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A B S T R A C T   

Hyperscanning is a form of neuroimaging experiment where the brains of two or more participants are imaged 
simultaneously whilst they interact. Within the domain of social neuroscience, hyperscanning is increasingly 
used to measure inter-brain coupling (IBC) and explore how brain responses change in tandem during social 
interaction. In addition to cognitive research, some have suggested that quantification of the interplay between 
interacting participants can be used as a biomarker for a variety of cognitive mechanisms aswell as to investigate 
mental health and developmental conditions including schizophrenia, social anxiety and autism. However, many 
different methods have been used to quantify brain coupling and this can lead to questions about comparability 
across studies and reduce research reproducibility. Here, we review methods for quantifying IBC, and suggest 
some ways moving forward. Following the PRISMA guidelines, we reviewed 215 hyperscanning studies, across 
four different brain imaging modalities: functional near-infrared spectroscopy (fNIRS), functional magnetic 
resonance (fMRI), electroencephalography (EEG) and magnetoencephalography (MEG). Overall, the review 
identified a total of 27 different methods used to compute IBC. The most common hyperscanning modality is 
fNIRS, used by 119 studies, 89 of which adopted wavelet coherence. Based on the results of this literature survey, 
we first report summary statistics of the hyperscanning field, followed by a brief overview of each signal that is 
obtained from each neuroimaging modality used in hyperscanning. We then discuss the rationale, assumptions 
and suitability of each method to different modalities which can be used to investigate IBC. Finally, we discuss 
issues surrounding the interpretation of each method.   

1. Introduction 

Social interactions are a fundamental aspect of human existence, 
from the interactions between a child and their parent, to world leaders 
on the global stage. The nature and quality of social interaction is 
strongly related to mental well-being (Schilbach, 2016). Quantifying 
and, therefore, improving our understanding of social interactions is 
therefore an important goal of neuroimaging in social neuroscience. 

Traditional neuroimaging studies in cognitive neuroscience use 

‘single-brain’ experiments where a participant is given a task to com-
plete while their neural activity is recorded. However, whether this form 
of experiment is able to provide a meaningful picture of real world social 
interactions is unclear. We know that people behave differently when in 
a social interaction, (Becchio et al., 2010) and when being watched 
(Hamilton et al., 2016), and the interactions of a participant with a 
trained confederate may not capture natural behaviour (Kuhlen and 
Brennan, 2013). Thus research into real world social behaviour may 
require researchers to place two or more naïve participants in an 
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interaction. In this context, capturing data from all participants with 
hyperscanning may allow new and distinctive types of analysis, 
compared to the study of one brain at a time. Hyperscanning allows 
researchers to capture the association between multiple individual 
participants’ neural data as they take part in a paradigm together. 

In this review, we include within the definition of hyperscanning any 
form of ‘interaction’, where this is some degree of reciprocity, between 
scanned participants, including computer-based interaction (e.g. 
(Montague et al., 2002; King-Casas et al., 2005; Bilek et al., 2015)) as 
well as face-to-face interaction (e.g. (Dravida et al., 2020; Noah et al., 
2020; Cañigueral et al., 2021; Hirsch et al., 2021, 2022)). The core 
feature of hyperscanning is that data is collected simultaneously from 
more than one participant and those participants have some means of 
exchanging information between them. This directly contrast to 
sequential acquisition of data from participants who experience the 
same events (watching a movie for example) but are scanned separately 
and analysed together (e.g. (Hasson et al., 2004)). This contrast is dis-
played visually in Fig. 1. In the sequential case, researchers can measure 
‘intersubject correlations’ or ‘neural alignment’, which indexes if 
different brains respond in the same way to a given experience (Sievers 
et al., 2020), but this cannot provide any information about dynamic 
interactions between data acquired from interacting participant brains. 

Beyond simple ‘neural alignment’ (inter-brain similarity to a given 
experience) available from sequential neuroimaging, hyperscanning 
paradigms measure complex dynamics between interactive brains, as 
they continuously and mutually adapt over their interaction. The 
cognitive interpretation of the IBC signal is still debated, with models 
focusing on coupling (Hasson and Frith, 2016), responses to the shared 
environment (Holroyd, 2022) and mutual prediction (Hamilton, 2021). 
Some studies give richer interpretations, suggesting that IBC might 
provide a biomarker for social connectedness (Hoehl et al., 2021) or 
attunement (Gvirts and Perlmutter, 2020) but it is not yet clear if these 
can be supported. Importantly, as interactions are complex, signals from 
multiple interactive brains may not necessarily ‘mirror’ each other, but 
would instead ‘couple’ to each other dynamically over time (Hasson & 
Frith, 2016). Understanding this dynamic calls for more complex anal-
ysis tools that are able to capture relevant components from this type of 

data. 
In a field that is rapidly expanding, a wide variety of methods have 

been used to compute the IBC, with inconsistency across studies. Un-
derstanding what each analytic method can (and cannot) explain about 
the data from hyperscanning studies is important to achieve a coherent 
and robust advancement of the field. This is particularly relevant when 
claims are made that IBC may reflect specific cognitive mechanisms (e.g. 
(Osaka et al., 2015; Goelman et al., 2019; Dravida et al., 2020; Ono 
et al., 2021)), developmental disorders (Hasegawa et al., 2016; Wang 
et al., 2020; Kruppa et al., 2021; Key et al., 2022) or could provide a 
metric for psychiatric treatment (Leong and Schilbach, 2019). This re-
view aims to clarify some of this confusion and provide some clarity 
about the several methods used to analyse and interpret hyperscanning 
data within the social neuroscience domain. 

To date there have been 19 review papers focusing on various aspects 
of hyperscanning (Dumas et al., 2011; Konvalinka and Roepstorff, 2012; 
Scholkmann et al., 2013; Babiloni and Astolfi, 2014; Koike, Tanabe and 
Sadato, 2015; Acquadro, Congedo and De Riddeer, 2016; Crivelli and 
Balconi, 2017; Liu et al., 2018; Wang et al., 2018; Quaresima and Fer-
rari, 2019; Balters et al., 2020; Czeszumski et al., 2020, 2022; Nam et al., 
2020; Misaki et al., 2021; Müller, Ohström and Lindenberger, 2021; 
Shemyakina and Nagornova, 2021; Kelsen et al., 2022; Tsoi et al., 2022). 
Previous reviews have focused on hyperscanning in the context of spe-
cific modalities, including functional near-infrared spectroscopy (fNIRS) 
(Scholkmann et al., 2013; Quaresima and Ferrari, 2019; Balters et al., 
2020; Czeszumski et al., 2022), electroencephelaography (EEG) (Liu 
et al., 2018) or functional magnetic resonance imaging (fMRI) (Misaki 
et al., 2021; Tsoi et al., 2022). In terms of cognitive neuroscience issues, 
previous reviews have generally focused on social cognition as a whole, 
compiling studies investigating imitation and joint action, coordination 
and competition, emotion, speech and communication and a variety of 
other components of social cognition. However, some reviews have 
focused on specific components of cognitive neuroscience such as 
imitation and joint action (Dumas et al., 2011), joint action, shared 
attention, interactive decision making and affective communication 
(Liu et al., 2018), imitation, coordination, eye contact, game theory, 
cooperation and competition (Wang et al., 2018), education, decision 
making, motor synchronization (Nam et al., 2020) cooperation and 
competition (Shemyakina and Nagornova, 2021) or spoken communi-
cation (Kelsen et al., 2022). 

Taken together, all the reviews mentioned above tend to focus on the 
interpretation of IBC (results/outputs), while largely neglecting how the 
IBC measure is computed (methods). There are however two which have 
both dedicated some sections to analytic methods and principles 
(Czeszumski et al., 2020; Tsoi et al., 2022). But one is limited in that it 
only includes fMRI hyperscanning studies (Tsoi et al., 2022), while the 
other (Czeszumski et al., 2020) covers only some of the methods that 
have been used, and discusses them within macro-categories rather than 
in detail (e.g. ‘coupling/connectivity measures’, ‘correlation and 
dependendance analyses’ etc). So the present review extends previous 
work by (i) systematically reviewing all methods used to compute IBC in 
all hyperscanning studies (including several different neuroimaging 
modalities), and (ii) expanding each macro-category and discussing 
each method separately (e.g. Pearson correlation is discussed separately 
to cross-correlation). Specifically, the present review considers the im-
plications of each method applied to hyperscanning data, with a focus on 
its technical aspects, including the rationale, mathematical assumptions 
and its suitability for a given modality. The aim of this review overall is 
to provide a comprehensive outline of the methods currently used across 
neuroimaging modalities and consider the rationale and mathematical 
assumptions of each method behind the computation of IBC. 

The structure of the review is as follows. First, we discuss the method 
we used to search the literature, along with the removal criteria to 
preserve the replicability of the review for future updates. We then 
provide a current summary of the state of the field, including number of 
papers published, methods and modalities used. Following this, we 

Fig. 1. Left: Participants watch the same clip while receiving an fMRI scan on 
different days. The neural responses from both participants are compared. The 
output can only give information about similarity of neural responses to a given 
experience. Right: Participants watch the same clip, at the same time, whilst 
neural responses are recorded simultaneously. The output can provide infor-
mation about the real-time interaction between participants. 
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provide a brief summary of the signal characteristics of different neu-
roimaging modalities. The metrics of IBC are then reviewed where we 
cover the rationale of each method, in its original form and its appli-
cation to hyperscanning, the mathematical assumptions when using 
each method, what the method can explain about the relationship be-
tween input data, the suitability of the method to different modalities 
and finally which modalities it has been applied to. The discussion will 
summarize our review of the methods with a brief discussion on the 
importance of clarity of method used, issues surrounding interpret-
ability and frequency selection. Finally we conclude with our perspec-
tive on the future of computational methods within hyperscanning 
studies, to improve hyperscanning investigations and derived metrics, 
and ultimately achieving a better understanding of how IBC can be used 
to shed light on the mechanisms supporting social interactions. 

2. Methods 

This work was carried out according to the Preferred Reporting Items 
for Systematic Reviews and Meta-Analyses (PRISMA) guidelines (Lib-
erati et al., 2009), to increase the replicability of this review. Studies 
utilizing hyperscanning were discovered through searches on PubMed 
and Scopus, using the search terms: (hyperscanning[Title/Abstract] OR 
two person neuroscience[Title/Abstract]) AND (fmri[Title/Abstract] 
OR eeg[Title/Abstract] OR fNIRS[Title/Abstract] OR MEG[Title/Ab-
stract] OR nirs[Title/Abstract])) and (hyperscanning OR “two person 
neuroscience”) AND (fnirs OR nirs OR eeg OR fmri OR meg), for PubMed 
and Scopus respectively. The years of interest range from 2000 (two 
years prior to the seminal hyperscanning paper by Montague et al. 
(2002)) to the end of 2022. Initial search was carried out for journal 
articles published in the English language, searching paper titles and 
abstracts only. Following the PRISMA recommendation to follow the 
PICOS (Population, Intervention, Comparator, Outcomes, Study de-
signs) eligibility criteria, these were defined before conducting the title 
and abstract screening and are listed in Table 1. 

Populations (for example, neurodivergent populations) were not 
restricted since the focus of this review is on the quantification of the IBC 
parameter and not on clinical conditions. Hyperscanning requires par-
ticipants to be scanned simultaneously to allow transient interacting 
dynamics to be probed and therefore any studies where the participant 
data was acquired and analysed sequentially were excluded. In-
terventions in this context refer to imaging modality, hyperscanning is 
possible with all functional neuroimaging modalities, therefore no re-
strictions were placed on this criteria. Comparators require that two 
brains are scanned, it was not important whether the study compared 
neurodivergent to neurotypical, or any other comparison. Outcomes of 
studies must include a quantification of IBC. Finally, any study design 
was included aslong as data were acquired simultaneously. 

