192 research outputs found

    Tensor Analysis and Fusion of Multimodal Brain Images

    Get PDF
    Current high-throughput data acquisition technologies probe dynamical systems with different imaging modalities, generating massive data sets at different spatial and temporal resolutions posing challenging problems in multimodal data fusion. A case in point is the attempt to parse out the brain structures and networks that underpin human cognitive processes by analysis of different neuroimaging modalities (functional MRI, EEG, NIRS etc.). We emphasize that the multimodal, multi-scale nature of neuroimaging data is well reflected by a multi-way (tensor) structure where the underlying processes can be summarized by a relatively small number of components or "atoms". We introduce Markov-Penrose diagrams - an integration of Bayesian DAG and tensor network notation in order to analyze these models. These diagrams not only clarify matrix and tensor EEG and fMRI time/frequency analysis and inverse problems, but also help understand multimodal fusion via Multiway Partial Least Squares and Coupled Matrix-Tensor Factorization. We show here, for the first time, that Granger causal analysis of brain networks is a tensor regression problem, thus allowing the atomic decomposition of brain networks. Analysis of EEG and fMRI recordings shows the potential of the methods and suggests their use in other scientific domains.Comment: 23 pages, 15 figures, submitted to Proceedings of the IEE

    Disambiguating the role of blood flow and global signal with partial information decomposition

    Get PDF
    Global signal (GS) is an ubiquitous construct in resting state functional magnetic resonance imaging (rs-fMRI), associated to nuisance, but containing by definition most of the neuronal signal. Global signal regression (GSR) effectively removes the impact of physiological noise and other artifacts, but at the same time it alters correlational patterns in unpredicted ways. Performing GSR taking into account the underlying physiology (mainly the blood arrival time) has been proven to be beneficial. From these observations we aimed to: 1) characterize the effect of GSR on network-level functional connectivity in a large dataset; 2) assess the complementary role of global signal and vessels; and 3) use the framework of partial information decomposition to further look into the joint dynamics of the global signal and vessels, and their respective influence on the dynamics of cortical areas. We observe that GSR affects intrinsic connectivity networks in the connectome in a non-uniform way. Furthermore, by estimating the predictive information of blood flow and the global signal using partial information decomposition, we observe that both signals are present in different amounts across intrinsic connectivity networks. Simulations showed that differences in blood arrival time can largely explain this phenomenon, while using hemodynamic and calcium mouse recordings we were able to confirm the presence of vascular effects, as calcium recordings lack hemodynamic information. With these results we confirm network-specific effects of GSR and the importance of taking blood flow into account for improving de-noising methods. Additionally, and beyond the mere issue of data denoising, we quantify the diverse and complementary effect of global and vessel BOLD signals on the dynamics of cortical areas

    Exploring the combined use of electrical and hemodynamic brain activity to investigate brain function

    Get PDF
    This thesis explored the relationship between electrical and metabolic aspects of brain functioning in health and disease, measured with QEEG and NIRS, in order to evaluate its clinical potential. First the limitations of NIRS were investigated, depicting its susceptibility to different types of motion artefacts and the inability of the CBSI-method to remove them from resting state data. Furthermore, the quality of the NIRS signals was poor in a significant portion of the investigated sample, reducing clinical potential. Different analysis methods were used to explore both EEG and NIRS, and their coupling in an eyes open eyes closed paradigm in healthy participants. It could be reproduced that during eyes closed blocks less HbO2 (p = 0.000), more Hbb (p = 0.008), and more alpha activity (p = 0.000) was present compared to eyes open blocks. Furthermore, dynamic cross correlation analysis reproduced a positive correlation between alpha and Hbb (r: 0.457 and 0.337) and a negative correlation between alpha and HbO2 (r: -0.380 and -0.366) with a delayed hemodynamic response (7 to 8s). This was only possible when removing all questionable and physiological illogical data, suggesting that an 8s hemodynamic delay might not be the golden standard. Also the inability of the cross correlation to take non-linear relationships into account may distort outcomes. Therefore, In chapter 5 non-linear aspects of the relationship were evaluated by introducing the measure of relative cross mutual information. A newly suggested approach and the most valuable contribution of the thesis since it broadens knowledge in the fields of EEG, NIRS and general time series analysis. Data of two stroke patients then showed differences from the healthy group between the coupling of EEG and NIRS. The differences in long range temporal correlations (p= 0.000 for both cases), entropy (p< 0.040 and p =0.000), and relative cross mutual information (p < 0.003 and p < 0.013) provide the proof of principle that these measures may have clinical utility. Even though more research is necessary before widespread clinical use becomes possible

