Where w is the width of the image and h is the height of the image, peaks are

searched, which correspond to lines in the image. The range of 6 was taken to

be between -5 and 5 degrees since most documents will not have a skew angle

more than 5 degrees after the scanning process. The angle of each line was

found from the coordinates p and 6 of the peaks. The peak is formed when the

transformed points lie along a given line in the image. To determine the skew

angle of the input document the accumulator array is searched for the cell with

the largest value and the column that this cell belongs to is taken to be the skew

angle, 0, of the document. In [5] Hinds, the data reduction method by run-length

bursts was used to reduce that amount of data used to detect the skew angle.

This data reduction method produced a burst image; the burst image is a grey

scale image with each pixel’s intensity representing the vertical run-length of a

column of connected black pixels in the original binary image. Figure 5.2 shows

an original binary image with the corresponding pixel values for the burst image

using the run-length bursts.

1 1 1

Figure 5.2: Binary Image with Pixel Values of the Burst Image

Chapter 5: Document Segmentation

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

65

University o f Windsor

Figure 5.3 shows how points from the original image are mapped to the Hough

plane.

cos 0 + ypin 9~ p
x x

Figure 5.3: Mapping from Plane xy to Hough Plane and Division of pO Plane
into Accumulator Cells

After the detection of the skew angle the skew correction was done using the

rotation transformation shown in Equation 5.4. In Figure 5.4, point Z can be

expressed in either (x,j) coordinate space or (x ',/) coordinates space, where

the x' and / axes are rotated an angle a from the x-y axes:

1
*/

/

0

Figure 5.4: Rotation Transformation

Then the equations for rotation of axes become:

x = x ’ coscr - y 's in a

y = x ’ sincr + /c o s e r (5.3)

Chapter 5: Document Segmentation

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

66

University o f Windsor

5.3.2 Block Segmentation

The function of the segmentation algorithm is to locate the information blocks in

the document image. The RLSA [48] was chosen since it produces small blocks

of text. The procedure subdivides the area of a binary document into sub regions

or blocks, each of which ideally contains only one type of data (text, graphics,

lines and halftone images). To understand how the RLSA [48] works let us

assume that white pixels are represented by 1’s and black pixels are represented

by 0’s within an arbitrary sequence of 0’s and 1’s. The RLSA [48] replaces the

0’s by 1’s if the number of adjacent 0’s is less than or equal to a certain threshold

txor ty , tx is the horizontal smearing threshold and ty is the vertical smearing

threshold. For example, let us examine the bit sequence below. Assume

horizontal smearing threshold of tx = 4.

Before smearing: 000001110101000011000001001110111

After Smearing: 000001111111111111000001111111111

This algorithm is applied row-by-row (horizontally) and column-by-column

(vertically) to the document image producing a bitmap for each direction. Then

the horizontal and vertical smearing results are combined together by a logical

AND operation. This intermediate combination gives almost the desired final

bitmap, but some of the text lines are interrupted by small gaps. Therefore, a

final horizontal smearing is applied to smooth these lines and close the gaps.

The horizontal, vertical and smoothing thresholds depend on the type of the

image used and its dimensions. In this project the horizontal smearing threshold

was chosen to be 1/3 of the image width and the vertical smearing threshold 1/3

of the image height. The smoothing smear threshold was taken to be 10 pixels.

These values depend on the image resolution and could be different for different

applications.

Figures 5.6 - 5.11 show the image of Figure 5.5 [102] going through

preprocessing stage. The local NN thresholding algorithm developed in Chapter

4 was used to obtain the binary image shown in Figure 5.6. A skew angle of -1

Chapter 5: Document Segmentation

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

67

University of Windsor

was detected using the Hough Transform and the de-skewed image is shown in

Figure 5.7. The image then went through the smearing process, which is shown

in Figures 5 .8 -5 .1 1 .

BAMf IRAN - Rescue workers
prepared to caff o f f th e ir search
Monday fo r survivors of the
earthquake in Bam as officia ls say it's
un like ly anyone w ill be found alive.

Experts say 72 hours is the longest
people can surv ive in rubble. As o f
Monday m orning, it had been m ore
than 72 hours since a 6 ,6 -m agnitude
earthquake hit th is Iran ian c ity
located 1,000 kilom etres south o f
Tehran.

Rescue workers w ill instead turn the ir focus to the tens of
thousands o f homeless. Many spent a th ird n ight outside in freezing
tem peratures and were jo lte d Monday morning by two strong
aftershocks. ' T ■ * S; ; <

Figure 5.5: A Composite Image with Non-Uniform Background

BAM, IRAN - Rescue w orke rs
prepared to call o ff th e ir search
M onday fo r su rv ivo rs o f the
ea rthquake in Bam as o ffic ia ls say it's
u n like ly anyone w ill be found a live .

Experts say 72 hours is th e longest
people can su rv ive in rubb le . As o f
M onday m o rn ing , i t had been m ore
than 72 hours s ince a 6 .6 -m a g n itu d e
ea rthquake h it th is Ira n ia n c ity
located 1 ,000 k ilo m e tre s south o f
Tehran.

Rescue w orke rs w ill instead tu rn th e ir focus to th e te n s o f
thousands o f hom eless. Many sp e n t a th ird n ig h t ou ts ide in freezing
tem p e ra tu re s and w ere jo lte d M onday m orn ing by tw o strong
a fte rshocks.

Figure 5.6: Results of Thresholding the Image in Figure 5.5

Chapter 5: Document Segmentation

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

68

University of Windsor

BAM, IRAN - Rescue workers
prepared to ca/f o ff the ir search
Monday for survivors of the
earthquake in Bam as officials say it's
unfikely anyone will be found alive.

Experts say 72 hours is the longest
people can survive in rubble. As of
Monday m orning, i t had been more
than 72 hours since & 6 .6-m agnitude
earthquake h it th is Iran ian city
located 1,000 k ilom etres south of
Tehran.

Rescue workers will instead turn th e ir focus to the tens of
thousands o f homeless. Many spent a th ird n ight outside in freezing
tem peratures and were joJted Monday morning by two strong
aftershocks.

Figure 5.7: De-skewed Binary Image

Figure 5.8: Ftorizontal Smearing of Figure 5.7

Chapter 5: Document Segmentation

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

69

University o f Windsor

Figure 5.9: Vertical Smearing of Figure 5.7

I M M M M I I H I M M ’■ ■ f l M ’l P H I lW I I I V I I I " I
llip i in i n r r r ip iw p ip m p f m irm ni pf dtp urinv

p r iir in p iH s .

Figure 5.10: Logical AND of Figures 5.8 and 5.9

Chapter 5: Document Segmentation

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

70

University o f Windsor

Figure 5.11: Final Florizontal Smoothing Applied to Figure 5.10

5.3.3 Block Labelling

Labels have to be assigned to different blocks to identify each block separately to

be used in the feature extraction step. All connected pixels must have the same

label. A Local Neighbourhood Algorithm [56] is used which scans the image

horizontally until it hits the first pixel then a fire is set at this point that propagates

to all the 8-neighbourhood of the current pixels. This algorithm was modified to

ensure the correct labelling of each block by rescanning the image from bottom

up [57][58], Figure 5.12 shows a binary pattern where the stars are represented

by black pixels and Figure 5.13 shows the result of labelling each block of

connected components. Figure 5.14 shows the binary image for Figure 5.5 with

all blocks enclosed in boxes and the labels of each block are shown in Figure

5.15.

Chapter 5: Document Segmentation

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

71

University o f Windsor

* * * * * * *

* * * * * * * * * * * * * *
* * * * *

* * * * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * *
* *

* *
* * * * * * * * * * * *

Figure 5.12: Example o f a Binary' Pattern

1 1 1 1 1 1 1
1 1 1 1 1 1 1 2 2 2 2 2 2 2
1 1 2 2 2

3 3 3 3 3 3 3 2 2 2 2 2 2 2 2 2 2 2
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

4 4 4 4 4 4 4 4 4 4 4 2 ? '> "> ? 2 ' > > > 2 2 2 ? 2 2 2 " > 2 2
4 4 4 4 4 4 4 4 4 4 4 ~ 2 2 2 2 2 2 2 2 2 2 2 2 2 2
4 4 4 4 4 4 4 4 4 4 4 4

Figure 5.13: Labelling Results for Figure 5.12

tinTfkelv'anyone will be found alive-...

Honda ̂ Y^Qp^|p^q^-^YlTacri5i&
^ 6 .6 -rr ia g n itu ll

e a r th q u a k e h it this Iranian a ty _

IS ira n]

p[gSCue
thousands of homeless. Many spent a third niqnt outside m freezing!

&S :lisE flcE i3

Figure 5.14: Blocks of Text and Images Shown on Binary Image

Chapter 5: Document Segmentation

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

72

University of Windsor

Label 0

[Label
Label
[Label
[Label

[Label
[Label
[Label
[Label
[Label 10
[Label 1T
Label 12

Label

[Label.
[Label

j 3_
“14“

[Label 15
[Label 1 G„

Figure 5.15: Blocks of Text and Images with the Corresponding Labels

5.3.4 Feature Extraction

At this point the coordinates of each block are known. The next step is to extract

features, which will help to classify each block into either image or text. In this

project geometrical and statistical features were extracted from the blocks in

Figure 5.15. The following features were extracted from each block: the height of

the block (H t), mean pixel value (//,), standard deviation of pixels (<r;) and black

pixel count {BCl) where / is the label corresponding to each block 0 < i < N -1 ,

N is the total number of blocks.

The height of each block was calculated by subtracting the minimum value of the

y coordinate from the maximum value of the y coordinate as shown in equation

(5.4).

H i = y max, - y m in, (5.4)

Chapter 5: Document Segmentation

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

73

University of Windsor

The mean (//,.) was calculated using equation (5.5)

maxmax

 ̂max

(5.5)

Where (■^'max/ - ’̂ m in/) (^m ax, ^m in,) (5.6)

The standard deviation was calculated using equation (5.7)

1

v-\-

CT. =
(5.7)

5.3.5 Block Classification

The final step in page segmentation is the classification of each block into its

proper class. Any kind of classifier can be used such as statistical classifiers,

decision tree or NN. In Whal [48], a statistical classifier was used with many

parameters that were not optimized and are application dependent. However in

this project a NN classifier using MLP will be used. The features extracted will be

fed into the NN and the results will be either 0 or 1 for text and images

respectively. This can be extended to include lines, tables, graphs etc. The NN

contained three layers, with 4 nodes at the input layer, 7 nodes in the hidden

layer and one node at the output layer. This MLP NN is shown in Figure 5.16.

The results of block classification are shown in Figures 5.17 and 5.18.

Chapter 5: Document Segmentation 74

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

University of Windsor

(1 . 0)

Hidden O utput
Laver

Figure 5.16: MLP NN for Block Segmentation

BAM, IRAN ~ Rescue w orkers
prepared to call o ff the ir search
Monday for survivors of the
earthquake in Bam as officia ls say it's
un like ly anyone will be found alive.

Experts say 72 hours is the longest
people can survive in rubble. As of
Monday m orn ing, it had been m ore
than 72 hours since a 6 .6 -m agn itude
earthquake h it th is Iran ian city
located 1,000 k ilom etres south of
Tehran.

Rescue w orkers will instead tu rn th e ir focus to the tens of
thousands o f homeless, Many spent a th ird n igh t outside in freezing
tem peratures and w ere jo lted Monday m orning by two strong
aftershocks.

Figure 5.17: Blocks of Text Extracted from the Binary Image

Chapter 5: Document Segmentation

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

75

University o f Windsor

Figure 5.18: Blocks of Images Extracted from the Binary Image.

5.4 Summary
The page segmentation process is very important in many applications where

text and images need to be processed separately. The extraction of text from

grey level images with complex background is a very challenging problem and

goes through several processing steps including thresholding of images with

complex backgrounds, which is essential to the success of text extraction step.

Using the local NN thresholding method developed in Chapter 4, the smearing

algorithm developed by Wahl and a MLP NN classifier, the classification of

different document image contents was achieved successfully as can be seen

from the example shown in this chapter.

Chapter 5: Document Segmentation

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

76

Chapter 6
Character Recgonition Systems

6.1 Introduction

Optical character recognition, usually abbreviated to OCR, involves

computer systems designed to translate images of typewritten text

(typically captured by a scanner) into machine-editable text to

translate pictures of characters into a standard encoding scheme

representing them such as ASCII. OCR began as a field of

research in machine vision and artificial intelligence. Though

academic research in the field continues, the focus on OCR has

shifted to implementation of proven techniques.

OCR is the machine replication of human reading and has been the

subject of intensive research for more than five decades. The

United States Postal Service has been using OCR in postal

machines to pre-sort mail since 1965 [6], Many commercial OCR

systems are presently in service and or being developed. The

general area of OCR deals with machine-printed character

recognition, handwritten character recognition and script

recognition. Within this broadly defined area of research, our

interest is specifically in the recognition of printed characters from

document images with complex backgrounds.

Chapter 6: Character Recognition System

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

77

University of Windsor

There are several important processing steps between input character image

acquisition and the output class membership decision. Generally, a character

recognition system can be divided into pre-processing, character segmentation,

feature extraction, and classification stages.

6.2 History and Applications of OCR Systems

Keyboarding is the most common way of inputting data into computers; it is

probably the most time consuming and labor intensive operation. The origin of

character recognition can be found as early as 1870 when Carey invented the

retina scanner that is an image transmission system using a mosaic of

photocells. It first appeared as an aid to the visually handicapped and the

Russian scientist Tyuring made the first successful attempt in 1900 [59][60], The

modern version of OCR appeared in 1940s with the development of digital

computers. It was the first time OCR was realized as a data processing

approach, with a particular application to the business world [59], The principle

motivation for the development of OCR systems is the increased demand for

capturing printed documents or text as well as pictures. The application areas

include:

• Use of the photo-sensor as a reading aid and transfer of the recognition

result into sound output or tactile symbols through stimulators.

• Use in direct processing of documents.

• Use in bank and security service for reading bank cheques, credit card

imprints, and personal signatures on identification cards, etc.

• Use in business applications for reading product identification codes and

digital bar codes, etc.

• Use in postal departments to read addresses and postal codes.

• Use in machine vision.

• Use in publishing industry and in library systems.

Chapter 6: Character Recognition System

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

78

University of Windsor

Combined with computer word processing and desktop publishing techniques,

which have been highly developed in recent years, OCR provides a revolutionary

approach for computer storing, editing, accessing, indexing and republishing of

documents.

The rapidly growing computational power of computers enables the

implementation of OCR methodologies and creates an increasing demand on

many emerging application domains, which may require more complicated

techniques [61]

6.3 Construction of OCR Systems

The main parts of a typical OCR system are shown in Figure 6.1. The system

goes through preprocessing, feature extraction, learning, and classification. In

the following subsections a brief explanation of each stage will be explained.

Prototype
FeaturesScan Paper

Document

Text

Pre
processing

Post-
Processing

Digital
Image Classification

Character
Segmentation

Feature
Extraction

Figure 6.1: OCR System Steps

Chapter 6: Character Recognition System

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

79

University of Windsor

6.3.1 Preprocessing

A paper document is first transferred into a digital form i.e. a bitmap file by using

a scanner. For documents with complex backgrounds the images have to go

through the NN local thresholding method explained in chapter 4 and the page

segmentation algorithm in chapter 5. The result is a binary image with text only.

The characters in the binary image are then isolated or segmented to extract the

character positions, which will be used in the next step. In [62], a survey of

methods and strategies in character segmentation explains three major

approaches to character segmentation which are recognition based, dissection

and holistic. Some preprocessing may be used depending on the quality of the

character images. Such preprocessing could involve noise reduction,

normalization of the character images or compression techniques, which

preserve the shape of the character such as thinning [63],

6.3.2 Feature Extraction

Feature extraction is the most important step in character recognition. It plays a

very important role in achieving high recognition performance. Also, the other

steps in this system need to be optimized to obtain the best possible

performance. These steps work together to achieve one goal, which is

converting an image into an ASCII format that can be edited. Therefore, the

output of each step propagates to the next stage in a pipeline fashion making the

whole system work as a whole and if one stage fails the performance is

significantly affected. A more in depth description of the different feature

extraction methods will be given in section 6.4.

6.3.3 Learning

Learning or training an OCR system is a very important step since the

recognition stage depends on the database or reference features extracted from

known characters, which are then used during the classification stage. OCR

Chapter 6: Character Recognition System

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

80

University of Windsor

systems need this step to enrich the knowledge when an unknown character is

met. The database or prototype features must have the ability to expand as

more new characters are met their prototypes should be added to the database

with their target character classes to increase the recognition ability.

6.3.4 Classification

In the classification stage, the extracted features are compared to the ones

recorded in the database or prototypes; if the features are matched or closely

matched the input character is classified into the appropriate class. In this stage,

if a single classifier fails to yield high performance, several classifiers may be

combined to give acceptable results. Section 6.5, gives an overview on the kind

of methods used in the training and classification stages.

6.4 Feature Extraction Methods

Most of the research has been concentrated on features extracted from

characters. The purpose is to extract information that distinguishes the character

from others and eliminate redundant information. There are two main methods

used for OCR: Matrix matching (also called template matching) and feature

extraction. Matrix matching works best when the OCR encounters a limited

number of type styles, with little or no variation within each style. However, where

the characters are less predictable, the feature extraction method is superior.

Template Matching compares the character images with a library of characters or

templates. When an image matches one of these prescribed templates within a

given level of similarity, then that image is labeled as the corresponding ASCII

character.

Feature extraction is OCR without strict matching to prescribed templates, also

known as Intelligent Character Recognition. Character feature extraction or in

other words character representation, is needed to produce compact and

characteristic representation of the characters. Therefore, the purpose of the

Chapter 6: Character Recognition System

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

81

University of Windsor

features extracted from each class is to help distinguish it from other classes

while remaining invariant to characteristic differences within the class itself.

There have been hundreds of feature extraction methods that can be categorized

into three major groups: global transformation and series expansion, geometrical

and topological, and statistical representations.

6.4.1 Global Transformation and Series Expansion Representations

The global transformation and series expansion methods help reduce the

dimensionality of the feature vector and provide features that are invariant to

some global deformations like translation and rotation. Common transform and

series expansion methods used in OCR are: Fourier transform [64], Gabor

Transform [65], Karhunen-Loeve Transform (KLT) used in the National Institute

of Standards and Technology (NIST) form-based handwritten OCR system

[61][66], Walsh Transform [67], Moments [68], Wavelets [69], Hadamard

Transform [70] and Rapid Transform [71].

6.4.2 Geometrical and Topological Representation

Several global and local properties can be represented by geometric and

topological features with high tolerance to distortions and style variations. This

kind of representation provides knowledge about the structure of the object or

character. Some of the types of methods used are: coding, outline features, and

graphs and trees.

6.4.2.1 Coding

Coding is obtained by mapping the strokes of a character into a 2-D parameter

space. The most popular coding scheme is Freeman’s chain code [72], which

has been modified and has different variations. As an example in [73] the frame

character is divided into left-right sliding window and each region is coded by the

chain code instead of taking the chain code of the whole character.

Chapter 6: Character Recognition System

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

82

University of Windsor

6.4.2.2 Outline Features

The outline shape of a character usually contains distinct and stable information

that distinguishes it from others. The contour can be achieved by using the

contour tracing algorithm proposed in [74] or other algorithms from which

features such as end points, intersections of line segments, loops, bays, length,

directions, holes and many other structures that can be extracted.

6.4.2.3 Graphs and Trees

Words or characters are partitioned into a set of topological primitives then these

primitives are represented using attributed or relational graphs [75],

6.4.3 Statistical Representation

Statistical representation takes care of style variations of characters or patterns.

It is used to reduce the dimension of the feature vectors providing high speed

and low complexity. The following are the major statistical features used for

character representation: zoning, X-Y projections, and crossings and distances.

6.4.3.1 Zoning

The frame around the character is divided into zones and some features from

each zone are extracted such as the pixel distribution in each zone, contour

direction and histograms of chain code.

6.4.3.2 X-Y Projections

Projecting the character shape in X and Y directions or other directions obtain the

stroke distributions in each direction. This representation creates a 1-D signal

from a 2-D image, which can be used to represent the character image [76].

Chapter 6: Character Recognition System

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

83

University of Windsor

6.4.3.3 Crossings and Distances

An example of representation using crossings and distances is calculating the

number of a contour by a line segment in a specified direction. In [77] the

character frame is divided into a set of regions in various directions and then the

black runs in each region are coded by the powers of two.

The feature extraction process can be performed on binary or grey level images.

Some of the features may not be easy to extract from grey level images, but

many other features can be used instead. The features selected could also vary

from one application to another depending on the resolution and image quality.

