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Abstract

The motivation behind most of the applications of off-line text recognition is to 

convert data from conventional media into electronic media. Such applications 

are bank cheques, security documents and form processing. In this dissertation 

a document analysis system is presented to transfer gray level composite 

documents with complex backgrounds and poor illumination into electronic format 

that is suitable for efficient storage, retrieval and interpretation. The 

preprocessing stage for the document analysis system requires the conversion of 

a paper-based document to a digital bit-map representation after optical scanning 

followed by techniques of thresholding, skew detection, page segmentation and 

Optical Character Recognition (OCR). The system as a whole operates in a 

pipeline fashion where each stage or process passes its output to the next stage. 

The success of each stage guarantees that the operation of the system as a 

whole with no failures that may reduce the character recognition rate.

By designing this document analysis system a new local bi-level threshold 

selection technique was developed for gray level composite document images 

with non-uniform background. The algorithm uses statistical and textural feature 

measures to obtain a feature vector for each pixel from a window of size 

(2 « + 1) x (2 w + 1), where 77 > 1 . These features provide a local understanding of 

pixels from their neighbourhoods making it easier to classify each pixel into its 

proper class. A Multi-Layer Perceptron Neural Network is then used to classify 

each pixel value in the image. The results of thresholding are then passed to the 

block segmentation stage. The block segmentation technique developed is a 

feature-based method that uses a Neural Network classifier to automatically 

segment and classify the image contents into text and halftone images. Finally,
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the text blocks are passed into a Character Recognition (CR) system to transfer 

characters into an editable text format and the recognition results were compared 

to those obtained from a commercial OCR.

The OCR system implemented uses pixel distribution as features extracted from 

different zones of the characters. A correlation classifier is used to recognize the 

characters. For the application of cheque processing, this system was used to 

read the special numerals of the optical barcode found in bank cheques. The 

OCR system uses a fuzzy descriptive feature extraction method with a correlation 

classifier to recognize these special numerals, which identify the bank institute 

and provides personal information about the account holder.

The new local thresholding scheme was tested on a variety of composite 

document images with complex backgrounds. The results were very good 

compared to the results from commercial OCR software. This proposed 

thresholding technique is not limited to a specific application. It can be used on a 

variety of document images with complex backgrounds and can be implemented 

in any document analysis system provided that sufficient training is performed.
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Chapter 1
Introduction

1.1 Introduction

A document analysis system converts a paper-based document 

into computerized form. Such a system must recognize characters 

of a text block and identify non-text regions such as charts and 

images. The use of computers can ease document processing and 

filing through an electronic database. A computerized form of 

documentation provides some advantages over paper-based 

documentation including efficient document updates and revisions. 

Conversion of a paper document to its electronic form requires a 

number of steps that will be investigated in this thesis.

Transforming composite paper documents with non-uniform 

background into electronic format in a form suitable for efficient 

storage, retrieval and interpretation continues to be a challenging 

problem. Non-uniform background is caused by watermarks and 

complex patterns used in printing security documents. The 

preprocessing stages to transform a digital bit-map representation 

into an editable document are thresholding, skew detection, page 

segmentation and Optical Character Recognition (OCR). The 

success of converting documents with complex backgrounds 

depends on eliminating the background by thresholding as well as 

the correctness of page segmentation, which segments and labels 

different blocks in the document image into text, lines and images.

Chapter 1: Introduction
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1.2 Problem Statement

Using commercial OCR software to read text from document images with non- 

uniform backgrounds produced poor recognition rate. Bank cheques, 

identification cards and security documents are applications for such documents. 

The accuracy in reading the information on these documents is very crucial for 

security in airports, banks and defence departments. The bi-level thresholding 

techniques in literature do not produce good separation between background and 

objects and the need for such technique is very important in bank and security 

services. Therefore, the work in this dissertation will present a technique to 

threshold grey level document images with non-uniform background, which will 

be used in the design of a document analysis system to recognize text from 

image documents with non-uniform backgrounds.

1.3 The Document Analysis System

The principle stages of document processing are

- Image thresholding

- Skew detection and correction

- Page segmentation

- Character recognition

Each of the above steps is a research field in itself and needs intensive study for 

dealing with document images of complex backgrounds. Figure 1.1 shows the 

different phases in document analysis and each phase may have several sub 

phases, which are also considered separate research fields such as noise 

removal, and character isolation. In this work, all of the stages of document 

processing will be investigated and algorithms will be developed to tackle some 

of the problems that still challenge document processing.

Chapter 1: Introduction
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1.3.1 Thresholding

In order to successfully analyze complex bit-mapped documents a thresholding 

step is required to separate information from the background on which it is 

superimposed. It is often desirable to represent grey scale bit-mapped 

documents as binary images by specifying a threshold value. Thresholding can 

be categorized into two main categories: global and local. Global thresholding 

picks one threshold value for the entire document image, which is often based on 

the estimation of the background level from the intensity histogram of the image. 

On the other hand, local adaptive thresholding uses different values for each 

pixel according to the local area information.

Paper Document

1
Optical Scanning & 

Digitization

Skew Detection & 
Correction

Electronic
Document

Graphical
Processing

Page Segmentation

Thresholdin

Figure 1.1: The Document Analysis System

Chapter 1: Introduction
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Many of image thresholding techniques have been developed in this area and 

the performance of each method depends on the type of document, image 

illumination, contrast and the complexity of the image background. In [1], Trier 

and Jain present a comparison of several common global and local thresholding 

techniques by using an evaluation criterion that is goal-directed whereby the 

occurrences of a character recognition system using different techniques were 

compared. From the techniques used, the Niblack’s locally adaptive method [2] 

produced the best results. In [3], Sahoo et al. compared 20 global thresholding 

methods and the method produced by Otsu [4] outperformed all other methods.

All thresholding techniques developed do not perform well on all images and 

most make some assumptions about the images to be used, which limit their 

performance to such images. In this work, algorithms will be developed and 

implemented for thresholding composite digitized documents with complex 

background. Figure 1.2 shows an image of a cheque with complex background 

where it is very difficult to accomplish successful thresholding using current 

available techniques. Examples of composite documents used in this work 

include security documents such as passports, cheques, and Identification 

Cards, as well as images from magazines and scanned synthetic images printed 

on complex backgrounds.

YASSF.H M AL'JIN'AIII

WINDSOR ON

Pat tow

/M lttD O L lA R S

■:□□□□ i  u * : o sooa i  inmmam" 5 a ? a

Figure 1.2: Example of an Image with Complex Background
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1.3.2 Skew Detection and Correction

Many of the important document analysis algorithms, including OCR, region 

segmentation and page analysis are sensitive to the orientation or skew of the 

input document image. They rely upon operating on un-skewed images or 

alternatively, have skew detection and correction as an early step before page 

segmentation and character recognition. Skewed images will cause many 

problems if they are not corrected which will result in the misclassification of text 

blocks into image blocks and lower performance rate for character recognition 

systems. Also skewed images do not compress as fast or as compactly as 

images correctly registered to the page coordinate system, because of their 

increased size and the failure of the structure to align with the implicit coordinate 

system. Therefore, with the rapid growth of the document entry and 

interpretation systems, the normalization of skewed document images becomes 

one of the most important problems in document image processing. It is 

important to develop algorithms to perform skew detection and correction 

automatically. In this work, an algorithm based on the Hough [5] transform which 

is a widely used and effective algorithm in detecting skew angles will be used to 

de-skew document images.

1.3.3 Page Segmentation

Documents usually contain different types of data such as text, images, tables, 

lines and graphs. Document image understanding is a goal oriented problem 

that involves interpreting different types of data in such a way that the 

interactions of the different components are accounted for. The different types of 

data contained within the document, need to be separated or segmented for 

subsequent processing and treatment of each region independently. This 

process of page segmentation must be done after the skew detection and 

correction step. It is very critical that the thresholding and page segmentation 

steps are successful to ensure a higher performance rate at the character 

recognition stage. A flowchart of the page segmentation steps is shown in

Chapter 1: Introduction
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Figure 1.3. The resulting image after thresholding and skew correction is passed 

to the page segmentation stage, which goes through block isolation, block 

labeling, feature extraction and classification. In Chapter 5 an overview of the 

available page segmentation techniques and the methods developed for this 

work will be presented.

Binary Image 

Block

Block Labeling 

Feature Extraction 

Block Classification

Figure 1.3: The Block Segmentation Steps

1.3.4 Optical Character Recognition (OCR)

OCR has been the focus of extensive research in the past five decades. The 

United States Postal Services has been using OCR machines to pre-sort mail 

since 1965 [6], Many commercial OCR systems are presently in service and/or 

being developed. Examples of OCR applications include document reading; 

cheque reading, credit card statements and revenue accounting. The research is 

not limited to Latin characters only; there have been a lot of studies in the last 40 

years on other alphabets such as, Arabic, Mandarin, Japanese, and Hindi.

There are two main methods used for OCR, they are matrix matching or template 

matching, and feature extraction. Matrix matching compares scanned character 

images to a library of character templates. By calculating the similarity distance

Chapter 1: Introduction
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measure or applying a Neural Network (NN) classifier the character images can 

be matched. This method is slow since each pixel of the character is taken as an 

input to the classifier. The feature extraction method depends on the type of 

features used and the size of the feature vector. Some of the features, which 

have been used for OCR, are: pixel distribution of each zone in a divided 

character, Hu moment invariants, Zernike moment invariants, histogram 

projection profiles and chain code. Also features can be extracted by 

transforming the characters into different domains using the Fourier Transform or 

the Discrete Cosine Transform.

There are several important processing steps between the input character image 

acquisition and the output class membership decision. The process of character 

recognition consists of a series of stages. Each stage passes its output to the 

next stage in a pipeline fashion. The flowchart in Figure 1.4 shows the character 

recognition process going through the following steps: character isolation, feature 

extraction and classification.

Binary Text Image

Character Isolation
I

Feature Extraction
I

Classification
I

Output Text

Figure 1.4: The Character Recognition Steps
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1.4 Artificial Neural Network (ANN) and Document Analysis

ANN is a powerful data-modeling tool that captures and represents complex 

input/output relationships. ANN resembles the human brain in acquiring 

knowledge through learning and storing knowledge within inter-neuron 

connection strengths. ANN’S power lies in its ability to present both linear and 

non-linear relationships and in the ability to learn these relationships directly from 

the data being modeled. ANN has been used in many applications including 

pattern recognition, which includes the areas of page segmentation and OCR. In 

this work, the use of ANN in thresholding grey level images will be the focal point 

of this dissertation. In Chapter 2, an overview of the different kinds of ANNs will 

be presented.

1.5 Research Objectives

There are two main thrusts of the work presented in this thesis. The first is to 

develop a novel local thresholding method based on Neural Network for 

thresholding composite images with complex backgrounds. The second thrust 

provides a feature-based page segmentation using NNs. Also investigated is the 

performance of Character Recognition in such document images.

1.6 Thesis Organization

This thesis is organized into 8 chapters with this first chapter being an 

introduction. Chapter 2 covers different kinds of ANN structures and their 

applications. Chapter 3 represents some of the widely used thresholding 

methods. Chapter 4 presents a novel local thresholding technique for composite 

documents with complex backgrounds. Chapter 5 provides an overview on page 

segmentation techniques and presents the techniques used in this research 

work. Chapter 6 gives a brief literature survey on OCR and its implementation in 

this work. Chapter 7 provides the verification and experimental results. Finally, 

Chapter 8 presents the conclusion of this thesis.
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Chapter 2
Neural Networks

2.1 Introduction

Artificial neural networks (ANNs) go by many names such as 

connectionist models, parallel distributed processing models, 

neuro-morphical systems, self-organizing systems and adaptive 

systems. ANNs are composed of simple elements operating in 

parallel. These elements are inspired by the biological nervous 

systems. An ANN is an information processing structure that tries 

to imitate human abilities in perceptron, vision, associative memory 

and pattern recognition.

ANNs are being developed as a technological discipline that can 

automatically develop operational capabilities to adaptively respond 

to information environment. An ANN is either a hardware or a 

computer program that strives to simulate the information 

processing capabilities of its biological exemplar. ANNs are 

typically composed of a great number of interconnected artificial 

neurons, which are simplified models of their biological 

counterparts. ANNs acquire knowledge through learning and store 

this knowledge within the inter-neuron connection strengths known 

as weights.

ANNs provide an analytical alternative to conventional techniques, 

which are often limited by strict assumptions of normality, linearity,
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variable independence etc. The true power of ANNs lie in their ability to 

represent both linear and non-linear systems and in their ability to learn the 

relationships directly from the data being modeled.

2.2 How Do Neural Networks Work?

Commonly, ANNs are adjusted, or trained so that a particular input leads to a 

specific desired or target output. Figure 2.1 shows the block diagram for a 

supervised learning ANN, where the network is adjusted based on comparing the 

neural network (NN) output to the desired output until the network output 

matches the desired output. After the network is trained, the network can be 

used to test new input data using the weights provided from the training session, 

the input data is fed through a NN structure to get an output.

Desired
Output

Output /Neural Network 
System Compare

Input

Adjust
Weights

Figure 2.1: Supervised Learning of ANNs
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2.3 The History of ANNs

The evolution of ANNs has not been smooth. The research in this field has been 

under way since the 1940s, the decade of the first electronic computer. Most of 

the mathematical models were developed in the 1950s and early 1960s. The 

first significant step took place in 1957 when Rosenblatt introduced the first 

concrete neural model, the perceptron. Rosenblatt also took part in constructing 

the first neuro-computer, the Mark I Perceptron. The Rosenblatt original model 

contained only one layer; from this a multi-layered perceptron (MLP) model was 

derived in 1960. In the early 1960s to early 1980s, due to restrictions inherent in 

the technology, the research in this area drastically came to halt. In the early 

1980s the field of NNs led to a new resurgence due to the development of new 

net topologies, new Very Large Scale Integration (VLSI) implementation 

techniques, as well as a deeper understanding of how the human brain works [7],

The use of MLP was complicated by the lack of suitable learning algorithms and 

it was not until 1974 when Werbos introduced the back-propagation algorithm for 

the three-layered perceptron model. The application area of MLP networks 

remained rather limited until 1986 when a general back-propagation algorithm 

was introduced by Rummerlhart and Mclelland [7][8], In 1982, Hopfield [9] 

introduced his idea of a NN, which consists of only one layer whose neurons are 

fully connected to each other. Since then, new versions of the Hopfield model 

were developed, such as the Boltzmann machine which was influenced by the 

Hopfield and the MLP models. Adaptive Resonance Theory (ART) was first 

introduced by Carpenter and Grossberg [10] in 1983, and advanced models were 

developed since then, ART II, and ART III models. Radial Basis Function (RBF) 

networks were first introduced by Broomhead and Lowe [11] in 1988 which was 

based on the basic idea of RBF developed under the name potential function. 

Self Organizing Maps (SOM) were introduced by Kohonen [12] in 1982. This 

model organizes itself based on the input patterns with which it is trained.
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2.4 The Structures of ANNs

ANNs can be classified according to the structure that they exhibit. In this 

section four commonly used structures will be presented [7],

2.4.1 The Multi-Layered Feed-forward Network Model

Figure 2.2 represents the structure of a multi-layered feed-forward network. The 

neurons in this model are grouped in layers, which are connected to the direction 

of passing signal. There are no lateral connections within each layer and no feed- 

backward connections within the network. The commonly known type is the 

perceptron.

Hidden Layer

Input Layer

Figure 2.2: Multi-Layer Feed-forward Network 

2.4.2 Single-Layered Connected Network Model

The single layered fully connected network model shown in Figure 2.3 is laterally 

connected to all neighboring neurons in the layer and the neurons are both input 

and output neurons. An example of such a model is the Hopfield model.
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Figure 2.3: Single-Layered Connected Network

2.4.3 Feed-forward / Feed-backward Network Model

In this model, the neurons are connected in both directions, Figure 2.4. As a 

pattern is passed through the network it resonates a certain number of times 

between the layers before a response is received from the output layer. An 

example of such a system is the ART network.

*  Y i

*  y 2

*  y u

Figure 2.4: Feed-forward / Feed-backward Network
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2.4.4 Organized Feature Map Models

In this model, which is shown in Figure 2.5, each neuron contains a feature 

vector. As a pattern from the training data is passed to the network, the neuron 

whose feature vector is closest to the input vector is activated. This is called the 

Best Matching Unit (BMU) and is updated to reflect the input vector causing the 

activation. An example of such a network is the Self-Organizing Map (SOM) of 

Kohonen.

/  Output

Figure 2.5: Organized Feature Map Network

2.5 Learning Methods of ANNs

Children learn that green fruits are sour while yellowish/reddish ones are sweet. 

The learning happens by adapting the fruit picking behavior. On the other hand, 

ANNs learn by adjusting the synaptic strengths between neurons, eliminating 

some synapses and building new ones. The learning methods used for ANNs
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can be classified into supervised and unsupervised learning. If the learning 

phase is distinct from the operation phase then it is said that the network learns 

off-line. If the learning phase and the operation phase are performed at the 

same time then the network is learning on-line. Usually, supervised learning is 

done off-line where as unsupervised learning is performed on-line.

2.5.1 Supervised Learning

In supervised learning, a desired output result for each input vector is required 

when the network is trained. An ANN of supervised learning, such as the MLP, 

uses the target result to guide the performance of the neural parameters. It is 

thus possible to make the neural network learn the behavior of the model under 

study.

2.5.2 Unsupervised Learning

Unsupervised learning is based on local information. This type of learning self- 

organizes data presented to the network and detects its properties. Hebbian 

learning and competitive learning models are paradigms of unsupervised 

learning. Unsupervised learning of ANNs, such as the SOM, can be used for 

clustering the input data and finding features inherent to the problem.

2.6 Multi-Layer Perceptron (MLP)

MLP is the most common NN model. MLP is a hierarchical structure of several 

perceptrons, which uses supervised training methods to train the NN. The 

training of such a network with hidden layers is more complicated than a single 

perceptron which does not contain any hidden layers. This is because when 

there exists an output error, it is hard to know how much error comes from the 

input node, how much from other nodes and how to adjust the weights according 

to their respective contributions to the output layer. The problem can only be 

solved by finding the effect of all the weights in the network. This is solved by 

using the back-propagation algorithm which is a generalization of the least-mean-
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square (LMS) algorithm. The back-propagation algorithm uses an iterative 

gradient technique to minimize the mean-square-error between the desired 

output and the actual output of the MLP. The training procedure is initialized by 

selecting small random weights and internal thresholds. The training data are 

repeatedly presented to the network and the weights are adjusted until they 

stabilize which means the mean-square error is reduced to an acceptable value. 

The whole training sequence involves forward phase and backward phase. The 

forward phase estimates the error and the backward phase modifies the weights 

to decrease the error. The back-propagation training algorithm [13]-[15] will be 

explained in details next.

2.6.1 Derivation of Back-Propagation Training Algorithm

MLPs contain many layers: the input layer, the hidden layers and the output 

layer. Figure 2.6 shows the MLP connections for a network with only one hidden 

layer. The input nodes and the hidden nodes are connected via variable weights 

using feed-forward connections. The output of the hidden layer nodes is 

connected to the input of the output layer nodes via weights. The network has N 
continuous inputs, M outputs, and in between is a hidden layer.

The outputs of the hidden layer are connected according to equation (2.1). The 

inputs are weighted and passed through the activation function, the sigmoid 

function, f s, equation (2 .2 ).

x j  ( 0  =  f s ( -  j  ( 0 ) (2 .1)

Where f s( : / ( * ) ) -  (l) ~
\ - e

(2 .2 )

and z y W  =  - Q j ) (2.3)
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where x) is the output of the hidden node j , x* is the input element of the input

node i of the training pattern 5 , is a threshold value of the hidden node j ,

and wv is the weights from neurons in the input node / to the hidden node j .

The hidden node values propagate in the forward direction to the output layer 

nodes. The outputs of the output layer nodes are calculated in a similar fashion 

as the output of the hidden nodes. The output of the network is shown in 

equation (2.4).

Figure 2.6: Multi-Layer Perceptron Neural Network
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y k  ( 0  =  f s  ( z k  ( 0 ) (2.4)

where Js \ ~k V ) )  ~  i - z, (t )
l - e  A

(2.5)

N

and (2.6)

k  =  1, 2, . . . , M

where ^  is the output of the node k , is the output of the node j , Gk is the 

threshold value of the output node k and w]k is the connection weight from the 

hidden node j  to the output node k . The calculated output is then compared 

with the target output. The total square mean error, ETOT, is computed using all 

the training patterns of the calculated and target outputs. The total error, ETOT, is 

defined as:

where y sk is the calculated output for the training pattern s , fk is the target output 

value for the pattern s, P  is the number of training patterns and M is number of 

output nodes in the output layer.

The delta rule computes the gradient of the total error with respect to each weight 

and then the weights are altered in a direction opposite to the measured gradient. 

The equation for updating the weights is defined as

|  p M

(2.7)
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w(t +1) = w(t) -  i j
dw (2 .8)

where w(t) is the current weight, w(t + \) is the new weight, 77 is the learning rate

dETOTconstant and —- —  is the gradient of the total error with respect to the updating
OW

weights. The calculations of the gradient of the error with respect to the weights 

between the hidden layer and the output layer is given below. For simplicity, the 

derivation is given for one training pattern.

Using the chain rule

dE dE dyk dzk
(2.9)

From equations (2.7) and (2.9)

(2 .10)

From equations (2.4), (2.5) and (2.9)

(2 .11)

2 e~z‘ (,) 

( l + 1 + e~‘ ’ m  J J 2 (1 -6v)2)
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Then (2.12)

8zk
Similarly, ^

jk
(2.13)

Combining equations (2.10), (2.11) and (2.12) the gradient of the error becomes

Equation (2.14) shows the gradient of one pattern error E (output node k)  with 

respect to weight wJt. For all training patterns the equation becomes

where P is the number of patterns in the training set and 8^ is the gradient of the 

error for the training pattern s .

The weights between the hidden nodes and the output nodes are updated after 

computing the gradient of the total error with respect to the weights. The 

equation for updating the weights between the hidden nodes and the output 

nodes is

where (2.15)

(2.16)
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(2.17)

To update the weights between the input and the hidden layers the gradient of 

the error with respect to the weights between the input and the hidden layers can 

be calculated as follows. First, the gradient of the error of one output node with 

respect to the hidden nodes is calculated then the actual gradient error with 

respect to the hidden nodes is calculated by summing all the gradients of error of 

all the output nodes with respect to the hidden nodes. The gradient of the error 

form one output node k , using the chain rule

dE dE dyk dzk

dx'j dyk dzk dx)

From equations (2.10), (2.12) and (2.15)

(2.18)

(2.19)

From equations (2.6) and (2.18)

(2 .20)

Then from equations (2.19) and (2.20)

dE
_ I

(2 .21)
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The above equation, equation (2.21), applies to one output node k . Therefore, 

the actual gradient for the hidden node j  is

dE M

dx k=l
(2 .22)

The gradient error with respect to the weights is
dE

dvt',.

Using the chain rule

dE _ dE dx j  dzj 

dwjf dx ■ dzf dwjf (2.23)

From equations (2.1), (2.2) and (2.12)

d x

dz (2.24)

From equations (2.3) and (2.12)

dz,
1 = x !

dwlf (2.25)

dE

dw_v V-V Z  k = 1 J

x s = 5  x si j  i (2.26)

Where ^ j
\ -

< W -
A-l

(2.27)
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Equation (2.26) shows the gradient of one pattern error, and for all training 

patterns the equation becomes.

where P is the number of patterns in the training set and 8J is the gradient of the 

error in the hidden node j  with respect to the weights for the training pattern 5 . 

The weights between the input nodes and the hidden nodes are updated after 

computing the total error gradient with respect to the weights. Equation (2.29) 

gives the updating of the weights

After all the weights are updated the NN is tested for error, if the error is 

acceptable then the training is complete. Otherwise the training process is 

repeated and the error is calculated using equation (2.7).

The recognition process uses the calculated weights then data is provided as an 

input to the NN and the output is computed using equations (2.1) and (2.4). The 

combination of 1 ’s and 0 ’s in the output resembling a trained pattern provides a 

basis for recognition. Otherwise, the input is unknown to the NN.

2.6.2 Training Steps for MLP Neural Network

Figure 2.7 shows the training steps for the MLP Neural Network.

(2.28)
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Figure 2.7: Training Steps for MLP Neural Network 

2.7 Advantages and Disadvantages of ANNs

The major advantages and disadvantages of NNs in modeling applications are as 

follows

2.7.1 Advantages of ANNs

• NNs have high tolerance to noisy data.

• NNs have the ability to model multi-dimensional nonlinear relationships.

• Neural models are simple and the model computation is fast.
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• Parallel implementation is easy.

• NNs Learn from example, are capable of generalizing data, which makes 

it possible to process new, imperfect and distorted data.

• There is no need to assume an underlying data distribution such as 

usually is done in statistical models.

• It is easier to update neural models whenever device or component 

technology changes.

• NNs can handle different kinds of environments such as dynamic and 

complex.

• NNs have the ability to implicitly detect complex nonlinear relationships 

between dependent and independent variables.

2.7.2 Disadvantages of ANNs

• The individual relations between the input variables and the output 

variables are not developed by engineering judgment, so the model tends 

to be a black box or input/output table without analytical basis.

• Minimizing over fitting requires a great deal of computational effort.

• The back propagation networks tend to be slower to train than other types 

of networks and some times require thousands of epochs. However, the 

speed of most current machines is such that this is typically not an issue.

2.8 Applications of ANNs

ANNs have been successfully applied to broad spectrum of applications. This 

section is based on reference [105], which gives an excellent overview on Neural 

Networks and its applications. Four different areas of research that are of great 

significance will be discussed to give some feel on the different kinds of problems 

that can be solved using ANNs. These areas of research are:

Chapter 2: Neural Networks

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

25



University of Windsor

2.8.1 Classification

Classification involves dividing an n-dimensional space into various regions, and 

given a point in space one should tell which region to which it belongs. The feed

forward types of networks are widely used in this area. Some examples of 

classification include pattern recognition, character recognition, face recognition 

voice recognition, target detection, and medical diagnosis.

2.8.2 Prediction

The feed-forward types of networks are widely used in this area to train networks 

to produce outputs that are expected given a particular input. Some examples 

of such applications are stock market prediction, bankruptcy prediction, sales 

forecasting and dynamic system modeling.

2.8.3 Data Mining

ANNs can be used to analyze data that are complicated and there is no obvious 

way to classify them into different categories. This is done by identifying special 

features from the data then classifying them into different categories without prior 

knowledge of the data. Applications are in clustering, data visualization and 

data extraction. The types of networks used in data mining applications are 

Simple Competitive Networks, ART networks, and Kohonen Self-Organizing 

Maps.

