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I 

Abstract 

This thesis explored the relationship between electrical and metabolic aspects of 

brain functioning in health and disease, measured with QEEG and NIRS, in order to 

evaluate its clinical potential. First the limitations of NIRS were investigated, 

depicting its susceptibility to different types of motion artefacts and the inability 

of the CBSI-method to remove them from resting state data. Furthermore, the 

quality of the NIRS signals was poor in a significant portion of the investigated 

sample, reducing clinical potential. 

Different analysis methods were used to explore both EEG and NIRS, and their 

coupling in an eyes open eyes closed paradigm in healthy participants. It could be 

reproduced that during eyes closed blocks less HbO2 (p = 0.000), more Hbb (p = 

0.008), and more alpha activity (p = 0.000) was present compared to eyes open 

blocks. Furthermore, dynamic cross correlation analysis reproduced a positive 

correlation between alpha and Hbb (r: 0.457 and 0.337) and a negative correlation 

between alpha and HbO2 (r: -0.380 and -0.366) with a delayed hemodynamic 

response (7 to 8s). This was only possible when removing all questionable and 

physiological illogical data, suggesting that an 8s hemodynamic delay might not be 

the golden standard. Also the inability of the cross correlation to take non-linear 

relationships into account may distort outcomes.  

Therefore, In chapter 5 non-linear aspects of the relationship were evaluated by 

introducing the measure of relative cross mutual information. A newly suggested 

approach and the most valuable contribution of the thesis since it broadens 

knowledge in the fields of EEG, NIRS and general time series analysis.  

Data of two stroke patients then showed differences from the healthy group 

between the coupling of EEG and NIRS. The differences in long range temporal 

correlations (p= 0.000 for both cases), entropy (p< 0.040 and p =0.000), and 

relative cross mutual information (p < 0.003 and p < 0.013) provide the proof of 

principle that these measures may have clinical utility. Even though more research 

is necessary before widespread clinical use becomes possible. 
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Chapter 1: Introduction 

 

In the introduction of this thesis the framework is laid out of the principles that will 

be used to investigate the relationship between brain activity on a 

electrophysiological level and its vascular metabolic aspects. Hereto a short 

introduction is given to the fields of (quantitative) EEG, near-infrared 

spectroscopy, and their combined use. An understanding of the basics of these 

fields is necessary in the upcoming chapters in which cortical oxygenation 

modulation, the modulation of electrical oscillations and  how they influence each 

other will be explored. At first this is done in a sample of healthy volunteers. After 

that the results obtained in the healthy sample will be compared to results of two 

stroke patients. As stroke is caused by a disruption of the blood flow, changes in 

brain activity as well as changes in the influence of the electrical activity upon 

oxygenation parameters and vice versa are expected. 

 

1.1 Introduction and rationale 

It has been established that worldwide, over one third of all people will meet the 

criteria for a psychopathology once in their lifetime (Organization, 2000). The 

largest share of psychopathologies are accounted for by anxiety disorders 

followed by mood disorders (Demyttenaere et al., 2013). However, 4 out of 5 

people suffering from psychopathologies are not provided with the appropriate 

healthcare  (Demyttenaere et al., 2013). 

 

The advances in neuroscience over the last few decades have pointed towards the 

finding that psychopathologies are often accompanied by changes in brain 

function (e.g (Miguel-Hidalgo, 2013, Whitfield-Gabrieli and Ford, 2012)). Different 

disorders represent themselves as different patterns of brain activity and 

biomarkers based on brain activity are currently being researched for a variety of 

psychopathologies (Domínguez et al., 2013, Tregellas et al., 2014, Yener and 

Başar, 2012). However, despite the increased knowledge on the relationship 

between changes in brain function and mental disorders the use of measures of 

brain activity in general healthcare is still very limited. 
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Measurements of brain are usually only performed in case of evident brain 

trauma for example in head injury or stroke (Fazekas et al., 2009). Although 

measurements of brain activity that are well performed, together with 

behavioural measurements will create better insight into the mechanisms 

underpinning neuropsychological diseases (Buckholtz and Meyer-Lindenberg, 

2012, Kloppel et al., 2012, Coburn et al., 2006), and make it easier for a clinician to 

unravel and categorize the problems that need to be addressed. The right use of 

brain measurements can not only aid in the diagnoses of a variety of 

neuropsychological disorders, it can also be used to design more targeted and 

effective forms of therapy (Howland et al., 2011). These therapies could alter 

brain activity in order to treat complaints on the behavioural level at the source 

and would therefore offer more long-lasting solutions than interventions that only 

target the behavioural level (Bersani et al., 2013, Egner et al., 2004, Howland et 

al., 2011). Furthermore, the periodic use of brain measurements could shed light 

on the progress a patient is making and therefore provide guidelines for when to 

change interventions. 

 

In order for these advances in neuroscience to become available to the broad 

public, brain measurements should be implemented in early lines of health care. 

For instance in the general practitioner’s (GP) office and with psychologists. In 

doing so, it is of extreme importance that measurement methods are used which 

are easily implemented in everyday clinical use and are relatively low-cost. 

Furthermore, measurement paradigms should be used that are easily 

implemented with all patients and data processing and analysis should be 

automated to ensure fast and reliable outcomes.  

 

In this chapter two methods will be introduced that could offer such a clinical 

advantage. The first one, electroencephalography is able to measure brain activity 

on an electrophysiological level (Teplan, 2002) and the second, near infrared 

spectroscopy provides information on a vascular metabolic level (Obrig and 

Villringer, 2003). Both measurements separately are able to give information on 

brain functioning. However, multimodal use of the two could reveal the 

symbioses between neural and metabolic aspects of brain functioning which 

might increase the ability of differentiating between different disorders. 

Furthermore it could provide great insight into brain functioning in general. 
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Therefore the goal of this thesis is to explore the relationship between electrical 

and metabolic aspects of brain functioning in order to reveal its exiting 

opportunities in understanding brain functioning in health and disease. Before 

this link can be made, a basic understanding of these methods and their 

limitations as well as an introduction to the limited amount of multimodal studies 

that have been carried out so far is essential.  

 

1.2 Measuring brain activity  

In order to disentangle the relationship between brain and behaviour an initial 

exploration of current ways of measuring brain activity is required. And even 

though it is not the scope of this thesis to give a detailed explanation of brain 

anatomy, it is important to know what is being measured. The brain is considered 

to be the conductor of the body’s orchestra and the behaviour it performs. 

Scientific research has linked different brain areas to different behaviours and 

tasks and it is mainly the neocortex, the outer shell of the brain that has evolved 

last in the evolution of man, that holds the code to behaviour (Rakic, 2009). For 

example the occipital cortex processes visual information and the central cortex is 

responsible for movement and bodily sensation (Bear et al., 2007). The neocortex 

is made up out of billions of neurons, arranged in layers and columns that hold 

the neural code (Rakic, 2009). Whereas previously it was thought that the brain 

operated in a fashion in which areas were isolated to a specific task, more recent 

research indicates that behaviour is an interplay of different neural networks that 

are active during information processing of specific tasks but these networks also 

display activity during rest (Raichle et al., 2001, Beckmann et al., 2005, Buckner, 

2012). To date different methods of measuring brain activity have contributed to 

our understanding of human behaviour but also to the neurobiological substrates 

of many brain disorders (Irani et al., 2007). All methods have different advantages 

and limitations. In general, two groups can be distinguished, direct and indirect 

measurements (Bear et al., 2007).  

 

1.2.1 Direct measurements 
Direct measurements measure directly the summation of neural function, for 

example magnetic encephalography (MEG) (Hari and Salmelin, 2012), electro 

encephalography (EEG) (Teplan, 2002) and event related potentials (ERP) (Tzovara 

et al., 2012). These methods measure the electromagnetic activity of the brain in 
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milliseconds with a high temporal resolution. However, due to the spatial 

smearing caused by the skull and the difficulty of localizing activated sources 

because of multiple dipole fitting solutions the spatial resolution of these 

methods is limited (Bear et al., 2007, Irani et al., 2007). 

 

1.2.2 Indirect measurements  

Indirect brain imaging methods measure the hemodynamic and metabolic 

changes associated with the neuronal activity. Examples of indirect 

measurements are positron emission tomography (PET) (Portnow et al., 2013), 

single photon emission computed tomography (SPECT) (Warwick, 2004),  

functional magnetic resonance imaging (fMRI) (Chen and Li, 2012) and near 

infrared spectroscopy (NIRS) (Obrig and Villringer, 2003). In general indirect 

measures have a high spatial resolution but limited temporal resolution. Further 

limitations of indirect measures are that the measurements are associated with 

neuronal activity through a poorly understood neurovascular coupling function 

(Bear et al., 2007, Irani et al., 2007). Furthermore, PET and SPECT cannot perform 

continuous or repeated measures because of the radioactive isotopes that are 

necessary to perform the measurements. The use of radioactive isotopes also 

limits the use of PET and SPECT in children (Irani et al., 2007).  

 

1.2.3 Multimodal imaging  

Simultaneous use of methods from both direct and indirect measurements would 

help to obtain a clearer picture of brain functioning since in one measurement 

information from electrical aspects of brain functioning can be linked to metabolic 

aspects. In the literature this is referred to as multimodal imaging. In deciding 

what measurements are suitable for combined use several aspects have to be 

taken into account. For instance, technological aspects like the amount of noise 

that one measurement adds to the other and if it is possible to place the 

equipment of two devices on one subject without inducing too much discomfort. 

The combination of any direct measurement together with fMRI is challenging 

because no metals can be used around the fMRI scanner (Irani et al., 2007). 

Furthermore, in investigating neuropsychological disorders it is desirable to use 

modalities which can be easily implemented in the clinic and therefore need to be 

portable and low-cost. Measurements that could meet these needs are EEG and 

NIRS (Arenth et al., 2007, Irani et al., 2007). Both NIRS and EEG are non-invasive, 
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safe, portable and low cost methods which can be integrated with other 

technologies (Arenth et al., 2007, Irani et al., 2007). 

1.3 The principles of (Q)EEG 

EEG is the classical method of recording brain rhythms. The earliest work on EEG 

was performed by the English physiologist Richard Caton in 1875 when he made 

electrical recordings of canine and rabbit brains (Caton, 1875). The first human 

EEG was described by the Austrian psychiatrist Hans Berger in 1929. Between 

1929 and 1938 he published fourteen reports on human EEG and its relation to 

cognition and neurological disturbances (Berger, 1969 a-n). To date a multitude of 

available EEG devices exists. For several examples see figure 1.1. 

Figure 1.1 Examples of EEG devices and electrodes. A broad variety of EEG device exists 

ranging in size and number of possible measurement channels as depicted in the upper 

row of the figure. Also the way electrodes are configured on the head varies greatly. In the 

lower row depicted from left to right a high density 128 channel configuration, a s19 

channel cap, a rigid helmet like structure as well as the use of loose electrodes over areas 

of interest is shown. 
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1.3.1 Neuronal activity 

Billions of neurons make up the human cortex. All neurons have a membrane 

around them which has a resting potential because of the ions that are present 

within and outside the neuron. In its resting state more Na+ and Cl- ions are 

outside the neuron than inside and more K+ ions and negatively charged protein 

ions are inside the neuron than outside. This creates a steady resting potential of 

about -70 millivolts (mV) (Pinel, 2003). Neurons communicate with each other by 

firing. When firing occurs, neurotransmitters are released into the synaptic clefts 

and react with the receptors present on surrounding neurons. They can either 

depolarize the receptive membrane, in which the resting potential is decreased, 

or hyperpolarize it, in which the potential is increased. As the neurotransmitters 

cause the membrane of surrounding neurons to reach a potential of about -65 mV 

an action potential is generated. An action potential is a short shift in membrane 

potential from -70 mV to +50 mV which causes the neuron to fire an electrical 

signal along its dendrite, which causes the surrounding neurons to secrete 

neurotransmitters and fire as well or stop to fire (Pinel, 2003). Because of the 

cooperation of electrical spikes and the chemical neurotransmitters neural activity 

is an electrochemical process (Gazzaniga et al., 2002). There are a number of 

neurotransmitters, of which GABA and glutamate are part of fast reacting 

transmitting systems and acetylcholine, dopamine and, serotonin are examples of 

more slow reacting neurotransmitters (McCormick et al., 1993). The interplay 

between the different neurotransmitters determines the amplitude and the 

duration of the postsynaptic potentials as well as it regulates the spatial and 

temporal pattern of activation (McCormick et al., 1993). However, it is not the 

purpose of this thesis to establish the electrochemical interplay of neurons. 

Although, it is essential  to the knowledge of the registration of EEG that the 

summation of electrical changes within and outside large groups of neurons 

makes up the EEG recorded at the scalp (Buzsáki et al., 2012). 

1.3.2 EEG 

Originally it was thought that the changes in voltage that were measured with EEG 

originated from the currents that flow during synaptic excitations of the dendrites 

of many pyramidal neurons in the cerebral cortex (Teplan, 2002). A plausible 

explanation, considering the pyramidal neurons make up 80 % of the brain’s mass 

and  are perpendicular aligned to the pia mater, directly below the skull, where 
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the electric potential is passed on to the scalp where it can be measured (Bear et 

al., 2007, Kaiser, 2005). However, more recent EEG research in which also 

measurements directly from the cortex as well as from within the brain have been 

taken into account, has shown that electric currents from all excitable membranes 

contribute to the extracellular voltage that is picked up with EEG (Buzsáki et al., 

2012). The largest contribution is made by synaptic activity, but also action 

potentials, after potentials, fluctuations in glia, Ca2+ spikes, and intrinsic cellular 

changes in voltage contribute to the extracellular voltage. It depends on the 

spatial alignment of neurons and the temporal synchrony whether extracellular 

fields are picked up (Buzsáki et al., 2012). The influence of the activity of only one 

neuron  on the extracellular voltage is so faint that after passing through several 

layers of tissue including the meninges, spinal fluid, bones of the skull and skin, it 

cannot be detected by the electrodes anymore (Bear et al., 2007, Kaiser, 2005). In 

the cortex however, the dendrites of the neurons lie parallel to each other and 

the incoming input is perpendicularly aligned to the dendrites which creates the 

right prerequisites for the synchronous electrical activity to be superpositioned, 

leading to large electrical fields in the cortex (Buzsáki et al., 2012). 

Furthermore, the detection of the signal strongly depends on the synchronicity of 

the firing neurons. Synchrony is often brought about through network oscillation 

(Buzsáki et al., 2012). The more synchronized the neurons fire, the higher the 

amplitude of the waves in the EEG signal are and the more rhythmic the EEG 

signal appears (Bear et al., 2007). The  synchronous firing of different neural 

networks explains why different brain states are associated with very different 

patterns and magnitudes of extracellular voltages (Buzsáki et al., 2012). Negative 

and positive potentials cancel each other out so that we only detect the 

difference in valance (Kaiser, 2005). 

 In general EEG is only able to register cortical activity (Kaiser, 2005). And due to 

the spatial smearing of the electrical current by  brain tissue and the fluids, 

meninges, skull and skin surrounding the brain, also known as volume conduction, 

the activity picked up by an electrode never represents the activity directly under 

that electrode (Buzsáki et al., 2012). Although, in the beginning of the 90’s 

developments in signal analysis have made it possible to deduce from 

multichannel measurements where oscillations originate, which also allows the 
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targeting of deeper lying structures, and has resulted in the method called low 

resolution electrical tomography (LORETA) (Pascual-Marqui et al., 1994). LORETA 

uses the cortical registrations from all electrodes used during the measurement to 

generate a linear solution to the inverse problem which is plotted on a structural 

MRI brain image. The method was further developed over the next decade into 

standardized or sLORETA which claims to have zero localisation error (Pascual-

Marqui et al., 2002) and has been used quite often in psychological research to 

link behaviour to brain areas (Saletu et al., 2010, Broyd et al., 2011). However, a 

potential drawback of sLORETA and therefore a need of caution in its use is that 

the algorithm source localization is inconsistent with smaller waves and can 

therefore generate very misleading results (Kobayashi et al., 2005). Throughout 

this thesis LORETA will not be used as it is not the source localization of brain 

activity that is of interest here, rather the dynamic interplay between electrical 

and metabolic activity. 

For regular, cortical EEG measurements, at least two electrodes are needed 

because a change in voltage corresponding to the difference in potential between 

the recording and the reference electrode is measured (Gazzaniga et al., 2002). 

The electrodes are placed on the scalp with conductive paste to ensure a low 

resistance connection. Different regions of the brain can be assessed by choosing 

appropriate electrode sites (Bear et al., 2007). An international system for 

electrode placement is developed by Jasper (1958) which is called the 10-20 

system and makes it possible for researchers to know underlying brain areas 

(figure 1.2). The 10-20 system uses relative distances to ensure correct placement 

in all head sizes. 

Figure 1.2 The electrode positions of the 10-20 system as developed by Jasper. 
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1.3.3 From EEG to QEEG 

In classical EEG, as developed by Berger, the EEG signal is analyzed qualitatively. 

Qualitative analysis entails the characterizing of the EEG signal in a general way in 

which parts of the trace are divided into categories. This is still common in 

neurology and in sleep studies (Kaiser, 2005). This visual analysis of the ink written 

EEG by a qualified electroencephalographer remains the gold standard and is the 

first step in any quantitative EEG (QEEG) analysis (Coburn et al., 2006). In 

quantitative analysis mathematical and statistical analyses are performed on the 

EEG to quantify its features. These outcomes are more commonly used in 

psychological research. The EEG is evaluated in terms of period, amplitude, phase 

relations, morphology (waveform), topology, abundance, reactivity and variability 

of these parameters (Kaiser, 2005). The best known method to quantify the EEG is 

by means of a Fast Fourier Transform (Coburn et al., 2006).  

1.3.4 Fast Fourier Transform 

The quantitative analysis of EEG started in 1932 when the researcher Dietsch 

applied Fourier analysis to seven records of EEG (Dietsch, 1932). A Fast Fourier 

Transform (FFT) converts the time domain EEG record, in which voltage is plotted 

against time, into a frequency domain, in which magnitude or power is plotted 

against frequency (Coburn et al., 2006). The height or intensity of a waveform, its 

magnitude, is computed in micro Volts (µV) for each frequency. Frequency 

analysis, like FFT, involves the selection of elementary shapes or frequencies 

(waveforms) which are added together like weights on a scale until their total 

matches the patterns under investigation (see figure 1.3) (Kaiser, 2005). Since the 

1960’s the FFT has been used widely by researchers but it is only recently that the 

FFT is also employed by clinical EEG laboratories (Coburn et al., 2006). Because of 

its accuracy the FFT is the most used analysis technique in QEEG to date (Kaiser, 

2005). Unlike with other methods, formula’s for computing spectral analysis with 

FFT are rarely reported. However, the algorithms can be found in the original 

research article of Cooley and Tukey (1965). 
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Figure 1.3 Fast Fourier Transform decomposing principle. Decomposing two seconds of 

impure (multiple frequency) wave form that consists of the same three frequencies. The 

only difference between segments is the magnitude of the 2 and 11 Hz contributions 

(Kaiser, 2005). 

1.3.5 QEEG bands 

The separate frequencies obtained in the spectral analysis are accumulated into 

frequency bands to correspond to the visual rhythms that are categorized by their 

frequency range. The EEG is generally divided into five frequency bands which are 

named after a Greek letter: delta, theta, alpha, beta and gamma (Stern, 2001). 

Different waves and waveforms are analyzed by the accumulation of narrow or 

wider frequency bands (Kaiser, 2005).  

Delta activity oscillates between 0.5 and 4 Hz1. In healthy people delta activity is 

mostly seen during deep sleep, called slow wave sleep (Iber, 2007). When 

neuronal damage has occurred, often delta activity is displayed over the damaged 

area as seen in stroke (Finnigan et al., 2004) or with brain tumours (Selvam and 

Shenbagadevi, 2011). It is also known that delta activity is the predominant 

activity of babies in their first two years of life (Stern, 2001). Often delta waves are 

displayed in large amplitudes (Bear et al., 2007).  

1
 The different frequency ranges adopted in this paragraph are those reported in Stern 

(2001). In the EEG literature these ranges are not absolute and the exact boundaries vary 
slightly. 
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Activity between 4 and 8 Hz is called theta activity. It is related to hypnagogic 

imagery and REM sleep (Bodizs et al., 2008), problem solving (She et al., 2012), 

attention and then namely a drop of attention during mental fatigue (Wascher et 

al., 2013) and occurs during mind wandering (Braboszcz and Delorme, 2011). The 

fact that sometimes the increase in theta activity is seen during heightened 

cognitive demands (She et al., 2012) and other times during decreased attention 

and mind wandering (Wascher et al., 2013, Braboszcz and Delorme, 2011) leads 

researchers to believe that the very same frequency range can express two types 

of processes (Stern, 2001).  

Alpha waves are brain waves in the 8 to 12 Hz frequency and represent the idling 

state of the brain (Kaiser, 2005). This relates them to relaxation and the absence 

of cognitive processing (Stern, 2001). However, it has also proven to be related to 

active inhibition of other brain areas (Klimesch et al., 2007). Berger was the first 

one to describe the phenomenon “alpha blocking”, an abrupt suspension of alpha 

activity when an individual opens his or her eyes  (Berger, 1969). This blocking 

also occurs when people are asked to perform a cognitive assignment, or pay 

attention to objects in the environment (Stern, 2001, Kaiser, 2005). The alpha 

blocking phenomenon has been referred to in the literature as event related 

desynchronisation (ERD) (Pfurtscheller et al., 1994). Similarly the occurrence of 

alpha over the occipital cortex upon closing the eyes has been referred to as event 

related synchronisation (ERS) (Pfurtscheller, 1992).  

Brain waves in the 18-30 Hz frequency range are called beta waves. The waves are 

high in frequency and low in amplitude. Beta waves are visible in the EEG when a 

person is alert (Stern, 2001).  The beta waves often are subdivided into low beta-

wave activity or beta 1 activity, ranging from 12-20 Hz, and high beta-wave 

activity or beta 2, ranging from 20-32 Hz. It is believed that the beta1 activity 

could be the idling state of the motor control system (Engel and Fries, 2010). The 

reason for suggesting beta1 activity as idling rhythm for the motor system is the 

occurrence of this frequency during rest and its ERD when movement is initiated 

together with an increase when doing steady state contractions (Engel and Fries, 

2010). Beta activity is also found to increase generally when top down cognitive 

information processing is warranted and therefore thought to be related to the 
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focussing on a task which enables someone to ignore task irrelevant stimuli 

(Okazaki et al., 2008, Iversen et al., 2009).  

Gamma waves oscillate between 30 and 70 Hz and are related to the brain’s 

ability to put a variety of stimuli in a coherent whole (the so called binding 

problem (Rolls and Deco, 2006, Body and De Rosa, 2007, Colzato et al., 2007)) but 

there is a lot of uncertainty still regarding this frequency waves (Cotillon-Williams 

and Edeline, 2004, Palanca and DeAngelis, 2005, Rauschenberger and Yantis, 

2006). Fries (2009) argues that gamma synchronization is needed whenever 

cortical computation occurs. In line with that Merker (2013) suggests that no 

typical functional role should be dedicated to gamma activity, but that it should 

be regarded as a state of physiological activation.  A summary of the categorized 

brain waves is given in table 1.1.  

Brainwave Frequency range Function 

Delta 0,5 - 4 Hz Deep sleep, brain lesion, babies 

Theta 4 – 8 Hz REM sleep, problem solving, drop of 

attention, mind wandering 

Alpha 8 – 12 Hz Idling state, absence of cognition, active 

inhibition 

Beta 18 – 30 Hz Idling state motor system, top down cognitive 

processing, attention focus 

Gamma 30 – 70 Hz Binding problem, physiological activation 

Table 1.1 The different frequency bands with their range and function. 

1.3.6 Advantages and limitations 

The normal or healthy (Q)EEG profiles are well established and consistent among 

individuals. Furthermore, (Q)EEG test-retest stability is remarkably high, even over 

longer time periods (Gudmundsson et al., 2007, Salinsky et al., 1991, Kondacs and 

Szabo, 1999). Therefore (Q)EEG can also aid in detecting abnormalities, and assist 

a physician in making a diagnosis (Gazzaniga et al., 2002, Coburn et al., 2006). This 

makes it likely that QEEG will emerge as a mainstay of neurology, sleep medicine, 

as well as psychiatry and psychology (Kaiser, 2005). Additional advantages of 

QEEG are the direct quality of the measurement, the high temporal resolution in 
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the millisecond range which is comparable to cortical and thalamic cell firing 

rates, and the painless and non-invasive use (Kaiser, 2005, Coburn et al., 2006). 

Also, the method relatively inexpensive and portable, all advantageous for clinical 

use (Coburn et al., 2006).  

A disadvantage of (Q)EEG is that it needs to measure a tiny bodily signal that 

travels through different layers of tissue before it is picked up. This makes it 

necessary to ensure a good signal-to-noise ratio. Furthermore, one needs to be 

aware of the possible noise that is easily induced upon the signal. These features 

are well studied and documented (for an example see (Krauss et al., 2006)). Also, 

EEG has low spatial resolution due to the smearing of the signal caused by the 

skull. However, with the expanding number of electrodes available (up to 512) the 

spatial resolution has improved remarkably (Coburn et al., 2006). 

1.4 The principles of NIRS

The methodology of NIRS embarks upon the optical properties of brain tissue and 

is therefore an optical imaging method (Boas et al., 2004). It was first described by 

Jöbsis (1977) who used light in the near infrared range to monitor in vivo the 

redox behaviour of cytochrome c oxidase. This led to the finding that skin and 

bone is translucent to light in the near-infrared range and that it is possible to 

reach brain tissue noninvasively.  

The functional state of tissue can influence its optical properties. Other factors 

that influence tissue’s optical properties are changes in blood level as well as 

electrochemical activity (Irani et al., 2007). These changes in optical properties 

can then be used to measure physiological changes with near-infrared light 

(Jobsis, 1977). 

1.4.1 Neurovascular coupling 

In order to comprehend the principles of NIRS it is necessary to understand the 

principles of neurovascular coupling which are schematically represented in figure 

1.5 to some extent. Neuronal activity is fuelled by glucose metabolism and oxygen 

(Cauli and Hamel, 2010). For these sources to arrive at the neurons the cerebral 

blood stream is used (figure 1.4). The blood supply to the brain comes from two 
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pairs of cranial arteries that branch out at the base of the brain to form separate 

circles for the forebrain and the hindbrain, connected by the circle of Willis as 

safety net whenever blockage in one of the two circles occurs (Bear et al., 2007). 

The posterior and anterior circulation branch into smaller pial arteries and 

arterioles that branch out over the surface of the brain. These give rise to 

arterioles that reach the neurons and glial cells and subdivide into an extensive 

and distributed network of capillaries that provide the neural system with oxygen 

and glucose (Ward, 2013).  

 

 

Figure 1.4 The cerebral vascular network. The lower panel shows the major arteries that 

are responsible for the blood supply to the brain. The upper panel shows a model of all 

cerebral arteries, demonstrating its density. 

 

This cerebral vascular network uses control mechanisms to match the cerebral 

blood flow (CBF) with the local energy demands. In short, regulatory processes 

arise through the interactions between neurons, glia, and vascular cells (Ward, 

2013). When neuronal activity increases, the glucose and oxygen consumption 
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from the local capillary bed increases as well. Because of the increased 

consumption, the amount of glucose and oxygen in the capillary bed decreases 

which stimulates the brain to increase local vasodilation. This increases local CBF 

and cerebral blood volume (CBV) (Irani et al., 2007). A process which is termed 

functional hyperaemia and is one of the key roles of neurovascular coupling 

(Ward, 2013, Cauli and Hamel, 2010).  On the other hand is this control 

mechanism also capable of inducing vasoconstriction, which reduces CBF. 

Together, the vasodilaton and –constriction are responsible for generating the 

appropriate blood flow conditions that are required for optimal metabolic 

functioning of the neural networks (Ward, 2013). This makes sure that 

autoregulation is provided. The second key role of neurovascular coupling is to 

support the brain’s ability to maintain the necessary homeostatic blood pressure 

during periods of changing blood flow (Ward, 2013). 

This allows the assessment of two physiological responses using optical imaging 

techniques. The first being a slow response occurring over several seconds when 

the increased CBF carries both glucose and oxygen bound to haemoglobin (Hb) to 

the active brain area. The increased oxygen that is carried to the area exceeds the 

rate at which the oxygen is used by the neurons, resulting in elevated blood 

oxygenation in the active area. The second is a fast response that occurs when the 

initial increase in neural activity results in an increase of blood deoxygenation. 

This happens when the neurons use the present oxygen to metabolize glucose 

before the bloodstream is able to increase the amount of oxygen delivered to the 

brain area which takes several seconds (Irani et al., 2007). Because oxygenated 

haemoglobin (HbO2) and deoxygenated haemoglobin (HHb) have characteristic 

optical properties in the near-infrared light range, it is possible to measure their 

concentration changes with optical imaging methods like NIRS (Boas et al., 2004, 

Irani et al., 2007).  
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Figure. 1.5 Schematic representation of neurovascular coupling. 

However, this depiction may be somewhat simplistic. The mechanisms underlying 

neurovascular coupling have been studied for over a century, and multiple factors 

have show to play a role in this intricate process (Girouard and Iadecola, 2006). 

And although intuitively appealing, a direct link between energy state and blood 

flow is not universally accepted, which leaves the physiological basis for 

neurovascular coupling uncertain (Cauli and Hamel, 2010). Neither the acute 

demand for glucose, nor the demand for oxygen primarily, fully justifies the 

hemodynamic response (Girouard and Iadecola, 2006, Cauli and Hamel, 2010). For 

a recent review on advances in neurovascular coupling research see (Howarth, 

2014). Despite these limitations, fMRI, PET and NIRS research embarks upon 

changes in hemodynamic signals and uses it to infer claims about neural activity in 

various pathologies  ((Chen and Li, 2012, Girouard and Iadecola, 2006, Portnow et 

al., 2013, Obrig and Villringer, 2003). A point which will be addressed further in 

paragraph 1.5. 

1.4.2 NIRS 

To measure the concentration changes in HbO2 and HHb, NIRS uses near-infrared 

light in the range between 700-1000 nm. Most biological tissue is transparent to 

light at these wavelengths because a relatively small amount of this light is 

absorbed by Hb and water (Irani et al., 2007). The chromophores HbO2 and HHb 

which are present in the blood reflect specific and different wavelengths in this 

range. The spectral band at which HbO2 and HHb reflect near-infrared light is 
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called the optical window and is visualized in figure 1.6 (Jobsis, 1977). 

Figure 1.6 (adopted from Phan & Bullen (2010)) The optical window into the human body. 

At frequencies between 700 and 900 nm (near infrared range) the chromophores 

oxygenated haemoglobin (HbO2) and deoxygenated haemoglobin (HHb) reflect specific 

and different wavelengths. Furthermore, the reflection of water (H2O) is minimal in this 

range, causing little distortion.  

During a NIRS measurement near-infrared light, either through light emitting 

diodes (LEDs) or through fibre optical bundles, is shone upon the head by means 

of a transmitter called an optode (Irani et al., 2007). The photons that are leaving 

the optode pass through the skin, skull and several cm of brain tissue where they 

are either absorbed, reflected or scattered by the HbO2 and HHb chromophores 

(Ferrari et al., 2004). Because the quantity of photons that leave the optode is 

relatively predictable and the photons follow a banana-shaped path back to the 

surface of the skull, they  can be measured by the use of photo detectors placed 

alongside the transmitter (Ferrari et al., 2004, Irani et al., 2007).  Due to the 

scattering a photo detector placed 2-7 cm away from the optode can collect light 

after it has passed through the tissue (Irani et al., 2007). The dept that is reached 

by the light is approximately half the source-detector distance (Strangman et al., 

2002). Changes in the chromophore concentrations cause changes in the reflected 

light intensity and are quantified using the modified Beer-Lambert law (Delpy et 

al., 1988). 
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1.4.3 The Beer-Lambert law 

The Beer-Lambert law relates the absorption of light to the properties of the 

material through which the light is travelling. When the change in absorption is 

global throughout a medium, then the modified Beer-Lambert law is written as: 

                     

         
                                      

In this equation       is the change in optical density measured at a given 

wavelength,       is the corresponding change in tissue absorption,   is the 

separation between the source and the detector, and     is the differential path 

length factor (DPF) (Delpy et al., 1988). The differential path length factor corrects 

for the increased distance that the light travels from the transmitter to the 

detector because of scattering and absorption. The change in absorption is 

related to the changes in chromophore concentrations of oxygenated 

haemoglobin           and deoxygenated haemoglobin         by the 

wavelength dependent extinction coefficients       
    and         . 

From measurements of       at two wavelengths, the concentration changes 

are given by: 

      
      

                  
           

               
            

            

       
                                 

               
            

            

When the change in absorption is not global, the modified Beer-Lambert law can 

be rewritten as: 

                 

 

   

          

           
                                     

 

   

 

Where           is the partial path length factor (PPF) through a region of uniform 

absorption change. A sum is made over   regions of uniform absorption change. 

In the case of brain activation the measured change in optical density is best 
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analysed with a PPF, because of the focal nature of the brain activation. However, 

accurate estimation of the PPF is not feasible because it requires knowledge of 

the position and spatial extent of the local absorption change as well as the 

optical properties of the surrounding tissue. Therefore, the DPF is used in most 

analyses (Strangman et al., 2003). The DPF is however thought to vary with age 

and therefore it is recommended to measure it in every subject before 

commencing the measurement if possible (Duncan et al., 1996, Bonnéry et al., 

2012). Erroneous choice of DPF can result in errors in the estimated concentration 

changes influencing research outcomes which is referred to as crosstalk 

(Strangman et al., 2003, Umeyama and Yamada, 2009).   

1.4.4 Equipment 

In order to calculate the concentration changes in HbO2 and HHb the NIRS 

equipment has to measure the change in optical density at, at least, two 

wavelengths.  To do so, different types of NIRS equipment and devices are 

commercially available (for a recent overview see (Ferrari and Quaresima, 2012)). 

An overview of several commercially available devices is shown in figure 1.7. Each 

device has different characteristics which can be divided into three groups: 

photometers, oximeters and imagers. All photometers use single distance 

continuous waves (CW) (Ferrari et al., 2004). CW systems apply light at a constant 

amplitude and  are only capable of measuring changes in the HbO2 and HHb when 

a known DPF is included to calculate the path length of the travelled light (Ferrari 

et al., 2004, Irani et al., 2007, Ghosh et al., 2012). Photometers measure the 

changes in HbO2 and HHb very accurately but they cannot measure tissue HbO2 

saturation due to the fact that no absolute values of  HbO2 and HHb  can be given 

(Ferrari et al., 2004). 

Spatially resolved spectroscopy (SRS), time-resolved spectroscopy (TRS) and phase 

modulation spectroscopy (PMS) can calculate tissue HbO2 saturation. The SRS 

technique is used often in oximeters, however not all commercially available 

devices disclose the algorithms used to derive haemoglobin concentrations 

(Ghosh et al., 2012). Occasionally the techniques of PMS and TRS are used in 

oximeters as well but it is more common for TRS and PMS to be seen in imagers 

(Ferrari et al., 2004). With PMS and TRS it is possible to calculate optical 

absorption and scattering (Ghosh et al., 2012). Imagers use multiple channels to 
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perform the measurement. This allows the generation of images of a larger brain 

area with a higher temporal resolution (up to 10 Hz) (Ferrari et al., 2004). The 

results from this type of device however, are still under dispute, since the lack of 

path length determination limits the accuracy of the results (Ferrari et al., 2004). 

The different devices vary in technological complexity and therefore also costs 

starting with CW-technology and then proceeding to SRS and further to TRS and 

PMS technology (Ferrari and Quaresima, 2012). The device used by the Oxford 

Brookes research group and throughout this thesis is a single distance, continuous 

wave photometer, OXYMON Mk III (Artinis Medical Systems, Zetten, the 

Netherlands).  

Figure 1.7 Examples of NIRS devices and sensors. Also for NIRS different sized devices are 

available ranging from large, whole headed devices as shown on the right bottom, to more 

easily transportable devices with less channels as shown on the left, to small sized devices 

that can be carried in a backpack and used for motion studies as shown in the middle. Also 

sensor configurations come in a broad variety. The top panel shows from right to left the 

configuration of separate optodes in a headband, the use of optodes prefixed in a 

headband, an optode cap, and a helmet configured with spring loaded optodes with 

integrated EEG sensors. 
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1.4.5 Advantages and limitations 

Besides the afore mentioned trouble in estimating DPF and related crosstalk 

issues that cause the HbO2 concentration to be mistaken for Hbb and vice versa 

(Strangman et al., 2003, Umeyama and Yamada, 2009), there are some limitations 

to the use of NIRS. Compared to other indirect measurements NIRS has a fairly 

limited spatial resolution. This limitation exists because the near-infrared light 

only penetrates the brain tissue to the extent of a few cm. Therefore only cortical 

activation can be measured and no deeper lying structures are reached (Arenth et 

al., 2007). Since the light has to penetrate the skin skull and several layers of extra 

cerebral matter before it reaches the region of interest, attenuation of the light 

occurs which makes the measurement less accurate (Boas et al., 2004). Other 

limitations arise in the use of cranial reference points. Since NIRS is a fairly young 

technique no standard has been developed in its application. Often the 10-20 

system used in EEG is also used in NIRS to determine the location on the head 

(Irani et al., 2007).  

Additional to the lack of standardization in optode placement, no consensus is 

reached about standardizing NIRS analysis. This leads to different streams in NIRS 

research in which both techniques seen in EEG as well as techniques seen in fMRI 

analysis are explored.  Furthermore, it is hard to compare NIRS data between 

studies because of the use of different systems, different cranial reference points 

and even different wavelengths to measure the concentration changes in  HbO2 

and HHb. Also the signal to noise ratio decreases among different subjects 

because of skin and hair pigmentation  and it is difficult to obtain absolute 

baseline concentrations of HbO2 and HHb (Arenth et al., 2007). As such, the 

technology is still in its infancy compared to more established techniques such as 

fMRI (Irani et al., 2007). However, there are also advantages in NIRS which make it 

more attractive for clinical use than other methodologies.  

NIRS makes use of non-ionizing light sources, which do not build up more energy 

in the brain than happens on a sunny day (Arenth et al., 2007). Unlike PET and 

SPECT measurements, NIRS is not harmful to tissue and it is non-invasive (Boas et 

al., 2004). Therefore, it is also safe to use repeated measures designs.  
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Furthermore, unlike fMRI, it is safe to use NIRS with patients that have plates, pins 

or other metallic implants (Arenth et al., 2007) which is impossible in fMRI. 

Because of the simplicity of the equipment the manufacturing costs are not as 

high as they are for other imaging equipment, which makes it more appealing to 

use more often in the same patient. In line with that, the small size of the 

equipment allows the NIRS system to be used at a doctor’s office, at bedside and 

even at home as a monitoring device (Ferrari et al., 2004). Also the size and 

configuration makes a NIRS device more patient friendly and less intimidating as 

for example a fMRI scanner. In a fMRI scanner another drawback are the loud 

noises and the inability to move. NIRS systems are quiet and are robust to 

movement which makes it very appropriate to use during “real life” tasks (Arenth 

et al., 2007). 