    Multimodal phenotyping of synaptic damage in Alzheimer’s disease : translational perspective with focus on quantitative EEG

    Get PDF
    Alzheimer’s disease (AD) is a progressive neurodegenerative disorder and the most common form of dementia. Accumulation of AD-associated pathology in the brain may begin a decade or more before the appearance of the first symptoms of the disease. The pathological-clinical “continuum of AD” therefore encompasses time between the initial neuropathological changes and symptoms of advanced disease. Besides cognitively healthy individuals at risk, it includes subjects with subjective cognitive decline (SCD), mild cognitive impairment (MCI) and eventually dementia when the severity of cognitive impairment affects patients’ ability to carry out everyday activities. Timely detection of the disease would therefore recognize patients that are at risk for future cognitive deterioration and provide time window for the prevention and novel therapeutical interventions. Accumulating evidence suggests that degeneration and dysfunction of brain neuronal connections, i.e. synapses, is one of the earliest and best proxies of cognitive deficits in patients along AD continuum. Human electroencephalography (EEG) is a non-invasive and widely available diagnostic method that records real-time large-scale synaptic activity. The commonly used method in research settings is quantitative EEG (qEEG) analysis that provides objective information on EEG recorded at the level of the scalp. Quantitative EEG analysis unravels complex EEG signal and adds relevant information on its spectral components (frequency domain), temporal dynamics (time domain) and topographic estimates (space domain) of brain cortical activity. The general aim of the present thesis was to characterize different aspects of synaptic degeneration in AD, with the focus on qEEG and its relationship to both conventional and novel synaptic markers. In study I, global qEEG measures of power and synchronization were found to correlate with conventional cerebrospinal fluid (CSF) biomarkers of Aβ and tau pathology in patients diagnosed with SCD, MCI and AD, linking the markers of AD pathology to the generalized EEG slowing and reduced brain connectivity in fast frequency bands. In study II, qEEG analysis in the time domain (EEG microstates) revealed alterations in the organization and dynamics of large-scale brain networks in memory clinic patients compared to healthy elderly controls. In study III, topographical qEEG analysis of brain functional connectivity was associated with regionspecific cortical glucose hypometabolism ([18F]Fluorodeoxyglucose positron-emission tomography) in MCI and AD patients. Study IV provided evidence that qEEG measures of global power and synchronization correlate with CSF levels of synaptic marker neurogranin, both modalities being in combination independent predictors of progression to AD dementia in MCI patients. Study V and associated preliminary study introduced in the thesis assessed the translational potential of CSF neurogranin and qEEG as well as their direct relationship to AD neuropathology in App knock-in mouse models of AD. In study V, changes in CSF neurogranin levels and their relationship to conventional CSF markers in App knock-in mice corresponded to the pattern observed in clinical AD cohorts. These findings highlighted the potential use of mouse CSF biomarkers as well as App knock-in mouse models for translational investigation of synaptic dysfunction due to AD. In general, the results of the thesis invite for further clinical validation of multimodal synaptic markers in the context of early AD diagnosis, prognosis, and treatment monitoring in individual patients

    Quantification of inter-brain coupling: A review of current methods used in haemodynamic and electrophysiological hyperscanning studies

    Get PDF
    Hyperscanning is a form of neuroimaging experiment where the brains of two or more participants are imaged simultaneously whilst they interact. Within the domain of social neuroscience, hyperscanning is increasingly used to measure inter-brain coupling (IBC) and explore how brain responses change in tandem during social interaction. In addition to cognitive research, some have suggested that quantification of the interplay between interacting participants can be used as a biomarker for a variety of cognitive mechanisms aswell as to investigate mental health and developmental conditions including schizophrenia, social anxiety and autism. However, many different methods have been used to quantify brain coupling and this can lead to questions about comparability across studies and reduce research reproducibility. Here, we review methods for quantifying IBC, and suggest some ways moving forward. Following the PRISMA guidelines, we reviewed 215 hyperscanning studies, across four different brain imaging modalities: functional near-infrared spectroscopy (fNIRS), functional magnetic resonance (fMRI), electroencephalography (EEG) and magnetoencephalography (MEG). Overall, the review identified a total of 27 different methods used to compute IBC. The most common hyperscanning modality is fNIRS, used by 119 studies, 89 of which adopted wavelet coherence. Based on the results of this literature survey, we first report summary statistics of the hyperscanning field, followed by a brief overview of each signal that is obtained from each neuroimaging modality used in hyperscanning. We then discuss the rationale, assumptions and suitability of each method to different modalities which can be used to investigate IBC. Finally, we discuss issues surrounding the interpretation of each method