2.8.4 Association

A network can be trained to remember a number of patterns, so that when a 

distorted version of a particular pattern is presented, the network associates it 

with the closest one in its memory and returns the original version of that 

particular pattern. These kinds of networks are also useful in restoring noisy 

data. Image compression is an example of an application that uses associative 

networks.
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2.9 Summary

NNs are powerful data modeling tools that are able to capture and represent 

complex input/output relationships. The motivation for the development of NN 

technology stemmed from the desire to develop an artificial system that could 

perform intelligent tasks similar to those performed by the human brain. Because 

an ANN can capture many kinds of relationships it allows the user to quickly and 

relatively easily model phenomena, which may have been very difficult or 

impossible to explain otherwise. The feed-forward MLP NN structure is the most 

popular model and has been used in many applications. Neural networks can 

now pick stocks, approve loans, deny credit cards, tweak control systems, grade 

coins, and inspect work. The use of NN in document analysis systems will be 

shown in Chapters 4, 5 and 6.
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Chapter 3
Thresholding Literature Survey

3.1 Introduction

Document images, as a substitute of paper documents, have been 

the primary information medium in our society. This makes 

document image analysis an important area of research in image 

processing, pattern recognition and computer vision. The goal of 

our research is to process gray level composite document images 

with complex backgrounds, bad illumination and poor contrast by 

applying thresholding to extract text from the background. Most of 

the research in the area of Character Recognition (CR) has been 

performed on documents with uniform distribution or documents 

having plain background and few algorithms have dealt with 

extracting text from composite images with complex backgrounds 

or poor quality documents. Image thresholding still remains a 

problematic source of errors in document image analysis system. 

The thresholding technology is still rather fragile, especially in 

removing background noise in images with poor quality or complex 

structure, which in turn causes ambiguities that jeopardise the 

character recognition rate.

Many researchers have investigated image thresholding and there 

are many thresholding algorithms published in the literature, and 

selecting an appropriate one can be a difficult task.

Chapter 3: Thresholding Literature Surv ey

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

28



University of Windsor

The problem is that different algorithms typically produce different results since 

they make different assumptions about the image contents. For example, some 

techniques require the class distributions to be normal others deal with text only. 

Thresholding or binarization of documents can be categorized into two main 

classes: global and local thresholding. Global thresholding techniques use a 

single threshold; on the other hand local thresholding techniques compute a 

separate threshold based on the neighbouring pixels.

3.2 Global and Local Thresholding Techniques

In order to convert a gray scale image to a binary image, a threshold is chosen. 

The threshold is set at a certain value between black (0) and white (255). Pixels 

with a gray level above the threshold are set to one or white (255) and all other 

pixels are set to zero or black. This produces a binary image of black objects on 

a white background (or white on black, depending on the original distribution). 

Therefore; thresholding is used to segment an image depending on the threshold 

value. The conventional thresholding operator uses a global threshold for all 

pixels, but local thresholding changes the threshold over the image. This 

adaptive thresholding can accommodate changing lighting conditions in the 

image, such as strong illumination gradient.

3.2.1 Global Thresholding Techniques

The research in the area of image analysis and segmentation produced 

hundreds of techniques for extracting text from gray scale images. Some of the 

widely used global thresholding algorithms found in the literature are explained 

below.

The Otsu [4] algorithm is the most popular global thresholding method and is 

based on discriminant analysis and uses cumulative moments of the histogram to 

calculate the optimal threshold value. The Otsu method works well when the
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classes can be distinguished and fails in images with complex background or 

degraded images.

The Ridler and Calvard [16] algorithm uses an iterative clustering approach 

based on two-class Gaussian mixture models. At iteration n , a new threshold Tn 

is established using the average of the foreground and background class means. 

The optimal threshold, Toptikul , is defined as

TOPTIMAL ~  (3.1)W->00

^  _ M f ( T n) +  n b{Tn) 
where l n+\ ~ -------------------------

where n f and juh are the mean values of the foreground and background 

respectively. In practice, iterations terminate when \Tn- T n+x\ becomes 

sufficiently small.

Reddi et al. [17] developed a fast search scheme for finding single and multiple 

thresholds that maximize interclass variance between dark and bright regions 

based on a criterion proposed by Otsu [4], Otsu reduced the problem to an 

optimization problem. Reddi et al. provided an alternative search method to the 

thresholding problem. Sid-Ahmed [18] proved that the problem could be reduced 

to the simple iterative algorithms conjectured by Ridler and Calvared [16],

The Rosin [19] algorithm fits a straight line from the peak of the intensity 

histogram to the last non-empty bin. The point of maximum deviation between 

the line and the histogram curve will usually be located at a corner which is 

selected as the threshold value. The Tsai [20] algorithm determines the 

threshold so that the first three moments of the input image are preserved in the 

output image. Both the Rosin and Tsai methods suffer from the shadow and the 

compression / edge noise.
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Parker’s [21] Method, also called intensity gradient-based method is very useful 

for badly illuminated document images, however; it cannot segment text 

characters in documents with complex backgrounds.

The Kapur et al. [22] algorithm uses the entropy of the image; it considers the 

image as two classes of events each characterized by a probability distribution 

function. The method then maximizes the sum of the entropy to converge to a 

single threshold value.

Abutaleb’s [23] method, also called entropic thresholding, uses spatial entropy 

information to generate the optimal threshold followed by a two-dimensional 

thresholding to classify the pixels.

The Quadratic Integral Ratio (QIR) method [24] is a global two-stage thresholding 

approach. In the first stage, the image is divided into three classes of pixels: 

foreground, background and a fuzzy class where it is hard to determine whether 

a pixel actually belongs to the foreground or the background. During the second 

stage, a final threshold value is chosen in the fuzzy region. This method works 

quite well on images, which have constant or homogenous background. The 

QIR depends on the bimodal histogram; therefore, it does not perform well on 

noisy images or those with complex backgrounds.

In [25], Leedham et al. compared different global thresholding techniques for 

multi-stage thresholding and concluded that the QIR method is more accurate in 

separating foreground from background in complex images leaving a range of 

undecided fuzzy pixels for later processing in a subsequent stage.

Sahoo et al. [3] compared the performance of more than 20 global thresholding 

algorithms using uniformly or shape measures. The comparison showed that 

Otsu’s class separability method gave best performance. On the other hand, in 

an evaluation for change detection by Rosin [26], Ridler and Calvard, and Otsu 

algorithms performed very poorly compared to other global methods. In [1], Trier
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and Jain’s, OCR goal directed evaluation study, four global and 11 local 

thresholding techniques were examined and from the global methods the Otsu’s 

method outperformed the other three global methods. In [27], Fischer compared 

15 global methods and also confirmed that the Otsu method is preferred in 

document image processing.

3.2.2 Local Thresholding Techniques

Local thresholding methods developed in the literature are mainly developed for 

specific applications and most of the time they do not perform well in different 

applications. The results could be over thresholding or under thresholding 

depending on the contrast and illumination. Some of the developed local 

thresholding methods are Bernsen’s [28], which uses the threshold

T(x,y)  = (PL +PH) /2  (3.2)

Where PL and PH are the lowest and highest gray level pixel values in a square 

neighbourhood of size N x N  about the pixel (x j; ) .  However, if the contrast 

measure is below a certain parameter then the window consists of background 

only.

The Chow and Kaneko’s [29] algorithm divides the image into non-overlapping 

windows, and the histograms for each window are tested for bimodality. As part 

of the bimodality test each histogram is approximated by a mixture of two 

Gaussian distributions. A threshold is calculated based on the means and 

standard deviations of the bimodal mixture distribution for each window. The 

thresholds are then interpolated to estimate thresholds for the unimodal windows. 

Finally, the window thresholds are smoothed and the thresholds for the individual 

pixels are determined by a bilinear interpolation of the window thresholds.

The Nakagawa and Rosenfeld’s [30] method is a slight modification of Chow and 

Kaneko's method, it divides the image into non-overlapping windows and the
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histogram for each window is tested for bimodality. Each histogram is 

approximated by a mixture of two Gaussian distributions. Let /ix and //, be the 

estimated mean values, and a, and a 2 be the estimated standard deviations of 

the two distributions. Also, let a tot be the total standard deviation and RlT be the

valley-to-peak ratio. Then the bimodality test requires the criteria’s in equations 

3 .3 -3 .6  to hold.

^ t o t  Limit (3-3)

f *2~ V \ >  Rumi, (3.4)

r  \

V *̂2 J Min Ratio
(3.5)

R, -o < RIT  <  'P _ Limit (3.6)

For each bimodal window, a threshold is calculated based on the , //,, <j, and 

cr2 parameters of the mixture distribution. Thresholds for the other windows are 

calculated on basis of the thresholds for the bimodal windows. The thresholds 

are first smoothed, and then interpolated to give a threshold surface, having a 

single threshold value for each image pixel. The image is binarized using the 

threshold surface.

The Niblack’s [2] algorithm calculates the threshold by shifting a window across 

the image, and use local mean, / / ,  and standard deviation, 0 , for each centre 

pixel in the window. The threshold value for a pixel within fixed neighbourhood is 

a linear function of the mean and standard deviation of the neighbourhood pixels, 

with a constant gradient of k , which is highly tuneable, to separate objects well. 

Then the threshold T{x,y) is

T  ( t ,  y) = ju O , y)  + k • ct(t, y) (3.7)
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The size of the neighbourhood should be small enough to serve local details, but 

at the same time large enough to suppress noise. The value of k is used to 

adjust how much of the total print object boundary is taken as a part of the given 

object. Zhang and Tan [31] proposed an improved version of Niblack’s 

algorithm:

T(x ,y )  = ju(x,y)- [ \  + k 1
R

] (3.8)

Where k and R are empirical constants. The improved Niblack’s method uses 

parameters k and R to reduce its sensitivity to noise.

Sauvola et al. [32] method, which is a modification of the Niblack’s algorithm 

adapts the threshold according to the local mean and standard deviation over a 

size window n x n . The threshold value is defined as

1 + k
W

1
J)

(3.9)

Where //(/', j )  and c r ( i j )  are the mean and standard deviations. Sauvola et al. 

suggests the value of k = 0.5 and R = 128 to be used in stained and badly 

illuminated documents.

Goto and Aso [33] developed a method based on local multilevel thresholding, 

pixel labelling and region growing. The method has the following stages: local 

multilevel thresholding and initial pixel labelling, edge compensation, creation of 

merging inhibition tables, region growing based on label merging between 

neighbouring sub images and finally decomposed images. This method omits 

the discussion on text locating and requires that the thickness of the character 

stroke to be more than 1.5 pixels.

Yanowitz and Bruckstein [34] suggested using the gray-level values at high 

gradient regions as known data to interpolate the threshold surface of image
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document texture features. The Yanowitz and Bruckstein technique uses a mean 

filter in the processing stage to eliminate noise and the effect of this filter reduces 

the handwriting contrast and fills the holes in both handwriting and printed 

characters producing thickened characters. The resulting binary images produce 

text that is undistinguished during OCR especially when the original image has 

poor resolution as in cheque images and forms.

White and Rohrer’s [35] method compares the gray value of the pixel with the 

average of the gray values in some neighbourhood. If the pixel is significantly 

darker than the average, it is classified as foreground otherwise it is classified as 

background. The method uses two parameters, one is the average 

neighbourhood pixel in a nxn  window, and the other is a bias value.

The threshold value is computed as follows:

i f  H „ { i J ) < I { i J ) * b i a s

Otherwise (3 -10)

In [36], Liang et al. developed a morphological approach to character string 

extraction from regular periodic text/background images that minimizes shape 

distortion of characters. The underlying strategy of the algorithm is to maximize 

the background removal while minimizing shape distortion of characters. 

Although this algorithm is effective on periodic backgrounds there are some 

requirements on the images such as periodic distribution of background, 

character stroke width, and high resolution. These restrictions make it unsuitable 

for images with lower resolution or non-uniformly distributed backgrounds.

nu) =

The background subtraction method [37] consists of several steps. First the 

background is modeled by removing the handwritten from the original images 

using a morphological closing algorithm with a small disk as a structuring 

element. The closing algorithm is effective in removing darker areas, the 

characters are darker than the background and this algorithm is effective in 

removing the dark characters. The background is then subtracted from the
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original image leaving only the handwritten text. Finally, the difference image is 

segmented using a global threshold level produced by Otsu’s algorithm multiplied 

by an empirical constant.

Yang and Yan [38] method considered the problem of poor quality document 

images. The method is demonstrated to be effective for documents which are 

highly deteriorated because of variable illumination, shadow, smears and 

smudges. It is not likely to work well with images with complex background or 

documents with handwriting and italic.

In the literature, several surveys compared different thresholding techniques. 

Trier and Jain [1] evaluated the performance of 11 well-established locally 

adaptive binarization methods. These techniques were compared using a 

criterion based on the ability of an OCR module to recognize handwritten 

numerals from hydrographical images. In this evaluation, the local thresholding, 

Niblack’s method, appears to be the best. This observation was applied for a 

specific application on certain hydro-graphic images using an OCR system which 

uses Kuhl and Giardina’s elliptic Fourier descriptors [39], with a quadratic 

classifier [40], Flowever, as concluded by Trier and Jain, if different sets of 

images used with different feature extraction methods and classifiers, then this 

observation may not be accurate and another method could outperform this 

method.

In [41], Sankur and Sezgin conducted an exhaustive survey on bi-level 

thresholding methods and categorized them into six different groups according to 

the information they are exploiting, such as: histogram shape-based, clustering, 

entropy, spatial, object attributes and local methods. In this survey, a 

comparison was given without any evaluation on their performance to specific 

applications. From this study, it is very clear that the research in this area has 

been very extensive and is far from ending due to the complexity of images and 

the fast progress in computer technology which produces complex backgrounds 

and image patterns. The survey gives a brief description for over 40 bi-level
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thresholding techniques, in addition to some techniques which are modifications 

on the available methods. Some techniques are multi-stage; in the initial stage 

they use a global thresholding technique to decide on the initial threshold value 

then in the next stage further processing is done to decide on the fuzzy pixel 

values in between. Other methods include parameters that are usually obtained 

experimentally and needs to be adjusted for different types of images or 

applications.

3.3 Neural Networks and Thresholding

The use of NNs in bi-level thresholding of gray level images has not been 

thoroughly investigated and very few researchers have investigated the use of 

NNs in image thresholding. In [42], Koker and Sari, use NNs to automatically 

select a global threshold value for an industrial vision system.

The work of Papamarkos [43] produced a local thresholding method using the 

Kohonen SOM classifier to define the two bi-level classes in order to reduce the 

character blurring effect in blurred documents.

3.4 Summary

All the global algorithms need to have a prior knowledge of the image processed 

about the number of peaks in the gray-level histogram. The modality of the 

document image histogram, however, may change from image to image. Thus 

an obvious drawback of these techniques is that they cannot separate those 

areas, which have the same gray level, but do not belong to the same class. 

These methods do not work well for document images with shadows and 

complex backgrounds. In this case, a single threshold or some multilevel 

thresholds could not result in an accurate binary document image no matter how 

the threshold parameters are tuned. Figure 3.1, shows an example of a cheque 

image and Figure 3.2 shows the corresponding image histogram. From the
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images, it is obvious that there is only one peak in the histogram making it 

possible to use any global thresholding method to binarize the image. In this 

example the optimal threshold value will be some where on the left side the peak 

of Figure 3.2.
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Figure 3.1: Example Image with Non-Uniform Background
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Figure 3.2: The Histogram for the Image in Figure 3.1
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Most of the local thresholding methods use the mean and the standard deviation 

in order to distinguish the background from the foreground and several of the 

developed algorithms uses the Otsu algorithm to produce the initial threshold. 

For local thresholding algorithms it appears that none could threshold all images 

well with a set of operating parameters especially those with inhomogeneous or 

complex backgrounds. An example of an image with complex background is 

shown in Figure 3.3 [99] and its corresponding histogram is shown in Figure 3.4, 

the histogram shows 3 peaks, which will make it impossible to use a global 

thresholding method to binarize the image. Therefore, a local method is the 

solution but current available methods do not give good results for such images. 

Also if a threshold value is to be chosen manually for the image in Figure 3.3, no 

threshold value will provide a good separation between the objects and the 

background therefore in the next chapter the results of these images will be 

shown using global, local thresholding methods and a new proposed local 

thresholding method based a NN classifier and textural features.

W ar in Iraq
After months of heated debate about 
how tc pressure IfLtqi leader 
Saddam Hlussein, the U.S.-led 
' ..ilitien <n March 19 attacked the : ■ 
Middle I :r> errs country, ensuing 
military' nmpainn mriudrd the large- 
■ ■ le aerial bombing of Baghdad 
dubbed "shock and awe,** the 
controversial rescue of ROW Army ; 
Rfc J > C O Lyr.-oh . no iho tjII <y 

Hn'jhd.-jcj Hysnmnnt mid nto the tali U.S. RrevOnril George W 
Bs.-.n ,,r-d his chief innuruiiicinal ally Unush Rrimt M.nistei Eoriv 
Blair, ferdeo off criticism about a lack df recovered chemical, 
biologicm or nuclear weapons and continued bloodshed. But 
they, and much of the world, rejoiced m December after 
Saddam's capture.
lip' ; '■ c : i.'. ............ §:• v.' -

Figure 3.3: Example of an Image with Complex Background
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Figure 3.4: The Histogram for the Image in Figure 3.3

3.5 Conclusion

From the global and local thresholding techniques, the Otsu method is the most 

preferred global thresholding method according to most of the surveys in the 

literature. On the other hand, it is impossible to give a clear-cut decision in 

regard to the best local thresholding technique. The difficulty arises from the fact 

that images are scanned using scanners with different properties and resolutions 

on images with different properties and backgrounds. The local thresholding 

algorithms also depend on the parameters extracted from images with complex 

background, which will vary from one image to another depending on the 

illumination, contrast and background complexity. Although many thresholding 

techniques have been proposed most cannot work on the entire image with 

complex backgrounds and in most cases sections or sub-regions of interest are 

processed separately [44], Therefore, no thresholding method is accurate and
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no thresholding method works for all applications or all images. Most of the 

research has proven this point and mainly techniques are being developed for 

certain applications.

NNs have not been extensively used in the area of image thresholding and very 

few researches have been published in literature such as Koker et al [42] and 

Papamarkos [43],

In conclusion, the global and local thresholding methods may perform well in 

case of images with uniform distribution or poor contrast, but they fail in 

composite images with complex background. In the next chapter, a new 

approach for local thresholding using Neural Networks is developed to handle 

images with non-uniform and complex backgrounds.
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Chapter 4
Neural Network Based Thresholding

4.1 Introduction

Bi-level thresholding of document images with poor contrast, non- 

uniform illumination, complex background patterns and non- 

uniformly distributed background is a challenging problem that 

researchers have been trying to solve. The problem is that different 

algorithms tend to yield different results based on the assumptions 

made to the images contents. A new binarization algorithm is 

proposed to deal with a wide variety of documents with non-uniform 

background and illumination. The algorithm proposed uses 

statistical and textural feature measures to obtain a feature vector 

from a pixel window of size (2w + l)x(2w + l), where t i>  1. It then 

uses a Multi-Layer Perceptron Neural Network (MLP NN) to classify 

each pixel value in the image. This technique takes a different 

approach from current methods and its performance is better than 

existing global and local thresholding techniques. This method 

works on a variety of images obtained from different applications. 

The algorithm is considered a local thresholding technique since it 

provides a local understanding of pixels from its neighbourhood.

4.2 Neural Networks and Thresholding

The use of NNs in thresholding grey scale images into two
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levels has not been widely used and very few methods have been developed. 

The technique proposed by Koker and Sari [42], uses NNs to automatically select 

a global threshold value for an industrial vision system. The image is 

preprocessed by using a median filter to eliminate the effects of noise. The input 

to the NN is the frequency of the 256 image grey levels and the output result is 

the threshold value. This method works for a specific application and will not be 

suitable for composite images with complex backgrounds since it depends on the 

histogram of the image.

The method developed by Papamarkos [43] uses SOFM to define two bi-level 

classes. Then, using the contents of these classes fuzzy membership functions 

are obtained to be used with the fuzzy C-mean algorithm in order to reduce the 

character blurring effect. This local thresholding technique uses the Laplacian 

and mean values from a 3x3 window as input features to the network. This 

method is suitable for binarization of blurring documents and is not suitable for 

images with complex backgrounds.

In this chapter, a new threshold selection algorithm is proposed that can handle 

images with non-uniform and complex backgrounds. The new method uses a 

MLP NN with statistical and textural feature measures as inputs to the network. 

The features are extracted from neighbourhood pixels in a window of size 

(2ti + 1) x  (2n +1), where n > 1. This means each pixel is considered as the center 

of the window and a feature vector is calculated from its neighbourhood pixels. 

The classification is decided depending on the feature vector calculated from the 

neighbourhood pixels.

4.3 Statistical Texture Measures

Features are extracted for each cantered pixel in a window of size 

(2m + 1) x  (2m + 1) , where m > 1, then fed to the NN for training, followed by testing 

the network to classify each pixel into its appropriate class. The proposed NN 

local thresholding method, which will be explained in detail in the next section,
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takes advantage of the document’s textural characteristics by considering the 

statistical texture descriptors in a neighbourhood of pixels. The statistical textural 

features are useful in characterizing the set of neighbourhood values of pixels, 

which are related to its moments. These features are mean, variance, standard 

deviation, skewness and kurtosis. The texture descriptors also produce 

measures of properties such as smoothness, uniformity and variability [37], The 

values used in training a MLP NN, which are obtained from windows of size 

(2w + l)x (2 «  + l), where n >  1, taken from various parts of one image and 

repeated over many images are:

4.3.1 Actual Pixel Value

The center pixel p { i j )  in a window of size (2/? +1) x (2« +1), where n > \ ,  was 

taken as the first feature.

4.3.2 Mean

The mean, p i}, of the pixel values in the defined window, estimates the value 

around the pixel in which central clustering occurs.

4.3.3 Standard Deviation

The Standard deviation, crt] , is the estimate of the mean square deviation of grey

pixel value, p(x,y),  from its mean value, p1}. Standard deviation describes the

dispersion within a local region. As the mean depends on the first moment of the 

data, so does the standard deviation depend on the second moment. The 

standard deviation is defined as:
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i+ n  J+n

a .j = (2w+l) x=/-;? v = j - n
(4.2)

4.3.4 Skewness

Skewness, Z , , or third moment, characterizes the degree of asymmetry of a

pixel distribution in the specified window around its mean. Skewness is a pure 

number that characterizes only the shape of the distribution.

1 j+n j+n

Sn =  Y" (2« + l) y~]t„
p ( x , y ) - p .

(4.3)

4.3.5 Kurtosis

Kurtosis, K tJ, fourth moment, is also a non-dimensional quantity. It measures the

relative peakness or flatness of a distribution relative to a normal distribution.

The conventional definition of kurtosis is

K ,
|  i+ n  j+ n

( 2 n  + 1)2 , 5 ,

P ( x , y ) - U i ,

<7.
>•-3 (4.4)

The -3  term makes the value zero for a normal distribution.

4.3.6 Entropy

Entropy, , can also be used to describe the distribution variation in a region. 

Overall entropy of neighbourhood pixels in the window can be calculated as

L - 1

S  =  “ Z  P rA 1oS  T  (4.5)
k=0
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Where Pty is the probability of the kth grey level, which can be calculated as

total number of grey levels in the window [45],

4.3.7 Relative Smoothness

Relative Smoothness, , is a measure of grey-level contrast that can be used to 

establish relative smoothness.

4.3.8 Uniformity

Uniformity, Uv , is a texture measure based on histogram and is defined as:

L - 1

Before computing any of the descriptive texture features above, the pixel values 

of the image were normalized by dividing each pixel by 255 (maximum pixel 

value) in order to achieve computation consistency.

4.4 Description of Local NN Thresholding Method

In this section, the data preparation for training the network is explained followed 

by the training and testing procedures for the NN.

4.4.1 Data Preparation

The aim of this research is to transfer a grey-level image into a bi-level image 

that preserves the textual information of the original grey-level image. The

=k/ (2n + 1)2 , zk is the total number of pixels with the kth grey level and L is the

(4.6)

(4.7)
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proposed technique uses a MLP NN to classify document images into 

background and foreground. In the learning phase, a set of input patterns, called 

the training set, are presented at the input layer as feature vectors, together with 

their corresponding desired output pattern, which usually represents the 

classification for the input pattern. The multi-layer feed-forward neural network is 

trained by supervised learning using the iterative back-propagation algorithm 

[13], which minimizes the mean square error between the network's output and 

the desired output for all input patterns.

Data preparation for training is the first step in any Neural Network design. 

Figure 4.1 shows a screen capture of the data preparation program. The first 

step is to load an image then a point or a pixel in the image is chosen. The user 

then clicks on the background or foreground buttons in order to calculate the 

feature vector of that point. By choosing background or foreground, the user 

knows what the desired value of that pixel should be, for background 1 and for 

foreground 0 is selected. Figure 4.1 shows the features extracted from a window 

of size 9x9. Finally, the process is repeated for different random points in 

different images with complex backgrounds to get a wide variety of features. Ten 

images were used for the data collection, a total of about 1000 feature vectors 

were collected for training. These feature vectors were automatically stored in a 

file then used as inputs to the NN to train the network to produce the weights 

needed for testing the classifier. The possible training data feature could have a 

combination of any of the following set of normalized values:

{  /T A ,/ ) ) Mij i Gy ’ ^ ij > ^ ij > ^ I] > ^ ij  > Uy }
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Figure 4.1: A Screen Capture of the Feature Extraction Program*

4.4.2 The MLP Neural Network System

A block diagram of the NN is shown in Figure 4.2, the features ( A , / , ,  , f N) are

passed as inputs to the NN classifier (i.e. MLP) and the output is the bi-level 

threshold value either 1, white, or 0, black.

* The image if Figure 4.1 is from Reference [100],
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Figure 4.2: Block Diagram for Neural Network Classifier

MLP is the most common NN model; Figure 4.3 shows the proposed network 

with an input layer, a hidden layer and an output layer. MLP is a hierarchical 

structure of several perceptrons, which uses supervised training methods to train 

the NN.

Output Layer

Hidden Layer

Figure 4.3: The Proposed MLP NN Classifier

The training data with the desired output values are repeatedly presented to the 

network and the weights are adjusted until they stabilize which means the mean- 

square error is reduced to an acceptable value. The whole training sequence
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involves forward phase and backward phase. The forward phase estimates the 

error and the backward phase modifies the weights to decrease the error. After 

all the weights are updated the NN is tested for error, if the error is acceptable 

then the training is complete. Otherwise, the training process is repeated and the 

error is recalculated using equation (4.8).

Where y sk is the calculated output for the training pattern s , t sk is the target

output value for the pattern s, P  is the number of training patterns and M  is the 

number of output nodes in the output layer. Once the NN has been trained, the 

weights are used in the classification phase. During classification, image data 

feature vectors extracted from each pixel and its neighbourhood in the image are 

fed into the network that performs classification by assigning a class number, 

either 1 or 0, for each pixel.