 

1.5 Multimodal use of QEEG and NIRS  

From the preceding paragraphs we have learned that (Q)EEG and NIRS measure 

very different modalities of brain functioning. Whereas EEG is able to measure 

global patterns of electrical brain activity linked to the activation of neuronal 

networks NIRS provides information on local changes in cortical oxygenation. In 

paragraph 1.4.1 it was already mentioned that the process of neurovascular 

coupling is not fully unravelled yet and that a direct link between energy state and 

blood flow is not universally accepted, which leaves the physiological basis for 

neurovascular coupling uncertain (Cauli and Hamel, 2010). Therefore, when NIRS 

is used as a single research modality it is possible that faulty inferences are made 

about brain functioning. However, despite the fact that we do not fully 

understand this neurovascular coupling, gathering information on both an 

electrical as well as an hemodynamic parameter in a clinical setting will provide us 

with more information about brain functioning, and could therefore aid in 

differentiating different pathologies better than the use of one modality can. It is 

not only the use of two separate modalities that can be of interest here but it is 

also its shared information content that as a separate variable could increase 

sensitivity and specificity in differentiating clinically relevant brain states. 

 

The number of studies combining both measurement modalities in the 

investigation of human brain functioning has increased over the last decade, 
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affirming  its feasibility. Although, the number of studies that actually aim at 

linking parameters from both modalities is still limited. 

One of the research areas that has been using simultaneous monitoring, is the 

surgical field (Toet et al., 2005, Moritz et al., 2007), as well as neonatology (for a 

review see (Toet and Lemmers, 2009)). By monitoring both electrical as well as 

hemodynamic parameters during for instance cardiac surgery, or in premature 

infants, one is able to detect problems in blood supply to the brain and possible 

neurological distress instantly. These studies, however, as vital as they are when 

brain monitoring under critical care is investigated, use the measurement 

modalities separately and do not investigate an underlying coupling.  

Another aspect that has been studied since concomitant application became 

available is brain oxygenation during seizures and epileptiform discharges. Results 

in this area suggest that this approach can detect changes during absences or 

seizures (Buchheim et al., 2004, Machado et al., 2011), predict when an absence 

or seizure occurs (Roche-Labarbe et al., 2008, 2010), and predict the response to 

anti-epileptic medication (Arca Diaz et al., 2006). However, electrical changes 

seen during seizures and absences are many times larger than the changes seen in 

the EEG during rest or any task for that matter. Therefore findings in epilepsy 

research may be very different from non-epileptic brains.  

Studies that do try to link parameters from the electrical field to parameters in the 

hemodynamic field vary greatly in the subject of interest. They range from 

investigating sustained attention (Butti et al., 2006) to the effects of mental stress 

and relaxation (Ishii et al., 2008) to  the mechanisms of sensory gating (Ehlis et al., 

2009). Brummer et al. (2011) as well as Smith et al. (2013) even investigated what 

happens to brain activity measured with combined EEG and NIRS when changes in 

gravity are involved. It has to be said though that results of the gravity studies are 

not conclusive yet as the induction of hypergravity by a human centrifuge or the 

induction of weightlessness during a parabolic flight brings about technological 

challenges in the actual measurements.  

An area of study which deserves special attention from a clinical point of view is 

brain-computer interface (BCI) research. A BCI correlates brain activity with 



24 

 

external devices in order to communicate or gain control over them (Pfurtscheller 

et al., 2010, Khan et al., 2014). Due to the intended clinical use the set-ups need 

to be low cost, quick, and accurate and are therefore often realized with limited 

sensors (Pfurtscheller et al., 2010). Recently the field has moved towards the use 

of hybrid BCI’s in which more than one input is used simultaneously in order to 

enhance system performance or to be able to increase the number of commands 

(Pfurtscheller et al., 2010). The combination of EEG and NIRS in hybrid BCIs is 

made more often now. For example, Fazli et al. (2012) showed in a motor 

paradigm that adding NIRS measurements to an EEG based BCI improved 

classification in over 90% of the measurements and enhanced performance by 

5%.  Another method that is used in hybrid BCI research is the use of the NIRS 

signals as a switch in order to investigate whether movement or movement 

imagery is present. When the switch indicates the presence of movement related 

activity, the EEG signals over the motor cortex classify the type of activity which 

was demonstrated to be useful also in self paced as opposed to cued paradigms 

(Koo et al., 2014). Khan et al. (2014) used additional NIRS measurements over the 

prefrontal cortex to increase the number of classifiers with two in addition to the 

two classifiers that were generated from motor areas with EEG. Which is a 

different desired goal to be obtained by the use of hybrid interfaces. Besides 

motor paradigms, visual paradigms are also often investigated in BCI research. 

Tomita et al. (2014) used visual evoked potentials as classifiers. A downside in 

using visual evoked potentials is that during periods of rest often send out signals 

that the user did not intend to convey (called false positives). By using NIRS signals 

over the visual cortex to determine whether a user is in a communication or rest 

mode reduced the number of false positives ranging from 53% to 85%. The 

improvements listed above obtained by the use of a multimodal system with 

limited sensors in generating accurate predictions about states of brain activity is 

especially promising in clinical use. Not only for communication but also for 

classifying different pathologies. 

 

The aforementioned studies illustrate the diversity of options that can be 

explored with multimodal brain measurements. As an additional research area 

the investigation of the symbioses between electrical and metabolic parameters 

during a resting state should be mentioned. Roche-Labarbe et al. (2007) 

investigated whether changes in the concentration of cerebral HbO2,
 HHb and 
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total Hb were related to the occurrence of spontaneous bursts of electrical 

activity in premature infants. There seemed to be a relationship that was different 

for the 6 healthy babies than was found for the 4 neurologically distressed babies 

that were investigated. However, it is not established yet if relationships that 

occur in premature infants can be extrapolated to an adult human brain. 

 

Moosmann et al. (2003) were one of the first to investigate the relationship 

between the occurrence of alpha wave activity and Hbb in the occipital cortex of 

healthy adults in an eyes open, eyes closed paradigm. They report a positive 

cross-correlation between alpha  wave activity and Hbb in which the 

hemodynamic parameter has a delay of approximately 8 seconds. Koch et al. 

(2008) investigated a special feature within the alpha band, the alpha peak 

frequency. They reported that in individuals who display an alpha peak that is 

higher in frequency, a smaller alpha magnitude is found and a smaller response in 

oxygenation is seen than is in subjects that show an alpha peak lower in 

frequency. In this research a paradigm with visual stimulation was used. As 

indicated in paragraph 1.3.5 the phenomenon of alpha blocking upon opening the 

eyes, also known as ERD is a well know response that is found in all people and is 

strongest over the occipital cortex (Pfurtscheller et al., 1994). Therefore this basic 

brain response is an viable paradigm for investigating the difference between two 

different brain states. Furthermore, the ease with which the two different brain 

states can be summoned creates great prerequisites for use with broad patient 

populations including children and cognitively challenged patients. However the 

exact functioning in healthy people should be established first.  

 

1.6 Conclusion 

To sum up the rationale laid out in this first chapter it can be said that 

psychopathologies are common in more than one in every three people. Of all 

people experiencing a psychopathology worldwide four out of five people do not 

receive appropriate health care. Since it is known that different 

(psycho)pathologies display different patterns of brain activity, the embedding of 

brain measurements in early lines of healthcare could reduce this number. People 

could be diagnosed better and faster, and brain measurements could be used to 

evaluate treatment options and treatment outcomes. In order to be able to 
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embed brain measurements in these early lines of healthcare easy to apply, low 

cost methods should be used of which EEG and NIRS seem to meet these criteria. 

The use of these methods would create insight in the electrical brain activity as 

well as the hemodynamic activity. Furthermore, the synchronous, multimodal use 

of the two might provide additional information that increases sensitivity and 

specificity in detecting different patterns of brain activity. 

 

Multimodal research, especially the BCI research has shown that the use of both 

EEG and NIRS increases the accuracy of identifying brain states with limited sensor 

set-up which may apply to the classification of pathology related brain states as 

well. In order to investigate this potential further, the exploration of resting state 

parameters seems extremely valuable for clinical use. Especially the difference 

between eyes open and eyes closed states over the occipital cortex and its related 

ERD in the alpha band would be a good starting point due to the ease with which 

it can be induced in a broad patient spectrum. 

 

The goal of this thesis is to explore the relationship between electrical and 

metabolic aspects of brain functioning with EEG and NIRS  in order to reveal its 

exiting opportunities in understanding brain functioning in health and disease. 

Before this research can be started the limitations of the NIRS equipment will be 

explored first. This will be done in a pilot study that will address the robustness of 

the NIRS measurement to artefacts which will be described in chapter 2. 

 

Before patient populations can be investigated it is important to have an 

understanding of the differences between resting brain states in healthy subjects. 

Therefore, this will be addressed first, continuing the work of Moosmann et al. 

(2003) with special focus on the alpha band and its relation to HbO2 and Hbb 

parameters. This relationship will be investigated in a stepwise fashion, moving 

from the static analysis of blocks (chapter 3), towards analysis of timing aspects 

(chapter 4), towards the analysis of both linear and nonlinear aspects of the 

relationship (chapter 5). 

 

Then a pathology is selected in which we are absolutely sure that changes are 

seen in both the electrical and hemodynamic domain as well as in the 

neurovascular coupling, stroke (Girouard and Iadecola, 2006, Blicher et al., 2012, 
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Ayata, 2013, Finnigan and van Putten, 2013). If no differences can be found 

between stroke patients as opposed towards healthy brains, the movement of the 

research towards the more subtle differences seen in psychopathologies might 

seem  still far away. This will be done by describing two case studies of stroke 

patients in which the same eyes open eyes shut paradigm is carried out in chapter 

6. The data from these measurements are analysed with the same methods as are 

described in chapters 3 through 5 in order to investigate differences between 

healthy brains and brains post stroke. In chapter 7 a general conclusion of the 

findings in this thesis is given. Furthermore, implications for clinical use will be 

raised together with the proposal of future paths of research in order to stimulate 

the research in this accelerating area of neuroscience. 
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Chapter 2: Assessment of robustness to artefacts of 

Near-Infrared Spectroscopy 

 

In this chapter the robustness to artefacts in NIRS measurements will be 

evaluated. Hereto a paradigm is chosen in which tasks are performed that are 

known to induce artefacts in EEG measurements. Several methods have been 

proposed to eliminate artefacts. The performance of one of these methods, the 

correlation based signal improvement method, will be evaluated in this chapter as 

well. 

 

2.1 Introduction 

As introduced in the previous chapter, NIRS measurements meet several 

requirements that make it a good candidate for broad clinical application (Arenth 

et al., 2007, Irani et al., 2007). One argument that is often used to emphasize the 

role of NIRS in measuring real life paradigms is its robustness to motion artefacts 

(Arenth et al., 2007). However, motion artefacts can indeed influence NIRS signals 

(Izzetoglu et al., 2005, Huppert et al., 2009, Cui et al., 2010). Papers that consider 

artefacts in the NIRS signal often focus on physiological noise caused by the 

cardiac cycle and the respiratory system or on cross talk and separability (Nolte et 

al., 1998, Boas et al., 2004, Uludag et al., 2004b). Cross talk was briefly mentioned 

in chapter 1 and occurs due to erroneous choice of the DPF that is used in 

obtaining concentration changes of HbO2 and Hbb by the modified Beer-Lambert 

law (Strangman et al., 2003). Cross talk can lead the HbO2 signal to mimic the Hbb 

response and vice versa, causing the magnitude and the time course of the Hb 

concentration to be influenced (Uludag et al., 2004b). Separability is different 

from cross talk and describes the difficulty in separating HbO2 and Hbb 

concentrations due to the wave lengths used and the amount of physical noise 

that is present in the system (Uludag et al., 2004b).   

 

The occurrence of motion artefacts is thought to arise from a change in optical 

coupling of the optode and the scalp, either by a shift of detectors or by blood 

moving away or towards the region of interest (Izzetoglu et al., 2005, Cooper et 

al., 2012, Brigadoi et al., 2014). Izzetoglu et al. (2010, 2005) specifically describe 
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this phenomenon in head movements. However, this is not the only situation in 

which motion artefacts can occur. Bodily movements, eye movements or even 

muscle tension may distort the collected signal and all are likely to occur during 

testing, especially when real life paradigms or clinical populations are examined. 

The impact of these factors on the signal has not fully been described yet but 

could lead to false interpretation in a clinical setting. A substantial body of 

literature describes the influence of motion and muscle artefacts in the acquired 

signal in similar methods, such as EEG, which is also non-invasive and makes use 

of sensors on the head. Every EEG book is equipped with a chapter that describes 

pitfalls during EEG measurements and the reader is provided with a collection of 

signals that can help recognize typical artefacts caused by eye movements, muscle 

movements and motion artefacts (for an example see (Krauss et al., 2006)). Since 

this kind of literature is limited for NIRS measurements, the first aim of this study 

was investigating the effects of a variety of movements that can occur during a 

NIRS measurement on the acquired signal. Secondly, it would be helpful to know 

whether these possible motion artefacts could be removed from the data by 

filtering. In order to find out, one first should be aware of all types of noise NIRS 

measurements are susceptible to and what methods are currently used to filter 

these. 

 

In general three types of noise can be distinguished in NIRS measurements: 

instrument noise, physiological noise, and experimental error (Huppert et al., 

2009, Cui et al., 2010). Instrument noise is induced by hardware components and 

is usually high in frequency (Huppert et al., 2009). Different sources of 

physiological noise can be defined. Cardiac pulsation is a source of noise that 

arises around 1 Hz and is seen mainly on the arterial side (Nolte et al., 1998, Boas 

et al., 2004, Zhang et al., 2005, Huppert et al., 2009). Respiration also can cause 

slow drifting noise in NIRS measurements (Boas et al., 2004, Zhang et al., 2007a, 

Zhang et al., 2007b, Huppert et al., 2009). Noise caused by respiratory signals is 

primarily seen on the venous side, due to changes in intra-thoracic pressure, 

which affect the rate of venous return (Zhang et al., 2005). Blood pressure 

changes can cause noise in the frequency domain between 0.08 and 0.012 Hz 

(Boas et al., 2004, Zhang et al., 2007a, Zhang et al., 2007b, Zhang et al., 2009, 

Huppert et al., 2009). As with cardiac pulsations this is also primarily an arterial 

effect, and has different components: intrinsic blood pressure variation, variation 
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coupled to heart rate, Mayer waves,  low frequency oscillations (LFOs), very low 

frequency oscillation (VLFOs), and vasomotor waves (Zhang et al., 2007a, Zhang et 

al., 2007b, Zhang et al., 2009, Zhang et al., 2005). Noise caused by experimental 

error includes motion artefacts and noise caused by non-compliance with  the 

experimental paradigm by the subject (Huppert et al., 2009, Cui et al., 2010). 

 

Different ways of filtering these types of noise have been described in the 

scientific literature. For instrument noise usually low pass filtering will suffice, 

since this type of noise is high in frequency and the target frequency in NIRS 

measurements is in the low frequency domain (Huppert et al., 2009). 

Physiological noise is harder to filter since it arises in the low frequency domain. 

This type of noise can be filtered based on the approximated frequency content, 

spatial covariance, or subtraction by measuring the same physiology away from 

the functional signal either by using an additional channel with a short source 

detector separation or another direct extra-cranial measurement (Huppert et al., 

2009, Zhang et al., 2009). Adaptive filtering, wavelet filtering, and principal 

component analysis (PCA) from baseline data are methods that can also be used 

to filter physiological noise from NIRS measurements (Huppert et al., 2009, Zhang 

et al., 2007a, Zhang et al., 2007b, Zhang et al., 2009). Along with spline 

interpolation and Kalman filtering the same methods have been used to filter 

motion artefacts (Huppert et al., 2009, Scholkmann et al., 2010, Cooper et al., 

2012, Brigadoi et al., 2014). However, these methods have been reported to be 

only partly effective in filtering motion artefacts (Huppert et al., 2009). A 

challenge in determining this efficacy is that often the knowledge of the true form 

of the original (noise-free) signal lacks which is necessary to quantify  

improvement (Sweeney et al., 2012).  

 

Sweeney et al. (2012) proposed an elegant method to measure two signals with 

two detectors in close proximity from the same source in which only in one 

detector motion artefacts were induced by gently pulling the optic fibre. The 

occurrence of the artefact in only this detector and not in the other or in the 

source was monitored by means of accelerometers. In their method two signals 

arise; 1. a motion artefact contaminated signal and 2. a noise free “ground truth” 

signal. This signal pair can then be used to test the efficacy of artefact removal 

methods by comparing the correlation between both signals and the signal-to-
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noise ratio (SNR). With this method they showed that adaptive filtering and 

Kalman filtering improved the correlation by 68.22% and 66.5% respectively, as 

well as it improved SNR by 5 dB or more in both. The overall correlation between 

the filtered signal and the “ground truth” signal did not exceed 0.71 for epochs 

with motion artefacts and 0.77 for non affected epochs (Sweeney et al., 2012). 

  

Adaptive filtering relies on the measured signal of a second pair of optodes with 

has a close source-detector separation which allows the measurement of 

hemodynamic changes in layers more superficial than the cortex. This 

measurement is then used as reference channel for the adaptive filter which 

subtracts the reference signal from the signal of interest (Zhang et al., 2007a, 

Zhang et al., 2007b, Zhang et al., 2009). The other methods can be applied 

without the use of an additional optode pair. For example, wavelet filtering. 

Wavelet filtering transforms the obtained NIRS time series into the wavelet 

domain by use of a general discrete wavelet transformation (for an example see 

(Cooper et al., 2012)). The wavelet coefficients are assumed to have a Gaussian 

probability distribution which leads the contributions of noise to appear as 

outliers. These outliers are then removed and the time series are rebuilt with an 

inverse wavelet transformation (Cooper et al., 2012, Brigadoi et al., 2014).  

 

Similarly, PCA relies on the different properties of the actual signal and the 

artefact. PCA transforms a NIRS measurement in   linearly uncorrelated 

components which are ordered by the amount of variance they add to the signal. 

It is assumed that the variance that is added by noise is greater than the amount 

of variance that is added by the NIRS signal. Therefore, removing these 

components that have the highest contribution to the variance results in the 

removal of the noise (Zhang et al., 2005, Cooper et al., 2012, Brigadoi et al., 2014). 

Depending on the type of artefact, components adding up to 80% and sometimes 

even 97% of the total variance are removed. By increasing this percentage one 

should be aware of the risk of removing the response of interest though (Brigadoi 

et al., 2014).  

 

The spline interpolation method as described by Scholkman et al. (2010) first uses 

the motion detection algorithm available in the open source data analysis package 

Homer2 (Huppert et al., 2009). It then models the motion artefact and subtracts it 
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from the signal of interest only in the signal in which it is detected. After that, it 

applies a reconstruction on the signal to correct for the shift from baseline of the 

signal that can occur due to the artefact (Scholkmann et al., 2010). In modelling 

the artefact an interpolation parameter (        ) of 0.99 is recommended  by 

Scholkman et al. (2010) for removing motion artefacts. 

  

Like the spline interpolation method, Kalman filtering, is also an approach that is 

used on a channel by channel basis and is described in detail by Izzetoglu et al. 

(2010). The procedure uses previous points measured to predict future points and 

their uncertainty. The newly measured point is then used to update and correct 

the prediction that again is used on upcoming points. A least squares method is 

then used to estimate the actual signal in the noisy signal (Izzetoglu et al., 2010). 

    

Recently a new method of motion artefact reduction, the correlation based signal 

improvement (CBSI) method, has been proposed for NIRS experimental noise. The 

method suggests, as brain activation causes HbO2 and Hbb to be negatively 

correlated close to -1, that an artefact will move this correlation away from -1 as 

changes in HbO2 and Hbb will not be physiologically related. This finding can be 

used to both detect artefacts and to improve signal quality (Cui et al., 2010). A 

more detailed explanation is given in the method section. CBSI has been shown to 

be effective in improving signal quality of measurements contaminated by motion 

artefacts caused by head movements (Cui et al., 2010) and jaw movements due to 

speech (Brigadoi et al., 2014), but as yet has not been used to detect or reduce 

other movements and experimental noise. So second to testing the susceptibility 

of the NIRS measurements to a variety of movements that can occur when 

subjects are sitting in an upright position, this study explores whether artefacts 

can be detected by another, more objective method than visual inspection. 

Furthermore, if artefacts are found it is investigated whether these can be filtered 

based on the CBSI method.  

 

2.2 Methods 

2.2.1 Equipment 

After giving informed consent, 5 male students (mean age: 25.6, SD: 3,5, range 21-

30) participated in this study, that was approved by the University ethics 
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committee (070300) in accordance with the standards of the Declaration of 

Helsinki. For recording use was made of an OXYMON Mk III continuous wave 

device (Artinis B.V. Zetten, the Netherlands) (figure 2.1). The OXYMON Mk III uses 

two wavelengths of near infrared light that is shone through the transmitters and 

carried by the 315 cm long optical fibres towards the angular optode. The optodes 

were screwed in an optode holder. In order to ensure a good connection between 

the optodes and the skin, the optodes sticked out from  the optode holder and 

the optode holder was tightly secured on the head with help of Velcro straps. The 

transmitters were equipped with semiconductor, pulsed laser diodes, which used 

nominal wavelengths of 855 and 780 nm. The detectors were avalanche photo 

diodes which had a special optic filter to filter out daylight. The signal from the 

detector was fed back to the OXYMON Mk III by optic fibres again. The signal was 

sampled at 25 Hz without use of any filters and then visualized with the Oxysoft 

software package (Artinis B.V. Zetten, the Netherlands) as relative changes in 

HbO2 and Hbb concentration changes based on the modified Beer-Lambert law as 

described in chapter 1. A high sample frequency and no filters were chosen to 

allow the artefacts to be observed in their most original state.  

 

Figure 2.1  The OXYMON Mk III and its angular optodes screwed into an optode holder. The 

optode holder is held in place with help of Velcro straps. The optodes slightly stick out of 

the holder in order to get good optical fibre-skin contact. 
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In order to minimize additional artefacts arising from optode placement upon 

hair, measurements in this chapter were performed on the left and right 

prefrontal cortex, locations Fp1 and Fp2 of the 10-20 system for electrode 

placement respectively (Jasper, 1958). On both locations one transmitter and one 

receiver were used for recording NIRS signals with an inter optode distance of 35 

mm  (figure 2.2).  

Figure 2.2. The 10-20 system for electrodes placement with in red and blue the placement 

of the optodes shown with respect to the left prefrontal (Fp1) and right prefrontal (Fp2) 

location. The transmitters are represented by the red colour, the receivers by the blue 

colour. In this set-up two channels are measured labelled Fp1 and Fp2. 

2.2.2 Paradigm 

The participants were seated in a comfortable chair facing a blank computer 

screen. The procedures were explained and the equipment was mounted on the 

head with help of optode holders and Velcro straps. The experimenter sat next to 

the participant to instruct him during the experiment. This included indicating 

when the tasks started and stopped. These time points were marked in the 

measurement. Furthermore, the experimenter closely observed the measurement 

trace as well as the participant during the data collection in order to note if the 

subject complied with the experimental paradigm. These notes were used to 

exclude tasks if they were performed incorrectly. In total sixteen tasks were 

performed which were divided into four categories: eye movements, muscle 

activation, talking & breathing, and movement (Table 2.1).  
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Category Task 

1 Eye Movements Blinking 

2 Lateral eye movements (eyes open) 

3 Lateral eye movements (eyes closed) 

4 Vertical eye movements (eyes closed) 

5 Muscle activation Jaw clenching 

6 Chewing 

7 Continuous frowning 

8 Intermittent frowning 

9 Continuous shrug 

10 Intermittent shrug 

11 Talking & Breathing Count to ten aloud 

12 3x deep in- and exhale 

13 Movement Head flexion and extension 

14 Lateral head movements 

15 Back extension 

16 Moving the cables attached to the optodes 

Table 2.1. The tasks, task order, and the categories they belong to. In total 16 tasks were 

performed. 

All tasks were chosen based on conditions that are known to induce artefacts in 

EEG signals (Krauss et al., 2006). The tasks are described in detail below. Each task 

was carried out for a block of ten seconds. Resting periods of at least ten seconds 

were situated between the tasks in which the subjects were required to sit still 

and focus on a blank computer screen to allow the NIRS signal to return to 

baseline. All task blocks were only performed once and every participant 

performed the tasks in identical order. Before the tasks started, an eyes open, 

resting state baseline period of 10 seconds was recorded.  

2.2.2.1 Eye movements 

The block of eye movement related tasks consisted of 4 tasks: blinking, lateral eye 

movements in an eyes open condition, lateral eye movements in an eyes closed 

condition, and vertical eye movements in an eyes closed condition. Participants 



36 

 

were instructed to execute all eye movements in a consistent and regular way at a 

pace that was comfortable to them. For blinking this was approximately at a rate 

of 2 Hz and all other eye movement tasks were carried out at a speed around 1 

Hz. 

2.2.2.2 Muscle activation 

The following tasks made up the muscle activation category: jaw clenching, 

chewing, continuous frowning, intermittent frowning, continuous shrug, and 

intermittent shrug. For the jaw clenching task, continuous frowning, and 

continuous shrug, the participants had to perform the task at a strength that was 

consistent for 10 seconds and that avoided additional trembling or movement of 

the head. Chewing was performed without food or gum at a rate that was 

comfortable to the participant equating to approximately 1 Hz. The intermittent 

frowning and intermittent shrug tasks were carried out at a rate that was 

comfortable to the participant at the same strength at which the continuous 

frown and continuous shrug tasks were executed. These tasks were carried out at 

approximately 0.5 Hz. 

 

2.2.2.3 Talking & breathing 

In the talking and breathing block 2 tasks were performed. The first task was 

counting to ten aloud along with the second-hand of a watch that was displayed 

in front of the participant to make sure the talking task lasted for 10 seconds. 

During the breathing task the participants were instructed to in- and exhale 3 

times slowly and deeply through the nose. 

 

2.2.2.4 Movement 

The category movement consisted of 4 tasks: head flexion and extension, lateral 

head movements, back extension, and moving the cables attached to the 

optodes. The latter task was carried out by the experimenter and the participants 

were instructed to sit very still. The experimenter held the 4 optic fibres in one 

hand approximately 50 cm away from the participant’s head and moved them 

repeatedly 20 cm left and right from their original position. During head flexion 

and extension the participants were instructed to move their heads forward and 

backward approximately 50% of their maximum movement range at a rate that 

was comfortable to them but not too fast, equating to approximately 0.5 Hz. This 

instruction was also given in the lateral head movement task, but the participants 
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were required to move their heads repeatedly from left to right while they kept 

facing the computer screen. During the back extension task the participants had 

to sit up from the position they were currently sitting in. 

2.2.3 Data processing 

The flow of the data processing is depicted in figure 2.3. The Oxysoft software 

transformed the data into graphs displaying the concentration changes of HbO2 

and Hbb (Cope and Delpy, 1988; Delpy et al., 1988) and exported the unfiltered 

changes in HbO2 and Hbb concentration as two separate time series per 

measurement. 

 All measurements were then split into files that just contained one task. The 

separate tasks were configured in 20 second files in which the first 5 seconds 

presented the baseline period before the task, second 5 until 15 contained the 

task and the last 5 seconds entailed the signal returning to baseline. These graphs 

were plotted for both the Fp1 and the Fp2 channel for every task.  

These graphs were evaluated by means of visual inspection and by means of the 

running correlation. Next the data were filtered and evaluated using visual 

inspection and the contrast-to-noise ratio (CNR). After that the CBSI-filter was 

applied after which the last evaluation step was carried out. All filtering and 

evaluation steps are explained in detail below. 
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Figure 2.3. Data processing flow. The blocks displayed in blue are the steps in which the 

data is processed. The blocks displayed in green are the steps at which the data is 

evaluated. 

 

  

Legend 
HbO2: oxygenated haemoglobin 
Hbb: deoxygenated haemoglobin 
FFT: Fast Fourier Transform 
CBSI: Correlation based signal improvement 
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2.2.4 Data filtering 

The data were filtered in two steps. First the data were detrended and band pass 

filtered to remove slow drift and instrumental noise in the signal. The detrending 

was performed according to the following formula:  

                         
 

     
  

 

 
  

In which      is the detrended signal,      is the original signal of which the linear 

trend               
 

     
  

 

 
  is subtracted. The terms   and   specify the 

interval of the signal. The band pass filter was a Fourier filter (FFT-filter) with the 

borders set at 0.01 and 0.5 Hz. This means that from the entire signal a spectrum 

was obtained with an FFT. From this spectrum all frequencies below 0.01 and 

above 0.5 Hz were deleted and the signal was rebuilt by means of an inverse-FFT.. 

This filter was chosen because it produced the most stable results with no 

distortion of the used time series of HbO2 and Hbb. For both the detrending as 

well as the FFT filtering use was made of LabVIEW analysis tools which delivered 

new time series after processing. The graphs of the filtered HbO2 and Hbb traces 

were again plotted.  

 

As a second step the FFT-filtered signals were then filtered according to the CBSI 

procedure as described by Cui et al. (2010) reprogrammed in LabVIEW and again 

plotted. This procedure assumes that the time series of HbO2 ( ) and Hbb ( ) 

consist of the following parameters: 

               

              

In these equations    and     are the artefact free HbO2 and Hbb concentrations 

that are sought.   is the motion artefact, which has identical effects on both HbO2  

and Hbb when the weighing factor   is used for HbO2. The       term is the high 

frequency noise that is filtered by the FFT filter in the previous step. Two 

assumptions are posed by Cui et al. (2010). First,    and     are negatively 

correlated close to -1 and second, the true signal     and the artefact term   are 

uncorrelated close to 0. Furthermore, the   term can be found by dividing the 

standard deviations of the measured   and   signals: 
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By solving the following equations the artefact free HbO2 and Hbb signal can then 

be recovered: 

   
 

 
        

     
 

 
    

  

2.2.5 Data evaluation 

At three different stages of data processing the plotted HbO2  and Hbb graphs 

were evaluated. The first evaluation moment was after data collection in which 

the data were still unfiltered. All tasks were screened for artefacts by two 

methods in order to determine whether the movements chosen for the tasks 

resulted in artefacts in the data. The first method was visual inspection of the 

graphs.  

 

During visual inspection the baseline period and task period (artefact) were 

compared to see if there were changes present in the task period that were not 

present during baseline that were larger than the changes caused by the pulsation 

of the heart. In doing so, the onset, duration and morphology of the artefacts 

could be established which then could be related to the task performed. Since the 

subjects were only performing the movement they were instructed to and the 

measurements were not taking place on the motor cortex, any change in the 

signal from baseline was unexpected and likely to be an artefact originating from 

the task performed. Measurements in which the task period was marked as being 

different from the baseline, but the pattern was similar to patterns seen during 

brain activation or deactivation were not marked as artefacts. A brain activation 

pattern was defined as an increase in HbO2 together with a decrease in Hbb and a 

pattern of deactivation was defined as an decrease in HbO2 combined with an 

increase in Hbb. 

 

The second method was the running correlation (RC) method as described by Cui 

et al. (2010) which was also reprogrammed in LabVIEW. Cui et al. (2010) argue 

that HbO2 and Hbb are negatively correlated during activation with a correlation 

value close to -1. When the data are contaminated by noise the correlation moves 

away from -1, becoming more positive. The RC calculates the correlation between 
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the HbO2 and Hbb time series at each time point. The RC at time point t is defined 

as the correlation between segments of HbO2 and Hbb in the time window 

between t-w and t+w where w is half the window size. Cui et al. (2010) have 

established w=50, except at the beginning and the end of the signal, where the 

half window size is adjusted so that the segment is symmetric around time point t. 

An example of the RC graph is given in figure 2.4.  

 

The average RC was calculated for the baseline period and the task period for 

every task. Then the average RC during the baseline was subtracted from the 

average RC during the task. A positive outcome of this subtraction indicated an 

increase of the RC during the task and was therefore considered an indication of 

noise. Since the values of the RC can range from -1 to 1 and difference values 

were calculated from averages from the baseline period and the task period it was 

decided that an increase of 0.1 would be considered as an indication for artefacts. 

 

 

Figure 2.4. An example of the running correlation. In this example the RC is calculated 

between 30 seconds of the HbO2 and Hbb time series. The y-axis represents the correlation 

coefficient at every given time point on the x-axis. 

 

The second evaluation step was after FFT-filtering and the third after CBSI-

filtering. Here the first method was visual inspection again which was used to 

determine whether the artefacts found in the unfiltered data were eliminated. To 

evaluate the effectiveness of the CBSI-filtering the RC could not be used because 

after CBSI-filtering the data have a perfect correlation of -1. Therefore, the 

contrast-to-noise ratio (CNR) was used in evaluation step 2 and 3 as objective 

method for evaluating signal improvement. The CNR can be used to quantify the 

signal-to-noise ratio (Zhang et al., 2005). It calculates the amplitude difference 

between the signal during the task and the signal during rest, divided by the 
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pooled standard deviation. Larger CNR indicates that the ratio of task related 

signal to noise is larger.  

     
                    

                  
 

In this equation     means during the task and     means in the rest period 

before the task. In this research 0-5 seconds before task onset was used as     

value and because of a possible delayed hemodynamic response, the interval 5-10 

seconds after task onset was used as     value. The difference in CNR before and 

after CBSI filtering was calculated in order to objectify the performance of the 

filter. Cui et al. (2010) reported a mean increase in CNR of 0.80 for HbO2 signals 

and a mean increase of 0.89 for Hbb signals in their research that aimed at 

removing head movements. Therefore, increases in CNR reaching these values 

were considered as good signal improvement. 

 

2.3 Results 

Because one subject failed to perform the back extension task, and the other 

subjects showed much variability in the way the task was performed, and no 

subjects continued the task for 10 seconds, this task was not considered in the 

analyses. Furthermore, during the continuous frowning task the Fp2 channel of 

subject 4 had to be eliminated because the signal quality was so poor that no 

cardiac response could be detected. For the intermittent frowning task data from 

the Fp2 channel of subject 1 and both channels of subject 3 were not taken into 

account during the analyses because there seemed to be artefacts in the baseline 

period that made a correct interpretation of the artefacts during the task not 

possible. From the data of the lateral head movement task subject 5 was also 

eliminated because of artefacts in the baseline period. In the unfiltered data of 

the other tasks the cardiac pulsations were clearly visible in both the HbO2  and 

Hbb graphs as regular, arcade shaped waves around 1 Hz. Furthermore, the visible 

artefacts were more pronounced in the HbO2  trace compared to the Hbb trace. In 

table 2.2 the number of participants that remains for each task and channel is 

summarized.  
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 Task N left 

prefrontal 

cortex (Fp1) 

N right 

prefrontal 

cortex (Fp2) 

1 Blinking 5 5 

2 Lateral eye movements (eyes open) 5 5 

3 Lateral eye movements (eyes closed) 5 5 

4 Vertical eye movements (eyes closed) 5 5 

5 Jaw clenching 5 5 

6 Chewing 5 5 

7 Continuous frowning 5 4 

8 Intermittent frowning 4 3 

9 Continuous shrug 5 5 

10 Intermittent shrug 5 5 

11 Count to ten aloud 5 5 

12 3x deep in- and exhale 5 5 

13 Head flexion and extension 5 5 

14 Lateral head movements 4 4 

15 Back extension 0  0 

16 Moving the cables attached to the optodes  5 5 

Table 2.2 Summary of the number of participants (N) for each channel in every task.   

 

 

2.3.1 Task related findings –unfiltered data-  

2.3.1.1 Eye Movements 

Eye movements produced limited artefacts. During blinking 3 out of 5 subjects 

showed no artefacts in their signal. A profile that would have been seen during 

activation (an increase in HbO2 and a decrease in Hbb) was apparent in 1 

participant. The last participant did show an artefact during blinking that was 

characterized as a decrease in both HbO2  and Hbb. The task in which lateral eye 

movements were made with open eyes caused artefacts in 2 out of 5 subjects and 

were characterized by peaks in the signal either at task onset or halfway during 

the task. The signals of the 3 other subjects were not influenced by the task. The 

lateral eye movements performed with closed eyes caused only an artefact in 1 
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participant in one channel and was characterized by a sudden drop in HbO2  as 

well as Hbb. The signals of 3 other participants were not influenced by the task 

and the last subject showed a pattern of activation during the task. The other task 

with closed eyes, in which eye movements were made vertically, showed clear 

peaks in 1 participant in both HbO2 and Hbb (figure 2.5a) and another participant 

only showed peaks (less obvious) in Hbb. The signals of 1 subject were not 

affected by this task and the 2 others showed a pattern that looked like activation. 

 

2.3.1.2 Muscle Activation 

In 2 subjects the jaw clenching task resulted in a pattern of deactivation in the 

form of an increase in the Hbb signal and a decrease in the HbO2  signal, with a 

delayed onset in respect to the onset of the task (figure 2.5b). The other 3 

subjects did not show differences between the baseline and the task. During 

chewing 1 participant showed an activation pattern, 2 subjects were not affected 

by the task and the other 2 showed artefacts. In 1 subject this artefact was 

characterized by a peak at the end of the task and in the other subject the artefact 

manifested itself as a decrease in both HbO2 as Hbb. During the continuous 

frowning task as well as the intermittent frowning task the start and stop of a 

frown was accompanied by a sudden shift in both signals in all subjects (figure 

2.5c). The magnitude of this response differed between subjects. The continuous 

shrug task resulted in a pattern that looked like activation in 2 participants, in a 

pattern that looked like deactivation in 2 other subjects (figure 2.5d) and the last 

participant showed a peak in both HbO2 and Hbb at the onset of the task. The 

intermittent shrug task showed peak-like artefacts in 3 participants, showed an 

activation pattern in 1 subject and did not affect the last subject. 

 

2.3.1.3 Talking & Breathing  

The counting did not result in any artefacts in 2 out of 5 subjects. In 1 subject a 

pattern was seen that looked like deactivation. In 1 participant both HbO2 and 

Hbb decreased in both channels during the task and in the last participant a 

pattern of activation was seen that ended with a large peak at the end of the task. 

The breathing resulted in artefacts in all participants but the artefacts were quite 

variable. In 3 subjects peaks were observed in one or two channels, and in one of 

these participants the peaks in Hbb were opposite in direction to the peaks seen 

in HbO2 (figure 2.5e). In 1 subject the onset of the task was marked with an 
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increase in both HbO2 and Hbb followed by a decrease in both during the task. In 

another subject the onset was marked with a decrease in both traces at the onset 

of the task followed by an increase, immediately followed by a decrease. 

 

2.3.1.4 Movement 

The head flexion and extension task resulted in peak-like artefacts in all subjects. 