Arica and Yarman-Vural [78] gave an overview on the character recognition

methods and in [61] Trier et al. gave a survey on the feature extraction methods

for character recognition.

6.5 Training and Classification Methods

Numerous techniques of classifications used for Character Recognition (CR)

have been developed. These can be divided into five main approaches: template

matching, minimum distance classifiers, statistical techniques, structural

techniques and Neural Networks. In these approaches the CR techniques use

either holistic or analytic strategies for the training and recognition stages. The

holistic approach recognizes the full word eliminating the segmentation step.

This approach is used to constrain the problem of CR to limited vocabulary.

Such an example could be recognizing the name of countries used in passports

or legal amounts on a cheque [73], The recognition rate will decrease in the

case of cursive writing, but for printed characters this approach will provide high

recognition rate. On the other hand, the analytical approach starts from strokes

or characters to produce text. In this approach the number of classes is

unlimited and the recognition rate is much higher compared to the holistic

approach.

Chapter 6: Character Recognition System

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

84

University of Windsor

6.5.1 Template Matching Techniques

The direct and simple way is a one to one comparison of all grey level or binary

values of a character to prototypes or templates stored for all characters.

Template matching could also be as complex as a decision tree analysis in which

only selected pixels are examined. The one to one approach is very sensitive to

noise and is time consuming if a large number of templates are used in the

comparison. The speed also depends on the size of the templates used.

Several methods of template matching have been proposed and used in pattern

recognition such as deformable template matching [79] and relaxation matching

[80],

6.5.2 Minimum Distance Classifiers

The recognition or classification is based on the minimum distance between the

input character and the prototype character features. Such distance measure

methods are Euclidean distance [81], Hamming distance [82], and k-means

clustering algorithm [83],

6.5.3 Statistical Techniques

Statistical classifiers assume that different classes and feature vectors have an

underlying joint probability. An example of such a classifier is the Bayes

classifier [84], which minimizes the total average loss in assigning an unknown

pattern to one of the possible classes. The Hidden Markov Model (HMM) [85]

has been widely used as a classifier in character recognition. Also many

variations of the HMM have been used especially in handwritten character

recognition. The main problems with this method are the selection of features

and the number of lexicons. In [86] HMM was used in recognizing the names of

Iranian cities in postal services which use Farsi characters.

Chapter 6: Character Recognition System

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

85

University of Windsor

6.5.4 Structural Techniques

Structural classifiers include grammatical and graphical methods. In grammatical

methods rules are produced in order to form the characters from a set of

primitives through formal grammars [87], However in graphical methods writing

units are represented by trees, graphs or attributed graphs. The character

primitives are selected by a structural approach. For each class a graph or a tree

in the training stage is formed to represent strokes, letters or words. Then the

recognition stage assigns the unknown graph to one of the classes by using a

graph similarity measure. In [88] Amin used the C4.5 learning algorithm to create

decision trees to represent classification rules for handwritten Arabic characters

6.5.5 Neural Network Techniques

NNs have been widely and successfully used in OCR because of their ability to

perform computations at a higher rate and their adaptation to changes in the

data. The use of NNs in OCR is very visible in literature. Such an example is

[89] where CR using NN based feature extractor and classifier were used in the

recognition of handwritten characters.

The use of fuzzy concepts with NNs in CR has also emerged in the last decade.

In [90], Kwan and Cai used a Fuzzy Neural Network (FNN) with pixel values of

the image characters as input features. The same network was also applied for

Vietnamese characters [91] with a very high recognition rate.

Multi-stage classifiers are used in OCR systems to provide high recognition rate.

These multi-stage methods are developed in case a single classifier fails to

provide high recognition rate. In each stage different feature extraction methods

could be used to provide a system that is capable of distinguishing characters

and providing higher recognition rates. In [92] the work of Cao, J. on handwritten

numeral recognition uses fusion of classifiers and in [93] a recognition of printed

Chapter 6: Character Recognition System

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

86

University o f Windsor

Korean characters used a two-stage classification method to recognize printed

Korean characters.

6.6 Illustrative Example of an OCR System

An OCR application is demonstrated in Figure 6.2. The first step is to scan the

original document into the computer and save it as a digitized image. Then the

OCR engine preprocesses this image by removing its background to produce a

binary image. The binary characters are then separated or segmented and

features are extracted from each character converting the image characters into

feature format. The feature vectors are then fed into a classifier, which can be a

NN, or any other classifier that has already been trained to be used on such

characters. The classifier outputs the numeric class corresponding to each

character then it translates these classes into ASCII text, which is saved in an

editable text file format.

6.7 Implementation of an OCR System

An application of an OCR system is the reading of the information barcode on a

bank cheque. In today's business environment where the security of accepting

cheques can sometimes be a burden, many businesses are turning to verification

services to provide security for funds accepted as cheques. A new recognition

system for processing the optical code, the Magnetic Ink Character Recognition

(MICR) code, located at the bottom of bank cheques and in some security

documents is implemented using fuzzy descriptive features with a linear

correlation classifier. The MICR code contains the bank routing number; cheque

number, and bank account number as shown in Figure 6.3. By extracting this

information from the cheques, the system will be linked to a database where

information on the account holder can be verified.

Chapter 6: Character Recognition System

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

87

University of Windsor

Gd
5'

S'
era n>

1 1 1 1 1 1 o
1 1 1 1 1 1 3
1 1 1 1 1 1 o
M I N I "
1 1 1 1 1 1 °
1 1 1 1 1 1 » 4

T3■-s

oo

i i i i i i §>

! j ! ! ! ! ^
i i i i i i
i i i i i i
i i i i i i

CTicn
3

oro

i i i i i i
i i i i i i
i i i i i i
i i i i i i

V J C/E?

P OTC

Figure 6.2: Illustrative Example of an OCR System

Chapter 6: Character Recognition System

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

88

University of Windsor

YASSER AL-GtMAHt ;S:92

^ May 23,1990

Op -̂OF M RIC - $ 230 .00

tcqqgii, ,;0 5 3fl 3 -0 iOU ? 2**999 5 fis*

Check # Routing # Account #

Figure 6.3: Cheque Image Showing the MICR Code

The research area of bank cheque processing has been investigated since the

eighties. Research has been conducted on recognition of legal amounts,

signature recognition, bank logo extraction, optical line recognition, cheque

segmentation and extraction of sections of cheques in both handwritten and

machine printed cheques [73][94][95], The MICR E13B font is used to print MICR

encoding on bank cheques and drafts in the United States, Canada and several

other countries. The MICR E13B font contains ten specially designed numeric

characters 0 through 9, and the four special symbols as seen in Figure 6.4 [96],

6.7.1 Preprocessing

The first step is to locate the barcode on the cheque by processing the lower

portion of the cheque that contains the barcode. The NN local thresholding

method explained in Chapter 4 was applied to the lower portion of the cheque

4 L i

Figure 6.4: MICR E13B Font

Chapter 6: Character Recognition System

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

89

University of Windsor

producing a binary image. The barcode coordinates were extracted by taking the

histogram in the horizontal direction, X-direction, of the binary image. The pixel

distribution for each line of the barcode in the horizontal direction is roughly the

same, which makes it easy to extract the barcode. Figure 6.5 shows the

preprocessing stage, which produces a binary image containing only the barcode

of the cheque. This image is then passed to the next stage in the OCR system.

WkStiKKM A A M .
WINDSOR ON

PVi ri» ii..
ORDEB Of

•:□□□□ i * " 3 1 □ i o o a 3 3 n 5 3on&ti, 5 3 73

■:□□□□ 3 l 0 i 0 :) B 3 3 0 E 3 D G E Inl S 3?3

itoDon ninnfl3 3nE3nnF,n,ci3 73

SOI

.MOO

Throdholded Barcode

Figure 6.5: Preprocessing Stage for Extracting Cheque Barcodes

6.7.2 Character Segmentation

The segmentation of characters was done by taking the horizontal and vertical

projections of the barcode binary image. When the vertical projection has no

black pixels then there is a separation as shown in Figure 6.6 (a). It is noticed

that the symbols were segmented into two or three parts. These several small

parts for each symbol were then merged as seen in Figure 6.6 (b). After

Chapter 6: Character Recognition System

with permission of the copyright owner. Further reproduction prohibited without permission.

90

University of Windsor

segmenting the characters the coordinates were calculated. The pixel values

were normalized, and the background was represented as 0 and foreground as

1. Finally, the characters are centered in a specific size window by padding

zeros around the characters, Figure 6.7 shows the special number 3 centered in

a window of size 20x16.

is ib in a n a
(a) (b)

Figure 6.6: Samples o f Segmented Symbols

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 I 0 1 1 i 1 1 0 0 0 0 0
0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0
0 0 0 0 0 1 0 1 I 1 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 i 0 0 0 0 0
0 0 0 0 0 o 0 0 0 1 1 0 0 0 0 6
0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0
0 0 o 0 1 1 X 1 1 1 0 0 0 0 0
0 0 o 1 1 1 1 1 I 1 1 1 1 0 0 0
0 0 0 0 0 1 0: 0 0 1 1 1 1 0 0 0
0 0 0 0 0 0 0 0 0 i i 1 1 0 0 O
0 0 0 0 0 0 0 0 0 i 1 i i 0 0 0
0 0 0 0 0 0 0 0 0 i 1 I 1 0 0 0
0 0 0 0 0 0 0 0 0 1 1 I 1 0 0 n
0 0 0 0 0 0 0 0 0 I i 1 i 0 0 0
0 0 0 1 1 1 1 1 1 1 1 1 1 0 0 0
0 0 0 1 1 1 1 1 1 1 1 1 1 0 G b
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0:

Figure 6.7: The Number 3 Centered in a 20x16 Window

6.7.3 Extracting Fuzzy Features

For this application, a maximized fuzzy descriptive feature for each pixel is

obtained by using the following function:

Chapter 6: Character Recognition System

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

91

University o f Windsor

Nl N 2

Sv = max(ma«(w[/ - x , j - y] f „)) (61}

fo r i - 1 to N1 and j = 1 to N\

Sv gives the maximum fuzzy membership pixel value using the fuzzy function,

w[m,n] , equation (6.1). Where f xy is the (x,_y) binary pixel value of an input

pattern (0 < f xy < 1). iV,andiV2 are the height and width of the character

window.

w[m, n] = ex p (-/? 2 (m 2 + n 2)) (6.2)

for m = ~(Nl - 1) to (Ny - 1)
n = - (N2 - 1) to (N2 - 1)

Through exhaustive search, /? = 0.3 was found to be the most suitable value for

achieving higher recognition rate. This fuzzy weight function, equation (6.2), was

used in literature to calculate the fuzzy output of the second layer of a FNN

proposed in [90][91], However in this research, it is used to provide the fuzzy

descriptive features required for the proposed OCR system, which does not

require a FNN. StJ gives a 2D fuzzy feature vector whose values are between [0-

1] and has the same size as the character image window. Figure 6.8, shows an

example of the 2D fuzzy descriptive feature vector for the special number 2. It is

obvious from the fuzzy feature vector that the features resemble the shape of the

character and any distorted character will be easily recognized due to this

characteristic of the descriptive fuzzification function. Therefore, the closer to the

boundary of the character the higher the fuzzy membership value and the further

from the boundary of the character the lower it is.

Chapter 6: Character Recognition System

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

92

University of Windsor

0.16299 0310367 0.486752 063120835270 0.9139310913931091393109139310.91393109139310835270 0.637628 0.486732 0 310357 0.165299
02165360.4065700.637620832700913931 LCD] 1D0C0CD10000001JDOOOOO 1.0000001DOOOOO 09139310.835273063120.4065700.216536
0236928 0.444858 0.0376750513931 lfOCOOO l.COOOX 1DOOOOO1030000 M 0 1.0000001D00000 1DOOOOO 0.913931 0j6?3676 0.444S53 0.236928
m m m m m m i w m i l.ooooco idoccoo rnoo oo o im jo i.ooocto idooooo 1 jmm913931069110.444S580.23692
0.163299 0 310367 0.48672 0j63762S0535270 0.9139310913931091393109139310.913931 1DOOOOO1IOOCOO 0.9139310695616 0.414858 0.236928
0.1QS399 0.197S99 0,310367 0.486720637628 0.69761 0 69110697676 0 697676 0.913931 lDOCDOO 1000000 0.9139310697676 0.444S58 0.2369S
0.103399 0.192899 0,310367 0.4065700.444858 0.44485804443̂0.444853 0697676 0.913931 1 OCtOOO 10000000.913931069110.4448580.23692
0.16299 0 31 OS? 0.436752 063762S0 697676 0,697676 06976̂ 0 697616 0 691676 0.913931 1000000 1000330 0.9139310 69110.444858 0.236928
02165360.406570 0,63762 083273 09139310.9139310913931091393109139310.913931 1000300 1 030330 0.9139310 697676 0.444858 0.236928
0 236928 0.444858 0.697676 0 913931 1.0000001. OOOOOO1003300 1 030000 lDOOIO 1.000000 1 0(30000 1 000000 0.913931 0 697676 0.444858 0.236928
0 236928 0.444858 0.6976760913931 10000001.00000010000001ID0000 1 0000301.000000 1 000000 1 000(00 0.9139310 6936760.444858 0.236928
023692 0.444858 0.6976760913931 IDOOOOO 1.000000 1 000000 IDOOOOO 10000001.000000 1 000000 09139310.835273 0 63762 0.4065700.216536
0 236192 0.444853 0.697676 0913931 10000001.000000 0913931091393109139310.913931091393108352700.63762 0.48672 0 31Q367 0.165299
023692 0.444858 0.697676 0913931 10000001.000000 0 9139310697676 0697676 0.697676 0 697676 0 637628 0.48672 0 310367 0.197899 0.105399
023692 0.444858 0.697610913931 1D00TO01.000000 0 913931 06197676 0.444858 0.444858 0.44482 0.444858 0165170310367 0.197899 0.115399
0 23692 0.444858 0.697676 0 913931 10000301.000000 0913931007676 0 69176 0.69761 06911069176 0.63762 0.48672 0310367 0.165299
023692 0.444858 0,697610913931 IMD01.0000300913931091393109139310.913931091393109139310.835273063120.4065700.216536
0 23692 0.444858 0,69761 0913931 10000001.0000001JOOOOOO1 OOOOOO 10000001.0000(301 DOOOOO 1000000 0.913931069176 0.444858 0.23692
0 23692 0.444858 0.69761 0913931 IDOOOOO 1.000000 1 0000031 DOOOOO 10000001.0300001 DOOOOO 10013030 0.913931069110.444858 0.23692
02165360.406570 0.63762 0 8 3 270 09139310.9139310913931091393109139310.913931091393109139310.835270 0 63120.4065700.216536

Figure 6.8: The Fuzzy Feature Vector for the Number 2

6.7.4 Training

After feature extraction, prototype feature weights are needed in the classification

step of this system. Therefore, to train the system, binary MICR barcode images

of characters were used to obtain the prototype fuzzy descriptive feature vectors.

The MICR barcode from 100 cheques were obtained and preprocessed. Ten

complete sets of characters, similar to the set shown in Figure 6.4, were

randomly selected from the preprocessed MICR barcodes. The fuzzy descriptive

features were calculated for each character providing 140 feature vectors of size

20x16, meaning 140 classes. Each character has 10 different variations from

which clustering was used to obtain one class for each character. The center of

each class is created by averaging the fuzzy descriptive feature vectors for the

ten variations of each character. Each of the characters will belong to one class,

hence no overlapping. The result of clustering is 14 prototype feature vectors of

size 320 features. One feature vector for each class of characters, Figure 6.9.

Chapter 6: Character Recognition System

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

93

University of Windsor

E

Figure 6.9: Non-Overlapping Clusters for the 14 Classes

6.7.5 Classification

The linear correlation coefficient, r , equation (6.3), was used in the recognition

process [97],

Where, jux is the mean of x, ’s, the prototype feature vector, and juy is the mean

of the yt ’s, the feature vectors for characters under consideration. The value of

r , lies between -1 and 1, inclusive, if a value of r is close to 1 or -1 then the

feature vectors are correlated or have high similarities, but if r is close to 0 the

feature vectors are uncorrelated or have low similarity value. By using the linear

correlation coefficient, the feature vector of a character tested is compared

against all the prototype feature vectors. The higher the correlation coefficient

the greater the similarity measure between the character and the prototype

feature vector class. This comparison was repeated for all characters under test,

then the OCR results were displayed. Figure 6.10 below shows the block

diagram for the classification process.

r (6 3)

Chapter 6: Character Recognition System

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

94

University o f Windsor

Classification

Fuzzy Feature
Vector

-------►

Cross
MAX

Correlation

-------►

Output
Character

Figure 6.10: Block Diagram for Classification

6.7.6 Results

The character recognition system using fuzzy features with the linear correlation

classifier was used to recognize the 14 MICR characters. It was tested on 2500

characters from which 140 were randomly selected to obtain the prototype

feature vectors. A 100% recognition rate was obtained even when the character

patterns are slightly shifted or distorted as a result of thresholding, where pixels

may be added or removed. For 1° rotation the recognition rate was 99%, but this

method becomes sensitive to rotations of greater than 1°. For a rotation of 2° the

recognition rate was 96.7%, therefore, images have to be de-skewed during the

preprocessing stage in order to achieve the accurate recognition rate.

This system is shown to be fast, robust and suitable for real time applications

where the verification process takes less than 2 seconds. It took 1,45s to do the

whole process using Borland Builder C++ on a 1.0 GHz AMD Athlon processor,

128 MB RAM. This is with the use of the local NN thresholding method and if a

global threshold method such as Otsu’s method was used the time would be less

than 1sec. In such applications it is not guaranteed that the original images have

a uniform background. Therefore the local NN thresholding technique is more

Chapter 6: Character Recognition System

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

95

University of Windsor

suitable to be used in such application to avoid any wrong segmentation in the

bar code image. The recognition process depends on the correlation coefficient,

which calculates the similarity measure between the fuzzy descriptive features of

the characters under consideration and the prototype feature vectors of the

trained characters. The recognition rate obtained using a limited testing set is

100% as long as no skewing greater than 1° is introduced during the scanning

process.

6.8 Summary

The objective of this work is to imitate the human abilities in reading printed text

with higher accuracy and speed. From the brief overview on OCR given in this

chapter, the feature extraction step is the most important step since the

recognition rate depends mainly on the type of features extracted. This step

does not operate separately and the success of the preprocessing steps is also

very crucial. The converting of data to electronic format is needed in many

applications with very high recognition rates. The cheque processing application

which reads the barcode uses fuzzy descriptive features with a correlation

classifier produced high recognition rates as long as the skew angle is corrected

before OCR processing.

Achieving a high recognition rate is possible, but depends on the application and

the type of constraints imposed on the images used. In comparing different

methods of character recognition Arica and Yarman-Vural concluded their

observation with the following, “It is very difficult to make a judgment about the

success of the results of the recognition methods especially in terms of

recognition rates, because of different databases, constraints, and sample

spaces. In spite of all the intensive research effort, numerous journal articles,

conference proceedings, and patents none of the proposed methods solve the

character recognition problem out of the laboratory environment without putting

constraints” [78],

Chapter 6: Character Recognition System

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

96

Chapter 7
OCR Experimental Results

7.1 Introduction
This chapter presents experimental results for the document

analysis system starting from a grey level document image and

ending with recognizing the text saved in a text file. The document

analysis system implements the following steps: local NN
thresholding technique, skew detection/ correction, block labeling,

block classification, and OCR. The OCR stage uses pixel

distribution as feature to classify characters. Images used in this

chapter have a resolution of 200 dpi and the text font type is Lucida

Console. The results from the proposed system were compared

with a commercial OCR, the ABBYY Fine Reader OCR [98], The

results obtained show that the proposed system outperformed the

ABBYY OCR especially in document images containing complex

background. In the next section, the features used in the proposed

OCR system will be explained followed by OCR results.

7.2 Proposed OCR System

7.2.1 Feature Extraction

The OCR stage takes the binary image of text blocks produced

after thresholding and block classification. The coordinates of each

character are calculated using horizontal and vertical projections of

black pixels. The characters were then centered in a window of

Chapter 7:OCR Experimental Results

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

97

University of Windsor

size 25x20. Pixel distribution of characters from the divided character zones were

used to give a feature vector representation for the characters. These characters

were divided into zones of 5x5 and overlapping zones of 5x5 to give a feature

vector of size 32.