4.5 Experimental Results

The NN thresholding method was applied to several images from different 

applications with complex backgrounds. The weights calculated during the 

training process were used in the classification stage to test 120 images. The 

ten images used for the training were also used during testing. The result for 

four different grey level images will be shown, Figure 4.4, shows an image with 

bad illumination scanned at 150dpi, Figure 4.5, shows a cheque image with 

complex background scanned at 150dpi, Figure 4.6 [99] and Figure 4.7 [101] 

show composite images with complex backgrounds scanned at 200dpi and 100 

dpi respectively. These images will be referred to as Example 1, Example 2, 

Example 3 and Example 4 respectively. The results for each example will show 

how each image was thresholded using the proposed NN local thresholding
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method and comparing it to the Otsu [4] and Niblack’s methods [2], The 

thresholding results are shown in Figures 4.8 -4.19.

THE U N I VE R S I T Y  OF WINDSOR I S  READY FOR 
INCOMING STUDENTS WHO ARE UNDER THE LEGAL 
DRI NKI NG AGE, 19 YEARS OLD. IN CANADA. THE 
DIRECTOR OF CAMPUS POLI CE 0 F THE U N I V E R S I T Y  
SAID ALTHOUGH HE A N T I C I P A T E S  A GREATER NUMBER 
OF UNDERAGE DRUNKEN OFFENDERS, THE INCREASE  
DOES NOT POSE A GREATER PROBLEM THAN PREVIOUS  
YEARS.

E XT ENSI VE  PREPERATION FROM VARIOUS AREAS ON 
CAMPUS INCLUDI NG RESIDENCE L I F E  SERVICES,  CAMPUS 
POLICE , MANAGEMENT AT THE THI RSTY SCHOLAR AND 
t h e  U N I V E R S I T Y  OF WINDSOR STUDENTS. ALL 1ENCE 
CAN BE CREDITED FOR THE CONSIDERATION.

Figure 4.4: Example 1, Image with Bad Illumination
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Figure 4.5: Example 2, Cheque Image with Complex Background
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In early 2003, Californians pointed § 
fingers as their state struggled with a 
$38 billion budget deficit and a 
continuing energy crisis. Republicans 
set their sights on Democratic Gov.
Gray Davis, attemoting to make him the 
second governor in U.S. testpry to be

 ......................
ailed. On Octbber 7, the majority of voters decided to oust 

Davis, then chose a successor from among 135 candidates.
One of Hollywood's own took Davis' place -  bodybuiIder-turned- 
actor Republican Arnold Schwarzenegger.

^ ________________JL__________ - ...___________________ uttd........ ■UUuv,.. .;C
■

Figure 4.6: Example 3, Composite Image with Complex Background

Love Him, H a te  Him 
P re s id e n t

Tnere is  an axiom in  
American p o l i t ic s  tha t  
says whenever a s i t t in g  
President is  running 
fo r  a second term, the 
e lection  is  more a 
referendum on him than 
a judgment on his 
opponent.

president George w. Bush has taken th is  
truism to a new le v e l ,  w ith ju s t  under 
a year to  go before Nov. 2,  200-4, 
Americans are a"ready find ing  ways to  
show how passionately they feel abogt 
th e i r  President.

Figure 4.7: Example 4, Composite Image With Complex Background

From Figure 4.8, the proposed local NN thresholding method gave the best 

results, followed by the Otsu method [4], Figure 4.9. The NN thresholding 

method completely removed the background from the whole image leaving only 

text. The Otsu method failed to remove some small parts, circled in Figure 4.9
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due to the non-uniform background and bad illumination of the original image. 

On the other hand, the Niblack method [2], Figure 4.10, performed the worst 

since it failed to remove most of the background from the image.

THE U N I V E R S I T Y  OF WI ND  
I N C O M I N G  S TU D EN T S WHO 
D R I N K I N G  AGE 19 YEARS  
D 1R E c r u n  OF COMPOS POL 
S A I D  ALTHOUGH HE A N T I C  
Or UNDERAGE DRUNKEN OT 
DUE S NO 1 I’ OSI  A GKi A l i  
YEARS.

E X T E N S I V E  PRF  
AREAS ON COMPUS I N C L U D  
S ERVI CES,  CAMPUS P O L I C E  
T H I R S T Y  SCHOLAR AND TH 
STUDENTS,  A L L I E N C E  CAN 
C O N S I D E R A T I O N ,

SOR I S  READY FOR 
ARE UNDER THE LEGAL  

OLD. I N  CANADA. THE 
ICE' Ol' *1 HF. U N I V E R S I T Y  
I P A T E S  A CREATE RE NUMBER 
TENDERS.  THE I NCREAS E  
R PROUKEM THAN P R E V I O U S

PF K A I Jl )N I ROM V Al i i  OHS 
I NG R E S I D E N C E  L I F E  

, MANAGEMENT AT THE  
t  U N I V E R S I T Y  OT WI NDSOR  
BE C R E D I T E D  FOR THE

Figure 4.8: Binarization Result of Example 1 Using Proposed Method

THE U N I V E R S I T Y  O F  WI NDSOR I S  READY FOR
I N C O M I N G  S T U D E N T S  WHO ARE UNDER THE LEGAL
D R I N K I N G  AGE, 1 9  YEARS OLD, I N  CANADA. THE
D I R E C T O R  OF COMPUS P O L I C E  O f  THE U N I V E R S I T Y
S A I D  ALTHOUGH HE A N T I C I P A T E S  A GREATERE NUMBER 
OF UNDERAGE DRUNKEN OFFENDERS,  THE I NCREASE. . . —
D OE S NOT P O S E  A G R E A T E R  P R O G K E M  T H A N  P R ^ ' l O U S
YEARS,  ’  /  . \

( '  * - I
E X T E N S I V E  PREP EftA T I O N  FROM V A R I O U S  '  

ARE.rSt.S--&N— COMPUS I N C L U D I N G  R E S I D E N C E  L I F E \  - „
/ S E f v U E S .  C A M P U S r p Q L  I C E  , MANAGEMENT AT T H E "

{  T H I R S T Y  SCHOLAR A N ti\ THE U N I V E R S I T Y  OF WI NDSOR  
i -STUDENTS, A L L I E N C E  citN  BE C R E D I T E D  FOR THE

\£ O N S  1 DEJIAT ION.

Figure 4.9: Binarization Result of Example 1 Using Otsu Method
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/,THE U N I V E R S I T Y  OF WI NDSOR I S  READY FOR 
I N C O M I N G  STUDENT S  WHO ARE UNDER THE LEGAL  
D R I N K I N G  AGE, 19  YEARS OLD, I N  CANADA.  THE  
D I R E C T OR  O F * C A M P U S  P O L I C E  OF THE U N I V E R S I T Y  
S A I D  ALTHOUGH HE A N T I C I P A T E S  A GREATER NUMDE 
OF UNDERAGE DRUNKEN 0 F F E N D E R S, T H E I N C R E A S E 
DOES NOT POSE A GREATER PROBLEM THAN P R E V I O U S  
Y E A JLS.— ^  -------

/

R

t

E X T E N S I V E  PREPERAT  I ON FROM V A R I O U S  AREAS ON |> 
CAMPUS I N C L U D I N G  R E S I D E N C E  L I F E  SERVI CES,  CAFl'fU 
P O L I C E  , MANAGEMENT AT THE T H I R S T Y  SCHOLAR AND 
THE U N I V E R S I T Y  OF WI NDSOR STUDENTS,  A L L I E N C E  . \r. 
CAN BE C R E D I T E D  FOR THE C ON S I D E R A T I O N .  . . f . . U

Figure 4.10: Binarization Result of Example 1 Using Niblack’s Method

Figure 4.12 and Figure 4.13, show both the Otsu [4] and the Niblacks [2] 

methods performing very poorly on Example 2 with the resulting images not 

suitable for further processing. For the Niblacks method the result shows all the 

characters merged together which make it impossible to recognize those 

characters during OCR. The Local NN method showed some minor 

misclassifications which occurred at the edge of the cheque image and do not 

interfere with the fields of the cheque giving results suitable for further processing 

such as OCR.

V .
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o R m a i o f

► C a n a d a  B a n k

. /TOO DOIL-LAS

iSQDDD Q 50 Of i?3

Figure 4.11: Binarization Result of Example 2 Using Proposed Method
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YASSER M ALGINAtU 
7-1207 LABOUR CRES 
WINDSOR ON N8W 5K 6^H i

MBNA C a n a d a  B a n k  
*@t t a w a  (O n t a r io )

SIGNATURE
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n o o  D o llar s

Figure 4.12: Binarization Result of Example 2 Using Otsu’s Method

Figure 4.13: Binarization Result of Example 2 Using Niblack’s Method

Figure 4.14 - 4.16 show the thresholded images for Example 3. Here the Local 

NN method outperformed the other two methods. The text is very clear since the 

resolution of this image is higher than the other examples.
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In early 2003, Californians pointed 
fingers as their state struggled with a 
$38 billion budget deficit and a 
continuing energy crisis. Republicans 
set their sights on Democratic Gov.
Gray Davis, attempting to make him the 
second governor in U.S. history to be

recalled. On October 7, the m ajority o f voters decided to oust 
Davis, then chose a successor from among 135 candidates.
One o f Hollywood's own took Davis' place — bodybuilder-turned- 
actor Republican Arnold Schwarzenegger.

Figure 4.14 Binarization Result of Example 3 Using Proposed Method

In early 2003, Californians pointed 
fingers state struggied with a /<?
$38 b illfe m ild ^ e t deficit saWa j ( "
continuirjg-errbrgy crisis.'sR©pbblicans 
set their sights on Democratic Gov.
Gray Davis, attempting to make him the,,—  

^  second ̂ g ^ ^ n o r  in U.S.H£Ppfy to b e ^

. recalled. On October 7, the majdrify b f voters deCided to oust 
Davis, then chase a successor from among 135 candidates. 
jO n e g f H ollyw pod'^own took pavis^ place -  bpdyhiJilder-turned” 

( actor Republican Arhold Schvvarzenegger. ( \  (

J

Figure 4.15: Binarization Result of Example 3 Using Otsu’s Method
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continuing energy crisis. Republicans! 
sot their sights on Democratic Gov. j »■ 
Gray Davis, attempting to make him the 
second governor in U.S. history to be

recalled. On October 7, the majority of voters decided to ovist 
j  Davi$, then chose a successor from among 135 candidates*.
\ O n e JtytHoJ lyweed-s-ewn-t eok- -Etavts-ptaee— bodybuiiclaMurjp:- 

Republican Arnold Schwarzenegger. . , \
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Figure 4.16: Binarization Result of Example 3 Using Niblack’s Method
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Finally, Figures 4.17 - 4.19 show the results for Example 4. The local NN 

thresholding method outperformed the other two methods. Figure 4.17 shows a 

small area that was misclassified as foreground instead of background, but this 

area is very small and does not affect the text on the image. With some post

processing this can be eliminated depending on the application. The Otsu [4] 

resulted in very clear text, but with some parts of the background classified as 

foreground. On the other hand, the Niblacks [2] method produced noise for most 

of the background that was misclassified as foreground.

p r e s i d e n t  George  W. Bush h a s  t a k e n  t h i s  
t r u i s m  t o  a new l e v e l ,  w i t h  j u s t  u n d e r  
a y e a r  t o  go b e f o r e  Nov.  2 ,  2 004 ,  
A m e r i c a n s  a r e  a l r e a d y  f i n d i n g  ways t o  
show how p a s s i o n a t e l y  t h e y  f e e l  a b o u t  
t h e i r  P r e s i d e n t .

Figure 4.17: Binarization Result of Example 4 Using Proposed Method

^  Love  H im ,  H a te  Him 
"1 .",.^!. P r e s i d e n t

T h e r e  i s  an ax iom  i n  
A m e r i c a n  p o l i t i c s  t h a t  
s a y s  w h e n e v e r  a  s i t t i n g  
P r e s i d e n t  i s  r u n n i n g  
f o r  a s e c o n d  t e r m ,  t h e  
e l e c t i o n  i s  more a 
r e f e r e n d u m  on him t h a n  
a j u d g m e n t  on h i s  
o p p o n e n t .

"\
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L o ve  H im , H a te  Him  
P r e s id e n t

T h e re  i s  an a x io m  in  
A m e ric a n  p o l i t i c s  t h a t  
s a y s  w h e n e v e r  a s i t t i n g  
P r e s id e n t  i s  ru n n in g  
f o r  a seco n d  te r m , th e  
e l e c t i o n  i s  m ore a 
re fe re n d u m  on h im  th a n  
a  ju d g m e n t / i5 f i \h i  s 
o p p o n e n t , /  *  J

P r e s i d e n t  G e o rg e  W. Bush h a s  ta k e n  t h i s  
trbisTn t o  a  new l e v e l ,  w i t h  j u s t  u n d e r  

y e ^ r  t o  g o  b e f o r e  N ov. 2 ,  2 0 0 4 ,  
^Jk irter^cans  a r e  a l r e a d y  f i n d i n g  w a y s , t o  

sh o w /h o w  p a s s io n a t e ly  th e y  f e e l  a b d y t-  
t h e j i *  P r e s id e n t .

Figure 4.18: Binarization Result of Example 4 Using Otsu’s Method
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Figure 4.19: Binarization Result of Example 4 Using Niblack’s Method
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4.6 Observations

The inputs to the NN can take all of the features, explained in section 4.3, as a 

feature vector, but the more features used the slower the feature extraction 

process, especially when calculating the skewness and kurtosis. Also, the 

window size affects the speed, the larger the window size the slower the feature 

extraction process since this has to be done for each pixel in the image. 

Therefore, through exhaustive experiments, a window size of 3x3 and a feature 

vector containing five features were sufficient to provide the desired results and 

comparing this to using more features or larger window size did not show any 

significant differences. The five features experimentally chosen where, the 

center pixel value of the window, mean, standard deviation, smoothness and 

entropy. Therefore, the MLP NN contained three layers, 5 features for the input 

layer, 11 nodes in the hidden layer and 1 node in the output layer. The Niblack’s 

method varies the threshold value over the image based on the local mean and 

standard deviation in a neighbourhood window. A window of size 25x25 was the 

best window giving results for Examples 1-4 with less noise. Therefore, the 

Niblacks method is not suitable for images with complex backgrounds.

4.7 Summary

Thresholding grey level images has been extensively researched, but the use of 

NN to aid in solving this problem was not widely used. This chapter focused on 

using NN in finding a solution to binarizing grey level images. A new method was 

developed, which used statistical textural descriptors as inputs to the MLP NN 

and outputs either a 1 or 0 value to classify each pixel in the image either as 

background or foreground. The results from using this method were outstanding 

compared to other local and global thresholding methods. This method can be 

used in different applications dealing with images containing complex 

backgrounds provided that sufficient training is performed. Post-processing of 

images resulting from this method is minimal or even not needed which makes it 

an excellent method to be used in page segmentation and OCR.
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Chapter 5
Document Segmentation

5.1 Introduction

Automatic knowledge acquiring from documents is an important 

subject and since the 1960s most of the research on document 

processing has been done based on OCR. The study of automatic 

text segmentation started about three decades ago with the rapid 

development of modern computers and the demanding need for 

storing large volumes of data [46],

Documents usually contain different types of data such as text, 

images, tables, lines and graphs. The different types of data 

contained within the document, need to be separated or segmented 

for subsequent processing and treatment of each region 

independently. Document image physical layout or document 

segmentation is the partitioning of documents into sub-regions or 

blocks, which ideally contain only one type of data. A document 

image is first divided into blocks which are then classified as text, 

halftone images or line drawings.

Document segmentation is very crucial in document processing and 

the correctness of the segmentation stage is necessary for higher- 

level analyses such as Character Recognition (CR).
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5.2 Literature Survey

Document segmentation can be classified into three broad categories: top-down, 

bottom-up and hybrid techniques. The top-down methods recursively segment 

large regions in a document into smaller sub-regions. The segmentation stops 

when some criterion is met and the ranges obtained at that stage constitute the 

final segmentation results. On the other hand, the bottom-up methods start by 

grouping pixels of interest and merging them into larger blocks or connected 

components such as characters, which are then clustered into words, lines or 

blocks of text. The hybrid method is the combination of both top-down and 

bottom-up strategies.

Many methods have been developed in this area. The Docstrum algorithm of 

O’Gorman [47], the Run-Length Smearing Algorithm (RLSA) of Wahl et al. [48], 

the recursive X-Y cut algorithm of Wang et al. [49], and the segmentation 

algorithm of Jain and Yu [50] are examples of bottom-up document segmentation 

techniques. The recursive X-Y cut based algorithm of Nagy et al [51], and the 

algorithm of Drivas and Amin [52] are examples of bottom-up segmentation 

techniques. Examples of hybrid methods are the segmentation approach of 

Pavlidis and Zhou [53], and the Kruatrachue and Suthaphan technique [54],

The Docstrum algorithm of O’Gorman [47] uses k-nearest neighbour clustering to 

group characters into text lines and blocks.

The RLSA [48] technique is one of the most widely used top-down algorithms. It 

is used on binary images (setting 1 for white pixels and 0 for black pixels), by 

linking together the neighbouring black pixels that are within a certain threshold. 

This method is applied row-by-row and column-by-column, then both results are 

combined in a logical AND operation and finally a smoothing threshold is used to 

produce the final segmentation result. From the RLSA results, black blocks of 

text lines and images are produced. Finally a statistical classifier is used to 

classify these blocks.
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The recursive X-Y cuts [49] algorithm of Wang et al. scans through every row 

and column of the image and counts the number of black pixels. The horizontal 

and vertical profiling is performed to frame up separate characters then each 

character is checked against certain thresholds to decide if they are to be 

grouped together. Finally some of the groups are merged together to form text 

line blocks. The classification is performed by following certain rules depending 

on the layout of the document.

The Jain and Yu [50] approach utilizes a NN to train a set of masks which is 

optimal for discriminating the three main texture classes in the page 

segmentation problem: halftone, background, and text and line drawing regions. 

The text and line drawing regions are further discriminated based on activity 

analysis.

The recursive X-Y cut based bottom-up algorithm of Nagy et al. [51], which is 

also known as the projection profile cuts assumes documents are presented in a 

form of a tree of nested rectangular blocks. Although the recursive X-Y cuts 

could decompose a document image into a set of rectangular blocks no details 

were given on how to define cuts. Later Jaekyu et al. improved this method by 

applying connected component labeling algorithm to obtain the bounding boxes 

of the connected components.

The bottom-up algorithm of Drivas and Amin [52] is performed on skew corrected 

binary images. It is composed of two stages; the first is the creation of 

connected components by bounding together regions of connected black pixels 

to form rectangles around distinct components on the page whether they are text 

or image. The second stage is the grouping or merging of neighbouring 

connected components of similar dimensions. Finally, the classification step is 

done by using a frequency histogram technique to classify text and graphics.

The hybrid segmentation approach of Pavlidis and Zhou [53] uses a split and 

merge strategy and the technique of Kruatrachue and Suthaphan [54] consists of 

two steps, a top down block extraction method followed by a bottom-up multi
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column block detection and segmentation method. The segmentation is based 

on blocks of columns extracted by a modified edge following algorithm, which 

uses a window of 32 x 32 pixel so that a paragraph can be extracted instead of a 

character.

The above are only a few examples and hundreds of methods were developed 

for document layout segmentation. To ensure the performance of most of these 

algorithms a skew detection and correction algorithm is required in the 

preprocessing stage. Jain and Yu, in [50] gave a brief survey of geometric and 

logical page layout analysis methods. In literature, the surveys by Mao et al. [55] 

and Tang et al. [46] give detailed explanation on document analysis and layout 

representation algorithms.

Most of the techniques explained are time consuming and are not effective for 

processing documents with high geometrical complexity. Specifically the top- 

down approach can process only simple documents, which have specific format 

or contain some a priori information about the document. It fails to process the 

documents that have complicated geometric structures. The research in this 

area concentrates on binary images and grey images with uniform backgrounds. 

The images used were mainly scanned from technical journals and magazines 

that usually have specific formats. Document segmentation on grey-level images 

with complex or non-uniform backgrounds have not been widely investigated due 

to the complications in thresholding these images. Therefore, techniques are 

mainly geared to specific applications with specific formats and they tend to fail 

when specific parameters do not match.

5.3 Document Segmentation Steps

The document segmentation process goes through several steps; these steps 

are shown in Figure 5.1.
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Binary Image
— y—

Skew Detection/Correction 
 *   — '

Block Isolation

Block Labeling

Feature Extraction
I

Block Classification

Figure 5.1: Document Segmentation Steps

The binary image is the input to the document segmentation stage. It is the 

result of thresholding the grey-level image. A skew detection and correction 

algorithm is needed if the original scanned image was not scanned properly. A 

procedure based on the Hough Transform algorithm proposed by Hinds et al. [5] 

is used to detect the skew angle.

5.3.1 Skew Detection/ Correction

Skew angle detection is necessary for further processing since the segmentation 

algorithm is very sensitive to documents skewed more than 2 degrees. Using the 

Hough Transform based method by Hinds et al. [5], the principle is to transform 

points in an image space xy  to a new space domain p 6 , using the following 

transform equation.

p. = x cos0. + y sin0t. ,
^ s  (5.1)

An accumulator array was used to count the number of intersections at various 

p  and 6 values. The number of rows, R , of the accumulator array corresponds
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to p  values effects how well the Hough Transform resolves lines. Therefore, to 

detect lines, R should be such that each xy  point along a straight column can 

be mapped to a unique row.

*  =  ( * ’ + A ’ F  (5 2 )

Where w  is the width of the image and h  is the height of the image, peaks are 

searched, which correspond to lines in the image. The range of 6 was taken to 

be between -5  and 5 degrees since most documents will not have a skew angle 

more than 5 degrees after the scanning process. The angle of each line was 

found from the coordinates p  and 6 of the peaks. The peak is formed when the 

transformed points lie along a given line in the image. To determine the skew 

angle of the input document the accumulator array is searched for the cell with 

the largest value and the column that this cell belongs to is taken to be the skew 

angle, 0, of the document. In [5] Hinds, the data reduction method by run-length 

bursts was used to reduce that amount of data used to detect the skew angle. 

This data reduction method produced a burst image; the burst image is a grey 

scale image with each pixel’s intensity representing the vertical run-length of a 

column of connected black pixels in the original binary image. Figure 5.2 shows 

an original binary image with the corresponding pixel values for the burst image 

using the run-length bursts.

1 1 1

Figure 5.2: Binary Image with Pixel Values of the Burst Image
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Figure 5.3 shows how points from the original image are mapped to the Hough 

plane.

cos 0 + ypin 9~ p
x x

Figure 5.3: Mapping from Plane xy to Hough Plane and Division of pO  Plane
into Accumulator Cells

After the detection of the skew angle the skew correction was done using the 

rotation transformation shown in Equation 5.4. In Figure 5.4, point Z can be 

expressed in either (x,j) coordinate space or (x ',/)  coordinates space, where 

the x' and /  axes are rotated an angle a  from the x-y axes:

1
*/

/

0

Figure 5.4: Rotation Transformation

Then the equations for rotation of axes become: 

x  = x ’ coscr -  y 's in a  

y  = x ’ sincr +  /c o s e r (5.3)
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5.3.2 Block Segmentation

The function of the segmentation algorithm is to locate the information blocks in 

the document image. The RLSA [48] was chosen since it produces small blocks 

of text. The procedure subdivides the area of a binary document into sub regions 

or blocks, each of which ideally contains only one type of data (text, graphics, 

lines and halftone images). To understand how the RLSA [48] works let us 

assume that white pixels are represented by 1’s and black pixels are represented 

by 0’s within an arbitrary sequence of 0’s and 1’s. The RLSA [48] replaces the 

0’s by 1’s if the number of adjacent 0’s is less than or equal to a certain threshold 

txor ty , tx is the horizontal smearing threshold and ty is the vertical smearing

threshold. For example, let us examine the bit sequence below. Assume 

horizontal smearing threshold of tx = 4.

Before smearing: 000001110101000011000001001110111

After Smearing: 000001111111111111000001111111111

This algorithm is applied row-by-row (horizontally) and column-by-column 

(vertically) to the document image producing a bitmap for each direction. Then 

the horizontal and vertical smearing results are combined together by a logical 

AND operation. This intermediate combination gives almost the desired final 

bitmap, but some of the text lines are interrupted by small gaps. Therefore, a 

final horizontal smearing is applied to smooth these lines and close the gaps. 

The horizontal, vertical and smoothing thresholds depend on the type of the 

image used and its dimensions. In this project the horizontal smearing threshold 

was chosen to be 1/3 of the image width and the vertical smearing threshold 1/3 

of the image height. The smoothing smear threshold was taken to be 10 pixels. 

These values depend on the image resolution and could be different for different 

applications.

Figures 5.6 - 5.11 show the image of Figure 5.5 [102] going through 

preprocessing stage. The local NN thresholding algorithm developed in Chapter 

4 was used to obtain the binary image shown in Figure 5.6. A skew angle of -1
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was detected using the Hough Transform and the de-skewed image is shown in 

Figure 5.7. The image then went through the smearing process, which is shown 

in Figures 5 .8 -5 .1 1 .

BAMf IRAN - Rescue workers 
prepared to caff o f f  th e ir search 
Monday fo r survivors of the 
earthquake in Bam as officia ls say it's  
un like ly anyone w ill be found alive.

Experts say 72 hours is the  longest 
people can surv ive in rubble. As o f  
Monday m orning, it  had been m ore 
than 72 hours since a 6 ,6 -m agnitude 
earthquake hit th is  Iran ian c ity  
located 1,000 kilom etres south o f 
Tehran.

Rescue workers w ill instead turn the ir focus to  the tens of 
thousands o f homeless. Many spent a th ird  n ight outside in freezing 
tem peratures and were jo lte d  Monday morning by two  strong
aftershocks. ' T  ■ * S; ; <

Figure 5.5: A Composite Image with Non-Uniform Background

BAM, IRAN - Rescue w orke rs  
prepared to call o ff th e ir  search 
M onday fo r su rv ivo rs  o f the  
ea rthquake  in Bam as o ffic ia ls  say it's  
u n like ly  anyone w ill be found a live .

Experts say 72 hours  is th e  longest 
people can su rv ive  in rubb le . As o f 
M onday m o rn ing , i t  had been m ore  
than 72 hours s ince a 6 .6 -m a g n itu d e  
ea rthquake  h it th is  Ira n ia n  c ity  
located 1 ,000  k ilo m e tre s  south  o f 
Tehran.

Rescue w orke rs  w ill instead tu rn  th e ir  focus to th e  te n s  o f 
thousands o f hom eless. Many sp e n t a th ird  n ig h t ou ts ide  in freezing 
tem p e ra tu re s  and w ere  jo lte d  M onday m orn ing  by tw o  strong 
a fte rshocks.

Figure 5.6: Results of Thresholding the Image in Figure 5.5
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BAM, IRAN - Rescue workers 
prepared to ca/f o ff the ir search 
Monday for survivors of the 
earthquake in Bam as officials say it's 
unfikely anyone will be found alive.