The peaks were different in amplitude and number between subjects and in 4 

subjects these peaks occurred in opposite direction for HbO2 and Hbb on one 

location. The other peaks were similar in direction for HbO2 and Hbb. During the 

lateral head movement task the same peak-like artefacts were observed as during 

the head flexion and extension task in 4 subjects. During this task the peaks were 

opposite in direction between HbO2 and Hbb for one channel in 2 subjects. A 

typical example of the peaks observed during head movements is presented in 

figure 2.5f. Movement of the optode cables resulted in peaks as well as shifts in 

the signals, similar to the head movement artefacts and frowning artefacts 

respectively. A summary of the amount of artefacts that was found based on 

visual inspection is given in table 2.3. 
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Figure 2.5a-f The most characteristic artefacts are displayed in this figure for one 

measurement location at a time. Panel a shows artefacts arising during vertical eye 

movements with closed eyes. Panel b shows artefacts that occur during jaw clenching. 

Panel c shows artefacts the occur during the continuous frown condition. Panel d shows 

the artefact occurring during the continuous shrug. Panel e shows artefacts that arise 

during deep in and exhaling. And panel f shows artefacts that occur during head 

movements. In each of the six panels a-f the deoxygenated haemoglobin (HHb) and 

oxygenated haemoglobin (HbO2) signals are depicted in blue and red respectively. One unit 

on the x-axis represents 1 second. One unit one the y-axis represents 2 µM. The first green 

vertical line indicates the start of the task, the second one the end. Note the continuous 

pulsation artefact in each signal.  
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2.3.2 Running Correlation 

For the eye movement category, the RC of the unfiltered data indicated that 

artefacts were present in 30% of the measurements. For muscle activation the RC 

showed that in the unfiltered data 38% of the measurements had artefacts and 

62% did not. The talking and breathing tasks resulted into artefacts for 25% of the 

unfiltered measurements and in the movement category this percentage was 

61%.  

 

2.3.3 Visual inspection vs. Running correlation 

When the percentages of measurements marked as having artefacts by visual 

inspection are compared with the percentage marked by the RC there is only 

agreement for the muscle activation category. In the eye category movement the 

estimated percentage of artefacts is overestimated by the RC and underestimated 

for the categories talking and breathing, and movement (table 2.3). 

Next it was determined if visual inspection and the RC method marked the same 

signals as having artefacts. If patterns of activation and deactivation are not 

considered as artefacts there was an agreement between the visual inspection 

and the RC of 73% in the eye movement. In 10% of the measurements the visual 

inspection indicated there was an artefact present but the RC did not detect it, 

and in 17% of the measurements the RC detected an artefact that was not marked 

in visual inspection. For the muscle activation category there was an agreement 

between the visual inspection and the RC in 76% of cases. In 14% of the 

measurements the visual inspection detected an artefact where the RC did not 

and in 9% the detected artefact by the RC was not seen in visual inspection. 

The methods agree to a similar extent in the talking and breathing category, with 

an agreement of 75%. In the other 25% of the measurements the visual inspection 

method detected an artefact that was not marked as an artefact by the RC. In the 

last category, movement, the agreement between the two methods is lowest with 

an agreement of 64%. The measurements that disagree (35%) are accounted for 

by a detection by the visual inspection method that was not marked by the RC. 
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 Visual 

inspection 

RC Agreement between  

visual inspection and RC 

Eye movement HbO2  20% 30% 73% 

Eye movement Hbb 20% 

Muscle activation HbO2  40% 38.2% 76% 

Muscle activation Hbb 36.4% 

Talking & breathing HbO2  50% 25% 75% 

Talking & breathing Hbb 45% 

Movement HbO2  92.9% 60.7% 64% 

Movement Hbb 89.3% 

Table 2.3 Summary of the amount of artefacts found. The amount of artefacts are 

expressed as percentages for the two methods visual inspection and running correlation 

(RC), as well as their agreement. For all tasks the amount of artefacts is given separately 

for the oxygenated haemoglobin (HbO2) and deoxygenated haemoglobin (Hbb) seperately 

for the visual inspection method. Since the RC uses both signals to determine if there is an 

artefact, here only one percentage is given. 

 

2.3.4 Signal improvement after filtering 

Two filtering steps were conducted in order to improve signal quality. First the 

signals were detrended and band pass filtered to eliminate drift and high 

frequency instrument noise. The second filtering step was CBSI-filtering. It was 

determined visually if the artefacts that were present in the unfiltered data were 

eliminated by the filtering. Hereto the same visual inspection procedure was 

adopted as described above. The previously found amount of artefacts was set at 

100% and compared to the amount of artefacts found after filtering. The 

effectiveness of the filtering procedure was also evaluated by the CNR. The CNR 

before CBSI-filtering was subtracted from the CNR after CBSI-filtering. Since an 

increase in CNR means the signal is less noise, a positive number is expected when 

the filtering is successful in increasing signal quality. An overview of these findings 

is presented in table 2.4.  

 

Visual inspection indicated that only in the eye movement category filtering was 

beneficial for some signals. In the muscle activation and movement category even 

more signals seemed contaminated by artefacts after filtering. This was caused by 

measurements that only showed an artefact in either the HbO2 or Hbb trace. After 
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CBSI filtering the artefact from the affected signal was mirrored in the other 

signal. In figure 2.6 an example is given, of a head motion artefact that is not 

filtered successfully. 
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Figure 2.6. An example of ineffective filtering of a motion artefact caused by head 

movement. The Hbb graphs are displayed in blue and the HbO2 graphs in red. Pane al 

shows the unfiltered graphs. Panel b the detrended, band pass filtered (between 0.01 and 

0.5 Hz) graphs. Note that the artefact falls within the pass band. Panel c shows the 

correlation based signal improvement (CBSI) filtered graphs. Also after this step the peaks 

that appear during the task are not eliminated. 

 

Also the CNR changes show a decrease in signal quality after filtering for 3 out of 4 

conditions instead of an increase. Only in the muscle activation category was an 

improvement of the signal seen. If only CNR changes in signals that were affected 

by artefacts (since some were not) were taken into account, the signal 

improvement of the muscle activation category became less obvious and for all 

other categories the findings did not change. 
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Category Artefacts after filtering 

(% based on visual 

 inspection) 

CNR change  

all signals 

  

CNR change 

artefact signals 

Eye movements 88.2% -0.22  

(-5.79 .. 7.14) 

-0.60  

(-5.79 .. 2.69) 

Muscle 

activation 

114.3% 0.45  

(-7.54 .. 6.71) 

0.05  

(-7.54 .. 6.71) 

Talking &  

breathing 

100% -0.42  

(-8.8 .. 5.5) 

-0.15  

(-8.8 .. 5.5) 

Movement 105.8% -0.45  

(-5.24 .. 7.34) 

-0.42  

(-5.24 .. 7.34) 

Table 2.4: Summary of signal improvement after filtering. Signal improvement was 

evaluated with visual inspection and by the contrast-to-noise ratio (CNR). The percentage 

that is given for visual inspection is the percentage that remained after filtering compared 

to the amount of artefacts that was found before filtering. A percentage lower than 100% 

indicates an improvement, a percentage above 100% indicates a worsening. The average 

CNR is displayed. A positive value indicates an improvement in signal quality a negative 

value a decrease in quality. For the CNR the minimum and maximum value found in the 

sample is displayed between brackets. 

 

2.7 Discussion 

The research conducted in this chapter sought to answer two questions. Do eye 

movement, muscle activation, talking, breathing and head motion, that can easily 

occur during a measurement, cause detectable artefacts in NIRS signals? And if so, 

is the CBSI method effective in eliminating these artefacts? Here it was 

established that the investigated movements can cause artefacts in NIRS 

measurements. Furthermore, it appeared that using the CBSI-filter does not lead 

to signal improvement in the majority of the investigated artefacts in this 

research. 

 

The unfiltered data were judged on morphology by visual inspection and the 

increase in RC was used as a more objective indication of the presence of a 

possible artefact. This showed that in all task categories artefacts can be an issue. 

Based on morphology, different types of artefacts can be distinguished, starting 
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with a fast response and a sudden shift. Artefacts belonging to the fast response 

class showed peaks in the NIRS signal that can be directly linked to the occurrence 

of movements made by the subject. Fast response artefacts were mainly present 

during the head movement tasks and the task in which the optode cables were 

moved. In one subject this artefact was also seen during vertical eye movements. 

The origin of this type of artefact is thought to be found in a change in optical 

coupling of the optode onto the scalp (Izzetoglu et al., 2005, Cooper et al., 2012, 

Brigadoi et al., 2014). If the optode is placed tightly onto the head, movement of 

the cables could lead to slight tilting of the optode, which causes the transmitter 

to illuminate a brain area adjacent to the original region of interest for a brief 

period of time (without the receivers collecting ambient light). Movements of the 

head also can lead blood to be moving away or towards the area under 

investigation, which causes the concentrations of Hbb and HbO2 to change 

(Izzetoglu et al., 2005). A sudden shift in either the Hbb or HbO2 signal was mainly 

observed in all subjects in the two frowning tasks as well as in some subjects 

during the task in which the optode cables were moved. This type of artefact can 

also originate from a change in optical coupling of the optode onto the scalp 

(Izzetoglu et al., 2005, Cooper et al., 2012, Brigadoi et al., 2014). Possibly the 

optode itself shifts either caused by the underlying muscle or the movement of 

the cable. 

 

A potential third class can be distinguished based on morphology which is the 

slow response. Several tasks in the eye movement category, the muscle activation 

category and the talking and breathing category showed a pattern that looks like 

that seen during brain activation or during deactivation (an increase in HbO2  

accompanied by a decrease in Hbb and vice versa respectively). Often this 

response is delayed with respect to the onset of the task. Brigadoi et al., (2014) 

describe a similar kind of artefact which in their research was related to jaw 

movements due to speech, necessary for the task under investigation. Different 

from the study of Brigadoi et al. (2014), the current study lacked a tasks in which 

brain activation or brain deactivation is expected. Therefore this class of response 

needs some further attention. A possible explanation are changes in blood 

oxygenation of superficial muscles. This makes this type of “artefact” the most 

dangerous in terms of misinterpretation of data because the morphology is 

difficult to distinguish from an actual physiological brain response. However, since 
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brain activation or deactivation during the tasks cannot be excluded, these 

responses were not considered artefacts in this chapter. The frontal cortex could 

have been activated by the processing of the instructions that were given to the 

participant at the start of the task. Similarly, a pattern of brain deactivation could 

be caused by the absence of processing by the frontal cortex while participants 

were executing fairly boring tasks.  

 

The final class would be the artefacts that occur due to cardio respiratory activity 

which have been described in the literature before (Boas et al., 2004). In this 

study the in- and exhaling task showed artefacts that fall within this category. 

Therefore, interpretation of NIRS signals during tasks in the breathing pattern of 

subjects is altered should be interpreted with caution. 

 

Although the focus of this chapter is on motion artefacts, awareness needs to be 

raised with regards to artefacts that arise from physiology based systemic 

artefacts. Due to the sensitivity of NIRS to changes in the superficial layers of the 

head like the skin and skull, these systemic changes caused by cardiac activity, 

respiration, changes in blood pressure, skin conductance, body temperature or 

any other autonomic regulated process, contaminate NIRS results and can be 

mistaken for cerebral responses (Gagnon et al., 2012, Kirilina et al., 2012). 

Especially since autonomic changes easily occur during many research paradigms 

in which cognitive or emotional processing is warranted which couples the 

systemic artefacts to the functional evoked response (Kirilina et al., 2012). 

However, it is not only during tasks that this type of artefact plays a role. During 

resting state analysis the same autonomic changes in superficial layers can distort 

the signal of interest (Tong et al., 2013) This type of artefact might therefore 

interchangeable with the slow response class of artefacts described above which 

mimics brain activity but originates elsewhere. 

 

In a multimodal NIRS and fMRI study Kirilina et al. (2012) showed that the 

systemic artefacts found in the NIRS signals co-localized with veins draining the 

scalp. They were able to filter these artefacts by using the fMRI signal as a 

regressor, but that is not feasible for many NIRS studies. The approach that is 

suggested most often is to use an optode pair with a short distance to measure 

the systemic artefacts in the superficial head layers and use that in order to clean 
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the signal from the normal distanced optode pair (Zhang et al., 2007a, Zhang et 

al., 2007b, Zhang et al., 2009). However, it has been reported that the systemic 

artefacts occur inhomogeneous across the surface of the scalp (Gagnon et al., 

2012, Kirilina et al., 2012). Gagnon et al. (2012) even showed that the short 

separation channel must be no further away from the channel of interest as 1.5 

cm in order to be able to generate improvements of practical use. Once the 

distance reaches 2 cm only mild or negligible improvements were found. This 

means that for every measurement channel a separate short distance channel is 

needed, which is not feasible in all research paradigms due to the limited 

availability of NIRS channels and the rigidity of optode configurations in some 

systems. 

 

In this chapter it was evaluated whether the RC was capable of reliably detecting 

the presence of motion artefacts. It was shown that in approximately 75% of the 

measurements visual inspection and RC, methods agree whether or not an 

artefact is present. When only the RC is used, an overestimation on eye 

movement artefacts and an underestimation in talking and breathing and 

movement artefacts can occur. Some artefacts cause the HbO2  and Hbb signals to 

move in opposite directions, pushing the correlation between them to be more 

negative and as such, the RC will not mark the measurement as having artefacts. 

Therefore an element of visual inspection of the data can never be omitted and 

this emphasizes the importance of guidelines for recognizing different artefacts. 

 

Artefacts that arise from a change in optical coupling could possibly be prevented 

by improving this coupling. Recently, two modifications to the optodes have been 

proposed that aim at improving the optical coupling. The first proposal consisted 

of a brush-fibre optode that could be mounted on commercially available optodes 

(Khan et al., 2012). The brush-fibre optodes pierce through dense hair more 

easily, ensuring a better coupling. Furthermore, the authors established in their 

own research that the set-up time decreased by a factor three and the signal-to-

noise ratio improved up to ten times (Khan et al., 2012). The reduction in motion 

artefacts was unfortunately not investigated. Yucel et al., (2014) did research the 

reduction in motion artefacts since they are interested in using their solution in 

epilepsy patients during seizures. They propose the use of a prism based fibre, 

which is smaller than a regular optode. The small optode can then be fixated on 
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the head by means of a piece of gauze soaked in collodion (a clinical adhesive 

used in the field of EEG). In their tests a reduction of motion artefacts of 90% was 

found compared to regular measurement set-ups (Yucel et al., 2014). Alongside 

this reduction in artefacts an increase in signal-to-noise ratio of 3 to 6 times was 

reported. 

The second question, whether the CBSI method was effective in eliminating the 

observed artefacts was investigated by two methods as well. First, visual 

inspection was used again to decide if the artefacts had diminished, and as a more 

objective measure for signal quality the CNR was calculated. From visual 

inspection the proposed filtering method hardly seemed useful in eliminating 

artefacts. Artefacts that influenced the HbO2 and Hbb signal in opposite directions 

were not detected by the RC and not influenced by the CBSI at all. Furthermore, 

artefacts that only occurred in the HbO2 or Hbb signal were transferred to the 

other modality by the CBSI. Peak-like artefacts did sometimes decrease in 

magnitude but the most concerning aspect was that the CBSI changed the signal 

in terms of direction of response and timing for nearly all artefacts that were 

analyzed. Also, the CNR only showed a moderate improvement in signal quality 

for the muscle activation category. Cui et al. (2010) reported signal improvement 

after CBSI filtering in all measurements and improvement was largest in signals 

which had more artefacts. The only category that showed an increase in CNR (the 

muscle activation category) showed an average improvement of 0.30 which far 

from the average improvement of 0.85 reported by Cui et al. (2010).  

A reason for the different findings in this study and the study performed by Cui et 

al. (2010) could be the differences in research paradigm. Cui et al. (2010) used a 

paradigm in which the artefacts were induced while performing a task (finger 

tapping) that is known to induce a brain response. The current research was 

conducted without an additional paradigm known to cause a response and 

therefore the artefacts are induced upon baseline activity. The RC and CBSI have 

been modelled by use of the Balloon model, which has been reported as having a 

good correspondence with experimental measures of HbO2 and Hbb (Buxton et 

al., 1998). Furthermore, it was reported by Cui et al. (2010) that the close to -1 

correlation between HbO2  and Hbb was strongest during activation and becomes 

less negative during the plateau period. Since no activation paradigm was used in 
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this study it is likely that the RC and CBSI methods are not the optimal choice for 

noise reduction when trying to eliminate artefacts from baseline or resting state 

data. 

 

Furthermore, the method was originally designed to filter head movements (Cui 

et al., 2010). As reported in this chapter and also by Brigadoi et al (2014) different 

types of motion artefacts exist. Their shapes, frequency content, timing and 

amplitude can vary greatly. Furthermore, some motion artefacts can be much 

harder to recognize due to a coupling with the actual hemodynamic response 

under investigation (Brigadoi et al., 2014). Therefore caution is warranted in the 

selection of methods for artefact detection and removal. Different types of 

artefacts might be better treated with different methods of analysis. 

 

 Brigadoi et al. (2014) investigated the CBSI method alongside other approaches in 

a linguistic paradigm that resulted in an artefact caused by the jaw induced by the 

vocal response. This caused the artefact to be coupled to the hemodynamic 

response under investigation. In this paradigm, where the linguistic task also 

caused a response, the method was capable of improving the measured signals. 

However, they do raise the very important issue that the CBSI method makes 

assumptions that are not always met. The most important assumption is that 

HbO2 and Hbb are always positively correlated during an artefact, which is also 

contradicted by multiple examples in this chapter (e.g. see figure 2.5 and 2.6). 

Furthermore, it is assumed that the ratio between HbO2 and Hbb has a constant 

value during both time periods with and without artefacts present. When this 

seems to change, it will have a tremendous effect on the results of the CBSI 

method, compromising interpretation.  As a second drawback they emphasize the 

recovery of the Hbb signal from the HbO2 signal (Brigadoi et al., 2014). In doing so, 

the Hbb response is not linked anymore to the acquired data and especially when 

studying pathologies this rigid relationship between HbO2 and Hbb is not always 

maintained, leading to false interpretation again (Brigadoi et al., 2014). Brigadoi et 

al. (2014) report wavelet analysis to have better capability in distinguishing the 

actual NIRS response from noise in their paradigm. However, this again requires 

an actual response to be present which was not the case in this chapter.  
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2.8 Conclusion 

This chapter demonstrates and reconfirms that motion artefacts can easily be 

induced in NIRS measurements. Different types of motion artefacts exist, some 

easier recognized than others. The RC over or underestimates motion artefacts 

depending on the type of artefact and should therefore never be the sole method 

for artefact detection. Visual inspection and knowledge about the different 

artefacts is essential in valid NIRS analysis, especially because some artefacts fall 

within the frequencies of interest. Furthermore, CBSI filtering was ineffective for 

filtering motion artefacts from resting state data and generated heightened 

conditions of false interpretation. In EEG the research in automated artefact 

removal has been researched for longer and is therefore better justified (Daly et 

al., 2013, Iriarte et al., 2003). This is not the case for NIRS. Methods that have 

proven ready to use in EEG are not as effective in NIRS, possibly due to multitude 

of factors that contribute to the artefact and the overlap with systemic physiology 

(Brigadoi et al., 2014, Sweeney et al., 2012). 

This should be kept in mind in designing studies and clinical measurement 

protocols. Especially in real life studies and exercise studies, the motion artefacts 

as well as the artefacts caused by systemic changes will have greater influence 

and should be interpreted with extreme caution. Therefore, it is of great 

importance that researchers or clinicians working with NIRS are trained in the 

recognition of artefacts. Correct recognition of the artefacts is the first step in 

prevention and ultimately elimination of artefacts, which will lead to reliable 

interpretation of NIRS measurements. Before measurements are interpreted, 

prevention can be found in methods that enhance optode scalp coupling. 

Furthermore, considering the difficulty of detecting motion artefacts, it could be 

helpful to videotape the participant during the measurements or to monitor 

motion in some way. This allows for an opportunity to re-evaluate the 

participants’ behaviour when a possible artefact is seen during offline analysis. 

The occurrence of motion artefacts in NIRS as well as the occurrence of systemic 

physiological artefacts and the difficulties in recognizing them and filtering them 

may delay the introduction of NIRS as an easy to use, valid, and reliable measure 
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of optical brain activity in the general clinic. Hereto, more research should be 

devoted to overcome these issues and to generate easy to apply solutions.  
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Chapter 3: Exploring brain activity with simultaneous 

EEG and NIRS measurements in eyes open and eyes 

closed blocks using static analysis techniques 

Resting brain activity has been found to be an important stepping stone for brain 

functioning in general. From a clinical perspective brain activity at rest provides 

great perspective for diagnostic purposes. The aim of this chapter was to 

investigate the feasibility of conducting measurements of both the electrical 

activity of the brain as well as its metabolic activity. This was done in a paradigm 

in which the visual cortex of healthy subjects was investigated  both with eyes 

open and eyes closed. The electrical as well as the hemodynamic measures are 

explored separately as well as combined. In order to examine the interaction 

between electrical and hemodynamic activity this chapter is limited to the use of a 

static correlation analysis. 

3.1 Introduction 

3.1.1 Investigating resting state activity 

Since 1995 a steady increase in the number of resting state functional 

neuroimaging studies has been witnessed (Cole et al., 2010). In classical fMRI 

research subjects are measured under different conditions. A baseline 

measurement either with open or closed eyes is carried out and subjects are 

required to perform a task in the scanner, or are presented with a stimulus. 

Subsequently, the pattern of brain activity during the baseline condition is 

subtracted from the pattern seen during the task, leaving a profile of regions 

active during and therefore involved in the execution of the task.  However, this 

approach led researchers to bump into the phenomenon of task related decreases 

of activity in particular regions of the brain, indicating that the brain is more active 

in these regions during rest than during task performance (Raichle et al., 2001, 

Greicius et al., 2003). Interestingly, while different tasks cause activity in different 

brain areas, the areas in which decreased activity is seen during task performance 

appeared to be largely task independent as it was seen in a wide variety of tasks 

(Raichle et al., 2001). This led to the believe that the brain had a baseline mode of 

functioning referred to as the Default Mode Network, which was investigated by 
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Raichle et al. (2001) by means of the oxygen extraction factor (OEF) determined 

from PET measurements and showed to include among others the brain areas 

MPFC and the posterior cingulate and precuneus. Greicius et al. (2003) used 

functional connectivity analysis on resting state fMRI data in order to reveal the 

default mode network. Hereby they provided evidence that a cohesive, tonically 

active network indeed exists and showed that this default mode network was 

most active during rest and minimally disrupted by sensory processing tasks with 

limited cognitive demand. They also found evidence for an inhibitory interaction 

between activated regions and regions of the default mode network by 

establishing an inverse correlation between the default mode network and brain 

regions that were activated during task performance. 

The idea that the brain is active during rest is not new. Already in 1929, the 

inventor of the EEG Hans Berger indicated that even when doing nothing the brain 

still showed spontaneous oscillatory activity (Berger, 1929). This notion is 

supported by the fact that at rest the brain consumes 20% of the bodies oxygen 

while only accounting for 2% of the body weight (Raichle et al., 2001, Fox and 

Raichle, 2007). Moreover, when performing a task, the oxygen demand of the 

brain does not increase by more than 5% in relation to this resting state 

consumption (Fox and Raichle, 2007, Raichle, 2010). So this spontaneous neural 

signalling during rest, that cannot be attributed to specific inputs or outputs and 

therefore represents neural signalling that is intrinsically generated by the brain,  

has to be important for brain functioning in general (Fox and Raichle, 2007). 

The default mode network however, does not resemble the only brain areas that 

are active during resting conditions. In 1995 Biswal et al. showed that 

spontaneous fluctuations of the BOLD signal in the left somatomotor cortex were 

specifically correlated with spontaneous fluctuations in the right somatomotor 

cortex and with medial motor areas without overt motor behaviour being present. 

By means of functional connectivity analysis this finding was replicated several 

times and more networks were indicated. Generally it appeared that the regions 

that are similarly modulated by various task-paradigms are also correlated in their 

spontaneous BOLD activity (Fox and Raichle, 2007, Smith et al., 2009). These 

networks are referred to as resting state networks (RSNs) or intrinsic connectivity 

networks (ICNs) (Beckmann et al., 2005, Buckner, 2012). RSNs have spatially 
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similar characteristics between subjects and are seen in BOLD fluctuations 

between 0.01 and 0.1 Hz (Beckmann et al., 2005, Smith et al., 2009). Different 

networks that have opposing functionality also are anti-correlated in their 

spontaneous BOLD activity (Fox and Raichle, 2007). The notion that the 

spontaneous variations of BOLD activity remain present during task performance 

might be the explanation of the intra individual differences that are seen during 

event-related BOLD measurements. It might even be contributing to the inter-trial 

variability in human behaviour (Fox and Raichle, 2007).  

 

This makes resting state activity a very important area of study. The relationship 

between brain and behaviour and especially the possible explanation of 

differences in behaviour could have a huge added value in the investigation of 

pathologies that are currently diagnosed based on behavioural criteria. This 

currently includes all psychopathologies that are described in the DSM-IV-TR 

(Association, 2000). The study of resting state activity could give insight into 

markers which can be an objective aid for diagnosis (Khamsi, 2012). Investigating 

resting state activity is also very practical. Since there is no task involved, patients 

that have difficulty performing certain tasks do not have to be excluded anymore. 

This makes it easier to study infants, children, sedated subjects or subjects with 

severe cognitive or physical impairments (Cole et al., 2010). Furthermore, the 

different networks can be assessed in one scanning session relieving the burden 

for the patient during testing (Smith et al., 2009). In different pathologies already 

disturbances in the correlation structure of the different networks have been 

found. These include Alzheimer’s disease, multiple sclerosis, depression, 

schizophrenia, ADHD, autism, epilepsy, and spatial neglect following stroke (Fox 

and Raichle, 2007, Pievani et al., 2011, Buckner, 2012). In depression for example, 

a diminished connectivity between one area of the default mode network and 

areas that regulate emotions is found (Raichle, 2010). Besides diagnostic 

information it might also be possible to obtain prognostic information and obtain 

more insight into disease causes and treatment strategies (Raichle, 2010).  

However, when considering the option to implement measures of resting state 

brain activity in clinical practice, using fMRI might be not the most practical 

approach. Using a technology like near- infrared spectroscopy (NIRS) could be a 

preferable option since it is lightweight, portable, inexpensive to purchase and 

use compared to fMRI, and can be used at the bedside making it suitable for all 
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lines of healthcare (Lu et al., 2010, Mesquita et al., 2010). As yet, NIRS has not 

been used on a regular basis to investigate the brain in a resting state. Over the 

last 5 years a hand full of  studies have been conducted in which the NIRS 

technology, either with or without supporting neuroimaging techniques like fMRI 

and EEG, has been investigated for potential use in researching RSNs (for 

examples see (Lu et al., 2010, Mesquita et al., 2010, Sasai et al., 2011, Sasai et al., 

2012, White et al., 2009, Zhang et al., 2010). The results seem promising although 

more research needs to be conducted before connectivity analysis of resting state 

NIRS data can be implemented as a clinically valuable tool. 

From that perspective one should note that it is not just connectivity that can be 

derived from resting state and tell something valuable about brain functioning or 

distinguish between pathologies. The field of quantitative EEG (QEEG), which uses 

profiles of frequency bands, has proven on many occasions that patterns of brain 

activity seen in  psychopathologies can be differentiated from patterns of brain 

activity in healthy people (for a review see (Coburn et al., 2006). Furthermore, 

different patterns of brain activity are seen in different psychopathologies. In 

ADHD for example an increased theta/beta ratio is a marker that distinguishes 

children who have or do not have the disorder with a sensitivity and specificity of 

respectively 86% and 98% (Monastra et al., 1999). In depression the frontal alpha 

asymmetry in which higher amplitudes of alpha wave activity are displayed in left 

frontal brain areas compared to right frontal areas is the distinguishing pattern 

(Davidson, 1992, Davidson, 1998, Putnam and McSweeney, 2008). Findings like 

this make (Q)EEG suitable for investigating brain function and developing 

biomarkers based on brain activity. 

As with NIRS, EEG (or QEEG) has the advantage of being low cost and portable 

makes it highly suitable for clinical use (Kaiser, 2005). Especially the combined use 

of EEG and NIRS in investigating brain activity at rest could create more insight in 

the underlying mechanism of neural activity and energy metabolism. In order to 

determine failing aspects in this symbioses in (psycho)pathologies, one first 

should have insight in the neural vs. oxygenation relationship in healthy working 

brains.  

When resting state activity is considered, researchers adopt different protocols. 
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For some it is evident that resting state activity should be measured in a condition 

in which the eyes are closed. Others also speak of resting state activity when the 

subject is doing nothing with eyes open. From EEG research we know that during 

a resting state condition with closed eyes alpha wave activity occurs over the 

occipital cortex. Upon opening the eyes this alpha wave subsides due to the visual 

input the occipital cortex has to process (Pfurtscheller et al., 1994). Moosmann et 

al. (2003) investigated changes in the occipital EEG alpha rhythm  upon opening 

and closing of the eyes together with changes in fMRI and NIRS. In their study the 

combination of alpha and Hbb (N=4) resulted in a strong positive correlation at a 

delay of about 8 seconds. As an extension of their work and in an attempt to 

better understand the coupling between EEG measures and oxygenation 

parameters during resting state, this chapter will explore the difference in resting 

state activity of the occipital (visual) cortex between eyes open (EO) and eyes 

closed (EC) in a sample of 38 healthy adults. Changes in alpha wave activity are 

compared to changes in HbO2 as well as Hbb concentrations. 

3.1.2 Investigating the QEEG 

When investigating the brain’s underlying mechanisms of functioning and possible 

symbioses between direct electrical activity and indirect metabolic activity, 

limiting the investigation to one parameter in the electrical domain, could be 

insufficient. As was pointed out in chapter one, quantitative EEG (QEEG) research 

usually investigates multiple frequency bands (Kaiser, 2005). Therefore the alpha 

band is not the sole band that is investigated in research regarding either EO or EC 

resting state activity. Changes in other bands have been reported as well. For 

example, Barry et al. (2007) have reported average changes in frequency bands 

between EO and an EC resting conditions in adults in which they found that during 

EC conditions delta, theta, alpha and beta activity were generally higher 

compared to EO conditions. The only exception here was the beta activity (which 

they defined between 13.5 and 25 Hz), that did show an increase upon opening 

the eyes in the frontal region despite the fact that the general pattern showed a 

decrease during EO conditions. The findings on delta, theta are perfectly in line 

with previous research that has coupled delta and theta activity to attention and 

alertness (De Gennaro et al., 2007, Braboszcz and Delorme, 2011). When a 

subject’s attention or alertness decreases, for example when the mind wanders 

from a task that was assigned or because of sleepiness, the magnitude of the 
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delta and theta bands increases. Since the mere action of opening the eyes 

increases a subject’s alertness, it is expected that the opening of the eyes also 

causes the delta and theta activity to subside. The changes in alpha activity are 

also straightforward. An increase in alpha wave activity has been described as the 

idling state of the brain (Kaiser, 2005), which would be seen upon closing the 

eyes. The findings of Barry et al. (2007), on the beta activity, are actually more 

unexpected as the beta activity of the neocortex has been related to top-down 

cognitive processing (Okazaki et al., 2008, Iversen et al., 2009). Therefore in this 

chapter it is assumed that that when the eyes are opened and the visual cortex 

starts to process information, the beta activity will go up instead of down. These 

hypotheses will be investigated in this chapter when the differences between 

blocks of  EO and EC are compared for the delta, theta, alpha, beta1 and beta2 

frequency bands. 

3.1.3 The alpha peak frequency as a measure of general brain functioning 

Within the alpha band a separate parameter can be found that can be important 

in revealing aspects of general brain functioning, the alpha peak frequency (APF). 

The reason why it is assumed that it gives information about general brain 

functioning is threefold. First, the APF increases in frequency when a brain 

matures. As early as the 1930s it has been described that as a person increases in 

age, this is accompanied by an increase in fast wave brain activity and a decrease 

in slow wave activity (Smith, 1938, Lindsley, 1939). Together with this increase in 

faster activity with age, a change in mean frequency can be observed. In 

adolescents and adults the brain’s stationary rhythm of oscillation lies in the alpha 

band, usually around 10 Hz, and is visible as a distinguishing peak in the spectrum. 

In children this peak is slower and increases in frequency until puberty (Bazanova 

and Vernon, 2013).  If children display a peak at a slower frequency for too long, 

when the dominant slow frequencies are not replaced with the faster frequencies, 

their EEG is characterized as having a maturational lag (Clarke et al., 2002). The 

maturational lag often is accompanied by difficulties in reading and writing 

abilities (Harmony et al., 1995, Becerra et al., 2006). This is in line with reports 

that couple the frequency of the APF to speed of information processing 

(Klimesch et al., 1996), cognitive performance (Grandy et al., 2013a), memory 

performance (Klimesch et al., 1993, Richard Clark et al., 2004) and even 
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intelligence (Grandy et al., 2013b) which all become better with higher frequency 

of the APF .  

This link of the APF with cognitive abilities is the second clue for a role in general 

brain functioning. As an example Klimesch et al. (1993) have found that in an age 

matched sample, subjects that perform better on a memory task display an APF 

that is 1 Hz higher than the APF of subjects that perform less well. Along with the 

other evidence, this gives rise to the notion that when the APF could be 

influenced or trained to reach a higher frequency this would positively influence 

information processing speed and cognitive performance. In order to test this, 

Klimesch et al. (2003) stimulated the individual APF with repetitive transcranial 

magnetic stimulation (rTMS) during a resting condition in two groups and 

measured the improvement on a mental rotation task. In the first group the APF 

was stimulated 1Hz above the individual APF and in the control group the APF was 

stimulated 3 Hz under the individual APF or at 20 Hz (beta frequency). They found 

that only in the individual APF +1 group the accuracy of the mental rotation task 

increased. The very same task was used by Hanselmayr et al. (2005) however, the 

method chosen to influence APF was neurofeedback in which the goal was to 

increase upper alpha power (individual APF + 2 Hz). The control group had to 

decrease their theta power (individual APF -6 Hz). The subjects that were able to 

enhance their upper alpha during the neurofeedback sessions were the only ones 

who increased their performance on the mental rotation task. 

The third and last reason why APF could be linked to general brain functioning can 

be found in the field of brain deterioration. While the APF increases when people 

mature, the APF is also known to drop again as we get older. Bazanova and 

Vernon (2013) report this drop to commence after 40 years of age.  Duffy et al. 

(1984) report the frequency of the APF to be stable between 30 and 50 years of 

age and found a drop in APF in the age group between 60 and 80 years of age 

(Klimesch, 1999). A linear relationship between APF and age (in the 20 to 70 year 

old band) which can be summarized in the formula                     

is even reported (Richard Clark et al., 2004). So despite the lack of agreement on 

the exact onset, research agrees that when the brain ages the APF decreases 

again. The decrease in APF is also seen, independent of age, when people suffer 

from different forms of dementia, like Alzheimer’s disease (Moretti et al., 2004, 
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Chen et al., 2013) but also immediately after stroke (Jordan, 2004). The decline in 

cognitive abilities that is reported with progressing age and in the aforementioned 

pathologies is again a feature that is congruent with the relationship that is found 

between APF and cognition. 

Because the APF is a key feature in the spectrum and can give us so much 

information on brain functioning, the APF will be explored in this chapter as well. 

Since the participants are healthy adults, the focus of this investigation will lie in 

the stability of the APF. Supposedly the APF is stable across hemispheres and 

between eyes open and eyes closed conditions (Grandy et al., 2013b). Therefore it 

is hypothesized in this chapter that no differences will be discovered between 

eyes open and eyes closed conditions and that no changes will be seen over the 

time course of the measurement conducted in this study.  

3.1.4 Investigating NIRS time series 

In EEG and QEEG it is very common to use spectral analysis to determine the 

oscillations that are present within a signal. It is the way the spectral bands 

described above are found and the analysis that is needed to find the APF. For 

EEG, Klimesch (1999) defines an oscillatory component by the presence of 

rhythmic activity in the EEG, which is manifested by a peak in spectral analysis. In 

essence spectral analysis is not limited to EEG. It can be conducted on any time 

series that contains oscillations. As such, it is used to break down music but also in 

other neuroscientific measurements like MEG spectral analysis is common (for a 

review see (Hari and Salmelin, 2012)). In research that investigates brain activity 

by NIRS, spectral analysis of the obtained time series of concentration changes, is 

less common. Usually the key features of interest are the concentration changes 

of HbO2 and Hbb between a baseline and a task and the NIRS technique is used to 

obtain an image of these changes (for a review see (Obrig and Villringer, 2003)). 

However, spectral analysis in NIRS time series can give valuable information. It is 

an important tool in defining noise. As is pointed out in chapter two, instrument 

noise is defined as noise high in frequency whereas physiological noise like heart 

rate and respiration are in the low frequency domain and much more in the part 

of the spectrum where the changes of interest are expected (Boas et al., 2004, 

Huppert et al., 2009). Furthermore, resting state research has reported the 

occurrence of slow oscillations in fMRI BOLD as well as NIRS signals that can be 
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interconnected in resting state networks (Fox and Raichle, 2007, Lu et al., 2010, 

Sasai et al., 2011). Therefore, in this study a spectral analysis will be applied to the 

HbO2 and the Hbb time series in order to determine whether oscillatory 

properties can be found in these signals over the O1 and O2 location. Naturally 

the more common concentration changes in HbO2 and Hbb between EO and EC 

blocks will be investigated as well. As clarified in chapter one, an increase in 

neural activity is fuelled by glucose and oxygen metabolism (Irani et al., 2007). 

Therefore, a brain region that is more active is expected to show higher 

concentrations of HbO2 and lower concentrations of Hbb. Over the visual cortex 

this was also found by Moosman et al. (2003) who reported an increase in HbO2 

concentrations with closed eyes and a decrease in Hbb when the eyes were open. 

This leads to the hypotheses for the study in this chapter that during EO blocks 

the concentrations of HbO2 and Hbb are respectively higher and lower when 

compared to EC blocks. 

3.1.5 A summary of the investigated hypotheses 

In this chapter a study will be conducted in a sample of 38 healthy adults under 

eyes open and eyes closed conditions. Various aspects of the EEG and NIRS 

measurements over the occipital cortex will be explored. First, a static analysis will 

be performed on the EEG frequency bands delta, theta, alpha, beta 1 and beta 2 

in order to determine whether there are differences between the EC and EO 

blocks. The hypothesis being that slower frequency bands (delta, theta and alpha) 

are higher during EC conditions whereas the faster bands (beta 1 and beta 2) are 

lower compared to EO conditions. Second, the APF will be determined and it will 

be investigated whether there are changes between the EC and EO blocks. 

Hypothesized is that this measure is stable between conditions and over time. 

Third, the differences between blocks in HbO2 and Hbb concentration will be 

analyzed. It is expected that during EC conditions the concentration of Hbb will be 

higher compared to EO conditions. For HbO2 concentrations the opposite is 

expected and higher HbO2 concentrations should be found during EO blocks. 