Initial search provided a total of 659 documents, after duplications 
were removed, 354 documents were examined further. Only published, 
original, research articles were considered for review, and a further 116 
documents were removed due to being review papers, meta-analyses, 
conference papers, book chapters, erratum, meeting abstracts, notes, 
surveys, not in English or the full text being unavailable. The PICOS 
eligibility criteria from Table 1 was first applied to the title and abstracts 
and a further 37 papers were removed (P: 11, C:4, O:22). During text 
screening a further 5 were removed (P:1, O: 4). Review papers were 

mined for papers missed in the initial database search and 19 papers 
were added from this. The final count of papers considered was 215. The 
PRISMA flowchart is shown in Fig. 2. 

Methods were broadly grouped according to the categories provided 
by Ayrolles et al. (2021) for their Python based Hyperscanning toolbox, 
with the addition of the ‘Regression’ category. In total five categories 
were identified. These are listed and defined in Table 2: 

It should be noted that membership of a method to a specific cate-
gory does not mean it only exists within that category (for example, 
Partial Directed Coherence can be in both Causal and Coherence based 
methods); categorisation is only a way to group for ease of discussion. 

3. Summary statistics 

The number of hyperscanning papers published since the seminal 
work by Montague et al. (2002) has steadily increased year-on-year 
since 2014, reaching a peak of 46 publications in 2022 (Fig. 3(a)). 
This consistent increase is likely tied to the increase in computational 
power to process data more efficiently, and more importantly the 
availability of more affordable neuroimaging equipment. Four neuro-
imaging techniques have been used for hyperscanning: fNIRS, fMRI, EEG 
and MEG. The breakdown of publications by modality per year is shown 
in Fig. 3(b). 

In fact, from Fig. 3(b), it is clear that more affordable neuroimaging 
methods such as EEG and fNIRS have become the modality of choice, 
with fNIRS being the modality used for the majority of papers since 
2015. 

Fig. 4 shows the number of published papers for each analytic 
category, by neuroimaging technique. The properties of data acquired 
from different neuroimaging techniques makes some methods more 
applicable to certain data compared to others. For example, the high 
temporal resolution of EEG data makes it more suitable for Phase Syn-
chrony analyses than fMRI. 

In terms of populations, 83% of studies reviewed conducted hyper-
scanning with adult (18 years or older) populations, and a further 8% 
conducted adult-infant studies where a parent interacted with their 
child, 4% conducted either infant-infant interactions, or adult- 
adolescent and 5% did not state the age demographics. In addition 
72% of the hyperscanning experiments investigated neurotypical pop-
ulations (26% did not state if participants had any medical conditions). 

4. Signal characteristics of neuroimaging modalities 

Each functional neuroimaging technique can be classified as either a 
direct or indirect measure of brain activation. EEG and MEG measure the 
direct electrical and magnetic outputs arising from synaptic activity 
during a period of active brain function. In comparison fNIRS and fMRI 
are indirect measures monitoring a change in oxygenation of blood flow 
to infer brain activation, fNIRS monitors the optical properties, whilst 
fMRI detects the change in magnetic properties. Given the difference in 
biological and physical properties recorded, the signals acquired from 
each modality vary interms of their characteristics. This has an effect on 
what analytic method can be effectively used to determine IBC. In this 
section we briefly discuss the properties of the signal acquired from each 
modality (Table 3). 

4.1. Functional near-infrared spectroscopy (fNIRS) 

fNIRS data is recorded using pairs of optodes which comprise a 
recording channel. One of these optodes is a source emitting near- 
infrared (NIR) light, whilst the other is a detector which detects the 
emitted NIR light after it has travelled through the cortex. The source 
and detectors are typically spaced 3 cm apart to ensure the light is able 
to penetrate to the cortex, without becoming too diffuse. As a result of 
this the spatial resolution is inherently limited to the cm scale, addi-
tionally the light can only reach the cortical surface (~1.5 cm from the 

Table 1 
PICOS eligibility criteria used to filter papers found from initial search.  

Criteria Requirements 

Population Participants interacting and scanned simultaneously 
Intervention fNIRS, EEG, fMRI, MEG or any combination 
Comparators Scanning two or more brains 
Outcomes Inter-brain dynamic analysis 
Study Design Standard cognitive neuroscience protocols  
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scalp) (Pinti et al., 2020) and so fNIRS is unable to image deep brain 
structures. The indirect mechanism of measurement for fNIRS means the 
recorded functional activation is essentially a proxy of biological func-
tional activation. The mechanism which is recorded is the haemody-
namic response function (HRF). The HRF manifests over a period of 
seconds, and is slower than the direct, postsynaptic response which 
typically occurs on a millisecond scale. Hence, very fast changes in the 
brain are undetectable using fNIRS. This speaks to the temporal reso-
lution of fNIRS systems, which is usually around 10Hz which over-
samples the slow occurring HRF providing adequate temporal resolution 
for the biological phenomena it is imaging. Since fNIRS is an optical 
technique, the light must pass through non-neuronal tissue before 
arriving at the cortex of the brain. As a result the changes detected by the 
system may be arising from neuronal changes elicited from the stimulus 
aswell as non-neuronal changes related to participant physiology. This is 
a well known and discussed issue in fNIRS and the inclusion of physio-
logical monitoring is recommended to allow for a indepth division of 
evoked neuronal changes from non-evoked systemic changes (Obrig and 
Villringer, 2003; Kirilina et al., 2012; Scholkmann et al., 2014; Tacht-
sidis and Scholkmann, 2016; Guglielmini et al., 2022). The frequency 
components present in the fNIRS signal have been well characterized, 
typically the evoked neuronal component occurs at approximately 
0.025 Hz (although is dependent on the rate of stimulus presentation), 
whilst Mayer waves occur at approximately ~0.09 Hz, breathing rate at 

~0.25 Hz and heart rate at ~1.3 Hz (Pinti et al., 2019). Therefore when 
analysing fNIRS data special attention should be paid to the frequency of 
interest and care should be taken to ensure the task-stimulus frequency 
does not overlap with physiological components. This can easily be done 
by ensuring any repeated task blocks do not occur at a rate overlapping 
with any of the frequencies mentioned above. In addition to systemic 
noise, fNIRS is also susceptible to signal contamination from ambient 
light in the recording room and interference from participant hair, both 
of which can be avoided with careful participant setup. 

4.2. Electroencephalography (EEG) 

EEG uses an array of electrodes to detect small electrical potentials at 
the scalp which are linked to the firing of neurons in the brain. While the 
spacing of EEG electrodes is typically 2 and 3 cm apart, spatial resolution 
is much lower. This is because the human head conducts electricity (a 
phenomena known as volume conduction) and therefore localizing 
signals to a specific origin is difficult, or impossible. Spatial localisation 
therefore may be 5–15 cm and depth cannot be easily determined. A 
larger challenge for researchers is movement artefacts, as any movement 
of the eyes, face or jaw of a participant will cause large and variable 
artefacts in the EEG signal which are not easy to remove. This is 
particularly challenging in hyperscanning studies of natural social 
interaction where the task allows participants to move and speak freely 
(Marriott Haresign et al., 2021). In contrast to low spatial resolution the 
direct nature of the originating signal means the temporal resolution of 
the EEG signal is extremely fine grained, and transient changes in 
neuronal signals occurring from small changes in behaviour are 
detectable using EEG. Typically EEG systems have sample rates of 1 kHz 
upwards to adequately sample the faster frequencies of the brain data. 
Since EEG records direct electrical signals the signal is not contaminated 
by other physiological noise, and the frequency components of the EEG 
signal all directly relate to brain function. These frequencies have been 
well characterized and grouped into bands: Delta (1–3 Hz), Theta (4–7 

Fig. 2. PRISMA flowchart for paper exclusions. Flowchart adapted from (Page et al., 2021). Numbers highlighted in red are how many papers are removed, whilst 
green are included at each stage. 

Table 2 
Categories of methods used to compute IBC and their meaning.  

Category Measurement 

Correlation Temporal similarity between participant data. 
Regression Linear regression to relate participant data to one another. 
Coherence Frequency/Time-frequency similarity between participant data. 
Phase Synchrony Assess phase relationship between data. 
Causality Causal inference from one participant data to another.  
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Hz), Alpha (8–12 Hz), Beta (13–30 Hz), Gamma (30–100 Hz) (Saby and 
Marshall, 2012). 

4.3. Functional magnetic resonance (fMRI) 

The fMRI blood oxygenation level dependent (BOLD) signal is an 
indirect measure of neuronal activity, which detects the change in 
paramagnetism of haemoglobin depending on its oxygenation state. 
fMRI is widely used in cognitive neuroscience and has excellent spatial 

resolution, with typical scanners providing approx. 3mm voxels 
throughout the brain with precise localisation of activation to anatom-
ical structures. The HRF used to determine functional activation is the 
same biological phenomena that is imaged by fNIRS and so suffers the 
same delay. However, the temporal resolution of fMRI systems is slower 
than fNIRS, since the typical MRI sequence used to obtain fMRI data 
(Echo Planar Imaging) acquires a sample every 2 seconds. In this respect 
the temporal resolution is worse than fNIRS even though the physio-
logical basis for functional activation is the same. 

Fig. 3. (a) Number of hyperscanning studies published in total per year. (b) Number of hyperscanning studies published per year per neuroimaging technique.  
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Like fNIRS, the fMRI signal can be contaminated by physiological 
noise, however the origin of the noise is mainly due to motion induced 
from physiology, such as pulsatility of blood flow which induces noise 
around large arteries and draining veins, whilst thoracic movements 
from breathing also induce changes in the head which produce a shift in 
the phase of the image (Caballero-Gaudes and Reynolds, 2017). A 
further limitation, which is particularly important for hyperscanning 
research, is that MRI is sensitive to participant movement and requires 
participants to lie down and remain still in an enclosed and noisy 
environment. Hyperscanning requires two participants in separate room 
to be linked via computer interfaces, and are not conducive to a natural 
social interaction. In particular the lack of spontaneous movement from 
participants means the fMRI imaging environment is highly ‘artificial’ 
(not ecologically valid) and investigating social interactions with loud 
scanner noise in the background, whilst laying down is perhaps unrep-
resentative of the interactions hyperscanning seeks to investigate. 

4.4. Magnetoencephalography (MEG) 

The origination of MEG signals are the same as EEG; the postsynaptic 
electrical current is accompanied by a magnetic field, in which fluctu-
ations are detected by the MEG sensors. As a result of it recording the 
direct synaptic response the temporal resolution of MEG data is com-
parable to EEG, and the frequency components composing the signal are 
in line with EEG; Theta: 4–8 Hz, Alpha: 9–14 Hz, Beta: 15–30 Hz, 
Gamma: 30 Hz+ (Niedermeyer and Silva, 2005) and the typical sam-
pling rate for an MEG system is similarly as high as EEG. The spatial 

localization of MEG data requires solving an inverse problem to deter-
mine the source space of the data, this is considered the main challenge 
of MEG data and therefore has an implication on the spatial resolution of 
the acquired MEG data. The low magnetic permeability of tissue allows 
the magnetic field originating from the brain to travel through the skull 
and scalp with no interference, meaning MEG data is not susceptible to 
effects of volume conduction. Magnetic interference from equipment in 
the room can cause interference in the data but is typically easily filtered 
using low pass frequency domain filters. However, face and eye move-
ments can still cause artefacts. While participants in MEG are typically 
seated with a larger field of view than MRI, their movements are still 
constrained and typical hyperscanning studies rely on computer in-
terfaces (Zhdanov et al., 2015). Newer OP-MEG systems (Holmes et al., 
2023) potentially allow for MEG hyperscanning in interacting partici-
pants, but studies are still constrained to a shielded room with minimal 
movements. 