7.2.2 Training and Classification of Characters

Training is needed to produce prototype vectors to compare against during the

classification stage. A total of 67 characters and special symbols were used in

the OCR system. These include upper and lower case characters, Arabic

numerals, and the following symbols: comma, period, apostrophe, dollar sign and

hyphen. The pixel distribution feature vectors of five complete sets of each

character were averaged to produce one feature vector for each character.

These feature vectors are the prototype feature vectors used in the classification

stage, which uses the correlation classifier explained in section 6.7.5.

7.3 Experimental Results
Thirty images with Lucida Console font were used to test the document analysis

system to extract the text and perform character recognition some of these

images are provided in the attached CD. Four document images with complex

background will be shown with the results from the proposed system and those

obtained from the commercial OCR software. Figure 7.1 [103] is an image with

slightly uniform background; the thresholding of such image can be done easily

using any simple thresholding technique. Running this image through the

proposed document analysis system and the ABBYY OCR produced the text

shown in Figures 7.2 and 7.3 respectively. The results produced 100% character

recognition rate in both cases. For the images in Figures 7.4 [104], 7.7 [101] and

7.10 [99] the results for ABBYY OCR are shown in Figures 7.5, 7.8 and 7.11

respectively. On the other hand, the proposed OCR results are shown in Figures

7.6, 7.9 and 7.12 respectively. From the results it is very clear that the proposed

system outperformed the ABBYY software since fewer characters were

Chapter 7: OCR Experimental Results

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

98

University of Windsor

misclassified. Also as seen from Figures 7.8 and 7.11 some parts of the

background that ABBYY could not eliminate were classified as small images.

In the final week of the campaign,
Martin is making health care his main
message saying a Liberal government
will defend public funding and j

" : :acfceŜ lpE:ip/i;f f lip :"
Martin says transparency is the only
way to run a government, including
negotiating the future of health
care. That is how I believe that a
nation achieves its great national
objectives, said Martin. Not decision
making behind closed doors, away from

__ I

Figure 7.1: Document Image Containing Text Only.

In the final week o f th e carapaign,
Martin is making health care his main
message sa y in g a Liberal government
will defend public funding and
access.
Martin says transparency is the only
way to run a governm ent, including
negotiating the fu tu r e of health
care. That is how I believe that a
nation achieves its great national
objectives, sa id Martin.. Hot decision
making beh in d closed doors, away from
th e people.

Figure 7.2: OCR Results for Figure 7.1 Using ABBYY OCR Software

Chapter 7: OCR Experimental Results

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

99

University of Windsor

In the f in a l week of the campaign,
M artin is making hea lth care h is main
message saying a L ib e ra l government
w i l l defend p u b lic funding and
access.
M artin says transparency is the only
way to run a government, in c lu d in g
n e g o tia tin g the fu tu re of health
care. That i s how I be lieve th a t a
nation achieves i t s great nationa l
o b je c tive s , said M artin* Hot decision
maling behind closed doors, away from
the people.

Figure 7.3: OCR Results for Figure 7.1 Using Proposed OCR system.

I t ’s been a tough climb to
the summit of Canadian
politics for Jean Chretien.
From the pool h a ll p o l i t i c a l
debates of his childhood to
the opulent o ff ic e s of
Ottawa, -

Chretien has always called himself the
l i t t le guy from shawinigan His abrupt
departure frpin'politics in 1986 was only
the end of the firs t chapter in what was
to be.a long and colourful career. We look
back-at those early years of Canada’s 20th
prime minister.

Figure 7.4: Composite Document Image with Non-Uniform Background.

Chapter 7: OCR Experimental Results 100

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

University o f Windsor

It's been i tough climb to *i
the summit of Canadian
politics for Jean Chretien.
From the pool hall political
debates of his childhood to
the opulent offices of
Ottawa,

j Chretien has always called himself the
| little guy from Shawim'gan His abrupt
i departure from politics in 1986 was only
| the end of the first chapter in what was
| to be., a long and colourful career, we look
I back-af those early years of Canada's 20th
| prime minister.

Figure 7.5: OCR Results for Figure 7.4 Using ABBYY OCR Software.

The results of Figure 7.5 shows that the page segmentation was performed

successfully but misclassification of characters were noticed in some parts of the

document due to the complex background. On the other hand, the results from

the proposed OCR system shown in Figure 7.6 show better recognition.

Chapter 7: OCR Experimental Results

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

101

University o f Windsor

It.s been a tough climb to
the summit of Canadian
politics for Jean dhretien.
Fro* the pool hall political
debates of his childhood to
the opulent offices of
Ottawa,
Chretien has always called himself the
little guy from Snawinigan His abrupt
departure from politics in 1986 was only
the end of the first chapter in what was
to be a long and colourful career, we look
back at those early years of Canada.s 20th
prime minister

Figure 7.6: OCR Results for Figure 7.4 Using Proposed OCR System.

l o v p H i m , i i f i t e I I i n

P r e s i d e n t

T h e r e i s an ax io m i n
A m e r ic a n p o l i t i c s t h a t
sa ys w h e n e v e r a s i t t i ng
P r e s i d e n t i s r u n n i n g
f o r a second t e r m , t h e
e l e c t i o n i s mors a
r e f e r e n d u m on him t h a n
a j u d g m e n t on h i s
o p p o n e n t .

Fr,eside:iL George Bi.--.ti has Ljkcr fU r
truism to a new level, with just under
n vear to ~o before Nov. 2, 2CvK.
Americans are already finding ways to
sho.v hov. passional"ly thev feel about
their president.

Figure 7.7: Composite Document Image with Non-Uniform Background.

Chapter 7: OCR Experimental Results

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

102

University of Windsor

| Love Him, Hate Him
Presiden-t
There is an axiom in

j American politics that
| says whenever a sitting

President is running
I for a second term, the
I election is more a

referendum on him than
| a judgment on his
| opponent. !
j President George W. Bush Mas taken this
i truism to a new level, with just under
| | a year to go before Nov. 2, 2004,
j S Americans are already finding ways to
j show how passionately they feel abcAt
i *teir President.

■

Figure 7.8: OCR Results for Figure 7.7 Using ABBYY OCR Software.

From Figure 7.8, it can be seen that some parts of the background were not

eliminated during the processing and were considered as image or text.

Chapter 7: OCR Experimental Results

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

103

University of Windsor

Love Hint, Hate Him
Presi dent
There is an axiom in
American p o lit ic s th a t
says whenever a s itt in g
President is running
for a second term, the
election is more a
referendum on him than
a judgment on his
opponent*

P re s id e n t George W. Bush has* taken t h is
tru is m to a new le v e l . W ith ju s t under
a year t o go b e fo re llov" 2, 2004,
Americans a re a lre a d y f in d in g ways to
show how p a s s io n a te ly th e y fe e l about
t h e i r p re s id e n t.

Figure 7.9: OCR Results for Figure 7.7 Using Proposed OCR System.

The results shown in Figure 7.9, produced by the proposed system show better

recognition than the commercial OCR software. Page segmentation performed

better, eliminating almost all the background except for small noise that is

recognized as (').

Chapter 7: OCR Experimental Results

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

104

University of Windsor

In early 2003,
Californians
pointed fingers
as their state
struggled with a
$38 billion
budget deficit
and a continuing
energy crisis. ;
Republicans set
their sights on

Democratic Gov. Gray Davis, attempting to
make him the second governor in U.S.
history to be recalled, On October 7, the
majority of voters decided to oust Davis,
then chose a successor from among 135
candidates. One of Hollywoods own took
Davis place bodybuilder-turned-actor
Republican Arnold Schwarzenegger.

Figure 7.10: Composite Document Image with Non-Unifonn Background.

Chapter 7: OCR Experimental Results

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

105

University o f Windsor

in early 2 0 m
Call formans
pen nted f-imge rs
as tfteir state
struggled with a!:
$38 billion
budget deficit
and a continuing
energy crisis. A
Re'YIl 1 cans set
their sights on
l l l f e ^ j i f f
lijB|

Democratic Gov. Gray Davis, attempting to
make him the second governor in U.S.
history to be recalled. On October 7, the
majority of voters decided to oust Davis,
then chose a successor from among 135
candfi dates. One o f Hellywoods owtftgok
DavRiace bodybuvlder-tumed-aiaA'
Repubft4can Arnold Schwarzenegger. ^

Figure 7.11: OCR Results for Figure 7.10 Using ABBYY OCR Software.

Chapter 7: OCR Experimental Results

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

106

University of Windsor

In e a r ly 2003,
Califbrnians
p o in te d f in g e rs
as t h e i r s ta te
s tru g g le d with a
S3S B i l l io n
budget d e fic it
and a co n tin u in g
energy crisis.
Republicans se t
t h e i r s ig h ts on
Democratic Gov. Gray Davis, attempting to
wake hiib th e second governor in U.S.
h is to ry to be re c a lle d , on October 7, the
m a jo r ity o f vo te rs decided to o u s t Davis,
then chose a successor from among 135
cand ida tes . One o f Hollywoods own took
Davis p lace b o d y b u ild e r- tu rn e d -a c .to r
Republican A rnold Schwarzenegger.

Figure 7.12: OCR Results for Figure 7.10 Using Proposed OCR System.

The ABBYY results in Figure 7.11 shows that the page segmentation was not

performed successfully since some parts of the background were recognized as

text or image. On the other hand, in Figure 7.12 the page segmentation stage of

the proposed OCR system produced correct separation of text and images from

background. The proposed OCR method produced better results compared to

the ABBYY OCR even though misclassifications were noticed in the proposed

method they were less than the characters misclassified by ABBYY. Introducing

a post processing stage could eliminate such recognition errors. The proposed

Chapter 7: OCR Experimental Results

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

107

University of Windsor

system produced an overall character recognition rate of over 98% when tested

on 30 images containing about 14600 characters with one font only. On the

other hand, when the same images were tested using the ABBYY FineReader

OCR the system produced a character recognition rate of about 96%. This

recognition rate does not include the errors of misclassifying regions from the

background as foreground, which can be seen from Figures 7.8 and 7.11.

7.4 Summary

In this chapter, the proposed document analysis system was tested on composite

document images with complex background and the results were compared with

the ABBYY OCR software. From the results, the proposed system outperformed

the commercial system producing higher recognition rate with correct page

segmentation where all the background was eliminated leaving only text and

images. The overall character recognition rate was over 98% for document

images scanned at 200dpi or better compared to the ABBYY software which

uses a resolution between 300 and 600 dpi to read text from scanned

documents.

Accompanied with this dissertation a CD containing the following program

packages for the training program, document analysis and other thresholding

techniques program (compares the thresholding results of Otsu’s, Niblack’s and

the proposed method). The programs are packaged and the user needs to run

setup.exe to launch each program. Some of the images used in this project are

also provided in the following folders: P rojectjm ages and

Lucida_Console_lmages.

Chapter 7: OCR Experimental Results

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

108

Chapter 8
Conclusions and Contributions

8.1 Conclusions

In this dissertation a new local thresholding method using MLP NN

was developed for composite document images with complex

background. This method works on a wide variety of backgrounds

and is not application specific. This work evolved due to the lack of

OCR systems that can work effectively on documents with non-

uniform backgrounds and patterns *. An apparent application would

be security documents and security forms. Security documents can

become very complex with elaborate backgrounds, such as the

maple leaf in the Canadian passport, and text extraction is needed

to process information from such images.

The use of statistical and textural features was the key point in

producing this unique technique by utilizing MLP NN. These

features provide sufficient information for each pixel with respect to

its neighbors that enables the NN to classify each pixel into its

proper class. The thresholding stage is the most important stage in

document analysis for document images with complex background

and its correctness is a must for future processing in subsequent

stages of document analysis. The result of preprocessing is a

binary image that is easy to process in subsequent stages.

* In all fairness we have not tested all OCR packages.

Chapter 8: Conclusions and Contributions

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

109

University of Windsor

The thresholded image is needed in the page segmentation stage where the text

is extracted from document images to be used in the character recognition stage.

The segmentation stage uses features extracted from blocks produced by the

RLSA. These features are then passed into a NN classifier, which determines on

the class of each block. Following the page segmentation, character recognition

is applied to the text blocks produced from composite documents with complex

backgrounds. This document analysis system was used on images with complex

backgrounds scanned at 200dpi containing text of Lucida Console font produced

results that are similar or even better than those obtained from a commercial

OCR software.

This local NN thresholding scheme was used in cheque processing to read the

special numerals found in barcodes of bank cheques. A 100% recognition rate

for the special numerals was obtained as long as no rotation is introduced during

the scanning process. For composite documents with complex backgrounds the

thresholding technique using NN produced outstanding results compared to other

global and local thresholding methods making it a very good candidate for

preprocessing.

8.2 Contributions

A new local thresholding technique was developed based on MLP NN classifier

using statistical textural features to separate background from foreground in

composite documents with complex background. This new method outperformed

other local and global thresholding methods and it is not application specific.

A neural based block classification technique was developed to segment

contents of composite documents. Using the RLSA, blocks of text and images

were produced and features were extracted from these blocks to be used as

inputs to the MLP NN which was used to classify each block into its proper class.

Chapter 8: Conclusions and Contributions

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

HO

University o f Windsor

Fuzzy descriptive features were used for processing barcodes in cheques with

resolutions of less than 300 dpi with high recognition rate.

A document analysis system was designed that uses the new local NN

thresholding technique, Neural based block classification and an OCR system to

convert the text images into ASCII format which can be edited while saving the

images into a bitmap file. The OCR system used pixel distribution as features

from different zones of the character to provide a feature vector that was

compared to a prototype feature vector using a correlation classifier. This

method produced better results than the ABBYY OCR commercial software with

a recognition rate of over 98% for one font size.

Chapter 8: Conclusions and Contributions

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

I l l

References

[1] 0. D Trier and A. K. Jain, “Goal-Directed Evaluation of Binarization
Methods,” IEEE Trans. On Pattern Recognition and Machine Intelligence,
Vol. 17, no. 12, pp. 1191-1201, 1995.

[2] W. Niblack, “An Introduction to Digital Image Processing.” Prentice Hall,
Englewood Cliffs, N. J., pp. 115-116, 1986.

[3] P.K. Sahoo, S. Soltani, A.K.C Wong, “A Survey of Thresholding
Techniques.” Computer Vision Graphics Image Processing, Vol. 41, pp.
233-260. 1988.

[4] N. Otsu, “A Threshold Selection Method From Gray Level Histograms”
IEEE Trans, on Systems, Man and Cybernetics, SMC-9, pp 62-66, 1979

[5] S. Hinds, J. Fisher and D. D’amoto, “A Document Skew Detection Method
using Run Length Encoding and Hough Transform”, Proc. IEEE 10th
International Conf. on Pattern Recognition,” pp. 464-468, 1990.

[6] http://www.wikipedia.org/wiki/Qptical character recognition

[7] R. P. Lippmann, “An Introduction to Computing with Neural Networks,”
IEEE ASSP Magazine, Vol. 4, No 2, pp. 4-20, 1987.

[8] D.E. Rumelhart, J.L. McClelland (Eds.), ’’Parallel Distributed Processing”
Vol. 1, MIT Press, Cambridge, MA, pp. 318-362, 1986.

[9] Hopfield, J. J.” Neural Network and Physical Systems with Collective
Computational Abilities.” In Proceedings of the National Academy of
Science, USA, 79(4), pp. 2554-2558, 1982.

[10] G. A. Carpenter and S. Grossberg, "A Massively Parallel Architecture for a
Self Organizing Neural Pattern Recognition Machine”, Computer Vision,
Graphics and Image Processing, Academic Press, Inc., 1987.

[11] D. S. Broom head and D. Loewe. “Multivariate Functional Interpolation and
Adaptive Networks.” Complex Systems, 2: pp. 321-355, 1988.

References 112

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://www.wikipedia.org/wiki/Qptical

University of Windsor

[12] T. Kohonen, “Self-Organization and Associative Memory,” Springer-
Verilag, Berlin, 1984.

[13] M. A. Sid-Ahmed, “Image Processing: Theory, Algorithms, and
Architectures’’, McGraw-Hill, pp. 313-375, 1995.

[14] Osama Abdel-Wahhab Ahmed, “ Application of Artificial Neural Networks
to Optical Character Recognition,” MASc. Thesis, King Fahd University of
Petroleum and Minerals, Saudi Arabia, 1994.

[15] S. T. Bow, “Pattern Recognition and Image Processing,” 2nd Edition,
Marcel Dekker, Inc. New York, pp. 201-219, 2002.

[16] T. W. Ridler and S. Calvard, “Picture Thresholding Using an Iterative
Threshold Selection Method,” IEEE Trans. SMC -8, pp. 630-632, 1978.

[17] S. S. Reddi, S. F. Ruddin and H. R. Keshawan, “An Optimal Multiple
Threshold Scheme for Image Segmentation,” IEEE Trans. SMC-14, pp.
661-665, 1984.

[18] M. A. Sid-Ahmed, “A Hardware Structure for the Automatic Selection of
Multi level Thresholds in Digital Images.” Pattern Recognition, Vol. 25,
No. 12, pp. 1517-1528, 1992.

[19] P. Rosin, “Unimodal Thresholding,” Pattern Recognition, Vol. 34, No. 11,
pp. 2083-2096, 2001.

[20] W. Tsai, “Moment-Preserving Thresholding,” Computer Graphics Image
Processing, Vol. 29, pp. 377-393, 1985.

[21] J. Parker, “Algorithms for Image Processing and Computer Vision," John
Wiley & Sons, 1996.

[22] J. N. Kapur, P. K. Sahoo, A. K. C. Wong, “A New Method for Grey-Level
Picture Thresholding Using the Entropy of the Histogram,” Graphical
Models and Image Processing, Vol. 29, pp. 273-285, 1985.

[23] A. S. Abutaleb, “Automatic Thresholding of Gray-Level Pictures Using
Two-Dimentional Entropy,” Computer Vision Graphics and Image
Processing, Vol. 47, pp. 22-32, 1989.

[24] Y. Solihan and C. G. Leedham, “Integral Ratio: A New Class of Global
Thresholding Techniques for Handwriting Images,” IEEE Trans. On
Pattern Analysis and Machine Intelligence,” Vol. 21, No. 8, pp. 761-768,
1999.

References 113

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

University of Windsor

[25] G. Leedham, S. Varma, A. Patankar and V. Govindaraju, “ Separating Text
and Background in Degraded Document Images - A Comparison of
Global Thresholding Techniques for Multi-Stage T h resho ld ingProc. 8th
Int. Workshop on Frontiers in Handwriting Recognition, pp. 244-249.
2002.

[26] P. L. Rosin and E. loannidis, “Evaluation of Global Image Thresholding for
Change Detection,” Pattern Recognition Letters, Vol. 24, pp. 2345-2356,
2003.

[27] S. Fischer, “Digital Image Processing: Skewing and Thresholding,” Master
of Science thesis, University of New South Wales, Sydney, Australia,
2000.

[28] J. Bernsen, “Dynamic Thresholding o f Grey-Level Images,” Proc. 8th Int.
Conf. On Pattern Recognition, pp. 1251-1255, Paris, 1986.

[29] C. K. Chow and T. Kaneko, “Automatic Detection o f the Left Ventricle from
Cineangiograms,” Computers and Biomedical Research, Vol. 5, pp. 388-
410, 1972.

[30] Y. Nakagawa and A. Rosenfeld, “Some Experiments on Variable
Thresholding,” Pattern Recognition, Vol. 11, No. 3, pp. 191-204, 1979.

[31] Z. Zhang and C. L. Tan, “Restoration of Images Scanned from Thick
Bound Documents,” Proc. Int. Conf. On Image Processing., Vol. 1, pp.
1074-1077, 2001.

[32] J. Sauvola, and M. Pietaksinen, “ Adaptive Document Image Binarization,”
Pattern Recognition, Vol. 33, pp.225-236, 1999.

[33] H. Goto and H. Aso, “Character Pattern Extraction from Documents,”
International Journal on Documents Analysis and Recognition. Vol. 4, pp.
258-268, 2002.

[34] S. D. Yanowitz and A. M. Bruckstein, “A New Method for Image
Segmentation,” Computer Vision, Graphics and Image Processing, Vol.
46, No. 1, pp. 82-95, 1989.

[35] J. M. White and G. D. Rohrer, “Image Thresholding for Optical Character
Recognition and Other Applications Requiring Character Image
Extraction,” IBM J. Res. Develop., Vol. 27, No. 4, pp. 400-411, 1983.

[36] S. Liang, M. Ahmadi and M. Shridhar, “A Morphological Approach to Text
String Extraction from Regular Periodic Overlapping Text/Background
Images,” IEEE Int. Conf. On Image Processing, ICIP94, Vol. 1, pp. 144-
148. 1994.