Fourth, a spectral analysis will be used on the HbO2 and Hbb time series in order 

to investigate potential rhythmical oscillations. No hypothesis is formulated for 

this exploration. Last, the changes in alpha activity will be correlated against the 

changes in Hbb and HbO2 in order to reveal underlying relationships. For this 
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analysis it is expected that alpha activity correlates positively with Hbb 

concentrations and negatively with HbO2 concentrations. 

3.2 Methods 

3.2.1 Subjects 

In this study 38 subjects (21 female) were measured with EEG and NIRS 

simultaneously. In the original dataset 43 subjects were measured. However, the 

data of 5 subjects had to be discarded on inspection of data due to poor signals 

and high levels of noise. The mean age of the remaining population was 37.74 

years (range 19-60). The exploratory nature of this research entailed the 

uncontrolled recruitment of subjects for this study, therefore no age restrictions 

other than over 18 years of age were applied. 

Participants visited the laboratory on a single occasion. The testing procedures 

were explained and participants were offered the opportunity to ask questions 

before signing consent. The study was approved by the University ethics 

committee (070300) in accordance with the standards of the Declaration of 

Helsinki. A questionnaire was presented to the participants before testing, ruling 

out any neurological, psychopathological or vascular disease as well as the use of 

any medication that might affect the EEG or NIRS activity. After completing the 

questionnaire the measuring equipment was mounted on the head and 

participants were seated comfortably in front of a computer screen. 

3.2.2 Paradigm 

The testing paradigm constituted of a 5 minute measurement in which the 

subjects were asked to open and close their eyes and maintain this position for 30 

second episodes. Two paradigms were evenly distributed between the subjects. 

Paradigm A started with an episode of eyes open as displayed in figure 3.1, 

paradigm B started with eyes closed and can therefore be seen as  the reverse of 

paradigm A. 
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Figure 3.1 The experimental paradigm (paradigm A). Episodes with eyes open are indicated 

with a light blue colour and the letters EO, eyes closed episodes are indicated with the 

letters EC and a dark blue colour. 

During the episodes in which the eyes were open subjects observed a “test 

screen” picture on a computer screen (figure 3.2). This picture was chosen to 

ensure a controlled visual stimulation task among all subjects. 

Figure 3.2 The test screen picture that was presented to the subjects on the computer 

screen in the eyes open blocks. 

3.2.3 Equipment 

EEG and NIRS measurements were performed simultaneously over the O1 and O2 

location of the 10-20 EEG locations system (Jasper, 1958) as depicted in figure 3.3 

with the reference electrode placed at the vertex (Cz). EEG was recorded with a 

BIMEC (Maastricht Instruments B.V. Maastricht, the Netherlands). The BIMEC is a 

universal  biopotential amplifier that is able to record signals between -1000 and 

+1000 mV. A 20-bit AD-conversion is used to digitize the analogue input signals. In 

order to measure EEG a gain of 200 and a sample frequency of 250 Hz was used. 

The data were filtered by a 4th order Butterworth high pass and low pass filter 

embedded in the amplifier with their cut off values set at 0.5 and 50 Hz and their 

roll off values being -24dB. Additionally the amplifier was equipped with a 50 Hz 

notch filter. Last a 7th order Butterworth low pass filter with a cut off value of 32 
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Hz and a roll off value of -42 dB was embedded in the data acquisition software 

(BMC Acquisition Software, Biometrisch Centrum B.V., Gulpen) ensuring clean 

data between 0.5 and 32 Hz, the bandwidth of interest. The NIRS measurements 

were conducted with one transmitter and one receiver over both locations 

(OXYMON Mk III, Artinis B.V. Zetten, the Netherlands) (figure 3.3). The 

transmitters were equipped with semiconductor, pulsed laser diodes, which used 

nominal wavelengths of 855 and 780 nm. The detectors were avalanche photo 

diodes which had a special optic filter to filter out daylight. The signal was 

sampled at 25 Hz. Sampling at 25 Hz is quite high for NIRS measurements, but 

since multimodal measurements were conducted, sample frequencies for both 

modalities were chosen in a way that allows easier comparison in a later stage of 

data processing.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.3 The electrode and optode positioning in the 10-20 system for electrode 

positioning. On the left hand side a schematic representation is shown. The electrodes are 

represented as black dots, whereas the transmitters and receivers are depicted in red and 

blue dots respectively. On the right hand side, one of the subjects demonstrates the 

electrode and optode positioning in which the upper picture shows the electrodes and the 

lower picture shows how the optode holder is placed over the electrodes and secured with 

a Velcro strap.  
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3.2.4 Experimental procedure 

A schematic representation of the experimental setup is provided in figure 3.4. 

The participants were seated in a comfortable chair on approximately 1 m 

distance from a computer screen. This screen was attached to the laptop of the 

experimenter in order to display the test screen (figure 3.2). First the Cz, O1 and 

O2 positions were determined according to the 10-20 EEG locations system 

(Jasper, 1958) by means of a measuring tape and a dermographic pencil. The skin 

on these locations was gently abraded with a cotton tip soaked in NuPrep (D.O. 

Weaver & Co, Aurora, USA). The residual NuPrep was removed from the skin with 

a cotton pad and the Ag/AgCl electrodes (cable length 1 m) were attached to the 

scalp by means of Ten20 conductive paste (D.O. Weaver & Co, Aurora, USA). 

Impedances were measured and ensured to be below 10 kΩ. The EEG amplifier 

was attached to the laptop that also displayed the picture on the computer 

screen. 

The optodes were then placed over the electrodes on the O1 and O2 locations 

(figure 3.3) by means of optode holders. The optode holders allowed the 

transmitter and the receiver to be securely screwed into place at an inter optode 

distance of 35 mm. The optode holders were fastened with help of Velcro straps 

after ensuring as little hair as possible was between the optode and the scalp. 

When necessary the hair was pushed aside with help of the back of a cotton tip. In 

order to reduce the amount of noise from movement  the optic fibres, the 315 cm 

long fibres were led away from the subject by hanging them from a hat stand. 

From here the optic fibres were led to the OXYMON Mk III. This device was 

attached to a second laptop, operated by the experimenter. After checking the 

signal quality on both devices, the paradigm was started. The entire paradigm was 

measured as one measurement that lasted 5 minutes. Every switch from EO to EC 

and vice versa was indicated by a marker which was registered by both laptops. 

The experimenter was facing the subject constantly sideways in order instruct the 

subject and to verify compliance to the paradigm. 
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Figure 3.4 Schematic representation of the experimental setup. The participant (A) is 

guided by the experimenter (B) while watching the computer screen (C). The computer 

screen and the EEG device (D) are attached to laptop 1 (F) and the NIRS device (E) is 

attached to laptop 2 (G). The hat stand (H) leads the optodes (I) towards the NIRS device. 

The electrodes (J) are attached to the EEG device. 

 

3.2.5 Data analysis 

3.2.5.1 Spectrum content EEG  

In order to calculate the shares of delta, theta, alpha, beta 1 and beta 2 activity in 

the EEG data, the Fourier Transform was used. The specific waves were defined in 

the spectrum as follows: delta 0.5-3.5 Hz, theta 3.5-7.5 Hz, alpha 7.5-12 Hz, beta1 

15-20 Hz, beta2 20-32 Hz. The spectrum content was calculated over the second 

half of every block for both locations and every participant separately. Hereto the 

FFT was calculated over the entire 15 seconds of data at once, resulting in a 

magnitude spectrum with 0.5 Hz bins as provided by the BMC Acquisition 

Software that is used together with the BIMEC. Examples of spectral plots are 

given in figure 3.7. In order to obtain the magnitude for a given frequency band of 

this block of data, the magnitudes in µV of all 0.5 Hz bins falling in the range of the 

given frequency bands were added up. The alpha magnitude for instance was 

found by adding the magnitudes of the bins at 7.5, 8.0, 8.5, 9.0, 9.5, 10.0, 10.5, 

11.0, 11.5 and 12.0 Hz. The second halves of the blocks were chosen because in a 

later phase of the data analysis the EEG data are going to be linked to the NIRS 

data. As the hemodynamic response that is measured by NIRS is known to have a 

delay (Moosmann et al., 2003), discarding the first half of every block (15s) avoids 

transient features in the data and it is ensured that a more representative profile 

of brain activity is given. The values that are analysed are absolute values from the 

magnitudes of the frequency bands. Absolute rather than relative EEG values are 

chosen because when changes in relative values are seen, it does not necessarily 
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mean that a change is seen in that band alone because it can also arise from a 

change in the other bands (Barry et al., 2007).  

Comparisons between eyes open and eyes closed blocks are made by means of a 

repeated measures ANOVA for every frequency band separately. The analysis has 

two within-subject factors, the first being “block” which has 5 levels (block 1, 

block 2, block 3, block 4, and block 5) and the second factor being “condition” 

which has 2 levels (eyes open, eyes closed). 

Block EEG O1 EEG O2 Alpha O1 Alpha O2 NIRS O1 NIRS O2 

EO1 - - - - 2, 20, 33 26, 33 

EO2 3, 20, 24, 

39, 42 

24 3, 20, 24, 

39 

24 2, 20, 33 26, 33 

EO3 - - - - 2, 20, 33 26, 33 

EO4 - - - - 2, 20, 33 26, 33 

EO5 - 12 - - 2, 20, 33 26, 33 

EC1 3, 4, 12, 

13, 20, 24, 

37 

- 37 - 2, 20, 33 26, 33 

EC2 5, 12, 13, 

24, 37,39 

- - - 2, 20, 33 9, 26, 33 

EC3 3, 24, 37 3, 4, 12, 

13, 15, 20, 

24, 25, 37, 

39, 42 

- 37 2, 20, 33 9, 26, 33 

EC4 3, 13, 37 3 37 - 2, 20, 33 26, 33 

EC5 3, 37 3, 4, 24, 

37 

37 4, 37 2, 20, 33 26, 33 

Table 3.1 Summary of the outlying data for the EEG, the alpha band used for alpha peak 

frequency (APF) analysis and the NIRS measurements. For every measurement location, 

left visual cortex (O1) and right visual cortex (O2), the outliers were evaluated separately. 

The different blocks for eyes open (EO) and eyes closed (EC) are displayed in the rows. For 

each block the subject numbers of the participants that showed outlying data are reported 

in the cells. 
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Before statistical comparison of the blocks was initiated, the data were checked 

on outliers. Hereto the skewness and kurtosis of the obtained magnitudes were 

analysed (Howell, 2011). If the group value per frequency band did not fall within 

the -2 to 2 range, the histogram plot was inspected to determine the outlying 

subject. The EEG data of this subject were then explored in order to identify 

whether the signal was noisy and needed to be excluded. After exclusion the 

analysis cycle was repeated until skewness and kurtosis were within the accepted 

range.  The eliminated blocks for every subject are displayed in table 3.1. 

 

3.2.5.2 Alpha peak frequency  

The APF was determined for every subject separately for both the O1 and O2 

location for every second half of each block (similar to the procedure with the 

frequency bands). This was done by searching the interval from 7.5 to 12.0 Hz in 

0.5 Hz steps for the frequency range with the highest power. From the outlier 

analysis it was determined which subjects showed outlying values in the alpha 

band due to artefacts (table 3.1). In order to avoid a distortion of the APF from 

these artefacts these blocks of data were also omitted in the APF analysis.  

 

Since the APF was determined in 0.5 Hz steps, the resolution of the findings is not 

a continuous but an interval variable. Besides, the values that are found during a 

procedure like this will not have a normal distribution. Therefore, it would be 

inappropriate to use a repeated ANOVA analysis as was used in the frequency 

band analysis. To investigate whether the APF was in fact stable between 

measurements the nonparametric counterpart of the ANOVA analysis was chosen 

and performed separately on the data of the O1 and O2 location; Friedman’s test. 

As Friedman’s test tests the hypothesis that all measurements originate from the 

same population, all 10 blocks are tested in one analysis. In order to investigate 

whether there were differences between the blocks from one condition, separate 

Friedman tests were also performed on the 5 blocks measured with eyes open 

and the 5 blocks measured with eyes shut for both the O1 and the O2 location. 

 

Next to the establishment of the APF it was investigated whether there were 

differences in the way the APF presented itself in the spectrum. Hereto, the width 

of the APF was determined by considering the first and last bins that belonged to 

the alpha peak and were distinctive from the background of the spectrum. For this 
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aspect the entire 5 min interval was evaluated separately for the O1 and O2 

location. 

3.2.5.3 NIRS concentration changes 

The raw NIRS data were transformed into graphs displaying the concentration 

changes of HbO2 and Hbb (Cope and Delpy, 1988, Delpy et al., 1988). As described 

in chapter 2, these time series were detrended and next band pass filtered to 

remove slow drift and instrumental noise in the signal. The detrending was 

performed according to the following formula:  

                         
 

     
  

 

 
  

In which      is the detrended signal,      is the original signal of which the linear 

trend               
 

     
  

 

 
  is subtracted. The terms   and   specify the 

interval of the signal. The band pass filter was a Fourier filter with the borders set 

at 0.01 and 0.5 Hz. 

Next, the average concentration of HbO2 as well as Hbb was calculated over the 

second half of every block for every participant on both locations. Only the second 

halves were taken into account because of the delay of the hemodynamic 

response, this way transient features were avoided and it was ensured that steady 

state values were taken into account (Uludag et al., 2004a). Then the data were 

checked for outliers using the same procedure as described above. Data from 

subjects that displayed outliers due to noise were subsequently removed before 

statistical analysis was undertaken (table 3.1). The statistical comparisons 

between eyes open and eyes closed blocks was done in a similar fashion as was 

done for the EEG frequency bands. A repeated measures ANOVA with two within-

subject factors, “block” (5 levels) and “condition”  (2 levels) was conducted 

separately for the HbO2 and Hbb concentrations. 

3.2.5.3 Spectrum content NIRS 

Before the spectral analysis was undertaken, it was evaluated whether the HbO2 

and Hbb time series displayed good or poor signal quality. Signal quality was 

evaluated based on the paradigm induced response that was seen and the 

strength of this response. When a strong response was seen in all repeats, strong 

meaning a change of 2 SDs or more from baseline, the quality was marked as 
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“good”. When the concentration change showed a response that was faint for 

some repeats or inconsistent, the signal was marked as “medium”. When no 

response (under 2 SD change from baseline) or only noise was observed, the 

quality was marked as “bad”. “Good-medium”  or “medium-bad” qualifications 

were given to signals that fell in between two other qualifications. These 

qualifications were then used to divide the sample in a good-quality and a poor-

quality group which were used in later stages of analysis to verify whether certain 

results are influenced by signal quality. All signals that were marked as “good”, 

“good-medium”, or “medium” were taken together in the good-quality group and 

the “medium-bad” and “bad” classifications were taken together in the poor-

quality group.  

In order to investigate the spectrum of the NIRS signals a Fourier analysis was 

applied. The spectrum that was given had a resolution of 0.05 Hz which is more 

precise then the previously reported EEG spectrum. This was chosen mainly 

because the analysis was explorative and because the range that was explored is 

much smaller than it is for EEG (0.01-0.5 Hz vs. 0.5-32 Hz). Peaks that occurred in 

this spectrum were noted down for  HbO2 and Hbb for every location (O1 and O2) 

separately. Then it was evaluated whether the peaks that were observed were 

common between subjects and whether a difference between the good-quality 

group and the bad-quality group was seen. 

3.2.5.5 Correlating EEG and NIRS 

Last a correlation analysis was performed in order to establish possible 

correlations between the alpha activity and HbO2 or Hbb concentrations. For the 

correlation analysis, the data from the second halves of the blocks was used as 

well, with the outlying data removed (N=31 for O1, N=32 for O2). The data from 

the eyes open blocks were averaged together for every subject as well as the data 

from the eyes closed blocks per location before Pearson Correlations were 

determined. 

3.3 Results 

3.3.1 Spectrum content EEG 
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The repeated measures ANOVA’s revealed that for all frequency bands, except 

theta, there was a significant main effect for condition on both the O1 and O2 

locations. The results are summarized in table 3.2 and figure 3.5. 

In the EO condition there was significantly more delta activity present (O1 

p=0.000, O2 p=0.000). In the EC condition the amounts of alpha (O1 p=0.000, O2 

p=0.000), beta1 (O1 p=0.000, O2 p=0.000) and beta2 activity were increased 

compared to the eyes open condition. For the beta 2 activity additionally a 

significant interaction effect (Block x Condition) was observed on both the O1 

(p=0.005) and O2 (p=0.023) location indicating that the difference between both 

conditions increases over time (Fig. 3.6).  

 

 

 

Figure 3.5 EEG frequency band results. The difference between the amount of activity in 

eyes open (EO) and eyes closed (EC) conditions with their standard deviations are 

displayed. The difference in theta activity was not significant for both the left visual cortex 

(O1) and right visual cortex (O2). Differences marked with an asterisk (*) indicate a 

significance with a p value < 0.001. 
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O1 Effect F - value p-value partial η2 Correction 

Delta Main, block (3.003, 84.094) 

0.325 

0.808 0.011 yes 

Main, condition* (1,28) 23.122 0.000 0.452 no 

Interaction (4,112) 0.692 0.599 0.024 no 

Theta Main, block (2.939, 82.286) 

0.941 

0.423 0.033 yes 

Main, condition (1,28) 0.680 0.417 0.024 no 

Interaction (3.020, 84.567) 

0.898 

0.446 0.031 yes 

Alpha Main, block (4,112) 1.203 0.314 0.041 no 

Main, condition* (1,28) 29.323 0.000 0.512 no 

Interaction (2.840, 79.516) 

0.240 

0.858 0.009 yes 

Beta 1 Main, block (4,112) 0.235 0.918 0.008 no 

Main, condition* (1,28) 35.761 0.000 0.561 no 

Interaction (4,112) 1.007 0.407 0.035 no 

Beta 2 Main, block (2.567, 71.867) 

1.547 

0.215 0.052 yes 

Main, condition* (1,28) 29.722 0.000 0.515 no 

Interaction* (4,112) 3.995 0.005 0.125 no 

HbO2 Main, block (2.366, 80.442)  

2.576 

0.073 0.070 yes 

Main, condition* (1,34) 25.211 0.000 0.426 no 

Interaction (2.547, 86.601)  

2.474 

0.076 0.068 yes 

Hbb Main, block (2.561, 87.070)  

0.458 

0.682 0.013 yes 

Main, condition* (1,34) 18.482 0.000 0.352 no 

Interaction (2.001, 68.025)  

1.312 

0.276 0.037 yes 

O2 Effect F - value p-value partial η2 Correction 

Delta Main, block (3.163, 85.400)  

0.520 

0.679 0.019 yes 

Main, condition* (1,27) 30.200 0.000 0.528 no 

Interaction (4,108) 0.411 0.800 0.015 no 
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Theta Main, block (2.840, 76.672)  

0.718 

0.537 0.026 yes 

Main, condition (1,27) 1.977 0.171 0.068 no 

Interaction (2.892, 78.080)  

1.395 

0.251 0.049 yes 

Alpha Main, block (4,108) 0.843 0.501 0.030 no 

Main, condition* (1,27) 33.696 0.000 0.555 no 

Interaction (4,108) 0.532 0.712 0.019 no 

Beta 1 Main, block (2.880, 77.750)  

0.264 

0.844 0.010 yes 

Main, condition* (1,27) 30.836 0.000 0.533 no 

Interaction (4,108) 0.391 0.815 0.014 no 

Beta 2 Main, block (4,108) 1.220 0.306 0.043 no 

Main, condition* (1,27) 34.626 0.000 0.562 no 

Interaction* (4,108) 2.961 0.023 0.099 no 

HbO2 Main, block (2.582, 87.775)  

2.563 

0.069 0.070 yes 

Main, condition* (1,34) 16.821 0.000 0.331 no 

Interaction (2.447, 83.186)  

0.689 

0.533 0.020 yes 

Hbb Main, block (2.070, 70.392)  

1.835 

0.166 0.051 yes 

Main, condition* (1,34) 7.857 0.008 0.188 no 

Interaction (2.210, 75.140)  

0.272 

0.784 0.008 yes 

Table 3.2 Details of the repeated measures ANOVAs that were performed on the different 

frequency bands within the EEG and the oxygenated haemoglobin (HbO2) as well as the 

deoxygenated haemoglobin (Hbb) concentrations from the NIRS data. The upper part of 

the table displays the results from the left visual cortex (O1) and the lower part the right 

visual cortex (O2). Effects marked with an asterisk (*) are effects that were significant.  
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Figure 3.6 The significant interaction effect that was found for the beta 2 activity on both 

the left (O1) and right visual cortex (O2). The left panel displays the activity measured on 

the O1 location the right panel the O2 location. The dark grey line indicates the eyes open 

(EO) condition whereas the light grey line represents the eyes closed (EC) condition. As 

time increases, the lines move further apart. 

 

3.3.2 Alpha peak frequency 

Friedman’s test revealed that the APF varied significantly between the different 

blocks when all ten blocks were taken into account; O1: χ2(9, N=33) = 28.034, p = 

0.001, O2: χ2(9, N=35) = 27.995, p = 0.001. When evaluating the results within the 

separate conditions, eyes open and eyes closed, the overall variations seemed 

due to differences between the conditions rather than differences within the 

conditions. For the O1 location the EO blocks show variation in APF between the 

different blocks: χ2(9, N=34) = 12.000, p = 0.017. In the EC blocks however, there is 

no significant variation visible: χ2(9, N=37) = 5.088, p = 0.278. On the O2 location 

no significant variation is seen in either condition separately: EO: χ2(4, N=37) = 

9.208, p = 0.056, EC; χ2(4, N=36) = 2.418, p = 0.659.   

 

In order to support the claim that a significant variation is seen between the two 

conditions, the average APF of EO and EC was calculated per person for both O1 

and O2 and a Wilcoxon signed ranks test was used to investigate differences. This 

also showed a significant difference for both O1 and O2 between the conditions 

EO and EC in which it appears that the APF is lower during the EC blocks; O1 (z = 

2.622, N-Ties= 19, p = 0,009), O2 (z = 2.618, N-Ties= 22, p = 0,009). When the 

individual subjects are examined however, it appears that these results occur 

because of a limited number of subjects and that these subjects do not show a 

drop on every transition from EO to EC as detailed below. 

  

For the O1 location 33 subjects remained in the sample after outlier correction, 
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with 10 blocks in the paradigm, 5 comparisons per subject are made, giving 165 

comparisons in total. Of the 33 subjects, 18 showed no variation of the APF. In the 

remaining sample of 15 subjects, 3 showed a lower APF in all EC blocks and 10 

others showed lower APF in some EC blocks. The remaining subjects even showed 

higher APF in some EC blocks. How much this change was both in positive and 

negative directions is summarized in table 3.3a. Out of the 165 comparisons that 

are made only 38 show a lower APF in an EC block is. When changes are found 

however, they are often 1.0 Hz in size or larger. For the O2 location the summary 

of results can be found in table 3.3b which are quite similar. On this location 35 

subjects remained in the sample after outlier correction which leads to a total 

number of 175 comparisons. Out of 35 subjects, 15 showed a stable APF over all 

blocks. Out of the remaining 20 subjects, 2 participants showed a lower APF in all 

EC blocks and 14 showed a lower APF in some EC blocks. The remaining 4 

participants even showed a higher APF in some EC blocks, and one of them 

showed this in all EC blocks. So out of 175 comparisons only 42 give rise to a lower 

APF in an EC block. Again, changes were often 1.0 Hz in size or larger. 

A. O1 Stable 0.5 Hz 1.0 Hz 1.5 Hz 2.0 Hz Total 

Stable 118 - - - - 118 

EC lower - 9 14 10 5 38 

EC higher - 2 5 1 1 9 

Total 118 8 19 11 6 165 

B. O2 Stable 0.5 Hz 1.0 Hz 1.5 Hz 2.0 Hz 2.5 Hz Total 

Stable 122 - - - - - 122 

EC lower - 11 16 9 2 4 42 

EC higher - - 7 2 2 - 11 

Total 122 11 23 11 4 4 175 

Table 3.3  Results of the individual alpha peak frequency comparisons, split in 0.5Hz step 

changes. In total 165 comparisons are made for the location over the left visual cortex (O1) 

which are displayed in the upper part of the table and 175 for the location over the right 

visual cortex (O2) which is displayed in the lower part of the table. This difference was due 

to outliers. 
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When investigating differences in the presentation of the APF in the spectrum a 

distinction into four different types of peaks could be made (figure 3.7): A. a 

narrow base and a low magnitude peak, B. a wide base and a low magnitude 

peak, C. a narrow base and a high magnitude peak, and D. a wide base and a high 

magnitude peak. When a higher magnitude of the APF is seen the base of the 

peak was automatically wider. 

 

Figure 3.7. The four different types of APF. A: Narrow base, low magnitude, B: Wide base, 

low magnitude, C: Narrow base, high magnitude, D: Wide base, high magnitude. The x- 

and y-axis values of the four displayed spectra are kept constant, the horizontal axis 

displays the frequency from 0 on the left up until 35 on the right, the vertical axis displays 

the magnitude of the bins ranging from 0 µV at the base to 10 µV at the top. The bins have 

a resolution of 0.5 Hz, so each bin indicates an increment of 0.5 Hz on the horizontal axis. 

 

3.3.3 NIRS concentration changes 

The repeated measures ANOVAs revealed that for the HbO2 as well as the Hbb 

concentrations there was a significant  main effect for condition on both the O1 

and O2 locations. The results are summarized in table 3.2 and figure 3.8. 

In the EO conditions the concentration HbO2 was significantly higher compared to 

the EC conditions (O1 p=0.000, O2 p=0.000). In the EC conditions the 

concentration Hbb was significantly higher compared to EO conditions (O1 

p=0.000, O2 p=0.008). No significant main effects were found for block, neither 

could significant interaction effects be found. 
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Figure 3.8 NIRS concentrations results. The differences in concentration between eyes open 

(EO) and eyes closed (EC) conditions with their standard deviations are displayed for the 

oxygenated haemoglobin (HbO2) and deoxygenated haemoglobin (Hbb) concentration 

changes on both the left (O1) and right visual cortex (O2). Differences marked with an 

asterisk (*) indicate a significance with a p value < 0.01. 

3.3.4 Spectrum content NIRS  

The quality of the time series displaying the concentration changes was 

categorized into 5 categories: good, good-medium, medium, medium-bad and 

bad, as detailed in paragraph 3.2.4.3. In doing so the data of all subjects were 

considered, also the data that had been marked as outlier previously. These 

categories were then merged into two larger categories containing good-quality 

signals and poor-quality signals (table 3.4). This revealed that a large portion of 

the sample (between a half and two thirds) was classified as poor-quality data. It 

was seen that the signal quality obtained on O1 was slightly higher than it was on 

O2. 

HbO2 O1 Hbb O1 HbO2 O2 Hbb O2 

N (total) 36 35 34 34 

N (good-quality) 17 15 14 13 

N (poor-quality) 19 20 20 21 

Table 3.4 The number of subjects (N) that fall into each quality category for the time series 

measured over the left (O1) and right visual cortex (O2) for both the oxygenated 

haemoglobin (HbO2) and deoxygenated haemoglobin (Hbb) concentration changes.  
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When the spectra were observed as well, it appeared that 2 subjects in the HbO2 

time series of the O1 location, 3 subjects in the Hbb time series of the O1 location 

and 4 subjects on both the HbO2 and Hbb time series of the O2 location showed 

spectra that displayed white noise. White noise is defined as random peaks 

through the entire spectrum. These subjects were left out of the sample in this 

analysis (as is already visible in table 3.4).  

 

An average of three peaks was seen per subject (minimum 1, maximum 5). Six 

separate categories of peaks could be defined with higher magnitudes seen in 

lower frequencies. A summary of the peaks and their occurrence is given in table 

3.5, an example of a NIRS time series with the corresponding spectrum is given in 

figure 3.9.  

 

Table 3.5. The number of subjects (N) that show peaks in various frequencies in ratios x/y, 

the x determining the number of subjects that do display a peak and the y determining the 

number of subjects that do not display it. The total N (displayed in the column Ntotal) is 

split up into good signal quality (displayed in the column Ngood) and poor signal quality 

(displayed in the column Npoor) for both the oxygenated haemoglobin concentration 

(HbO2) and the deoxygenated haemoglobin concentration (Hbb) on the left (O1) and right 

visual cortex (O2). 
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Figure 3.9 A NIRS spectrum. The 5 minute time series of the HbO2 signal from subject 6  is 

shown in the upper panel. The lower panel shows the corresponding spectrum between 

0.01 and 0.5 Hz. Three different peaks are seen at 0.015 Hz, 0.06 Hz and 0.08 Hz 

respectively. 

First of all a peak in nearly all subjects was observed between 0.01-0.02 Hz. The 

two subjects that failed to display a peak here were both classified as having poor 

signal quality. Furthermore, a peak was observed between 0.025 and 0.04 Hz in 

nearly half of the subjects. On the O1 location a difference between the group 

with good and poor quality signals was not really seen whereas on the O2 location 

the ratios between subjects that did and did not show this peak displayed more 

subjects with good quality signals showing this peak.  

A larger portion of subjects (nearly two third of the sample on O1 and half the 

sample on O2) displayed a peak in their spectrum between 0.045 and 0.06 Hz. 

This peak does seem to occur more often in higher quality data compared to 

poor-quality data.  

One third of the sample displayed a peak in the spectrum between 0.065 and 

0.085 Hz. Fewer peaks were seen in the 0.09-0.11 range with less than a quarter 

of the sample showing them. These two categories do have in common that no 

consistent difference was seen between the occurrence of these peaks and the 

quality of the obtained signals. 

The last class of peaks were peaks that have a frequency larger than 0.11 Hz. This 
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was only seen in a limited number of subjects (3 on O1 and 1 on O2) and all 

subjects showed poor signal quality.  

 

The spectral bands that were defined for the EEG signals were analyzed by means 

of an ANOVA for differences between the eyes open and eyes closed blocks. Since 

only the last 15 seconds of each block were considered in the analysis (to avoid 

transient features) it does not make sense to perform this analysis on the NIRS 

peaks that are defined here as well. The peaks indicate slow wave changes 

between 0.6 and 6.6 times per minute. This is too slow to base solid conclusions 

on when only 15 seconds of data are evaluated per block. 

 

3.3.5 Correlating EEG and NIRS 

The correlation analysis revealed no significant and only weak correlations 

between alpha magnitude and concentrations of either Hbb or HbO2 (table 3.6). 

Generally this correlation was higher during the eyes closed blocks. 

 

 Eyes Open Eyes Closed 

 Pearson’s r p-value Pearson’s r p-value 

Alpha x HbO2 O1 0.054 0.774 0.278 0.130 

Alpha x Hbb O1 0.136 0.467 0.190 0.307 

Alpha x HbO2 O2 0.077 0.676 0.185 0.310 

Alpha x Hbb O2 0.032 0.864 0.077 0.677 

Table 3.6. Pearson correlations and their p-values for relationships between alpha 

magnitude and concentrations of oxygenated (HbO2) and deoxygenated haemoglobin 

(Hbb). For measurements over the left visual cortex (O1) 31 subjects remained in the 

sample after outlier correction and 32 for the right visual cortex (O2). All correlation are 

weak and do not approach significance.  

 

3.4 Discussion 

The main goal of this chapter was investigating the possibility of simultaneously 

measuring neuronal (EEG) and metabolic (NIRS) resting state activity. The 

examination of the separate signals was highly exploratory in nature in order to 

determine possible parameters that can reveal the relationship between electrical 

and hemodynamic aspects of brain functioning. These will be addressed in 
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upcoming chapters. A short summary of the results will be given after which it will 

be discussed how these results could align with pointers for future research.  

First, a static analysis was performed for the EEG frequency bands delta, theta, 

alpha, beta 1 and beta 2 in order to determine whether there were differences 

between the EC and EO blocks. It was hypothesized that slower frequency bands 

(delta, theta and alpha) would be higher during EC conditions whereas the faster 

bands (beta 1 and beta 2) would be lower compared to EO conditions. Contrary to 

the hypotheses, this analysis resulted in the finding that delta activity was higher 

during EO blocks, theta activity did not differ and alpha, beta 1 and beta 2 activity 

were higher in EC blocks. Furthermore, the interaction effect for the beta2 activity 

indicated that the difference in this band got larger over time. Second, the APF 

was determined and it was analyzed whether changes between the measuring 

conditions occurred. As it was expected that this measure would be stable, it was 

surprising that the analysis showed significant differences between conditions. 

Even though this finding was due to a relatively small portion of the sample. As 

expected, was the APF stable between blocks of the same condition. Third, 

differences in HbO2 and Hbb concentrations between EO and EC conditions were 

analysed. This showed, as expected, that upon closing the eyes the HbO2 

concentration significantly diminishes and the Hbb concentration significantly 

heightens and vice versa. These results confirm the hypothesis that during a 

resting condition with closed eyes the brain activity of the occipital cortex is 

significantly different from a resting condition with open eyes. 

Furthermore, the HbO2 and Hbb time series were investigated by means of 

spectral analysis in order to reveal possible rhythmical oscillations. The first thing 

that was noticed was the large portion of data (over one third of the sample) that 

was classified as low quality data while only four subjects were classified as 

showing white noise. Six separate categories of peaks were defined in the low 

frequency part of the spectrum. Finally, in order to replicate the results found by 

Moosmann et al. (2003) a correlation analysis was conducted between averages 

of alpha wave activity and concentrations of HbO2 and Hbb. These correlations 

were low and did not approach significance. Possible causes for this discrepancy 

are mentioned below. 
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3.4.1 Spectrum content EEG 

A significant main effect for four out of five frequency bands was found. During 

the EO condition more delta activity was present. During the EC condition alpha, 

beta 1 and beta 2 activity were higher. No significant differences were found 

between conditions for the theta activity. Furthermore a significant interaction 

effect was found for the beta 2 activity, indicating an increase of the difference 

between conditions over time. 

As described earlier, Barry et al. (2007) found that when EO conditions are 

compared to EC conditions it appears that all frequency bands have higher power 

in the EC condition. This was not replicated in this chapter. A difference in delta 

activity results could be due to eye blinking. Eye blinking occurs only in EO 

conditions. The large potential that originates at the front of the head travels by 

volume conduction towards the back of the skull where the measuring electrodes 

are positioned. The reference electrode is placed on the Cz location and therefore 

this potential reaches the reference electrode sooner than the measuring 

electrodes, causing the common mode rejection to be unable to filter out this 

wave. Because of the volume conduction the potential has decreased in 

amplitude, causing this wave to be harder to detect while inspecting the EEG 

signal. However, it still heightens the delta frequency band. A filtering procedure 

in which these sections of data are omitted could solve this. A disadvantage of 

doing so will be found when the timing aspects of the EEG signal plays a role in 

the analysis.  Furthermore, relating the origin of the enhanced delta activity in EO 

conditions to eye blinking in this study is speculative. The channels in which the 

eye blinks are most pronounced (frontal leads) are not co-registered to check for 

a possible mirrored artefact on occipital leads.  

A reason that could lead to higher beta values during EC blocks is that drowsiness 

and sleepiness may have played a role. Participants often reported to be very 

relaxed during the paradigm and one subject admitted that he had trouble staying 

awake. It has been published that even in sleep stage II people can report to be 

awake and characteristic features in this sleep stage are beta spindles (Carskadon 

and Dement, 1994). This also could explain the finding that the differences 

between conditions got larger over time, as drowsiness increased during the 

paradigm and it would take less time for the beta spindles to occur (Carskadon 
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and Dement, 1994). For this reason there are limitations to extending resting 

state measures for too long, especially in a clinical setting.  

 

For the theta band no significant difference was found. This deviation from the 

results indicated by Barry et al. (2007) could be due to a different methodology as 

their study chose to report differences in power rather than differences in 

magnitude as was done in this chapter. As power is the squared magnitude of a 

frequency band, differences that exist between conditions become more 

pronounced. However, as figure 3.4 shows, the small, non-significant difference 

that is found for theta indicates a higher magnitude in the EO condition rather 

than the EC condition.  

 

As such, the question arises whether a plain analysis of frequency bands is the 

most appropriate analysis for QEEG profiles. From a historical perspective the 

QEEG bands have been defined based on waveforms that were visually 

recognizable (Berger, 1969a). This is the reason why the characteristic sinusoidal 

wave is called alpha, it was recognized first. So when an FFT is performed and an 

analysis is conducted that only considers values of the QEEG, it is possible that 

waves are defined that are not actually present. This is due to the way the FFT 

works; It describes the EEG time series based on sine and cosine waves, and sums 

as many as are needed together to obtain a resemblance of the signal (Kaiser, 

2005). However, not all wave shapes are best described by a summation of 

different sine and cosine waves and thus this causes values to arise that are not 

actually present. This is a general deviation that is known to occur when the FFT is 

used and a reason why some researchers prefer wavelet analysis (Schwilden, 

2006). Furthermore, the use of the FFT causes a correlation to arise between the 

different waves. Especially when the waves that occur in the EEG have a 

frequency that occurs on the edges of the frequency band range. A wave that has 

a frequency of around 7.5 Hz will influence both the height of the theta and the 

alpha band. For this reason it might be better to look for peaks in the entire 

spectrum that differentiate themselves from the background activity.  

 

3.4.2 Alpha peak frequency 

The best known peak that distinguishes itself from the background spectrum is 

the APF. Unexpectedly it was found that the APF differed between EO and EC 
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blocks, whereas it has been reported to remain stable (Grandy et al., 2013b). As 

pointed out in the previous paragraph, when using FFT if a wave falls in between 

two defined bins it will influence both. Since the spectrum was divided in 0.5 Hz 

bins, this is a feature that could have caused variation between the two blocks. 

However, this cannot explain why some subjects showed large shifts (1.5-2.5 Hz) 

between both conditions. Together with the striking observation that it is a 

relatively small subgroup of the participants that caused the results to reach 

significance (only 3 out of 33 subjects showed this systematically, and 10 others 

sometimes), an explanation might need to be sought elsewhere.  

A potential explanation is an age related difference. As it is known that the APF 

decreases with age (Kopruner et al., 1984, Bazanova and Vernon, 2013) the 

difference between EO and EC conditions might be age related as well. However, 

even though age varied greatly in the investigated sample, subjects of different 

ages showed a decrease.  

It has been reported in the literature that there is a small percentage of people 

that show an APF below the traditional alpha band (Klimesch et al., 1993, Richard 

Clark et al., 2004). This was not the case in this study. However, three subjects 

displayed a double peak of which the lower one was lying just outside the defined 

alpha spectrum or at the lower boundary (≤ 7.5 Hz). When the EEG signal was 

inspected in all three cases theta shaped waves were present together with the 

alpha waves. Therefore in all cases the higher peak was chosen as APF. This again 

illustrates the importance of checking the measured signal and having knowledge 

of it besides being able to handle and manipulate the data that come from the 

spectra.  

Furthermore, the differences in width of the APF base could have played a role. 