Experts say 72 hours is the longest 
people can survive in rubble. As of 
Monday m orning, i t  had been more 
than 72 hours since & 6 .6-m agnitude 
earthquake h it th is Iran ian city  
located 1,000 k ilom etres south of 
Tehran.

Rescue workers will instead turn  th e ir focus to the tens of 
thousands o f homeless. Many spent a th ird  n ight outside in freezing 
tem peratures and were joJted Monday morning by  two strong 
aftershocks.

Figure 5.7: De-skewed Binary Image

Figure 5.8: Ftorizontal Smearing of Figure 5.7
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Figure 5.9: Vertical Smearing of Figure 5.7

I M M M M I I H I  M M  ’■ ■ f l M ’l P H I lW I I I V I I I  " I
llip i in i  n r r r ip iw  p ip m p f  m irm ni pf dtp urinv

p r iir in p iH s .

Figure 5.10: Logical AND of Figures 5.8 and 5.9
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Figure 5.11: Final Florizontal Smoothing Applied to Figure 5.10

5.3.3 Block Labelling

Labels have to be assigned to different blocks to identify each block separately to 

be used in the feature extraction step. All connected pixels must have the same 

label. A Local Neighbourhood Algorithm [56] is used which scans the image 

horizontally until it hits the first pixel then a fire is set at this point that propagates 

to all the 8-neighbourhood of the current pixels. This algorithm was modified to 

ensure the correct labelling of each block by rescanning the image from bottom 

up [57][58], Figure 5.12 shows a binary pattern where the stars are represented 

by black pixels and Figure 5.13 shows the result of labelling each block of 

connected components. Figure 5.14 shows the binary image for Figure 5.5 with 

all blocks enclosed in boxes and the labels of each block are shown in Figure 

5.15.

Chapter 5: Document Segmentation

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

71



University o f Windsor

* * * * * * *

* * * * * * * * * * * * * *
* * *  *  *

* * * * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * *
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * * * * * * * * * * *
* * * * * * * * * * * *

Figure 5.12: Example o f a Binary' Pattern

1 1 1 1 1 1 1
1 1 1 1 1 1 1 2 2 2 2 2 2 2
1 1 2 2 2

3 3 3 3 3 3 3 2 2 2 2 2 2 2 2 2 2 2
2 2 2 2 2 2 2 2 2 2 2  2 2 2 2 2

4 4 4 4 4 4 4 4 4 4 4 2 ? '> ">  ? 2 ' > > > 2 2 2 ? 2 2 2  " > 2 2
4 4 4 4 4 4 4 4 4 4 4 ~ 2 2 2 2 2 2 2 2 2 2 2 2 2 2
4 4 4 4 4 4 4 4 4 4 4 4

Figure 5.13: Labelling Results for Figure 5.12

tinTfkelv'anyone will be found alive-...

Honda ̂ Y^Qp^|p^q^-^YlTacri5i&
^ 6 .6 -rr ia g n itu ll 

e a r th q u a k e  h it  this Iranian a ty _

IS ira n ] 

p[gSCue
thousands of homeless. Many spent a third niqnt  outside m freezing!

&S :lisE flcE i3

Figure 5.14: Blocks of Text and Images Shown on Binary Image
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Label 0

[Label
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[Label
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[Label
[Label
[Label
[Label
[Label 10
[Label 1T
Label 12

Label
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j  3_
“14“

[Label 15
[Label 1 G„

Figure 5.15: Blocks of Text and Images with the Corresponding Labels

5.3.4 Feature Extraction

At this point the coordinates of each block are known. The next step is to extract 

features, which will help to classify each block into either image or text. In this 

project geometrical and statistical features were extracted from the blocks in 

Figure 5.15. The following features were extracted from each block: the height of 

the block ( H t ), mean pixel value (//,), standard deviation of pixels (<r; ) and black

pixel count {BCl ) where / is the label corresponding to each block 0 < i < N  -1 ,

N  is the total number of blocks.

The height of each block was calculated by subtracting the minimum value of the 

y coordinate from the maximum value of the y coordinate as shown in equation

(5.4).

H i =  y max, -  y m in, (5.4)

Chapter 5: Document Segmentation

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

73



University of Windsor

The mean (//,.) was calculated using equation (5.5)

maxmax

 ̂max

(5.5)

Where (■^'max/ - ’̂ m in/ )  (^m ax, ^m in, ) (5.6)

The standard deviation was calculated using equation (5.7)

1

v-\-

CT. =
(5.7)

5.3.5 Block Classification

The final step in page segmentation is the classification of each block into its 

proper class. Any kind of classifier can be used such as statistical classifiers, 

decision tree or NN. In Whal [48], a statistical classifier was used with many 

parameters that were not optimized and are application dependent. However in 

this project a NN classifier using MLP will be used. The features extracted will be 

fed into the NN and the results will be either 0 or 1 for text and images 

respectively. This can be extended to include lines, tables, graphs etc. The NN 

contained three layers, with 4 nodes at the input layer, 7 nodes in the hidden 

layer and one node at the output layer. This MLP NN is shown in Figure 5.16. 

The results of block classification are shown in Figures 5.17 and 5.18.
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( 1 . 0 )

Hidden O utput
Laver

Figure 5.16: MLP NN for Block Segmentation

BAM, IRAN ~ Rescue w orkers 
prepared to call o ff the ir search 
Monday for survivors of the 
earthquake in Bam as officia ls say it's 
un like ly  anyone will be found alive.

Experts say 72 hours is the  longest 
people can survive in rubble. As of 
Monday m orn ing, it  had been m ore 
than 72 hours since a 6 .6 -m agn itude  
earthquake h it th is  Iran ian city 
located 1,000 k ilom etres south of 
Tehran.

Rescue w orkers will instead tu rn  th e ir focus to the  tens of 
thousands o f homeless, Many spent a th ird  n igh t outside in freezing 
tem peratures and w ere jo lted  Monday m orning by two strong 
aftershocks.

Figure 5.17: Blocks of Text Extracted from the Binary Image
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Figure 5.18: Blocks of Images Extracted from the Binary Image.

5.4 Summary
The page segmentation process is very important in many applications where 

text and images need to be processed separately. The extraction of text from 

grey level images with complex background is a very challenging problem and 

goes through several processing steps including thresholding of images with 

complex backgrounds, which is essential to the success of text extraction step. 

Using the local NN thresholding method developed in Chapter 4, the smearing 

algorithm developed by Wahl and a MLP NN classifier, the classification of 

different document image contents was achieved successfully as can be seen 

from the example shown in this chapter.
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Chapter 6
Character Recgonition Systems

6.1 Introduction

Optical character recognition, usually abbreviated to OCR, involves 

computer systems designed to translate images of typewritten text 

(typically captured by a scanner) into machine-editable text to 

translate pictures of characters into a standard encoding scheme 

representing them such as ASCII. OCR began as a field of 

research in machine vision and artificial intelligence. Though 

academic research in the field continues, the focus on OCR has 

shifted to implementation of proven techniques.

OCR is the machine replication of human reading and has been the 

subject of intensive research for more than five decades. The 

United States Postal Service has been using OCR in postal 

machines to pre-sort mail since 1965 [6], Many commercial OCR 

systems are presently in service and or being developed. The 

general area of OCR deals with machine-printed character 

recognition, handwritten character recognition and script 

recognition. Within this broadly defined area of research, our 

interest is specifically in the recognition of printed characters from 

document images with complex backgrounds.
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There are several important processing steps between input character image 

acquisition and the output class membership decision. Generally, a character 

recognition system can be divided into pre-processing, character segmentation, 

feature extraction, and classification stages.

6.2 History and Applications of OCR Systems

Keyboarding is the most common way of inputting data into computers; it is 

probably the most time consuming and labor intensive operation. The origin of 

character recognition can be found as early as 1870 when Carey invented the 

retina scanner that is an image transmission system using a mosaic of 

photocells. It first appeared as an aid to the visually handicapped and the 

Russian scientist Tyuring made the first successful attempt in 1900 [59][60], The 

modern version of OCR appeared in 1940s with the development of digital 

computers. It was the first time OCR was realized as a data processing 

approach, with a particular application to the business world [59], The principle 

motivation for the development of OCR systems is the increased demand for 

capturing printed documents or text as well as pictures. The application areas 

include:

• Use of the photo-sensor as a reading aid and transfer of the recognition 

result into sound output or tactile symbols through stimulators.

• Use in direct processing of documents.

• Use in bank and security service for reading bank cheques, credit card 

imprints, and personal signatures on identification cards, etc.

• Use in business applications for reading product identification codes and 

digital bar codes, etc.

• Use in postal departments to read addresses and postal codes.

• Use in machine vision.

• Use in publishing industry and in library systems.
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Combined with computer word processing and desktop publishing techniques, 

which have been highly developed in recent years, OCR provides a revolutionary 

approach for computer storing, editing, accessing, indexing and republishing of 

documents.

The rapidly growing computational power of computers enables the 

implementation of OCR methodologies and creates an increasing demand on 

many emerging application domains, which may require more complicated 

techniques [61]

6.3 Construction of OCR Systems

The main parts of a typical OCR system are shown in Figure 6.1. The system 

goes through preprocessing, feature extraction, learning, and classification. In 

the following subsections a brief explanation of each stage will be explained.

Prototype
FeaturesScan Paper 

Document

Text

Pre
processing

Post-
Processing

Digital
Image Classification

Character
Segmentation

Feature
Extraction

Figure 6.1: OCR System Steps
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6.3.1 Preprocessing

A paper document is first transferred into a digital form i.e. a bitmap file by using 

a scanner. For documents with complex backgrounds the images have to go 

through the NN local thresholding method explained in chapter 4 and the page 

segmentation algorithm in chapter 5. The result is a binary image with text only. 

The characters in the binary image are then isolated or segmented to extract the 

character positions, which will be used in the next step. In [62], a survey of 

methods and strategies in character segmentation explains three major 

approaches to character segmentation which are recognition based, dissection 

and holistic. Some preprocessing may be used depending on the quality of the 

character images. Such preprocessing could involve noise reduction, 

normalization of the character images or compression techniques, which 

preserve the shape of the character such as thinning [63],

6.3.2 Feature Extraction

Feature extraction is the most important step in character recognition. It plays a 

very important role in achieving high recognition performance. Also, the other 

steps in this system need to be optimized to obtain the best possible 

performance. These steps work together to achieve one goal, which is 

converting an image into an ASCII format that can be edited. Therefore, the 

output of each step propagates to the next stage in a pipeline fashion making the 

whole system work as a whole and if one stage fails the performance is 

significantly affected. A more in depth description of the different feature 

extraction methods will be given in section 6.4.

6.3.3 Learning

Learning or training an OCR system is a very important step since the 

recognition stage depends on the database or reference features extracted from 

known characters, which are then used during the classification stage. OCR
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systems need this step to enrich the knowledge when an unknown character is 

met. The database or prototype features must have the ability to expand as 

more new characters are met their prototypes should be added to the database 

with their target character classes to increase the recognition ability.

6.3.4 Classification

In the classification stage, the extracted features are compared to the ones 

recorded in the database or prototypes; if the features are matched or closely 

matched the input character is classified into the appropriate class. In this stage, 

if a single classifier fails to yield high performance, several classifiers may be 

combined to give acceptable results. Section 6.5, gives an overview on the kind 

of methods used in the training and classification stages.

6.4 Feature Extraction Methods

Most of the research has been concentrated on features extracted from 

characters. The purpose is to extract information that distinguishes the character 

from others and eliminate redundant information. There are two main methods 

used for OCR: Matrix matching (also called template matching) and feature 

extraction. Matrix matching works best when the OCR encounters a limited 

number of type styles, with little or no variation within each style. However, where 

the characters are less predictable, the feature extraction method is superior.

Template Matching compares the character images with a library of characters or 

templates. When an image matches one of these prescribed templates within a 

given level of similarity, then that image is labeled as the corresponding ASCII 

character.

Feature extraction is OCR without strict matching to prescribed templates, also 

known as Intelligent Character Recognition. Character feature extraction or in 

other words character representation, is needed to produce compact and 

characteristic representation of the characters. Therefore, the purpose of the
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features extracted from each class is to help distinguish it from other classes 

while remaining invariant to characteristic differences within the class itself. 

There have been hundreds of feature extraction methods that can be categorized 

into three major groups: global transformation and series expansion, geometrical 

and topological, and statistical representations.

6.4.1 Global Transformation and Series Expansion Representations

The global transformation and series expansion methods help reduce the 

dimensionality of the feature vector and provide features that are invariant to 

some global deformations like translation and rotation. Common transform and 

series expansion methods used in OCR are: Fourier transform [64], Gabor

Transform [65], Karhunen-Loeve Transform (KLT) used in the National Institute 

of Standards and Technology (NIST) form-based handwritten OCR system 

[61 ][66], Walsh Transform [67], Moments [68], Wavelets [69], Hadamard 

Transform [70] and Rapid Transform [71].

6.4.2 Geometrical and Topological Representation

Several global and local properties can be represented by geometric and 

topological features with high tolerance to distortions and style variations. This 

kind of representation provides knowledge about the structure of the object or 

character. Some of the types of methods used are: coding, outline features, and 

graphs and trees.

6.4.2.1 Coding

Coding is obtained by mapping the strokes of a character into a 2-D parameter 

space. The most popular coding scheme is Freeman’s chain code [72], which 

has been modified and has different variations. As an example in [73] the frame 

character is divided into left-right sliding window and each region is coded by the 

chain code instead of taking the chain code of the whole character.
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6.4.2.2 Outline Features

The outline shape of a character usually contains distinct and stable information 

that distinguishes it from others. The contour can be achieved by using the 

contour tracing algorithm proposed in [74] or other algorithms from which 

features such as end points, intersections of line segments, loops, bays, length, 

directions, holes and many other structures that can be extracted.

6.4.2.3 Graphs and Trees

Words or characters are partitioned into a set of topological primitives then these 

primitives are represented using attributed or relational graphs [75],

6.4.3 Statistical Representation

Statistical representation takes care of style variations of characters or patterns. 

It is used to reduce the dimension of the feature vectors providing high speed 

and low complexity. The following are the major statistical features used for 

character representation: zoning, X-Y projections, and crossings and distances.

6.4.3.1 Zoning

The frame around the character is divided into zones and some features from 

each zone are extracted such as the pixel distribution in each zone, contour 

direction and histograms of chain code.

6.4.3.2 X-Y Projections

Projecting the character shape in X and Y directions or other directions obtain the 

stroke distributions in each direction. This representation creates a 1-D signal 

from a 2-D image, which can be used to represent the character image [76].
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6.4.3.3 Crossings and Distances

An example of representation using crossings and distances is calculating the 

number of a contour by a line segment in a specified direction. In [77] the 

character frame is divided into a set of regions in various directions and then the 

black runs in each region are coded by the powers of two.

The feature extraction process can be performed on binary or grey level images. 

Some of the features may not be easy to extract from grey level images, but 

many other features can be used instead. The features selected could also vary 

from one application to another depending on the resolution and image quality.

Arica and Yarman-Vural [78] gave an overview on the character recognition 

methods and in [61] Trier et al. gave a survey on the feature extraction methods 

for character recognition.

6.5 Training and Classification Methods

Numerous techniques of classifications used for Character Recognition (CR) 

have been developed. These can be divided into five main approaches: template 

matching, minimum distance classifiers, statistical techniques, structural 

techniques and Neural Networks. In these approaches the CR techniques use 

either holistic or analytic strategies for the training and recognition stages. The 

holistic approach recognizes the full word eliminating the segmentation step. 

This approach is used to constrain the problem of CR to limited vocabulary. 

Such an example could be recognizing the name of countries used in passports 

or legal amounts on a cheque [73], The recognition rate will decrease in the 

case of cursive writing, but for printed characters this approach will provide high 

recognition rate. On the other hand, the analytical approach starts from strokes 

or characters to produce text. In this approach the number of classes is 

unlimited and the recognition rate is much higher compared to the holistic 

approach.

Chapter 6: Character Recognition System

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

84



University of Windsor

6.5.1 Template Matching Techniques

The direct and simple way is a one to one comparison of all grey level or binary 

values of a character to prototypes or templates stored for all characters. 

Template matching could also be as complex as a decision tree analysis in which 

only selected pixels are examined. The one to one approach is very sensitive to 

noise and is time consuming if a large number of templates are used in the 

comparison. The speed also depends on the size of the templates used. 

Several methods of template matching have been proposed and used in pattern 

recognition such as deformable template matching [79] and relaxation matching 

[80],

6.5.2 Minimum Distance Classifiers

The recognition or classification is based on the minimum distance between the 

input character and the prototype character features. Such distance measure 

methods are Euclidean distance [81], Hamming distance [82], and k-means 

clustering algorithm [83],

6.5.3 Statistical Techniques

Statistical classifiers assume that different classes and feature vectors have an 

underlying joint probability. An example of such a classifier is the Bayes 

classifier [84], which minimizes the total average loss in assigning an unknown 

pattern to one of the possible classes. The Hidden Markov Model (HMM) [85] 

has been widely used as a classifier in character recognition. Also many 

variations of the HMM have been used especially in handwritten character 

recognition. The main problems with this method are the selection of features 

and the number of lexicons. In [86] HMM was used in recognizing the names of 

Iranian cities in postal services which use Farsi characters.
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6.5.4 Structural Techniques

Structural classifiers include grammatical and graphical methods. In grammatical 

methods rules are produced in order to form the characters from a set of 

primitives through formal grammars [87], However in graphical methods writing 

units are represented by trees, graphs or attributed graphs. The character 

primitives are selected by a structural approach. For each class a graph or a tree 

in the training stage is formed to represent strokes, letters or words. Then the 

recognition stage assigns the unknown graph to one of the classes by using a 

graph similarity measure. In [88] Amin used the C4.5 learning algorithm to create 

decision trees to represent classification rules for handwritten Arabic characters

6.5.5 Neural Network Techniques

NNs have been widely and successfully used in OCR because of their ability to 

perform computations at a higher rate and their adaptation to changes in the 

data. The use of NNs in OCR is very visible in literature. Such an example is 

[89] where CR using NN based feature extractor and classifier were used in the 

recognition of handwritten characters.

The use of fuzzy concepts with NNs in CR has also emerged in the last decade. 

In [90], Kwan and Cai used a Fuzzy Neural Network (FNN) with pixel values of 

the image characters as input features. The same network was also applied for 

Vietnamese characters [91] with a very high recognition rate.

Multi-stage classifiers are used in OCR systems to provide high recognition rate. 

These multi-stage methods are developed in case a single classifier fails to 

provide high recognition rate. In each stage different feature extraction methods 

could be used to provide a system that is capable of distinguishing characters 

and providing higher recognition rates. In [92] the work of Cao, J. on handwritten 

numeral recognition uses fusion of classifiers and in [93] a recognition of printed
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Korean characters used a two-stage classification method to recognize printed 

Korean characters.

6.6 Illustrative Example of an OCR System

An OCR application is demonstrated in Figure 6.2. The first step is to scan the 

original document into the computer and save it as a digitized image. Then the 

OCR engine preprocesses this image by removing its background to produce a 

binary image. The binary characters are then separated or segmented and 

features are extracted from each character converting the image characters into 

feature format. The feature vectors are then fed into a classifier, which can be a 

NN, or any other classifier that has already been trained to be used on such 

characters. The classifier outputs the numeric class corresponding to each 

character then it translates these classes into ASCII text, which is saved in an 

editable text file format.

6.7 Implementation of an OCR System

An application of an OCR system is the reading of the information barcode on a 

bank cheque. In today's business environment where the security of accepting 

cheques can sometimes be a burden, many businesses are turning to verification 

services to provide security for funds accepted as cheques. A new recognition 

system for processing the optical code, the Magnetic Ink Character Recognition 

(MICR) code, located at the bottom of bank cheques and in some security 

documents is implemented using fuzzy descriptive features with a linear 

correlation classifier. The MICR code contains the bank routing number; cheque 

number, and bank account number as shown in Figure 6.3. By extracting this 

information from the cheques, the system will be linked to a database where 

information on the account holder can be verified.
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Figure 6.2: Illustrative Example of an OCR System
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Figure 6.3: Cheque Image Showing the MICR Code

The research area of bank cheque processing has been investigated since the 

eighties. Research has been conducted on recognition of legal amounts, 

signature recognition, bank logo extraction, optical line recognition, cheque 

segmentation and extraction of sections of cheques in both handwritten and 

machine printed cheques [73][94][95], The MICR E13B font is used to print MICR 

encoding on bank cheques and drafts in the United States, Canada and several 

other countries. The MICR E13B font contains ten specially designed numeric 

characters 0 through 9, and the four special symbols as seen in Figure 6.4 [96],

6.7.1 Preprocessing

The first step is to locate the barcode on the cheque by processing the lower 

portion of the cheque that contains the barcode. The NN local thresholding 

method explained in Chapter 4 was applied to the lower portion of the cheque

4  L i

Figure 6.4: MICR E13B Font
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producing a binary image. The barcode coordinates were extracted by taking the 

histogram in the horizontal direction, X-direction, of the binary image. The pixel 

distribution for each line of the barcode in the horizontal direction is roughly the 

same, which makes it easy to extract the barcode. Figure 6.5 shows the 

preprocessing stage, which produces a binary image containing only the barcode 

of the cheque. This image is then passed to the next stage in the OCR system.

WkStiKKM A A M .  
WINDSOR ON

PVi ri» ii..
ORDEB Of

•:□□□□ i * " 3 1 □ i o o a 3 3 n 5  3on&ti, 5 3 73

■:□□□□ 3 l  0 i 0 : ) B 3 3 0 E 3 D G E Inl S 3?3

itoDon ninnfl3 3nE3nnF,n,ci3 73

SOI

.MOO

Throdholded Barcode

Figure 6.5: Preprocessing Stage for Extracting Cheque Barcodes

6.7.2 Character Segmentation

The segmentation of characters was done by taking the horizontal and vertical 

projections of the barcode binary image. When the vertical projection has no 

black pixels then there is a separation as shown in Figure 6.6 (a). It is noticed 

that the symbols were segmented into two or three parts. These several small 

parts for each symbol were then merged as seen in Figure 6.6 (b). After
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segmenting the characters the coordinates were calculated. The pixel values 

were normalized, and the background was represented as 0 and foreground as 

1. Finally, the characters are centered in a specific size window by padding 

zeros around the characters, Figure 6.7 shows the special number 3 centered in 

a window of size 20x16.

is ib in a n a
(a) (b)

Figure 6.6: Samples o f Segmented Symbols

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 I 0 1 1 i 1 1 0 0 0 0 0
0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0
0 0 0 0 0 1 0 1 I 1 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 i 0 0 0 0 0
0 0 0 0 0 o 0 0 0 1 1 0 0 0 0 6
0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0
0 0 o 0 1 1 X 1 1 1 0 0 0 0 0
0 0 o 1 1 1 1 1 I 1 1 1 1 0 0 0
0 0 0 0 0 1 0: 0 0 1 1 1 1 0 0 0
0 0 0 0 0 0 0 0 0 i i 1 1 0 0 O
0 0 0 0 0 0 0 0 0 i 1 i i 0 0 0
0 0 0 0 0 0 0 0 0 i 1 I 1 0 0 0
0 0 0 0 0 0 0 0 0 1 1 I 1 0 0 n
0 0 0 0 0 0 0 0 0 I i 1 i 0 0 0
0 0 0 1 1 1 1 1 1 1 1 1 1 0 0 0
0 0 0 1 1 1 1 1 1 1 1 1 1 0 G b
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0:

Figure 6.7: The Number 3 Centered in a 20x16 Window

6.7.3 Extracting Fuzzy Features

For this application, a maximized fuzzy descriptive feature for each pixel is 

obtained by using the following function:
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Nl  N  2

Sv = max(ma«(w[/ - x , j -  y ] f „ ) )  (61}

fo r  i -  1 to N1 and j  = 1 to N\

Sv gives the maximum fuzzy membership pixel value using the fuzzy function,

w[m,n ] ,  equation (6.1). Where f xy is the (x,_y) binary pixel value of an input

pattern (0 < f xy < 1). iV,andiV2 are the height and width of the character 

window.

w[m, n]  = ex p (-/? 2 (m 2 + n 2)) (6.2)

for m = ~(Nl - 1) to (Ny - 1) 
n = -  (N2 - 1) to (N2 - 1)

Through exhaustive search, /? = 0.3 was found to be the most suitable value for 

achieving higher recognition rate. This fuzzy weight function, equation (6.2), was 

used in literature to calculate the fuzzy output of the second layer of a FNN 

proposed in [90][91], However in this research, it is used to provide the fuzzy 

descriptive features required for the proposed OCR system, which does not 

require a FNN. StJ gives a 2D fuzzy feature vector whose values are between [0-

1] and has the same size as the character image window. Figure 6.8, shows an 

example of the 2D fuzzy descriptive feature vector for the special number 2. It is 

obvious from the fuzzy feature vector that the features resemble the shape of the 

character and any distorted character will be easily recognized due to this 

characteristic of the descriptive fuzzification function. Therefore, the closer to the 

boundary of the character the higher the fuzzy membership value and the further 

from the boundary of the character the lower it is.
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Figure 6.8: The Fuzzy Feature Vector for the Number 2

6.7.4 Training

After feature extraction, prototype feature weights are needed in the classification 

step of this system. Therefore, to train the system, binary MICR barcode images 

of characters were used to obtain the prototype fuzzy descriptive feature vectors. 

The MICR barcode from 100 cheques were obtained and preprocessed. Ten 

complete sets of characters, similar to the set shown in Figure 6.4, were 

randomly selected from the preprocessed MICR barcodes. The fuzzy descriptive 

features were calculated for each character providing 140 feature vectors of size 

20x16, meaning 140 classes. Each character has 10 different variations from 

which clustering was used to obtain one class for each character. The center of 

each class is created by averaging the fuzzy descriptive feature vectors for the 

ten variations of each character. Each of the characters will belong to one class, 

hence no overlapping. The result of clustering is 14 prototype feature vectors of 

size 320 features. One feature vector for each class of characters, Figure 6.9.
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E

Figure 6.9: Non-Overlapping Clusters for the 14 Classes

6.7.5 Classification

The linear correlation coefficient, r ,  equation (6.3), was used in the recognition 

process [97],

Where, jux is the mean of x, ’s, the prototype feature vector, and juy is the mean 

of the yt ’s, the feature vectors for characters under consideration. The value of

r , lies between -1 and 1, inclusive, if a value of r  is close to 1 or -1 then the 

feature vectors are correlated or have high similarities, but if r  is close to 0 the 

feature vectors are uncorrelated or have low similarity value. By using the linear 

correlation coefficient, the feature vector of a character tested is compared 

against all the prototype feature vectors. The higher the correlation coefficient 

the greater the similarity measure between the character and the prototype 

feature vector class. This comparison was repeated for all characters under test, 

then the OCR results were displayed. Figure 6.10 below shows the block 

diagram for the classification process.

r (6 3)
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Fuzzy Feature 
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Correlation
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Output
Character

Figure 6.10: Block Diagram for Classification

6.7.6 Results

The character recognition system using fuzzy features with the linear correlation 

classifier was used to recognize the 14 MICR characters. It was tested on 2500 

characters from which 140 were randomly selected to obtain the prototype 

feature vectors. A 100% recognition rate was obtained even when the character 

patterns are slightly shifted or distorted as a result of thresholding, where pixels 

may be added or removed. For 1° rotation the recognition rate was 99%, but this 

method becomes sensitive to rotations of greater than 1°. For a rotation of 2° the 

recognition rate was 96.7%, therefore, images have to be de-skewed during the 

preprocessing stage in order to achieve the accurate recognition rate.