4.5. Frequency Components used in hyperscanning studies 

As discussed above, different modalities record different physiolog-
ical phenomena, and therefore, frequency components within each 
signal reflect different things. Broadly these can be divided between the 
electromagnetic modalities; EEG and MEG, and the haemodynamic 
modalities; fMRI and fNIRS. 

Within EEG and MEG the frequency components divided into bands 
(Delta, Theta, Alpha, Beta, Gamma) reflect varying processes in the 
brain depending on context and location. In this review the studies using 
EEG (71 total) analysed varying frequency bands, these are summarised 
in Table 4. 

39 studies analysed multiple frequency bands. The 22 ‘other range’ 
did not specify any frequency bands as defined in the EEG literature, but 
did specify some range of frequencies. One of the two MEG studies 
analysed Delta wave frequencies, whilst the other analysed Alpha band 
for both adults and infants. 

When analysing frequency bands for haemodynamic signals, the 
main requirement is to exclude frequencies associated with non- 
neuronal physiological responses. Typically experimenters analyse fre-
quencies close to the task-frequency; the frequency at which task stim-
ulus is presented. Of the 23 fMRI studies included in this review, 5 
studies analysed a range of frequencies (0.0025–0.02, 0.008-0.009, 
0.008–0.45, 0.01–0.8,0.645–1), whilst 17 analysed a single specific 
frequency component, given in Table 5. 

Of the 119 fNIRS studies included in this review, 12 did not specify 
any information about the frequencies that were examined. All 107 
remaining studies focused on a range of frequencies for their analysis. 
The mean of the minimum frequencies analysed was 0.067 Hz (standard 
deviation 0.135 Hz), whilst the mean of the maximum frequencies 
analysed was 0.3808 Hz (s.d. 0.6903 Hz). 

5. Systematic review of metrics of IBC 

Below we discuss the metrics used to investigate the relationship 
between participant neural data in hyperscanning studies, organised by 
categories. For a full list of studies and which methods they used, please 
refer Table 6 below. Where relevant, formulae are provided in the 
supplementary materials. In this section the input data for each method 
is the neural data from participants taking part in a simultaneously- 

Fig. 4. Number of papers published for each analysis category for each neu-
roimaging technique. 

Table 3 
Recording properties of each neuroimaging technique used in hyperscanning 
experiments. Biological property refers to the underlying physiological phe-
nomena the modality images, whereas physical property refers to what 
parameter of the biological property the modality exploits to obtain the data.  

Modality Direct/Indirect Biological Property Physical Property 

fNIRS Indirect Haemodynamic Response Optical 
EEG Direct Postsynaptic Potential Electrical 
fMRI Indirect Haemodynamic Reponse Magnetic 
MEG Direct Postsynaptic Potential Magnetic  

Table 4 
Number of papers using each EEG frequency band. Papers which used multiple 
frequency bands are accounted for in each frequency band they have used.  

Frequency 
band (Hz) 

Delta 
(1-3) 

Theta 
(4-7) 

Alpha 
(8-12) 

Beta 
(13- 
30) 

Gamma 
(30+) 

Other 
range 

N studies 13 39 43 37 23 22  

U. Hakim et al.                                                                                                                                                                                                                                  



NeuroImage 280 (2023) 120354

7

imaged-hyperscanning paradigm. For studies using fMRI this is the 
BOLD signal, whilst EEG is the evoked potential and MEG is the mag-
netic field fluctuations. Since fNIRS provides both HbO2 and HHb, 
studies can use either, both, or a combination of the two. The pros and 
cons of which signal to use is outside the scope of this paper and so data 
acquired using fNIRS will be referred to as fNIRS data, with no specifi-
cation as to which signal. For further information with regards to signal 
performance and the benefits of using different signals please refer to 
(Kirilina et al., 2012; Tachtsidis and Scholkmann, 2016; Hakim et al., 
2022). 

For each method we will first state the property of input data that the 
method uses to determine IBC and the domain (time, frequency or time- 
frequency) it is applied to. Following this, we will outline the rationale 
behind each method as applied to hyperscanning, and as described by 
the original authors of the method where possible, along with the 
mathematical assumptions behind the use. Next we will consider 
mathematical considerations, including linearity, symmetry and its bi/ 
multivariate nature. Finally the suitability of the method applied to each 
modality will be considered based on the temporal and spatial resolution 
of the measured signal, followed by which modalities have used the 
method. 

Fig. 5 shows a representation of how hyperscanning metrics from 
each category are represented visually. The figures are examples of how 
hyperscanning data can be represented. Fig. 5 (a) shows how (Cheng 
et al., 2022) represents Pearson correlation of fNIRS data between par-
ticipants. The representation to the left shows the t-value maps of cor-
relation values, whilst the right shows the variation in Pearson product 
moment correlation values for their experimental groups as the task 
progresses. Figure 5 (b) is the representation of cross brain GLM from 
(Pinti et al., 2021). The magenta boxes show the t-values of a specific 
fNIRS channel at varying time-lags, whilst the blue boxes show the beta 
values. Fig. 5 (c) is the representation of wavelet coherence from (Wu 
et al., 2021) displaying the wavelet coherence spectrogram of a specific 
fNIRS channel from their two experimental groups (only-child and 
children with siblings). The increased coherence values in the 
non-only-child group is highlighted for a specific frequency band in red. 
Fig. 5 (d) shows the interbrain phase coherence from study by (Müller 
and Lindenberger, 2022) displaying the time-frequency diagrams on the 
left and the topological distributions of strength of interbrain phase 
coherence. Fig. 5(e) shows the representation of causal connections 
using multi-variate Granger causality from (Sciaraffa et al., 2021). The 
connections in green represent the between-subjects connectivity, with 
the thickness of the connection representing the percentage of couples 
which have the significant connection. The distribution plot on the left 
displays the density of between subject connections. 

5.1. Correlation 

Arugably the most fundamental form of investigating an interaction 
between neural data is to determine the correlation between them. 7 
different forms of correlation were found: Pearson Correlation, Cross- 
Correlation, Partial Correlation, Spearman Rank Correlation, Beta Se-
ries Correlation, Dynamic Time Warping and Amplitude Envelope Cor-
relation. 4 studies (Krueger et al., 2007; Saito et al., 2010; Holper et al., 
2013; Shaw et al., 2018) did not state the type nor provided formulae for 
which correlation was used. 

5.1.1. Pearson correlation 
The Pearson Correlation Coefficient (PCC) (Eq.S1) examines how 

two variables (typically neural data originating from homologous 

regions on participants) co-vary together, typically in the time domain. 
The rationale of the correlation is that variables which are related should 
co-vary together, and so computing the PCC of the two variables 
quantifies the extent to which changes in one variable influence the 
other variable. The application of this rationale to hyperscanning studies 
is clear – if participants are ‘interacting’ their neural signals should vary 
together in some form. Typically this manifests as an increase in PCC 
from rest/non-interaction to task/interaction, and means the task is 
eliciting a neural interaction. There is an assumption of a linear rela-
tionship between input data, therefore if the relationship is highly non- 
linear the PCC will be low. Secondly, the data are normally distributed, 
however the PCC is generally robust to non-normal distributions as long 
as the departure from normality is not extreme. Finally, the input data 
should be independent of each other, if this is not true, and they are 
dependent this will lead to inflated PCC values. In terms of what the PCC 
can reflect about hyperscanning interactions, it can only reflect linear 
relationships between input data, cannot display any directional infor-
mation about the relationship and is a bivariate method and therefore 
other variables cannot be included in the analysis such as systemic 
confounds, other brain regions or behavioural parameters. Generally the 
PCC is able to be used with any modality, however its suitability to each 
method varies slightly. M/EEG analysis focuses highly on analysis of 
different frequency bands, exploiting the direct relation between 
neuronal activity and the recording and the high temporal resolution of 
M/EEG systems, however since the PCC is generally a time domain 
method it is unable to probe relationships between frequency bands of 
different participants. Frequency analysis can be conducted by first 
computing the power of different frequency bands and correlating the 
power of bands, however this loses the temporal resolution that EEG 
offers and so the PCC may have limited use in EEG analysis. It’s appli-
cation to fNIRS and fMRI is influenced on how systemic noise is 
managed during the pre-processing stage. Since there’s no ability for the 
method to separate systemic noise in the frequency domain, misman-
agement of systemic noise may cause the PCC to reflect simple systemic 
increases in both participants rather than neuronal activation specif-
ically if the task-frequency is closely related to systemic component 
frequencies. However, of the studies reviewed the PCC was applied to 
EEG (Cassioli and Balconi, 2022), fMRI (Koike et al., 2016; Abe et al., 
2019; ;Koike and Sumiya, 2019 Xie et al., 2020; Miyata et al., 2021; 
Salazar et al., 2021) and fNIRS (Duan et al., 2015; Balconi and Vanutelli, 
2017; Balconi and Vanutelli, 2017; Zhao et al., 2017; Balconi et al. 
2018b; Fishburn et al., 2018; Dai et al., 2018; Fronda and Balconi, 2020; 
Hoyniak et al., 2021; Yang et al., 2021; Cheng et al., 2022; Cheng et al. 
2022). 

5.1.2. Cross correlation 
The cross-correlation is an adaptation of the PCC in that the data 

input is altered such that one variable is time-lagged relative to the 
other. As such this method also examines how two variables co-vary 
together. The rationale differs slightly in that it is focused on exam-
ining how variables co-vary, when one precedes the other. Applied to 
hyperscanning this may translate as, if one participant displays a specific 
action before the other, the cross-correlation can be used to examine 
how/if the neural activity when that action was carried out, relates to 
the neural activity of the observer of the action. The assumptions of the 
data being input are the same as the PCC since the underlying method is 
the same, it’s the input data that varies and is typically applied to time- 
domain data. With respect to what the method can reflect, it is similar to 
the PCC. Only linear relationships are unveiled, and other variables 
cannot be included in the analysis (bivariate), however the 

Table 5 
Frequency components used for fMRI hyperscanning studies.  

Frequency (Hz) 0.04 0.0625 0.29 0.33 0.4 0.435 0.5 0.645 1 1.4 

N studies 1 1 1 1 1 2 7 1 1 1  
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implementation of a time-lag of one variable relative to the other allows 
for a degree of asymmetry in the analysis. If the correlation is high when 
one participants data is lagged relative to the other, but not if the reverse 
is done, it implies that in the first case the lagged participant has some 
(loose) predictive relation to the other participant. Cross-correlation 
favours higher temporal resolutions (compared with PCC) since more 
time points allows a more granular way to evaluate time periods of in-
terest. However as discussed above M/EEG data typically focuses on 
specific frequencies, and not purely on the time domain data. As such 
this form of correlation may favour fNIRS analysis, with the contingent 
the systemic components are adequately filtered. The cross correlation 
was applied to EEG (Khalil et al. 2022), fNIRS (Azhari et al. 2021; Liu 
et al., 2021; Lu et al., 2022) and fMRI (King-Casas et al., 2005; Bilek 
et al., 2015; Špiláková et al., 2020). 

Table 6 
List of computational methods of IBC and corresponding studies and modality 
used.  