Wider peaks most likely show more variation in which bin is the highest at certain 

time points than small peaks do. In the 4 types of APF that were found, two have 

a wide base. Additionally, when a higher magnitude of the APF is seen, the base of 

the peak is automatically wider. However, the people that displayed an APF with a 

wider base were not always the ones that showed a change from EO to EC.  To 

illustrate this with an example, both subject 3 and 20 showed a wide base APF but 

only subject 3 showed a large shift between EO and EC while the alpha peak of 
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subject 20 was stable. So where the type (base and height) of the APF might play a 

role at some level it is not the missing link in the results that were obtained here. 

  

Another possibility could be the methodological approach. Different approaches 

are described in the literature to determine APF. Lansbergen et al. (2011) report a 

method of defining APF in which during an EC condition a spectrum and peak are 

defined from which the spectrum found during the EO condition is subtracted in 

order to see where the largest alpha suppression is. Furthermore, when between 

different electrodes no differences larger than 0.5 Hz are found the electrodes of 

the O and P locations are pooled together. By adopting this approach differences 

between EC and EO are cancelled out and are unreported. From a methodological 

point of view it might therefore be best to not only distinct the APF based on 

visual inspection of the spectra and the signal, but to test statistically whether 

such a peak is actually different from the background of the spectrum. Hereby 

one should take into account the actual signal to noise ratio of the EEG itself. 

 

Additionally there is the possibility of a functional explanation. As having a higher 

APF has been coupled to faster speed of information processing (Klimesch et al., 

1996), better cognitive performance (Grandy et al., 2013a), better memory 

performance (Klimesch et al., 1993, Richard Clark et al., 2004) and higher 

intelligence (Grandy et al., 2013b) the toning down of the APF during EC 

conditions could be an indication that the brain is switching to a state in which 

information processing is altered to a slower level. Since cognitive performance 

and intelligence was not measured in the current research it is impossible to verify 

whether changes in these parameters between subjects caused the differences. 

From the point of view where the brain adapts to circumstances in which a more 

functional energy distribution is adopted this might make sense. 

 

3.4.3 NIRS concentration changes 

For the concentration changes in HbO2 and Hbb between EO and EC blocks it was 

found that during EO blocks the HbO2 concentration is higher and the Hbb 

concentration is lower. For the EC blocks these findings are reversed. These 

results align with reports stating that when the brain gets more active, the CBF is 

increased and more glucose and oxygen bound to haemoglobin is delivered to 

that brain area (Irani et al., 2007). The visual cortex is processing more 
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information in an eyes open state as opposed to an eyes closed state, after all. An 

increase of Hbb concentrations in EC blocks and a decrease in EO blocks was also 

reported by Moosmann et al. (2003). Note that the concentration changes in this 

chapter refer to changes in the average of the second half of every block to 

correct for differences in timing between EEG and NIRS parameters.  

3.4.4 Spectrum content NIRS 

The quality labelling of the Hbb and HbO2 signals showed that a large portion of 

the NIRS data (between a half and two thirds) was labelled as poor quality data. 

This does not comply with the number of outliers that were found before the 

ANOVA analyses were conducted  (3 on each location). When the entire time 

series are evaluated, the signal to noise component becomes more important. A 

possible reason could be that the sensitivity to detect hemodynamic responses is 

not always optimal in NIRS measurements. A recent study by Biallas et al. (2012) 

showed that in NIRS measurements conducted with a CW device, depending on 

the data cleaning algorithms chosen, the sensitivity of NIRS measurements varies 

between 40 and  55.2 %. This is in line with the amount of bad quality data 

detected here. This quality labelling also showed that that the measurements on 

O1 were slightly better in quality than those on O2. Possibly this is caused by the 

fact that the human brain is slightly rotated which causes the distance from the 

optode to the neocortex to be a little larger for the O2 location than for the O1 

location (Toronov et al., 2007). If NIRS is going to be of any added clinical value 

the quality of the signals needs to increase, either by improving the optodes or 

optode holders or by means of signal cleaning processes.  

The spectral analyses of the HbO2 and Hbb time series showed that all oscillations 

that are found are within the part of the spectrum that is investigated during 

resting state network (RSN) analysis. Five of the six peaks that were identified fell 

between 0.01 and 0.11 Hz. The sixth peak was larger than 0.11 Hz but only seen in 

a few subjects of whom all received a bad signal quality label, which makes it 

likely to be related to noise.  

In RSN analysis of NIRS signals often a range between 0.009 and 0.1 Hz is used 

(Tong and Frederick, 2010, Zhang et al., 2010, Sasai et al., 2011). This is quite a 

wide range when in this study 5 different peaks could be distinguished within this 
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range. However, the origin of the first peak (0.01-0.02 Hz) could possibly be 

related to the border of the Fourier filter being set at 0.01 Hz or occur because the 

NIRS signals have an offset. Furthermore, it is likely that the peaks seen in the 

second range (0.025-0.04 Hz) are related to the task, since an event occurring 

every 30 seconds would appear in the spectrum as a peak at 0.033 Hz.  

The third category of peaks (0.045-0.06 Hz) most likely finds its origin to be 

coupled to heart rate variability (HRV). Whereas the exact frequency of the heart 

rhythm (around 1 Hz) is filtered from the signal in an early stage of signal 

processing, a variation in the timing from beat to beat exists for every person. The 

fluctuation of this HRV is also visible in the spectrum. From HRV a high frequency 

and a low frequency component can be derived. The centre of the low frequency 

component fluctuates between 0.04 and 0.13 Hz (Malliani et al., 1991). The 

variation of this component could be the reason why it is visible in a large portion 

of the subjects but not all.  

The fourth (0.065-0.085 Hz) and fifth peak (0.09-0.11 Hz) are possibly caused by 

blood pressure changes. In chapter 2 it has already been described that blood 

pressure changes can cause noise in the frequency domain between 0.08 and 0.12 

Hz (Boas et al., 2004, Huppert et al., 2009, Zhang et al., 2007a, 2007b, 2009). This 

could either be caused by intrinsic blood pressure variation, variation coupled to 

heart rate, Mayer waves,  low frequency oscillations (LFOs), very low frequency 

oscillation (VLFOs), and vasomotor waves (Zhang et al., 2005, 2007a, 2007b, 2009) 

as well as HRV (Malliani et al., 1991).  

This would lead one to argue that all peaks have a noise component in them and 

are therefore not related to an underlying physiological brain response. However, 

Pfurtscheller et al. (2012) have shown that prefrontal oscillations in NIRS 

measurements between 0.007 and 0.13 Hz were coupled to alpha or beta waves 

in the EEG and that in these cases no coupling to blood pressure existed. It might 

thus be too easy to dismiss the peaks found as noise. For future research it is 

therefore desirable to co-register variations in blood pressure and respiratory rate 

with an external measurement in order to entangle these noise features. Within 

this sample there does not seem to be an oscillation that is found in all subjects, 

as APF is for the EEG.  
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3.4.5 Correlating EEG and NIRS 

No significant correlations could be found between average alpha activity and 

concentrations of HbO2 or Hbb over EO and EC blocks. This occurred despite the 

fact that the separate measurement modalities did show differences between 

conditions suggesting a potential positive correlation between alpha activity and 

Hbb and a negative correlation between alpha activity and HbO2. The correlations 

that were found were stronger during eyes closed though which could be due to a 

more stable measurement during EC conditions. 

Koch et al. (2008, 2006) as well as Moosmann et al. (2003) did find an inverse 

relationship between alpha activity and the hemodynamic response. The most 

plausible explanation for this difference is a methodological one. In terms of 

analysis this study is limited by the static nature of all analyses performed. Since 

only average values of blocks are considered, nothing can be said about changes 

that occur over time. This could be the most important reason that the correlation 

analysis did not lead to significant results: only average values over all EO blocks 

and average values over all EC blocks were used. When entire time courses would 

have been considered in a cross correlation analysis like Moosmann et al. (2003) 

used, or use was made of the running correlation as described by Cui et al. (2010) 

a more adequate result could have been obtained, with additionally an indication 

of time lag between the investigated parameters. This approach will be adopted 

in follow-up research.  

Another possible explanation of the lack of statistical coupling between the 

electrical and hemodynamic parameters may be that still a controversy exists 

whether optical changes due to neuronal changes that are seen in vitro and 

during invasive measurements can be detected non-invasively by NIRS in human 

adults (Steinbrink et al., 2000, Wolf et al., 2003, Franceschini and Boas, 2004, 

Steinbrink et al., 2005, Medvedev et al., 2008, Gratton and Fabiani, 2010, Tse et 

al., 2010, Biallas et al., 2012). Biallas et al. (2012) tested the sensitivity and 

reproducibility in 15 subjects of combined NIRS and EEG measures over the visual 

cortex during visual stimulation. Different from the paradigm chosen in this 

chapter the electrical parameter that was focused on was the visual evoked 

potential, which is a specific wave caused by visual stimulation as opposed to 
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changes in background activity. As reported in the previous paragraph the 

sensitivity of NIRS to detect hemodynamic changes was between 40 and 55.2 % 

additionally the reproducibility within a subject was low. For EEG both the 

sensitivity of the visual evoked potential as well as the reproducibility was higher, 

being 86.4 % and 57.1 %. When using the visual evoked potential no optical neural 

signal was detected (Biallas et al., 2012). However, the authors chose to measure 

NIRS over the O1 location while measuring EEG over Oz. Since NIRS 

measurements are very localised the measuring of two different locations may 

have contributed to the lack  of neuronal coupling in this research. Furthermore, 

the choice of changes in background activity may lead to very different results 

which reinforces the choice of looking at changes within the alpha band. 

3.4.6 Additional methodological issues 

Some methodological points of this study need to be addressed. First of all, in 

order to investigate resting state activity this study chose to pair eyes closed 

resting state activity with a condition in which subjects were observing a static 

picture of a test screen. During other studies in which resting conditions with eyes 

closed and eyes open are investigated often a fixation cross is used in the eyes 

open condition instead of the currently used stimulus of the test screen. This 

might have been leaning too much towards a visual task and could have caused 

the differences between eyes open and eyes closed to be larger than they would 

have been without this stimulus. However, studies investigating eyes open versus 

eyes closed conditions in dark rooms in order to minimize visual stimulation 

during the eyes open condition have shown similar results for the alpha wave 

activity and Hbb responses (Moosmann et al., 2003).  

Secondly, this study chose to use very few restrictions on the age of the 

participants. The only condition was that every participant had to be between the 

ages of 18 and 60. This resulted in an age range from 19-60 which is quite large. 

However, using a broad age range allows a study to have an exploratory nature, 

this was also the reason for including both male and female participants. The 

decision to start at 18 was that this study intended to investigate the relationship 

between neuronal brain activity and metabolic activity in adults. The cut-off point 

of 60 years of age was made based on the fact that from the 5th decade onwards 

the brain starts to exhibit shrinkage of the white matter volume and a significant 
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change of basal metabolism is found from 70 years of age onwards (Raz and 

Rodrigue, 2006). Ultimately, this approach led to the inclusion of 38 participants 

and provided the research with an ecologically valid sample to test a new 

paradigm which will be expanded over the upcoming chapters. Especially since a 

link is made to the brain during pathology in chapter 6 this ecological validity in 

studying healthy brains needs to be emphasized.  

Furthermore, in this study a setup with two channels for EEG and two channels for 

NIRS was used. Using a minimal setup allows a study to test a model or hypothesis 

without burdening the participants greatly. When results are found in an 

exploratory study with a minimal setup, this model can be expanded and fine-

tuned by using a more precise set-up or moving to other brain areas. Besides that, 

using more channels eventually also allows different types of analysis to be 

conducted such as connectivity analysis to investigate resting state networks. 

The practical side of doing multiple channel measurements needs to be addressed 

though. While measuring over 40 people with use of two modalities it became 

apparent that getting a clear signal is not  always easy. The EEG signals are not the 

delaying factor, although in bald people it is tough to get impedances to fall below 

10 kΩ, and in people with very short hair the hair sometimes pushes the electrode 

away from the scalp. However, because the optode holder is secured over the 

electrodes, mostly this prevents shifting and it holds the electrodes nice in place 

as well. The NIRS measurements are more difficult. With some people it seems 

impossible to get a good response on both channels, which will increase when 

more channels are added to the experimental setup. It seems that in dark haired 

subjects, even though the hair often could be pushed away from to area under 

investigation, yield bad signals more often. A distinction between long haired and 

short haired subjects could not be made. The setting up of the equipment, even 

though small in number of electrodes and channels therefore took up the larger 

share of the experimental time, which bored participants. Especially when moving 

toward investigating subjects with any pathology one cannot expect full 

cooperation or attention during the following experiment which makes me 

reluctant to expand to more channel measurements. Only when a quicker way of 

setting up can be found, possibly with alterations to the optodes and preparation 

times can be reduced this will be feasible. The paradigm was easy to comply with 
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for all subjects in the age range. Therefore I would not expect difficulties with the 

paradigm when expanding the research group in terms of age or pathology. 

3.5 Conclusion 

Even though methodological issues can be raised in this study, the data that were 

obtained in a large and variable population in terms of age and sex were of high 

enough quality to establish that it is feasible to use EEG and NIRS measurements 

simultaneously in resting state conditions. Especially when it is kept in mind that 

clinical feasibility is warranted when applications are considered in which these 

brain measurements during resting state conditions can aid in diagnostic and 

prognostic procedures, although multiple channel measurements may be difficult 

at this stage. It was also established that the states of eyes open and eyes closed 

are significantly different. In terms of EEG the alpha band will remain the selected 

feature of which the coupling with the hemodynamic parameters will be sought. 

The main reason for doing so is the fact that the alpha peak is the only peak that 

stands out from the background spectrum. Furthermore, the variability between 

the APF that was found in this study will have little influence when the whole 

alpha band is chosen since it falls within this range. Besides that, the other 

frequency bands did not display changes similar to those reported before or as 

hypothesized. 

The NIRS parameters that will be chosen will be the HbO2 and Hbb 

concentrations. The spectral investigation did not reveal a feature similar to the 

APF which is present in all subjects. Therefore the entire range of 0.01-0.5 Hz will 

be analyzed in upcoming chapters. Besides that, the quality check of the NIRS data 

revealed a large portion of poor quality data, which is a point that needs to be 

addressed before the method can be transferred to the clinic. The largest 

methodological drawback in this exploratory chapter was the static method of 

analysing brain activity. Since the brain is active all the time, the aspect of time 

might be a missing link in unravelling the brain’s symbioses between electrical and 

metabolic activity. Therefore, upcoming chapters will move towards dynamic 

analysis methods. 
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Chapter 4: Exploring the dynamics of EEG and NIRS 

signals in an eyes open- eyes closed paradigm 

In the previous chapter changes in the brain’s electric and hemodynamic activity 

over the visual cortex were investigated with static analysis in a block eyes 

open/eyes shut design. Subsequently, alpha magnitude was correlated against the 

changes in hemodynamic parameters in a static fashion. This investigation found 

no clear relationship in brain measures. Limiting an investigation to the use of 

static changes, limits understanding of the brain dynamics and the underlying 

mechanisms. Therefore, the aim of this chapter was to move towards a more 

dynamic method for analyzing brain activity.   

4.1 Introduction 

4.1.1 The brain as a dynamic system 

The course of analysis as undertaken in chapter 3 leans entirely on finding 

differences between blocks. And while this is quite common in neuroscience and 

generates findings that lead to new, testable hypotheses, it omits the important 

fact that the brain is a dynamic system (McKenna et al., 1994, Fox et al., 2005). A 

biological dynamic system is a self organizing system that is continuously adaptive 

on all levels in order to maintain homeostasis despite the ever changing 

influences both from inside and outside (Friston, 2010). When an approach is 

adopted that explores changes over time, the dynamics of the brain as a biological 

system can be respected, and its functioning better understood. 

Friston (2010) argues in his review that the free energy principle has common 

ground with some of the current key theories about global brain functioning since 

they all centre around the theme “optimization”. Basically the free energy 

principle says that for a biological system to be able to maintain homeostasis, it 

needs to function within predefined physiological bounds. This can only be 

achieved when the element of “surprise” (an improbable outcome or state the 

brain is in) is avoided. The free energy element is the upper bound on surprise. 

Since a system does not know whether a state is surprising it does not know how 

to avoid it, but when free energy is minimized, the surprise element is minimized 
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implicitly as well. Since free energy is a function of sensory states and a 

recognition density (a probability distribution of the causes for these sensory 

states) and this is internally encoded in the brain, it is possible to evaluate the free 

energy. Now the system can change the free energy (and therefore limit the 

surprise) by either changing the sensory input by acting on the world, or by 

changing the recognition density, by changing the internal state. How this  exactly 

relates to the current views on brain functioning falls beyond the scope of this 

chapter but can be found in the review by  Friston (2010). Elements from 

biological, dynamic systems that  do need additional attention are “scale 

invariance” and “self-organized criticality”. 

 

Scale-invariance or fractality is the property of many systems to display the same 

feature over several scales of magnification both in space and time (Bullmore et 

al., 2009). Scale-invariance is seen in many (biological) systems. For example, 

when the lungs are examined and one zooms in several times, the same tree like 

branching structure can be observed. This also holds true for the coastline of 

Norway, which shows interruptions by fjords, but at a closer look these 

interruptions themselves are interrupted by fjordlets (Bullmore et al., 2009). 

These examples illustrate fractality in space. However, when time series like for 

instance EEG are considered it is possible to explain fractality over time as well. 

When an EEG signal is considered, and a 10 second interval is observed, it is 

visible that the signal fluctuates around the nil-line and that it is made up of 

different kinds of waves (large, small, large waves with small waves on top etc.). 

When a 5 second interval is examined this picture does not change, and even at a 

smaller interval of 2.5 seconds this property  will hold (figure 4.1). And it is not 

just within seconds that this scale-invariance is seen. In early EEG work it has been 

documented that rhythmical changes occur during the course of the day due to 

the circadian rhythm and ultradian rhythms (that represent fluctuations within 

the circadian rhythm) but also over seasons (Machleidt and Gutjahr, 1984).  
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 Figure 4.1 Fractality of an EEG time course. In panel A the 10 seconds of EEG is displayed. 

The signal varies around the nil-line and is made up out of different waveforms. In panel B 

the same signal is displayed, but only 5 seconds are visible and in panel C only 2.5 seconds 

are displayed. The properties of fluctuation around the nil-line and consisting out of 

different waveforms, remain unchanged despite the change in time.  

   

The definition of Linkenkaer-Hansen et al. (2001) for scale-invariance, or scale-

free behaviour as they call it,  states that no characteristic scales dominate the 

dynamics of the underlying process. From a spectrum perspective, this would 

mean that no specific frequency would be visible in the spectrum. However, as 

was demonstrated in chapter 3, human EEG usually displays a peak frequency 

within the alpha range (the APF). When the specific peaks that are seen in the EEG 

are investigated further, it becomes clear that these separate peaks display scale-

invariance (Linkenkaer-Hansen et al., 2001). The power of the alpha band varies 

on different time-scales in a healthy brain and this changes in pathologies such as 

depression (Leistedt et al., 2007) and schizophrenia (Nikulin et al., 2012). For NIRS, 

scale-invariant properties have not been described in the literature to date.  

 

When a specific wave displays scale-invariance and responds in different time 

domains, more often than not long range correlations in space and time are 

observed (Bullmore et al., 2009). These long range correlations make sure that a 

change in a small unit of the system can be communicated quickly throughout the 

entire brain (Haimovici et al., 2013). The long range correlations are known to 

display power law behaviour. Power law behaviour occurs in many dynamic 

systems, for instance avalanches or forest fires, and tells us that massive forest 

fires occur less often than smaller ones (Bullmore et al., 2009). The relationship 



107 

between the occurrence of a forest fire and the size of it can be expressed by a 

straight line on a log-log scale (a power law). Power law behaviour as well as scale 

invariance are properties of a self organised critical (SOC) system, which is 

detailed below.  

SOC was first explained by Per Bak and collegues (1987) and is easiest explained 

by their sand pile model. In this model sand grains are randomly dropped onto a 

grid. This causes a pile of sand with a certain slope to arise. By randomly dropping 

additional sand grains on the pile the pile grows and the slope changes. At a 

certain point the sand pile is in a critical state and when a new grain of sand is 

added either nothing happens or the sand starts to slide and affects a lot of 

neighbouring sand grains. The sand slides again display power law behaviour with 

regards to their magnitude. This sand pile model illustrates that a SOC system (a 

pile of sand in a critical state) emerges spontaneously from the random 

interactions between the agents in the system (the sand grains) and that changes 

in the system are caused by the addition of energy to the system (adding sand 

grains causes sand slides). SOC can also be found in the dynamic properties of 

electrical brain activity (Linkenkaer-Hansen et al., 2001, R Chialvo, 2004, 2006, 

Bullmore et al., 2009). 

When it is assumed that in a resting state the brain is in a state of SOC, the alpha 

band also should display its markers, namely that of power law behaviour. This 

will be investigated in this chapter. Many forms of analyzing time series and brain 

dynamics exist (Cold and Cold, 2007, Michel and Murray, 2012). The analysis that 

will be explored here is the long range temporal correlation (LRTC) which gives a 

number for the slope of the straight line in the power law (Linkenkaer-Hansen et 

al., 2001). In EEG research the use of LRTC has revealed its value in differentiating 

pathology from health and is therefore an interesting approach worthy of 

investigation (Linkenkaer-Hansen et al., 2005, Montez et al., 2009, Nikulin et al., 

2012). First it will be investigated whether a straight line (a power law) can be 

found for changes in the magnitude of the alpha band over time and if so what 

the slope of this line is. The higher the steepness of the slope, the larger the 

amount of energy that evaporates from the system and the shorter in time the 

correlations are. The less steep the slope is, the longer is the memory trail and 

therefore it is easier it is to determine how the system will behave. Then it will be 
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investigated whether this power law behaviour and its slope is specific for the 

alpha band by scrambling the order of the occurrence of the waves in surrogate 

signals. Furthermore it will be investigated whether the NIRS parameters HbO2 

and Hbb display power law behaviour. As was argued in chapter 3, the spectral 

analysis did not reveal individual peaks like the APF that is seen in the EEG. 

Therefore the whole frequency range  of these parameters (0.01-0.5 Hz) will be 

considered. 

 

4.1.2 Investigating dynamic relationships 

In the previous chapter the correlation analysis between the electrical and 

hemodynamic modality, was static with block averages correlated against each 

other. When it is assumed that the brain operates as a dynamic system it might be 

more appropriate to analyse the relationship between electrical and metabolic 

features in a dynamic fashion a well. Several analysis techniques exist to 

investigate the correlation between two time series. In chapter 2 use was made of 

the running correlation (RC) (Cui et al., 2010) to investigate noise in the NIRS 

signals. It would be possible to use the RC in the current paradigm to correlate the 

alpha fluctuations with the HbO2 and Hbb time series separately. Since it is 

suspected that the NIRS signal will correlate at a delay of around 8 seconds 

(Moosmann et al., 2003) the window of the RC would need to be adjusted in 

order to capture this. However, no matter how large the window is made, it slides 

as fast along signal x as it moves along signal y, so the optimal match will possibly 

never be made. Therefore, it would make more sense to use a correlation analysis 

method that uses a time lag on one signal like the cross correlation method (Box 

et al., 2013), which was also the analysis method of choice by Moosman et al. 

(2003). 

 

To summarize, the dynamics of the alpha band will be explored in order to 

determine whether there is power law behaviour by means of long range 

temporal correlation (LRTC) analysis. NIRS time series will also be analysed to 

explore if these show power law behaviour too. Finally, the correlation between 

the fluctuations of the alpha band and fluctuations in HbO2 and Hbb concentration 

over time will be investigated by means of cross correlation analysis. 
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4.2 Methods 

4.2.1 Subjects  

In this chapter the data from the same group of participants were used as in the 

previous chapter. This means that there were 38 subjects in the sample (21 

female) and the age range was 19-60 years (mean 37.74, SD 13,30). All 

participants volunteered to participate in this research and signed a consent form 

after the testing procedures were explained to them. They also completed a 

questionnaire before testing procedures commenced in order to rule out 

neurological, psychopathological or vascular disease. Medication that could 

possibly affect brain activity was also an exclusion criterion. 

4.2.2 Paradigm and Equipment 

The paradigm used is similar as is reported in chapter 3,  paragraph 3.2.2 and a 

schematic representation of it can be found in figure 3.1. 

4.2.3 Equipment  

A description of the EEG and NIRS amplifiers can be found in paragraph 3.2.3 of 

the previous chapter. The electrode and optode positioning is clarified and 

illustrated in figure 3.3. 

4.2.4 Data Analysis 

4.2.4.1 Fluctuation of Alpha power 

In order to determine the fluctuation of the alpha power over time, the alpha 

envelope was calculated by performing a Short-Time Fourier Transform (STFT) 

over the entire 5 minute measurement. The parameters of the STFT were set to 5 

data point time steps, 1000 frequency bins, a rectangular window with a length of 

250 samples, and a power spectrum was used during the analysis. These 

parameters were chosen as they generate stable results for EEG measurements 

collected with a sample frequency of 250Hz (as stated in personal communication 

by Björn Crüts, PhD student at Imperial College London, August 14th 2012).  The 

power (µV2) of the 7.5 – 12 Hz alpha band was plotted and saved in a new time 

series with a sample frequency of 50 Hz. An example of the alpha envelope is 

presented in figure 4.2. 
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 Figure 4.2 A simplified illustration of the retrieval of the alpha envelope. 1. The EEG trace 

from the O1 location is plotted. In this example 5 seconds of EEG is shown 2. The alpha 

band between 7.5 and 12 Hz is selected and it is determined what the alpha amplitude is 

at every time point. Shown by the bold white line. 3. The alpha amplitude at every time 

point is plotted in a new time series. Here shown for the entire 5 minute measurement, 

representing the alpha envelope. A clear distinction can be seen between blocks of eyes 

open and eyes closed data in which the eyes closed blocks show enhanced alpha 

amplitudes. 

 

For the alpha envelope of each subject for both hemispheres it was determined 

whether a good or a poor response was seen in a similar fashion to the quality 

check that was performed on the NIRS signals in chapter 3. The quality of the 

response was again defined as whether a response was seen that followed the 

paradigm. When a strong response (2 SD or larger change from baseline) was seen 

in all repeats (5 out of 5), the quality was marked as “good”. When a response 

was faint for some repeats or inconsistent (2 or 3 out of 5), the signal was marked 

as “medium”. When no response (under 2 SD change from baseline) or only noise 

was observed, the quality was marked as “bad”. “Good-medium”  or “medium-

bad” qualifications were given to signals that fell in between two other 

qualifications. These labels were used to divide the group into a good-quality and 

a poor-quality group. All signals that were marked as “good”, “good-medium”, or 

“medium” were taken together in the good-quality group and the “medium-bad” 

and “bad” classifications were taken together in the poor-quality group. 
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4.2.4.2 LRTC analysis 

A Fourier Transform was  then performed on the alpha envelope, the HbO2 time 

series and the Hbb time series. This FFT was plotted on a log-log scale in order to 

determine whether long range temporal correlations (LRTC) were found as a 

prerequisite of scale-invariant behaviour (figure 4.5). Hereto a rectangular 

window was used and the lower and upper bound of the frequency range of the 

log-log plot were set to 0.1 and 10 respectively. Which again were chosen because 

of their stability of the results (as stated in personal communication by Björn 

Crüts, PhD student at Imperial College London, August 14th 2012). Then it was 

determined whether the plot showed a straight line and if so, what the slope of 

this line was for both the O1 and O2 location.  

 

Simultaneously, for each signal that was used for LRTC analysis, a surrogate signal 

was created in which the phases of the waves were mixed. By doing so the time 

series differ from the original while the spectra remain unchanged (Linkenkaer-

Hansen et al., 2001). An FFT was performed on the surrogate signal and plotted 

on a log-log scale. This plot was evaluated for a straightness of the line and its 

slope is determined. Subsequently, a Wilcoxon signed ranks test was performed 

to investigate whether differences existed between the measured data and the 

surrogate data. Then this test was repeated on the good quality and poor quality 

data group separately to investigate possible differences between these groups. 

 

4.2.4.3 Correlating EEG and NIRS over time  

In order to investigate the coupling of the electrical brain activity and the 

hemodynamic response, the time series of the alpha envelope obtained for LRTC 

analysis was correlated against the concentration changes in the HbO2 time series 

as well as the Hbb time series. Important in correlating two time series is that they 

move at similar time steps. The alpha envelope that was extracted from the EEG 

had a sample frequency of 50 Hz. Since the NIRS time series were sampled at 25 

Hz, the alpha envelope had to be down sampled to 25 Hz. This was done by 

omitting every second data point from the alpha envelope sequence. 

 

The two signals were then correlated against each other by means of a cross 

correlation function (CCF). The CCF plots a graph of the linear correlation between 

the two time series at different lags. Since a delay of around 8 seconds was 
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expected, the signals were analyzed for all lags between -10 to 10 seconds (-250 

to 250 samples) in which the signal containing the hemodynamic information was 

the lagged time series. The height of the maximal (or minimal) correlation (or anti-

correlation) and its accompanying time lag was obtained for all subjects. Then it 

was investigated whether signal quality influenced either correlation strength or 

timing by first omitting the signals that had received a bad quality label and 

second by also omitting physiological illogical data. Physiological illogical data 

were defined as data showing a negative and therefore unexpected time delay 

between the signals, indicating that changes in the hemodynamic parameter 

precede changes in electrical activity. 

4.3 Results 

4.3.1 Scale-invariance of Alpha power 

As previously performed with the NIRS signals in chapter 3, the quality of the 

alpha response was evaluated. The quality labels that were used consisted out of 

5 categories: good, good-medium, medium, medium-bad and bad. These 

categories were merged into a good-quality and a poor quality group. Table 4.1 

shows the number of good-quality and poor-quality  signals and shows that 26 out 

of 38 subjects (68,4%) had good signal quality. When the quality of a signal was 

good for the O1 location it was also good for the O2 location. 

Alpha O1 Alpha O2 

N (total) 38 38 

N (good-quality) 26 26 

N (poor-quality) 12 12 

Table 4.1. The number of subjects (N) that fall into each quality category for the alpha 

envelope on both the left occipital (O1) and right occipital (O2) location.  



113 

 

Figure 4.3. Long range temporal correlation (LRTC) slopes. The upper panel shows the LRTC 

graph of subject 15 in which the dip around log(f) = 1.0 is visible. The lower panel shows 

the LRTC graph of subject 18 who shows an artefact in every transition from EC to EO and 

vice versa. 

 

Subsequently it was investigated whether the LRTC plot resulted into a straight 

line. A typical example of a LRTC plot in this study is illustrated in figure 4.3 (upper 

panel, subject 15) along with an atypical response of subject 18 who showed an 

artefact in the EEG every time the switch was made from eyes open to eyes closed 

and vice versa (lower panel). In the typical response, all subjects showed a dip in 

their LRTC slope at log (frequency) = 1.0. This dip can be explained by the way the 

paradigm was set up. Every 30 seconds the subjects change conditions (EO to EC 

and EC to EO) leading the amplitude of the alpha activity to be modulated, 

increasing when eyes were closed and decreasing when eyes were opened. This 

caused a slow wave at the transit phases within the alpha envelope which appears 

as a peak around 0.01 Hz in the spectrum that was obtained when the FFT is 

performed on the alpha envelope and causes the dip at 0.1 on a log scale in the 

otherwise straight line. Because the paradigm can explain this peak it is safe to 

conclude that the lines obtained for the subjects in this study are straight lines. 

The plots did show jitter which increases towards the end of the tail. However, 
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this is common in LRTC plots (Linkenkaer-Hansen et al., 2001). The lower panel of 

figure 4.3 shows that when large artefacts are present in the signal, the LRTC plot 

is also affected and will show multiple dips in the slope. 

 

The linear slopes of the LRTC analysis were all negative and ranged from -3.18 to -

1.41 for the O1 location and from -3.13 to -1.53 for the O2 location. In figure 4.4 

an example of the difference between the alpha envelope and the accompanying 

surrogate signal is displayed. The original and surrogate signal have an identical 

spectrum, however these time series are created to have no temporal 

correlations (Linkenkaer-Hansen et al., 2001). The linear slopes of the obtained 

surrogate signals ranged from -2.93 to -1.35 for the O1 location and from -3.02 to 

-1.39 for the O2 locations. The Wilcoxon signed ranks test showed that the linear 

slopes of the surrogate data were significantly different from the slopes of the 

LRTC from the original alpha envelope data for both the O1 (z = 4.967, N-Ties = 38, 

p = 0.000) and the O2 (z = 4.713, N-Ties = 36, p = 0.000) location. Indicating that 

the original data resulted in steeper linear slopes than the surrogate data.  

Figure 4.4. The alpha envelope and its surrogate signal. In the upper panel the original 

alpha envelope from the O1 location of subject 15 is displayed and in the lower panel its 

surrogate signal in which the phases of the waves are shuffled. A surrogate signal has a 

spectrum that is identical to the spectrum of the  original signal but has no temporal 

correlations.  

 

When the tests were repeated for the good-quality sample and the bad quality 

sample separately the difference between original and surrogate data remained 
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intact. In the good-quality group (N= 26) the slopes of the original data were 

steeper for the O1 (z = 4.000, N-Ties = 26, p = 0.000) and the O2 (z = 3.780, N-Ties 

= 25, p = 0.000) location. And in the bad-quality group (N=12) this finding was also 

true for both locations,  O1 (z = 3.059, N-Ties = 12, p = 0.002) O2 (z = 2.845, N-Ties 

= 11, p = 0.000). 

A difference that was found between the good-quality and the poor-quality 

sample was the value of the slope. The good-quality sample had an average slope 

for O1 of -2.60 (range –3.19 tot -1.71) and for O2 of -2.66 (range  -3.13 to -1.96). 

Whereas the bad-quality sample has an average slope for O1 of -1.80 (range –2.30 

tot -1.41) and for O2 of -1.85 (range  -2.15 to -1.53).  This showed that the slope 

becomes less steep when the data do not show the expected response upon the 

opening and closing of the eyes. 

4.3.2 Scale-invariance of NIRS parameters 

Since no distinguishing peak could be found in the spectral analysis of the NIRS 

time series in the previous chapter, the entire 0.01-0.5 Hz part was used for the 

LRTC analysis. The analysis parameters were adjusted for NIRS signals to: 5 second 

time steps, 1000 frequency bins, a window length of 25 samples with no 

predefined shape, and again a power spectrum was used. The example in figure 

4.4 shows that the analysis does not yield a straight line on the log-log scale in 

step 5. This possibly occurs because of the large changes that are seen in the Hbb 

(and HbO2) concentration due to the paradigm. As figure 4.5 shows on the right 

hand column, even when the phases of the signal are shifted in the surrogate 

signal, the slow wave underlying the paradigm remains recognizable and results in 

a nearly similar envelope. Since this was something that was found in both Hbb 

and HbO2 time series and for all subjects it was decided not to continue the LRTC 

analysis for the NIRS signals. 

1. 

2.
.

3. 

4. 

5.
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Figure 4.5. Long range temporal correlation (LRTC) analysis on a deoxygenated 

haemoglobin time series. The left hand column depicts all steps undertaken in the LTRC 

analysis: 1. The measured signal is plotted, 2. The short time Fourier transform (STFT) is 

depicted in colour, more red indicates a higher intensity, 3. The selected frequency band (in 

this case 0.01-0.5 Hz) is plotted in a new time series (the envelope), 4. A fast Fourier 

transform (FFT) of the envelope is made, 5. The FFT is plotted on a log-log scale. The right 

hand column shows the same steps for the surrogate signal.  

 

4.3.3 Correlating EEG and NIRS over time 

An example of the alpha envelope along with the obtained Hbb and HbO2 time 

series is from the O1 location of subject 3 is illustrated in figure 4.6. The 

correlation analysis between the fluctuation of the alpha band (the alpha 

envelope) and the Hbb and HbO2 fluctuations yielded the following results. When 

all subjects (N=38) were considered in the analysis, a negative correlation (-0.171) 

for the alpha envelope and the HbO2 concentration changes was found on the O1 

location with an average delay of 2.79 seconds. For the alpha envelope and the 

Hbb concentration changes on this location, a positive correlation (0.183) was 

found with an average delay of 1.94 seconds. On the O2 location a similar 

correlation pattern was found. Here a negative correlation (-0.120) for the alpha 

envelope and the HbO2 time series and a positive correlation (0.104) for the alpha 

envelope and the Hbb signal was seen. The delay however was different from the 
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O1 location with an average delay of 0.50 seconds for the Hbb trace and a 

negative delay of -0.08 seconds for the HbO2 signal. The average correlations, 

delays and the standard deviations are summarized in table 4.2 A. 

 

 

Figure 4.6. The alpha envelope with the accompanying Hbb and HbO2 time series from 

subject 3 on the O1 location. 

 

The quality labels that were given to the separate signals were then used to split 

the data. All data that received a “bad” quality label were excluded from the 

sample and the analysis was run again to investigate differences in correlation 

strength and timing. These results are also visible in table 4.2 (section B). After the 

data were cleaned, around one quarter of the sample was left. In this sample, 

stronger average correlations in the left hemisphere (alpha x HbO2 = -0.276; alpha 

x Hbb = 0.403) were found that had a larger average delay of the hemodynamic 

response (HbO2: 5.03 s, Hbb: 5.01 s). The average correlations in the right 

hemisphere also increased but not as much as they did in the left hemisphere 

(alpha x HbO2 = -0.153; alpha x Hbb = 0.251). Furthermore, the time delay of the 

hemodynamic response that increased to 5 seconds in the left hemisphere was 

smaller in the right hemisphere (HbO2: 0.19 s, Hbb: 3.24 s). 
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When the subjects were evaluated on an individual level, it became apparent that 

there was large inter-individual variation in the correlation data. Some subjects 

even showed a physiologically unexpected response, namely a negative delay 

value often accompanied by a change in sign of the correlation value. When these 

subjects were excluded from the sample as well (table 4.2 C), less subjects 

remained but correlation strengths increased to moderate levels (O1:alpha x HbO2 

= -0.380; alpha x Hbb = 0.457, O2: alpha x HbO2 = -0.366; alpha x Hbb = 0.337). 

And the delay time varied between 7 and 8 seconds (O1: HbO2: 8.01 s, Hbb: 7.08 

s; O2: HbO2: 7.07 s, Hbb: 7.69 s).  

 

A O1 alpha x 

 HbO2 N=38 

O1 alpha x 

 Hbb N=38 

O2 alpha x 

 HbO2 N=38 

O2 alpha x 

 Hbb N=38 

Correlation -0.171 (0.257) 0.183 (0.324) -0.120 (0.202) 0.104 (0.201) 

Delay (s) 2.79 (6.07) 
 

1.94 (5.72) 0.50 (7.08) -0.08 (6.90) 

B O1 alpha x 

 HbO2 N=11 

O1 alpha x 

 Hbb N=10 

O2 alpha x 

 HbO2 N=9 

O2 alpha x  

Hbb N=9 

Correlation -0.276 (0.263) 0.403 (0.272) -0.153 (0.293) 0.251 (0.198) 

Delay (s) 5.03 (6.78) 5.01 (5.21) 0.19 (7.40) 3.24 (7.05) 

C O1 alpha x 

 HbO2 N=9 

O1 alpha x 

 Hbb N=8 

O2 alpha x 

 HbO2 N=4 

O2 alpha x 

 Hbb N=6 

Correlation -0.380 (0.137) 0.457 (0.143) -0.366 (0.140) 0.337 (0.093) 

Delay (s) 8.01 (1.50) 7.08 (3.15) 7.07 (3.01) 7.69 (2.11) 

Table 4.2. Group averages of the highest correlation values and their shift in time domain. 