This system is shown to be fast, robust and suitable for real time applications 

where the verification process takes less than 2 seconds. It took 1,45s to do the 

whole process using Borland Builder C++ on a 1.0 GHz AMD Athlon processor, 

128 MB RAM. This is with the use of the local NN thresholding method and if a 

global threshold method such as Otsu’s method was used the time would be less 

than 1sec. In such applications it is not guaranteed that the original images have 

a uniform background. Therefore the local NN thresholding technique is more
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suitable to be used in such application to avoid any wrong segmentation in the 

bar code image. The recognition process depends on the correlation coefficient, 

which calculates the similarity measure between the fuzzy descriptive features of 

the characters under consideration and the prototype feature vectors of the 

trained characters. The recognition rate obtained using a limited testing set is 

100% as long as no skewing greater than 1° is introduced during the scanning 

process.

6.8 Summary

The objective of this work is to imitate the human abilities in reading printed text 

with higher accuracy and speed. From the brief overview on OCR given in this 

chapter, the feature extraction step is the most important step since the 

recognition rate depends mainly on the type of features extracted. This step 

does not operate separately and the success of the preprocessing steps is also 

very crucial. The converting of data to electronic format is needed in many 

applications with very high recognition rates. The cheque processing application 

which reads the barcode uses fuzzy descriptive features with a correlation 

classifier produced high recognition rates as long as the skew angle is corrected 

before OCR processing.

Achieving a high recognition rate is possible, but depends on the application and 

the type of constraints imposed on the images used. In comparing different 

methods of character recognition Arica and Yarman-Vural concluded their 

observation with the following, “It is very difficult to make a judgment about the 

success of the results of the recognition methods especially in terms of 

recognition rates, because of different databases, constraints, and sample 

spaces. In spite of all the intensive research effort, numerous journal articles, 

conference proceedings, and patents none of the proposed methods solve the 

character recognition problem out of the laboratory environment without putting 

constraints” [78],
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Chapter 7
OCR Experimental Results

7.1 Introduction
This chapter presents experimental results for the document 

analysis system starting from a grey level document image and 

ending with recognizing the text saved in a text file. The document 

analysis system implements the following steps: local NN 
thresholding technique, skew detection/ correction, block labeling, 

block classification, and OCR. The OCR stage uses pixel 

distribution as feature to classify characters. Images used in this 

chapter have a resolution of 200 dpi and the text font type is Lucida 

Console. The results from the proposed system were compared 

with a commercial OCR, the ABBYY Fine Reader OCR [98], The 

results obtained show that the proposed system outperformed the 

ABBYY OCR especially in document images containing complex 

background. In the next section, the features used in the proposed 

OCR system will be explained followed by OCR results.

7.2 Proposed OCR System

7.2.1 Feature Extraction

The OCR stage takes the binary image of text blocks produced 

after thresholding and block classification. The coordinates of each 

character are calculated using horizontal and vertical projections of 

black pixels. The characters were then centered in a window of
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size 25x20. Pixel distribution of characters from the divided character zones were 

used to give a feature vector representation for the characters. These characters 

were divided into zones of 5x5 and overlapping zones of 5x5 to give a feature 

vector of size 32.

7.2.2 Training and Classification of Characters

Training is needed to produce prototype vectors to compare against during the 

classification stage. A total of 67 characters and special symbols were used in 

the OCR system. These include upper and lower case characters, Arabic 

numerals, and the following symbols: comma, period, apostrophe, dollar sign and 

hyphen. The pixel distribution feature vectors of five complete sets of each 

character were averaged to produce one feature vector for each character. 

These feature vectors are the prototype feature vectors used in the classification 

stage, which uses the correlation classifier explained in section 6.7.5.

7.3 Experimental Results
Thirty images with Lucida Console font were used to test the document analysis 

system to extract the text and perform character recognition some of these 

images are provided in the attached CD. Four document images with complex 

background will be shown with the results from the proposed system and those 

obtained from the commercial OCR software. Figure 7.1 [103] is an image with 

slightly uniform background; the thresholding of such image can be done easily 

using any simple thresholding technique. Running this image through the 

proposed document analysis system and the ABBYY OCR produced the text 

shown in Figures 7.2 and 7.3 respectively. The results produced 100% character 

recognition rate in both cases. For the images in Figures 7.4 [104], 7.7 [101] and 

7.10 [99] the results for ABBYY OCR are shown in Figures 7.5, 7.8 and 7.11 

respectively. On the other hand, the proposed OCR results are shown in Figures 

7.6, 7.9 and 7.12 respectively. From the results it is very clear that the proposed 

system outperformed the ABBYY software since fewer characters were
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misclassified. Also as seen from Figures 7.8 and 7.11 some parts of the 

background that ABBYY could not eliminate were classified as small images.

In the final week of the campaign,
Martin is making health care his main 
message saying a Liberal government 
will defend public funding and j

" :  :acfceŜ lpE:ip/i;f f lip  :"
Martin says transparency is the only 
way to run a government, including 
negotiating the future of health 
care. That is how I  believe that a 
nation achieves its  great national 
objectives, said Martin. Not decision 
making behind closed doors, away from

__________________________________________ I

Figure 7.1: Document Image Containing Text Only.

In  the final week o f  th e  carapaign,
Martin is making health care his main 
message sa y in g  a Liberal government 
will defend public funding and 
access.
Martin says transparency is the only 
way to  run a governm ent, including 
negotiating the fu tu r e  of health 
care. That is how I believe that a 
nation achieves its great national 
objectives, sa id  Martin.. Hot decision 
making beh in d  closed doors, away from  
th e  people.

Figure 7.2: OCR Results for Figure 7.1 Using ABBYY OCR Software
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In  the  f in a l  week of the campaign, 
M artin  is  making hea lth  care h is  main 
message saying a L ib e ra l government 
w i l l  defend p u b lic  funding and 
access.
M artin  says transparency is  the only 
way to  run a government, in c lu d in g  
n e g o tia tin g  the fu tu re  of health 
care. That i s  how I  be lieve  th a t a 
nation  achieves i t s  great nationa l 
o b je c tive s , said M artin* Hot decision 
maling behind closed doors, away from 
the people.

Figure 7.3: OCR Results for Figure 7.1 Using Proposed OCR system.

I t ’s been a tough climb to 
the summit of Canadian 
politics for Jean Chretien.
From the pool h a ll p o l i t i c a l  
debates of his childhood to  
the opulent o ff ic e s  of 
Ottawa, -

Chretien has always called himself the 
l i t t le  guy from shawinigan His abrupt 
departure frpin'politics in 1986 was only 
the end of the firs t chapter in what was 
to be.a long and colourful career. We look 
back-at those early years of Canada’s 20th 
prime minister.

Figure 7.4: Composite Document Image with Non-Uniform Background.
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It's been i  tough climb to *i 
the summit of Canadian 
politics for Jean Chretien. 
From the pool hall political 
debates of his childhood to 
the opulent offices of 
Ottawa,

j Chretien has always called himself the 
| little guy from Shawim'gan His abrupt 
i departure from politics in 1986 was only 
| the end of the first chapter in what was 
| to be., a long and colourful career, we look 
I back-af those early years of Canada's 20th 
| prime minister.

Figure 7.5: OCR Results for Figure 7.4 Using ABBYY OCR Software.

The results of Figure 7.5 shows that the page segmentation was performed 

successfully but misclassification of characters were noticed in some parts of the 

document due to the complex background. On the other hand, the results from 

the proposed OCR system shown in Figure 7.6 show better recognition.
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It.s been a tough climb to 
the summit of Canadian 
politics for Jean dhretien.
Fro* the pool hall political 
debates of his childhood to 
the opulent offices of 
Ottawa,
Chretien has always called himself the 
little guy from Snawinigan His abrupt 
departure from politics in 1986 was only 
the end of the first chapter in what was 
to be a long and colourful career, we look 
back at those early years of Canada.s 20th 
prime minister

Figure 7.6: OCR Results for Figure 7.4 Using Proposed OCR System.

l o v p  H i m ,  i i f i t e  I I i n  

P r e s i d e n t

T h e r e  i s  an ax io m  i n  
A m e r ic a n  p o l i t i c s  t h a t  
sa ys  w h e n e v e r  a s i t t  i ng 
P r e s i d e n t  i s  r u n n i n g  
f o r  a second t e r m ,  t h e  
e l e c t i o n  i s  mors a 
r e f e r e n d u m  on him t h a n  
a j u d g m e n t  on h i s  
o p p o n e n t .

Fr,eside:iL George Bi.--.ti has Ljkcr fU r 
truism to a new level, with just under 
n vear to ~o before Nov. 2, 2CvK. 
Americans are already finding ways to 
sho.v hov. passional"ly thev feel about 
their president.

Figure 7.7: Composite Document Image with Non-Uniform Background.
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| Love Him, Hate Him 
Presiden-t 
There is an axiom in 

j American politics that 
| says whenever a sitting 

President is running 
I for a second term, the 
I election is more a 

referendum on him than 
| a judgment on his 
| opponent. !
j President George W. Bush Mas taken this
i truism to a new level, with just under
| | a year to go before Nov. 2, 2004,
j S Americans are already finding ways to
j show how passionately they feel abcAt
i *teir President.

■

Figure 7.8: OCR Results for Figure 7.7 Using ABBYY OCR Software.

From Figure 7.8, it can be seen that some parts of the background were not 

eliminated during the processing and were considered as image or text.
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Love Hint, Hate Him 
Presi dent
There is  an axiom in  
American p o lit ic s  th a t 
says whenever a s itt in g  
President is  running 
for a second term, the 
election is  more a 
referendum on him than 
a judgment on his 
opponent*

P re s id e n t George W. Bush has* taken  t h is  
tru is m  to  a new le v e l .  W ith  ju s t  under 
a year t o  go b e fo re  llov" 2, 2004, 
Americans a re  a lre a d y  f in d in g  ways to  
show how p a s s io n a te ly  th e y  fe e l about 
t h e i r  p re s id e n t.

Figure 7.9: OCR Results for Figure 7.7 Using Proposed OCR System.

The results shown in Figure 7.9, produced by the proposed system show better 

recognition than the commercial OCR software. Page segmentation performed 

better, eliminating almost all the background except for small noise that is 

recognized as ( '  ).
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In early 2003, 
Californians 
pointed fingers 
as their state 
struggled with a 
$38 billion 
budget deficit 
and a continuing 
energy crisis. ;
Republicans set 
their sights on 

Democratic Gov. Gray Davis, attempting to 
make him the second governor in U.S. 
history to be recalled, On October 7, the 
majority of voters decided to oust Davis, 
then chose a successor from among 135 
candidates. One of Hollywoods own took 
Davis place bodybuilder-turned-actor 
Republican Arnold Schwarzenegger.

Figure 7.10: Composite Document Image with Non-Unifonn Background.
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in early 2 0 m  
Call formans 
pen nted f-imge rs 
as tfteir state 
struggled with a!: 
$38 billion 
budget deficit 
and a continuing 
energy crisis. A 
Re'YIl 1 cans set 
their sights on
l l l f e ^  j i f f
lijB|

Democratic Gov. Gray Davis, attempting to 
make him the second governor in U.S. 
history to be recalled. On October 7, the 
majority of voters decided to oust Davis, 
then chose a successor from among 135 
candfi dates. One o f  Hellywoods owtftgok 
DavRiace bodybuvlder-tumed-aiaA' 
Repubft4can Arnold Schwarzenegger. ^

Figure 7.11: OCR Results for Figure 7.10 Using ABBYY OCR Software.
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In  e a r ly  2003,
Califbrnians 
p o in te d  f in g e rs  
as t h e i r  s ta te  
s tru g g le d  with a 
S3S B i l l io n  
budget d e fic it  
and a co n tin u in g  
energy crisis.
Republicans se t 
t h e i r  s ig h ts  on
Democratic Gov. Gray Davis, attempting to
wake hiib th e  second governor in  U.S. 
h is to ry  to be re c a lle d , on October 7, the 
m a jo r ity  o f  vo te rs  decided to o u s t Davis, 
then  chose a successor from among 135 
cand ida tes . One o f  Hollywoods own took 
Davis p lace b o d y b u ild e r- tu rn e d -a c .to r 
Republican A rnold  Schwarzenegger.

Figure 7.12: OCR Results for Figure 7.10 Using Proposed OCR System.

The ABBYY results in Figure 7.11 shows that the page segmentation was not 

performed successfully since some parts of the background were recognized as 

text or image. On the other hand, in Figure 7.12 the page segmentation stage of 

the proposed OCR system produced correct separation of text and images from 

background. The proposed OCR method produced better results compared to 

the ABBYY OCR even though misclassifications were noticed in the proposed 

method they were less than the characters misclassified by ABBYY. Introducing 

a post processing stage could eliminate such recognition errors. The proposed
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system produced an overall character recognition rate of over 98% when tested 

on 30 images containing about 14600 characters with one font only. On the 

other hand, when the same images were tested using the ABBYY FineReader 

OCR the system produced a character recognition rate of about 96%. This 

recognition rate does not include the errors of misclassifying regions from the 

background as foreground, which can be seen from Figures 7.8 and 7.11.

7.4 Summary

In this chapter, the proposed document analysis system was tested on composite 

document images with complex background and the results were compared with 

the ABBYY OCR software. From the results, the proposed system outperformed 

the commercial system producing higher recognition rate with correct page 

segmentation where all the background was eliminated leaving only text and 

images. The overall character recognition rate was over 98% for document 

images scanned at 200dpi or better compared to the ABBYY software which 

uses a resolution between 300 and 600 dpi to read text from scanned 

documents.

Accompanied with this dissertation a CD containing the following program 

packages for the training program, document analysis and other thresholding 

techniques program (compares the thresholding results of Otsu’s, Niblack’s and 

the proposed method). The programs are packaged and the user needs to run 

setup.exe to launch each program. Some of the images used in this project are 

also provided in the following folders: P rojectjm ages and

Lucida_Console_lmages.
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Chapter 8
Conclusions and Contributions

8.1 Conclusions

In this dissertation a new local thresholding method using MLP NN 

was developed for composite document images with complex 

background. This method works on a wide variety of backgrounds 

and is not application specific. This work evolved due to the lack of 

OCR systems that can work effectively on documents with non- 

uniform backgrounds and patterns *. An apparent application would 

be security documents and security forms. Security documents can 

become very complex with elaborate backgrounds, such as the 

maple leaf in the Canadian passport, and text extraction is needed 

to process information from such images.

The use of statistical and textural features was the key point in 

producing this unique technique by utilizing MLP NN. These 

features provide sufficient information for each pixel with respect to 

its neighbors that enables the NN to classify each pixel into its 

proper class. The thresholding stage is the most important stage in 

document analysis for document images with complex background 

and its correctness is a must for future processing in subsequent 

stages of document analysis. The result of preprocessing is a 

binary image that is easy to process in subsequent stages.

* In all fairness we have not tested all OCR packages.
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The thresholded image is needed in the page segmentation stage where the text 

is extracted from document images to be used in the character recognition stage. 

The segmentation stage uses features extracted from blocks produced by the 

RLSA. These features are then passed into a NN classifier, which determines on 

the class of each block. Following the page segmentation, character recognition 

is applied to the text blocks produced from composite documents with complex 

backgrounds. This document analysis system was used on images with complex 

backgrounds scanned at 200dpi containing text of Lucida Console font produced 

results that are similar or even better than those obtained from a commercial 

OCR software.

This local NN thresholding scheme was used in cheque processing to read the 

special numerals found in barcodes of bank cheques. A 100% recognition rate 

for the special numerals was obtained as long as no rotation is introduced during 

the scanning process. For composite documents with complex backgrounds the 

thresholding technique using NN produced outstanding results compared to other 

global and local thresholding methods making it a very good candidate for 

preprocessing.

8.2 Contributions

A new local thresholding technique was developed based on MLP NN classifier 

using statistical textural features to separate background from foreground in 

composite documents with complex background. This new method outperformed 

other local and global thresholding methods and it is not application specific.

A neural based block classification technique was developed to segment 

contents of composite documents. Using the RLSA, blocks of text and images 

were produced and features were extracted from these blocks to be used as 

inputs to the MLP NN which was used to classify each block into its proper class.
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Fuzzy descriptive features were used for processing barcodes in cheques with 

resolutions of less than 300 dpi with high recognition rate.

A document analysis system was designed that uses the new local NN 

thresholding technique, Neural based block classification and an OCR system to 

convert the text images into ASCII format which can be edited while saving the 

images into a bitmap file. The OCR system used pixel distribution as features 

from different zones of the character to provide a feature vector that was 

compared to a prototype feature vector using a correlation classifier. This 

method produced better results than the ABBYY OCR commercial software with 

a recognition rate of over 98% for one font size.
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Appendix A
Source Code for Data Collection Program

//-------------------------------- DataCollection.cpp-----------------------------------------------------
/* The data collection program written in Borland C++ builder, calculates the 

features from the neighbourhood of each pixel and saves the feature vectors in 
a file to be used during the training process. In this program eight features 
were used and different feature vector files were created for different window 
sizes. The window sizes used are 3, 5 ,7 and 9 and different number of feature 
vectors were calculated with different windows sizes to test for the effect of 
increasing the window size and using different features */

/ / ----------------------------------------------------------------------------------------------
#include <vcl.h>
#pragma hdrstop 
#include <stdio.h>
#include <math.h>
#include "DataCollection.h"
//----------------------------------------------------------------------------------------------
#pragma package(smart_init)
#pragma resource "*.dfm"
TForml *Form1;
//----------------------------------------------------------------------------------------------
 fastcall TForml ::TForm1 (TComponent* Owner)

: TForm(Owner)
{
}
/ / ----------------------------------------------------------------------------------------------
Graphics::TBitmap *0_Bitmap=new Graphics::TBitmap;
Graphics::TBitmap *DestBitmap=new Graphics:TBitmap;

float* data; // input data buffer
int StartX, StartY; // The X and Y coordinates for the pixel on hand
int output; // Output value of the centered pixel
int i, j, count1=0, count2=0; // variables
int Window =0; // Window size
int halfwin=0; // number of pixels on each side of center pixel
float mean; // mean
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float var; 
float sdev; 
float skew; 
float curt; 
float PointPixel; 
float entropy=0; 
float smoothness=0; 
float uniformity=0;

// variance 
// standard deviation 
// skewness 

// kurtosis
// center pixel of window 
// entropy 
// smoothness.
// uniformity.

float s=0,ep=0.0,p=0,pp=0,sum=0;// intermediate variables

II-----------------------------------------------------------------------------------------------

// Function to Load the original bitmap from file.
vo id  fastcall TForml::Loadlmage()
{

String Str;
OpenPictureDialogl ->Execute();
Str = OpenPictureDialogl ->FileName; 
if(Str!="")

0_Bitmap->LoadFromFile(Str);

lmage1-> Height = 0_Bitmap->Height; 
lmage1-> Width = 0_Bitmap->Width; 
lmage1->Picture->Assign(0_Bitmap);

}
//--------------------------------------------------------------------------------------
vo id  fastcall TForml ::lmage1MouseDown(TObject *Sender,

TMouseButton Button, TShiftState Shift, int X, int Y)
{

//This specifies the coordinates of the center pixel of the window 
StartX = X;
StartY = Y;
Edit1->Text = StartX;
Edit2->Text = StartY;

}

vo id  fastcall TForml::forgroundClick(TObject *Sender)
{

II If the Pixel corresponds to foreground then set output to 0 
// Specify different windows in order to collect data for different size 
// Windows and different number of features

output = 0; 
Window = 3; 
halfwin = 1; 
Features(3, 1);
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Window = 5; 
halfwin = 2;
Features(5 , 2);

Window = 7; 
halfwin =3;
Features(7 , 3);

Window = 9; 
halfwin =4;
Features(9 , 4);

}
//----------------------------------------------------------------------------------------------
vo id  fastcall TForml ::BackgroundClick(TObject *Sender)
{

// If the Pixel corresponds to background then set output to 1 
// Specify different windows in order to collect data for different size 
// Windows and different number of features

output = 1;
Window = 3; 
halfwin = 1;
Features(3 , 1);

Window = 5; 
halfwin = 2;
Features(5 , 2);

Window = 7; 
halfwin =3;
Features(7 , 3);

Window = 9; 
halfwin =4;
Features(9 , 4);

}
//----------------------------------------------------------------------------------------------
// Function to calculate different features from the neighbourhood or centered 
// pixel and at the same time display the features in the string grid 
vo id  fastcall TForml ::Features(int WindowSize, int d)
{

int n = WindowSize * WindowSize;

s=0,ep=0.0,p=0.0,mean=0.0,var=0.0, sdev=0.0, skew=0.0, curt=0.0; 
entropy=0;
pp=0;
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sum=0;
smoothness=0; 
uniform ity=0; 
countl =0, count2=0;

StartX = StartX;
StartY = StartY;

PointPixel = data[StartY+(StartX*lmage1->Height)];

for(i=StartX-halfwin; i<=StartX+halfwin; i++)
{

count2=0;
for(j=StartY-halfwin; j<=StartY+halfwin; j++)
{

data[j+(i*lmage1 ->Height)]=data[j+(i*lmage1 ->Height)]; 
StringGrid1->Cells[count1][count2] = \ 
(int)(dataO+(i*lmage1->Height)]*255.0); 
count2++;

}
coun tl++;

}
for(i=StartX-halfwin; i<=StartX+halfwin; i++) 
for(j=StartY-halfwin; j<=StartY+halfwin; j++)
{

sum+=data[j+(i*lmage1 ->Height)]; 
s+=data0+(i*lmage1 ->Height)];

}
var=skew=curt=0.0; 
mean =s/(float)n;
for(i=StartX-halfwin; i<=StartX+halfwin; i++) 
for(j=StartY-halfwin; j<=StartY+halfwin; j++)
{

s=dataO+(i*lmage1->Height)]-mean;
ep=ep+s;
var+=(p=s*s);
skew+=(p*=s);
curt+=(p*=s);

}
var=(var-ep*ep/n)/(n-1); 
sdev=sqrt(fabs(var));
for(i=StartX-halfwin; i<=StartX+halfwin; i++) 
for(j=StartY-halfwin; j<=StartY+halfwin; j++)
{

if(data0+(i*lmage1 ->Height)])
{
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pp=(dataO+(i*lmage1->Height)])/sum; 
entropy -= pp*log(pp);

}

}
entropy = entropy/(-log(1.0/n)); 
for(i=StartX-halfwin; i<=StartX+halfwin; i++) 
for(j=StartY-halfwin; j<=StartY+halfwin; j++)
{

pp=(dataO+(i*lmage1->Height)]-mean); 
uniform ity+=(pp*pp);

}
uniform ity=uniformity/n; 
smoothness = 1-(1/(1+(var))); 
if(var)
{

skew/=(n*(var)*(sdev));
curt=(curt)/(n*sdev);

}
else
{

skew=0.0;
curt=0.0;

}
StringGrid2->Cells[0][0] = PointPixel;
StringGrid2->Cells[0][1]= mean;
StringGrid2->Cells[0][2]= sdev;
StringGrid2->Cells[0][3]= var;
StringGrid2->Cells[0][4]= entropy;
StringGrid2->Cells[0][5]= skew;
StringGrid2->Cells[0][6]= curt;
StringGrid2->Cells[0][7]= smoothness; 
StringGrid2->Cells[0][8]= uniformity;
StringGrid2->Cells[0][9]= output;

}
//-------------------------------------------------------------------------------------
// Function to save features for different window sizes 3, 5, 7 and 9
vo id  fastcall TForml ::SaveFeatures()
{

FILE *file1;
FILE *file2;
FILE *file3;
FILE *file4;
FILE *file5; 
if (Window == 3)
{
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file1=fopen("Train3x3_3std.txt","a");
file2=fopen("Train3x3_3var.txt","a");
file3=fopen("Train3x3_8.txt","a");
file4=fopen("Train3x3_6.txt","a");

}
else if (Window == 5)
{

file1=fopen("Train5x5_3std.txt","a");
file2=fopen("Train5x5_3var.txt","a");
file3=fopen("Train5x5_8.txt","a");
file4=fopen("Train5x5_6.txt","a");

}
else if (Window == 7)
{

file l =fopen("T rain7x7_3std.txt","a"); 
file2=fopen("Train7x7_3var.txt","a"); 
file3=fopen("Train7x7_8.txt"1"a"); 
file4=fopen("Train7x7_6.txt","a");

}
else if (Window == 9)
{

file1=fopen("Train9x9_3std.txt","a");
file2=fopen("Train9x9_3var.txt","a");
file3=fopen("Train9x9_8.txt","a");
file4=fopen("Train9x9_6.txt","a");

}
fprintf ( f ile l, "%f %f %f %i",PointPixel, mean, sdev, output);
fprintf (file2, "%f %f %f %i",PointPixel, mean, var, output);
fprintf (file3, "%f %f %f %f %f %f %f %f %i",PointPixel, mean, \
sdev, entropy, skew, curt, smoothness, uniformity, output);
fprintf (file4, "%f %f %f %f %f %f %i",PointPixel, skew, curt, \
uniformity, smoothness, entropy, output);
fprintf(file1, "\n");
fprintf(file2, "\n");
fprintf(file3, "\n");
fprintf(file4, "\n");
fclose(filel);
fclose(file2);
fclose(file3);
fclose(file4);

}
//----------------------------------------------------------------------------------
vo id  fastcall TForml ::SaveClick(TObject *Sender)
{

// Here the features are recalculated for different window sizes then 
// saved into files to be used for training the NN
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Window = 3; 
halfwin = 1;
Features(3 , 1);
SaveFeatures();

Window = 5; 
halfwin = 2;
Features(5, 2);
SaveFeatures();

Window = 7; 
halfwin =3;
Features(7 , 3);
SaveFeatures();

Window = 9; 
halfwin =4;
Features(9, 4);
SaveFeatures();

}
//----------------------------------------------------------------------------------
vo id  fastcall TForml ::LoadDocumentClick(TObject ‘ Sender)
{

Loadlmage();
data = new float[lmage1->Fleight * lmage1->Width]; 
for(i=0; i<lmage1->Width; i++) 
for(j=0; j<lmage1->Height; j++)
{

//obtain pixel values of the bitmap and store in buffer 
data[j+(i*lmage1->Fleight)]= \