    The confound of hemodynamic response function variability in human resting-state functional MRI studies

    Get PDF
    Functional magnetic resonance imaging (fMRI) is an indirect measure of neural activity with the hemodynamic response function (HRF) coupling it with unmeasured neural activity. The HRF, modulated by several non-neural factors, is variable across brain regions, individuals and populations. Yet, a majority of human resting-state fMRI connectivity studies continue to assume a non-variable HRF. In this article, with supportive prior evidence, we argue that HRF variability cannot be ignored as it substantially confounds within-subject connectivity estimates and between-subjects connectivity group differences. We also discuss its clinical relevance with connectivity impairments confounded by HRF aberrations in several disorders. We present limited data on HRF differences between women and men, which resulted in a 15.4% median error in functional connectivity estimates in a group-level comparison. We also discuss the implications of HRF variability for fMRI studies in the spinal cord. There is a need for more dialogue within the community on the HRF confound, and we hope that our article is a catalyst in the process

    Time-Lagged Multidimensional Pattern Connectivity (TL-MDPC): An EEG/MEG Pattern Transformation Based Functional Connectivity Metric

    Get PDF
    Functional and effective connectivity methods are essential to study the complex information flow in brain networks underlying human cognition. Only recently have connectivity methods begun to emerge that make use of the full multidimensional information contained in patterns of brain activation, rather than unidimensional summary measures of these patterns. To date, these methods have mostly been applied to fMRI data, and no method allows vertex-to-vertex transformations with the temporal specificity of EEG/MEG data. Here, we introduce time-lagged multidimensional pattern connectivity (TL-MDPC) as a novel bivariate functional connectivity metric for EEG/MEG research. TL-MDPC estimates the vertex-to-vertex transformations among multiple brain regions and across different latency ranges. It determines how well patterns in ROI at time point can linearly predict patterns of ROI at time point . In the present study, we use simulations to demonstrate TL-MDPC's increased sensitivity to multidimensional effects compared to a unidimensional approach across realistic choices of number of trials and signal-to-noise ratios. We applied TL-MDPC, as well as its unidimensional counterpart, to an existing dataset varying the depth of semantic processing of visually presented words by contrasting a semantic decision and a lexical decision task. TL-MDPC detected significant effects beginning very early on, and showed stronger task modulations than the unidimensional approach, suggesting that it is capable of capturing more information. With TL-MDPC only, we observed rich connectivity between core semantic representation (left and right anterior temporal lobes) and semantic control (inferior frontal gyrus and posterior temporal cortex) areas with greater semantic demands. TL-MDPC is a promising approach to identify multidimensional connectivity patterns, typically missed by unidimensional approaches

    Brain Computer Interfaces and Emotional Involvement: Theory, Research, and Applications

    Get PDF
    This reprint is dedicated to the study of brain activity related to emotional and attentional involvement as measured by Brain–computer interface (BCI) systems designed for different purposes. A BCI system can translate brain signals (e.g., electric or hemodynamic brain activity indicators) into a command to execute an action in the BCI application (e.g., a wheelchair, the cursor on the screen, a spelling device or a game). These tools have the advantage of having real-time access to the ongoing brain activity of the individual, which can provide insight into the user’s emotional and attentional states by training a classification algorithm to recognize mental states. The success of BCI systems in contemporary neuroscientific research relies on the fact that they allow one to “think outside the lab”. The integration of technological solutions, artificial intelligence and cognitive science allowed and will allow researchers to envision more and more applications for the future. The clinical and everyday uses are described with the aim to invite readers to open their minds to imagine potential further developments
    • …
    corecore