The standard deviation is presented between brackets.  A positive value for delay portraits 

the number of seconds that the hemodynamic response is slower. Section A displays the 

values that are obtained for the entire sample. Section B contains the values obtained after 

the data that was not of high enough quality was eliminated. Section C contains the results 

after the omission of the bad quality as well as the physiologically unexpected signals.  

Legend: N= number of subjects, O1= left visual cortex, O2= right visual cortex, HbO2= 

oxygenated haemoglobin, Hbb= deoxygenated haemoglobin. 

 

4.4 Discussion 

In this chapter it was tested whether the alpha band as well as the HbO2 and Hbb 

time series displayed features of scale-invariance indicated by power-law 

behaviour, both properties of SOC systems. First,  the dynamics of the alpha band 
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was investigated with LRTC analysis and revealed that after removal of the dip 

caused by the paradigm, power law behaviour was present and this was 

statistically different for actual signals compared to surrogate signals. When the 

quality of the signals was taken into account it appeared that the good quality 

signals showed significantly steeper power law slopes. Secondly, the same 

analysis was performed on the time series of the HbO2 and Hbb concentration. 

Here no power law could be found which was potentially due to the underlying 

paradigm of eyes open eyes shut that was used during data collection which 

caused an underlying slow oscillation to be present. Finally, the correlation 

between the fluctuations of the alpha band and fluctuations in HbO2 and Hbb 

concentration were investigated in which the hemodynamic signal was lagged as 

opposed to the alpha envelope. This analysis yielded higher correlations than 

were found in chapter 3, especially when the data were cleaned from bad quality 

data and physiologically illogical data.  

4.4.1 Scale invariance of alpha power 

Quality labels were assigned to the responses seen in the alpha envelope. For 

both the O1 and O2 locations 68,4% was graded as having a good quality. 

Compared to the NIRS time series, described in chapter 3, the quality of the EEG 

signals was much better even though it is a method that is known to be prone to 

artefacts (for artefact examples see e.g. (Krauss et al., 2006)).  

When the LRTC analysis was then performed and these data  were compared to 

the surrogate data it appeared that the surrogate data were significantly 

different. This is a similar finding as was reported by Linkenkaer-Hansen et al. 

(2001). The finding indicates that there is a temporal effect that is caused by the 

sequence of the waves that are present within the alpha envelope. This sequence 

tells something about the scalability of the system within the, for this research, 

defined parameters. 

This finding remained true when the sample was split up in a good-quality and a 

bad-quality group. A difference that did show up because of this quality division 

was that the steepness of the slope appeared to be higher in the good-quality 

sample. The higher the steepness of the LRTC slope is, the larger is the amount of 

energy is that evaporates from the system (Linkenkaer-Hansen et al., 2001). This 
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finding can be explained well by the paradigm that is used. As it is known that 

upon closing the eyes the amount of alpha activity increases and the alpha activity 

subsides when the eyes are opened and it is also known that the good-quality 

group is defined based on the presence of this finding, this is the subsample in this 

research that shows a large difference in the amount of alpha activity present 

every 30 seconds. Because this fluctuation is so large, it creates a slow wave, 

which causes a higher amplitude in the first peak of the spectrum (low frequency), 

which in turn causes the slope to be steeper.  

 

4.4.2 Scale invariance of NIRS parameters 

As shown in the results (figure 4.5) the attempt to analyze the entire band 

resulted in a plot that was so distorted by the paradigm performed, that a straight 

line could not be obtained. The switching form EC to OE and vice versa cause a 

slow wave throughout the time series. Even when the data were shuffled for the 

surrogate condition, this slow wave remained present, causing the data to look 

almost similar. The spectrum of this slow wave cause 1 large peak which 

transferred to an arch when plotted on a log-log scale. Therefore it was chosen 

not to continue this analysis on the NIRS signals in this study.  

 

When in future studies scale-invariance of NIRS parameters will be explored one 

might want to choose to analyse steady measurements of eyes open and eyes 

closed data separately. This will allow removal of the additional wave that occurs 

from having a subject change conditions multiple times. From a SOC point of view 

one could say that every time the eyes are opened or shut energy is added to the 

system. Therefore, it is recommended to perform this kind of analysis on resting 

state data with either eyes open or eyes shut separately. When it is found that 

brain activity measured with EEG and metabolic activity measured with NIRS are 

coupled it is expected that both modalities will show SOC and power law 

behaviour. According to the features of SOC, a system anticipates on all levels and 

time scales (Bak et al., 1987). The hypothesis is that if anticipation on one of these 

levels is failing disease occurs. That is why these types of analysis could have a 

great clinical advantage and why this is an aspect that needs to be addressed in 

future research. 
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4.4.3 Correlating EEG and NIRS over time 

In chapter 3 the investigation for the coupling of alpha and Hbb and HbO2 started 

with a correlation analysis of block averages. This analysis led to weak, none 

significant results. In this chapter a more dynamic approach was adopted by 

performing a cross-correlation analysis in which the alpha envelope was 

correlated both with Hbb concentration changes and HbO2 concentration 

changes. The positive correlation of alpha magnitude and Hbb concentration as 

well as the negative correlation of alpha magnitude and HbO2 concentration was 

confirmed in this investigation. Albeit with correlations of moderate strength. The 

stepwise approach of using all data and eliminating first bad quality data and later 

on physiologically illogical or unexpected data illustrated that in a clean dataset 

similar results can be obtained as reported in previous research even with similar 

time delays for the hemodynamic signals (e.g. (Moosmann et al., 2003)). 

However, the fact remains that there is a lot of inter-individual variation in the 

correlations and direction of correlation that is found. And while it seems 

physiologically illogical that a change in oxygenation would precede the 

occurrence of alpha waves it might not be that uncommon. Pfurtscheller et al. 

(2012) found in a resting state that hemodynamic signals, measured with NIRS on 

the frontal cortex, coupled with alpha or beta waves measured at the central 

cortex for periods of 100 s. In six out of nine subjects, the slow wave oscillations in 

HbO2 concentration preceded the changes in EEG frequency bands by 3.7 s. 

The hemodynamic signal preceding the EEG signal was for some subjects the only 

deviant finding. Therefore, it might be worth to be more open-minded to the 

possibility that the coupling between electrical and hemodynamic features does 

not always need to mean that the hemodynamic signal is the delayed signal. 

Especially when resting state data are considered. In determining RSNs the 

primary focus lies on the LFOs and VLFOs (Beckmann et al., 2005, Smith et al., 

2009). Assuming that these slow oscillations carry further than the faster changes 

in EEG do, it might be worth considering that it are the slow, larger waves that 

determine and therefore “drive” the brain state. Which would mean that the EEG 

can be the “follower” in this symbioses. A finding that should be further 

investigated.  
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A different possibility as to why the correlations that are found between the 

electrical and hemodynamic signals are only of moderate strength is that the 

wrong electrical parameter is being investigated. Besides correlations between 

hemodynamic signals and alpha waves, also correlations with beta waves have 

been found (Pfurtscheller et al., 2012). Furthermore, it has been assumed that 

possible relationships might be found between higher frequency EEG like gamma 

activity (60-100 Hz) and hemodynamic parameters (Koch et al., 2009). However, 

while other spectral peaks surely deserve attention in future research the 

uniqueness of the alpha peak, especially in relationship with an EO EC paradigm,  

cannot be dismissed with only moderate correlations.  

When it is assumed that the brain as a dynamic system is a SOC system and obeys 

power law behaviour, it is likely that besides linear correlations, non-linear 

relationships exist as well. Therefore, a possible reason that the correlations 

found in the sample are not that strong is that the cross correlation analysis only 

takes into account linear correlations. In order to investigate this a method is 

needed that analysis both linear and non-linear correlations while taking into 

account the slower fluctuating oxygenation changes as opposed to the faster 

moving electrical brain activity responses. A method that seems to be a good 

candidate in doing so is Mutual Information analysis which will be explained in the 

next chapter. 

4.5 Conclusion 

In this chapter a beginning is made in the field of analysing dynamics of brain 

activity when both electrical and hemodynamic measurement methods are used. 

When the understanding of the relationship between these modalities is strived 

for, the movement towards dynamic analysis is a logical step. While the analysis 

of the separate methods that are illustrated in this chapter show that difficulties 

in applying dynamical analyses exist, the necessity of exploring this in future 

research does not diminish. The path that will be adopted in this thesis revolves 

around a better understanding of the relationship between the NIRS and EEG data 

with special focus on the alpha band, the Hbb concentration and the HbO2 

concentration that have been explored previously. Therefore, the following 

chapter will be centred around exploring the relationship between the signals and 
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will utilise Mutual Information analysis and its potential to analyse linear as well 

as nonlinear relationship between signals from different modalities. 
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Chapter 5: Introducing relative cross mutual 

information, a new non-linear analysis for coupling 

between NIRS and EEG 

 

This chapter will focus on one type of dynamic analysis that is capable to look at 

relationships within one signal, between two signals but also between two signals 

of different modalities. Mutual information analysis. Mutual information (MI) 

analysis takes into account linear as well as nonlinear aspects within time series 

and might therefore be a perfect asset to investigate the relationship between the 

electrical and hemodynamic aspects of brain functioning. However, there are two 

challenges with MI. The first one being the selection of the appropriate bin size for 

the analysis and the second one being the difficulty in the interpretation of the 

values. Therefore, after the introduction of MI, this chapter will elaborate on how 

an appropriate bin size can be established. Then, relative MI will be introduced as 

a transformation of MI results based on the individually used data per analysis. 

Increasing the ease of comparing results.  

 

5.1 Introduction 

Mutual information (MI) was first introduced by Claude Shannon in 1948, an 

electrical engineer at Bell Telephone laboratories, as part of classical information 

theory (Shannon, 1948, Walters-Williams J., 2009). Shannon set out to 

mathematically quantify the statistical nature of “lost” information in telephone 

line signals. Hereby the central problem was that a message selected at one point 

needed to be reproduced at another and that the system would need to make a 

selection out of a set of possible messages (Shannon, 1948). A few of his 

suggested principles need clarification before MI and its implications for brain 

research can be addressed. The first one being entropy. 

 

Entropy is the amount of information or uncertainty that an event (for instance 

values in a signal) contains and it is calculated from the probability of that event. 

Usually a logarithmic base is used to calculate entropy so it can be expressed in 

bits. The average entropy  , of an event is calculated as follows: 
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In this formula, K is a positive constant (this amounts to a choice of a unit of 

measure),    is the probability of a system being in state   of its phase space 

(Shannon, 1948). 

 

Calculating the entropy of a signal can be illustrated with an example2 in which 

signal   will be used (table 5.1 and figure 5.1). Signal   consist out of 8 numbers 

that range between 1 and 4. The average entropy of signal  ,     , can be 

calculated by summing the probability of occurrence of each event (value) that is 

in this signal.  In signal   four events occur; event     occurs 1 out of 8 times, 

event     occurs 4 out of 8 times, event     occurs 1 out of 8 times, and 

event     occurs 2 out of 8 times. Filling out these probabilities in the formula 

leads to the following result: 

 

                            

           

 

                                                           

    
 

 
      

 

 
  

 

 
      

 

 
  

 

 
      

 

 
  

 

 
      

 

 
 

 
 

 
   

 

 
   

 

 
   

 

 
   

 
 

 
 

 

 
 

 

 
 

 

 
 

  
 

 
 

 

 

  1 2 3 4 5 6 7 8 

  2 1 2 4 2 2 3 4 

Table 5.1 Signal  . The upper row   denotes the time steps and the lower row denotes the 

value of signal   at that time point. This signal is used to calculate average entropy from 

which is done by summing the probability of occurrence of each event (value) in the signal. 

The values of the signal are also plotted in figure 5.1. 

                                                           
2
 All courtesy goes to A. Sipers (Zuyd University/ Maastricht University, department of knowledge engineering), 

who used this example to explain entropy more clearly to me. 
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Figure 5.1 The plotted values of signal X. At every time point the value of the signal is 

expressed with a red square. 

 

Entropy has a few properties that are important. First of all, it is always a positive 

number, unless we know what the outcome of an event will be for sure. In that 

case    . Second, the maximum entropy value is reached when all probabilities 

of an event are equally likely to occur and this depends on the number of 

possibilities,   (          ). As a consequence this means that maximum 

entropy means maximum uncertainty and minimal predictability (Shannon, 1948). 

 

As the example above shows, this formula was designed to handle one variable. 

When there are two events   and   (or two signals) one can calculate separately 

the entropy for both signals (     and      , but it is also possible to calculate 

the joint entropy       . 

                         

   

 

While filling out the probabilities in the joint entropy equation, imagine a signal 

like in table 5.1 that has an additional signal   below it. The probabilities that 

need to be addressed are then the possible pairs of both signals       that can 

occur on the 8 points in time. If events   and   are totally independent their 

joined entropy will be equal to the sum of the individual entropies. In any other 

case, the joint entropy is smaller (Shannon, 1948). 
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The last type of entropy that needs to be addressed is called conditional entropy.  

Shannon defines the conditional entropy of  ,       as the average of the 

entropy of   for each value of  , weighted according to the probability of getting 

that  : 

                      

   

 

Which can also be defined in terms of how much entropy   has remaining if the 

value of a second random variable   is known and be written as        (Walters-

Williams J., 2009).  

 

Figure 5.2 explains how these three forms of entropy relate to each other and to 

MI. To start with, entropy the information or uncertainty within every event (or 

signal) is represented by a cloud for each signal      and     . When the events 

(or signals) are completely independent from each other the clouds are separate 

and MI equals 0. When signal   and   are dependent the clouds (partly) overlap. 

Both clouds together define the joint entropy of the events,       . The joint 

entropy can also be calculated by adding the entropy of event   to the conditional 

entropy of   once   is known                    (Shannon, 1948, 

Walters-Williams J., 2009). Similarly, conditional entropy can be found by 

subtracting the entropy from the known variable from the joint entropy 

                   (Shannon, 1948, Walters-Williams J., 2009). The 

uncertainty of   is never increased by knowledge of  . It will be decreased unless 

  and    are independent events, in which case it is not changed (Shannon, 1948). 

When then the two events are believed to be signals that are communicated from 

a sender to a receiver, these signals can be communicated separately. By doing so 

the entropy or uncertainty is as large as the two separate clouds. However, when 

the signals are sent in pairs, the entropy of the two separate clouds decreases 

with the Mutual Information of the two signals        : 

                         

The MI can also be found by deducting the conditional entropy of   once   is 

known from the entropy of event  ,                    , and by 

deducting the conditional entropy of   once   is known from the entropy of 

event  ,                     (Ramanand et al., 2010). 
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Figure 5.2 (adapted from (Harrison et al., 2006)). The relationships that exist between the 

different forms of entropy (entropy  and ; joint entropy ; conditional 

entropy  and ) and how mutual information ( ) can be deduced 

from them.  

 

In essence, MI measures the mutual dependence of two variables. It can tell how 

much uncertainty is lost once one variable is known, and therefore it gives an 

indication of how much information event  can give about event  (Walters-

Williams J., 2009). Since it measures linear and non-linear dependencies between 

two variables, MI is often regarded as the nonlinear equivalent of the correlation 

function that was used in chapter 4 (Alonso et al., 2010, Ramanand et al., 2010). 

 

MI is a symmetric function so the amount of information event  can give about 

event  is the same as the amount of information event  can give about event , 

. Furthermore, MI is always a non-negative between X and Y 

(the uncertainty of X cannot be increased by knowing of Y), . And 

last, the information the variables contain  about each other cannot be greater 

than the information the variables contain about themselves (the entropy), 

 and  (Walters-Williams J., 2009). The higher 

the value of the MI, the more information the two variables contain about each 

other. 

 

When the MI is applied to two different time series it is often referred to as Cross 

Mutual Information (CMI). Often this function is also lagged in time to be able to 

determine the predictability  of  once  is known (Jeong et al., 2001, Ramanand 

et al., 2010). When the MI is applied to just one time series, that time series is 

also lagged in time against itself. In this circumstance it is referred to as Auto 
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Mutual Information (AMI) and it tells something about the predictability of the 

signal given past measurements (Jeong et al., 2001, Ramanand et al., 2010).  

 

5.1.1 Mutual information in EEG research 

The use of MI analysis has become an appealing tool in neuroscience. When the 

MI is applied to two EEG signals, it gives a quantitative measure of dynamic, 

functional coupling between them (Jeong et al., 2001, Alonso et al., 2010). 

Especially the estimation of statistical dependencies without assumptions about 

the distribution of the data (whether this is linear or not) is a great asset, as well 

as the stability of the measure with large data sets (Ramanand et al., 2010). MI 

has been applied to the entire EEG spectrum, but also in narrow band analysis in 

which one band is inspected on two locations or when one band is inspected 

together with another (Ramanand et al., 2010). 

 

Jeong et al. (2001) used MI in the analysis of Alzheimer’s patients to explore the 

information transfer across brain regions. They found that, compared to age-

matched controls, Alzheimer’s patients show a functional problem in long-

distance connections. Recently it was also found that the inter-hemispheric and 

right-hemisphere MI is lowered in patients with multiple sclerosis (Lenne et al., 

2013). Another neurological population that was investigated with MI analysis on 

EEG signals was a group of Parkinson’s patients on and off L-dopa medication 

(Palmer et al., 2010). Also the effects on short time coupling of medicinal 

substances in healthy volunteers were assessed by means of MI (Alonso et al., 

2010). Furthermore, MI has been used to study the EEG after sleep deprivation 

(Na et al., 2006) and to quantify differences in between sleep stages in both 

young (Xu et al., 1997) and middle-aged and elderly subjects (Ramanand et al., 

2010). These examples illustrate the use of MI analysis of EEG data with clinical 

perspective. A flag that is raised while performing MI analysis to investigate 

functional coupling of neural data is that the information transfer needs to be 

understood in a statistical sense. The linear and non-linear coupling that might be 

found cannot reveal the exact mechanisms or structural pathways that underlie 

this statistical coupling (Jeong et al., 2001, Alonso et al., 2010). 
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5.1.2 Mutual information in NIRS research 

To the best of my knowledge, MI analysis in research conducted with NIRS has 

only been carried out once. Herff et al. (2012) investigated the potential use of 

speech in a brain computer interface that uses NIRS measurements. Use was 

made of three speaking modes; audible speech, silent speech, and imagined 

speech, distinctive Hbb and HbO2 responses were registered for each condition, 

called the training data. Subsequently, the brain computer interface used MI to 

classify in which class the data that were measured would fall. Differences 

between either task condition or pauses could be classified with an accuracy 

between 69 and 88%, and differences between tasks could be classified with an 

accuracy between 61 and 80% (Herff et al., 2012). This is a very different approach 

than the approaches that are described for EEG analysis and illustrates the 

diversity in potential use MI analysis has. 

 

When other measures of hemodynamic activity are considered, like fMRI, MI is 

found to be a technique that is used more often recently, but still not as often as 

it is in EEG research. One of the first applications of MI in fMRI was performed by 

Kim et al., (1999). They propose to use MI on the slices obtained as anatomic 

dataset as reference to slices obtained during the task to set a threshold for 

motion correction. Later on the technique also proved useful for assessing the 

connectivity between brain regions, or clusters of brain regions during rest 

(Salvador et al., 2007) or during a task (Hinrichs et al., 2006). But also timing 

aspects of information processing in the brain have been investigated. Fuhrmann-

Alpert et al. (2008) used MI to identify the latency of the BOLD response in which 

the highest information content for an audio-visual stimulus was seen compared 

to purely auditory or purely visual stimuli. And even more recently an approach of 

MI maps was suggested to unravel regionally specific effects in fMRI data  

(Gómez-Verdejo et al., 2012). 

 

5.1.3 Mutual information in combined electrical and hemodynamic research 

With the variety of possibilities the MI analysis possesses it does not come as a 

surprise that possibilities are sought to use it to link electrical and hemodynamic 

activity. Especially because it has been postulated that the more information two 

signals contain about each other (high MI) the higher chances are that the two 

signals are biologically related (Palmer et al., 2010). Since this assumption already 
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exists for electrical and hemodynamic activity, the MI appears an elegant method 

to illuminate linear and nonlinear dependencies between both modalities. 

Another reason for the increase in popularity of MI to analyse signals from two 

different modalities is that MI uses the probability distributions of the dataset 

rather than actual data. Therefore, it is not restricted by assumptions of the 

distributions of the datasets used (Ramanand et al., 2010).  

 

Ostwald et al. (2010, 2011, 2012) have used MI analysis on simultaneously 

acquired EEG and fMRI signals to investigate the visual response upon 

checkerboard stimulation, to investigate the effects of checkerboard stimulation 

upon the coupling between low resolution electromagnetic tomography (LORETA) 

derived from EEG and fMRI, and explored how these analysis can be used to 

investigate the neural underpinnings of perceptual decisions. Other researchers 

used MI on concurrent EEG and fMRI in order to map hemodynamic changes 

related to interictal epileptic discharges in the EEG (Caballero-Gaudes et al., 

2012). 

 

Studies that have sought to link EEG activity with fMRI data usually model the 

fMRI data based on the EEG. MI analysis treats both modalities symmetrically and 

does not need an a priori model of the hemodynamic function). Together with its 

ability to assess both the linear as well as the nonlinear aspects of the 

dependency (Alonso et al., 2010, Ramanand et al., 2010), these are great 

advantages on current analysis techniques. In this chapter the first attempt will be 

made to use MI analysis to investigate the coupling between EEG alpha wave 

activity and Hbb and HbO2concentration changes. However, two challenges in MI 

analysis exist. First, the probability distribution needs to be determined 

adequately, and second the obtained MI values need to be interpreted correctly. 

 

5.2 Determining the number of bins 

The first difficulty that arises when performing MI analysis is estimating the 

probability distributions needed to calculate the entropies (Ramanand et al., 

2010). A method that is often used to estimate probability distributions is referred 

to as the histogram method, which uses bins. 
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In this chapter the  probability distributions of NIRS and EEG time series need to 

be estimated. The histogram method divides the amplitude of the time series into 

partitions (figure 5.3) or bins. The probability distribution can then be obtained by 

calculating the ratio of the number of data points that fall within each bin    

divided by the total number of samples in the time series  :     
  

 
 (Thakor and 

Tong, 2004). 

 

 

Figure 5.3 The partitioning of the amplitude of an EEG time series into bins. To illustrate 

the concept these 5 seconds of EEG from the left visual cortex of subject 3 (µV range + and 

– 50) are partitioned into 24 equal sized bins. The 0-line is indicated with a black line and 

also indicative of a partitioning between two bins. 

 

The number of bins that is chosen for the analysis needs to approach the average 

probability adequately. When larger (and therefore fewer) bins are chosen to 

determine the entropy of each signal, more data points fall within each bin and 

the average probability per signal is more accurate. However, the estimate of the 

joint probability will be too flat, causing the MI to be underestimated. When 

smaller (more) bins are chosen, the fluctuations in the joint probability 

distribution over short distances are followed better, but when these fluctuations 

are due to a smaller sample size the MI is overestimated (Fraser and Swinney, 

1986). The first objective therefore is determining an appropriate amount of bins 

for the current EEG-NIRS dataset. Hereto three approaches are adopted: 1. 

Investigate current literature, 2. Investigate the distribution of the dataset, 3. Test 

the analysis by use of dummy data. 

 

5.2.1 Investigate current literature  

Since MI analysis has not been conducted before to investigate concurrent EEG 

and NIRS data, no literature is available to illustrate the choice of the appropriate 

number of bins. MI analysis has only been performed once on NIRS data and this 

study used a kernel density estimation with Parzen window approach (for 

explanation see (Parzen, 1962)) to estimate the probability distribution (Herff et 

al., 2012). Therefore, the appropriate binning method was sought in EEG research. 
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The EEG literature revealed that the underlying theory of how to decide the 

number of bins is scarce. Some studies even fail to mention the amount of bins 

used (Abasolo et al., 2007, Hornero et al., 2009). Often studies only report the use 

of the histogram method and state how many bins were used. The most studies 

use 64 bins of which most (but not all) of these studies use datasets of 4096 data 

points (Jeong et al., 2001, Na et al., 2002, 2006, Min et al., 2003, Jin et al., 2006, 

Escudero et al., 2008, Lee et al., 2011). Teplan et al. (2006) use 295 bins with 

87000 data points and state as a rule that the number of bins is equal to the 

square root of the number of data points. When this rule is applied to a dataset of 

4096 data points            it is revealed that 64 bins would indeed be 

advised. 

 

Another rule for calculating the amount of bins to be used is given by David et al. 

(2004) and states that the number of bins used to estimate the probability density 

is the number just below         in which   is again defined as the amount of 

data points in the dataset. This leads to the use of fewer bins as was shown by 

Abasolo et al. (2008) who adopted this approach and used 12 bins for 4096 data 

points. Even fewer bins, namely 8, were preferred by Alonso et al. (2007, 2010) 

and Luo and Sajda (2009). The latter study ranged the amount of bins from 6 to 12 

but did not find much differences between the options so decided to go with 8. 

 

A study that systematically researched different amounts of bins (8,16,32,64 and 

128) with different types of signals (synthetic signals as well as surface EEG and 

intracranial EEG) argued that 32 bins generated the most accurate outcome for 

AMI analysis (Escudero et al., 2009). Other numbers that have been found in the 

literature were 16 bins with approximately 4000 data points (Jin et al., 2010, 

Ramanand et al., 2010), 50 bins with 500 data points (Lu et al., 2011), and 20 bins 

while investigating a motor task (number of data points unknown) (Wang et al., 

2009, Palmer et al., 2010). 

 

Due to the inconsistency that exists, the use of only the alpha band in this chapter 

and the additional use of NIRS data it was empirically tested in a random subject 

what number of bins would be most appropriate. First, 64 bins were used since 

most EEG studies use this number of bins. Second, the rule by Teplan et al. (2006) 
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was explored. When the 5 min time series are analysed by MI similarly as was 

done in chapter 4 with the CC analysis, all time series consist of 7500 data points.  

Fed into the formula this results into             87 bins. As a third option 

the rule of David et al. (2004) was investigated:                 , which 

suggested to use 12 bins. The results of this test are summarized in table 5.2. 

 

Bins Alpha- HbO2 O1 Alpha-Hbb O1 Alpha- HbO2 O2 Alpha-Hbb O2 

12 0.18 0.25 0.10 0.12 

64 0.69 0.77 0.55 0.52 

87 0.90 0.98 0.73 0.68 

Table 5.2 Exploration of different bin sizes on data of subject 3. Values that are reported 

are the average cross mutual information (CMI) values of all values found between time 

shifts of -10 and +10 seconds. Legend: O1= left visual cortex, O2= right visual cortex, HbO2= 

oxygenated haemoglobin, Hbb= deoxygenated haemoglobin. 

 

The results suggest that the more bins are used, the higher the MI values get. 

Furthermore, when the time point at which the highest MI was found is 

considered as well it was found that this value was stable for 87 and 64 bins, but 

shifted to higher time delays with 12 bins for this subject. Whereas this shift is 0.5 

seconds on the O1 location, the O2 location even shows a shift of 2.5 seconds. 

These results illustrate that bin size matters but are inconclusive in determining 

which bin size would be more adequate. 

 

5.2.2 Investigate the distribution of the dataset 

To solve the binning problem, help was sought in the department of mathematics 

of Imperial College London. Prof. Henrik Jeldthoft Jensen and Dr. Fatimah Abdul 

Razak explained a two step procedure. First, the data are normalized based on the 

standard score and subsequently all data is plotted in a single histogram. The 

number of bins that makes the histogram look smooth and normally distributed is 

the number that is chosen for the MI analysis. The normalizing of the data assures 

that the binning range is uniform. Furthermore, since the changes in amplitude of 

the time series are the property of interest (resulting in magnitude changes for 

the EEG signals and concentration changes for the NIRS signals), normalizing the 

data corrects for possible inherently high values.  
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The alpha time series as well as the HbO2and Hbb time series were normalized 

individually for both measurement locations (O1 and O2) by subtracting the 

distribution’s mean ( )  from every data point and dividing the outcome by the 

standard deviation of the distribution ( ), resulting in  -scores (Moore et al., 

2012):   
   

 
. 

The data from all participants, from both locations and from all three 

measurements parameters (alpha, HbO2, and Hbb) were placed into one file and a 

histogram was created in SpSS with several numbers of bins (figure 5.4). The three 

possibilities that were suggested from the literature 64, 87 and 12 were 

investigated first. The different plots showed that too few bins (12) did not 

present a normal curve and that a larger number of bins increased the 

smoothness of the histogram (64). Using too many bins (87) resulted in a skewed 

curve. Because the 64 binned plot was a little skewed as well, lower bin numbers 

were investigated subsequently.  

Figure 5.4 Histograms of different bin sizes. The black curve indicates the normal curve. On 

the x-axis the z-scores are displayed, on the y-axis the frequency a data point falls within a 

bin is displayed. The different pictures show that with more bins the normal curve is 

followed smoother, too many bins however, show a skewed peak with increased kurtosis. 
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Since 29.4 units were found in the data (range -5.7 to 23.7) 29 and 30 bins were 

also explored. As is visible in figure 5.4, 30 bins resulted in a better fit than 29 

bins. Therefore, as a last step the possibilities between 30 and 64 bins were tested 

in increments of 2 bins to explore the best match, which was found in 50 bins. 

However, just like the histogram created with 64 bins, despite the increased 

smoothness, some skewness was detected. 

5.2.3 Test the analysis by use of dummy data 

Signal Alpha z-scored HbO2 z-scored Hbb z-scored 

min -1.8609 -4.8202 -5.7401 

max 23.2967 4.6466 4.8330 

Table 5.3 The ranges of the z-scores for each measure based on the experimental data of 

all participants. Dummy data were randomly generated within the ranges specified in the 

table. Legend: HbO2= oxygenated haemoglobin, Hbb= deoxygenated haemoglobin. 

In order to verify that the chosen bin number was correct, dummy data were 

used. Dummy data were randomly created to be independent, had similar length 

as the actual time series (7500 data points), and were generated within the ranges 

of each used parameter (table 5.3). After the time series were generated, MI 

analysis was performed in which bin sizes were varied for each analysis. Since the 

dummy data were generated to be independent, the optimal bin size would result 

in an MI that approaches 0 (Shannon, 1948, Walters-Williams J., 2009).  

The results of the MI analysis are summarized in table 5.4. The investigation 

started with 64 bins as this was the number of bins that was most reported in EEG 

research. This was followed by the reasonably good fits of 50 bins and 30 bins 

from the histogram method. When these results did not lead to outcomes of zero, 

the smaller size of 12 was also tested. As seen in paragraph 5.2.1, the use of less 

bins leads to smaller numbers of MI. To test whether the results kept decreasing 

or whether there was an optimum all smaller bin sizes were tested as well. This 

showed MI values only were zero with the dummy data when 1 bin was used. 

With 3 or 4 bins, results in which the first three decimals were zero were obtained 

though. 
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Bins Alpha-HbO2 O1 Alpha-Hbb O1 Alpha-HbO2 O2 Alpha-Hbb O2 

64 0.46 0.46 0.46 0.46 

50 0.26 0.26 0.26 0.26 

30 0.084 0.085 0.084 0.084 

12 0.011 0.011 0.011 0.011 

3 0.0004 0.0004 0.0004 0.0004 

1 0 0 0 0 

Table 5.4 Exploration of different bin sizes in independent dummy data. Values that are 

reported are the average cross mutual information (CMI) values of all values found 

between time shifts of -10 and +10 seconds. Legend:O1= left visual cortex, O2= right visual 

cortex HbO2= oxygenated haemoglobin, Hbb= deoxygenated haemoglobin. 

 

5.2.4 Discussion on the number of bins 

Fraser and Swinney already pointed out in 1986 that the number of bins that are 

chosen to perform MI analysis can influence the results. This was enforced by 

Escudero et al. (2009) for the use of MI analysis in biomedical signals. When the 

binning is too fine or too coarse the results are biased. In this section three 

methods were explored to investigate the appropriate amount of bins for the 

current data set. The first method was an investigation of the current literature.  

This search is however, impaired by the deficit of literature that is available on MI 

analysis in NIRS or concurrent EEG and NIRS research. In the EEG literature often 

64 bins are used but the underlying theory is left unreported. The rules of thumb 

that are provided by David et al. (2004) and Teplan et al. (2006) were tested on a 

random subject and showed that the fewer bins were used, the lower MI results 

were. This finding was accompanied by a shift in time when maximal MI was 

reached when a lower bin size was used, leading to the conclusion that different 

bin sizes can lead to different results. 

 

Secondly, upon advice from Dr. Fatimah Abdul Razak, the data distribution of the 

normalized data was inspected for various bin sizes. In this approach the optimal 

bin size would lead to a normally distributed histogram which is smooth as well. 

This approach showed that more bins leads to a more smoothly defined 

histogram. However, there seems to be an optimum because when the bin size is 

increased too far, the histogram becomes more skewed. A downside of this 
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method is that it is still a rather arbitrary choice to say which histogram is 

preferred. 

As a last option, it was tried to determine the right bin size by using the properties 

of the analysis itself. When independent time series are analyzed MI should be 

zero. So independent dummy data generated within the range of the actual data 

were used to explore different bin sizes. Unfortunately, this did not lead to the 

results hoped for. When using the options suggested by the histogram method, 

the results did not approach zero. When much smaller bin sizes were used the 

results did lean towards zero. However, these were bin sizes that were smaller 

than the ones reported in the literature and the histogram method displayed that 

a small amount of bins is an inappropriate fit. 

5.2.5 Conclusion on the number of bins 

A choice upon a bin number needed to be made however to be able to continue 

the analysis. This choice was 30 bins. In this choice the normally distributed shape 

of the histogram was taken into account with a compromise on the smoothness. 

The second factor that contributed to this choice were the results from the 

dummy data. The MI analysis on dummy data performed with 30 bins was the 

only option that shows results < 0.1 while still displaying a normally distributed 

histogram. The fact that independent time series generate results in the MI 

analysis that are > 0 is a factor that will be taken into account in the interpretation 

of the results.  

5.3 MI in an eyes open eyes closed paradigm 

In this chapter MI analysis is performed as an extension of the analyses that have 

been performed so far on the dataset that was used in chapters 3 and 4. In order 

to be able to compare the results of this analysis to the cross-correlation analysis 

that has been performed in chapter 4, a similar approach is adopted. 

A difference between MI analysis and CC analysis, other than the nonlinear 

relationships that can only be investigated by MI analysis, is the interpretation of 

the results. The results of CC analysis always range from -1 to 1, indicating 

anything in a range from a perfect anti-correlation to a perfect correlation 
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(Howell, 2011). The result obtained with MI analysis, always ranges between 0 

and a positive number (Walters-Williams J., 2009). Therefore the direction of the 

relationship cannot be interpreted directly from the results. Furthermore, no 

other guidelines for interpretation are given than the higher the MI value, the 

higher the mutual dependence of the two signals is (Walters-Williams J., 2009). 

The Venn diagram displayed in figure 5.2 shows the relationships that exist 

between the different forms of entropy  and the MI. The more radical situations 

of independent signals and maximal dependent signals are illustrated the Venn 

diagrams in figure 5.5. 

 

The left sided Venn diagram shows that theoretically independent signals would 

yield an MI of 0, similar to what was reported by Shannon (1948). However, the 

findings in paragraph 5.2 showed that when bins are used to determine the 

entropies needed for MI analysis, independent signals do not yield a value of 0. 

The right sided Venn diagram shows that maximum dependence between two 

signals results in a maximum MI. And that this maximum MI is equal to the 

smallest entropy of the two signals that are used for analysis. Knowledge of these 

properties can aid in the interpretation of the results. 

 

 

 

 

 

 

Figure 5.5 Venn diagrams for independent and maximal dependent signals. The left hand 

side Venn diagram displays the relationship between the different forms of entropy for a 

situation in which the two signals that are used are completely independent. The right 

hand side Venn diagram displays this relationship when maximal dependency exists 

between two signals. Legend:  and = entropy, = joint entropy,  

and = conditional entropy,  = mutual information 

 

Here a proposition is made for a transformation of the MI values based on the 

properties of the signals and parameters that are used in the MI analysis. This 

transformation will be referred to as relative MI (MIrel): 
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For each signal that is used in the MI analysis (  and  ) a dummy signal is 

generated randomly with values that fall within the range of the actual signal 

(       and       ). Since the dummy signals are generated randomly they will 

be independent. MI is then calculated over        and         

(                 ) using the same bin size as is used to calculate        . 

This creates a new 0-threshold. Then for each signal that is used in the MI analysis 

(  and  ) the entropy is calculated (     and     ). From these two entropy 

values it is determined which is lowest for this is the maximum value that can be 

reached by the MI analysis. In order to calculate      , the new 0-threshold is 

deducted from the actual MI value and from the smaller entropy. Then this new 

MI value is divided by the new entropy and multiplied by 100. By doing so, the 

initial MI value that is found can be related to the minimum and maximum 

possible MI, expressing the dependency of a signal in a percentage. This approach 

will be adopted here.  

 

5.3.1 Methods 

5.3.1.1 Subjects 

Since the MI analysis is an extension of the previously performed analysis the 

group of participants is similar to the group described in chapters 3 and 4. The 

group exists out of 38 participants (21 female) with an age range of 19-60 years 

(mean 37.74, SD 13,30). All subjects volunteered to participate, and signed 

informed consent. The study was approved by the University ethics committee 

(070300). 

 

5.3.1.2 Paradigm 

During the experimental session of each participant concurrent EEG and NIRS 

measurements were taken from the visual cortex during 5 minutes. Hereto, 

recordings from both the left and right hemisphere were taken approximately 

over O1 and O2 locations of the 10-20 EEG locations system (Jasper, 1958). 

Subjects were asked to sit comfortably in front of a computer screen that 

displayed a picture of a “test screen” (figure 3.2). Every 30 seconds the 

participants were asked to change from eyes open to eyes shut and vice versa (a 
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schematic view of the paradigm is displayed in figure 3.1). Half of the participants 

started the measurement with closed eyes, the other half with their eyes open. 

5.3.1.3 Equipment 

The specifications of the EEG equipment (Bimec, Maastricht Instruments B.V. 

Maastricht, the Netherlands) and the NIRS equipment (OXYMON Mk III, Artinis 

B.V. Zetten, the Netherlands) and electrode as well as optode configurations are 

described in paragraph 3.2.3. 