(unsigned char)lmage1 ->Canvas->Pixels[i]0]/255.O;
}

Application ->MessageBox(
"Click on a Point, Choose Background or Forground then Save Features", 
"Progress Message",MB_OK);

}
//----------------------------------------------------------------------------------
vo id  fastcall TForml ::Button1Click(TObject ‘ Sender)
{

Close();
}
//----------------------------------------------------------------------------------

vo id  fastcall TForml ::lmage1MouseMove(TObject ‘ Sender, TShiftState Shift,

Appendix A 127

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



University of Windsor

int X, int Y)
{

unsigned pix;
Edit1->Text = X;
Edit2->Text = Y; 
if(lmage1)

pix=(unsigned char)lmage1 ->Canvas->Pixels[X][Y]; 
Edit3->Text = pix;

}
//----------------------------------------------------------------------------------
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11-----------------------------------DataCollection.h-----------------------
#ifndef DataCollectionH 
#define DataCollectionH
//------------------------------------------------------------------------------------------
#include <Classes.hpp>
#include <Controls.hpp>
#include <StdCtrls.hpp>
#include <Forms.hpp>
#include <ExtCtrls.hpp>
#include <Dialogs.hpp>
#include <ExtDlgs.hpp>
#include <Grids.hpp>
//------------------------------------------------------------------------------------------
class TForml : public TForm 
{
 published: // IDE-managed Components

Tlmage *lmage1;
TOpenPictureDialog *OpenPictureDialog1;
TEdit *Edit1;
TEdit *Edit2;
TLabel *Label1;
TLabel *Label2;
TButton *forground;
TButton *Background;
TStringGrid *StringGrid1;
TStringGrid *StringGrid2;
TLabel *Label3;
TLabel *Label4;
TLabel *Label5;
TLabel *Label7;
TLabel *Label8;
TLabel *Label9;
TLabel *Label10;
TLabel *Label11;
TLabel *Label12;
TLabel *Label13;
TLabel *Label14;
TLabel *Label15;
TButton *Save;
TLabel *Label6;
TButton *LoadDocument;
TButton *Button1;
TEdit *Edit3;
TLabel *Label16;
vo id  fastcall lmage1MouseDown(TObject ‘ Sender,
TMouseButton Button, TShiftState Shift, int X, int Y);
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vo id  fastcall forgroundClick(TObject *Sender);
vo id  fastcall BackgroundClick(TObject ‘ Sender);
vo id  fastcall SaveClick(TObject ‘ Sender);
vo id  fastcall LoadDocumentClick(TObject ‘ Sender);
vo id  fastcall Button1Click(TObject ‘ Sender);
vo id  fastcall lmage1MouseMove(TObject ‘ Sender, TShiftState Shift,

int X, int Y);

private: // User declarations
public: // User declarations

 fastcall TForml(TComponent* Owner);
vo id  fastcall TForml::Loadlmage();
vo id  fastcall TForml::Features(int WindowSize, int e);
vo id  fastcall TForml::SaveFeatures();

};
//-------------------------------------------------------------------------------------------
extern PACKAGE TForm l *Form1;
//-------------------------------------------------------------------------------------------
#endif
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Appendix B
Source Code for Training MLP Neural Network

j^*******************************************************************************************

* Program developed by:
* M.A.Sid-Ahmed.
* ver. 1.0 1992.
* Used by permission from Dr. Sid-Ahmed 

Reference:
M. A. Sid-Ahmed, "Image Processing: Theory, Algorithms, and Architectures", 
McGraw-Hill, pp. 313-375, (1995).

http://web2.uwindsor.ca/courses/engineering/ahmed/lmage%20Proc/image_proc
essing.htm
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *  j

II program written in c language.
/* Program for training a multi-layer perceptron 
using the conjugate gradient method.*/

void conj_grad( float (*)(float *), void (*)(float *, float *, 
int), float *, int, float, float, int);

float fun(float *);
void dfun(float *, float *, int);

#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include <conio.h>
#include<time.h>
#include <io.h>

int M,*NL,*NS,L; 
int *d;
float *xp,*y,*net,*delta,theta; 

void main()
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{
float *w,q,xt; 
int i,j,N,xd,ind,Nt;
char file_name[14],file_name2[14],ch;
FILE *fptr,*fptr2;

clrscr();

printf("\nDo you wish to use previously trained weights? (y or n)~>");
while(((ch=getch())!='y')&&(ch!='n'));
putch(ch);
switch(ch)

{
case 'y':

printf("\nEnter file name
scanf("%s",file_name);
fptr=fopen(file_name,"r");

if(fptr==NULL)
{
printf("No such file exists."); 
exit(1);
}

fscanf(fptr,"%d ",&L);
NL=(int *)malloc(L*sizeof(int));
NS=(int *)malloc((L-2)*sizeof(int)); 
for(i=0;i<L;i++) 

fscanf(fptr,"%d ",&NL[i]);
NS[0]=NL[0]*NL[1];

for(i=1;i<(L-2);i++)
NS[i]=NS[i-1 ]+NL[i]*NL[i+1 ];

N=NS[L-3]+NL[L-2]*NL[L-1 ]; /* Total # of weights. */
/* Assigning memory for weights. */ 

w=(float *)malloc(N*sizeof(float)); 
for(i=0;i<N;i++) 

fscanf(fptr,"%f ",&w[i]);

fscanf(fptr,"%f ",&theta); 
fclose(fptr); 
break; 

case 'n':
/* Entering number of layers. */ 
printf("\nEnter number of hidden layers—>"); 
scanf("%d",&L);
L+=2; /*adding input and output layers. */
NL=(int *)malloc(L*sizeof(int));
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NS=(int *)malloc((L-2)*sizeof(int)); 
printf("Enter number of nodes in input layer-->"); 
scanf("%d",&NL[0]); 

for(i=1;i<=(L-2);i++)
{

printf("Enter number of nodes in hidden layer %d-->",i); 
scanf("%d",&NL[i]);

}
printf("Enter number of nodes in output layer->"); 
scanf("%d",&NL[L-1]);
NS[0]=NL[0]*NL[1];
for(i=1;i<(L-2);i++)

NS[i]=NS[i-1]+NL[i]*NL[i+1]; 
N=NS[L-3]+NL[L-2]*NL[L-1 ]; /* Total # of weights. */

/* Assigning memory for weights. */ 
w=(float*)malloc(N*sizeof(float)); 

random ize(); 
for(i=0;i<N;i++) 

w[i]=(float)random(N)/(float)N; 
theta=0.1;

}
Nt=0;
for(i=1;i<L;i++)

Nt+=NL[i]; /* Total number of neurals. */

got oxy( 1,10);
printf("Enter file name for storing trained weights--> "); 
scanf("%s",file_name); 
ind=access(file_name,0); 

while(lind)
{
gotoxy(1,12);
printf("File exists. Wish to overwrite? (y or n)->");
while(((ch=getch())!=y)&&(ch!='n'));
putch(ch);
switch(ch)

{
case 'y':

ind=1;
break;

case n :
gotoxy(1,7); 
printf("
gotoxy(1,10); 
printf("
gotoxy(1,10);
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printf("Enter file name
scanf("%s",file_name);
ind=access(file_name,0);

}
}

fptr=fopen(file_name,"w");

/ ‘ Assigning memory to *net, *z, ‘ delta. */ 
net=(float *)malloc(Nt*sizeof(float)); 
y=(float *)malloc(Nt*sizeof(float)); 
delta=(float *)malloc(Nt*sizeof(float));

printf("\nEnter file_name containing training data
scanf("%s",file_name2);
fptr2=fopen(file_name2,"r");
if(fptr2==NULL)
{
prin tfffile %s does not exist. ",file_name); 
exit(1);
}

/* Determining the size of the data. */
M=0; ind=1; 
while(1)

{
for(i=0;i<NL[0];i++)

{
if((fscanf(fptr2,"%f M,&xt))==EOF) /* input data. */ 

{ ind=0; 
break;
}

}
if(ind==0)

break;

for(i=0;i<NL[L-1];i++) /* desired output. */
fscanf(fptr2,"%d ",&xd);

M++;
}

printf("\n# of data points=%d",M); 
rewind(fptr2);

/* Assigning memory to *xp, *d */ 
xp=(float *)malloc((M‘ NL[0])*sizeof(float)); 
d=(int *)malloc((M*NL[L-1 ])*sizeof(int));

/* Reading in the data. */
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for(i=0; i<M; i++)
{

for(j=0;j<NL[0];j++) 
fscanf (f ptr2, "% f", &xp[j *M+i]);

for(j=0;j<NL[L-1];j++) 
fscanf(fptr2,"%d ",&dO*M+i]);

}
fclose(fptr2);

/* Call the Fletcher-Reeves conj. grad, algorithm. *1
clrscr();
gotoxy(1,1);
printf("Press ESC to exit and save latest update for weights."); 
conj_grad(fun,dfun,w,N,1 .Oe-3,1,0e-3,100000); 
fprintf(fptr,"%d ",L); 
for(i=0;i<L;i++) 

fprintf(fptr,"%d",NL[i]); 
for(i=0;i<N;i++) 

fprintf(fptr,"%f ",w[i]); 
fprintf(fptr,"%f ",theta); 
fclose(fptr); 
q=fun(w);
printf("\nError=%f',q);
printf("\n File name used to store weights is %s",file_name); 
printf("\n File name for the training data is %s",file_name2);
}

extern float *net,*w,‘ delta,*y; 
extern int *d; 
extern int *NS,*NL;

/* Generating the function. */ 
float fun(float *w)

{
int i,j,k,m,n,Nt1 ,Nt2; 
float q, error, E;

q=0.0;
for(k=0;k<M;k++)

{
for(i=0;i<NL[1];i++) /* From input layer to first */

{ /* hidden layer. */
net[i]=0.0; 
for(j=0;j<NL[0];j++) 

net[i]+=w[i+j*NL[1 ]]*xpO*M+k]; 
net[i]+=theta;
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E=(float)exp(-(double)net[i]);

y[i]=1.0/(1,0+E);
}

Nt1=NL[1]; Nt2=0;
for(n=2;n<L;n++) /* From layer n-1 to layer n. 7  

{
for(i=0;i<NL[n];i++)

{
m=Nt1+i; 
net[m]=0.0; 
for(j=0;j<NL[n-1 ];j++) 

net[m]+=w[NS[n-2]+i+j*NL[n]]*yO+Nt2]; 
net[m]+=theta;
E=(float)exp(-(double)net[m]);
y[m]=1.0/(1.0+E);

}
Nt1+=NL[n];
Nt2+=NL[n-1];

}

for(i=0;i<NL[L-1];i++) /* Calculating the error. 7  
{
error=d[k+i*M]-y[Nt2+i];
q+=error*error;
}

} /*k-loop*/ 
q/=2; 
return q;
}

extern float *df,*w,*net; 
extern *NL,*NL;
#define fd(i) y[i]*(1.0-y[i]) /* Define derivative. 7

void dfun(float *w, float *df, int N)
{
int i,j,k,m,n,Nt1 ,Nt2,Nt3,ii; 
float E,error,sum;

/* Initialize derivative vector. 7

for(i=0;i<N;i++)
df[i]=0.0;

/* Start. */
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for(k=0;k<M;k++)
{

/* Forward propagation. */ 
for(i=0;i<NL[1];i++) /* From input layer to first 7  

{ /* hidden layer. 7
net[i]=0.0; 
for(j=0;j<NL[0];j++) 

net[i]+=w[i+j*NL[1 ]]*xpO*M+k]; 
net[i]+=theta;
E=(float)exp(-(double)net[i]);
y[i]=1.0/(1.0+E);
}

Nt1 =NL[1 ]; Nt2=0;
for(n=2;n<L;n++) /* From layer n-1 to layer n. 7  

{
for(i=0;i<NL[n];i++)

{
m=Nt1+i;
net[m]=0.0;
for(j=0;j<NL[n-1];j++)

net[m]+=w[NS[n-2]+i+j*NL[n]]*yO+Nt2];
net[m]+=theta;
E=(float)exp(-(double)net[m]);
y[m]=1.0/(1.0+E);

}
Nt1+=NL[n];
Nt2+=NL[n-1];

}

Nt1 =0;
for(i=1;i<(L-1);i++)

Nt1+=NL[i];

for(i=0;i<NL[L-1 ];i++) /* delta's for output layer. 7
{
ii=Nt1+i;
error=d[k+i*M]-y[ii];
delta[ii]=-error*fd(ii);
}

for(m=0;m<(L-2);m++) /* delta's by back propagation. 7  
{
Nt2=Nt1 -NL[L-2-m]; 
for(i=0;i<NL[L-2-m];i++)

{
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ii=Nt2+i;
sum=0.0;

for(j=0;j<NL[L-1-m];j++)
sum+=delta[Nt1 +j]*w[NS[L-3-m]+j+i*NL[L-1 -m]]; 

delta[ii]=fd(ii)*sum;
}
Nt1=Nt2;

}

for(i=0;i<NL[1];i++)
for(j=0;j<NL[0];j++)

df[i+j*NL[1]]+=delta[i]*xp[k+j*M];

Nt1=NS[0]; Nt2=0;
Nt3=NL[1];
for(m=1;m<(L-1);m++)

{
for(i=0;i<NL[m+1];i++)

for(j=0;j<NL[m];j++)
df[Nt1 +i+j*NL[m+1]]+=delta[Nt3+i]*y[Nt2+j]; 

Nt1=NS[m];
Nt2+=NL[m];
Nt3+=NL[m+1];
}

} /*k-loop*/
}

#include <stdio.h> 
#include <stdlib.h> 
#include <math.h> 
#include <conio.h>

void conj_grad( float (*)(float *), void (*)(float *, float *, 
int), float *, in t , f lo a t, f lo a t, in t);

float f( float, float (*)(float *),float *, float *, 
float *, in t );

float fun(float *);

void dfun(float*, float*, int);
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void bracket(float, f lo a t,
float * float *,float (*)(float *), 

float *, float *, float *, in t );

float Brent(float,f lo a t, float (*)(float *),f lo a t, 
float *,float *, float *, in t );

/* Conjugate gradient method, 
fun: is a subprogram that returns the value 
of the function to be minimized. The 
arguments are: vector of variables, number 
of variables.
dfun: is subprogram that provides the gradients. Arguments: 
variables, gradients, number of variables. 
x[]: contain the variables. An initial value need to be 

supplied.
N: number of variables. 
eps1: overall convergence criteria. 
eps2: line search convergence criteria, 
no jte r: Maximum number of iterations. */

#define ESC 0x1 B

float EPS; /*square-root of machine epsilon. */

void conj_grad( float (*fun)(float *), void (*dfun)(float *, float *, 
int), float *x, int N, float eps1, float eps2, int n o jte r)
{
float *df,*dfp,*xt,*S,q,astar,sum,test,sum1 ,sum2; 
int i,j,iter; 
float a,b,toll;

EPS=1.0;
do

{
EPS/=2.0; 
to ll =1,0+EPS;

} while(tol1>1.0);
EPS=(float)sqrt((double)EPS);

df=(float *)malloc(N*sizeof(float)); 
dfp=(float *)malloc(N*sizeof(float));
S=(float *)malloc(N*sizeof(float)); 
xt=(float *)malloc(N*sizeof(float));
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dfun(x,df,N);
for(i=0;i<N;i++)

S[i]=df[i]; 
gotoxy(1,6); 
q=fun(x);
printf(" Initial value of error function=%f",q); 

iter=0;

while(iter<no_iter)
{
if(kbhit()!=0)

{
if(getch()==ESC);
return;
}

iter++;

/* test convergence. */ 
test =0.0; 
for(i=0;i<N;i++)

test +=(float)fabs((float)df[i]); 
if(test < eps1)

{
printf("\nConvergence by gradient test."); 
break;
}

/* If df*S<0.0 restart. */ 
test=1.0; 

for(i=0;i<N;i++)
{

if( df[i]*S[i]>0.0){
test=-1.0;
break;
}

}
if(test<0.0)

{
for(i=0;i<N;i++)

S[i]=df[i);
}

/* Save previous gradient vector.*/ 
for(i=0;i<N;i++) 

dfp[i]=df[i];
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/* Line Search. */ 
bracket(0.01,0.001 ,&a,&b,fun,x,xt,S,N); 
astar=Brent(a,b,fun,eps2,x,xt,S,N);

/* Adjust variables.*/ 
for(i=0;i<N;i++) 

x[i]-=astar*S[i];

dfun(x,df,N);
sum1=sum2=0.0;

for(i=0;i<N;i++)
{
sum 1 +=dfp[i]*dfp[i]; 
sum2+=df[i]*df[ij;

}
sum=sum2/sum1;
for(i=0;i<N;i++)

S[i]=sum*S[i]+df[i];

q=fun(x);
gotoxy(1,7);
printf(" Error function=%f at iteration # %-5d",q,iter);

}
printf("\nNumber of iterations = %d \n",iter);
free(S);
free(xt);

}

/* Function evaluation for line search. */ 
float f( float alpha, float (*fun)(float *),float *x, float *xt, 

float *S, int N)
{
int i; 
float q;

for(i=0;i<N;i++)
xt[i]=x[i]-alpha*S[i];

q=fun(xt); 
return q;
}

/* Function to bracket the minimum of a single 
variable function. */
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void bracket(float ax, float dx,
float *a,float *b,float (*fun)(float *), 

float *x, float *xt, float *S, int N)
{
float y1 ,x1 ,x0,y0,x2,y2; 
int iter;

xO=ax; 
x1 =xO+dx;
yO=f(xO,fun,x,xt,S,N); 
y1=f(x1,fun,x,xt,S,N); 
if(y1 >=y0)

{
dx=-dx; 
x1 =xO+dx;
y1=f(x1,fun,x,xt,S,N);
}

dx=2.0*dx; 
x2=x1 +dx;
y2=f(x2,fun,x,xt,S,N);
iter=0;

while(y2<y1)
{
iter++;
dx=2.0*dx;
x0=x1;
y0=y1;
x1=x2;
y1=y2;
x2=x1+dx;
y2=f(x2,fun,x,xt,S,N);
}
*a=xO;
*b=x2;

}

/* Brent's algorithm for obtaining the minimum 
of a single variable function. */

#define CGOLD 0.381966

float Brent(float ax,float bx, float (*fun)(float *),float TOL, 
float *x,float *xt, float *S, int N)

{
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float a,b,u,v,w,xx,e,fx,fv,fu,fw,xm,tol1 ,tol2,c,r,q,p;
int iter;
a=ax;
b=bx;
v=a+CGOLD*(b-a);
w=v;
xx=v;
e=0.0;
fx=f(xx,fun,x,xt,S,N);
fv=fx;
fw=fx;
c=0.0;
iter=0;
while(iter<100)

{
iter++;
xm=0.5*(a+b);
tol1=EPS*(float)fabs((double)xx)+TOL/3.0; 
tol2=2.0*tol1;

if((float)fabs((double)(xx-xm))<=(tol2-0.5*(b-a)))
{
return xx;
}

if((float)fabs((double)e)>tol1)
{
r=(xx-w)*(fx-fv);
q=(xx-v)*(fx-fw);
p=(xx-v)*q-(xx-w)*r;
q=2.0*(q-r);
if(q>0.0) p=-p;
q=(float)fabs((float)q);
r=e;
e=c;
/* is parabola acceptable. */
if(((float)fabs((double)p)<(float)fabs((double)(0.5*q*r)))|| 

(p > q*(a-xx))||
(p < q*(b-xx)))
{ / *  fit parabola. */ 
if(q==0.0) q=1.e-10; 
c=p/q;
u=xx+c;

/* f  must not be evaluated too close to a or b. */ 
if( (((u-a)<tol2))|| ((b-u)<tol2))

c=((xm-xx)>0.0) ? to ll : - to ll; 
goto 12;
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}
else goto 11;

}
else

{ /* A golden section step. 7  
11: if(xx>=xm) e=a-xx;

else e=b-xx; 
c=CGOLD*e;

}
/* update a,b,v,w, and x. 7  

12: if(fabs((double)c)>=tol1) u=xx+c; 
else u=xx+((c>0.0)?tol1:-tol1); 
fu=f(u,fun,x,xt,S,N); 
if(fu<=fx)
{
if(u>=xx) a=xx;
else b=xx;
v=w;
fv=fw;
w=xx;
fw=fx;
xx=u;
fx=fu;
continue;
}

else
{
if(u<xx) a=u; 
else b=u;
}

if((fu<=fw)||(w==xx))
{
v=w;
fv=fw;
w=u;
fw=fu;
continue;
}

if((fu<=fv)||(v==xx)||(v==w))
{
v=u;
fv=fu;
}

}
return xx;
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Source Code for Document Analysis System

//------------------------------------------ DocumentAnalysis.cpp------------------------------------
/* The following program contains the implementation of the document analysis 
system in C++ Borland Builder, it goes through thresholding, skew 
detection/correction, smearing, block labelling, classification of image contents, 
and OCR. */
//-----------------------------------------------------------------------------------------------------------------

II-------------------------------------------------------------------------------------
#include <vcl.h>
#pragma hdrstop 
#include <time.h>
#include "UnitlPS.h"
#include <math.h>
#include <stdio.h>
#include "Unit2PS.h"
#include "Unit3PS.h"
#include "Unit4PS.h"

#define RAD (float)(pi/180.0)
#define pi 3.1415192653
#define Num_Class 67 // number of characters used
#define Vector_Size 32 // feature vector for characters
#define N1 25 // N1xN2 is the character window
#define N2 20 
#define MaxNum 1500
//-------------------------------------------------------------------------------------
#pragma package(smart_init)
#pragma resource "*.dfm"

TForml *Form1;
//-------------------------------------------------------------------------------------
 fastcall TForml ::TForm1(TComponent* Owner)

: TForm(Owner)
{
}
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//--------------------------------------------------------------------------------------
// Data Declaration and initialization

Graphics:TBitmap *DestBitmap=new Graphics::TBitmap;

int Current_Vector[100000]; 
float Prototype_Vector[100000];

unsigned char flip, PEL;

int ymin[1000]={0};
int xmax[1000]={0};
int ymax[1000]={0};
int xmin[1000]={0};
int tra n s l, trans2;
int CurrentCharacterCount=0;
int wx=0;

int **CenteredCharacters; 
int *lnBuffer, **B_buffer;

float **Skewed_lmage, **xp;
float *y1,*net,*delta,*ratiopixelcount,*mean,*stdev,*data,*blkpixcount;

unsigned char **Buffer2; 
unsigned char **H_Buffer; 
unsigned char **V_Buffer; 
unsigned char **AND_Buffer; 
unsigned char **Rotated_lmage; 
unsigned char *Buffer;

float skew=0.0,theta;
int output, i, j, k, I, z, tx, ty, MMM=0, countlab=1, index1=0;
int *diff_Height,*diff_Width,*minx,*maxx,*maxy,*miny,*Area, *d;
int NL[3]={3,7,1 },NS[3]={21,0I0},L=3;
int NL_seg[3]={4,7,1};
int NS_seg[3]={28,0,0};
int L_seg=3;

float *y1_seg, *net_seg, *delta_seg; 
int *d_seg; 
float **xp_seg;

// Weigths for NN Page Segmentation
float w_seg[35] = {-1.729680, -6.353260,-6.369861, -6.300127, -6.274672, 
-1.237119, -10.551314, 12.668114, 8.682954, 13.539809,
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9.194036, 8.015849, 11.049754, 14.648908, -1.896923,
-9.950021, -9.613397, -7.816551, -8.762332, -1.466800,
-14.103784, -0.400021, -7.674094, -6.605059, -6.065756,
-6.602304, -0.897390, -10.995788, 11.114531,-8.199492,
-2.414521, -3.853810, -3.227198, 3.995727, -9.124902};

// Weights for NN Local Thresholding method Window size 5x5 features used 
// to obtain the weigths
float w [117] = {-0.375437, 2.294064, -3.630360, 0.829671,-0.635375, 3.430550, 
-3.880288,
-2.563248, 1.686070, 2.112022, 5.759726, 0.543167, -8.077309, 0.108005, 
0.198675, 0.216681, 0.460180, 0.372244, -0.046246, 0.193370, -0.092026, 
0.729258, 0.625819, -0.947824, 0.422128, 0.934031, 1.076213, -0.898342, 
3.303523, 0.145267, 0.894391, -1.369181, 3.472130, 1.680070, -0.047389, 
-0.550796, -3.165742, 0.824378, 5.700605, -0.358712, -0.039954, 0.338562, 
0.469575, 0.518232, -0.615934, 0.455342, 0.023446, 0.389336, -0.020608, 
-1.238052, 0.612990, 1.755488, 0.336900, -0.009029, 0.064712, 0.902127, 
1.238423, 0.220369, 0.061539, 0.077136, 0.381284, 0.264995, 0.014377, 
1.022352, 0.067826, 0.375923, -0.051229, 0.761890, 0.329267, 0.176265, 
0.412155, 0.764072, 1.138160, 0.492786, 0.018523, -0.131636, 0.439584, 
0.919881, 0.100282, 0.481132, 1.501408, 0.619291, 0.997295, 0.269057, 
1.195562, 1.416858, 0.380746, -0.070980, -0.112627, 0.152325, 2.212180, 
0.656414, 0.511057, 0.710284, 0.628333, 0.271063, -0.315312, 1.292174, 
0.567266, 0.023824, 0.356373, -0.104557, 0.590065, 1.872919, -1.033064, 
2.463114, -5.418090, 0.495853, -1.167128, 3.774928, -5.871053, -3.729534, 
1.684677, 2.324992, 6.869428, 0.011739, -11.326363};
//--------------------------------------------------------------------------------------
// The function LoadlmageQ Loads a document image from a file.
//--------------------------------------------------------------------------------------
vo id  fastcall TForml ::Loadlmage()
{

Graphics::TBitmap *0_Bitmap=new Graphics:TBitmap;
TCursor Save_Cursor = Screen -> Cursor;
String Str;
OpenPictureDialogl ->Execute();
Str = OpenPictureDialogl ->FileName;
Screen -> Cursor = crHourGlass; 
if(Str!="")

0_Bitmap->LoadFromFile(Str); 
lmage1-> Height = 0_Bitmap->Height; 
lmage1-> Width = 0_Bitmap->Width; 
lmage1->Picture->Assign(0_Bitmap);

Screen->Cursor=Save_Cursor; 
delete 0_Bitmap;

}
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//-------------------------------------------------------------------------------------
// The HorizontalSmearQ smears the binary image produced from thresholding 
// Horizontally according the Run Length Smearing Algorithm developed by Wahl 
// et al. Ref [48] F. Wahl, K. Wong and R. Casey, "Block Segmentation and Text 
// Extraction in Mixed Text/Image Documents," Computer Vision,Graphics and 
Image
// Processing, Vol. 20, pp. 375-390, 1982.
//--------------------------------------------------------------------------------------
vo id  fastcall TForml ::HorizontalSmear()
{

Screen -> Cursor = crHourGlass;

DestBitmap -> Height= lmage1-> Height;
DestBitmap -> Width = lmage1-> Width;