References 114

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

University of Windsor

[37] R. C. Gonzalez, and R. E. Woods, Digital Image Processing, Prentice-Hall,
New Jersey, pp. 554-555, pp. 595-602, 2002.

[38] Y. Yand and H. Yan, “An Adaptive Logical Method for Binarization of
Degraded Document Images,” Pattern Recognition, Vol. 33, pp. 787-807,
2000 .

[39] F. P. Kuhl and C. R. Giardina, “Elliptic Fourier Features o f a Closed
Contour,” Computer Vision, Graphics and Image Processing, Vol. 18, pp.
236-258. 1982.

[40] R. O. Duda and P. E. hart, “Pattern Recognition and Scene Analysis,”
John Wiley & Sons: New York, 1973.

[41] B. Sankur and M. Sezgin, "A Survey Over Image Thresholding Techniques
and Quantitative Performance Evaluation,” Journal of Electronic Imaging
(accepted), 2003.

[42] R. Koker and Y. Sari, “Neural Network Based Automatic Threshold
Selection For an Industrial Vision System," Proc. Int. Conf. On Signal
Processing, pp. 523-525. 2003.

[43] N. Papamarkos, “A Technique for Fuzzy Document Binarization,” Procs.
Of the ACM Symposium on Document Engineering, pp. 152-156, 2001.

[44] Dawoud, A. and Kamel, M., "A/? Iterative Model-Based Binarization
Algorithm for Cheque Images", International Journal of Document Analysis
and Recognition (IJDAR), Vol. 11, pp. 28-38, 2002.

[45] H. D. Cheng, Mei Xue, X. J. Shi, “ Contrast Enhancement Based on a
Novel Homogeneity Measurements”, Pattern Recognition 36, pp. 2687-
2697, 2003.

[46] Y. Y. Tang, S.W Lee and C. Y. Suen, “Automatic Document Processing: A
Survey,” Pattern Recognition, Vol. 29, No. 12, pp. 1931-1952. 1996.

[47] L. O’Gorman, “The Document Spectrum for Page Layout Analysis,” IEEE
Trans. Pattern Analysis and Machine Intelligence, Vol. 15, pp. 1162-1173,
1993.

[48] F. Wahl, K. Wong and R. Casey, “Block Segmentation and Text Extraction
in Mixed Text/Image Documents,” Computer Vision, Graphics and Image
Processing, Vol. 20, pp. 375-390, 1982.

[49] H. Wang, S. Z. Li and S. Ragupathi, “Document Segmentation and
Classification with Top-Down Approach," First Int. Conf. On Knowledge-
Based Intelligence Electronic Systems, pp. 243-247, 1997.

References 115

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

University o f Windsor

[50] A. K. Jain and B. Yu, “Document Representation and its Application to
Page Decomposition,” IEEE Trans. On Pattern Analysis and Machine
Intelligence, Vol. 29, No. 3, 1998.

[51] S. Nagy and S. Stoddard, “Document Analysis with an Expert System,”
Pattern Recognition in Practice II, pp. 149-155. 1986.

[52] D. Drivas and A. Amin, “Page Segmentation and Classification Utilizing
Bottom-Up Approach," Proceedings of the 3rd Int. Conf. On Document
Analysis and Recognition. Vol. 2, pp. 610-614, 1995.

[53] T. Pavlidis and J. Zhou, “Page Segmentation and Classification,”
Graphical Models and Image Processing. Vol. 53, pp. 484-496, 1992.

[54] B. Kruatrachue and P. Suthaphan, “A Fast and Efficient Method for
Document Segmentation for OCR,” TENCON, Proceedings of IEEE region
10 Int. Conf. On Electrical and Electronic Technology, Vol. 1, pp. 381-383,
2001.

[55] S. Mao, A. Rosenfeld and T. Kanungo, “Document Structure Analysis
Algorithms: A Literature Survey,” Proc. SPIE Electronic Imaging, pp. 197-
207, 2003.

[56] A. Rosenfeld and A. C. Kak, “Digital Picture Processing,” Academic Press,
New York, pp. 347-348, 1976.

[57] Y. Alginahi, D. Fekri and M.A. Sid-Ahmed, “A Neural Based Page
Segmentation System” Journal of Circuits, Systems and Computers,
(Accepted for publication).

[58] Y. Lin, “Document Analysis Using Image Processing Techniques,” M. A.
Sc Thresis, University of Windsor, 2003.

[59] J. Mantas, “An Overview of Chracter Recogniction Methodologies, “
Pattern Recognition, Vol. 24, No. 6, pp. 425-430, 1986.

[60] N. Arica and F. T. Yarman-Vural, “An Overview of Character Recognition
Focused on Off_Line Handwriting,” IEEE Trans. On Systems, Man, and
Cybernetics- Part C: Applications and Areviews, Vol. 31, No. 2, pp. 216-
233, 2001.

[61] Trier, Jain and Taxt, “Feature Extraction Methods for Character
Recognition-A Survey” , Pattern Recognition, Vol. 29, No. 4, pp 641-662.

[62] R. G. Casey and E. Lecolinet, “A Survey of Methods and Strategies in
Character Segmentation,” IEEE Transactions On Pattern Analysis and
Machine Intelligence, Vol. 18, No. 7, pp. 690-706, 1996.

References 116

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

University o f Windsor

[63] M. Tellache, M. A. Sid-Ahmed, B. Abaza, “Thinning algorithms for Arabic
OCR,” IEEE Pacific Rim Conference on Communications, Computers and
Signal Processing, Vol. 1, pp. 2 4 8 -2 5 1 , 1993.

[64] X. Zhu, Y. Shi, and S. Wang, “A New Algorithm of Connected Character
Image Based on Fourier Transform,” 5th Int. Conf. On Document Analysis
Recognition, India, pp 788-791, 1999.

[65] J. Zhang, X. Chen, A. Hanneman, J. Yang and A. Waibel. “A robust
approach for recognition of text embedded in natural scenes,”
Proceedings. Of the 16th International Conference on Pattern Recognition.
Vol. 3, pp. 2 0 4 -2 0 7 , 2002.

[66] M. D. Garris, J. L. Blue, G. T. Candela, P. J. Grother, S. A. Janet, C. L.
Wilson, "NIST Form-Based Handprint Recognition System (Release 2.0),"
Technical Report NISTIR 5959 [565K], January 1997.

[67] J. S. Huang, M. L. Chung, “Separating Similar Complex Chinese
Characters By Walsh Transform,” Pattern Recognition, Vol. 20, No. 4, pp.
425-428. 1987.

[68] M. Sarfraz, S. N. Nawaz and A. Al-Khuraidly, “Offline Arabic text
recognition system,” Proceedings, of Int. Conf. On Geometric Modeling
and Graphics, pp. 30-35, 2003.

[69] Y. Y. Tang, B. F. Li, H. Ma, J. Liu, C. H. Leung, and C. Y. Suen, “A novel
approach to optical character recognition based on ring-projection-
wavelet-fractal signatures,” Proceedings of the 13th Int. Conf. On Pattern
Recognition, Vol. 2, pp. 325-329, 1996.

[70] M. Goccia, M. Bruzzo, C. Scagliola and S. Dellepiane, “Recognition of
Container Code Characters Through Gray-Level Feature Extraction and
Gradient Based Classifier Optimization,” Proceedings of the 7th Int. Conf.
On Document Analysis and Recognition ICDAR03, pp. 973-977, 2003.

[71] H.A. Almohamad, “A pattern recognition algorithm based on the rapid
transform,” Proceedings of Computer Society Conference on Computer
Vision and Pattern Recognition, pp. 4 4 5 -4 4 9 , 1988.

[72] H. Freeman, “Computer Processing of Line-Drawing Image,” Computer
Surveys, Vol. 6, No. 1, pp. 57-97, March 1974.

[73] M. Gilloux, D. Guillevic, and C. Suen, “HMM-KNN word recognition engine
for bank cheque processing,” Proceedings of 14th Int. Conf. on Pattern
Recognition, pp. 1526-1529, 1998.

References 117

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

University o f Windsor

[74] Bakis, R, Herbst, N.M. and G. Nagy, “An Experiment Study of Machine
Recognition of Handprinted Numerals,” IEEE Transactions on System.
Science and Cybernet 4, pp. 119-132, 1968.

[75] X. Li, W. Oh, J. Hong and W. Gao, “Recognizing Components of
Handwritten Characters by Attributed Regional Graphs and Stable
Features,” Proceedings of 4th Int. Conf. On Document Analysis, pp. 616-
620, 1997.

[76] Y. Tao and Y. Y. Tang, “The Feature Extraction o f Chinese Character
Based on Contour Information,” Proceedings of 5th Int. Conf. on document
Analysis and Recognition,” pp. 637-640. 1999.

[77] N. Arica and F. T. Yarman-Vural, “One Dimensional Representation of
Two Dimensional Information for HMM Based Handwritten Recognition,"
Pattern Recognition Letters, Vol. 21, No. 6-7. pp 582-592, 2000.

[78] N. Arica and F. Yarman-Vural, “An Overview o f Character Recognition
Focused on Off-Line Handwritting,” IEEE Transactions On Systems, Man,
and Cybernetics - Part C. Vol. 31, No. 2, 2001.

[79] P. D. Gader et al., “Recognition of Handwritten Digits Using Template and
Model Matching,” Pattern Recognition., Vol. 24, No. 5, pp. 421.-431, 1991.

[80] K. E. Price, “Relaxation Matching Techniques Comparison,” IEEE Trans.
Pattern Analysis and Machine Intelligence., Vol. 7, pp. 617-623, 1985.

[81] T. Pavlidis. “Algorithms for Graphics and Image Processing,” Computer
Science Press, 1982.

[82] A. Nouh, A. Ula and S. EIDin. “Algorithms for Feature Extraction: A Case
Study for the Arabic Character Recognition.” The 10th National Computer
Conference, King Abdul Aziz University, pp. 653-666. 1988.

[83] L. Rabiner and B. Juang. “Fundamentals of Speech Recognition.”
Prentice Hall, 1993.

[84] F. Kimura, T. Wakabayashi, S. Tsuruoka and Y. Miyake, “Improvement of
Handwritten Japanese Character Recognition Using Weighted Direction
Code Histogram," Pattern Recognition. Vol. 30, No. 8, pp. 1329-1337.
1997.

[85] J. K. Hang, K. K. Sang, H. K. Kyung and K. L. Jong, “An HMM-Based
Character Recognition Network Using Level Building,” Vol. 30. No. 3, pp.
491-502, 1997.

References 118

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

University o f Windsor

[86] M. Dehghan, Karim Faez, M. Ahmadi and M. Shridhar, “Unconstrained
Farsi Handwritten Word Recognition Using Fuzzy Vector Quantization and
Hidden Markov Models,” Pattern Recognition Letters 22(2), pp. 209-214,
2001.

[87] T. Pavlidis, “Recognition o f Printed Text Under Realistic Condition,”
Pattern Recognition Letters, Vol. 14, No. 4, pp. 317-326, 1993.

[88] A. Amin. “Recognition of Printed Arabic Text Using Machine Learning,”
Proceedings of the International Society for Optical Engineers, SPIE,
3305, pp. 63-70, 1998.

[89] J. Cao, M. Ahmadi and M. Shridhar, “Character Recognition Using Neural
Based Feature Extractor and Classifier,” International Symposium on
Circuits and Systems, ISCAS’93, pp 2442-2445, 1993.

[90] H.K. Kwan and Y.Cai, “A Fuzzy Neural Network and its Applications to
Pattern Recognition,” IEEE Trans. On Fuzzy Systems, Vol.2. No.3, pp.
185-193, August 1994.

[91] B.H. Le, T.H.Le and K. Hoang, “A Fuzzy Neural Network for Vietnamese
Character Recognition,” Proceedings of the International Conference on
Image Processing (ICIP 99), Vol. 1, pp. 585-89, 1999.

[92] J. Cao, “Handwritten Numeral Recognition With Neural Networks and
Fuzzy Fusion,” Ph.D. Dissertation, University of Windsor, Ontario, 1995.

[93] J. Lee, O. Kwon and S. Bang, “Highly Accurate Recognition of Printed
Korean Characters Through an Improved Two-Stage Classification
Method,” Pattern Recognition Vol. 32. pp. 1935-1945, 1999.

[94] L.Q. Zhang, and C.Y. Suen, “Recognition of courtesy amounts on bank
checks based on a segmentation approach” Proceedings of the 8th
International Workshop on Frontiers in Handwriting Recognition, pp. 298 -
302, Aug. 2002,.

[95] F. Chin, and F. Wu, “A Microprocessor-Based Optical Character
Recognition Check Reader,” Proceedings of the 3rd international conf on
Document Analysis and Recognition, Vol. 2, pp. 14-16, Aug. 1995.

[96] http://www.bizfonts.com/MICRFonts/

[97] Y.C. Chim, A.A Kassim, and Y. Ibrahim, “Character Recognition Using
Statistical moments,” Image and Vision Computing, Vol. 17, Issue. 3-4, pp.
299-307, March 1999.

[98] http://www.abbyy.com/finereader7/

References 119

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://www.bizfonts.com/MICRFonts/
http://www.abbyy.com/finereader7/

University o f Windsor

[99] http://eastlvmeschools.org/elhs/HSFacultv/vikinasaaa/documents/EDITION8.pdf

[100] http://www.cnn.com

[101] http://www.time.com/time/archive/preview/from covers/0.10987.1101031201
548789.00.html

[102] http://www.cbc.ca/cgi-bin/templates/print.cgi7/2003/12/28/iran sun031228

[103 http://www.cbc.ca/stories/2004/06/21/election/martin health040621

[104] http://archives.cbc.ca/IDD-l-73-1062/politics economy/jeanchretien/

[105] http://www.statsoft.com/textbook/stneunet.html

References

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

120

http://eastlvmeschools.org/elhs/HSFacultv/vikinasaaa/documents/EDITION8.pdf
http://www.cnn.com
http://www.time.com/time/archive/preview/from
http://www.cbc.ca/cgi-bin/templates/print.cgi7/2003/12/28/iran
http://www.cbc.ca/stories/2004/06/21/election/martin
http://archives.cbc.ca/IDD-l-73-1062/politics
http://www.statsoft.com/textbook/stneunet.html

Appendix A
Source Code for Data Collection Program

//-------------------------------- DataCollection.cpp---
/* The data collection program written in Borland C++ builder, calculates the

features from the neighbourhood of each pixel and saves the feature vectors in
a file to be used during the training process. In this program eight features
were used and different feature vector files were created for different window
sizes. The window sizes used are 3, 5 ,7 and 9 and different number of feature
vectors were calculated with different windows sizes to test for the effect of
increasing the window size and using different features */

/ / --
#include <vcl.h>
#pragma hdrstop
#include <stdio.h>
#include <math.h>
#include "DataCollection.h"
//--
#pragma package(smart_init)
#pragma resource "*.dfm"
TForml *Form1;
//--
 fastcall TForml ::TForm1 (TComponent* Owner)

: TForm(Owner)
{
}
/ / --
Graphics::TBitmap *0_Bitmap=new Graphics::TBitmap;
Graphics::TBitmap *DestBitmap=new Graphics:TBitmap;

float* data; // input data buffer
int StartX, StartY; // The X and Y coordinates for the pixel on hand
int output; // Output value of the centered pixel
int i, j, count1=0, count2=0; // variables
int Window =0; // Window size
int halfwin=0; // number of pixels on each side of center pixel
float mean; // mean

Appendix A 121

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

University of Windsor

float var;
float sdev;
float skew;
float curt;
float PointPixel;
float entropy=0;
float smoothness=0;
float uniformity=0;

// variance
// standard deviation
// skewness

// kurtosis
// center pixel of window
// entropy
// smoothness.
// uniformity.

float s=0,ep=0.0,p=0,pp=0,sum=0;// intermediate variables

II---

// Function to Load the original bitmap from file.
vo id fastcall TForml::Loadlmage()
{

String Str;
OpenPictureDialogl ->Execute();
Str = OpenPictureDialogl ->FileName;
if(Str!="")

0_Bitmap->LoadFromFile(Str);

lmage1-> Height = 0_Bitmap->Height;
lmage1-> Width = 0_Bitmap->Width;
lmage1->Picture->Assign(0_Bitmap);

}
//--
vo id fastcall TForml ::lmage1MouseDown(TObject *Sender,

TMouseButton Button, TShiftState Shift, int X, int Y)
{

//This specifies the coordinates of the center pixel of the window
StartX = X;
StartY = Y;
Edit1->Text = StartX;
Edit2->Text = StartY;

}

vo id fastcall TForml::forgroundClick(TObject *Sender)
{

II If the Pixel corresponds to foreground then set output to 0
// Specify different windows in order to collect data for different size
// Windows and different number of features

output = 0;
Window = 3;
halfwin = 1;
Features(3, 1);

Appendix A 122

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

University of Windsor

Window = 5;
halfwin = 2;
Features(5 , 2);

Window = 7;
halfwin =3;
Features(7 , 3);

Window = 9;
halfwin =4;
Features(9 , 4);

}
//--
vo id fastcall TForml ::BackgroundClick(TObject *Sender)
{

// If the Pixel corresponds to background then set output to 1
// Specify different windows in order to collect data for different size
// Windows and different number of features

output = 1;
Window = 3;
halfwin = 1;
Features(3 , 1);

Window = 5;
halfwin = 2;
Features(5 , 2);

Window = 7;
halfwin =3;
Features(7 , 3);

Window = 9;
halfwin =4;
Features(9 , 4);

}
//--
// Function to calculate different features from the neighbourhood or centered
// pixel and at the same time display the features in the string grid
vo id fastcall TForml ::Features(int WindowSize, int d)
{

int n = WindowSize * WindowSize;

s=0,ep=0.0,p=0.0,mean=0.0,var=0.0, sdev=0.0, skew=0.0, curt=0.0;
entropy=0;
pp=0;

Appendix A 123

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

University of Windsor

sum=0;
smoothness=0;
uniform ity=0;
countl =0, count2=0;

StartX = StartX;
StartY = StartY;

PointPixel = data[StartY+(StartX*lmage1->Height)];

for(i=StartX-halfwin; i<=StartX+halfwin; i++)
{

count2=0;
for(j=StartY-halfwin; j<=StartY+halfwin; j++)
{

data[j+(i*lmage1 ->Height)]=data[j+(i*lmage1 ->Height)];
StringGrid1->Cells[count1][count2] = \
(int)(dataO+(i*lmage1->Height)]*255.0);
count2++;

}
coun tl++;

}
for(i=StartX-halfwin; i<=StartX+halfwin; i++)
for(j=StartY-halfwin; j<=StartY+halfwin; j++)
{

sum+=data[j+(i*lmage1 ->Height)];
s+=data0+(i*lmage1 ->Height)];

}
var=skew=curt=0.0;
mean =s/(float)n;
for(i=StartX-halfwin; i<=StartX+halfwin; i++)
for(j=StartY-halfwin; j<=StartY+halfwin; j++)
{

s=dataO+(i*lmage1->Height)]-mean;
ep=ep+s;
var+=(p=s*s);
skew+=(p*=s);
curt+=(p*=s);

}
var=(var-ep*ep/n)/(n-1);
sdev=sqrt(fabs(var));
for(i=StartX-halfwin; i<=StartX+halfwin; i++)
for(j=StartY-halfwin; j<=StartY+halfwin; j++)
{

if(data0+(i*lmage1 ->Height)])
{

Appendix A 124

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

University of Windsor

pp=(dataO+(i*lmage1->Height)])/sum;
entropy -= pp*log(pp);

}

}
entropy = entropy/(-log(1.0/n));
for(i=StartX-halfwin; i<=StartX+halfwin; i++)
for(j=StartY-halfwin; j<=StartY+halfwin; j++)
{

pp=(dataO+(i*lmage1->Height)]-mean);
uniform ity+=(pp*pp);

}
uniform ity=uniformity/n;
smoothness = 1-(1/(1+(var)));
if(var)
{

skew/=(n*(var)*(sdev));
curt=(curt)/(n*sdev);

}
else
{

skew=0.0;
curt=0.0;

}
StringGrid2->Cells[0][0] = PointPixel;
StringGrid2->Cells[0][1]= mean;
StringGrid2->Cells[0][2]= sdev;
StringGrid2->Cells[0][3]= var;
StringGrid2->Cells[0][4]= entropy;
StringGrid2->Cells[0][5]= skew;
StringGrid2->Cells[0][6]= curt;
StringGrid2->Cells[0][7]= smoothness;
StringGrid2->Cells[0][8]= uniformity;
StringGrid2->Cells[0][9]= output;

}
//---
// Function to save features for different window sizes 3, 5, 7 and 9
vo id fastcall TForml ::SaveFeatures()
{