5.3.1.4 Data analysis 

In chapter 4 it was shown that subject 18 showed artefacts in the alpha envelope 

on every transition from EC to EO and from EO to EC and that these artefacts 

influenced the dynamics of the signal. Therefore, it was decided to exclude 

subject 18 from the MI analysis, leaving 37 subjects in the sample.  

For both locations (O1 and O2) the CMI was determined for the normalized 5 

minute time series of the down sampled alpha envelope and the HbO2 

concentration change as well as the alpha envelope and the Hbb concentration 

change. As explained in chapter 4, the alpha envelope contains the changes in 

magnitude over time of the alpha frequency band (7.5-12 Hz). This time series is 

down sampled to 25 Hz in order to match the sample frequency of the HbO2 and 

Hbb time series. By doing so each time series has the same number of data points 

and the possible time shifts of either signal in relation to the other can be 

observed more adequately. 

CMI was calculated by means of a LabVIEW application programmed as element 

of the BrainMarker EXG analysis software (BrainMarker B.V., Gulpen the 

Netherlands). This application plots a graph of the CMI value of the chosen signals 

at different time lags (figure 5.6). Similar to the CCF used in chapter 4, the signals 

were analyzed for all lags between -10 to 10 seconds. For all signals, 30 bins were 

used to estimate the probability densities. From the plot it was then determined 

at what time shift maximum CMI was reached. Both the CMI value as well as the 

time shift were noted for each pair of signals. Since the calculation of CMI for time 

series of 7500 data points and 30 bins has a long calculation time, it was chosen 
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only to plot the CMI values in a resolution of 0.5 s. This decreases the accuracy of 

the time shift to some extent, but speeds up analysis time.  

 

 

Figure 5.6 A cross mutual information (CMI) plot (subject 3, left occipital cortex, Alpha – 

oxygenated haemoglobin, 30 bins). On the x-axis the time steps that are analysed are 

displayed (tau), in this case 10 seconds back and 10 seconds ahead. This plot shows that 

the maximum CMI is reached at 8.5s and the CMI value is 0.65. 

 

Then for each signal the range (min-max) was determined and a dummy signal 

was randomly generated within this specified range consisting out of 7500 data 

points. For each signal pair used in the CMI analysis the CMI analysis was repeated 

with the dummy counterparts. In this analysis similar settings were used. 

Separately, for every genuine signal the entropy was calculated according to the 

following formula: 

                            

              

 

Here, also 30 bins were used to bin the signal. The width of the bins is determined 

by the range of the signal. Here,          is the probability that a data point 

    falls within a predefined bin    . For each signal pair used in the CMI analysis 

it was determined which signal had the lowest entropy. 

 

The lowest entropy, the CMI of the dummy signals and the CMI of the genuine 

signals were then used to calculate relative CMI for each signal pair: 

       
                             

                              
      

 

Once all 37 data sets were analyzed it was investigated whether the values that 

were found were influenced by the signal quality that was established in chapters 

3 and 4. Furthermore by means of paired t-tests and Wilcoxon signed ranks tests 

it was evaluated whether outcomes differed between hemispheres. It was also 
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tested with similar tests whether the comparisons between alpha envelope and 

HbO2 concentrations and alpha envelope and Hbb concentration changes were 

different. 

5.3.2 Results 

In order to calculate relative CMI the entropy of each signal used had to be 

calculated in order to determine which of the two signals of each pair displayed 

lowest entropy. The entropy on its own is an indication of the amount of 

information or the uncertainty that is contained in that signal (Shannon, 1948). 

The higher the entropy, the more uncertainty a signal contains which decreases 

predictability. When the entropies of the alpha envelopes and the NIRS signals 

were compared in this dataset it was shown that the entropy of the alpha 

envelope was lower than the NIRS entropies and therefore more predictable 

(averages displayed in table 5.5). Interestingly, the variability between subjects 

was larger for the alpha envelope compared to the NIRS signals as is visible in the 

higher SDs and ranges. No significant differences between right and left 

hemisphere were detected by means of a paired samples t-test for all measuring 

modalities. A significant difference was found though between the entropies of 

the HbO2 and Hbb concentrations on the same location (O1: t=2.036, df=36, 

p=0.045; O2 t=3.076, df=36, p=0.004). Since higher entropy values were found for 

the HbO2 concentrations, this difference indicates that the Hbb signals have 

higher predictability.   

Entropy Alpha O1 Alpha O2 HbO2 O1 HbO2 O2 Hbb O1 Hbb O2 

Average 2.91 2.93 4.31 4.26 4.22 4.14 

SD 0.60 0.59 0.25 0.30 0.28 0.30 

Range 1.3–3.85 1.69–3.92 3.52–4.70 3.43–4.73 3.47–4.66 3.23– 4.59 

Table 5.5 The average entropies for all signal modalities with their standard deviation (SD) 

and range. Legend: O1= left visual cortex, O2= right visual cortex, HbO2= oxygenated 

haemoglobin, Hbb= deoxygenated haemoglobin. 

The CMIrel analysis between the alpha envelope and the HbO2 as well as the Hbb 

concentration changes led to the following results, which are summarized in table 

5.6A. When all subjects participate in the analysis it was found that on the O1 

location on average 7.57 % dependency existed between the alpha envelope and 
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the HbO2 concentration. On average this dependency was highest with a time 

shift of 3.03s. For the alpha envelope and the Hbb concentration the average 

dependency was a little higher, 8.12%, as was the time delay, 3.32s. For the O2 

location, on average lower dependencies and time delays were found. Here the 

dependency between the alpha envelope and the HbO2 concentration was 6.50% 

with a time delay of 2.05s and the dependency between alpha and the Hbb 

concentration was 5.83% with a time delay of 2.05s. A Wilcoxon signed ranks test 

revealed that this difference between the left and right hemisphere was only 

significant for the dependency of the alpha envelope and the Hbb concentration 

changes (z= 2.384, N-ties= 37, p= 0.017). Differences between dependencies on 

the same location were not significant. 

Similar to the procedure that was adopted with the CCF analysis it was 

investigated whether data quality influenced the obtained results. All data that 

received a bad quality label in chapter 3 or 4 were excluded from the sample and 

the analysis was repeated (results are summarized in table 5.6B). This led to 

higher dependencies. On the O1 location the average dependency between the 

alpha envelope and the HbO2 concentration changes was now 12.86% with an 

average time delay of 5.05s. The average dependency between alpha and Hbb 

concentration changes even reached 15.06% and had an average delay in reaching 

maximum CMI of 4.6s. For the O2 location the dependency values remained lower 

than for the O1 location. Here an average dependency of 10.32% was found for 

the alpha envelope and HbO2 time series and 9.42% for the alpha envelope and 

the Hbb time series. Time delays were also lower compared to the O1 location, 

2.78s and 1.5s respectively, with the latter one even being lower than was found 

when no data was excluded. Wilcoxon signed ranks tests were used to evaluate 

whether differences between left and right and differences between analyses 

over the same location were significant. It needs to be noted though that not for 

every subject that is left in the sample all comparisons could be performed 

because of missing data. Similar to the previous analysis, only the dependency of 

the alpha envelope and the Hbb concentration was significantly different between 

left and right  (z= 2.028, N-ties= 7, p= 0.043).   

As a last step the data showing a physiologically unexpected response (a negative 

delay of the hemodynamic data) were deleted from the sample. This resulted in 
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further increases of the dependencies between the signals as well as increases in 

timing of the delay (table 5.6C). In the analysis of the alpha envelope together 

with the HbO2 concentration changes on the O1 location the average dependency 

was 14.28%, and maximum dependency was reached on average after 6.39s. 

When on the same location the alpha envelope was analyzed together with Hbb 

concentration changes a dependency of 15.51% was found and on average the 

maximum dependency was reached after 6.5s. For the O2 locations the average 

dependency values were slightly lower again (alpha envelope and HbO2: 12.93%; 

alpha envelope and Hbb: 11.76%). However, the average time it takes to reach 

maximum dependency was longer for the O2 location (7.6s for alpha and HbO2; 

and 7.0s for alpha and Hbb). Since only 3 pairs remained in the sample for 

statistical testing of differences between left and right these results are 

unreported. 

 

A O1 alpha x 

HbO2 N=37 

O1 alpha x 

 Hbb N=37 

O2 alpha x 

 HbO2 N=37 

O2 alpha x 

 Hbb N=37 

CMIrel (%) 7.57 (5.16) 8.12 (6.52) 6.50 (4.89) 5.83 (3.96) 

Delay (s) 3.03 (6.15) 
 

3.32 (5.80) 2.05 (6.30) 2.05 (6.63) 

B O1 alpha x 

 HbO2 N=11 

O1 alpha x 

Hbb N=10 

O2 alpha x 

HbO2 N=9 

O2 alpha x 

Hbb N=9 

CMIrel (%) 12.86 (5.53) 15.06 (6.60) 10.32 (6.94) 9.42 (4.99) 

Delay (s) 5.05 (3.32) 4.6 (4.29) 2.78 (5.94) 1.5 (7.39) 

C O1 alpha x  

HbO2 N=9 

O1 alpha x  

Hbb N=8 

O2 alpha x  

HbO2 N=5 

O2 alpha x  

Hbb N=5 

CMIrel (%) 14.28 (4.99) 15.51 (6.48) 12.93 (8.60) 11.76 (5.39) 

Delay (s) 6.39 (1.61) 6.5 (1.73) 7.6 (2.16) 7.0 (3.82) 

Table 5.6. Group averages of the highest relative cross mutual information (CMIrel 

expressed as a percentage) values and their shift in time domain. The standard deviation is 

presented between brackets.  Section A displays the values that are obtained for the entire 

sample. Section B contains the values obtained after the data that was not of high enough 

quality was eliminated. Section C contains the results after the omission of the bad quality 

as well as the physiologically unexpected signals. Legend: N= number of subjects, O1= left 

visual cortex, O2= right visual cortex, HbO2= oxygenated haemoglobin, Hbb= deoxygenated 

haemoglobin. 

 



146 

5.4 Discussion 

In this chapter a method for evaluating the underlying coupling of the time series 

of the alpha envelope and the HbO2 concentration changes as well as the Hbb 

concentration changes was presented. This method was derived from the 

information theoretic framework of Shannon (1948). To my knowledge, similar 

analyses have not been conducted on EEG and NIRS signals together yet. Two key 

aspects of performing this analysis  in a meaningful way were highlighted in this 

chapter. The first one being the choice of the amount of bins to estimate the 

probability distributions based on the provided dataset. The second being the 

transformation of the obtained CMI values into relative CMI values based on the 

data to be analysed. 

5.4.1 Choosing the appropriate bin size 

Deciding upon the correct bin size when conducting analyses of measures derived 

from the information theoretic framework is an important first step. Lower bin 

numbers can lead to an underestimation of the MI, while higher bin numbers can 

lead to overestimation (Fraser and Swinney, 1986, Escudero et al., 2009). The 

differences in results were also found in this study when different bin sizes were 

applied to the data from the same subject, showing that the more bins were used, 

the higher MI values got. Furthermore, the choice of bins influenced the time 

point at which maximum MI was reached for this subject.  

The method proposed here, first normalizes the data and then joins all data in one 

distribution. The number of bins that is chosen depends on whether the 

appearance of the distribution is normal and smooth. Simultaneously,  this choice 

is guided by  the analysis of dummy data, which are generated randomly in the 

same range as the experimental data so two signals are independent. The analysis 

of the independent data needs to approach zero. The choice in this study was 30 

bins and a value of the dummy data of > 0.90. 

A factor that strengthened this decision was that when the value of the dummy 

data was used as a threshold to determine whether two signals were independent 

all MI values found in the 30 bin analysis were higher than this threshold. This is 

expected since the EEG and NIRS data were measured over the same location 
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during the same paradigm and some form of coupling was determined already in 

chapter 4. When this was explored for the threshold of the 64 bin analyses (0.46) 

it was found that over half the subjects showed MI values below this threshold, 

suggesting that lower dependency between the EEG and NIRS data existed than it 

did for independent data (data unreported). 

 

This method of deciding bin size has the advantage that it is easily understood and 

applied, however the choice of bin size remains somewhat arbitrary and the 

wrong choice leads to biased results. Other methods besides histogram binning 

exist for estimating the probability distributions needed for estimating MI. Among 

these are both parametric and non-parametric methods of estimation. The pros 

and cons of a number of these methods are reviewed by Walters-Williams J 

(2009). A further in depth discussion falls beyond the scope of this thesis but 

could be conducted in future research.  

 

5.4.2 Relative Cross Mutual Information 

As an extension of the exploration of the relationship between the changes in 

alpha magnitude and the HbO2 and Hbb concentration changes that was carried 

out in chapters 3 and 4, the analysis of relative CMI was performed in this 

chapter. As expected, it was found that there was a mutual dependence both 

when alpha magnitude and HbO2 were considered as well as when alpha 

magnitude and Hbb were evaluated. Similar to the findings with the CCF analysis 

in chapter 4, the strength of this dependency increased when bad quality data 

were removed, and even a further increase was seen when physiologically illogical 

data were removed. This was also true for the time point on which maximum 

CMIrel was reached. For the CCF analysis this timing was between 7 and 8 seconds 

for all comparisons made. With the CMIrel these values were a bit lower, between 

6 and 7.5 seconds. In the CCF analysis the timing could be established with a 

resolution of 0.04 s. In order to speed up analysis time for the  CMIrel analysis the 

resolution was brought back to 0.5 s which could be an explanation for this 

difference. Another difference that was found between the different analyses was 

that not the exact same subjects that presented the physiological response in 

which a negative delay was seen. This finding could be due to the fact that the 

CMIrel takes into account both linear and nonlinear relationships (Alonso et al., 

2010, Ramanand et al., 2010). The additional nonlinear findings in coupling could 
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possibly result in a shift in time of maximum CMIrel. Different from the CCF 

analysis it was also investigated whether there were statistical differences in the 

obtained CMIrel values and the timing, between hemispheres as well as 

differences between alpha envelope and HbO2 concentrations and alpha envelope 

and Hbb concentrations within the same hemisphere. When the whole sample 

was investigated it was shown that there was a significant difference between the 

left and right hemisphere for the dependency between the alpha envelope and 

the Hbb concentrations. Suggesting a stronger dependency in the left 

hemisphere. This was the only significant difference that was found. This finding 

remained when the bad quality data were removed from the sample. When also 

the physiological illogical data were removed only 3 pairs remained for statistical 

testing so these results were omitted. A reason for this finding was already briefly 

highlighted in chapter 3 when it was found that on the location measured over 

the right hemisphere more bad quality data was found. The human brain is 

positioned slightly rotated in the skull (Toronov et al., 2007). This causes the 

neocortex to be a little further away from the optode on the right side of the 

hindbrain compared to the left side of the hindbrain (for the frontal cortex this is 

the other way around). Since the difference between left and right remains when 

the bad quality data are removed another factor that possibly contributes to this 

difference is the amplitude of the Hbb signal. Compared to the HbO2 signal, the 

Hbb signal showed smaller fluctuations in this data set. A standard feature of NIRS 

measurements is that during brain activation a response of two to three times the 

magnitude is seen in HbO2 compared to Hbb (Ferrari et al., 2004). This smaller 

signal to noise ratio combined with the rotation of the brain could explain why 

this left-right difference is seen for the Hbb concentrations but not for the HbO2 

concentrations. 

MI has been used previously to establish the dependency between EEG and fMRI 

data. Ostwald et al. (2010) used high and low contrast checkerboard stimulation 

in order to determine the dependency of the P100 peak of the visual evoked 

potential from a single electrode and the hemodynamic response under the area 

surrounding the electrode of the occipital cortex. However, the MI values that 

were found were low and mostly not significantly different from zero. In a follow-

up study a different approach was adopted and MI was calculated over LORETA 

(low resolution electromagnetic tomography) and fMRI during a similar paradigm 
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Ostwald et al. (2011). In this study also the change in EEG alpha power to the 

stimulus of the checkerboard was considered. Again no dependency was found 

between the measurement modalities. A reason for the inconsistency with the 

current data, is that Ostwald et al. (2010) calculated MI over extracted features of 

both the EEG and fMRI data like peak amplitude and latency to a single stimulus. 

In doing so the time frame that is observed is small (1s for EEG and max 15s for 

fMRI) compared to the 5 min dataset that was analyzed in the current study. So to 

increase the number of data points (or time) that is used for MI analysis could 

have an advantage. Another advantage of simultaneously analysing NIRS and EEG 

data over the simultaneous analysis of fMRI and EEG data is that the EEG signal 

loses information due to the noise caused by the scanner and the subsequent 

data cleaning algorithms (Ostwald et al., 2010). The imposed noise and the 

necessity of cleaning the EEG time series extensively could also have confounded 

the information needed for the source localization algorithms. With the 

simultaneous use of NIRS and EEG this is less of an issue since the modalities do 

not impose noise onto one another.  

A challenge with any MI analysis is the interpretation of the values. The higher the 

MI value between two signals is, the higher is their mutual dependence (Walters-

Williams J., 2009). However, when the minimum and maximum possible value of 

the CMI are omitted this number has little meaning. Furthermore, it even 

becomes hard to compare results between subjects, because the maximum CMI 

value can have inter subject variation. In order to tackle this problem relative CMI 

was proposed in this chapter. The CMIrel transforms the obtained CMI values to 

relative values based on the minimum and maximum possible values derived from 

the experimental data. By doing so, the obtained CMI can be expressed as a 

percentage. This makes sure that not only results can be compared between 

subjects, it allows the comparison of different brain regions, different 

measurement modalities, different clinical samples, and different points in time. It 

basically allows for the comparison of virtually anything because the values are 

corrected for the data that is used. This creates a great clinical advantage. The 

only potential drawback would be if the CMIrel does not increase linearly. 

However, as Shannon (1948) points out in his framework of information theory, 

choosing a logarithmic base to compute entropy and MI causes parameters of 

importance to engineering, like time, bandwidth and number of relays to vary 
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linearly with the logarithm of the number of possibilities. Closely related to this it 

complies with people’s intuitive feelings that two punch cards hold twice as much 

information as one punch card does (Shannon, 1948). Therefore, here the 

assumption is made that a CMIrel value of 20% expresses a dependency which is 

twice as high as 10%. It also has to be noted that the bin size needs to be 

evaluated for each new dataset that is analyzed. In this study use was made of the 

alpha envelope only. When a broader EEG spectrum or a different frequency band 

is used the most appropriate bin size might be different. Therefore, clinically 

speaking, it would be beneficial to automate the processes described in this 

chapter in order to obtain a method of analysis that is less prone to arbitrary 

choices. In this automation process the generation of the dummy signals and 

thresholds for calculating CMIrel should be the first step which can be performed 

hidden in the program before the entropy of the signals as well as the CMIrel 

between the signals is given as a result both in number and in graph. Together 

with a database of representative data for healthy and pathological conditions 

clinicians would be able to interpret outcomes in a much more intuitive way to 

asses changes in the relationship between electrical and hemodynamic 

parameters  in patients without the need to have in depth knowledge about the 

information theoretic framework. Furthermore, researchers from different fields 

could use the automated analysis in order to provide and expand the database for 

multimodal analysis but also for example to do connectivity analysis within one 

measurement modality between different brain locations. 

However, something that CMI or CMIrel is unable to do is to tell something about 

the direction of the dependency. The interpretation of the time point of when 

CMIrel reaches a maximum when one of the signals is lagged in time is only a 

rough estimate. By doing so, the assumption is made that when the NIRS signal is 

the lagged signal and the maximum CMIrel is reached after 6 to 7.5 s that this is 

because the hemodynamic response to neural activation takes several seconds, 

even though considerable variation is seen between subjects and brain regions 

(Handwerker et al., 2004). Based on this finding, subjects that showed a negative 

delay of the NIRS signal were excluded in the last step of the analysis because this 

indicated a physiologically illogical finding. However, as mentioned in the 

discussion of chapter 4 a lot of variation existed in the timing of the maximum 

CCF. This was also the case when the timing was considered for the CMIrel. A 
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possibility exists that in some cases the changes in blood oxygenation parameters 

precede the changes in electrical activity with a physiologically sound reason. 

Similar to the study of Pfurtscheller et al. (2012) that indicated that in 2/3rd  of the 

sample the slow waves seen in the HbO2 preceded the waves in the EEG when 

HbO2 at the frontal cortex and alpha and beta waves at the central cortex were 

found to be coupled.  

 

There are measures derived from classical MI that are able to illuminate the 

direction of dependency between two parameters. Examples of these are Transfer 

Entropy and Mutual Information from mixed embedding. Transfer entropy (TE) 

measures the direction of information transfer between coupled dynamic systems 

and is explained in full by Schreiber (2000). Feas and Nollo (2013) however, point 

out in their research that TE is unable to specifically define the time lag needed in 

order to evaluate the timing of information transfer. They propose a modification 

of the TE that makes this possible (Faes and Nollo, 2013). Mutual Information 

from mixed embedding (MIME) and partial MIME are measures of directional 

coupling as well (Kugiumtzis, 2013). The exact functioning and application of these 

methods could be investigated further in future research on the coupling of EEG 

and NIRS parameters.   

 

5.4.3 Entropy as a meaningful measure 

Since the CMIrel transformation corrects MI values based on the experimental data 

that is used, the entropy of all signals needed to be calculated. Entropy provides 

information on the amount of uncertainty in a signal, or in reverse, its 

predictability (Shannon, 1948). Higher entropy expresses higher uncertainty and 

therefore lower predictability. In the current dataset it was found that the alpha 

envelope yields smaller entropies and therefore higher predictability than either 

NIRS signal. The variety between subjects is larger though in the alpha entropy 

than it was for the NIRS entropies. Furthermore, it was established that when 

HbO2 and Hbb concentrations were compared, the Hbb concentrations showed 

lower entropy and therefore higher predictability than the entropy of the HbO2 

concentrations. This finding is an important one when signals derived from NIRS 

measurements are evaluated as a whole instead of just the activation period. 

During an activation period it is after all assumed that the signal containing the 

HbO2 changes and the signal containing the Hbb changes are anti-correlated close 
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to -1 (Cui et al., 2010). When this is the case, the predictability of both signals and 

therefore their entropy should be nearly equal. When the entire time series are 

considered in the analysis or during resting state, it is not only the activation 

period anymore that is contained in the signal. In this chapter it was shown that 

the information content of the HbO2  and Hbb concentration changes are different 

in essence in which the Hbb signal has higher predictability This is an argument 

that enforces the view within the NIRS community to report both parameters in 

any NIRS research (as witnessed at the 2010 fNIRS conference in Boston). 

Furthermore, it complies with expectancy. Hbb concentration changes occur due 

to brain activation and are therefore quite straightforward, when neural activity 

increases, the Hbb concentration decreases and this decrease is tightly coupled to 

changes seen in the fMRI’s BOLD response (Obrig and Villringer, 2003). The HbO2 

concentration changes however, are susceptible to more factors than brain 

activation like the regional CBF, changes in blood pressure, and increases in skin 

blood volume (Obrig and Villringer, 2003). Together with the two to threefold 

magnitude changes compared to Hbb changes (Ferrari et al., 2004) this leads to 

more components that influence the signal, which could increase the amount of 

uncertainty of the signal. 

Knowing the entropy of brain activity can have a clinical advantage as well. For 

instance during epileptic seizures the EEG changes and displays more regular 

waves. Using entropy to detect changes in the EEG’s predictability it was found 

that this measure had a sensitivity of 97% in discriminating EEG segments with 

and without seizures (Sakkalis et al., 2013). Gao and Hu (2013) used the measure 

of entropy together with several other measures to propose a real-time 

monitoring algorithm that is a candidate to monitor epileptic seizures in a clinical 

setting. However, it are not only neurological diseases that can benefit from the 

analysis of entropy. It has been shown that the EEG of people suffering from 

alcohol dependency displays, among other measures, lower entropy than the EEG 

of healthy people (Acharya et al., 2012). Furthermore, Takahashi et al. (2010) 

showed that patients suffering from schizophrenia showed less predictable EEG 

(estimated by entropy) in anterior brain areas compared to healthy people. When 

antipsychotic medication was administered, it was shown that this predictability 

normalized even though spectral changes could not be observed. Therefore, 

calculating the entropy of different signals, measurement modalities and 
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measurement locations, and how this entropy changes over time could potentially 

help to increase sensitivity and specificity of markers derived from brain activity 

as well as provide information about treatment effects. 

5.5 Conclusion 

This chapter showed that applying a method of data analysis derived from 

classical information theory as proposed by Shannon (1948) is feasible in 

analysing simultaneously acquired EEG and NIRS signals. Besides demonstrating 

this feasibility for the first time, the chapter illustrates how an appropriate bin size 

can be obtained needed for this analysis. It provides the reader with tools to 

transform the obtained results into CMIrel values that simplify interpretation and 

comparison of results. Furthermore it was highlighted that besides information on 

the MI, calculating a quantitative measure of predictability of a signal (entropy) 

could have a clinical advantage as well. Future research should be directed at 

validating the clinical advantage in using these measures of entropy and CMIrel to 

improve the sensitivity and specificity of diagnostics performed based on brain 

measurements as well as the guidance of treatment choice and treatment 

evaluation. In doing so providing clinicians and researchers with an automated 

unified analysis program would be beneficial. 
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Chapter 6: Simultaneous EEG and NIRS measurements 

explored in two cases of stroke 

In the preceding chapters different forms of analysing brain activity have been 

explored to shed light on the information that can be extracted from individual 

measures of electrical and hemodynamic activity as well as the relationship 

between the two in a sample of healthy people. A pathology that is most likely to 

display a disturbance in the symbioses between electrical and hemodynamic 

activity is stroke. Therefore in this chapter two stroke cases will be used to 

illustrate possible dysfunction in this symbioses.  

6.1 Introduction 

The explorations that have been conducted so far in this thesis are all related to 

the functioning of the brain in an eyes open eyes closed paradigm in healthy 

people. Once a sense of a normal pattern of activation has been obtained and 

how the measures relate to each other, this exploration can be taken to the next 

step. Here it is explored how the parameters of brain activation and the 

dependency of electrical related parameters and hemodynamic parameters 

change in pathology.  

As explained in chapter 1, the cerebral vascular network provides the neurons 

with oxygen and glucose and matches the CBF with the specific, local energy 

demands (Ward, 2013). The process of neurovascular coupling, in which 

vasoconstriction and –dilation give rise to functional hyperaemia and make sure 

that homeostatic blood pressure is maintained during periods of changing blood 

flow is a complicated one (Girouard and Iadecola, 2006, Cauli and Hamel, 2010, 

Ward, 2013, Howarth, 2014). Neurovascular coupling is, among other diseases, 

disrupted in stroke (Girouard and Iadecola, 2006, Blicher et al., 2012, Ayata, 

2013). Stroke is a disruption to the cerebral blood supply and mostly occurs 

because of a vascular rupture or a blockage of an artery which causes the 

surrounding tissue or tissue that is prevented from blood to be damaged or die. 

According to the World Health Organisation stroke is worldwide the second 
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leading cause of death and the first leading cause of disability. The probability of a 

first stroke is 1.6 per 1000 (WHO).  

Due to the disruption of the CBF the homeostasis is disrupted as well, causing a 

disturbance to the delivery of nutrients to the neural cells, impairing the removal 

of potential harmful by-products of cerebral metabolism, and potentially leading 

to brain dysfunction (Girouard and Iadecola, 2006). Another mechanism that 

could be responsible for a disruption in neurovascular coupling after stroke is 

caused by spreading depolarization (or spreading depression) which is common in 

migraine, but also visible after stroke (Ayata, 2013). Blicher et al. (2012) 

demonstrated that chronic stroke patients showed other changes in BOLD 

response compared to healthy people elicited by a motor task, ranging from 

positive, to negative, to absent changes in hemodynamics, while increases in CBF 

and CBV due to the task were present. This could be due to the fact that in stroke, 

baseline CBF and CBV as well as impaired vascular reserve capacity alters 

hemodynamic changes (Mandell et al., 2008). As a consequence of these changes 

in hemodynamics, neural activity is not necessarily coupled to regional CBF and 

CBV changes to the same degree as in healthy subjects (Blicher et al., 2012). In 

order to gain insight in both the neural and hemodynamic changes after stroke 

the multimodal approach of combining EEG and NIRS as discussed throughout this 

thesis would be helpful. 

 

Since NIRS has advantages of being relatively low cost and it is capable of bedside 

monitoring of brain oxygenation, one would expect NIRS to have found its way 

into clinical neurology 35 years after its discovery by Jobsis (1977). However, 

possibly due to the difficulties in comparing research from different groups and 

the number of parameters that are suggested to hold promise in differentiating 

health and disease this is not quite the case (Obrig, 2013). Clinical use is made of 

NIRS in the operating room to monitor possible ischemia during cardiac and 

carotid artery surgery as well as in neonatology (Obrig and Steinbrink, 2011). 

However, continuous monitoring of brain oxygenation with NIRS during the 

subacute phase just after diagnosis and during initial treatment of stroke also has 

promising potential (Obrig, 2013). Monitoring of this kind could help detecting 

delayed ischemia in the stroke unit. Quantitative EEG possesses similar 

advantages in bedside monitoring and has been used more often than NIRS to 

show changes directly after stroke. Due to ischemic stroke a diminishing of the 
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beta activity can occur, followed by a slowing of the alpha peak and lastly 

enhanced delta activity is found (Jordan, 2004). The occurrence of this enhanced 

delta activity correlates with the site of the lesion and puts QEEG forward as an 

aid to localising the lesion (Finnigan et al., 2004). Also measures obtained from 

the QEEG have shown to have predictive value of the patient’s outcome. Here one 

of the strongest predictors is the change in delta power in the (sub)acute phase 

which has been shown to correlate well with the National Institute of Health 

Stroke Scale (Finnigan et al., 2004). The reduction of delta wave activity over the 

site of the lesion also correlates with the amount of language recovery (Meinzer 

et al., 2004). For short term outcome the reactivity of the theta and alpha band 

can also be a good indicator when the QEEG is made within the first 24 hours 

(Cuspineda et al., 2007). Therefore, it has been suggested that the delta-alpha-

ratio could be used as an appropriate index of outcome, since this index 48h post 

stroke shows significant correlations with the National Institute of Health Stroke 

Scale scores at 30 days as well as other functional outcome measures (Finnigan et 

al., 2004, Leon-Carrion et al., 2009). In addition to the delta-alpha-ratio, the brain 

symmetry index (BSI) in which asymmetries between homologous pairs of 

electrodes are computed, has also been found to correlate with stroke outcome 

and to have predictive value for disability (Finnigan and van Putten, 2013). In this 

case higher asymmetry scores indicates worse outcome. Evidence shows that 

recovery depends on the involvement of areas unaffected by stroke, either 

proximal to the damaged areas or in contra lateral homologues (Eliassen et al., 

2008). 

During the rehabilitation phase, possible differences in hemodynamic functioning 

can be investigated by assessing the responsiveness to established tasks (Obrig, 

2013). This is of course also true for EEG. The eyes open, eyes shut response of 

the visual cortex which has been described throughout this thesis is one of these 

established tasks. Differences in the expected response can be observed as a 

primary indication of altered brain function. Besides that, also two aspects of 

functional reorganization can be assessed: 1) the recruitment of additional 

cortical areas during the task, not seen in healthy subjects, and 2) lateralization in 

cases where this applies (like unilateral motor control or language ) (Obrig, 2013). 

For example, hand movement and gait studies with NIRS have shown that initially 

post stroke, activity is measured over both hemispheres (Kato et al., 2002), but as 
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rehabilitation continues this activation becomes unilateral or asymmetric (Miyai 

et al., 2003, Takeda et al., 2007). Furthermore,  EEG signal synchrony between the 

medial and lateral motor areas was found to be greater in stroke patients than in 

healthy people but this difference diminished with recovery (Strens et al., 2004).  

Other investigations could rely on findings from resting state measurements. For 

EEG, the parameters obtained in the (sub)acute phase, like delta power, delta-

alpha ratio and BSI can be monitored in follow-up measurements to see if the 

patient is getting better or worse (Finnigan and van Putten, 2013). A resting state 

NIRS study found that the group of patients that had had a cerebral infarction at 

least 12 months prior to the measurements, had lower amplitudes of LFO’s 

compared to a healthy sample, which was assumed to be related to a diminishing 

of the vasodilation capabilities (Li et al., 2010). 

So by regularly using brain measures from diagnosis onwards throughout 

intervention or rehabilitation clinicians would be able to get a quality monitoring 

system that has the ability to assess the severity of the stroke as well as an 

indication of the magnitude of the recovery or possible treatment outcome. The 

concurrent measurement of EEG and NIRS in stroke patients has, as yet, not been 

described in the literature. In this chapter the brain activity of two stroke patients 

will be explored in order to reveal how their brain activity in the electrical and 

hemodynamic domain as well as the dependency between both is different from 

the outcomes that have been found in earlier chapters of this thesis. 

6.2 Method 

6.2.1 Participants and paradigm 

The data for this study were provided by the Biometrical Centre in Gulpen, the 

Netherlands. The therapist conducting the measurements was certified according 

to the Dutch Ministry of Health, Welfare and Sports (BIG-registered) and its 

ethical terms and regulations apply. Two stroke patients came to the Biometrical 

Centre in order to obtain a clearer picture of their brain activity. The participants 

signed consent that their anonymous data could be used for scientific purposes. 

The patients underwent simultaneous measurements of EEG and NIRS over the 

O1 and the O2 locations of the visual cortex. The first patient was a female in her 
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early thirties. The other patient was a male is his late fifties. The Dutch version of 

the Barthel Index was administered prior to the measurement in order to obtain 

insight in the degree of normal functioning in everyday life (de Haan et al., 1993). 

The paradigm used was similar to the paradigm described in paragraphs 3.2.2 and 

4.2.2. which meant that 5 minutes of brain activity was registered in an upright 

position and every 30 seconds the participants were asked to change from eyes 

closed to eyes open and vice versa. 

6.2.2 Equipment and data analysis  

The equipment used for conducting the measurements was also similar to the 

equipment used to measure the healthy population (a description of the EEG and 

NIRS amplifier can be found in paragraphs 3.2.3 and 4.2.3). 

First the static measures of the frequency bands (paragraph 3.2.4.1) were 

investigated together with the changes in HbO2 and Hbb concentrations 

(paragraph 3.2.4.3). Hereto average amounts of delta (0.5-3.5 Hz), theta (3.5-7.5 

Hz), alpha (7.5-12 Hz), beta1 (15-20 Hz) and beta2 (20-32 Hz) activity as well as 

HbO2 and Hbb were calculated for the last halves of every block. All obtained 

measures were tested for normality by means of the Kolmogorov-Smirnov test. 

When normality was assumed, a one-sample t-test was conducted in order to 

determine whether the obtained result for the stroke patient was different from 

the healthy sample. When the assumption of normality was violated a one-sample 

Wilcoxon signed ranks test was used to investigate possible differences. 

Then the APF was explored for each block (paragraph 3.2.4.2) and it was 

determined whether a difference with the healthy sample was seen. When a 

structural difference in APF was found, an individual alpha band was determined 

with the individual APF based in the centre. All following tests were then 

performed on the original alpha band as well as  the individual alpha band. When 

it was found that the faster wave activity was hardly seen anymore and the most 

prominent activity was seen in the delta band due to the severity of the stroke, all 

following analyses were also conducted on the delta frequency band (0.5-3.5 Hz).  

The alpha envelope was calculated and assessed on quality (paragraph 4.2.4.1). 

This quality check was also performed for the HbO2 and Hbb time series 

(paragraph 3.2.4.3). After that the nonlinear measurement LRTC was used on the 
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alpha envelope to investigate possible changes in EEG dynamics in stroke 

(paragraph 4.2.4.2). The LRTC value was compared to the LRTC values of the norm 

group as well as to a subset of surrogate data obtained from the alpha envelope 

of the stroke patient. When the data was found to be normally distributed a one-

sample t-test was used for this comparison, otherwise the nonparametric 

equivalent, the one-sample Wilcoxon signed ranks, was performed. 

 

Then the information or uncertainty in each time series for alpha, HbO2, and Hbb 

was investigated by means of the entropy measure (paragraph 5.3.1.4). For the 

estimation of the entropies 30 bins were used. These outcomes were also 

compared to the outcomes obtained in the healthy sample by means of the one-

sample t-test or its nonparametric equivalent.  

 

As a last analysis the CCF (paragraph 4.2.4.3) of alpha and HbO2 and alpha Hbb 

and its non-linear counterpart CMIrel (30 bins) (paragraph 5.3.1.4) were explored 

to see whether differences in the electrical versus the hemodynamic relationship 

exist for stroke patients compared to healthy subjects. This was again done by 

means of a one-sample t-test or a one-sample Wilcoxon signed ranks. 

 

6.3 Results 

6.3.1 Case 1 

The female patient described in this case suffered from a CVA in the right 

hemisphere when she was in her childhood. Since then she has gone through 

extensive rehabilitation. At the time of the measurement she was in her early 

thirties. The score on the Barthel Index was 20, which is the maximum score and 

an indication that she is able to function independently (Appendix C1).  

 

6.3.1.1 Static EEG frequency measures 

When the averages of the last half for each block were considered for every 

frequency band it appeared that during EC conditions each band displayed higher 

magnitudes compared to EO conditions. An exception to this rule was the delta 

activity which showed this pattern less distinctively. Another finding was that over 

the 5 minute measurement all values seemed to increase slightly. These findings 

were similar for the O1 and the O2 location (figure 6.1).  



160 

 

 

Figure 6.1 The EEG fluctuations of each frequency band for both the left occipital (O1, 

upper panel) and right occipital (O2, lower panel) locations. The average magnitudes per 

last half of the block are plotted.  

 

In the norm group higher values during EC conditions were only found for the 

alpha, beta1 and beta2 bands. The difference in theta activity was not different 

between conditions and within the delta band higher values during EO conditions 

were found. The deviances from the healthy sample in direction of change were 

therefore mainly seen in the delta and theta band. When the obtained values 

were compared to values found in the norm group by means of a one sample t-

test it was found that this patient showed significantly higher values in all 

frequency bands in every block on both measurement locations except for the 



161 

 

delta activity in block 2 with eyes opened on the O1 location. All p-values were 

highly significant (a summary of all results can be found in Appendix A).   

 
6.3.1.2 Static NIRS measures 

 

Figure 6.2 The fluctuations of oxygenated haemoglobin (HbO2) and deoxygenated 

haemoglobin (Hbb) concentrations on both the left occipital (O1, upper panel) and right 

occipital (O2, lower panel) locations. The average concentration changes of the last half of 

each block are plotted. 

 

Whereas a pattern in which higher values of HbO2 concentrations during EO 

blocks and higher values of Hbb concentration was expected, the results for this 

patient were more diverse and sometimes even reversed (figure 6.2). On the O1 

location the first two minutes showed a reversed pattern in which the HbO2 
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concentration increased upon closing the eyes and the Hbb concentration 

decreased upon closing the eyes and vice versa. In the third and fourth minute the 

pattern changed and an expected pattern was shown. The fifth minute however, 

showed a reversed pattern again. When the concentrations were tested against 

the concentrations found in the healthy population only significant differences 

were found during the EO blocks. The findings indicated that during blocks EO1, 

EO2, and EO5 (the reversed blocks) a significant lower concentration HbO2 and a 

significant higher concentration Hbb was found. During the EO3 and EO4 blocks 

the concentration HbO2 remained significantly lower than that of the healthy 

population whereas the Hbb concentration was not significantly different 

anymore (Appendix A, table A3). 