Form2->lmage1->Height = DestBitmap-> Height;
Form2->lmage1->Width = DestBitmap-> Width;

Form3->lmage1->Height = DestBitmap-> Height;
Form3->lmage1->Width = DestBitmap-> Width;

Form4->lmage1->Height = DestBitmap-> Height;
Form4->lmage1->Width = DestBitmap-> Width;

H_Buffer= new unsigned char*[lmage1->Width];
for (i=0; i<lmage1->Width; i++)

H_Buffer[i] = new unsigned char [lmage1->Height];

tx = lmage1->Width/3;

for(i=0; i<(int)(lmage1-> H eight); i++)
{

flip = H_Buffer[0][i]; 
transl = 0; 
trans2 = 0;

for (j=1; j<(int)(lmage1-> Width); j++)
{

H_Buffer[j][i]=Buffer2[j][i];

if (H_Buffer[j][i]==255)
H_Buffer[j][i]=0;

else
H_Buffer[j][i]=255; 

if (H_BufferO][i]> flip)
{
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trans2 = j;
flip = H_BufferG][i];

}
else if (H_Buffer[j][i]<flip)
{

transl = j;
flip = H_Buffer[j][i];

}
if (trans2>trans1)
{

if((trans2-trans1 )<=tx)
{

for(int n= transl; n<trans2; n++)
{

H_Buffer[n][i] =255;
}

}
}
else if((trans2!=0)&&((lmage1->Width) - transl <tx))
{

for(int n= transl; n<lmage1->Width; n++)
H_Buffer[n][i] = 255;

}
}

}

for (i=0;i<lmage1->Height; i++) 
for (j=0;j<lmage1->Width; j++)
{

if (H_Buffer[j][i] <255)
H_Buffer[j][i] = 255;

else
H_Buffer[j][i] = 0;

PEL=H_Buffer[j][i];
}

}
//-----------------------------------------------------------------------------------------------
// The VerticalSmear() smears the binary image produced from thresholding 
// Vertically according the Run Length Smearing Algorithm developed by 
// Wahl et al. Ref [48]
//----------------------------------------------------------------------------------------------
vo id  fastcall TForm l ::VerticalSmear()
{

Screen -> Cursor = crHourGlass;
V_Buffer= new unsigned char*[lmage1->Width];
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for (i=0; i<lmage1->Width; i++)
V_Buffer[i] = new unsigned char [lmage1->Height];

ty =lmage1->Width/3;

unsigned y;
for (i=0; i<(int)(lmage1-> W id th ); i++)
{

flip = V_Buffer[i][0]; 
transl = 0; 
trans2 = 0;

for (j=1; j<(int)(lmage1-> Height); j++)
{

y=Buffer2[i][j]; 
if (y==255) {y=0;} 
else {y=255;}

V_Buffer[i][j]=y; 
if (V_Buffer[i][j]> flip)
{

trans2 = j;
flip = V_Buffer[i][j];

}
else if (V_Buffer[i][j]<flip)
{

transl = j;
flip = V_Buffer[i][j];

}

if (trans2>trans1)
{

if((trans2-trans1 )<=ty)
{

for(int n= tra n s l; n<trans2; n++)
{
V_Buffer[i][n] =255;
}

}
}
else if((trans2!=0)&&((lmage1->Width) - transl <ty)) 
{

for(int n= transl; n<lmage1->Width; n++) 
V_Buffer[i][n] = 255;

}
}
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}
for (i=0;i<lmage1->Width; i++) 
for (j=0;j<lmage1->Height; j++)
{

if (VJBuffer[i][j] <255)
V_Buffer[i]0] = 255;

else
V_Buffer[i]0] = 0;

PEL=V_Buffer[i][j];
}

}
//-------------------------------------------------------------------------------------
// The function AND() logically ANDs the result of Horizontal and Vertical 
// Smearing Ref [48]
//----------------------------------------------------------------------------------------------
vo id  fastcall TForml ::AND()
{

Screen -> Cursor = crHourGlass;

AND_Buffer= new unsigned char*[lmage1->Width]; 
for (i=0; i<lmage1->Width; i++)

AND_Buffer[i] = new unsigned char [lmage1->Height];

for (i=0;i<lmage1->Width ; i++) 
for (j=0;j<lmage1->Height; j++)
{

AND_Buffer[i][j] = (V_Buffer[i]D])|(H_Buffer[i][j]);
}

}
//----------------------------------------------------------------------------------------------
// Refer to Reference [5] for details
vo id  fastcall TForm l ::SkewAngle()
{

Screen -> Cursor = crHourGlass;
int **burstimage,**accumulator;
float rho,theta,min,max;
float thetastep,theta_range,rho_step;
int theta_count,accum_row_count,y, count, rowjocation;

Skewedjm age = new float*[lmage1->Height]; 
for (i=0; i<lmage1->Height; i++)

Skewed _lmage[i] = new float[lmage1->Width];

//Read pixels from thresholded image and store in Skewedjm age 
for(i=0;i<lmage1-> Height;i++)
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{
for(j=0;j<lmage1 ->Width;j++)
{

Skewed_lmage[i][j]=Buffer2|j][i];
}

}
//allocate memory and initialize input data used to calculate skew angle
//-------------------------------------------------------------------------------------
burstimage = new int*[(lmage1->Height)]; 
for (int i=0; i<(lmage1->Height); i++)

burstimage[i] = new int[(lmage1->Width)];

for(i=0;i<lmage1-> Height;i++)
{

for(int j=0;j<lmage1 ->Width;j++)
{

burstimage[i]0]=O;
}

}
//-------------------------------------------------------------------------------------

// Use the data reduciton run-lenght bursts method found in referece [5] 
for(i=0;i<lmage1->Width;i++)
{

count=0;
for(j=0;j<lmage1-> Height;j++)
{

if(Skewed_lmage[j][i]!=255.0)
{count++;}

else
{

if((j>0)&&(count>0))
{

burstimage[j-1][i]=count; //j-1
}
count=0;

}
}

}

//Applying the Hough Transform on the burstimage to find skew angle 
thetastep=0.5;
theta_range=5.0; // range from -5 to 5 
theta_count=2*theta_range/thetastep+1; 
max=-100.0; 
min=100;
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for(i=0;i<lmage1-> Height;i++)
{

for(j=0;j<lmage1 ->Width;j++)
{

if((burstimage[i][j]>2)&&(burstimage[i][j]<25))
{

for(int n1 =0;n1 <theta_count;n1 ++)
{

theta=(float)n1*thetastep-theta_range; 
rho=i*cos(theta*RAD)+j*sin(theta*RAD); 
if(rho>max) max=rho; 
if(rho<min) min=rho;

}
}

}
}
rho_step=1.0;
accum_row_count=(int)((floor(max)-floor(min))/rho_step)+1;
// The size of the accumulator is accum_row_count x theta_count 
//allcoate memory for accumulator and initialize it 
accumulator = new int*[accum_row_count]; 
for (int i=0; i<accum_row_count; i++)

accumulator^] = new int[theta_count];

for(i=0; i<accum_row_count; i++) 
for(j=0;j<theta_count;j++) 

accumulator[i][j]=0;

for(i=0;i<lmage1-> Height;i++)
{

for(j=0;j<lmage1 ->Width;j++)
{

if((burstimage[i][j]>2)&&(burstimage[i]|j]<25))
{

for(int n1 =0;n1 <theta_count;n1 ++)
{

theta=(float)n 1 *thetastep-theta_range; 
rho=i*cos(theta*RAD)+j*sin(theta*RAD); 
row_location=(int)(floor(rho)-floor(min)); 
accumulator[row_location][n1]+=burstimage[i][j];

}
}

}
}
max=0;
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rowjocation=0;

// The cell containing the maximum value is the location of the skew angle 
for(i=0;i<accum_row_count;i++)
{

for(j=0;j<theta_count;j++)
{

if(accumulator[i][j]>max)
{

max=accumulator[i][j];
row_location=j;

}
}

}
skew=row_location*thetastep-theta_range;
Edit2->T ext=-skew;

for (int i = 0; i < accum_row_count; i++) 
delete[] accumulator[i]; 
delete[] accumulator;

for (int i = 0; i < lmage1->Height; i++) 
delete[] burstimage[i]; 
deletef] burstimage;

}
//-------------------------------------------------------------------------------------
vo id  fastcall TForml ::Rotate()
{

Screen -> Cursor = crHourGlass; 
int x,y;
if((skew!=0) && (skew <=5) && (skew >=-5))
{

Rotated_lmage= new unsigned char*[(int)(lmage1->Height)]; 
for(i=0; i<(int)(lmage1->Height); i++)

Rotated_lmage[i] = new unsigned char [lmage1->Width];

for(i=0;i<lmage1->Height ;i++)
{

for(j=0;j<lmage1-> Width;j++)
{

Rotated_lmage[i][j]=255.0;
}

}
for(i=0;i<lmage1-> Height;i++)
{
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for(j=0;j<lmage1-> Width;j++)
{

x=(int)((i-lmage1-> Height/2)*cos(RAD*(-skew)) \
-(j-lmage1 ->Width/2)*sin(RAD*(-skew))+lmage1 ->Height/2);

y=(int)((i-lmage1-> Height/2)*sin(RAD*(-skew)) \
+(j-lmage1 ->Width/2)*cos(RAD*(-skew))+lmage1 ->Width/2);

if((x>=0)&&(y>=0)&&(x<lmage1 ->Height)&&(y<lmage1 ->Width)) 
Rotated_lmage[x][y]=Skewed_lmage[i][j];

}
}
II show rotated bitmap 
for(i=0;i<lmage1-> Height;i++)
{

for(j=0;j<lmage1-> Width;j++)
{

Buffer20][i]=Rotated_lmage[i][j];
}

}
}

}
//-------------------------------------------------------------------------------------
// The Thresholding function classify each pixel in an image into either a 0 or 
// 255 by first calculating features (using the function features5x5()) then the 
// MLP NN classifier is used to perform the classification
//--------------------------------------------------------------------------------------
vo id  fastcall TForml ::Thresholding()
{

Screen -> Cursor = crHourGlass;
features5x5();
float q,xt;
int xd,ind,Nt;

Buffer=new unsigned char[lmage1->Height*lmage1->Width];

Buffer2= new unsigned char *[lmage1->Width]; 
for(i=0; i<lmage1->Width; i++)

Buffer2[i] = new unsigned char [lmage1->Height];

for(i=0; i<lmage1->Width; i++) 
for(j=0; j<lmage1->Height; j++)
{

Buffer[i+(lmage1 ->Width *j)] = 255; 
Buffer2[i][j]=255;
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}
theta = 0.1;

NS[0]=NL[0]*NL[1];
for(i=1;i<(L-2);i++)

NS[i]=NS[i-1 ]+NL[i]*NL[i+1 ];
Nt=13;
// Assigning memory 
net = new float[Nt]; 
y1 = new float[Nt]; 
delta = new float[Nt];

fun(w);

int Value; 
int count=0;

for(i=2; i<lmage1->Width-2; i++) 
for(j=2; j<lmage1->Height-2; j++)
{

Value= d[count]; 
count++;
Buffer2[i]0]=Value;

}

delete [] y1; 
delete [] net; 
delete [] delta;

free (d);
for(i=0; i<8; i++) 

delete [] xp[i]; 
delete [] xp;
MMM=0;

}
//-------------------------------------------------------------------------------------
// the function features5x5() calculates the features needed to threshold the 
// pixels in an image into two different classes 0 or 255, here 8 features are 
// used and a window size 5x5 was used to produce the desired results.
//-------------------------------------------------------------------------------------
vo id  fastcall TForml ::features5x5()
{

Screen -> Cursor = crHourGlass;

data = newfloat[lmage1->Height * lmage1->Width];
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for(i=0; i<lmage1->Width; i++) 
for(j=0; j<lmage1->Height; j++)
{

//obtain pixel values of the bitmap and store in buffer 
data[j+(i*lmage1 ->Height)]=(unsigned char) \ 

lmage1->Canvas->Pixels[i][j]/255.0;
}
// no mean or std features
xp= new float *[lmage1->Width*lmage1->Height*3]; 
for (i=0; i<lmage1->Width*lmage1->Height*3; i++) 

xp[i] = new float[8];

int n = 25;
float s,ep=0.0,ave,var, adev, sdev;
float PointPixel=0;
float sum=0;
float Feature[8]={0};
float curt; // kurtosis
float entropy=0; // entropy
float smoothness=0; // smoothness.
float uniformity=0; // uniformity.
float p=0,pp=0; // intermidate variables

for(int k=2; k<lmage1->Width-2; k++) 
for(int l=2; l<lmage1->Height-2; I++)
{

s=0.0;
ave=0.0;
var=sdev=ep=p=pp=0.0;
sum=0;
PointPixel =(data[l+(k*lmage1 ->Height)]);

for(i=k-2; i<=k+2; i++) 
for(j=l-2; j<=l+2; j++)
{

s+=data0+(i*lmage1 ->Height)]; 
sum+=data[j+(i*lmage1 ->Height)];

}

ave =s/(float)n; 
for(i=k-2; i<=k+2; i++) 
for(j=l-2; j<=l+2; j++)
{

ep+=s;
var+=(s*s);
skew+=(p*=s);
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curt+=(p*=s);
}
var=(var-ep*ep/n)/(n-1); 
sdev=sqrt(fabs(var));

for(i=k-2; i<=k+2; i++) 
for(j=l-2; j<=l+2; j++)
{

if(data[j+(i*lmage1 ->Height)])
{
pp=(data[j+(i*lmage1->Height)])/sum; 
entropy -= pp*log(pp);
}

}
entropy = entropy/(-log(1.0/n));

for(i=k-2; i<=k+2; i++) 
for(j=l-2; j<=l+2; j++)
{

pp=(data0+(i*lmage1 ->Height)]- ave); 
uniform ity+=(pp*pp);

}
uniform ity=uniformity/n; 
smoothness = 1-(1/(1+(var))); 
if(var)
{

skew/=(n*(var)*(sdev));
curt=(curt)/(n*sdev);

}
else
{

skew=0.0;
curt=0.0;

}
Feature[0]=PointPixel;
Feature[1]=ave;
Feature[2]=sdev;
Feature[3]=entropy;
Feature[4]=skew;
Feature[5]=curt;
Feature[6]=smoothness;
Feature[7]=uniformity;

for(i=0; i<8; i++)
{
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xp[MMM][i]=Feature[i];
}
MMM++;

}
}
//----------------------------------------------------------------------------------------------
vo id  fastcall TForml ::fun(float *w)
{

Screen -> Cursor = crhlourGlass;

int m,n,Nt1,Nt2; 
float E;
d = new int[lmage1->Height * lmage1->Width]; 
for(i=0; i<(lmage1->Fleight *lmage1->Width); i++)
{

d[i]=0;
}
int Value=0;
int M1=lmage1->Height * lmage1->Width; 
for(k=0;k<M1;k++)
{

for(i=0;i<NL[1];i++) //From  input layer to first
{

net[i]=0.0; 
for(j=0;j<NL[0];j++) 

net[i]+=w[i+j*NL[1 ]]*xp[k][j]; 
net[i]+=theta; 

E=(float)exp(-(double)net[i]); 
y1[i]=1.0/(1.0+E);

}
Nt1 =NL[1 ]; Nt2=0;
// From layer n-1 to layer n. 
for(i=0;i<1;i++) // output layere 1
{

m=Nt1+i;
net[m]=0.0;
for(j=0;j<NL[1];j++)

net[m]+=w[NS[1 ]+i+j*1 ]*y10+Nt2]; 
net[m]+=theta;
E=(float)exp(-(double)net[m]);
y1[m]=1.0/(1.0+E);

}
Nt1+=NL[2];
Nt2+=NL[1];

for(i=0;i<NL[L-1];i++) // Calculating the error.
{
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if(y1[Nt2+i]>=0.1)
Value = 255;

else
Value=0;

d[k]=Value;

}
//-------------------------------------------------------------------------------------
// The SmoothSmearingO smears the binary image produced from thresholding 
// Horizontally after ANDing the horizontal and Vertical Smearing to merge 
// small blocks together to produce bigger blocks of text
//-------------------------------------------------------------------------------------
vo id  fastcall TForml::SmoothSmearing()
{

Screen -> Cursor = crHourGlass;

H_Buffer= new unsigned char*[image1->Width]; 
for (i=0; i<lmage1->Width; i++)

H_Buffer[i] = new unsigned char [lmage1->Height];

tx = 10;
for (i=0; i<(int)(lmage1-> H eight); i++)
{

flip = H_Buffer[0][i]; 
transl = 0; 
trans2 = 0;

for (j=1; j<(int)(lmage1-> Width); j++)
{

H_BufferO][i]=AND_BufferO][i]; 
if (H_Buffer[j][i]==255){H_Buffer[j][i]=0;} 
else {H_Buffer[j][i]=255;}

if (H_Buffer[j][i]> flip)
{ trans2= j;

flip = H_Buffer[j][i];
}
else if (H_Buffer[j][i]<flip)
{

transl = j;
flip = H_Buffer[j][i];

}
if (trans2>trans1)
{

if((trans2-trans1 )<=tx)
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{
for(int n= transl; n<trans2; n++)
{

H_Buffer[n][i] =255;
}
}

}
else if((trans2!=0)&&((lmage1->Width) - transl <tx))
{

for(int n= transl; n<lmage1->Width; n++)
H_Buffer[n][i] = 255;

}
}

}
for (i=0;i<(int)(lmage1->Height); i++) 
for (j=0;j<(int)(lmage1->Width); j++)
{

if (H_Buffer[j][i] <255)
H_Buffer[j][i] = 255;

else
H_BufferO][i] = 0;

AND_Buffer[j][i]=H_Buffer[j][i];
PEL=AND_BufferO][i];

}
}
//-------------------------------------------------------------------------------------
// This function labels all the blocks produced after the smearing process 
// it gives the same label to a pixel connected together. Ref [48] explains 
// the algorithm used a final adjustment to the algorithm was done by rescanning 
// the image from the bottom up to ensure all pixels are labeled correctly.
//-------------------------------------------------------------------------------------
vo id  fastcall TForm1::LabelBlocks()
{

Screen -> Cursor = crHourGlass; 
int **A_buffer;
A_buffer= new int*[lmage1->Width]; 
for (i=0; i<lmage1->Width; i++)

A_buffer[i] = new int [lmage1->Height];

B_buffer= new int*[lmage1->Width]; 
for (i=0; i<lmage1->Width; i++)

B_buffer[i] = new int [lmage1->Height];

int *label;
label = new int[lmage1->Width]; 
int lab=0;
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int max_x=0; 
int max_y=0;
int min_x = lmage1->Width; 
int min_y= lmage1->Width; 
int count= 1; 
int cc = 0; 
int W[1000]={0};

for (i=0; i<(lmage1-> H eight); i++) 
for (j=0; j<(lmage1-> Width); j++)
{

if (AND_Buffer[j][i]==255)
A_buffer[j][i]=0;

else
A_buffer[j][i]=1;

}
for (i=0;i<(lmage1->Height); i++)
{

for (j=0;j<(lmage1->Width); j++)
{

if (((A_buffer[j][i]==1 ))&& 
((A_buffer0][i+1]==1)|| 

(A_buffer[j][i-1]==1)||
(A_buffer[j+1][i]==1)||
(A_buffer0+1][i-1]==1)||
(A_buffer[j+1 ][i+1 ]==1 )||
(A_buffer0-1][i]==1)||
(A_buffer[j-1][i+1]==1)||
(A_buffer[j-1 ][i-1 ]==1)))
{

B_buffer[j][i]=count;
}
else
{

B_buffer[j][i]=0;
}
if (B_buffer[j][i]!=0) 

cc = B_buffer[j][i]; 
if(count > cc) 

count = c c ; 
if((A_buffer[j][i]==0)&&(A_buffer[j][i+1 ]==0)) 
{

B_buffer[j][i]=0; 
count ++;

}
}
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for(i=0; i<lmage1->Height; i++)
{

j=0;
while (j<lmage1->Width)
{

B_buffer[0][i]= 0;
B_buffer[j][0]= 0;
if((B_buffer[J][i]!=0)&&((B_buffer[j-1 ][i-1 ]!=0) 
||(B_buffer[j-1][i]!=0)||(B_buffer[j-1][i+1]!=0)|| 
(B_buffer[j][i+1]!=0)H(B_buffer[j][i-1]!=0)ll 
(B_buffer0+1 ][i]!=0)||(B_bufferO+1][i-1 ]!=0) 
||(B_bufferO+1][i+1]!=0)))
{

if((B_buffer[j][i]!=0)&&(B_buffer[j-1][i+1]!=0)) 
B_buffer[j][i]= B_buffer0-1][i+1]; 

if((B_bufferO][i]!=0)&&(B_buffer[j-1][i]!=0)) 
B_buffer[j][i]= B_buffer[j-1 ][i]; 

if((B_bufferO][i]!=0)&&(B_bufferO-1 ][i-1]!=0)) 
B_buffer[j][i]= B_buffer[j-1][i-1]; 

if((B_buffer[j][i]!=0)&&(B_buffer[j][i-1]!=0)) 
B_buffer[j][i]=B_buffer[j][i-1 ]; 

if((B_buffer[j][i]!=0)&&(B_buffer[j+1][i-1]!=0)) 
B_bufferO][i]= B_buffer[j+1][i-1];

}
j++;

}
}
// scan from bottom up to ensure pixels are labeled correctly 
for (i=(lmage1->Height)-1 ;i>0 ; i--)
{

j=lmage1-> Width-1; 
while (j>0)
{

if((B_bufferO][i]!=0)&&((B_buffer[j-1][i-1]!=0)||
(B_bufferO-1][i]!=0)||(B_bufferO-1][i+1]!=0)||
(B_bufferO][i+1]!=0)||(B_buffer[j][i-1]!=0)||
(B_buffer[j+1][i]!=0)||(B_buffer[j+1][i-1]!=0)||
(B_bufferO+1][i+1]!=0)))
{

if((B_bufferO][i]!=0)&&(B_buffery+1 ][i-1 ]!=0)) 
B_buffer[j][i]= B_buffer0+1][i-1]; 

if((B_bufferO][i]!=0)&&(B_bufferO+1][i+1]!=0)) 
B_buffer[j][i]= B_buffer0+1][i+1]; 

if((B_bufferO][i]!=0)&&(B_buffery+1][i]!=0)) 
B_buffer[j][i]= B_buffer0+1][i];
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if((B_buffer03[i]!=O)&&(B_buffer[j][i+1]!=O)) 
B_buffer[]][i]= B_buffer[j][i+1];

}
j--;

}
}
countlab = count;

for (i=0;i<(lmage1->Height); i++)
{

for (j=0;j<lmage1->Width; j++)
{

if ((A_buffer[j][i]==1)&&(B_buffer[j][i] !=0))
{

for(k=0; k<countlab; k++)
{

if(B_buffer[j][i]==k)
W[k]=k;

}
}

}
}
for(k=0; k<countlab; k++)
{

if(W[k]!=0)
{

label[lab]=W[k];
lab++; //lab is the number of blocks in the image

}
}

// Allocating memory for block coordinates
minx = new int[lab];
maxx = new int[lab];
maxy = new intflabj;
miny = new int[lab];

// Initialize the blocks coordinates 
for(k=0; k<lab; k++)
{

minx[k]=lmage1 ->Width; 
miny[kj=lmage1 ->Width; 
maxx[k]=0; 
maxy[k]=0;

}
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// calculating the minimum coordinates for x and y 
for(k=0; k<lab; k++)
{

min_x=lmage1 ->Width; 
min_y=lmage1->Width; 
for (i=0;i<(lmage1->Height); i++)
{

for (j=0;j<lmage1->Width; j++)
{

if(B_buffer[j][i]==label[k])
{

min_x = j; 
min_y = i;
if( min_x < minx[k]) 

minx[k]=min_x; 
if( min_y< miny[k]) 

miny[k]=min_y;
}

}
}

}

// Calculating the maximum coordinates for maximum coordiates of x and y 
for(k=0; k<lab; k++)
{

for (i=0;i<(lmage1->Height); i++)
{

for (j=0;j<lmage1->Width; j++)
{

if( B_buffer[j][i]==label[k])
{

max_x = j; 
max_y = i; 
if(max_x > maxx[k]) 

maxx[k] = max_x; 
if(max_y > maxy[k]) 

maxy[k] = max_y;
}

}
}

}
// elimiate very small blocks that could be noise and assigning them as 
// background 
for(k=0; k<lab; k++)
{

if((maxy[k]-miny[k] <= 4) || (maxx[k] - minx[k] <= 4))
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{
for(i=minx[k]; i<maxx[k]; i++) 
for(j=miny[kj; j<maxy[k]; j++) 
if(Buffer2[i][j] == 0)

Buffer2[i]0] = 255; ; 
maxy[k]=0; 
maxx[k]=0; 
miny[k]=0; 
minx[k]=0 ;

}
}
//The final coordinate of the blocks are given by maxx, maxy, minx, miny 
for(k=0; k<lab; k++)
{

if(fabs(minx[k+1]-maxx[k])< 8 && fabs(miny[k]-miny[k+1])<4)
{

maxx[k] = maxx[k+1]; 
minx[k+1] = minx[k]; 
if(maxy[k]>maxy[k+1 ]) 

maxy[k+1 ]=maxy[k];
else

maxy[k]=maxy[k+1];
}

}
index1=lab;

lab=0;
for(i=0; i<lmage1->Height; i++) 

delete[] A_buffer[i]; 
delete[] A_buffer;

delete []label;
}

// The ShowLabeledBlocks() function draws rectangles around all blocks and 
// assigns labels to each block
//--------------------------------------------------------------------------------------
vo id  fastcall TForm1::ShowLabeledBlocks()
{

Screen -> Cursor = crHourGlass; 

float feature_seg[4]={0,0,0,0}; 

wx=0;
for(k=0; k<index1; k++)
{
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if((ratiopixelcount[k]!=0)||(Area[k]>100&&ratiopixelcount[k]!=0)
&& diff_Height!=0 && diff_Width !=0)
{

minx[wx]=minx[k];
miny[wx]=miny[k];
maxx[wx]=maxx[k];
maxy[wx]=maxy[kj;

diff_Height[wx]=diff_Height[k];
ratiopixelcount[wx]=ratiopixelcount[k];
mean[wx]=mean[k];
stdev[wx]=stdev[k];
blkpixcount[wx]=blkpixcount[k];
Area[wx]=Area[k];
wx++;

}
}
float XX=0.0;

xp_seg= new float *[wx]; 
for (i=0; i<wx; i++)

xp_seg[i] = new float[4];

for(int k=0; k<wx; k++)
{

DestBitmap->Canvas ->Pen->Width = 1;
DestBitmap->Canvas ->Pen->Color = cIRed;
DestBitmap->Canvas ->Brush ->Color = clWhite; 
SetBkMode(DestBitmap->Canvas->Handle, OPAQUE); 
SetBkColor(DestBitmap->Canvas->Handle,clWhite); 
DestBitmap->Canvas ->Rectangle(minx[k],miny[k],maxx[k],maxy[k]);