FILE *file1;
FILE *file2;
FILE *file3;
FILE *file4;
FILE *file5;
if (Window == 3)
{

Appendix A 125

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

University o f Windsor

file1=fopen("Train3x3_3std.txt","a");
file2=fopen("Train3x3_3var.txt","a");
file3=fopen("Train3x3_8.txt","a");
file4=fopen("Train3x3_6.txt","a");

}
else if (Window == 5)
{

file1=fopen("Train5x5_3std.txt","a");
file2=fopen("Train5x5_3var.txt","a");
file3=fopen("Train5x5_8.txt","a");
file4=fopen("Train5x5_6.txt","a");

}
else if (Window == 7)
{

file l =fopen("T rain7x7_3std.txt","a");
file2=fopen("Train7x7_3var.txt","a");
file3=fopen("Train7x7_8.txt"1"a");
file4=fopen("Train7x7_6.txt","a");

}
else if (Window == 9)
{

file1=fopen("Train9x9_3std.txt","a");
file2=fopen("Train9x9_3var.txt","a");
file3=fopen("Train9x9_8.txt","a");
file4=fopen("Train9x9_6.txt","a");

}
fprintf (f ile l, "%f %f %f %i",PointPixel, mean, sdev, output);
fprintf (file2, "%f %f %f %i",PointPixel, mean, var, output);
fprintf (file3, "%f %f %f %f %f %f %f %f %i",PointPixel, mean, \
sdev, entropy, skew, curt, smoothness, uniformity, output);
fprintf (file4, "%f %f %f %f %f %f %i",PointPixel, skew, curt, \
uniformity, smoothness, entropy, output);
fprintf(file1, "\n");
fprintf(file2, "\n");
fprintf(file3, "\n");
fprintf(file4, "\n");
fclose(filel);
fclose(file2);
fclose(file3);
fclose(file4);

}
//--
vo id fastcall TForml ::SaveClick(TObject *Sender)
{

// Here the features are recalculated for different window sizes then
// saved into files to be used for training the NN

Appendix A 126

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

University of Windsor

Window = 3;
halfwin = 1;
Features(3 , 1);
SaveFeatures();

Window = 5;
halfwin = 2;
Features(5, 2);
SaveFeatures();

Window = 7;
halfwin =3;
Features(7 , 3);
SaveFeatures();

Window = 9;
halfwin =4;
Features(9, 4);
SaveFeatures();

}
//--
vo id fastcall TForml ::LoadDocumentClick(TObject ‘ Sender)
{

Loadlmage();
data = new float[lmage1->Fleight * lmage1->Width];
for(i=0; i<lmage1->Width; i++)
for(j=0; j<lmage1->Height; j++)
{

//obtain pixel values of the bitmap and store in buffer
data[j+(i*lmage1->Fleight)]= \

(unsigned char)lmage1 ->Canvas->Pixels[i]0]/255.O;
}

Application ->MessageBox(
"Click on a Point, Choose Background or Forground then Save Features",
"Progress Message",MB_OK);

}
//--
vo id fastcall TForml ::Button1Click(TObject ‘ Sender)
{

Close();
}
//--

vo id fastcall TForml ::lmage1MouseMove(TObject ‘ Sender, TShiftState Shift,

Appendix A 127

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

University of Windsor

int X, int Y)
{

unsigned pix;
Edit1->Text = X;
Edit2->Text = Y;
if(lmage1)

pix=(unsigned char)lmage1 ->Canvas->Pixels[X][Y];
Edit3->Text = pix;

}
//--

Appendix A

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

128

University of Windsor

11-----------------------------------DataCollection.h-----------------------
#ifndef DataCollectionH
#define DataCollectionH
//--
#include <Classes.hpp>
#include <Controls.hpp>
#include <StdCtrls.hpp>
#include <Forms.hpp>
#include <ExtCtrls.hpp>
#include <Dialogs.hpp>
#include <ExtDlgs.hpp>
#include <Grids.hpp>
//--
class TForml : public TForm
{
 published: // IDE-managed Components

Tlmage *lmage1;
TOpenPictureDialog *OpenPictureDialog1;
TEdit *Edit1;
TEdit *Edit2;
TLabel *Label1;
TLabel *Label2;
TButton *forground;
TButton *Background;
TStringGrid *StringGrid1;
TStringGrid *StringGrid2;
TLabel *Label3;
TLabel *Label4;
TLabel *Label5;
TLabel *Label7;
TLabel *Label8;
TLabel *Label9;
TLabel *Label10;
TLabel *Label11;
TLabel *Label12;
TLabel *Label13;
TLabel *Label14;
TLabel *Label15;
TButton *Save;
TLabel *Label6;
TButton *LoadDocument;
TButton *Button1;
TEdit *Edit3;
TLabel *Label16;
vo id fastcall lmage1MouseDown(TObject ‘ Sender,
TMouseButton Button, TShiftState Shift, int X, int Y);

Appendix A 129

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

University of Windsor

vo id fastcall forgroundClick(TObject *Sender);
vo id fastcall BackgroundClick(TObject ‘ Sender);
vo id fastcall SaveClick(TObject ‘ Sender);
vo id fastcall LoadDocumentClick(TObject ‘ Sender);
vo id fastcall Button1Click(TObject ‘ Sender);
vo id fastcall lmage1MouseMove(TObject ‘ Sender, TShiftState Shift,

int X, int Y);

private: // User declarations
public: // User declarations

 fastcall TForml(TComponent* Owner);
vo id fastcall TForml::Loadlmage();
vo id fastcall TForml::Features(int WindowSize, int e);
vo id fastcall TForml::SaveFeatures();

};
//---
extern PACKAGE TForm l *Form1;
//---
#endif

Appendix A

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

130

Appendix B
Source Code for Training MLP Neural Network

j^***

* Program developed by:
* M.A.Sid-Ahmed.
* ver. 1.0 1992.
* Used by permission from Dr. Sid-Ahmed

Reference:
M. A. Sid-Ahmed, "Image Processing: Theory, Algorithms, and Architectures",
McGraw-Hill, pp. 313-375, (1995).

http://web2.uwindsor.ca/courses/engineering/ahmed/lmage%20Proc/image_proc
essing.htm
* j

II program written in c language.
/* Program for training a multi-layer perceptron
using the conjugate gradient method.*/

void conj_grad(float (*)(float *), void (*)(float *, float *,
int), float *, int, float, float, int);

float fun(float *);
void dfun(float *, float *, int);

#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include <conio.h>
#include<time.h>
#include <io.h>

int M,*NL,*NS,L;
int *d;
float *xp,*y,*net,*delta,theta;

void main()

Appendix B 131

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://web2.uwindsor.ca/courses/engineering/ahmed/lmage%20Proc/image_proc

University of Windsor

{
float *w,q,xt;
int i,j,N,xd,ind,Nt;
char file_name[14],file_name2[14],ch;
FILE *fptr,*fptr2;

clrscr();

printf("\nDo you wish to use previously trained weights? (y or n)~>");
while(((ch=getch())!='y')&&(ch!='n'));
putch(ch);
switch(ch)

{
case 'y':

printf("\nEnter file name
scanf("%s",file_name);
fptr=fopen(file_name,"r");

if(fptr==NULL)
{
printf("No such file exists.");
exit(1);
}

fscanf(fptr,"%d ",&L);
NL=(int *)malloc(L*sizeof(int));
NS=(int *)malloc((L-2)*sizeof(int));
for(i=0;i<L;i++)

fscanf(fptr,"%d ",&NL[i]);
NS[0]=NL[0]*NL[1];

for(i=1;i<(L-2);i++)
NS[i]=NS[i-1]+NL[i]*NL[i+1];

N=NS[L-3]+NL[L-2]*NL[L-1]; /* Total # of weights. */
/* Assigning memory for weights. */

w=(float *)malloc(N*sizeof(float));
for(i=0;i<N;i++)

fscanf(fptr,"%f ",&w[i]);

fscanf(fptr,"%f ",&theta);
fclose(fptr);
break;

case 'n':
/* Entering number of layers. */
printf("\nEnter number of hidden layers—>");
scanf("%d",&L);
L+=2; /*adding input and output layers. */
NL=(int *)malloc(L*sizeof(int));

Appendix B 132

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

University of Windsor

NS=(int *)malloc((L-2)*sizeof(int));
printf("Enter number of nodes in input layer-->");
scanf("%d",&NL[0]);

for(i=1;i<=(L-2);i++)
{

printf("Enter number of nodes in hidden layer %d-->",i);
scanf("%d",&NL[i]);

}
printf("Enter number of nodes in output layer->");
scanf("%d",&NL[L-1]);
NS[0]=NL[0]*NL[1];
for(i=1;i<(L-2);i++)

NS[i]=NS[i-1]+NL[i]*NL[i+1];
N=NS[L-3]+NL[L-2]*NL[L-1]; /* Total # of weights. */

/* Assigning memory for weights. */
w=(float*)malloc(N*sizeof(float));

random ize();
for(i=0;i<N;i++)

w[i]=(float)random(N)/(float)N;
theta=0.1;

}
Nt=0;
for(i=1;i<L;i++)

Nt+=NL[i]; /* Total number of neurals. */

got oxy(1,10);
printf("Enter file name for storing trained weights--> ");
scanf("%s",file_name);
ind=access(file_name,0);

while(lind)
{
gotoxy(1,12);
printf("File exists. Wish to overwrite? (y or n)->");
while(((ch=getch())!=y)&&(ch!='n'));
putch(ch);
switch(ch)

{
case 'y':

ind=1;
break;

case n :
gotoxy(1,7);
printf("
gotoxy(1,10);
printf("
gotoxy(1,10);

Appendix B 133

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

University of Windsor

printf("Enter file name
scanf("%s",file_name);
ind=access(file_name,0);

}
}

fptr=fopen(file_name,"w");

/ ‘ Assigning memory to *net, *z, ‘ delta. */
net=(float *)malloc(Nt*sizeof(float));
y=(float *)malloc(Nt*sizeof(float));
delta=(float *)malloc(Nt*sizeof(float));

printf("\nEnter file_name containing training data
scanf("%s",file_name2);
fptr2=fopen(file_name2,"r");
if(fptr2==NULL)
{
prin tfffile %s does not exist. ",file_name);
exit(1);
}

/* Determining the size of the data. */
M=0; ind=1;
while(1)

{
for(i=0;i<NL[0];i++)

{
if((fscanf(fptr2,"%f M,&xt))==EOF) /* input data. */

{ ind=0;
break;
}

}
if(ind==0)

break;

for(i=0;i<NL[L-1];i++) /* desired output. */
fscanf(fptr2,"%d ",&xd);

M++;
}

printf("\n# of data points=%d",M);
rewind(fptr2);

/* Assigning memory to *xp, *d */
xp=(float *)malloc((M‘ NL[0])*sizeof(float));
d=(int *)malloc((M*NL[L-1])*sizeof(int));

/* Reading in the data. */

Appendix B 134

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

University of Windsor

for(i=0; i<M; i++)
{

for(j=0;j<NL[0];j++)
fscanf (f ptr2, "% f", &xp[j *M+i]);

for(j=0;j<NL[L-1];j++)
fscanf(fptr2,"%d ",&dO*M+i]);

}
fclose(fptr2);

/* Call the Fletcher-Reeves conj. grad, algorithm. *1
clrscr();
gotoxy(1,1);
printf("Press ESC to exit and save latest update for weights.");
conj_grad(fun,dfun,w,N,1 .Oe-3,1,0e-3,100000);
fprintf(fptr,"%d ",L);
for(i=0;i<L;i++)

fprintf(fptr,"%d",NL[i]);
for(i=0;i<N;i++)

fprintf(fptr,"%f ",w[i]);
fprintf(fptr,"%f ",theta);
fclose(fptr);
q=fun(w);
printf("\nError=%f',q);
printf("\n File name used to store weights is %s",file_name);
printf("\n File name for the training data is %s",file_name2);
}

extern float *net,*w,‘ delta,*y;
extern int *d;
extern int *NS,*NL;

/* Generating the function. */
float fun(float *w)

{
int i,j,k,m,n,Nt1 ,Nt2;
float q, error, E;

q=0.0;
for(k=0;k<M;k++)

{
for(i=0;i<NL[1];i++) /* From input layer to first */

{ /* hidden layer. */
net[i]=0.0;
for(j=0;j<NL[0];j++)

net[i]+=w[i+j*NL[1]]*xpO*M+k];
net[i]+=theta;

Appendix B 135

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

University of Windsor

E=(float)exp(-(double)net[i]);

y[i]=1.0/(1,0+E);
}

Nt1=NL[1]; Nt2=0;
for(n=2;n<L;n++) /* From layer n-1 to layer n. 7

{
for(i=0;i<NL[n];i++)

{
m=Nt1+i;
net[m]=0.0;
for(j=0;j<NL[n-1];j++)

net[m]+=w[NS[n-2]+i+j*NL[n]]*yO+Nt2];
net[m]+=theta;
E=(float)exp(-(double)net[m]);
y[m]=1.0/(1.0+E);

}
Nt1+=NL[n];
Nt2+=NL[n-1];

}

for(i=0;i<NL[L-1];i++) /* Calculating the error. 7
{
error=d[k+i*M]-y[Nt2+i];
q+=error*error;
}

} /*k-loop*/
q/=2;
return q;
}

extern float *df,*w,*net;
extern *NL,*NL;
#define fd(i) y[i]*(1.0-y[i]) /* Define derivative. 7

void dfun(float *w, float *df, int N)
{
int i,j,k,m,n,Nt1 ,Nt2,Nt3,ii;
float E,error,sum;

/* Initialize derivative vector. 7

for(i=0;i<N;i++)
df[i]=0.0;

/* Start. */

Appendix B 136

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

University of Windsor

for(k=0;k<M;k++)
{

/* Forward propagation. */
for(i=0;i<NL[1];i++) /* From input layer to first 7

{ /* hidden layer. 7
net[i]=0.0;
for(j=0;j<NL[0];j++)

net[i]+=w[i+j*NL[1]]*xpO*M+k];
net[i]+=theta;
E=(float)exp(-(double)net[i]);
y[i]=1.0/(1.0+E);
}

Nt1 =NL[1]; Nt2=0;
for(n=2;n<L;n++) /* From layer n-1 to layer n. 7

{
for(i=0;i<NL[n];i++)

{
m=Nt1+i;
net[m]=0.0;
for(j=0;j<NL[n-1];j++)

net[m]+=w[NS[n-2]+i+j*NL[n]]*yO+Nt2];
net[m]+=theta;
E=(float)exp(-(double)net[m]);
y[m]=1.0/(1.0+E);

}
Nt1+=NL[n];
Nt2+=NL[n-1];

}

Nt1 =0;
for(i=1;i<(L-1);i++)

Nt1+=NL[i];

for(i=0;i<NL[L-1];i++) /* delta's for output layer. 7
{
ii=Nt1+i;
error=d[k+i*M]-y[ii];
delta[ii]=-error*fd(ii);
}

for(m=0;m<(L-2);m++) /* delta's by back propagation. 7
{
Nt2=Nt1 -NL[L-2-m];
for(i=0;i<NL[L-2-m];i++)

{

Appendix B 137

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

University of Windsor

ii=Nt2+i;
sum=0.0;

for(j=0;j<NL[L-1-m];j++)
sum+=delta[Nt1 +j]*w[NS[L-3-m]+j+i*NL[L-1 -m]];

delta[ii]=fd(ii)*sum;
}
Nt1=Nt2;

}

for(i=0;i<NL[1];i++)
for(j=0;j<NL[0];j++)

df[i+j*NL[1]]+=delta[i]*xp[k+j*M];

Nt1=NS[0]; Nt2=0;
Nt3=NL[1];
for(m=1;m<(L-1);m++)

{
for(i=0;i<NL[m+1];i++)

for(j=0;j<NL[m];j++)
df[Nt1 +i+j*NL[m+1]]+=delta[Nt3+i]*y[Nt2+j];

Nt1=NS[m];
Nt2+=NL[m];
Nt3+=NL[m+1];
}

} /*k-loop*/
}

#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include <conio.h>

void conj_grad(float (*)(float *), void (*)(float *, float *,
int), float *, in t , f lo a t, f lo a t, in t);

float f(float, float (*)(float *),float *, float *,
float *, in t);

float fun(float *);

void dfun(float*, float*, int);

Appendix B 138

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

University of Windsor

void bracket(float, f lo a t,
float * float *,float (*)(float *),

float *, float *, float *, in t);

float Brent(float,f lo a t, float (*)(float *),f lo a t,
float *,float *, float *, in t);

/* Conjugate gradient method,
fun: is a subprogram that returns the value
of the function to be minimized. The
arguments are: vector of variables, number
of variables.
dfun: is subprogram that provides the gradients. Arguments:
variables, gradients, number of variables.
x[]: contain the variables. An initial value need to be

supplied.
N: number of variables.
eps1: overall convergence criteria.
eps2: line search convergence criteria,
no jte r: Maximum number of iterations. */

#define ESC 0x1 B

float EPS; /*square-root of machine epsilon. */

void conj_grad(float (*fun)(float *), void (*dfun)(float *, float *,
int), float *x, int N, float eps1, float eps2, int n o jte r)
{
float *df,*dfp,*xt,*S,q,astar,sum,test,sum1 ,sum2;
int i,j,iter;
float a,b,toll;

EPS=1.0;
do

{
EPS/=2.0;
to ll =1,0+EPS;

} while(tol1>1.0);
EPS=(float)sqrt((double)EPS);

df=(float *)malloc(N*sizeof(float));
dfp=(float *)malloc(N*sizeof(float));
S=(float *)malloc(N*sizeof(float));
xt=(float *)malloc(N*sizeof(float));

Appendix B 139

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

University of Windsor

dfun(x,df,N);
for(i=0;i<N;i++)

S[i]=df[i];
gotoxy(1,6);
q=fun(x);
printf(" Initial value of error function=%f",q);

iter=0;

while(iter<no_iter)
{
if(kbhit()!=0)

{
if(getch()==ESC);
return;
}

iter++;

/* test convergence. */
test =0.0;
for(i=0;i<N;i++)

test +=(float)fabs((float)df[i]);
if(test < eps1)

{
printf("\nConvergence by gradient test.");
break;
}

/* If df*S<0.0 restart. */
test=1.0;

for(i=0;i<N;i++)
{

if(df[i]*S[i]>0.0){
test=-1.0;
break;
}

}
if(test<0.0)

{
for(i=0;i<N;i++)

S[i]=df[i);
}

/* Save previous gradient vector.*/
for(i=0;i<N;i++)

dfp[i]=df[i];

Appendix B 140

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

University of Windsor

/* Line Search. */
bracket(0.01,0.001 ,&a,&b,fun,x,xt,S,N);
astar=Brent(a,b,fun,eps2,x,xt,S,N);

/* Adjust variables.*/
for(i=0;i<N;i++)

x[i]-=astar*S[i];

dfun(x,df,N);
sum1=sum2=0.0;

for(i=0;i<N;i++)
{
sum 1 +=dfp[i]*dfp[i];
sum2+=df[i]*df[ij;

}
sum=sum2/sum1;
for(i=0;i<N;i++)

S[i]=sum*S[i]+df[i];

q=fun(x);
gotoxy(1,7);
printf(" Error function=%f at iteration # %-5d",q,iter);

}
printf("\nNumber of iterations = %d \n",iter);
free(S);
free(xt);

}

/* Function evaluation for line search. */
float f(float alpha, float (*fun)(float *),float *x, float *xt,

float *S, int N)
{
int i;
float q;

for(i=0;i<N;i++)
xt[i]=x[i]-alpha*S[i];

q=fun(xt);
return q;
}

/* Function to bracket the minimum of a single
variable function. */

Appendix B 141

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

University of Windsor

void bracket(float ax, float dx,
float *a,float *b,float (*fun)(float *),

float *x, float *xt, float *S, int N)
{
float y1 ,x1 ,x0,y0,x2,y2;
int iter;

xO=ax;
x1 =xO+dx;
yO=f(xO,fun,x,xt,S,N);
y1=f(x1,fun,x,xt,S,N);
if(y1 >=y0)

{
dx=-dx;
x1 =xO+dx;
y1=f(x1,fun,x,xt,S,N);
}

dx=2.0*dx;
x2=x1 +dx;
y2=f(x2,fun,x,xt,S,N);
iter=0;

while(y2<y1)
{
iter++;
dx=2.0*dx;
x0=x1;
y0=y1;
x1=x2;
y1=y2;
x2=x1+dx;
y2=f(x2,fun,x,xt,S,N);
}
*a=xO;
*b=x2;