Method Modality and Studies 

Pearson Correlation (section 5.1.1) fMRI: Koike et al. (2016); Abe et al. (2019),  
Koike and Sumiya (2019), Xie et al. (2020),  
Miyata et al. (2021), Salazar et al. (2021),  
Ellingsen et al. (2022) 
fNIRS: Duan et al. (2015), Balconi and 
Vanutelli (2017), Balconi and Vanutelli 
(2017), Zhao et al. (2017), Balconi et al. 
(2018b), Fishburn et al. (2018), Dai et al. 
(2018), Fronda and Balconi (2020), Yang 
et al. (2021), Cheng et al. (2022), Cheng 
et al. (2022) 
EEG: Cassioli and Balconi (2022) 

Cross Correlation (section 5.1.2) fMRI: King-Casas et al. (2005), Bilek et al. 
(2015), Špiláková et al. (2020), Ratliff et al. 
(2021) 
fNIRS: Azhari et al. (2021), Liu et al. (2021),  
Lu et al. (2022) 
EEG: Khalil et al. (2022) 

Partial Correlation (Section 5.1.3) fNIRS: Balconi et al. (2018), Balconi and 
Fronda (2020b), Balconi et al. (2020),  
Balconi et al. (2021) 
EEG: Balconi and Vanutelli (2018b), Balconi 
et al. (2018a), Balconi et al. (2019, 2020),  
Balconi and Fronda (2020a, 2020c), Balconi 
et al. (2020), Balconi et al. (2022) 

Spearmans Rank Correlation ( 
Section 5.1.4) 

fNIRS: Akimoto et al., 2021, Oku et al. 
(2022) 
EEG: Kinreich et al. (2017) 
MEG: Hasegawa et al. (2016) 

Beta Series Correlation (Section 
5.1.5) 

fMRI: Koike and Tanabe (2019), Yoshioka 
et al. (2021) 

Dynamic Time Warping (Section 
5.1.6) 

fNIRS: Azhari et al. (2019) 

Amplitude Envelope Correlation ( 
section 5.1.7) 

EEG: Zamm et al., 2021 

General Linear Model (GLM) 
Classification (Section 5.2.1) 

fMRI: Anders et al. (2011) 

Cross Brain GLM (Section 5.2.2) fMRI: Spiegelhalder et al. (2014), Špiláková 
et al. (2019) 
fNIRS: Liu et al. (2017), Barreto et al. (2021), 
Cañigueral et al. (2021), Pinti et al. (2021) 

Psychophysiological Interactions 
(PPI) (Section 5.2.3) 

fNIRS: Koide and Shimada (2018) 

Wavelet Transform Coherence ( 
Section 5.3.1) 

fNIRS: Cui et al. (2012), Dommer et al. 
(2012), Holper et al. (2012), Cheng et al. 
(2015), Jiang et al. (2015), Osaka et al. 
(2015), Baker et al. (2016), Liu et al. (2016),  
Nozawa et al. (2016, 2019), Tang et al. 
(2016, 2020), Hirsch et al. (2017, 2018, 
2021, 2022), Ikeda et al. (2017), Pan et al. 
(2017, 2018), Piva et al. (2017), Zhang et al. 
(2017), Zhang et al. (2017), Dai et al. (2018), 
Reindl et al. (2018), İşbilir (2016) Xue et al. 
(2018), Zhang et al. (2018), Balconi et al. 
(2019), Cheng et al. (2019); Liu et al. (2019), 
Lu and Hao (2019), Lu et al. (2019, 2021),  
Lu et al. (2019), Mayseless et al. (2019),  
Miller et al. (2019); Wang et al. (2019); Liu 
et al. (2019); Chen et al. (2020); Descorbeth 
et al. (2020); Dravida et al. (2020); Duan 
et al. (2020); Li et al. (2020); Lu, Teng and 
Hao (2020); Lu, Yu and Hao (2020); Nguyen 
et al. (2020); Noah et al. (2020); Pan and 
Dikker (2020);, Pan and Guyon (2020);  
Wang et al. (2020); Sun et al.( 2020, 2021);  
Li (2020, 2021); Zhang et al. (2020); Zhang, 
Jia and Zheng (2020); Wang et al. (2020);  
Gamliel et al. (2021); Kruppa et al. (2021);  
Long et al. (2021); Léné et al. (2021); Zhang 
et al. (2021); Zhang et al. (2021) Nguyen, 
Hoehl and Vrtička (2021); Nguyen, 
Schleihauf, Kayhan, et al. (2021); Nguyen, 
Schleihauf, Kungl, et al. (2021); Li et al.  

Table 6 (continued ) 

Method Modality and Studies 

(2021); Zhang et al. (2021); Wu et al. (2021); 
Zhang, Jia and Wang (2021); Zhao et al. 
(2021, 2022); Zhao, Zhu and Hu (2021); Zhu 
et al. (2022); Pan, Cheng and Hu (2022);  
Park, Shin and Jeong (2022); Guglielmini 
et al. (2022); Yuan et al. (2022) 
EEG: (Stevens and Galloway, 2022) 

Fourier Transform Coherence ( 
section 5.3.1) 

fMRI: (Stolk et al., 2014; Wang et al., 2022) 
EEG: (Filho et al., 2016; Balconi and 
Vanutelli, 2018a; Coomans et al., 2021;  
Richard et al., 2021) 
MEG: (Zhdanov et al., 2015) 

Total Interdependence (section 
5.3.2) 

EEG: (Dikker et al., 2017; Chabin et al., 
2022) 

Imaginary Part of Coherence ( 
section 5.3.3) 

EEG: (Dikker et al., 2021) 

Partial Wavelet Coherence (section 
5.3.4) 

fNIRS: (Zhou, Long and Lu, 2021) 

Mutual Coherence (section 5.3.5) fMRI: (Goelman et al., 2019) 
Phase Locking Value (section 5.4.1) EEG: (Dumas et al., 2010, 2012; Yun, 

Watanabe and Shimojo, 2012; Mu, Guo and 
Han, 2016; Jahng et al., 2017; Mu, Han and 
Gelfand, 2017; Pérez, Carreiras and 
Duñabeitia, 2017; Hu et al., 2018; Barraza, 
Pérez and Rodríguez, 2020; Dodel, Tognoli 
and Kelso, 2020; Djalovski et al., 2021;  
Gumilar et al., 2021; J. Li et al., 2021; Peng 
et al., 2021; Shehata et al., 2021; Chen et al., 
2022; Deng et al., 2022, 2022; Gugnowska 
et al., 2022; Kang et al., 2022) 

Interbrain Phase Coherence (section 
5.4.2) 

EEG: (Lindenberger et al., 2009; Sänger, 
Müller and Lindenberger, 2012; Szymanski 
et al., 2017; Müller and Lindenberger, 2022) 

Integrative Coupling Index (section 
5.4.3) 

EEG: (Müller, Sänger and Lindenberger, 
2013, 2018; Sänger, Müller and 
Lindenberger, 2013; Müller and 
Lindenberger, 2019) 

Phase Synchronization Index ( 
section 5.4.4) 

EEG: (Kawasaki, Kitajo and Yamaguchi, 
2018; Shiraishi and Shimada, 2021) 

Circular Correlation Coefficient ( 
section 5.4.5) 

EEG: (Goldstein et al., 2018; Pérez et al., 
2019; Zhou et al., 2021; Key et al., 2022;  
Zivan et al. (2022)) 

Bispectral Analysis (section 5.4.6) EEG: (Cha and Lee, 2019) 
Weighted Phase Lag Index (section 

5.4.7) 
EEG: (Ahn et al., 2018) 

Granger Causality (section 5.5.1) fNIRS: (Ono et al., 2021) 
Conditional Granger Causality ( 

section 5.5.1) 
EEG: (Sciaraffa et al., 2021) 

Phase Slope Index (section 5.5.2) EEG: (Fenwick et al., 2019) 
Partial Directed Coherence (section 

5.5.3) 
EEG: (Astolfi et al., 2010, 2011; Fallani et al., 
2010; Toppi et al., 2016; Sciaraffa et al., 
2017; Ciaramidaro et al., 2018; Santamaria 
et al., 2020) 

Unspecified correlation (section 5.1) fMRI: (Krueger et al., 2007; Saito et al., 2010; 
Shaw et al., 2018) 
fNIRS: (Holper et al., 2013; Hoyniak et al., 
2021)  
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Fig. 5. Examples of how hyperscanning metrics can be 
represented for each of the analytic categories in this 
review. (a) is an example of Pearson correlation data 
from (Cheng et al., 2022), the left hand side shows 
t-value maps of correlation values from a dyad. (b) 
represents the cross brain GLM results from (Pinti et al., 
2021), the upper boxes show t-values at different time 
lags, whilst the bottom show beta values at different 
time lags. (c) shows wavelet coherence spectrograms of 
fNIRS data from a channel of a dyad from the study by 
(Wu et al., 2021). (d) shows the inter-brain phase 
coherence from (Muller and Lindenberger., 2022) 
showing both the time-frequency representation of the 
data and the topological distributions of the strength of 
interbrain phase coherenc€(e) Is the representation of 
multi-variate Granger causality from (Sciaraffa et al., 
2021) where the connections on the right hand side in 
green represent the between brain connectivity and the 
thickness represents how many dyads had that con-
nectivity. The plot on the left shows the density of be-
tween subject connections.   
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5.1.3. Partial correlation 
The Partial Correlation also observes how input variables co-vary, 

with the output value explaining whether they are related to each 
other in a linear way. This form of correlation varies with respect to the 
previous two in that it isolates the relationship between two input var-
iables whilst controlling for a third confounding variable. With respect 
to hyperscanning this can be used to compute the correlation between 
neural signals from two participants whilst controlling for some 
confound which would cause inflated correlation values. The assump-
tions of the input data are the same as for PCC, however this form of 
correlation is a multivariate method, allowing the inclusion of con-
founding variables to be accounted for. However, similarly to the PCC it 
is only able to reflect linear, symmetric relationships between input data 
which is also usually in the time-domain. Since this allows the inclusion 
of multiple variables, it is beneficial to be used in cases where multi-
modal data can be acquired, such as physiological information or 
behavioural parameters, which can account for any inflated correlations 
caused by systemic influences on the neuronal data, or artefacts linked 
to specific behaviours. Furthermore, high spatial resolutions may allow 
for interesting analyses whereby regions which are physically connected 
to another can be exempted from the correlation analysis. For example, 
if region A in participant 1 is influenced by region B, computing the 
correlation between region A participant 1 and region C on participant 2 
may give the same correlation as computing region B on participant 1 
and region C on participant 2 as the regions A and B are not independent 
of each other. This method was used by 12 studies from the same group, 
8 of these (Balconi and Vanutelli, 2018b; Balconi et al. 2018a; Balconi 
et al., 2019, 2020; Balconi and Fronda, 2020a, 2020c; Balconi et al. 
2020; Balconi et al. 2022) used EEG data, whilst 4 (Balconi et al. 2018; 
Balconi and Fronda, 2020b; Balconi et al. 2020; Balconi et al. 2021) used 
fNIRS, the application is the same for both. The formula used by the 
these studies is provided in the supplementary materials Eq. S2. 