DestBitmap->Canvas -> Text0ut(minx[k]+1, miny[k], "Label"); 
DestBitmap->Canvas -> TextOut(minx[k]+30, miny[k], k); 
XX=100.0*Area[k];

stdev[k]=stdev[k]/100.0; 
blkpixcount[k]=blkpixcount[k]/XX;

if(stdev[k]>1) 
stdev[k]=1.0;

if(blkpixcount[k]>1)
blkpixcount[k]=1.0;

feature_seg[0]= diff_Height[k]/(float)(lmage1 ->Height);
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feature_seg[1]= mean[k]; 
feature_seg[2]= stdevfk]; 
feature_seg[3]= blkpixcount[k];

for(int i=0; i<4; i++)
{

xp_seg[k][i]=feature_seg[i];
}

}
Form2->lmage1->Picture->Bitmap = DestBitmap;

for (i=0;i<(lmage1->Height); i++)
{

for (j=0;j<(lmage1->Width); j++)
{

PEL = 255;
DestBitmap->Canvas->Pixels[j][i]=RGB(PEL,PEL,PEL);

}
}

}
//--------------------------------------------------------------------------------------
// Function ExtractBlockFeatures() calculates features from all blocks to be 
// used in the classification of blocks
//--------------------------------------------------------------------------------------
vo id  fastcall TForm1::ExtractBlockFeatures()
{

Screen -> Cursor = crHourGlass;

float sum =0.0;

Area = new int[index1 ]; 
diff_Width = new int[index1]; 
diff_Height = new int[index1]; 
mean = new float[index1 ]; 
ratiopixelcount = new float[index1]; 
stdev = new float[index1]; 
blkpixcount = newfloat[index1];

for(k=0; k<index1; k++)
{

Area[k]=0;
diff_Width[k]=0;
diff_Height[k]=0;
mean[k]=0;
ratiopixelcount[k]=0;
stdev[k]=0;
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blkpixcount[k]=0;
}
for(k=0; k<index1; k++)
{

diff_Height[k]= maxy[k]-miny[k]; 
diff_Width[k]= maxx[k]-minx[k];
Area[k]= diff_Height[k] * diff_Width[k]; 
sum = Area[k];

}

for(k=0; k<index1; k++)
{

sum=0;
blkpixcount[k]=0; 
if(Area[k] !=0)
{

for(i=minx[k]; i<=maxx[k]; i++) 
for(j=miny[kj; j<=maxy[k]; j++)
{

sum+= Buffer2[i]0]/255.O; 
if(Buffer2[i][j]==0)
{

blkpixcount[k]++;
}

}
blkpixcount[k]=(blkpixcount[k]*diff_Height[k]);
mean[k]=(float)(sum/Area[k]);
ratiopixelcount[k] = (blkpixcount[k]/(float)Area[k]);

}
}
for(k=0; k<index1; k++)
{

sum=0;

if(Area[k] !=0)
{

sum=0;
for(i=minx[k]; i<=maxx[k]; i++) 
for(j=miny[k]; j<=maxy[k]; j++)
{

sum+=fabs((Buffer2[i][j]/255.0)-(mean[k]));
}
stdev[k]=(sum/Area[k])*diff_Height[k];

}
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}
//-------------------------------------------------------------------------------------
// Function Page_Seg() produces the NN classification of blocks

vo id  fastcall TForm1::Page_Seg()
{

Screen -> Cursor = crHourGlass; 
float q,xt; 
int xd,ind,Nt; 
theta = 0.1;

NS_seg[0]=NL_seg[0]*NL_seg[1 ]; 
for(i=1;i<(L_seg-2);i++)

NS_seg[i]=NS_seg[i-1 ]+NL_seg[i]*NL_seg[i+1 ];

Nt=8;

// Assigning memory 
net_seg = new float[Nt]; 
y1_seg = new float[Nt]; 
delta_seg = new floatfNt];

fun_seg(w_seg);

delete [] y1_seg; 
delete [] net_seg; 
delete [j delta_seg;

// for(i=0; i<4; i++)
// delete [] xp_seg[i];
// delete [] xp_seg;

}
//-------------------------------------------------------------------------------------
//fun_seg() is the MLP NN classifier to classify the blocks into text and images
//-------------------------------------------------------------------------------------
vo id  fastcall TForml ::fun_seg(float *w_seg)
{

Screen -> Cursor = crHourGlass;
int m,Nt1,Nt2;
float E;
int Value=0;

d_seg = new int[wx];

for(i=0; i<wx; i++)
{
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d_seg[i]=0;
}
for(k=0;k<wx;k++)
{

for(i=0;i<NL_seg[1];i++) //From  input layer to first
{

net_seg[i]=0.0;
for(j=0;j<NL_seg[0];j++)

{
net_seg[i]+=w_seg[i+j*NL_seg[1]]*xp_seg[k]0];

}
net_seg[i]+=theta; 

E=(float)exp(-(double)net_seg[i]); 
y1_seg[i]=1.0/(1.0+E);

}
Nt1=NL_seg[1]; Nt2=0;

// From layer n-1 to layer n. 
for(i=0;i<1 ;i++) // output layer 1
{

m=Nt1+i; 
net_seg[m]=0.0; 
for(j=0;j<NL_seg[1 ];j++)

net_seg[m]+=w_seg[NS_seg[1 ]+i+j*1 ]*y1_seg[j+Nt2]; 
net_seg[m]+=theta;
E=(float)exp(-(double)net_seg[m]); 
y1_seg[m]=1.0/(1.0+E);

}
Nt1+=NL_seg[2];
Nt2+=NL_seg[1];

for(i=0;i<NL_seg[L_seg-1];i++) // Calculating the error.
{

if(y1_seg[Nt2+i]>=0.000003)
Value=1;

else
Value=0;

d_seg[k]=Value;
}

}
}
//-------------------------------------------------------------------------------------
// The function Reset() resets buffers by deallocating memory
//-------------------------------------------------------------------------------------
vo id  fastcall TForm1::Reset()
{
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free (d_seg); 
delete []minx; 
delete [jminy; 
delete [jmaxx; 
delete [jmaxy;

delete []mean; 
delete []Area; 
delete [jstdev; 
delete []diff_Height; 
delete []diff_Width; 
delete [jratiopixelcount;

delete Buffer;

delete [Jblkpixcount;

for(i=0; i<lmage1->Height; i++) 
delete[] AND_Buffer[i]; 

delete[] AND_Buffer;

for(i=0; i<lmage1->Height; i++) 
delete[] B_buffer[i]; 

delete[] B_buffer;

for (i = 0; i < lmage1->Height; i++) 
delete[] Buffer2[i]; 

delete[] Buffer2;

for(int i=0; i<lmage1->Height; i++) 
delete[] H_Buffer[i]; 

delete[] H_Buffer;

for(int i=0; i<lmage1->Height; i++) 
delete[] V_Buffer[i]; 

delete[] V_Buffer;

Edit1->Text = "
Edit2->Text = "
Edit3->Text = "
Edit4->Text = "

/* for (i = 0; i < lmage1->Width; i++) 
delete[] Skewed_lmage[i]; 

delete[] Skewed_lmage;
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for (i = 0; i < lmage1->Width; i++) 
delete[] Rotated_lmage[i]; 

delete[] Rotatedjm age; */
}
//--------------------------------------------------------------------------------------
vo id  fastcall TForml ::Loadlmage1Click(TObject *Sender)
{

Loadlmage();
lmage1->Show();
Edit3->Text = lmage1->Height;
Edit4->Text= Image 1-> Width;

}
//--------------------------------------------------------------------------------------
// Close windows before running the program again
//--------------------------------------------------------------------------------------
vo id  fastcall TForml ::ExitProgram1 Click(TObject ‘ Sender)
{

Form2->Close();
Form3->Close();
Form4->Close();
lmage1->Hide();
Reset();

}
//--------------------------------------------------------------------------------------
// Function to do (Thresholding, skew detection and corretion, smearing, block 
// labelling and show the labeled blocks by drawing blocks around them wiht 
// labels
//--------------------------------------------------------------------------------------
vo id  fastcall TForm 1::PreprocessingandBlockLabelingl Click(

TObject ‘ Sender)
{

TCursor Save_Cursor = Screen -> Cursor; 
float t=0;
clock_t start, end; 
start =clock();

Thresholding();
SkewAngleQ;
Rotate();
HorizontalSmearQ;
VerticalSmear();
AND();
SmoothSmearing();
LabelBlocks();
ExtractBlockFeatures();
ShowLabeledBlocks();
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Page_Seg(); 

end = clock();
t = (float) (end - start)/(float)(CLK_TCK);
Edit1->Text = t;

Form2->Show();
Screen->Cursor=Save_Cursor;

}
//-------------------------------------------------------------------------------------
vo id  fastcall TForml ::NNCIassification1 Click(TObject *Sender)
{

NNCIassifier();
}
1/-------------------------------------------------------------------------------------
// the NNCIassifier displays text blocks and image blocks on separate images 
vo id  fastcall TForml ::NNCIassifier()
{

Graphics::TBitmap *FinalBitmap=new Graphics::TBitmap;

TCursor Save_Cursor = Screen -> Cursor;

FinalBitmap -> Height= lmage1-> Height;
FinalBitmap -> Width = lmage1-> Width;

for (i=0;i<(lmage1->Height); i++)
{

for (j=0;j<(lmage1->Width); j++)
{

PEL = 255;
FinalBitmap->Canvas->Pixels[j][i]=RGB(PEL,PEL,PEL);

}
}
for(int k=0; k<wx; k++)
{

if(d_seg[k]==1)
{

for(i=minx[k]; i<=maxx[k]; i++) 
for(j=miny[k]; j<=maxy[k]; j++)
{

PEL=(unsigned char)lmage1 ->Canvas->Pixels[i][j]; 
FinalBitmap->Canvas->Pixels[i]0]=RGB(PEL,PEL,PEL);

}
}

}
Form4->lmage1->Picture->Bitmap=FinalBitmap;
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FinalBitmap -> Height= lmage1-> Height;
FinalBitmap -> Width = lmage1-> Width;

for (i=0;i<(lmage1->Height); i++)
{

for (j=0;j<(lmage1-> Width); j++)
{

PEL = 255;
FinalBitmap->Canvas->PixelsO][i]=RGB(PEL,REL,PEL);

}
}
for(int k=0; k<wx; k++)
{

if(d_seg[k]==0)
{

for(i=minx[k]; i<=maxx[k]; i++) 
for(j=miny[k]; j<=maxy[k]; j++)
{

PEL= Buffer2[i][j];
FinalBitmap->Canvas->Pixels[i][j]=RGB(PEL,PEL,PEL);

}
}

}
Form3->lmage1->Picture->Bitmap=FinalBitmap;
Form3->Show();
Form4->Show();

// Reset();
Screen->Cursor=Save_Cursor; 
delete FinalBitmap;

}
//----------------------------------------------------------------------------------------------
// The function LoadPrototypeQ loads the prototype features for characters 
// which will be used to compare against the current character feature vectors 
// during the classification stage which uses correlation 
vo id  fastcall TForml ::LoadPrototype()
{
//Load prototype features 
Screen -> Cursor = crHourGlass;

FILE *file;

file=fopen("AverageFeatures_32.txt","r");

for(int i=0; i<Num_Class; i++)
{
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for(int j=0; j< Vector_Size; j++)
{

fscanf(file,"%f ",&Prototype_VectorO+(i*Vector_Size)]);
}

}
fclose(file);

}
//----------------------------------------------------------------------------------------------
// Funcation to center characters in window size N1 x N2.
// Returns a 2D array of type int.
//----------------------------------------------------------------------------------------------
vo id  fastcall TForml ::Centerchar()
{
Screen -> Cursor = crFlourGlass;
//----------------Variable Declarations & Initialization------------------
int bb=0, cc=0;
int PixelCount=0; // Counter
int ActualCharHeight[1000]={0}; // Actual Character Height
int countx=0, HorizCount=0; // Counter
int yminl [5000]={0}, ymaxl [5000]={0}; // intermidiate buffers.
int ycoord[5000]={0}; // No. pixels in Horizontal direction
int xcoord[5000J={0}; // No. pixels in Vertical direction
int check=0;
int tempi =0, temp2=0, temp3=0, temp4=0; //tem p variables 
int flag=0;
int count=0; //counter
CurrentCharacterCount=0;

InBuffer = new int[lmage1->Height*lmage1->Width];

for(int i=0; i<lmage1->Height; i++)
{

for(int j=0; j<lmage1->Width; j++)
{

lnBufferO+(i*lmage1->Width)]=(unsigned char) \ 
Form3->lmage1->Canvas->Pixels[j][i];

if(lnBuffer[j+(i*lmage1->Width)]>0) 
lnBuffer[j+(i*lmage1 ->Width)]=0; 

else
lnBufferO+(i*lmage1 ->Width)]=1;

}
}
//----------------------------------------------------------------------------
//Horizontal pixel count for each line 
for(i=0; i<lmage1->Height; i++)
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{
PixelCount = 0; 
check=0;
for(j=0; j<lmage1->Width; j++)
{

if (lnBuffer[j+(lmage1 ->Width*i)]==1) 
PixelCount++; 

ycoord[i]= PixelCount;
}
if((ycoord[i-1]==0 && ycoord[i]!=0))
{

ymin1[HorizCount]=i;
}
else if((ycoord[i-1]!=0) && (ycoord[i]==0))
{

ymax1[HorizCount]= i; 
check++;

}
if(ymin1 [HorizCount])
{

if(check!=0)
HorizCount++;

}
}
//---------------------------------------------------------------------
// Vertical pixel Count for each line separtely 
for( k = 0; k<HorizCount; k++)
{

for( i=0; i<lmage1->Width; i++)
{

PixelCount = 0;
for(int j=ymin1[k]; j<ymax1[k]; j++)
{

if (lnBuffer[i+(lmage1->Width*j)] == 1) 
PixelCount++; 

xcoord[i]= PixelCount;
}
if((xcoord[i-1]==0 && xcoord[i]!=0))
{

xmin[countx]=i; 
ymin[countx]=ymin1 [k]; 
ymax[countx]=ymax1 [k];

}
if(i>0)
{

if((xcoord[i]==0) && (xcoord[i-1]!=0))
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{
xmax[countx]= i; 
countx++;

}
}

}
}
CurrentCharacterCount=countx; //Total Number of characters
//------------------------------------------------------
CenteredCharacters= new int *[CurrentCharacterCount]; 
for(i=0; i<(CurrentCharacterCount); i++) 
CenteredCharacters[i]=new int [N1*N2];

for(k=0; k<CurrentCharacterCount; k++)
{

for(i=0; i<N1; i++) 
for(j=0; j<N2; j++)
{

CenteredCharacters[k][j+(i*N2)]=0;
}

}
//-------------------------------------------------------------------------------------
for(k=0; k<CurrentCharacterCount; k++)
{

count=0; 
flag = 0;
for(i= ymin[k]; i<ymax[k];i++)
{

PixelCount=0;
for(int j=xmin[k]; j<xmax[k]; j++)
{

if(lnBufferO+(lmage1->Width*i)]==1)
PixelCount++; 

if(PixelCount==1 && flag==0)
{

ymin[k]=i; flag = 1;
}

}
if(PixelCount>0)
{

count++;
ActualCharHeight[k]=count;

}
}

}
//-------------------------------------------------------------------------------------
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// loop to center characters in a specific sized window. 
for(k=0; k<CurrentCharacterCount; k++)
{

tempi = (int)(N1-(ActualCharHeight[k]))/2; 
temp2 = N1-tempi; 
temp3=(int)(N2-(xmax[k]-xmin[k]))/2; 
temp4 = N2-temp3;
for(i=ymin[k],bb=temp1; i<ymax[k], bb <temp2;i++,bb++)
{

forG=xmin[k],cc=temp3; j<xmax[k], cc<temp4; j++,cc++)
{

CenteredCharacters[k][cc+(bb*N2)]= \ 
lnBuffer[j+(lmage1 ->Width*i)];

}
}

}
}
//-----------------------------------------------------------------------------------------------
// Function DrawBox( ) draws rectangles around blocks or characters
vo id  fastcall TForm 1::DrawBox(int x1, int y 1, int x2, int y2)
{

TCursor Save_Cursor = Screen -> Cursor;
Screen -> Cursor = crHourGlass; 
Form3->lmage1->Canvas->Pen->Color=clRed;
Form3->lmage1 ->Canvas->MoveTo(x1 ,y1);
Form3->lmage1 ->Canvas->LineTo(x2,y1); 
Form3->lmage1->Canvas->LineTo(x2,y2);
Form3->lmage1 ->Canvas->LineTo(x1 ,y2);
Form3->lmage1 ->Canvas->LineTo(x1 ,y1);
Screen->Cursor=Save_Cursor;

}
//-----------------------------------------------------------------------------------------------
// Function to calculate the pixel count distribution from a character
// Size window N1xN2, Here we divide chacaters into small overlapping windows
// of size 5x5
//-----------------------------------------------------------------------------------------------
vo id  fastcall TForml::ExtractFeatures()
{

Screen -> Cursor = crHourGlass; 
int count=0; 
int tot=0;
for( k=0 ;k<CurrentCharacterCount*Vector_Size;k++)
{

Current_Vector[k]=0;
}
//Divide each character window into 5x5 zones, count number of pixels.
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for( z=0 ;z<CurrentCharacterCount;z++)
{

tot=0;
for(i=0; i<N1; i=i+5) 
for(j=0; j<N2; j=j+5)
{

count = 0;
for( k=i; k<i+5; k++)
for( l=j; Kj+5; I++)
{

if(CenteredCharacters[z][l+(k*N2)]==1)
count++;

}
Current_Vector[tot+(Vector_Size*z)] =(float)count; 
tot ++;

}
// Ocver lapping zones 
for(i=3; i<N1-2; i=i+5) 
for(j=3; j<N2-2; j=j+5)
{

count = 0; 
for(k=i; k<i+5; k++) 
for(l=j; l<j+5; I++)
{

if(CenteredCharacters[z][l+(k*N2)]==1)
count++;

}
Current_Vector[tot+(Vector_Size*z)] =(float)count; 
tot ++;

}
}

}
/ /----------------------------------------------------------------------------------------------
// The correlate() function is the classifier used to classify characters into 
// any of the 67 classes shown in OutputChars[67],
//----------------------------------------------------------------------------------------------
void  fastcall TForml ::Correlate()
{

Screen -> Cursor = crHourGlass;
FILE *fptr;
fptr=fopen("Output.txt","w+");

float max=-2.0; 
int RecognChar=0;

static char O utputC harstN um .C lassKA '/B '/C '/D '/E '/F ',
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'G '/H '/l'/J '/K '/L ',
'M VN '/O '/P '/Q '/R ',
'S '.T .'U '.V .'W .'X ',
'YVZya'/bVc'/d',
'e '/f/g '.'h '/i'.'j',
'k',T,'m','nyo','p',
'q '/r '/s ’/t'/u '/v ',
wxy/zyoyr,
'2','3','4','5','6','7',
i q i  in<  i » » i m  iflv i i n  .o , y , . , , ,

double **sxy; 
double **r; 
double **denom;
double sx[1000]= {0}, sy[1000]={0};
double mx[1000] = {0}; // intermediate array for prototype mean
double my[1000] = {0}; // intermediate array for current mean
double MeanVectX[1000]={0}; // mean for prototype vector
double MeanVectY[1000]={0}; // mean for current vector

//---------------------------------Memory Allocation-------------------------
sxy= new double *[MaxNum]; 
for(i=0; i<(MaxNum); i++)

sxy[i]=new double [Num_Class];

r= new double *[MaxNum]; 
for(i=0; i<(MaxNum); i++)

r[i]=new double [Num_Class];

denom= new double *[MaxNum]; 
for(i=0; i<(MaxNum); i++)

//--------------------------------- Initialization-
for(z=0; z<MaxNum; z++) 
for(k=0; k<Num_Class; k++)
{

denom[z][k]=0; 
sxy[z][k]=0; 
r[z][k]=0;

}
//-------------------------------------------------------------------------------------
for(k=0; k<Num_Class; k++)
{

for (i=0;i<Vector_Size;i++)
{

mx[k]=mx[k]+Prototype_Vector[i+(Vector_Size*k)];

denom[i]=new double [Num_Class];
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}
//calculating mean value for each vector. 
MeanVectX[k]=mx[k]/Vector_Size;

}
for(k=0; k<CurrentCharacterCount; k++)
{

for (i=0;i<Vector_Size;i++)
{

my[k] =my[k]+ Current_Vector[i+(Vector_Size*k)];
}
//calculating mean value for each vector. 
MeanVectY[k]=my[k]/Vector_Size;

}
// Calculate the denominator 
for(k=0; k<Num_Class; k++)
{

for (i=0;i<Vector_Size;i++)
{

sx[k]+=(Prototype_Vector[i+(Vector_Size*k)] - MeanVectX[k]) * \ 
(Prototype_Vector[i+(Vector_Size*k)] - MeanVectX[k]);

}
}
for(k=0; k<CurrentCharacterCount; k++) 
for (i=0;i<Vector_Size;i++)
{

sy[k] += (Current_Vector[i+(Vector_Size*k)] - MeanVectY[k]) * \  
(Current_Vector[i+(Vector_Size*k)] - MeanVectY[k]);

}

for(z=0; z<CurrentCharacterCount; z++) 
for(k=0; k<Num_Class; k++)
{

denom[z][k] = sqrt(sx[k]*sy[z]);
}
// Recognition loop for the whole image after deciding on the font type. 
for(z=0; z<CurrentCharacterCount; z++)
{

max= -2;
RecognChar = 0; 
for(k=0; k<Num_Class; k++) 
for (i=0;i<Vector_Size;i++)
{

sxy[z][k]+=(Prototype_Vector[i+(Vector_Size*k)]-MeanVectX[k])* \ 
(Current_Vector[i+(Vector_Size*z)] - MeanVectY[z]);

// r is the correlation coefficient // 
r[z][k] = sxy[z][k]/ denom[z][k];
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if(r[z][k]>max)
{

max = r[z][k];
RecognChar = k;

}
}
fprintf(fptr, "%c",OutputChars[RecognChar]);

if(xmax[z+1 ]<xmin[z]) 
fprintf(fptr, "\n"); 

if(xmin[z+1]-xmax[z] > 12) 
fprintf(fptr, "");

}
fprintf(fptr,"\n "); 
fclose(fptr);

}
//----------------------------------------------------------------------------------------------
vo id  fastcall TForml ::LoadPrototypes1Click(TObject *Sender)
{

TCursor Save_Cursor = Screen -> Cursor;
LoadPrototype();
Screen->Cursor=Save_Cursor;

}
//----------------------------------------------------------------------------------------------
vo id  fastcall TForml ::CenterCharacters1 Click(TObject *Sender)
{

TCursor Save_Cursor = Screen -> Cursor;
Centerchar();
ExtractFeatures();
Screen->Cursor=Save_Cursor;

}
//  ----------------------------------------
vo id  fastcall TForml ::Correlation1 Click(TObject *Sender)
{

// The OCR results are displayed on the image containing the image of 
// document to check the recognition rate and compare the results with 
// the original document.
TCursor Save_Cursor = Screen -> Cursor;

CorrelateQ;

FILE *file;
file = fopenfoutput.txt", "r"); 

char X;
for(i=0; i<CurrentCharacterCount; i++)
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{
fscanf(file, "%c",&X);
Form4->lmage1->Canvas->Font->Name = "Courier"; 
Form4->lmage1->Canvas->Font->Size = 14; 
Form4->lmage1->Canvas ->Pen->Width = 1; 
Form4->lmage1->Canvas->TextOut(xmin[i], ymax[i]-20, X);

}
fclose(file);
Screen->Cursor=Save_Cursor;

}
//-----------------------------------------------------------------------------------------------
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//---------------------------------------------- DocumentAnalysis.h-------

#ifndef UnitlPSH 
#define UnitlPSH

#include <Classes.hpp>
#include <Controls.hpp>
#include <StdCtrls.hpp>
#include <Forms.hpp>
#include <Dialogs.hpp>
#include <ExtCtrls.hpp>
#include <ExtDlgs.hpp>
#include <Grids.hpp>
#include <Menus.hpp>
//-------------------------------------------------------------------------------------------
class TForml : public TForm 
{
 published: // IDE-managed Components

Tlmage *lmage1;
TOpenPictureDialog *OpenPictureDialog1;
TEdit *Edit1;
TSavePictureDialog *SavePictureDialog1;
TMainMenu *MainMenu1;
TMenultem *File1;
TMenultem *Loadlmage1;
TMenultem *ExitProgram1;
TMenultem *Preprocessing1;
TMenultem *PreprocessingandBlockLabeling1; 
TMenultem *Classification1;
TMenultem *NNCIassification1;
TBevel *Bevel1;
TLabel *Label1;
TMenultem *OCR1;
TMenultem *LoadPrototypes1;
TMenultem *CenterCharacters1;
TMenultem *Correlation1;
TEdit *Edit2;
TLabel *Label2;
TLabel *Label3;
TEdit *Edit3;
TLabel *Label4;
TEdit *Edit4;
vo id  fastcall Loadlmage1Click(TObject *Sender);
vo id  fastcall ExitProgram1Click(TObject *Sender);
vo id  fastcall PreprocessingandBlockLabeling1Click(

TObject *Sender);

Appendix C 185

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



University of Windsor

vo id  fastcall NNCIassification1Click(TObject ‘ Sender);
vo id  fastcall LoadPrototypes1Click(TObject ‘ Sender);
vo id  fastcall CenterCharactersI Click(TObject ‘ Sender);
vo id  fastcall Correlation Click(TObject ‘ Sender);

private: // User declarations
public: // User declarations

 fastcall TForm1(TComponent* Owner);
void __fastcal TForm l: :Loadlmage();
void __fastcal TForm l: :SkewAngle();
void __fastcal TForm l: :Rotate();
void __fastcal TForm l: :HorizontalSmear();
void __fastcal TForm l: :VerticalSmear();
void __fastcal TForm l: :AND();
void __fastcal TForm l: :fun(float *w);
void __fastcal TForm l: :features5x5();
void __fastcal TF orm l::Thresholding();
void __fastcal TForm l: :SmoothSmearing();
void __fastcal TForm l: :ShowLabeledBlocks();
void __fastcal TForm l: :LabelBlocks();
void __fastcal TForm l: : ExtractBlockFeatures();
void __fastcal TForm l: :Page_Seg();
void __fastcal TForm l: :fun_seg(float *w_seg);
void __fastcal TForm l: :Reset();
void __fastcal TForm l: :LoadPrototype();
void __fastcal TF orm l::Centerchar();
void __fastcal TForm l: : DrawBox(int x1, int y 1, int x2, int y2)
void __fastcal TForm l: :ExtractFeatures();
void __fastcal TForm l: :Correlate();
void __fastcal TForm l: :NNCIassifier();

};

extern PACKAGE TForm l *Form1;
//------------------------------------------------------
#endif
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