}

/* Brent's algorithm for obtaining the minimum
of a single variable function. */

#define CGOLD 0.381966

float Brent(float ax,float bx, float (*fun)(float *),float TOL,
float *x,float *xt, float *S, int N)

{

Appendix B 142

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

University of Windsor

float a,b,u,v,w,xx,e,fx,fv,fu,fw,xm,tol1 ,tol2,c,r,q,p;
int iter;
a=ax;
b=bx;
v=a+CGOLD*(b-a);
w=v;
xx=v;
e=0.0;
fx=f(xx,fun,x,xt,S,N);
fv=fx;
fw=fx;
c=0.0;
iter=0;
while(iter<100)

{
iter++;
xm=0.5*(a+b);
tol1=EPS*(float)fabs((double)xx)+TOL/3.0;
tol2=2.0*tol1;

if((float)fabs((double)(xx-xm))<=(tol2-0.5*(b-a)))
{
return xx;
}

if((float)fabs((double)e)>tol1)
{
r=(xx-w)*(fx-fv);
q=(xx-v)*(fx-fw);
p=(xx-v)*q-(xx-w)*r;
q=2.0*(q-r);
if(q>0.0) p=-p;
q=(float)fabs((float)q);
r=e;
e=c;
/* is parabola acceptable. */
if(((float)fabs((double)p)<(float)fabs((double)(0.5*q*r)))||

(p > q*(a-xx))||
(p < q*(b-xx)))
{ / * fit parabola. */
if(q==0.0) q=1.e-10;
c=p/q;
u=xx+c;

/* f must not be evaluated too close to a or b. */
if((((u-a)<tol2))|| ((b-u)<tol2))

c=((xm-xx)>0.0) ? to ll : - to ll;
goto 12;

Appendix B 143

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

University of Windsor

}
else goto 11;

}
else

{ /* A golden section step. 7
11: if(xx>=xm) e=a-xx;

else e=b-xx;
c=CGOLD*e;

}
/* update a,b,v,w, and x. 7

12: if(fabs((double)c)>=tol1) u=xx+c;
else u=xx+((c>0.0)?tol1:-tol1);
fu=f(u,fun,x,xt,S,N);
if(fu<=fx)
{
if(u>=xx) a=xx;
else b=xx;
v=w;
fv=fw;
w=xx;
fw=fx;
xx=u;
fx=fu;
continue;
}

else
{
if(u<xx) a=u;
else b=u;
}

if((fu<=fw)||(w==xx))
{
v=w;
fv=fw;
w=u;
fw=fu;
continue;
}

if((fu<=fv)||(v==xx)||(v==w))
{
v=u;
fv=fu;
}

}
return xx;

Appendix B 144

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Appendix C
Source Code for Document Analysis System

//-- DocumentAnalysis.cpp------------------------------------
/* The following program contains the implementation of the document analysis
system in C++ Borland Builder, it goes through thresholding, skew
detection/correction, smearing, block labelling, classification of image contents,
and OCR. */
//---

II---
#include <vcl.h>
#pragma hdrstop
#include <time.h>
#include "UnitlPS.h"
#include <math.h>
#include <stdio.h>
#include "Unit2PS.h"
#include "Unit3PS.h"
#include "Unit4PS.h"

#define RAD (float)(pi/180.0)
#define pi 3.1415192653
#define Num_Class 67 // number of characters used
#define Vector_Size 32 // feature vector for characters
#define N1 25 // N1xN2 is the character window
#define N2 20
#define MaxNum 1500
//---
#pragma package(smart_init)
#pragma resource "*.dfm"

TForml *Form1;
//---
 fastcall TForml ::TForm1(TComponent* Owner)

: TForm(Owner)
{
}

Appendix C 145

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

University of Windsor

//--
// Data Declaration and initialization

Graphics:TBitmap *DestBitmap=new Graphics::TBitmap;

int Current_Vector[100000];
float Prototype_Vector[100000];

unsigned char flip, PEL;

int ymin[1000]={0};
int xmax[1000]={0};
int ymax[1000]={0};
int xmin[1000]={0};
int tra n s l, trans2;
int CurrentCharacterCount=0;
int wx=0;

int **CenteredCharacters;
int *lnBuffer, **B_buffer;

float **Skewed_lmage, **xp;
float *y1,*net,*delta,*ratiopixelcount,*mean,*stdev,*data,*blkpixcount;

unsigned char **Buffer2;
unsigned char **H_Buffer;
unsigned char **V_Buffer;
unsigned char **AND_Buffer;
unsigned char **Rotated_lmage;
unsigned char *Buffer;

float skew=0.0,theta;
int output, i, j, k, I, z, tx, ty, MMM=0, countlab=1, index1=0;
int *diff_Height,*diff_Width,*minx,*maxx,*maxy,*miny,*Area, *d;
int NL[3]={3,7,1 },NS[3]={21,0I0},L=3;
int NL_seg[3]={4,7,1};
int NS_seg[3]={28,0,0};
int L_seg=3;

float *y1_seg, *net_seg, *delta_seg;
int *d_seg;
float **xp_seg;

// Weigths for NN Page Segmentation
float w_seg[35] = {-1.729680, -6.353260,-6.369861, -6.300127, -6.274672,
-1.237119, -10.551314, 12.668114, 8.682954, 13.539809,

Appendix C 146

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

University of Windsor

9.194036, 8.015849, 11.049754, 14.648908, -1.896923,
-9.950021, -9.613397, -7.816551, -8.762332, -1.466800,
-14.103784, -0.400021, -7.674094, -6.605059, -6.065756,
-6.602304, -0.897390, -10.995788, 11.114531,-8.199492,
-2.414521, -3.853810, -3.227198, 3.995727, -9.124902};

// Weights for NN Local Thresholding method Window size 5x5 features used
// to obtain the weigths
float w [117] = {-0.375437, 2.294064, -3.630360, 0.829671,-0.635375, 3.430550,
-3.880288,
-2.563248, 1.686070, 2.112022, 5.759726, 0.543167, -8.077309, 0.108005,
0.198675, 0.216681, 0.460180, 0.372244, -0.046246, 0.193370, -0.092026,
0.729258, 0.625819, -0.947824, 0.422128, 0.934031, 1.076213, -0.898342,
3.303523, 0.145267, 0.894391, -1.369181, 3.472130, 1.680070, -0.047389,
-0.550796, -3.165742, 0.824378, 5.700605, -0.358712, -0.039954, 0.338562,
0.469575, 0.518232, -0.615934, 0.455342, 0.023446, 0.389336, -0.020608,
-1.238052, 0.612990, 1.755488, 0.336900, -0.009029, 0.064712, 0.902127,
1.238423, 0.220369, 0.061539, 0.077136, 0.381284, 0.264995, 0.014377,
1.022352, 0.067826, 0.375923, -0.051229, 0.761890, 0.329267, 0.176265,
0.412155, 0.764072, 1.138160, 0.492786, 0.018523, -0.131636, 0.439584,
0.919881, 0.100282, 0.481132, 1.501408, 0.619291, 0.997295, 0.269057,
1.195562, 1.416858, 0.380746, -0.070980, -0.112627, 0.152325, 2.212180,
0.656414, 0.511057, 0.710284, 0.628333, 0.271063, -0.315312, 1.292174,
0.567266, 0.023824, 0.356373, -0.104557, 0.590065, 1.872919, -1.033064,
2.463114, -5.418090, 0.495853, -1.167128, 3.774928, -5.871053, -3.729534,
1.684677, 2.324992, 6.869428, 0.011739, -11.326363};
//--
// The function LoadlmageQ Loads a document image from a file.
//--
vo id fastcall TForml ::Loadlmage()
{

Graphics::TBitmap *0_Bitmap=new Graphics:TBitmap;
TCursor Save_Cursor = Screen -> Cursor;
String Str;
OpenPictureDialogl ->Execute();
Str = OpenPictureDialogl ->FileName;
Screen -> Cursor = crHourGlass;
if(Str!="")

0_Bitmap->LoadFromFile(Str);
lmage1-> Height = 0_Bitmap->Height;
lmage1-> Width = 0_Bitmap->Width;
lmage1->Picture->Assign(0_Bitmap);

Screen->Cursor=Save_Cursor;
delete 0_Bitmap;

}

Appendix C 147

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

University of Windsor

//---
// The HorizontalSmearQ smears the binary image produced from thresholding
// Horizontally according the Run Length Smearing Algorithm developed by Wahl
// et al. Ref [48] F. Wahl, K. Wong and R. Casey, "Block Segmentation and Text
// Extraction in Mixed Text/Image Documents," Computer Vision,Graphics and
Image
// Processing, Vol. 20, pp. 375-390, 1982.
//--
vo id fastcall TForml ::HorizontalSmear()
{

Screen -> Cursor = crHourGlass;

DestBitmap -> Height= lmage1-> Height;
DestBitmap -> Width = lmage1-> Width;

Form2->lmage1->Height = DestBitmap-> Height;
Form2->lmage1->Width = DestBitmap-> Width;

Form3->lmage1->Height = DestBitmap-> Height;
Form3->lmage1->Width = DestBitmap-> Width;

Form4->lmage1->Height = DestBitmap-> Height;
Form4->lmage1->Width = DestBitmap-> Width;

H_Buffer= new unsigned char*[lmage1->Width];
for (i=0; i<lmage1->Width; i++)

H_Buffer[i] = new unsigned char [lmage1->Height];

tx = lmage1->Width/3;

for(i=0; i<(int)(lmage1-> H eight); i++)
{

flip = H_Buffer[0][i];
transl = 0;
trans2 = 0;

for (j=1; j<(int)(lmage1-> Width); j++)
{

H_Buffer[j][i]=Buffer2[j][i];

if (H_Buffer[j][i]==255)
H_Buffer[j][i]=0;

else
H_Buffer[j][i]=255;

if (H_BufferO][i]> flip)
{

Appendix C 148

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

University of Windsor

trans2 = j;
flip = H_BufferG][i];

}
else if (H_Buffer[j][i]<flip)
{

transl = j;
flip = H_Buffer[j][i];

}
if (trans2>trans1)
{

if((trans2-trans1)<=tx)
{

for(int n= transl; n<trans2; n++)
{

H_Buffer[n][i] =255;
}

}
}
else if((trans2!=0)&&((lmage1->Width) - transl <tx))
{

for(int n= transl; n<lmage1->Width; n++)
H_Buffer[n][i] = 255;

}
}

}

for (i=0;i<lmage1->Height; i++)
for (j=0;j<lmage1->Width; j++)
{

if (H_Buffer[j][i] <255)
H_Buffer[j][i] = 255;

else
H_Buffer[j][i] = 0;

PEL=H_Buffer[j][i];
}

}
//---
// The VerticalSmear() smears the binary image produced from thresholding
// Vertically according the Run Length Smearing Algorithm developed by
// Wahl et al. Ref [48]
//--
vo id fastcall TForm l ::VerticalSmear()
{

Screen -> Cursor = crHourGlass;
V_Buffer= new unsigned char*[lmage1->Width];

Appendix C 149

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

University of Windsor

for (i=0; i<lmage1->Width; i++)
V_Buffer[i] = new unsigned char [lmage1->Height];

ty =lmage1->Width/3;

unsigned y;
for (i=0; i<(int)(lmage1-> W id th); i++)
{

flip = V_Buffer[i][0];
transl = 0;
trans2 = 0;

for (j=1; j<(int)(lmage1-> Height); j++)
{

y=Buffer2[i][j];
if (y==255) {y=0;}
else {y=255;}

V_Buffer[i][j]=y;
if (V_Buffer[i][j]> flip)
{

trans2 = j;
flip = V_Buffer[i][j];

}
else if (V_Buffer[i][j]<flip)
{

transl = j;
flip = V_Buffer[i][j];

}

if (trans2>trans1)
{

if((trans2-trans1)<=ty)
{

for(int n= tra n s l; n<trans2; n++)
{
V_Buffer[i][n] =255;
}

}
}
else if((trans2!=0)&&((lmage1->Width) - transl <ty))
{

for(int n= transl; n<lmage1->Width; n++)
V_Buffer[i][n] = 255;

}
}

Appendix C 150

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

University o f Windsor

}
for (i=0;i<lmage1->Width; i++)
for (j=0;j<lmage1->Height; j++)
{

if (VJBuffer[i][j] <255)
V_Buffer[i]0] = 255;

else
V_Buffer[i]0] = 0;

PEL=V_Buffer[i][j];
}

}
//---
// The function AND() logically ANDs the result of Horizontal and Vertical
// Smearing Ref [48]
//--
vo id fastcall TForml ::AND()
{

Screen -> Cursor = crHourGlass;

AND_Buffer= new unsigned char*[lmage1->Width];
for (i=0; i<lmage1->Width; i++)

AND_Buffer[i] = new unsigned char [lmage1->Height];

for (i=0;i<lmage1->Width ; i++)
for (j=0;j<lmage1->Height; j++)
{

AND_Buffer[i][j] = (V_Buffer[i]D])|(H_Buffer[i][j]);
}

}
//--
// Refer to Reference [5] for details
vo id fastcall TForm l ::SkewAngle()
{

Screen -> Cursor = crHourGlass;
int **burstimage,**accumulator;
float rho,theta,min,max;
float thetastep,theta_range,rho_step;
int theta_count,accum_row_count,y, count, rowjocation;

Skewedjm age = new float*[lmage1->Height];
for (i=0; i<lmage1->Height; i++)

Skewed _lmage[i] = new float[lmage1->Width];

//Read pixels from thresholded image and store in Skewedjm age
for(i=0;i<lmage1-> Height;i++)

Appendix C 151

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

University o f Windsor

{
for(j=0;j<lmage1 ->Width;j++)
{

Skewed_lmage[i][j]=Buffer2|j][i];
}

}
//allocate memory and initialize input data used to calculate skew angle
//---
burstimage = new int*[(lmage1->Height)];
for (int i=0; i<(lmage1->Height); i++)

burstimage[i] = new int[(lmage1->Width)];

for(i=0;i<lmage1-> Height;i++)
{

for(int j=0;j<lmage1 ->Width;j++)
{

burstimage[i]0]=O;
}

}
//---

// Use the data reduciton run-lenght bursts method found in referece [5]
for(i=0;i<lmage1->Width;i++)
{

count=0;
for(j=0;j<lmage1-> Height;j++)
{

if(Skewed_lmage[j][i]!=255.0)
{count++;}

else
{

if((j>0)&&(count>0))
{

burstimage[j-1][i]=count; //j-1
}
count=0;

}
}

}

//Applying the Hough Transform on the burstimage to find skew angle
thetastep=0.5;
theta_range=5.0; // range from -5 to 5
theta_count=2*theta_range/thetastep+1;
max=-100.0;
min=100;

Appendix C 152

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

University of Windsor

for(i=0;i<lmage1-> Height;i++)
{

for(j=0;j<lmage1 ->Width;j++)
{

if((burstimage[i][j]>2)&&(burstimage[i][j]<25))
{

for(int n1 =0;n1 <theta_count;n1 ++)
{

theta=(float)n1*thetastep-theta_range;
rho=i*cos(theta*RAD)+j*sin(theta*RAD);
if(rho>max) max=rho;
if(rho<min) min=rho;

}
}

}
}
rho_step=1.0;
accum_row_count=(int)((floor(max)-floor(min))/rho_step)+1;
// The size of the accumulator is accum_row_count x theta_count
//allcoate memory for accumulator and initialize it
accumulator = new int*[accum_row_count];
for (int i=0; i<accum_row_count; i++)

accumulator^] = new int[theta_count];

for(i=0; i<accum_row_count; i++)
for(j=0;j<theta_count;j++)

accumulator[i][j]=0;

for(i=0;i<lmage1-> Height;i++)
{

for(j=0;j<lmage1 ->Width;j++)
{

if((burstimage[i][j]>2)&&(burstimage[i]|j]<25))
{

for(int n1 =0;n1 <theta_count;n1 ++)
{

theta=(float)n 1 *thetastep-theta_range;
rho=i*cos(theta*RAD)+j*sin(theta*RAD);
row_location=(int)(floor(rho)-floor(min));
accumulator[row_location][n1]+=burstimage[i][j];

}
}

}
}
max=0;

Appendix C 153

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

University o f Windsor

rowjocation=0;

// The cell containing the maximum value is the location of the skew angle
for(i=0;i<accum_row_count;i++)
{

for(j=0;j<theta_count;j++)
{

if(accumulator[i][j]>max)
{

max=accumulator[i][j];
row_location=j;

}
}

}
skew=row_location*thetastep-theta_range;
Edit2->T ext=-skew;

for (int i = 0; i < accum_row_count; i++)
delete[] accumulator[i];
delete[] accumulator;

for (int i = 0; i < lmage1->Height; i++)
delete[] burstimage[i];
deletef] burstimage;

}
//---
vo id fastcall TForml ::Rotate()
{

Screen -> Cursor = crHourGlass;
int x,y;
if((skew!=0) && (skew <=5) && (skew >=-5))
{

Rotated_lmage= new unsigned char*[(int)(lmage1->Height)];
for(i=0; i<(int)(lmage1->Height); i++)

Rotated_lmage[i] = new unsigned char [lmage1->Width];

for(i=0;i<lmage1->Height ;i++)
{

for(j=0;j<lmage1-> Width;j++)
{

Rotated_lmage[i][j]=255.0;
}

}
for(i=0;i<lmage1-> Height;i++)
{

Appendix C 154

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

University of Windsor

for(j=0;j<lmage1-> Width;j++)
{

x=(int)((i-lmage1-> Height/2)*cos(RAD*(-skew)) \
-(j-lmage1 ->Width/2)*sin(RAD*(-skew))+lmage1 ->Height/2);

y=(int)((i-lmage1-> Height/2)*sin(RAD*(-skew)) \
+(j-lmage1 ->Width/2)*cos(RAD*(-skew))+lmage1 ->Width/2);

if((x>=0)&&(y>=0)&&(x<lmage1 ->Height)&&(y<lmage1 ->Width))
Rotated_lmage[x][y]=Skewed_lmage[i][j];

}
}
II show rotated bitmap
for(i=0;i<lmage1-> Height;i++)
{

for(j=0;j<lmage1-> Width;j++)
{

Buffer20][i]=Rotated_lmage[i][j];
}

}
}

}
//---
// The Thresholding function classify each pixel in an image into either a 0 or
// 255 by first calculating features (using the function features5x5()) then the
// MLP NN classifier is used to perform the classification
//--
vo id fastcall TForml ::Thresholding()
{

Screen -> Cursor = crHourGlass;
features5x5();
float q,xt;
int xd,ind,Nt;

Buffer=new unsigned char[lmage1->Height*lmage1->Width];

Buffer2= new unsigned char *[lmage1->Width];
for(i=0; i<lmage1->Width; i++)

Buffer2[i] = new unsigned char [lmage1->Height];

for(i=0; i<lmage1->Width; i++)
for(j=0; j<lmage1->Height; j++)
{

Buffer[i+(lmage1 ->Width *j)] = 255;
Buffer2[i][j]=255;

Appendix C 155

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

University of Windsor

}
theta = 0.1;

NS[0]=NL[0]*NL[1];
for(i=1;i<(L-2);i++)

NS[i]=NS[i-1]+NL[i]*NL[i+1];
Nt=13;
// Assigning memory
net = new float[Nt];
y1 = new float[Nt];
delta = new float[Nt];

fun(w);

int Value;
int count=0;

for(i=2; i<lmage1->Width-2; i++)
for(j=2; j<lmage1->Height-2; j++)
{

Value= d[count];
count++;
Buffer2[i]0]=Value;

}

delete [] y1;
delete [] net;
delete [] delta;

free (d);
for(i=0; i<8; i++)

delete [] xp[i];
delete [] xp;
MMM=0;

}
//---
// the function features5x5() calculates the features needed to threshold the
// pixels in an image into two different classes 0 or 255, here 8 features are
// used and a window size 5x5 was used to produce the desired results.
//---
vo id fastcall TForml ::features5x5()
{

Screen -> Cursor = crHourGlass;

data = newfloat[lmage1->Height * lmage1->Width];