5.1.4. Spearman rank order correlation 
The output of the Spearmans Rank Correlation is based on the sum of 

squared differences between the rank of the input data. Therefore the 
input values must first be ranked in some form before computing the 
correlation between them with the output reflecting the ordinal rela-
tionship between data. The rationale of the method is understood in 
comparison to the PCC. The Spearman correlation can reflect non-linear, 
monotonic relationships whilst also being more robust to outliers in 
input variables, and non-normally distributed data. The main draw of 
using the Spearmans rank correlation as opposed to other forms, is in its 
ability to reflect non-linear relationships between the ordinal input data. 
However, as expected an important assumption of the method is that the 
data is ordinal. As such the neuronal data being used must be ranked in 
some way before computing the Spearman correlation. There are no 
specific parameters of the method which increase its suitability aside 
from what has already been discussed about other correlation forms. 
However, how the data is ranked is important and should be clarified by 
authors; (Hasegawa et al., 2016; Kinreich et al., 2017) using EEG and 
MEG respectively, ranked the frequency components of their neural 
data, whilst (Akimoto et al., 2021) using fNIRS did not specify the 
ranking of their data. 

5.1.5. Beta series correlation 
The Beta Series Correlation is a form of analysis based on the ‘Beta 

Series’ form of analysis developed by (Rissman et al. 2004). The ratio-
nale for the Beta series as specified by the authors of the method is such 
that events occurring within a short time frame cannot be specifically 
disentangled due to the slow HRF. A typical analysis models each task 
which may consist of multiple events; the Beta series method models 
each event with separate regressors such that a time-series of beta values 
can be obtained. The application of this to hyperscanning is conducted 
for the same reason – the HRF may overlook individual transient events 
and so modelling all events of interest as separate regressors may offer a 

higher-resolution view of the interaction. This is done for both partici-
pants and then the outputs are correlated. The assumptions of this 
method depend on (1) the form of correlation used, and (2) the General 
Linear Model (GLM) framework, which are broadly the same as other 
forms of correlation with the addition of predictor variables not having 
multicollinearity between them. In terms of what can be evaluated using 
this method, it depends mainly on what form of correlation is applied to 
the resultant beta-series. The authors using this method (Abe, et al., 
2019; Yoshioka et al., 2021) did not specify which form of correlation 
they used. The use of this method is mainly focused upon modalities 
exploiting the haemodynamic response to stimuli since it is aimed at 
overcoming the slowness of HRF modelled data. However as of writing it 
has only been applied to fMRI data. 

5.1.6. Dynamic time warping 
Dynamic Time Warping (DTW) is an algorithm used to assess simi-

larity between input data by measuring the distance between input data. 
The rationale behind its use is that traditional means of measuring 
similarity typically assumes a one-to-one matching, which may not be 
true if data are similar but originate from different sources (for example, 
two people walking with different speeds). The DTW provides a means 
to assess similarities independent of durations, timings or other factors 
influencing the temporal dynamics of the originating system. It’s normal 
use outputs a distance index which signifies how closely matching one 
time-series is to another. The use of DTW in hyperscanning follows much 
the same method; the output distance index is used as a metric of ‘syn-
chronization’ between participants. There are a few assumptions when 
using the DTW, the first being the start and end points of both input data 
are the same (one time series does not extend further than the other), 
data is monotonic, that corresponding points in both time series are 
likely to be close together independent of temporal distortions, and the 
warping path (from which the distance index is computed) exhibits 
continuity to prevent illogical jumps forward. This is a bivariate method, 
however the linearity and symmetry depends on the distance metric 
used. Azhari et al. (2019) used Euclidean distance as the distance metric, 
however other metrics may be used although care should be taken to 
ensure that the distance metric represents the underlying relationship 
adequately to provide meaningful results. Its suitability is focused to-
wards higher temporal resolution data because it matches the data 
points of one participant to the data points of another, if there are too 
few the algorithm may not reflect useful information. In any case the 
method has only been applied to fNIRS data, although its use with EEG 
may be interesting. 

5.1.7. Amplitude envelope correlation 
The Amplitude Envelope Correlation refers to the correlation of the 

envelope of signals. The correlation method was unspecified, but 
essentially the method reflects the covariance of the envelope of 
neuronal data. The rationale of this is specifically aimed at neuronal 
data, as the original application was to assess coupling between regions 
using EEG data (Bruns et al., 2000). The authors of the method state the 
gamma band synchronization has been found between regions in the 
animal brain, where the scale of distances between ROI is millimeter, 
however this is rarely reported in humans. They propose that the longer 
distances may introduce variations in the phase of activation, which 
prevents coupling from being detected using coherence. They propose to 
use the correlation between the envelope of the amplitude of EEG signals 
instead because it allows for more ‘temporal jitter’ than coherence 
because the envelope of the band-limited signal does not change as 
rapidly as the signal themselves. Its application to hyperscanning by 
Zamm et al., 2021 using EEG data was based around a similar rationale – 
they sought to evaluate synchrony between data independent of phase 
coherence. Similar to DTW and Beta series correlation, the assumption 
surrounding the correlation are the same as the PCC since this is the 
correlation used by Bruns et al. (2000). Further, the computation of the 
amplitude envelope was done using the Hilbert transform which 
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requires the signal for which the envelope is computed to be 
narrow-band (requiring the EEG data first be filtered to the frequency 
band of interest), free from noise and with no phase distortion. As with 
the PCC the method can show the linear, symmetric relationship for the 
bivariate inputs. The method was originally developed to examine high 
frequency coupling between brain regions and so favours higher tem-
poral resolution data, especially since the envelope requires a higher 
number of data points to represent a meaningful evolution of neural data 
over time. 

5.2. Regression 

Closely related to correlation are regression techniques. All methods 
in this section stem from the General Linear Model (GLM). The GLM is a 
linear regression technique which essentially computes the similarity 
between modelled variables (also called predictor variables or re-
gressors) and the measured data, reflected in a regression coefficient 
(Eq. S3 in supplementary materials). 

5.2.1. GLM classification 
This method, as applied by Anders et al. (2011), uses the Euclidean 

distance between the mean regression coefficient of one participants 
emotion-specific-network and a voxel from the other participant to 
evaluate whether the emotional response of one person elicits 
emotion-based activation in the other. Essentially the rationale behind it 
is, if there is a small distance between the regression coefficients of both 
participants then it’s likely that there is an interaction between the two 
participants. The assumptions of this method are those of the GLM in 
general. This requires the residuals of the model are normally distrib-
uted, predictor variables are not colinear, and data is homoscedastic. 
Alongside these assumptions, the GLM can only reflect the linear rela-
tionship between the predictor variables and the measured data. How-
ever, the implementation of the GLM in this method allows asymmetric 
relationships to be evaluated, since the distance is based on the 
emotion-specific-network of one participant to the other, which may not 
be true in the reverse case. GLM based methods are more suited to 
haemodynamic based modalities since it is the standard analysis method 
for single brain functional activaton. Additionally, the HRF can be 
modelled as a canonical response to stimuli, whilst there is no estab-
lished canonical response to stimuli for M/EEG data. Anders et al. 
(2011) used this method with fMRI data makes good use of the spatial 
resolution of fMRI by computing emotion-specific-networks based on 
high resolution neural data. 

5.2.2. Cross brain GLM 
This implementation of the GLM uses neural data from participant B 

as the predictor variable for the neural response of participant A, using 
the output regression coefficient as the determinant of increased IBC in 
specific experimental conditions. This was further extended by intro-
ducing a time-lag to one participants data by (Spiegelhalder et al., 2014; 
Špiláková et al., 2019; Pinti et al., 2021) using fMRI and fNIRS to 
evaluate lead-lag relationships between participants (Eq. S4). Liu et al. 
(2017) regressed fNIRS data from one participant onto the data of the 
other and included the task-timings as an additional regressor. Barreto 
et al. (2021) tested both support vector and ordinary least squares using 
fNIRS data in their ability to predict the signal from one participant 
based on the other. They obtained regression coefficients by computing 
the regression between homologous channels of partnered participants. 
The coefficients where then used to compute the predicted signal of one 
participant, and the correlation between predicted and real signals used 
to evaluate performance of each method. Cañigueral et al. (2021) used a 
multivariate GLM approach with fNIRS data, eye-gaze and facial motion 
from both participants and the brain activity from participant B in the 
model which was used to predict the brain activity of participant A. 
Evidently this is a widely versatile method to evaluate IBC, able to 
evaluate lead-lag relationships, incorporate multivariate data and to 

predict neural response based on partner data. The detection of lead-lag 
relationships is suited to higher temporal resolutions for the same rea-
sons as cross-correlation is, whilst predicting data from one participant 
based on another may be more suited to higher spatial resolution as 
more localized neural responses can be used as the basis of prediction. 
Additionally, this method does not require a canonical response as the 
predictor variable since the neural response of the partner is used as the 
predictor variable. 

5.2.3. Psychophysiological interaction (PPI) 
The implementation of of PPI to fNIRS hyperscanning by Koide and 

Shimada (2018) follows the same rationale and metric of IBC as the 
previous GLM based methods. However, PPI analysis (Friston et al., 
1997) was developed to evaluate functional networks with 2 extra 
predictor variables to remove spurious connections, whilst the third 
regressor is the seed-region for which connectivity to is desired two (see 
O’Reilly et al., 2012 for detail). In the case of hyperscanning (Koide and 
Shimada, 2018) used the channel of the partner showing the peak 
activation during the task as the seed-region. 

5.3. Coherence 

In general, coherence-based methods are analogous to computing the 
correlation of time-series data, however the data is represented in the 
frequency, or time-frequency domains. For a comparison of coherence 
and correlation using EEG data see (Guevara and Corsi-Cabrera, 1996). 
The first stage in a coherence based method is the conversion from the 
time-domain to the frequency/time-frequency domain. This is done 
using either the wavelet or Fourier transform (WT/FT). 

The FT uses sine and cosine waves with varying frequencies as basis 
functions to determine frequency content of a specific period of time- 
series data, normally a pre-defined window which is slid over the 
entire time-series which are then averaged (for example, Welch (1967)) 
in this way the FT of a time-series has good spectral resolution but poor 
temporal resolution; you may know that a frequency exists in the signal, 
but not at what time this occurs. In comparison, the wavelet transform 
computes the frequency content using ‘wavelets’ as basis functions, 
which are varied in size (for a full explanation of wavelet analysis see (; 
Torrence and Compo, 1998; Chang and Glover, 2010)). Wavelet analysis 
is able to provide good spectral and temporal resolution, providing the 
power of specific frequencies at each time point. The instantaneous in-
formation makes it better suited to non-stationary signals such as those 
arising from physiological processes. 

All of the methods in this category use the magnitude squared 
coherence (MSC) in their computation of IBC. First the spectral content 
of the two signals is determined and then the cross-spectral density (Eq. 
S5) of the input signals are computed. Using this the MSC (Eq. S6) is 
computed. The MSC computed using wavelet transformations is often 
referred to as the wavelet transform coherence (WTC) and the MSC 
when using Fourier transformations, however the two are the same, only 
the method to obtain frequency/time-frequency information differs. 7 
methods were discovered in the coherence category: Fourier Transform 
Coherence, Wavelet Transform Coherence, Total Interdependence, 
Imaginary Part of Coherence, Partial Wavelet Coherence and Mutual 
Coherence. 