Appendix C 156

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

University of Windsor

for(i=0; i<lmage1->Width; i++)
for(j=0; j<lmage1->Height; j++)
{

//obtain pixel values of the bitmap and store in buffer
data[j+(i*lmage1 ->Height)]=(unsigned char) \

lmage1->Canvas->Pixels[i][j]/255.0;
}
// no mean or std features
xp= new float *[lmage1->Width*lmage1->Height*3];
for (i=0; i<lmage1->Width*lmage1->Height*3; i++)

xp[i] = new float[8];

int n = 25;
float s,ep=0.0,ave,var, adev, sdev;
float PointPixel=0;
float sum=0;
float Feature[8]={0};
float curt; // kurtosis
float entropy=0; // entropy
float smoothness=0; // smoothness.
float uniformity=0; // uniformity.
float p=0,pp=0; // intermidate variables

for(int k=2; k<lmage1->Width-2; k++)
for(int l=2; l<lmage1->Height-2; I++)
{

s=0.0;
ave=0.0;
var=sdev=ep=p=pp=0.0;
sum=0;
PointPixel =(data[l+(k*lmage1 ->Height)]);

for(i=k-2; i<=k+2; i++)
for(j=l-2; j<=l+2; j++)
{

s+=data0+(i*lmage1 ->Height)];
sum+=data[j+(i*lmage1 ->Height)];

}

ave =s/(float)n;
for(i=k-2; i<=k+2; i++)
for(j=l-2; j<=l+2; j++)
{

ep+=s;
var+=(s*s);
skew+=(p*=s);

Appendix C 157

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

University of Windsor

Appendix C

curt+=(p*=s);
}
var=(var-ep*ep/n)/(n-1);
sdev=sqrt(fabs(var));

for(i=k-2; i<=k+2; i++)
for(j=l-2; j<=l+2; j++)
{

if(data[j+(i*lmage1 ->Height)])
{
pp=(data[j+(i*lmage1->Height)])/sum;
entropy -= pp*log(pp);
}

}
entropy = entropy/(-log(1.0/n));

for(i=k-2; i<=k+2; i++)
for(j=l-2; j<=l+2; j++)
{

pp=(data0+(i*lmage1 ->Height)]- ave);
uniform ity+=(pp*pp);

}
uniform ity=uniformity/n;
smoothness = 1-(1/(1+(var)));
if(var)
{

skew/=(n*(var)*(sdev));
curt=(curt)/(n*sdev);

}
else
{

skew=0.0;
curt=0.0;

}
Feature[0]=PointPixel;
Feature[1]=ave;
Feature[2]=sdev;
Feature[3]=entropy;
Feature[4]=skew;
Feature[5]=curt;
Feature[6]=smoothness;
Feature[7]=uniformity;

for(i=0; i<8; i++)
{

158

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

University of Windsor

xp[MMM][i]=Feature[i];
}
MMM++;

}
}
//--
vo id fastcall TForml ::fun(float *w)
{

Screen -> Cursor = crhlourGlass;

int m,n,Nt1,Nt2;
float E;
d = new int[lmage1->Height * lmage1->Width];
for(i=0; i<(lmage1->Fleight *lmage1->Width); i++)
{

d[i]=0;
}
int Value=0;
int M1=lmage1->Height * lmage1->Width;
for(k=0;k<M1;k++)
{

for(i=0;i<NL[1];i++) //From input layer to first
{

net[i]=0.0;
for(j=0;j<NL[0];j++)

net[i]+=w[i+j*NL[1]]*xp[k][j];
net[i]+=theta;

E=(float)exp(-(double)net[i]);
y1[i]=1.0/(1.0+E);

}
Nt1 =NL[1]; Nt2=0;
// From layer n-1 to layer n.
for(i=0;i<1;i++) // output layere 1
{

m=Nt1+i;
net[m]=0.0;
for(j=0;j<NL[1];j++)

net[m]+=w[NS[1]+i+j*1]*y10+Nt2];
net[m]+=theta;
E=(float)exp(-(double)net[m]);
y1[m]=1.0/(1.0+E);

}
Nt1+=NL[2];
Nt2+=NL[1];

for(i=0;i<NL[L-1];i++) // Calculating the error.
{

Appendix C 159

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

University o f Windsor

if(y1[Nt2+i]>=0.1)
Value = 255;

else
Value=0;

d[k]=Value;

}
//---
// The SmoothSmearingO smears the binary image produced from thresholding
// Horizontally after ANDing the horizontal and Vertical Smearing to merge
// small blocks together to produce bigger blocks of text
//---
vo id fastcall TForml::SmoothSmearing()
{

Screen -> Cursor = crHourGlass;

H_Buffer= new unsigned char*[image1->Width];
for (i=0; i<lmage1->Width; i++)

H_Buffer[i] = new unsigned char [lmage1->Height];

tx = 10;
for (i=0; i<(int)(lmage1-> H eight); i++)
{

flip = H_Buffer[0][i];
transl = 0;
trans2 = 0;

for (j=1; j<(int)(lmage1-> Width); j++)
{

H_BufferO][i]=AND_BufferO][i];
if (H_Buffer[j][i]==255){H_Buffer[j][i]=0;}
else {H_Buffer[j][i]=255;}

if (H_Buffer[j][i]> flip)
{ trans2= j;

flip = H_Buffer[j][i];
}
else if (H_Buffer[j][i]<flip)
{

transl = j;
flip = H_Buffer[j][i];

}
if (trans2>trans1)
{

if((trans2-trans1)<=tx)

Appendix C 160

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

University of Windsor

{
for(int n= transl; n<trans2; n++)
{

H_Buffer[n][i] =255;
}
}

}
else if((trans2!=0)&&((lmage1->Width) - transl <tx))
{

for(int n= transl; n<lmage1->Width; n++)
H_Buffer[n][i] = 255;

}
}

}
for (i=0;i<(int)(lmage1->Height); i++)
for (j=0;j<(int)(lmage1->Width); j++)
{

if (H_Buffer[j][i] <255)
H_Buffer[j][i] = 255;

else
H_BufferO][i] = 0;

AND_Buffer[j][i]=H_Buffer[j][i];
PEL=AND_BufferO][i];

}
}
//---
// This function labels all the blocks produced after the smearing process
// it gives the same label to a pixel connected together. Ref [48] explains
// the algorithm used a final adjustment to the algorithm was done by rescanning
// the image from the bottom up to ensure all pixels are labeled correctly.
//---
vo id fastcall TForm1::LabelBlocks()
{

Screen -> Cursor = crHourGlass;
int **A_buffer;
A_buffer= new int*[lmage1->Width];
for (i=0; i<lmage1->Width; i++)

A_buffer[i] = new int [lmage1->Height];

B_buffer= new int*[lmage1->Width];
for (i=0; i<lmage1->Width; i++)

B_buffer[i] = new int [lmage1->Height];

int *label;
label = new int[lmage1->Width];
int lab=0;

Appendix C 161

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

University of Windsor

int max_x=0;
int max_y=0;
int min_x = lmage1->Width;
int min_y= lmage1->Width;
int count= 1;
int cc = 0;
int W[1000]={0};

for (i=0; i<(lmage1-> H eight); i++)
for (j=0; j<(lmage1-> Width); j++)
{

if (AND_Buffer[j][i]==255)
A_buffer[j][i]=0;

else
A_buffer[j][i]=1;

}
for (i=0;i<(lmage1->Height); i++)
{

for (j=0;j<(lmage1->Width); j++)
{

if (((A_buffer[j][i]==1))&&
((A_buffer0][i+1]==1)||

(A_buffer[j][i-1]==1)||
(A_buffer[j+1][i]==1)||
(A_buffer0+1][i-1]==1)||
(A_buffer[j+1][i+1]==1)||
(A_buffer0-1][i]==1)||
(A_buffer[j-1][i+1]==1)||
(A_buffer[j-1][i-1]==1)))
{

B_buffer[j][i]=count;
}
else
{

B_buffer[j][i]=0;
}
if (B_buffer[j][i]!=0)

cc = B_buffer[j][i];
if(count > cc)

count = c c ;
if((A_buffer[j][i]==0)&&(A_buffer[j][i+1]==0))
{

B_buffer[j][i]=0;
count ++;

}
}

Appendix C 162

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

University of Windsor

for(i=0; i<lmage1->Height; i++)
{

j=0;
while (j<lmage1->Width)
{

B_buffer[0][i]= 0;
B_buffer[j][0]= 0;
if((B_buffer[J][i]!=0)&&((B_buffer[j-1][i-1]!=0)
||(B_buffer[j-1][i]!=0)||(B_buffer[j-1][i+1]!=0)||
(B_buffer[j][i+1]!=0)H(B_buffer[j][i-1]!=0)ll
(B_buffer0+1][i]!=0)||(B_bufferO+1][i-1]!=0)
||(B_bufferO+1][i+1]!=0)))
{

if((B_buffer[j][i]!=0)&&(B_buffer[j-1][i+1]!=0))
B_buffer[j][i]= B_buffer0-1][i+1];

if((B_bufferO][i]!=0)&&(B_buffer[j-1][i]!=0))
B_buffer[j][i]= B_buffer[j-1][i];

if((B_bufferO][i]!=0)&&(B_bufferO-1][i-1]!=0))
B_buffer[j][i]= B_buffer[j-1][i-1];

if((B_buffer[j][i]!=0)&&(B_buffer[j][i-1]!=0))
B_buffer[j][i]=B_buffer[j][i-1];

if((B_buffer[j][i]!=0)&&(B_buffer[j+1][i-1]!=0))
B_bufferO][i]= B_buffer[j+1][i-1];

}
j++;

}
}
// scan from bottom up to ensure pixels are labeled correctly
for (i=(lmage1->Height)-1 ;i>0 ; i--)
{

j=lmage1-> Width-1;
while (j>0)
{

if((B_bufferO][i]!=0)&&((B_buffer[j-1][i-1]!=0)||
(B_bufferO-1][i]!=0)||(B_bufferO-1][i+1]!=0)||
(B_bufferO][i+1]!=0)||(B_buffer[j][i-1]!=0)||
(B_buffer[j+1][i]!=0)||(B_buffer[j+1][i-1]!=0)||
(B_bufferO+1][i+1]!=0)))
{

if((B_bufferO][i]!=0)&&(B_buffery+1][i-1]!=0))
B_buffer[j][i]= B_buffer0+1][i-1];

if((B_bufferO][i]!=0)&&(B_bufferO+1][i+1]!=0))
B_buffer[j][i]= B_buffer0+1][i+1];

if((B_bufferO][i]!=0)&&(B_buffery+1][i]!=0))
B_buffer[j][i]= B_buffer0+1][i];

Appendix C 163

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

University of Windsor

if((B_buffer03[i]!=O)&&(B_buffer[j][i+1]!=O))
B_buffer[]][i]= B_buffer[j][i+1];

}
j--;

}
}
countlab = count;

for (i=0;i<(lmage1->Height); i++)
{

for (j=0;j<lmage1->Width; j++)
{

if ((A_buffer[j][i]==1)&&(B_buffer[j][i] !=0))
{

for(k=0; k<countlab; k++)
{

if(B_buffer[j][i]==k)
W[k]=k;

}
}

}
}
for(k=0; k<countlab; k++)
{

if(W[k]!=0)
{

label[lab]=W[k];
lab++; //lab is the number of blocks in the image

}
}

// Allocating memory for block coordinates
minx = new int[lab];
maxx = new int[lab];
maxy = new intflabj;
miny = new int[lab];

// Initialize the blocks coordinates
for(k=0; k<lab; k++)
{

minx[k]=lmage1 ->Width;
miny[kj=lmage1 ->Width;
maxx[k]=0;
maxy[k]=0;

}

Appendix C 164

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

University of Windsor

// calculating the minimum coordinates for x and y
for(k=0; k<lab; k++)
{

min_x=lmage1 ->Width;
min_y=lmage1->Width;
for (i=0;i<(lmage1->Height); i++)
{

for (j=0;j<lmage1->Width; j++)
{

if(B_buffer[j][i]==label[k])
{

min_x = j;
min_y = i;
if(min_x < minx[k])

minx[k]=min_x;
if(min_y< miny[k])

miny[k]=min_y;
}

}
}

}

// Calculating the maximum coordinates for maximum coordiates of x and y
for(k=0; k<lab; k++)
{

for (i=0;i<(lmage1->Height); i++)
{

for (j=0;j<lmage1->Width; j++)
{

if(B_buffer[j][i]==label[k])
{

max_x = j;
max_y = i;
if(max_x > maxx[k])

maxx[k] = max_x;
if(max_y > maxy[k])

maxy[k] = max_y;
}

}
}

}
// elimiate very small blocks that could be noise and assigning them as
// background
for(k=0; k<lab; k++)
{

if((maxy[k]-miny[k] <= 4) || (maxx[k] - minx[k] <= 4))

Appendix C 165

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

University of Windsor

{
for(i=minx[k]; i<maxx[k]; i++)
for(j=miny[kj; j<maxy[k]; j++)
if(Buffer2[i][j] == 0)

Buffer2[i]0] = 255; ;
maxy[k]=0;
maxx[k]=0;
miny[k]=0;
minx[k]=0 ;

}
}
//The final coordinate of the blocks are given by maxx, maxy, minx, miny
for(k=0; k<lab; k++)
{

if(fabs(minx[k+1]-maxx[k])< 8 && fabs(miny[k]-miny[k+1])<4)
{

maxx[k] = maxx[k+1];
minx[k+1] = minx[k];
if(maxy[k]>maxy[k+1])

maxy[k+1]=maxy[k];
else

maxy[k]=maxy[k+1];
}

}
index1=lab;

lab=0;
for(i=0; i<lmage1->Height; i++)

delete[] A_buffer[i];
delete[] A_buffer;

delete []label;
}

// The ShowLabeledBlocks() function draws rectangles around all blocks and
// assigns labels to each block
//--
vo id fastcall TForm1::ShowLabeledBlocks()
{

Screen -> Cursor = crHourGlass;

float feature_seg[4]={0,0,0,0};

wx=0;
for(k=0; k<index1; k++)
{

Appendix C i 66

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

University of Windsor

if((ratiopixelcount[k]!=0)||(Area[k]>100&&ratiopixelcount[k]!=0)
&& diff_Height!=0 && diff_Width !=0)
{

minx[wx]=minx[k];
miny[wx]=miny[k];
maxx[wx]=maxx[k];
maxy[wx]=maxy[kj;

diff_Height[wx]=diff_Height[k];
ratiopixelcount[wx]=ratiopixelcount[k];
mean[wx]=mean[k];
stdev[wx]=stdev[k];
blkpixcount[wx]=blkpixcount[k];
Area[wx]=Area[k];
wx++;

}
}
float XX=0.0;

xp_seg= new float *[wx];
for (i=0; i<wx; i++)

xp_seg[i] = new float[4];

for(int k=0; k<wx; k++)
{

DestBitmap->Canvas ->Pen->Width = 1;
DestBitmap->Canvas ->Pen->Color = cIRed;
DestBitmap->Canvas ->Brush ->Color = clWhite;
SetBkMode(DestBitmap->Canvas->Handle, OPAQUE);
SetBkColor(DestBitmap->Canvas->Handle,clWhite);
DestBitmap->Canvas ->Rectangle(minx[k],miny[k],maxx[k],maxy[k]);

DestBitmap->Canvas -> Text0ut(minx[k]+1, miny[k], "Label");
DestBitmap->Canvas -> TextOut(minx[k]+30, miny[k], k);
XX=100.0*Area[k];

stdev[k]=stdev[k]/100.0;
blkpixcount[k]=blkpixcount[k]/XX;

if(stdev[k]>1)
stdev[k]=1.0;

if(blkpixcount[k]>1)
blkpixcount[k]=1.0;

feature_seg[0]= diff_Height[k]/(float)(lmage1 ->Height);

Appendix C 167

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

University of Windsor

feature_seg[1]= mean[k];
feature_seg[2]= stdevfk];
feature_seg[3]= blkpixcount[k];

for(int i=0; i<4; i++)
{

xp_seg[k][i]=feature_seg[i];
}

}
Form2->lmage1->Picture->Bitmap = DestBitmap;

for (i=0;i<(lmage1->Height); i++)
{

for (j=0;j<(lmage1->Width); j++)
{

PEL = 255;
DestBitmap->Canvas->Pixels[j][i]=RGB(PEL,PEL,PEL);

}
}

}
//--
// Function ExtractBlockFeatures() calculates features from all blocks to be
// used in the classification of blocks
//--
vo id fastcall TForm1::ExtractBlockFeatures()
{

Screen -> Cursor = crHourGlass;

float sum =0.0;

Area = new int[index1];
diff_Width = new int[index1];
diff_Height = new int[index1];
mean = new float[index1];
ratiopixelcount = new float[index1];
stdev = new float[index1];
blkpixcount = newfloat[index1];

for(k=0; k<index1; k++)
{

Area[k]=0;
diff_Width[k]=0;
diff_Height[k]=0;
mean[k]=0;
ratiopixelcount[k]=0;
stdev[k]=0;

Appendix C 168

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

University of Windsor

blkpixcount[k]=0;
}
for(k=0; k<index1; k++)
{

diff_Height[k]= maxy[k]-miny[k];
diff_Width[k]= maxx[k]-minx[k];
Area[k]= diff_Height[k] * diff_Width[k];
sum = Area[k];

}

for(k=0; k<index1; k++)
{

sum=0;
blkpixcount[k]=0;
if(Area[k] !=0)
{

for(i=minx[k]; i<=maxx[k]; i++)
for(j=miny[kj; j<=maxy[k]; j++)
{

sum+= Buffer2[i]0]/255.O;
if(Buffer2[i][j]==0)
{

blkpixcount[k]++;
}

}
blkpixcount[k]=(blkpixcount[k]*diff_Height[k]);
mean[k]=(float)(sum/Area[k]);
ratiopixelcount[k] = (blkpixcount[k]/(float)Area[k]);

}
}
for(k=0; k<index1; k++)
{

sum=0;

if(Area[k] !=0)
{

sum=0;
for(i=minx[k]; i<=maxx[k]; i++)
for(j=miny[k]; j<=maxy[k]; j++)
{

sum+=fabs((Buffer2[i][j]/255.0)-(mean[k]));
}
stdev[k]=(sum/Area[k])*diff_Height[k];

}

Appendix C 169

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

University of Windsor

}
//---
// Function Page_Seg() produces the NN classification of blocks

vo id fastcall TForm1::Page_Seg()
{

Screen -> Cursor = crHourGlass;
float q,xt;
int xd,ind,Nt;
theta = 0.1;

NS_seg[0]=NL_seg[0]*NL_seg[1];
for(i=1;i<(L_seg-2);i++)

NS_seg[i]=NS_seg[i-1]+NL_seg[i]*NL_seg[i+1];

Nt=8;

// Assigning memory
net_seg = new float[Nt];
y1_seg = new float[Nt];
delta_seg = new floatfNt];

fun_seg(w_seg);

delete [] y1_seg;
delete [] net_seg;
delete [j delta_seg;

// for(i=0; i<4; i++)
// delete [] xp_seg[i];
// delete [] xp_seg;

}
//---
//fun_seg() is the MLP NN classifier to classify the blocks into text and images
//---
vo id fastcall TForml ::fun_seg(float *w_seg)
{

Screen -> Cursor = crHourGlass;
int m,Nt1,Nt2;
float E;
int Value=0;

d_seg = new int[wx];

for(i=0; i<wx; i++)
{

Appendix C 170

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

University of Windsor

d_seg[i]=0;
}
for(k=0;k<wx;k++)
{

for(i=0;i<NL_seg[1];i++) //From input layer to first
{

net_seg[i]=0.0;
for(j=0;j<NL_seg[0];j++)

{
net_seg[i]+=w_seg[i+j*NL_seg[1]]*xp_seg[k]0];

}
net_seg[i]+=theta;

E=(float)exp(-(double)net_seg[i]);
y1_seg[i]=1.0/(1.0+E);

}
Nt1=NL_seg[1]; Nt2=0;

// From layer n-1 to layer n.
for(i=0;i<1 ;i++) // output layer 1
{

m=Nt1+i;
net_seg[m]=0.0;
for(j=0;j<NL_seg[1];j++)

net_seg[m]+=w_seg[NS_seg[1]+i+j*1]*y1_seg[j+Nt2];
net_seg[m]+=theta;
E=(float)exp(-(double)net_seg[m]);
y1_seg[m]=1.0/(1.0+E);

}
Nt1+=NL_seg[2];
Nt2+=NL_seg[1];

for(i=0;i<NL_seg[L_seg-1];i++) // Calculating the error.
{

if(y1_seg[Nt2+i]>=0.000003)
Value=1;

else
Value=0;

d_seg[k]=Value;
}

}
}
//---
// The function Reset() resets buffers by deallocating memory
//---
vo id fastcall TForm1::Reset()
{