5.3.1. Fourier transform coherence 
The FTC computes the common strength of specific frequencies of a 

signal, operating exclusively in the frequency domain. The rationale, 
and power, of this method is that it is able to identify specific frequency 
components which are common to both signals, which may be covered 
when conducting time-series analysis exclusive in the time domain. 
Applying this to hyperscanning (and neuroscience in general) is that 
different frequencies in the neural data correspond to different neural 
functions, this is especially true with direct measures of brain activity 
(M/EEG) but also important with indirect measures of activity since the 
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different components represent different physiological properties (not 
specifically neural). Evaluating the coherence of different frequencies of 
interacting participants may be indicative of underlying common phe-
nomena. The assumptions of this method mainly lie with the conversion 
to the frequency domain. To ensure meaningful interpretations users 
must ensure the data is free from noise and is adequately sampled to 
reflect the underlying brain function. Additionally, Fourier transforming 
data assumes data is stationary such that the frequency content is 
consistent over time. This is often not true with physiological data in 
general (fNIRS data is a clear example) and leads to the issue of uncer-
tainty in where frequency components lie within the time data. As was 
the case with PCC the FTC is only able to reflect linear and symmetric 
relationships for bivariate data. The power of FTC (coherence in gen-
eral) is to investigate the frequency components of the data, as such it is 
suited to high temporal resolution data which can reflect the different 
frequency components that make up the underlying brain function. The 
FTC was used by 7 studies; (Filho et al., 2016; Balconi and Vanutelli, 
2018a; Coomans et al., 2021; Richard et al., 2021) used EEG, (Montague 
et al., 2002; Saito et al., 2010) used fMRI and (Zhdanov et al., 2015) used 
MEG. 

5.3.2. Wavelet transform coherence 
Similar to FTC, the WTC also computes the common strength of 

specific frequencies of a signal, however it does so in the time-frequency 
domain. The rationale extends beyond the FTC since the WTC can unveil 
frequency information throughout the duration of the signal with 
decreasing time resolution as the frequency gets lower. This is specif-
ically of use for physiological data since the frequency content varies 
over time (most biological signals are non-stationary). As the method is 
sensitive to the power in a signal (and not the phase of the signal), it is 
capable of capturing out-of-phase relationships between brain activity in 
participant A and participant B, unlike simple correlation methods. This 
means it has more flexibility to indicate interactions where A and B are 
imperfectly related to one another. When using the WTC users must 
ensure that the underlying wavelet function (used to compute spectral 
content of the signal) adequately represents the original signal (Zhang 
et al., 2020). Data should also be clean of artefacts so the power of each 
frequency represents neuronally relevant phenomena and not 
commonly occurring systemic changes, or noise. The method is only able 
to reflect the linear relationship between one location on one participant 
and one on another, and the output is symmetric. The WTC is suited to 
modalities which are able to reflect underlying frequency components 
adequately. Where the FTC can only interrogate specific frequency 
components commonly occurring at a single time, the WTC is able to 
interrogate how the co-occurrence of individual frequency components 
evolves over time. This is an important distinction between the two 
methods, and grants the WTC superior power to interrogate social in-
teractions and how they evolve and manifest over time. Additionally, 
since the WTC is typically computed between analogous locations of 
interacting participants it favours a higher spatial resolution in order to 
accurately and meaningfully reflect commonly occurring frequencies. If 
the activity of one person is incorrectly spread across multiple regions 
(via volume conduction for example) this may manifest as multiple areas 
showing falsely high WTC with correspond locations in the partner. The 
WTC is the most commonly used method in the literature, used by 91 
studies of which 1 was EEG (Stevens and Galloway, 2022) and the rest 
fNIRS. 

5.3.3. Total interdependence (TI) 
Two studies using EEG used the Total Interdependence (TI) to 

compute IBC (Dikker et al., 2017; Chabin et al., 2022). This was 
developed by Gel’fand (1959) and adapted for fMRI signals by Wen 
et al. (2012) to investigate resting state functional connectivity. The 
method infers IBC by summing all possible feedback between the 
time-series, computed in the frequency domain. Feedback in this case is 
used in the Granger sense such that for two time-series, X and Y, if the 

past of Y can be used to improve the prediction of X more than using the 
past of X by itself, then Y is said to Granger cause X. Therefore in this 
case the TI is considered as the sum of linear feedback from X to Y, linear 
feedback from Y to X and instantaneous linear feedback (Geweke, 1982). 
The rationale of the method applied to hyperscanning is that traditional 
measures (such as coherence and correlation) do not take into account 
dependence beyond contemporaneously acquired data points and the 
use of TI provides a wider picture of all forms of interaction and 
dependence between participants. The assumptions for the method 
depend mainly on how the spectral information is computed using either 
the Fourier or Wavelet transforms. The formula to compute the TI pro-
vided by Dikker et al. (2017) (Eq. S7) allows the TI to be interpreted as 
the total amount of mutual information between two Gaussian station-
ary processes. Necessarily then, TI makes an assumption that the signals 
being investigated are Gaussian stationary (Wen et al. (2012), for long 
epochs of EEG data this is not strictly true. However, since (Dikker et al., 
2017) computed the TI for smaller epochs it can be considered 
approximately Gaussian stationary. However care should be taken to 
ensure that this assumption is true for the users data when using the TI. 
Since the method sums all the feedbacks between the two signals the 
output is therefore a symmetric measure, reflecting the linear relation-
ship of two variables. 

5.3.4. Imaginary part of coherence (ImC) 
The coherence (not the MSC) is a complex valued number, where the 

imaginary part represents the phase relationship between the input data. 
This method uses that imaginary part to determine IBC. The original 
method developed by Nolte et al. (2004) was based on the idea that 
volume conduction can cause the activity of a single anatomical location 
to be measured in multiple EEG channels. Volume conducted activity 
should have synchronous phase, which can be identified and used to 
only consider real EEG activity. The application of this method to the 
one EEG study that used it (Dikker et al., 2021) follows a similar ratio-
nale; the environment they acquired the data was heavily influenced by 
noise induced in the EEG system from the environment, which manifests 
as common signals with 0 phase difference and so the ImC is able to 
account for this and evaluate IBC from participants in the noisy envi-
ronment. The assumptions behind the computation depend again on the 
method of computing the frequency composition of the signal and the 
output reflects the symmetric linear relationship between two input 
variables. The method is suitable for any modality since the imaginary 
component can be acquired however its usefulness is generally focused 
around its application to EEG data since it suffers from volume con-
duction and electrical interference. 

5.3.5. Partial wavelet coherence (pWTC) 
The underlying metric inferring IBC of the pWTC is the same as the 

WTC however it includes the ability to control for an additional variable, 
analogous to the Partial Correlation. The original authors of the method 
(Mihanović et al. 2009) developed it to compute the impact of tidal flow 
on other geographical parameters, whilst disentangling confounding 
effects. This was then applied to fNIRS data by Zhou et al. (2021). They 
used it to control for the autocorrelated nature of fNIRS data which can 
lead to inflated coherence results if not dealt with adequately. In this 
case the authors included the auto-coherence of one participant, the 
contemporaneous coherence between participants and the time-lagged 
coherence of one participant to the other (Eq. S9). The assumptions 
behind the computation of the pWTC remain the same as for the WTC. In 
contrast to the WTC, the inclusion of the time-lagged coherence means 
that there is an asymmetric nature to the output, and it can be used to 
assess some causal nature of the interaction, the authors compared its 
causal output to Granger causality, with the two providing comparable 
results. In addition, although the authors of this hyperscanning study 
used it control for the autocoherence of one participants data, it can 
feasibly be used to control for the coherence of some other datasets, for 
example the coherence between breathing rate and fNIRS of one 
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participant, to control for any systemic contamination associated with 
the fNIRS data. Although only used for fNIRS data, the method could be 
applied to EEG to control for volume conduction, or to fMRI controlling 
for specific anatomical locations which may be dependent on another 
location. 

5.3.6. Mutual coherence (MC) 
The MC was developed by Goelman and Dan (2017) fMRI by 

adapting the WTC to detect directional functional connectivity between 
brain regions by quantitatively evaluating the phase delays between 
brain regions (Eqs. S10–S13c). As such it computes the common strength 
of specific frequencies, as standard with the WTC but also incorporates 
the phase relation between inputs to provide a directional, hierarchical 
evaluation of the inputs. The rationale of the original method as stated 
by the authors is that the non linearity of the method allows multiple 
nodes to be considered when looking for functional connectivity be-
tween multiple regions, and the phase relationship between each region 
allows directed functional connectivity to be assessed. The extension of 
this rationale to hyperscanning is to assess directed inter-brain func-
tional connectivity, to determine which seed-region in one participant 
influences regions in the other (Goelman et al., 2019). This method re-
flects the asymmetric, non-linear relationship between multiple vari-
ables. The authors of the method state that it is suitable to be applied to 
wide range of modalities (and fields of study), however there is a benefit 
in using it with modalities with higher spatial resolution (such as fMRI as 
it was developed for) since it provides interesting information about the 
networks of social function and the directions of operation. 

5.4. Phase synchrony 

Phase synchrony methods base IBC on whether a phase relation ex-
ists between input data. All of the studies using this category of methods 
used EEG (Ahn et al. (2018) used EEG and MEG) as the imaging mo-
dality. The high temporal resolution of EEG allows the phase dynamics 
of the signal to be better interrogated since more datapoints are acquired 
from the recording location which can be used to determine the phase. 7 
methods were found for this category: Phase Locking Value, Interbrain 
Phase Coherence, Integrative Coupling Index, Phase Synchronization 
Index, Circular Correlation Coefficient, Bispectral Analysis and 
Weighted Phase Lag Index. 

5.4.1. Phase locking value (PLV) 
The most common method within this category is the PLV, used by 

20 studies. The PLV was developed by Lachaux et al. (1999) to evaluate 
functional connectivity between EEG channels and measures the inter-
trial variability of the phase difference between two signals (Eq. S14). If 
two signals are consistently phase locked throughout the experiment, 
they will exhibit a high PLV value. The rationale of the method is that 
phase locking must occur between interacting regions for the signal to 
reach the scalp, if the phases where distributed broadly they would 
annihilate and be undetectable. They also provide reasoning to use the 
PLV compared to the coherence: (1) coherence requires stationary data 
(2) coherence does not consider phase relation and phase vs amplitude 
relation is unclear. Although the first point does not hold much rele-
vance when using the wavelet transform to obtain phase, the second 
point is still true, and applies also the its use with hyperscanning. 
Conceptually, if a researcher is using coherence to investigate IBC, and 
they find high coherence and thus conclude increasing IBC and then 
repeat the study with the PLV as their metric of IBC, but find low PLV, 
combining the two interpretations is challenging. Lachaux et al. (1999) 
argue that the PLV is enough to determine interaction and that there is 
no clear interpretation for changes in coherence beyond obvious inter-
dependency. When computing the PLV the main assumptions are that 
the instantaneous phase values are obtainable (with the method of 
obtaining them (either wavelet or Hilbert transform) carrying its own 
assumptions) and the phase values reflect the underlying dynamics 

adequately. The method can only display the linear symmetric rela-
tionship between inputs and is only suited to bivariate data. The 
application of the PLV to hyperscanning has only been carried out with 
EEG data. EEG data is suited to its use due to its high temporal resolution 
which is able to reflect the underlying neural oscillations well. 

5.4.2. Interbrain phase coherence (IPC) 
The IPC was used by Lindenberger et al. (2009), Sänger et al. (2012), 

Szymanski et al. (2017), Müller and Lindenberger (2022). The method 
bares a very close resemblance to the PLV, and the formula is in effect 
the same. In some cases the method is also called the Phase Locking 
Index (PLI). The key distinction is that the PLV computes the phase 
difference for each time point in a trial and averages all the phase dif-
ferences within a trial. In comparison the IPC computes the phase dif-
ference based on a whole trial. Burgess (2013) discuss the differences 
between the two in more detail. The assumptions, rationale and suit-
ability of the method are the same as the PLV. 

5.4.3. Integrative coupling index (ICI) 
The IPC/PLI was additionally used by Müller et al. (2013, 2018), 

Sänger et al. (2013), Müller and Lindenberger (2019) to compute the 
ICI. Phase stability values are first obtained using the IPC (or as the 
authors now call it, the Phase Synchronization Index). The number of 
phase locked points are counted between specific bounds (positively or 
negatively coupled points and the sum of the two, Eq. S15a-S16)). The 
method is adapted from the global lability of synchronization method 
from Kitzbichler et al. (2009). They propose that the method is able to 
provide a global metric of the extent of synchronization in a system, 
which allows the user to ascertain how long phase differences remain 
stable within defined phase difference boundaries. Extending this to 
hyperscanning and two neural signals, the authors of the method state 
that this is a directed measure of phase synchrony, indicating the rela-
tive extent of positive phase synchronization and can provide phase 
synchronization with more specificity. As the main determination of IBC 
is still really the PLI/PSI/IPC the mathematical assumptions and suit-
ability around the IPC are the same as those methods. 

5.4.4. Phase synchronization index 
Kawasaki et al. (2018), Shiraishi and Shimada (2021) used the Phase 

Synchronization Index (PSI) method, which is different to the PSI/-
PLI/IPC method used for the computation of the ICI. The origin of the 
method is unclear, and the authors do not state any rationale to using 
this over other methods evaluating phase synchrony. The method 
measures the phase invariance in a specific time window between two 
channels, (Eq. S17). 

5.4.5. Circular correlation coefficient (CCor) 
Computing the PCC of circular data (such as phase data) is not 

mathematically correct because the data wraps around and leads to 
uninterpretable results. The CCor method was developed to account for 
this, and its output is based on the circular covariance of differences 
between the observed and mean phase (Eq. S18) (Jammalamadaka, 
Sengupta and SenGupta, 1999; Burgess, 2013). The rationale for 
hyperscanning follows the same reasoning; computing the correlation of 
phase values requires the use of circular statistics and this was used by 
Goldstein et al. (2018), Pérez et al. (2019), Zhou et al. (2021), Key et al. 
(2022), Zivan et al. (2022). How correlated phase values are follows the 
same essence of phase locking/invariance. To acquire meaningful results 
the method assumes that the data is circular and the circular distribution 
is uniform. Again, the suitability of the method really depends on the 
ability of the modality to obtain meaningful and accurate phase values 
for the underlying neural dynamics. 

5.4.6. Bispectral analysis 
The Bispectral Analysis developed by Barnett et al. (1971) measures 

the non-linear phase coupling between frequency components of an 
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individual EEG signal (Eq. S19). The rationale of the method is that 
typical spectra analysis, such as the FT, only investigates whether fre-
quencies exist in a signal, providing no information about how different 
frequencies may be coupled together. Computing the bispectrum can 
provide information about this. However, the adaptation of this method 
to hyperscanning is less clear. Since the original formulation is to 
investigate different frequency components within a signal, modifica-
tions must be made to it to extend it to between signals. How (Cha and 
Lee, 2019) did this is not stated. Additionally, the interpretation of any 
output from this method would be difficult to parse since it would 
investigate how different frequency components of one signal are 
coupled to different frequency components of the other, outputting a 
rather large amount of data. Due to the lack of clarity about how the 
original method was adapted to or applied to hyperscanning data the 
assumptions and suitability of the method are difficult to ascertain. 

5.4.7. Weighted phase lag index (wPLGI) 
The Phase Lag refers to the asymmetry of the distribution of phase 

differences of input data; essentially how much lag is there between 
data. The rationale differs to the previous phase synchrony methods, the 
original authors (Stam et al., 2007) (Eq.S20) specify that there is diffi-
culty in assessing connectivity between electrodes because volume 
conduction causes phase to couple around 0◦ at the souce level, which is 
likely to not be true phase synchrony. As such, the presence of consistent 
non-zero phase lags between time-series is not likely to be volume 
conduction. The method they propose can determine in which direction 
the lag lays, providing a means of directional evaluation. This was 
further extended by Vinck et al. (2011) who claimed that small pertur-
bations about 0◦ can alter the lead/lag relationship between time-series 
and introducing a weighting factor defined by the magnitude of the 
imaginary component of the coherence between the time-series can 
account for this (Eq. S21). Although hyperscanning doesn’t suffer from 
the effects of volume conduction between time-series because they 
originate from different scalps, the effect can still be apparent if trying to 
determine spatial localization between participants. If two channels on 
each participant are effected by volume conduction it will be difficult to 
differentiate between IBC of those channels on both participants. 
However, how this method deals with the issue of volume conduction 
between participants is unclear since they originate from different 
sources and so it is unlikely they will have consistent zero phase lags 
anyway. The assumptions of this method again depend on which method 
is used to determine phase, however it does require the instantaneous 
phase of each signal and so the wavelet or Hilbert transforms are 
required. 

5.5. Causality 

Ten studies used some form of Causal analysis to investigate IBC. All 
of the studies here used EEG aside from Ono et al. (2021) who used 
fNIRS. All of the methods in this category, except the Phase Slope Index 
(PSI), are based on the concept of Granger Causality (GC) (Granger, 
1969). The concept of GC can be summarized based on two premises: (1) 
A cause occurs before its effect and (2) Knowledge of the cause improves 
the prediction of its effect. Three methods claim to assess causal re-
lationships: Granger Causality (and its conditional form), Partial 
Directed Coherence and Phase Slope Index. 

5.5.1. Granger causality and conditional granger causality 
Granger causality is perhaps the most widely known form of infer-

ring some sense of causality, which it bases on the ratio of the variance of 
the residuals (error) of two autoregressive models; one including the 
past of another signal. The rationale from Granger (1969) is, a signal, x, 
is said to Granger Cause a signal, y, if the past of x improves the pre-
diction of y, compared to using the past of y on its own. The extension of 
this rationale to hyperscanning is simple, if the information from one 
participants past (when they acted for example) can be used to better 

predict the future of the other participant then there is some interaction 
between them, which is normally denoted as ‘Granger-causal relation-
ship’, this was the form used by Ono et al. (2021) (Eqs. S22a–S23). This 
can be extended further to include other vaariables, in a multivariate (or 
conditional) Granger causality (used by Sciaraffa et al. (2021). The 
conditional form allows cases where x and y are both dependent on a 
third signal, z, then some similarity between x and y will exist which 
may be mistaken as causality by including z in the autoreggresive 
models (Eq. S24a and b). The use of GC analysis requires the data to not 
be autocorrelated and the lag which is used should adequately encom-
pass the underlying dynamics being investigated. Since the method is 
causal it is necessarily asymmetric, and can represent the linear rela-
tionship between input data. The conditional form is multivariate, 
whilst the standard is bivariate. The suitability of the method to fNIRS 
and fMRI has seen some debate because of the thought that (1) the HRF 
varies between locations and (2) the delay between the neuronal activity 
and the HRF response. The first point has been theoretically and with 
simulations been disproven for fMRI data (although since fMRI and 
fNIRS interrogate the HRF the reasoning should still apply to fNIRS) 
(Seth et al., 2013). The second point is an issue since the GC incorporates 
a time-lag, if this is not chosen correctly, it may infact be including some 
other non-relevant information from the past of one participant when 
assessing causality, such that the perceived neural function is either not 
included, or included with other contaminants (Friston, 2009; Friston 
et al., 2013). As such the method is well suited to M/EEG data because of 
its high temporal resolution which reflects direct neuronal activity (Seth 
et al., 2015). The method has only been applied to fNIRS and EEG data in 
the hyperscanning literature, likely due to the benefit of high sampling 
rate from both. However its application to fNIRS should not overlook the 
fact that the HRF is still not a direct measure of neuronal activity and is 
subject to the same criticisms as fMRI. 

5.5.2. Partial directed coherence (PDC) 
The concept of Granger causality was extended to the frequency 

domain by Baccalá and Sameshima (2001) with the PDC. This follows 
the same logic as the GC, however it uses the frequency domain repre-
sentation of the multi-variate auto-regressive model coefficients to 
determine the causality between data (Eqs. S25–27). The rationale for 
the method was to provide additional causal analysis in the frequency 
domain, with multi-channel data. The multi-channel aspect provides a 
powerful means to evaluate directed networks (Baccalá and Sameshima 
(2001) developed it for within brains). The benefit of applying this to HS 
are clear, the method essentially combines the benefit of frequency 
domain analysis, with asymmetric information, with multi-channel 
data. This can then be used to examine how the entire channel set of 
one participant interacts with the entire channel set of the other. The 
assumptions for the input data are that it is free from any confounds 
which will contaminate frequencies and that the model order is able to 
accurately capture underlying dynamics. The method has only been 
evaluated using EEG hyperscanning data, since it heavily requires high 
temporal resolution (due to the frequency domain representation and 
the model order requirement) it is likely beneficial to be used with EEG 
data, although (Burgess, 2013) suggests that the PDC is susceptible to 
spurious couplings. Some work has been carried out using the PDC for 
fMRI (Sato et al., 2009) but not with hyperscanning data. The multi-
variate nature of the method coupled with fMRI high spatial resolution 
may provide a powerful means of evaluating inter-brain networks, 
however care should be taken due to the slow temporal resolution of 
acquisition and slowness of the HRF. 

5.5.3. Phase slope index 
The Phase Slope Index, introduced by Nolte et al. (2008) and applied 

to hyperscanning by Fenwick et al. (2019), monitors the change in phase 
difference over time, assuming that if there is a consistent change in the 
difference, one signal is likely leading the other (Eq. S28). The authors 
developed this method to account for (unspecified) confounding 
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background activity which significant spectral properties causing arti-
cial directional flow results between time series. The method further 
weights phases from different frequencies according to their statistical 
relevance. This was used by Fenwick et al. (2019) specifically to account 
for volume conduction, however the same reasoning about volume 
conduction as discussed in Section 5.4.7. The method is able to reflect 
non-linear and asymmetric relationships of the input data, for bivariate 
data. The suitability favours EEG as it requires a high temporal resolu-
tion to assess the phase differences, and the coherence in order to weight 
appropriately. 

6. Discussion 

A total of 27 different analysis methods (summarized in Table 7) 
were found in our review to compute the IBC in hyperscanning studies. 
Overall, it seems that the preference for a given analytic method de-
pends on the neuroimaging modality which in turn determines the 
properties of the signal. Specifically, fMRI hyperscanning studies fav-
oured correlation based methods, whilst EEG favoured phase synchrony, 
fNIRS favoured coherence and MEG studies were split between corre-
lation and coherence. The preferences are based on the temporal and 
spatial specifications of each modality. The preference with respect to 
the temporal resolution is dependent on a modalities temporal resolu-
tion relative to the underlying physiology. For example, the HRF is a 
slow response, however fNIRS acquires data faster than the HRF, hence 
it oversamples the underlying neuronal physiology and more accurately 
reflcting the underlying HRF. Whereas fMRI has a slower acquisition 

time, with a TR of 2.5 seconds in some cases, which is at the upper limit 
of reflecting the HRF, as such it may miss more transient information 
present in the signals. Therefore, since higher temporal resolution can 
more accurately represent frequency and phasic properties of acquired 
neuronal signals, modalities which do have a higher temporal resolution 
favour analytic methods requiring frequency/time-frequency trans-
formations. Causal methods in general may also favour higher temporal 
resolutions since they rely on using the past data points to make causal 
interpretations – if there are not enough points in the past the results 
may be less accurate. In comparison a higher spatial resolution favours 
regression methods since multiple brain areas can be included in the 
regression models. 