Appendix C 171

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

University of Windsor

free (d_seg);
delete []minx;
delete [jminy;
delete [jmaxx;
delete [jmaxy;

delete []mean;
delete []Area;
delete [jstdev;
delete []diff_Height;
delete []diff_Width;
delete [jratiopixelcount;

delete Buffer;

delete [Jblkpixcount;

for(i=0; i<lmage1->Height; i++)
delete[] AND_Buffer[i];

delete[] AND_Buffer;

for(i=0; i<lmage1->Height; i++)
delete[] B_buffer[i];

delete[] B_buffer;

for (i = 0; i < lmage1->Height; i++)
delete[] Buffer2[i];

delete[] Buffer2;

for(int i=0; i<lmage1->Height; i++)
delete[] H_Buffer[i];

delete[] H_Buffer;

for(int i=0; i<lmage1->Height; i++)
delete[] V_Buffer[i];

delete[] V_Buffer;

Edit1->Text = "
Edit2->Text = "
Edit3->Text = "
Edit4->Text = "

/* for (i = 0; i < lmage1->Width; i++)
delete[] Skewed_lmage[i];

delete[] Skewed_lmage;

Appendix C 172

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

University of Windsor

for (i = 0; i < lmage1->Width; i++)
delete[] Rotated_lmage[i];

delete[] Rotatedjm age; */
}
//--
vo id fastcall TForml ::Loadlmage1Click(TObject *Sender)
{

Loadlmage();
lmage1->Show();
Edit3->Text = lmage1->Height;
Edit4->Text= Image 1-> Width;

}
//--
// Close windows before running the program again
//--
vo id fastcall TForml ::ExitProgram1 Click(TObject ‘ Sender)
{

Form2->Close();
Form3->Close();
Form4->Close();
lmage1->Hide();
Reset();

}
//--
// Function to do (Thresholding, skew detection and corretion, smearing, block
// labelling and show the labeled blocks by drawing blocks around them wiht
// labels
//--
vo id fastcall TForm 1::PreprocessingandBlockLabelingl Click(

TObject ‘ Sender)
{

TCursor Save_Cursor = Screen -> Cursor;
float t=0;
clock_t start, end;
start =clock();

Thresholding();
SkewAngleQ;
Rotate();
HorizontalSmearQ;
VerticalSmear();
AND();
SmoothSmearing();
LabelBlocks();
ExtractBlockFeatures();
ShowLabeledBlocks();

Appendix C 173

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

University of Windsor

Page_Seg();

end = clock();
t = (float) (end - start)/(float)(CLK_TCK);
Edit1->Text = t;

Form2->Show();
Screen->Cursor=Save_Cursor;

}
//---
vo id fastcall TForml ::NNCIassification1 Click(TObject *Sender)
{

NNCIassifier();
}
1/---
// the NNCIassifier displays text blocks and image blocks on separate images
vo id fastcall TForml ::NNCIassifier()
{

Graphics::TBitmap *FinalBitmap=new Graphics::TBitmap;

TCursor Save_Cursor = Screen -> Cursor;

FinalBitmap -> Height= lmage1-> Height;
FinalBitmap -> Width = lmage1-> Width;

for (i=0;i<(lmage1->Height); i++)
{

for (j=0;j<(lmage1->Width); j++)
{

PEL = 255;
FinalBitmap->Canvas->Pixels[j][i]=RGB(PEL,PEL,PEL);

}
}
for(int k=0; k<wx; k++)
{

if(d_seg[k]==1)
{

for(i=minx[k]; i<=maxx[k]; i++)
for(j=miny[k]; j<=maxy[k]; j++)
{

PEL=(unsigned char)lmage1 ->Canvas->Pixels[i][j];
FinalBitmap->Canvas->Pixels[i]0]=RGB(PEL,PEL,PEL);

}
}

}
Form4->lmage1->Picture->Bitmap=FinalBitmap;

Appendix C 174

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

University of Windsor

FinalBitmap -> Height= lmage1-> Height;
FinalBitmap -> Width = lmage1-> Width;

for (i=0;i<(lmage1->Height); i++)
{

for (j=0;j<(lmage1-> Width); j++)
{

PEL = 255;
FinalBitmap->Canvas->PixelsO][i]=RGB(PEL,REL,PEL);

}
}
for(int k=0; k<wx; k++)
{

if(d_seg[k]==0)
{

for(i=minx[k]; i<=maxx[k]; i++)
for(j=miny[k]; j<=maxy[k]; j++)
{

PEL= Buffer2[i][j];
FinalBitmap->Canvas->Pixels[i][j]=RGB(PEL,PEL,PEL);

}
}

}
Form3->lmage1->Picture->Bitmap=FinalBitmap;
Form3->Show();
Form4->Show();

// Reset();
Screen->Cursor=Save_Cursor;
delete FinalBitmap;

}
//--
// The function LoadPrototypeQ loads the prototype features for characters
// which will be used to compare against the current character feature vectors
// during the classification stage which uses correlation
vo id fastcall TForml ::LoadPrototype()
{
//Load prototype features
Screen -> Cursor = crHourGlass;

FILE *file;

file=fopen("AverageFeatures_32.txt","r");

for(int i=0; i<Num_Class; i++)
{

Appendix C 175

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

University of Windsor

for(int j=0; j< Vector_Size; j++)
{

fscanf(file,"%f ",&Prototype_VectorO+(i*Vector_Size)]);
}

}
fclose(file);

}
//--
// Funcation to center characters in window size N1 x N2.
// Returns a 2D array of type int.
//--
vo id fastcall TForml ::Centerchar()
{
Screen -> Cursor = crFlourGlass;
//----------------Variable Declarations & Initialization------------------
int bb=0, cc=0;
int PixelCount=0; // Counter
int ActualCharHeight[1000]={0}; // Actual Character Height
int countx=0, HorizCount=0; // Counter
int yminl [5000]={0}, ymaxl [5000]={0}; // intermidiate buffers.
int ycoord[5000]={0}; // No. pixels in Horizontal direction
int xcoord[5000J={0}; // No. pixels in Vertical direction
int check=0;
int tempi =0, temp2=0, temp3=0, temp4=0; //tem p variables
int flag=0;
int count=0; //counter
CurrentCharacterCount=0;

InBuffer = new int[lmage1->Height*lmage1->Width];

for(int i=0; i<lmage1->Height; i++)
{

for(int j=0; j<lmage1->Width; j++)
{

lnBufferO+(i*lmage1->Width)]=(unsigned char) \
Form3->lmage1->Canvas->Pixels[j][i];

if(lnBuffer[j+(i*lmage1->Width)]>0)
lnBuffer[j+(i*lmage1 ->Width)]=0;

else
lnBufferO+(i*lmage1 ->Width)]=1;

}
}
//--
//Horizontal pixel count for each line
for(i=0; i<lmage1->Height; i++)

Appendix C 176

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

University of Windsor

{
PixelCount = 0;
check=0;
for(j=0; j<lmage1->Width; j++)
{

if (lnBuffer[j+(lmage1 ->Width*i)]==1)
PixelCount++;

ycoord[i]= PixelCount;
}
if((ycoord[i-1]==0 && ycoord[i]!=0))
{

ymin1[HorizCount]=i;
}
else if((ycoord[i-1]!=0) && (ycoord[i]==0))
{

ymax1[HorizCount]= i;
check++;

}
if(ymin1 [HorizCount])
{

if(check!=0)
HorizCount++;

}
}
//---
// Vertical pixel Count for each line separtely
for(k = 0; k<HorizCount; k++)
{

for(i=0; i<lmage1->Width; i++)
{

PixelCount = 0;
for(int j=ymin1[k]; j<ymax1[k]; j++)
{

if (lnBuffer[i+(lmage1->Width*j)] == 1)
PixelCount++;

xcoord[i]= PixelCount;
}
if((xcoord[i-1]==0 && xcoord[i]!=0))
{

xmin[countx]=i;
ymin[countx]=ymin1 [k];
ymax[countx]=ymax1 [k];

}
if(i>0)
{

if((xcoord[i]==0) && (xcoord[i-1]!=0))

Appendix C 177

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

University of Windsor

{
xmax[countx]= i;
countx++;

}
}

}
}
CurrentCharacterCount=countx; //Total Number of characters
//--
CenteredCharacters= new int *[CurrentCharacterCount];
for(i=0; i<(CurrentCharacterCount); i++)
CenteredCharacters[i]=new int [N1*N2];

for(k=0; k<CurrentCharacterCount; k++)
{

for(i=0; i<N1; i++)
for(j=0; j<N2; j++)
{

CenteredCharacters[k][j+(i*N2)]=0;
}

}
//---
for(k=0; k<CurrentCharacterCount; k++)
{

count=0;
flag = 0;
for(i= ymin[k]; i<ymax[k];i++)
{

PixelCount=0;
for(int j=xmin[k]; j<xmax[k]; j++)
{

if(lnBufferO+(lmage1->Width*i)]==1)
PixelCount++;

if(PixelCount==1 && flag==0)
{

ymin[k]=i; flag = 1;
}

}
if(PixelCount>0)
{

count++;
ActualCharHeight[k]=count;

}
}

}
//---

Appendix C 178

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

University of Windsor

// loop to center characters in a specific sized window.
for(k=0; k<CurrentCharacterCount; k++)
{

tempi = (int)(N1-(ActualCharHeight[k]))/2;
temp2 = N1-tempi;
temp3=(int)(N2-(xmax[k]-xmin[k]))/2;
temp4 = N2-temp3;
for(i=ymin[k],bb=temp1; i<ymax[k], bb <temp2;i++,bb++)
{

forG=xmin[k],cc=temp3; j<xmax[k], cc<temp4; j++,cc++)
{

CenteredCharacters[k][cc+(bb*N2)]= \
lnBuffer[j+(lmage1 ->Width*i)];

}
}

}
}
//---
// Function DrawBox() draws rectangles around blocks or characters
vo id fastcall TForm 1::DrawBox(int x1, int y 1, int x2, int y2)
{

TCursor Save_Cursor = Screen -> Cursor;
Screen -> Cursor = crHourGlass;
Form3->lmage1->Canvas->Pen->Color=clRed;
Form3->lmage1 ->Canvas->MoveTo(x1 ,y1);
Form3->lmage1 ->Canvas->LineTo(x2,y1);
Form3->lmage1->Canvas->LineTo(x2,y2);
Form3->lmage1 ->Canvas->LineTo(x1 ,y2);
Form3->lmage1 ->Canvas->LineTo(x1 ,y1);
Screen->Cursor=Save_Cursor;

}
//---
// Function to calculate the pixel count distribution from a character
// Size window N1xN2, Here we divide chacaters into small overlapping windows
// of size 5x5
//---
vo id fastcall TForml::ExtractFeatures()
{

Screen -> Cursor = crHourGlass;
int count=0;
int tot=0;
for(k=0 ;k<CurrentCharacterCount*Vector_Size;k++)
{

Current_Vector[k]=0;
}
//Divide each character window into 5x5 zones, count number of pixels.

Appendix C 179

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

University of Windsor

for(z=0 ;z<CurrentCharacterCount;z++)
{

tot=0;
for(i=0; i<N1; i=i+5)
for(j=0; j<N2; j=j+5)
{

count = 0;
for(k=i; k<i+5; k++)
for(l=j; Kj+5; I++)
{

if(CenteredCharacters[z][l+(k*N2)]==1)
count++;

}
Current_Vector[tot+(Vector_Size*z)] =(float)count;
tot ++;

}
// Ocver lapping zones
for(i=3; i<N1-2; i=i+5)
for(j=3; j<N2-2; j=j+5)
{

count = 0;
for(k=i; k<i+5; k++)
for(l=j; l<j+5; I++)
{

if(CenteredCharacters[z][l+(k*N2)]==1)
count++;

}
Current_Vector[tot+(Vector_Size*z)] =(float)count;
tot ++;

}
}

}
/ /--
// The correlate() function is the classifier used to classify characters into
// any of the 67 classes shown in OutputChars[67],
//--
void fastcall TForml ::Correlate()
{

Screen -> Cursor = crHourGlass;
FILE *fptr;
fptr=fopen("Output.txt","w+");

float max=-2.0;
int RecognChar=0;

static char O utputC harstN um .C lassKA '/B '/C '/D '/E '/F ',

Appendix C 180

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

University of Windsor

'G '/H '/l'/J '/K '/L ',
'M VN '/O '/P '/Q '/R ',
'S '.T .'U '.V .'W .'X ',
'YVZya'/bVc'/d',
'e '/f/g '.'h '/i'.'j',
'k',T,'m','nyo','p',
'q '/r '/s ’/t'/u '/v ',
wxy/zyoyr,
'2','3','4','5','6','7',
i q i in< i » » i m iflv i i n .o , y , . , , ,

double **sxy;
double **r;
double **denom;
double sx[1000]= {0}, sy[1000]={0};
double mx[1000] = {0}; // intermediate array for prototype mean
double my[1000] = {0}; // intermediate array for current mean
double MeanVectX[1000]={0}; // mean for prototype vector
double MeanVectY[1000]={0}; // mean for current vector

//---------------------------------Memory Allocation-------------------------
sxy= new double *[MaxNum];
for(i=0; i<(MaxNum); i++)

sxy[i]=new double [Num_Class];

r= new double *[MaxNum];
for(i=0; i<(MaxNum); i++)

r[i]=new double [Num_Class];

denom= new double *[MaxNum];
for(i=0; i<(MaxNum); i++)

//--------------------------------- Initialization-
for(z=0; z<MaxNum; z++)
for(k=0; k<Num_Class; k++)
{

denom[z][k]=0;
sxy[z][k]=0;
r[z][k]=0;

}
//---
for(k=0; k<Num_Class; k++)
{

for (i=0;i<Vector_Size;i++)
{

mx[k]=mx[k]+Prototype_Vector[i+(Vector_Size*k)];

denom[i]=new double [Num_Class];

Appendix C 181

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

University of Windsor

}
//calculating mean value for each vector.
MeanVectX[k]=mx[k]/Vector_Size;

}
for(k=0; k<CurrentCharacterCount; k++)
{

for (i=0;i<Vector_Size;i++)
{

my[k] =my[k]+ Current_Vector[i+(Vector_Size*k)];
}
//calculating mean value for each vector.
MeanVectY[k]=my[k]/Vector_Size;

}
// Calculate the denominator
for(k=0; k<Num_Class; k++)
{

for (i=0;i<Vector_Size;i++)
{

sx[k]+=(Prototype_Vector[i+(Vector_Size*k)] - MeanVectX[k]) * \
(Prototype_Vector[i+(Vector_Size*k)] - MeanVectX[k]);

}
}
for(k=0; k<CurrentCharacterCount; k++)
for (i=0;i<Vector_Size;i++)
{

sy[k] += (Current_Vector[i+(Vector_Size*k)] - MeanVectY[k]) * \
(Current_Vector[i+(Vector_Size*k)] - MeanVectY[k]);

}

for(z=0; z<CurrentCharacterCount; z++)
for(k=0; k<Num_Class; k++)
{

denom[z][k] = sqrt(sx[k]*sy[z]);
}
// Recognition loop for the whole image after deciding on the font type.
for(z=0; z<CurrentCharacterCount; z++)
{

max= -2;
RecognChar = 0;
for(k=0; k<Num_Class; k++)
for (i=0;i<Vector_Size;i++)
{

sxy[z][k]+=(Prototype_Vector[i+(Vector_Size*k)]-MeanVectX[k])* \
(Current_Vector[i+(Vector_Size*z)] - MeanVectY[z]);

// r is the correlation coefficient //
r[z][k] = sxy[z][k]/ denom[z][k];

Appendix C 182

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

University of Windsor

if(r[z][k]>max)
{

max = r[z][k];
RecognChar = k;

}
}
fprintf(fptr, "%c",OutputChars[RecognChar]);

if(xmax[z+1]<xmin[z])
fprintf(fptr, "\n");

if(xmin[z+1]-xmax[z] > 12)
fprintf(fptr, "");

}
fprintf(fptr,"\n ");
fclose(fptr);

}
//--
vo id fastcall TForml ::LoadPrototypes1Click(TObject *Sender)
{

TCursor Save_Cursor = Screen -> Cursor;
LoadPrototype();
Screen->Cursor=Save_Cursor;

}
//--
vo id fastcall TForml ::CenterCharacters1 Click(TObject *Sender)
{

TCursor Save_Cursor = Screen -> Cursor;
Centerchar();
ExtractFeatures();
Screen->Cursor=Save_Cursor;

}
// --
vo id fastcall TForml ::Correlation1 Click(TObject *Sender)
{

// The OCR results are displayed on the image containing the image of
// document to check the recognition rate and compare the results with
// the original document.
TCursor Save_Cursor = Screen -> Cursor;

CorrelateQ;

FILE *file;
file = fopenfoutput.txt", "r");

char X;
for(i=0; i<CurrentCharacterCount; i++)

Appendix C 183

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

University of Windsor

{
fscanf(file, "%c",&X);
Form4->lmage1->Canvas->Font->Name = "Courier";
Form4->lmage1->Canvas->Font->Size = 14;
Form4->lmage1->Canvas ->Pen->Width = 1;
Form4->lmage1->Canvas->TextOut(xmin[i], ymax[i]-20, X);

}
fclose(file);
Screen->Cursor=Save_Cursor;

}
//---

Appendix C

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

184

University of Windsor

//-- DocumentAnalysis.h-------

#ifndef UnitlPSH
#define UnitlPSH

#include <Classes.hpp>
#include <Controls.hpp>
#include <StdCtrls.hpp>
#include <Forms.hpp>
#include <Dialogs.hpp>
#include <ExtCtrls.hpp>
#include <ExtDlgs.hpp>
#include <Grids.hpp>
#include <Menus.hpp>
//---
class TForml : public TForm
{
 published: // IDE-managed Components

Tlmage *lmage1;
TOpenPictureDialog *OpenPictureDialog1;
TEdit *Edit1;
TSavePictureDialog *SavePictureDialog1;
TMainMenu *MainMenu1;
TMenultem *File1;
TMenultem *Loadlmage1;
TMenultem *ExitProgram1;
TMenultem *Preprocessing1;
TMenultem *PreprocessingandBlockLabeling1;
TMenultem *Classification1;
TMenultem *NNCIassification1;
TBevel *Bevel1;
TLabel *Label1;
TMenultem *OCR1;
TMenultem *LoadPrototypes1;
TMenultem *CenterCharacters1;
TMenultem *Correlation1;
TEdit *Edit2;
TLabel *Label2;
TLabel *Label3;
TEdit *Edit3;
TLabel *Label4;
TEdit *Edit4;
vo id fastcall Loadlmage1Click(TObject *Sender);
vo id fastcall ExitProgram1Click(TObject *Sender);
vo id fastcall PreprocessingandBlockLabeling1Click(

TObject *Sender);

Appendix C 185

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

University of Windsor

vo id fastcall NNCIassification1Click(TObject ‘ Sender);
vo id fastcall LoadPrototypes1Click(TObject ‘ Sender);
vo id fastcall CenterCharactersI Click(TObject ‘ Sender);
vo id fastcall Correlation Click(TObject ‘ Sender);

private: // User declarations
public: // User declarations

 fastcall TForm1(TComponent* Owner);
void __fastcal TForm l: :Loadlmage();
void __fastcal TForm l: :SkewAngle();
void __fastcal TForm l: :Rotate();
void __fastcal TForm l: :HorizontalSmear();
void __fastcal TForm l: :VerticalSmear();
void __fastcal TForm l: :AND();
void __fastcal TForm l: :fun(float *w);
void __fastcal TForm l: :features5x5();
void __fastcal TF orm l::Thresholding();
void __fastcal TForm l: :SmoothSmearing();
void __fastcal TForm l: :ShowLabeledBlocks();
void __fastcal TForm l: :LabelBlocks();
void __fastcal TForm l: : ExtractBlockFeatures();
void __fastcal TForm l: :Page_Seg();
void __fastcal TForm l: :fun_seg(float *w_seg);
void __fastcal TForm l: :Reset();
void __fastcal TForm l: :LoadPrototype();
void __fastcal TF orm l::Centerchar();
void __fastcal TForm l: : DrawBox(int x1, int y 1, int x2, int y2)
void __fastcal TForm l: :ExtractFeatures();
void __fastcal TForm l: :Correlate();
void __fastcal TForm l: :NNCIassifier();

};

extern PACKAGE TForm l *Form1;
//--
#endif

Appendix C

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

186

Vita Auctoris

NAME

PLACE OF BIRTH

YEAR OF BIRTH

EDUCATION

Yasser Alginahi

Taiz, Republic of Yemen

1969

Wright State University, Dayton, Ohio, USA

1990-1994 B. A. Sc.

Biomedical Engineering.

Wright State University, Dayton, Ohio, USA

1995 - 1997 M.A.Sc.

Electrical Engineering.

University of Windsor, Ontario, Canada

1999-2004 Ph.D.

Electrical Engineering.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

	Computer analysis of composite documents with non-uniform background.
	Recommended Citation

	tmp.1614704062.pdf.YzYby