In order to improve the clarity of what hyperscanning studies 
investigate, and to place these results in the wider scientific context 
authors should specify their rationale for the use of their chosen analytic 
method to determine IBC. For example, the two most common methods, 
the WTC and the PLV, use the power of common frequencies and phase- 
invariance respectively. However, two signals can have a high common 
frequency, whilst not phase-locked, and vice versa. The interpretation of 
the interplay between different metrics and whether they show, or do 
not show, IBC is unclear. Focusing on methods utilising phase re-
lationships specifically, different measures have different and (some-
times contrasting) views of what should be perceived as ‘real’ phase 
synchrony, for example the Phase Lag Index requires asymmetrical 
phase coupling to perceive IBC, whilst the PLV requires consistent phase 
coupling and the Phase Slope requires consistent changes to the phase 
difference over time. Interpreting the underlying neuroscience of these 

Table 7 
Summary of methods included in this review.  

Metric Domain Property inferring interbrain coupling Bi/Multi 
Variate 

Symmetry Linearity N papers 
* 

Pearson Correlation Time Covariance of time-series Bivariate Symmetric Linear 18 
Cross-Correlation Time Covariance of time-series Bivariate Asymmetric Linear 8 
Partial Correlation Time Covariance of time-series Multivariate Symmetric Linear 12 
Spearmans Rank Correlation Time Sum of squared differences Bivariate Symmetric Linear/Non- 

Linear 
4 

Beta Series Correlation Time Covariance of regression coefficients Bivariate NA NA 2 
Dynamic Time Warping** Time Distance between points of input data Bivariate Symmetric Linear 1 
Amplitude Envelope 

Correlation 
Time Covariance of amplitude envelope of input signals Bivariate Symmetric Linear 1 

Fourier MSC Frequency Common strength of specific frequency Bivariate Symmetric Linear 7 
Wavelet MSC (WTC) Time- 

Frequency 
Common strength of specific frequency at specific 
time 

Bivariate Symmetric Linear 91 

Total Interdependence Frequency Mutual information between inputs Bivariate Symmetric Linear 3 
Imaginary Part of Coherence Frequency Phase relationship between inputs at specific 

frequency 
Bivariate Symmetric Linear 1 

Partial Wavelet Coherence Time- 
Frequency 

Common strength of specific frequency at specific 
time 

Multivariate Asymmetric Linear 1 

Mutual Coherence Time- 
Frequency 

Continuous regional pathways formed from phase 
differences 

Multivariate Asymmetric Non-Linear 1 

Phase Locking Value Frequency Phase Invariance Bivariate Symmetric Linear 20 
Interbrain Phase Coherence Frequency Phase Invariance Bivariate Symmetric Linear 4 
Integrative Coupling Index Time- 

Frequency 
Phase Invariance Bivariate Asymmetric Linear 4 

Phase Synchronization Index Time- 
Frequency 

Phase Invariance Bivariate Symmetric Linear 3 

Circular Correlation Either Covariance of phase variance Bivariate Symmetric Linear 6 
Weighted Phase Lag Index Either Asymmetry of distribution of phase differences Bivariate Asymmetric (if 

signed) 
Linear 1 

Granger Causality Time Variance of residuals Bivariate Asymmetric Linear 1 
Multivariate Granger 

Causality 
Time Variance of residuals Multivariate Asymmetric Linear 1 

Phase Slope Index Frequency Change in phase difference and coherence Bivariate Asymmetric Non-Linear 1 
Partial Directed Coherence  Either Regression coefficients Multivariate Asymmetric Linear 7 

GLM Classification Time Distance between mean regression coefficients Multivariate Symmetric Linear 1 
Cross Brain GLM Time Regression coefficients Multivariate Asymmetric Linear 6 
PPI Time Regression Coefficients Multivariate Asymmetric Linear 1 
Bispectral Analysis Frequency Phase Invariance Bivariate Asymmetric Non-Linear 1  

* The total number of studies in the table is 187 since 5 studies used an unspecified ‘correlation’ and are not included. 
** DTW can be non-linear and asymmetric depending on the step pattern used 
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metrics in the wider scientific context is challenging because they 
represent quite distinct things. This is even more compounded by using 
varying names for what is in essence the same method (see Section 
5.4.3). Further to this, complexity in gauging IBC stems from the origin 
of methods being developed to account for problems surrounding single 
brain analysis. For example, many of the methods in Phase Synchrony 
are developed to deal with volume conduction occurring in one partic-
ipant. The reason to use one of these methods over another is not clear, 
because volume conduction is not an issue when analysing the interac-
tion between two channels from different sources. A more concerted 
effort by authors to specifically state the rationale of their chosen ana-
lytic method in assessing the underlying IBC would go far to aid in un-
derstanding why different methods are used, and what they represent in 
the context of the study at hand. 

The majority of methods discovered in this review have their origin 
in single brain functional connectivity, where connectivity between re-
gions is more intuitive to understand. This leads to a more fundamental 
issue in interpreting IBC results because these methods overlook the 
question of how the gap between the two-brains is bridged. A pure in-
crease in IBC does not tell us much about the interaction itself, aside 
from the fact that there is an interaction (which is often inherent in the 
task). To gain a stronger cognitive interpretation of IBC data, it may be 
important to include accurate measures of participants behaviour during 
a hyperscanning task, because it is the coordination of behaviour which 
drives the hyperscanning effects (Hamilton, 2021). This means it is 
important to include multi-modal data in the experimental analysis 
(such as eye-tracking or motion capture). This requires the development 
of multivariate methods to facilitate analysis of these complex, inter-
acting datasets; few studies have achieved this. A recent development 
from Guglielmini et al. (2022), (Guglielmini et al., 2022) incorporated 
multiple physiological recordings to evaluate how changes in behaviour 
(eye-contact), manifested in systemics (heart and breathing rates, elec-
trodermal activity and blood pressure) and in the neural fNIRS data. 
They used WTC to determine coupling between: brain-brain, body-body 
and brain-body. This provides an intuitive link between changes in 
behaviour inducing changes in systemic physiology, inducing changes in 
the brain. Additionally the study from Cañigueral et al. (2021), incor-
porated eye-gaze and facial movements along with neural activity into a 
GLM to evaluate how partner behaviour is used to effect participants 
neural data. 

With these thoughts in mind the ability of a neuroimaging modality 
to integrate multimodal information becomes an important consider-
ation. The implementation of extra measuring equipment allows us to 
delineate if, and how, inter-brain coupling ties into reciprocal (and non- 
reciprocal) behaviour during an interaction, and the effect this has on a 
person’s physiology, aiding in meaningful interpretations from the data. 
In this respect fNIRS and EEG are more suitable than the magnetic 
modalities since they do not require equipment which is MR safe, and 
similarly fNIRS is preferrable to EEG since it is robust against any 
electrical interference originating from the surroundings, (for example 
as discussed by Dikker et al. (2021)). This is an important perspective to 
consider when conducting more complex hyperscanning experiments. 

Because wavelet coherence for fNIRS is by far the most commonly 
used method and modality for hyperscanning research, we consider the 
issues for this approach in a little more detail. When using any 
frequency/time-frequency based analysis, the choice of the frequency 
(or range of frequencies) to analyse is a crucial parameter to choose. 
With direct measures of neuronal activity, this choice has a direct 
implication, since different frequency bands (e.g. alpha, gamma) have 
specific theorized brain functions. However, with indirect measures 
such as fNIRS and fMRI the role frequencies play in the recorded signal is 
less clear. One possibility is that the frequencies in the signal are driven 
by the dynamics of the task that the participants are engaged in – par-
ticipants in a rapid button pressing task might show different signal 
frequency compared to participants in a slow-moving trust-building 
conversation. In addition, it is known that each fNIRS signal is a 

combination of different physiological components, each with their own 
function (Tachtsidis and Scholkmann, 2016), however how these relate 
to the recorded brain function is unclear. The selection of frequency 
band used by studies using wavelet coherence is done in varying ways, 
including visual inspection (Li et al., 2020; Yuan et al., 2022), using the 
task-frequency (Osaka et al., 2015; Baker et al., 2016; Park, Shin and 
Jeong, 2022) or previous studies (Reindl et al., 2018). Other studies 
compute significance between real and permuted dyads for all fre-
quencies and select frequencies showing significantly high coherence 
values (Zhao, Zhu and Hu, 2021; Zhu et al., 2022; Pan, Cheng and Hu, 
2022; Sabino Guglielmini et al., 2022). However in other cases (Liu 
et al., 2019; Zhao et al., 2022) experimenters conduct paired t-tests 
between task and rest periods for all frequencies and base their analysis 
on frequencies with a significant difference between the task and rest. 
The use of methods such as visual inspection or significance testing 
between task and rest do not provide mechanistic justifications for the 
choice of frequency selection, rather differences are found first and 
analysis conducted after. This has substantial risk of double-dipping 
(Kriegeskorte et al., 2009) and should be avoided. Selection of fre-
quency bands from an independent source or pre-registration of analysis 
of specific bands could be useful for future hyperscanning studies. 
Studies using frequency analyses as their method should provide a 
mechanistic justification for which frequency band they use in order to 
provide context for their analysis and to aid in future studies. 

The issues regarding the application of hyperscanning to fNIRS speak 
to a wider issue of a lack of a consistent fNIRS hyperscanning pipeline. 
This issue has begun to be broached within EEG hyperscanning, with 
developments of a hyperscanning toolbox (Ayrolles et al., 2021) for all 
analytic methods, aswell as the proposition of a pipeline for develop-
mental EEG hyperscanning using the PLV (Kayhan et al., 2022). Within 
fNIRS this has been addressed recently by Nguyen et al. (2021) with 
respect to parent-child hyperscanning using wavelet coherence. Addi-
tionally work from Zhang et al. (2020) suggests best mathematical 
practice when using the wavelet coherence to assess IBC. Importantly 
the pipelines from Nguyen et al. (2021), Kayhan et al. (2022) both 
provide pipelines for specific IBC methods; and a general pipeline 
including selecting the IBC metric which is best suited to specific 
questions is still lacking. The toolbox from Ayrolles et al. (2021) begins 
addressing that by providing an easy to use computational toolbox 
where users can explore different methods and their application to 
different thereotical forms of coupling. 

7. Conclusion and future perspectives 

In this review we have provided a comprehensive summary of the 
current methods used to compute metrics of IBC across different mo-
dalities and explained the underlying rationales, formulation and as-
sumptions of each. We have identified wide variability in which analytic 
methods are used to evaluate IBC. This variability is dependent on the 
technical properties of the modality used, however variation also exists 
between studies using the same neuroimaging modality. In part this 
variation is due to the lack of clear agreement on what IBC reflects and 
as such there is no consensus on which method should be used to 
identify the mechanisms relating to it. Because of this variation, it is 
important that moving forward discussions take place with respect to 
the mechanistic basis for IBC, and how analytic methods can be used to 
reflect this in order to aid reproducibility and to place hyperscanning 
research in the wider scientific context. 

As neuroimaging equipment becomes more portable, accessible and 
wearable there is an increased application towards naturalistic, out-of- 
the-lab hyperscanning experiments. This brings with it benefits in 
increased real-world validity, but also challenges in analysing data from 
less-controlled experiments. Experimentally, this requires methodolo-
gies to be expanded to incorporate data acquisition from multiple 
sources to adequately describe the scenario being investigated. From an 
analytic perspective, methods developed and applied to lab settings may 
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not be applicable to real-world situations. Therefore, this will require 
the development of advanced analytic techniques to evaluate IBC in the 
context of the experiment being conducted, and with the inclusion of 
multi-modal data. 
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