On the O2 location it were the first two minutes that an expected response was 

seen for the HbO2 concentration, for the Hbb concentration this was only the first 

three blocks (1.5 min). After that, the response changed to a reversed response. 

The one sample t-tests for the O2 location revealed that all measurements taken 

from this location were significantly different from the measurements in the 

healthy group in which in all blocks a higher concentration HbO2 was registered 

and a lower Hbb concentration (Appendix A, table A4). 

6.3.1.3 Alpha Peak Frequency 

During the first two minutes a stable APF of 10.5 Hz was observed in every 

selected block on both the O1 and O2 location. In the last three minutes however, 

a drop in the APF was seen only in the EO conditions in which the APF ranged 

between 7.5 and 8.5 Hz. This was a significant drop and especially striking since 

the drop that was seen in a subsample of the healthy population only showed a 

lower APF during EC conditions.  

6.3.1.4 Time series quality labels 

When the quality of the alpha envelope as well as the filtered HbO2 and Hbb time 

series was evaluated as was done with the healthy sample it became apparent 

that the alpha response was clearly visible on both locations. The response seen in 

both NIRS signals got a medium or a medium-bad quality label in which the O1 

location showed a better response than the O2 location (the direction of the 

response was not evaluated here). 
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6.3.1.5 Long range temporal correlations 

t df Sig (two 

 tailed) 

Mean 

dif. 

Tested 

value 

Group 

mean 

Alpha O1 4.708 37 .000* .3743 -2.7190 -2.3446 

Surrogate 

O1 

18.106 19 .000* .1607 -2.7190 -2.5583 

Alpha O2 

 group 

4.737 37 .000* .3597 -2.7615 -2.4018 

Surrogate 

O2 

2.343 19 .030* .0193 -2.7615 -2.7421 

Table 6.1 The difference in long range temporal correlation (LRTC) slope. Results from the 

one samples t-test, testing differences between the stroke case and the healthy sample as 

well as it is tested against surrogate data on both the left (O1) and right (O2) occipital 

cortex. Significant results are indicated with an asterisk. 

The LRTC of the alpha envelope was calculated for both locations and tested 

against the values that were found in the healthy sample as well as it was tested 

against 20 surrogate signals that were obtained by shifting the phases of the 

original alpha envelope (table 6.1). These tests showed that the alpha envelope 

was significantly different from the healthy sample and that it was also different 

from its own surrogate data. In all comparisons lower values were found which 

indicate a steeper slope. 

6.3.1.6 Entropy 

Next the entropy of the alpha envelopes, the HbO2, and the Hbb time series were 

investigated. Equal to the findings in the healthy sample, lower entropy was found 

for the alpha envelope compared to the entropy of the NIRS signals. However, 

when the entropies were compared to the entropies found in the healthy sample 

it was found that the entropies of the alpha envelopes were significantly higher 

and the entropies of the HbO2 time series were significantly lower (table 6.2). The 

entropy of the Hbb time series was also significantly lower on the O1 location, but 

did not reach significance on the O2 location.  
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 t df Sig (two 

 tailed) 

Mean 

dif. 

Tested 

value 

Group 

mean 

Alpha O1  -6.278 36 .000* -.61757 3.53 2.9124 

Alpha O2 -9.945 36 .000* -.96135 3.89 2.9286 

HbO2 O1  2.722 36 .010* .11108 4.2 4.3111 

HbO2 O2 7.787 36 .000* .35757 3.9 4.2576 

Hbb O1 2.128 36 .040* .09676 4.13 4.2268 

Hbb O2 -1.058 36 .297 -.05162 4.19 4.1384 

Table 6.2 The difference in entropy. The results from the one samples t-test, testing 

differences between the stroke case and the healthy sample. Significant results are 

indicated with an asterisk. Legend: O1= left visual cortex, O2= right visual cortex, HbO2= 

oxygenated haemoglobin, Hbb= deoxygenated haemoglobin. 

 

6.3.1.7 Correlation and dependency between modalities 

First the CCF was calculated for the pairs alpha with HbO2 and alpha with Hbb to 

obtain insight in the linear correlation (figure 6.3). Then the nonlinear counterpart 

CMIrel was calculated (figure 6.4). 

 

Despite the functions being similar on the O1 and O2 locations, the CCF analysis 

showed higher correlation strength on the O1 location. Here the alpha x HbO2  

had a maximum correlation value of 0.289 whereas this value only reached 0.099 

on the O2 location. For the alpha x Hbb analysis a maximum correlation was found 

with a value of -0.358 on the O1 location and -0.207 on the O2 location. This could 

be due to the better signal quality that was registered for the NIRS signals on the 

O1 location. All correlations were above the confidence interval of 95%. The 

direction of the correlation is unexpected and therefore caused the results to be 

different from the healthy sample (an overview of these results is given in table 

A5 in Appendix A).  

 

All comparisons showed a maximum correlation at a negative time lag (O1 alpha x 

HbO2: lag -176 (-7.04s); alpha x Hbb: lag -175 (-7s); O2 alpha x HbO2: lag -209 (-

8.36s); alpha x Hbb: lag -188 (-7.52s)). This is an indication that the changes in the 

hemodynamic parameters preceded the changes in alpha response.   

 



165 

When the CMIrel was used to analyse the time series, the difference between the 

O1 and O2 location was not present anymore. The maximum CMIrel for the alpha x 

HbO2 pair was 5.7151 on the O1 location and 6.7262 on the O2 location. For the 

alpha x Hbb pair the O1 location showed a maximum CMIrel of 6.8215 and the O2 

location 6.9890. CMIrel was found to be lower than it is for the healthy sample. 

When this was statistically tested against the data from the healthy sample that 

had the bad signals removed only the comparisons obtained on the O1 side were 

significantly lower (table 6.3).  

When the timing of the maximum CMIrel value was considered it appeared that 

the timing was found to be different from the CCF analysis except for O1 alpha x 

HbO2 (O1 alpha x HbO2: -7.0s; alpha x Hbb: 9s; O2 alpha x HbO2: -6s; alpha x Hbb: -

1.5s). The maximum dependency value of alpha x Hbb on the O1 location had 

switched to a positive value which indicated that changes in the alpha signal 

precede the hemodynamic signal. Furthermore, the negative lags that were found 

on the O2 location became less negative indicating a smaller delay in 

responsiveness of the alpha signal to the hemodynamic signal. 

t df Sig (two 

 tailed) 

Mean 

dif. 

Tested 

value 

Group 

mean 

Alpha x 

HbO2 O1 

4.282 10 .002* 7.14125 5.7151 12.8564 

Alpha x 

Hbb O1 

3.946 9 .003* 8.23652 6.8215 15.0580 

Alpha x 

HbO2 O2 

1.637 9 .136 3.59178 6.7262 10.3180 

Alpha x 

Hbb O2 

1.463 8 .181 2.43548 6.98900 9.4244 

Table 6.3 The difference in relative cross mutual information (CMIrel). The results from the 

one samples t-test of the stroke case tested against the healthy sample that has the 

qualitatively bad data removed. Significant results are indicated with an asterisk. Legend: 

O1= left visual cortex, O2= right visual cortex, HbO2= oxygenated haemoglobin, Hbb= 

deoxygenated haemoglobin. 
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 Figure 6.3a The cross correlation function (CCF) for the pairs alpha x HbO2 (upper panel) 

and alpha x Hbb (lower panel) for the O1 location. The hemodynamic signal is the signal 

that is lagged +10 and -10 seconds. The two horizontal lines above and below the nil line 

indicate the 95% confidence interval. Legend: O1= left visual cortex, HbO2= oxygenated 

haemoglobin, Hbb= deoxygenated haemoglobin. 
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Figure 6.3b The cross correlation function (CCF) for the pairs alpha x HbO2 (upper panel) 

and alpha x Hbb (lower panel) for the O2 location. The hemodynamic signal is the signal 

that is lagged +10 and -10 seconds. The two horizontal lines above and below the nil line 

indicate the 95% confidence interval. Legend: O2= right visual cortex, HbO2= oxygenated 

haemoglobin, Hbb= deoxygenated haemoglobin. 
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Figure 6.4 The cross mutual information (CMI) for the pairs alpha x HbO2 and alpha x Hbb 

for both the O1 and O2  location. The hemodynamic signal is the signal that is lagged +10 

and -10 seconds. Legend: O1= left visual cortex, O2= right visual cortex, HbO2= oxygenated 

haemoglobin, Hbb= deoxygenated haemoglobin. 

6.3.2 Case 2 

The second patient was a male in his late fifties. This patient had suffered multiple 

strokes. As a consequence of the severity, vision and mobility were highly 

impaired as indicated by the score on the Barthel Index (Appendix C2). This score 

was 1, which is an indication this patient cannot function independent and is in 

need of help. The time between his last stroke and the measurements was >12 

months.  
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6.3.2.1 Static EEG frequency measures 

A striking observation in the EEG was that the delta band was the only band that 

showed a consistent change between conditions in which the magnitude was 

always higher in the EC condition compared to the EO condition. All other 

frequency bands hardly changed or showed inconsistent changes (figure 6.5). The 

average magnitudes for each block and frequency band were compared to the 

results obtained in the healthy sample by means of a one sample t-test. The 

results of all comparisons can be found in appendix B (table B1 and B2). Out of all 

50 comparisons that were made on the O1 location a significant difference was 

found in 36 blocks. On the O2 location 39 blocks out of 50 showed statistically 

significant differences. The delta band showed lower magnitudes than it did for 

healthy population in the EO conditions and higher magnitude in the EC 

conditions. For the O1 location in the blocks EO1 and EO5 this difference failed to 

reach statistical significance. For the O2 location the lower delta values during EO 

blocks and higher delta values during EC blocks were only seen in the last three 

minutes of the measurement. Blocks EC1, EO2 and EC2 failed to reach statistical 

significance and in these EC blocks the direction of the difference was not 

confirmed.  

The theta activity appeared to be constantly higher in this patient compared to 

the healthy sample on both locations with the exception of block EC2 on the O2 

location. This was the only block on this location that also did not show a 

statistical significant difference. For the O1 location the higher theta magnitude 

was not significant for the blocks EC2, EC3, and EO4.  

All alpha blocks showed a statistically significant difference from the healthy 

population which is possibly due to the lack of responsiveness of the alpha band 

to the paradigm. It was found that in all but one comparison (EO2 O1) the 

magnitude of the alpha activity was significantly higher during EO conditions and 

significantly lower during EC conditions. In the EO2 block on the O1 location the 

alpha magnitude was lower than found in the healthy sample. 

For the beta 1 activity, all comparisons that were significantly different from the 

healthy sample showed a lower magnitude. This included all blocks on the O2 

location and all but the EO1 and EO2 block on the O1 location. The differences 
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found in beta2 magnitude were mostly not significantly different from the healthy 

group. Both on the O1 and O2 locations only 3 out of 10 blocks were different. 

These were for the O1 location EO2, EC3, and EC4 and for the O2 location EC1, 

EC2, and EC4 in which during EC blocks a lower beta2 magnitude was registered 

and in the EO block a higher beta2 magnitude. 

Figure 6.5 The EEG fluctuations of each separate frequency band for both the left occipital 

(O1, upper panel) and right occipital (O2, lower panel) locations. Only the average 

magnitudes per last half of the block are plotted. 

6.3.2.2 Static NIRS measures 

The changes in HbO2  and Hbb concentrations differed from the expected findings 

as well. A visual interpretation of the findings is presented in figure 6.6. Firstly, the 
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signals on the O1 and the O2 location were very different from one other. The 

signal that showed the largest response on the O1 location was the Hbb signal 

whereas usually a larger response in HbO2 is seen. This response followed the 

expected pattern of increase in concentration in EC blocks and decrease in EO 

blocks nicely. The HbO2 response was much smaller and followed the shape of the 

Hbb concentration changes the first 3 minutes, while opposite changes were 

expected. This opposite reactivity occurred in blocks EO4, EC4 and EO5, but block 

EC5 showed a similar response to the HbO2 signal again. On the O2 location an 

opposite reactivity between HbO2 and Hbb was seen and as expected the HbO2 

signal showed the largest reactivity. However, in the first 5 blocks (2.5 minutes) a 

reversed  activation response was seen, which switched to an expected response 

in blocks 6 through 9. The last block showed a reversed response again. The part 

of the measurement that showed the expected response was also the part that 

showed the largest differences between the sequential blocks. 

When the results were compared to the healthy sample, different findings 

occurred on both locations. On the O1 location it was found that all but three 

blocks constantly displayed statistical significant differences from the healthy 

sample. The findings indicated lower HbO2  concentrations and higher Hbb 

concentrations during both EO and EC blocks. The only blocks that failed to reach 

significance were the EC2, EC3 and EC4 blocks for the HbO2 concentration. For the 

O2 location fewer blocks reached statistical significance, 12 out of 20 (the 

exceptions were: HbO2: EC2; Hbb: EC1, EO2, EC2, EO3, EO4, EC4, EC5). The blocks 

that did display significant differences showed a similar pattern as was seen on 

the O1 location with lower HbO2 concentrations and higher Hbb concentration in 

both EO and EC blocks. A summary of all comparisons and their p-values can be 

found in Appendix B (table B3 and B4). 
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Figure 6.6 The fluctuations of oxygenated haemoglobin (HbO2) and deoxygenated 

haemoglobin (Hbb) concentrations on both the left occipital (O1, left panel) and right 

occipital (O2, right panel) locations. Only the average concentration changes of the last 

half of each block are plotted. 

6.3.2.3 Alpha Peak Frequency 

When the spectrum of the EEG was inspected to determine the APF it appeared 

that in all blocks either the 7.0, 7.5, or 8.0 Hz bin showed a distinctive peak in the 

spectrum. The base of the APF was quite wide. Since a peak at 7.0 Hz falls just 

outside the alpha band it was chosen for further analyses to include an individual 

alpha band which was based on an APF of 7.5Hz. This individual alpha band was 

defined between 5 and 9.5 Hz. Since it was also noted in paragraph 6.3.2.1 that 
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the delta band seemed to be the only band that displayed reactivity towards the 

eyes open eyes shut paradigm it was decided to include the delta band in the 

upcoming analyses. 

6.3.2.4 Time series quality labels 

When the quality of the alpha envelope, the individual alpha envelope and the 

delta envelope as well as the filtered HbO2 and Hbb time series was evaluated, 

both the alpha envelope and the individual alpha envelope showed no response. 

The delta envelope did display a medium response that became stronger as the 

protocol progressed. The NIRS signals were all qualified as medium-good with the 

exception of the HbO2 time series on the O1 location which was qualified as 

medium-bad.  

6.3.2.5 Long range temporal correlations 

The LRTC of the alpha envelope, the individual alpha envelope and the delta 

envelope were calculated for both locations and tested against the values of the 

alpha envelope that were found in the healthy sample. The obtained values were 

also tested against 20 surrogate signals that were obtained by shifting the phases 

of the original signals (table 6.4). When the predefined alpha band was analysed a 

significant difference from the healthy sample was found on both locations 

indicating a slope that was less steep in the stroke case. On the O1 location this 

slope was not significantly different from the obtained surrogate data. 

When the individual alpha band was analysed, the slopes became steeper and the 

O1 location was no longer different from the healthy sample and is different again 

from its surrogate data. However, the O2 location still showed a slope that is 

significantly less steep than was found in healthy people and this slope was not 

different from its surrogate data. 

The delta envelope showed a pattern that was in accordance with the alpha 

envelope of the healthy sample. No significant differences were found here and 

the slopes of the delta envelope were different from their surrogate data. The 

difference between the slopes of the delta envelopes and the surrogate data was 

that the actual slopes were found to be steeper. 
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t df Sig (two 

 tailed) 

Mean 

dif. 

Tested 

value 

Group 

mean 

AlphaO1 -4.91 37 .000* -.3913 -1.9534 -2.3446 

Surrogate O1 1.595 19 .127 .0167 -1.9534 -1.9367 

AlphaO2 -7.722 37 .000* -.5863 -1.8155 -2.4018 

Surrogate O2 -8.089 19 .000* -.0726 -1.8155 -1.8881 

Individual 

Alpha O1 

-1.463 37 .152 -.1163 -2.2283 -2.3446 

Individual 

Surrogate O1 

4.204 19 .000* .04889 -2.2283 -2.1794 

Individual 

Alpha O2 

-2.841 37 .007* -.2157 -2.1861 -2.4018 

Individual 

Surrogate O2 

.343 19 .735 .0044 -2.1861 -2.1816 

Delta O1 0.940 37 .353 0.0748 -2.4194 -2.3446 

Surrogate O1 10.027 19 .000* 0.1258 -2.4194 -2.2936 

Delta O2 1.484 37 .146 0.1127 -2.5145 -2.4018 

Surrogate O2 13.871 19 .000* 0.1564 -2.5145 -2.3581 

Table 6.4 The difference in long range temporal correlation (LRTC) slope. Results from the 

one samples t-test, testing differences between the stroke case and the healthy sample as 

well as it is tested against surrogate data on both the left (O1) and right (O2) occipital 

cortex. Significant results are indicated with an asterisk. 

6.3.2.6 Entropy 

For the alpha envelope, the individual alpha envelope, the delta envelope and the 

HbO2 time series as well as the Hbb time series the entropy was calculated and 

compared to the alpha, HbO2 and Hbb entropies that were found in the healthy 

group. The results are summarized in table 6.5. Both the alpha envelope and the 

individual alpha envelope were statistically different from the healthy group. 

These time series showed higher entropy. When the delta envelope was 

compared to the alpha envelope of the healthy sample, no differences were 

found on the O1 location. On the O2 location the entropy was higher. For the NIRS 

time series only a significant difference was found on the O1 location which 

indicated again higher entropy than was found in the healthy group. 
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 t df Sig (two 

 tailed) 

Mean 

dif. 

Tested 

value 

Group 

mean 

Alpha O1  -8.616 36 .000* -.84757 3.76 2.9124 

Alpha O2 -7.876 36 .000* -.76135 3.69 2.9286 

Individual 

Alpha O1 

-10.344 36 .000* -

1.01757 

3.93 2.9124 

Individual 

Alpha O2 

-9.635 36 .000* -.93135 3.86 2.9286 

Delta O1 .940 36 .354 .09243 2.82 2.9124 

Delta O2 -4.152 36 .000* -.40135 3.33 2.9286 

HbO2 O1  -5.364 36 .000* -.21892 4.53 4.3111 

HbO2 O2 .818 36 .419 .03757 4.22 4.2576 

Hbb O1 -3.590 36 .001* -.16324 4.39 4.2268 

Hbb O2 -.033 36 .974 -.00162 4.14 4.1384 

Table 6.5 The difference in entropy. The results from the one samples t-test, testing the 

difference in entropy against the healthy sample. Significant results are indicated with an 

asterisk. Legend: O1= left visual cortex, O2= right visual cortex, HbO2= oxygenated 

haemoglobin, Hbb= deoxygenated haemoglobin. 

 

6.3.2.7 Correlation between modalities 

The linear correlation between the electrical activity and the two NIRS 

concentration changes was investigated with the CCF analysis for the alpha signal 

(figure 6.7) the individual alpha signal (figure 6.8) and the delta signal (figure 6.9). 

The O1 and the O2 locations showed different patterns regardless of the electrical 

parameter that is investigated. All correlation values that were found, regardless 

of electrical parameter that was investigated showed values above the 95% 

confidence interval. 

 

When the alpha band was correlated against the HbO2 concentration changes a 

positive maximum correlation of 0.161 was found on the O1 location and a 

negative maximum correlation of -0.095 was found on the O2 location. For the 

analysis in which alpha was correlated against the Hbb concentration changes the 

O1 location showed a maximum negative correlation of -0.085 and the O2 a 

maximum positive correlation of 0.067. On the O1 location this pattern was 

reversed from the expected activation pattern. Significant differences from the 
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healthy sample were found on the O1 location due to this reversed pattern (all 

results are summarized in table B5 in Appendix B). When timing was considered, 

only for the correlation between alpha and HbO2 on the O1 location the timing of 

the maximum correlation was found at a negative time lag (lag -72 (-2.88s)). The 

other comparisons showed a maximum value at a positive time lag (O1 alpha x 

Hbb: lag 118 (4.72s); O2 alpha x HbO2: lag 45 (1.80s); alpha x Hbb: lag 42 (1.68s)). 

When the individual alpha band was used for the analysis the maximum 

correlations on the O1 location both became positive with values for individual 

alpha with HbO2 of 0.081 and with Hbb of 0.099. The correlation between 

individual alpha and HbO2 was again statistically different from the healthy 

sample due to the reversed correlation. On the O2 location individual alpha with 

HbO2 showed a maximum negative correlation of -0.118 and individual alpha with 

Hbb a maximum positive correlation of 0.089. And even though the correlation 

strengths were weak, the use of the individual alpha band increased the 

correlations on the O2 location. In this analysis all correlations reached their 

maximum at a positive time lag indicating that changes in the individual alpha 

band preceded the changes seen in the NIRS response (O1 individual alpha x 

HbO2: lag 65 (2.60s); individual alpha x Hbb: lag 153 (6.12s); O2 individual alpha x 

HbO2: lag 94 (3.76s); individual alpha x Hbb: lag 108 (4.32s)). 

 

The highest correlation values were found when the delta band was used as the 

electrical parameter. The direction of the correlation as well as the timing show 

findings in 3 out of 4 comparisons that are similar to the alpha findings in healthy 

brains (delta x Hbb O1: 0.266, lag 80 (3.2s); delta x HbO2 O2: -0.191, lag 129 

(5.16s); and delta x Hbb O2: 0.129, lag 126 (5,04s)). Only the correlation between 

delta and HbO2 on the O1 location showed a reversed pattern in which the 

highest correlation was reached at a negative time lag (-207 (-8.24s)) and showed 

a positive correlation of 0.119. When these findings were tested against the 

findings in alpha correlation with the NIRS parameters in the healthy sample and 

all bad quality data were left in the analysis a difference was found for the 

correlation and timing of the delta x HbO2 on the O1 and the O2 location as well 

as the timing of the highest correlation between delta and Hbb on the O2 location 

(see table B5 in Appendix B). However when all bad quality data were removed 

from the sample, the only significant differences that remained were the 

correlation value and timing of the delta x HbO2 on the O1 location (table 6.6). 
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These results are summarized also for the other electrical parameters in Appendix 

B, table B6). 

 

 t df Sig (two 

 tailed) 

Mean 

dif. 

Tested 

value 

Group 

mean 

Delta x  

HbO2 O1  

-4.971 10 .001* -.39455 0.119 -.27555 

Timing Delta 

x HbO2 O1 

6.506 10 .000* 332.636 -207 125.64 

Delta x  

Hbb O1  

1.597 9 .145 .13740 0.266 0.403 

Timing Delta 

x Hbb O1 

1.097 9 .301 45.200 80 125.20 

Delta x  

HbO2 O2 

.248 9 .810 .0220 -0.191 -0.169 

Timing Delta 

x HbO2 O2 

-1.653 9 .133 -99.800 129 29.2 

Delta x  

Hbb O2  

1.847 8 .102 .12211 0.129 0.251 

Timing Delta  

x Hbb O2 

-.764 8 .467 -44.889 126 81.11 

Table 6.6. Results from the one sample t-test of the cross-correlation analyses for both the 

correlation value and the time point at which the highest correlation was found for the 

delta correlated against the hemodynamic parameters compared with the alpha 

correlations with the hemodynamic parameters in the healthy group. Significant results 

are indicated with an asterisk. Legend: O1= left visual cortex, O2= right visual cortex, 

HbO2= oxygenated haemoglobin, Hbb= deoxygenated haemoglobin. 
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Figure 6.7a The cross correlation function (CCF) for the pairs alpha x HbO2 (upper panel) 

and alpha x Hbb (lower panel) for the O1 location. The hemodynamic signal is the signal 

that is lagged +10 and -10 seconds. The two horizontal lines above and below the nil line 

indicate the 95% confidence interval. Legend: O1= left visual cortex, HbO2= oxygenated 

haemoglobin, Hbb= deoxygenated haemoglobin. 
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Figure 6.7b The cross correlation function (CCF) for the pairs alpha x HbO2 (upper panel) 

and alpha x Hbb (lower panel) for the O2 location. The hemodynamic signal is the signal 

that is lagged +10 and -10 seconds. The two horizontal lines above and below the nil line 

indicate the 95% confidence interval. Legend: O2= right visual cortex, HbO2= oxygenated 

haemoglobin, Hbb= deoxygenated haemoglobin. 
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Figure 6.8a The cross correlation function (CCF)  for the pairs individual alpha x HbO2 

(upper panel) and individual alpha x Hbb (lower panel) for the O1 location. The 

hemodynamic signal is the signal that is lagged +10 and -10 seconds. The two horizontal 

lines above and below the nil line indicate the 95% confidence interval. Legend: O1= left 

visual cortex, HbO2= oxygenated haemoglobin, Hbb= deoxygenated haemoglobin. 
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Figure 6.8b The cross correlation function (CCF)  for the pairs individual alpha x HbO2 

(upper panel) and individual alpha x Hbb (lower panel) for the O2 location. The 

hemodynamic signal is the signal that is lagged +10 and -10 seconds. The two horizontal 

lines above and below the nil line indicate the 95% confidence interval. Legend: O2= right 

visual cortex, HbO2= oxygenated haemoglobin, Hbb= deoxygenated haemoglobin. 
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Figure 6.9a The cross correlation function (CCF)  for the pairs delta x HbO2 (upper panel) 

and delta x Hbb (lower panel) for the O1 location. The hemodynamic signal is the signal 

that is lagged +10 and -10 seconds. The two horizontal lines above and below the nil line 

indicate the 95% confidence interval. Legend: O1= left visual cortex, HbO2= oxygenated 

haemoglobin, Hbb= deoxygenated haemoglobin. 
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Figure 6.9b The cross correlation function (CCF)  for the pairs delta x HbO2 (upper panel) 

and delta x Hbb (lower panel) for the O2 location. The hemodynamic signal is the signal 

that is lagged +10 and -10 seconds. The two horizontal lines above and below the nil line 

indicate the 95% confidence interval. Legend: O2= right visual cortex, HbO2= oxygenated 

haemoglobin, Hbb= deoxygenated haemoglobin. 
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6.3.2.8 Dependency between modalities  

The nonlinear counterpart of the CCF analysis, the CMIrel values were also 

calculated for the alpha signal paired with the NIRS concentrations (figure 6.10), 

the individual alpha signal paired with the NIRS concentrations (figure 6.11) and 

the delta signal paired with the NIRS concentrations (figure 6.12). All maximum 

CMIrel values that were found are low. The maximum CMIrel for the alpha x HbO2 

pair was 3.7520 on the O1 location and 3.4942 on the O2 location. For the alpha x 

Hbb pair the O1 location showed a maximum CMIrel of 4.2437 and the O2 location 

was 3.2169. The values were found to be slightly higher for 3 pairs when the 

individual alpha was used (individual alpha x HbO2: O1 4.3162; O2 4.4468 ; 

individual alpha x Hbb: O1 3.8212; O2 4.4215). These values increased for three 

pairs even further when the delta band was used as electrical parameter (delta x 

HbO2: O1 6.4327; O2 5.1432 ; individual alpha x Hbb: O1 3.5088; O2 5.1140). 

When one sample t-tests were conducted to see whether there were differences 

between the patient data and the data from the healthy group which had the bad 

quality data removed, the patient values were all significantly lower regardless of 

the electrical parameter under investigation (table 6.6). 

 

When the timing was considered, different time points were found to give a 

maximum CMIrel value when the alpha analyses were compared to the individual 

alpha analyses or the delta analyses. This was also true for the comparison with 

the CCF timing. However, because of the oscillating nature of the CMIrel graphs the 

timing of the maximum CMIrel value seemed to occur quite randomly and possibly 

not too much weight should be allocated to it. 
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Figure 6.10 The cross mutual information (CMI) for the pairs alpha x HbO2 and alpha x Hbb 

for both the O1 and O2 location. The hemodynamic signal is the signal that is lagged +10 

and -10 seconds. Legend: O1= left visual cortex, O2= right visual cortex, HbO2= oxygenated 

haemoglobin, Hbb= deoxygenated haemoglobin. 
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Figure 6.11 The cross mutual information (CMI) for the pairs individual alpha x HbO2 and 

individual alpha x Hbb for both the O1 and O2 location. The hemodynamic signal is the 

signal that is lagged +10 and -10 seconds. Legend: O1= left visual cortex, O2= right visual 

cortex, HbO2= oxygenated haemoglobin, Hbb= deoxygenated haemoglobin. 
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Figure 6.12 The cross mutual information (CMI) for the pairs delta x HbO2 and delta x Hbb 

for both the O1 and O2 location. The hemodynamic signal is the signal that is lagged +10 

and -10 seconds. Legend: O1= left visual cortex, O2= right visual cortex, HbO2= oxygenated 

haemoglobin, Hbb= deoxygenated haemoglobin. 
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 t df Sig (two 

 tailed) 

Mean dif. Tested 

value 

Group 

mean 

Alpha x  

HbO2 O1  

5.459 10 .000* 9.10432 3.7520 12.8564 

Alpha x  

Hbb O1  

5.181 9 .001* 10.81426 4.2437 15.0580 

Alpha x  

HbO2 O2 

3.109 9 .013* 6.82382 3.494 10.3180 

Alpha x  

Hbb O2  

3.730 8 .006* 6.20758 3.2169 9.4244 

Individual Alpha  

x HbO2 O1  

5.121 10 .000* 8.54019 4.3162 12.8564 

Individual Alpha  

x Hbb O1  

5.384 9 .000* 11.23684 3.8212 15.0580 

Individual Alpha  

x HbO2 O2 

2.675 9 .025* 5.87120 4.4468 10.3180 

Individual Alpha  

x Hbb O2  

3.006 8 .017* 5.00295 4.4215 9.4244 

Delta x HbO2 O1  3.852 10 .003* 6.42366 6.4327 12.8564 

Delta x Hbb O1  5.534 9 .000* 11.54920 3.5088 15.0580 

Delta x HbO2 O2 2.358 9 .043* 5.17480 5.1432 10.3180 

Delta x Hbb O2  2.590 8 .032* 4.31044 5.1140 9.4244 

Table 6.7 The difference in relative cross mutual information (CMIrel). Results from the one 

samples t-test testing the difference between the stroke patient and the healthy sample 

which has the bad quality data removed. Significant results are indicated with an asterisk. 

Legend: O1= left visual cortex, O2= right visual cortex, HbO2= oxygenated haemoglobin, 

Hbb= deoxygenated haemoglobin. 

 

6.4 Discussion 

In this chapter the measurements that were used to investigate the brain activity 

of healthy individuals throughout this thesis were used to investigate possible 

changes in brain function in two cases of patients who had suffered a stroke. It 

became evident that the static analyses on the individual measures, the dynamic 

analyses, as well as the findings of the combined measurement modalities 

seemed to indicate differences between stroke and the healthy individuals. 
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Investigation of the combined NIRS and EEG activity never has been described 

before and is therefore an exciting new finding.  

 

The cases that were described are very different in nature. Not only was there a 

difference in sex, there was also a difference in stroke onset (childhood vs. 

adulthood) and ability (no impairment vs. extreme impairment). Adults do not 

recover after stroke as well as children and are usually left with more deficits 

(Popa-Wagner et al., 2007), which was a distinction that was seen here. However, 

the patient in which childhood stroke had occurred had gone through a recovery 

period expanding over two decades. The fact that the second patient had suffered 

multiple strokes also indicated a more severe case. Because of this, two ends of 

the stroke spectrum could be investigated, the end in which patients seem to 

function independently after recovery and the end in which extreme impairment 

occurs. Both ends display differences from healthy working brains. 

 

6.4.1 Case1 

The findings in the static analysis of the EEG indicated an expected response as is 

reported in the literature to the opening and closing of the eyes in which an 

elevation in all bands during EC blocks is seen (Barry et al., 2007). In the healthy 

sample this was not entirely the case (possible reasons for this deviance are 

reported in paragraph 3.4.1). However, the differences that were found between 

this patient and the healthy sample were that an elevated magnitude in all bands 

during all blocks was seen. A higher magnitude of the QEEG bands, and therefore 

higher amplitude of the registered EEG could be an indication that more neurons 

are firing in synchrony (Bear et al., 2007). 

 

The NIRS response did show more diversity than the EEG response and the 

expected response to the task was sometimes reversed. On the O1 location a 

lower HbO2 concentration was registered during EO blocks. On the O2 location 

consistently a higher HbO2 and lower Hbb concentration was registered compared 

to the healthy sample. The stroke had occurred in the right hemisphere which 

possibly could explain differences between hemispheres and the switches during 

the task. A reversed response in which an increase of Hbb concentration during a 

simple motor task was observed in patients 5 months post stroke has been 

reported before (Nakamura et al., 2010). However, in this case 22 years have gone 
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by and it is unknown whether this is still seen after so many years. In order to 

explain these findings better it would be helpful to know the exact stroke location 

and additionally have access to the findings of a recent cerebral angiogram which 

could reveal any structural changes in vasculature and cerebral blood flow. 

The APF at first did not show differences and was 10.5 Hz. However, in the last 

three minutes a drop in APF only during the EO blocks was seen. Interestingly, the 

O2 location showed a reversed pattern of oxygenation during these minutes in 

which a decrease in HbO2 was observed. A decrease in APF has been described in 

stroke due to the loss of blood supply (Finnigan and van Putten, 2013). So perhaps 

on a smaller scale, a decrease in oxygenation can also result in a reversible drop in 

APF. It does not explain though why this drop occurs on both locations while the 

decrease in oxygenation is only structurally seen on the O2 location. 

 

The occurrence of long temporal correlations (LRTC) was investigated and in line 

with the healthy sample. LRTCs could be observed in the alpha envelope of this 

patient. However, the slopes that were found were all significantly steeper for this 

patient. In chapter 4 it was explained that the steeper the slope of the power law 

is, the more quickly  the energy evaporates from the system and the shorter the in 

time the correlations are (Linkenkaer-Hansen et al., 2001). In this patient, despite 

more synchronous oscillations of the neurons, the correlations over time were 

shorter than was observed in the healthy sample. The different findings in entropy 

for the alpha band (higher entropy) also indicate that more uncertainty and 

therefore less predictability is seen (Shannon, 1948). For the NIRS signals on the 

other hand a lower entropy was observed which in turn indicates that the 

oxygenation changes are more predictable then in healthy brains. 

When the linear correlations between alpha and the NIRS signals were explored it 

was found that the highest correlations were in the opposite direction as was 

seen in the healthy group and that the highest correlations were found at 

negative time lags indicating that a change in the hemodynamic parameter 

preceded changes in alpha activity. When the nonlinear CMIrel analysis was used it 

was found that all dependencies were lower than were seen in the healthy 

sample. However, only the dependencies on the O1 location reached a statistical 

significant difference. Since evidence shows that recovery depends on the 

involvement of areas unaffected by stroke, either proximal to the damaged areas 

or in contra lateral homologues (Eliassen et al., 2008) a lower dependency 
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between hemodynamic and electrical parameters after stroke can be expected 

due to this structural or functional reorganization. It would therefore be of great 

added value to take more measuring locations into account in order to see 

whether higher dependencies are found in proximal areas. When nonlinear 

aspects of the relationship are taken into account it appears that the timing of the 

maximum dependency can switch from negative to positive or become less 

negative. This could be due to the nonlinear aspects, but it also could be an 

indication that when the question of timing is posed in order to find out what 

signal is leading the changes another method would be more appropriate. In 

paragraph 5.4.2 already the Transfer Entropy (TE) and Mutual Information from 

mixed embedding (MIME) were suggested to hold potential in answering this 

question (Faes and Nollo, 2013, Kugiumtzis, 2013). 

 

6.4.2 Case 2 

The findings in the EEG for the second patient were striking mainly because hardly 

any reactivity was seen to the opening and closing of the eyes, except in the delta 

band. Jordan et al. (2004) have described that following stroke first the fast wave 

activity diminishes followed by a decrease of the APF and that as a last phase 

primarily delta activity occurs. In their review, Finnigan and Van Putten (2013) add 

to that that the delta band can be used to predict treatment outcome and that 

more delta indicates worse outcome. This seems to be true for this case, in which 

extensive impairment is seen.  

 

Interestingly, the NIRS parameters did show reactivity to the task. This reactivity 

was, just as in case 1 sometimes as expected during activation and sometimes 

reversed. On the O1 location the Hbb concentration changes were larger than the 

HbO2 changes and the two signals did not always follow an opposite pattern. 

When compared to the healthy sample usually on O1 lower HbO2 was found with 

higher Hbb during both EO and EC blocks. When differences are seen on the O2 

location again lower HbO2 and higher Hbb concentrations are reported. As is 

mentioned above, it would help a great deal in explaining these findings when the 

exact stroke locations were known and data from a cerebral angiogram was 

available. Because of the lack of neuronal response the lower HbO2 and higher 

Hbb concentrations it is hypothesized here that changes in vascular structure have 
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occurred that have lower perfusion as a consequence. When a lower perfusion is 

seen this can result in an increase of Hbb concentrations (Murata et al., 2006). 

 

In line with the EEG changes after stroke that are described by Jordan et al. (2004)  

also a lower APF was registered during all blocks. This led to the creation of an 

additional individual alpha band. However, this individual band also was 

irresponsive to the paradigm. Because the delta band was the only band that was 

responsive this band was also analyzed in the dynamic analyses and the analyses 

of both measuring modalities simultaneously. 

 

When LRTCs were investigated for the three electrical parameters it appeared 

that both the alpha and individual alpha  showed differences from the healthy 

sample. However, in both parameters it occurred that the slope found in the 

original band was not different from its surrogate data. Surrogate data are 

created to have no temporal correlations (Linkenkaer-Hansen et al., 2001). When 

no differences are found between the recorded signal and the surrogate signals 

this is an indication that no temporal correlations exist in the original signal. For 

depression it has been reported that long-range temporal correlations of the 

theta band measured with MEG were absent in patients but prominent in healthy 

controls (Linkenkaer-Hansen et al., 2005). The magnitude of these correlations 

correlated with the severity of the depression. As is seen in depression the 

absence of LRTCs in the alpha band in stroke could be indicative for severity of 

pathology or neural distress. Albeit a strong hypothesis based on one case. When 

the LRTCs were investigated for the delta band and compared to the slopes for 

the healthy sample no differences were found anymore between stroke and 

health or between original and surrogate data.  

All electrical signals indicated to have higher entropy and therefore lower 

predictability than was found in the healthy sample, except for the delta band on 

the O1 location which did not show a difference with the alpha entropy of the 

healthy group. For  the NIRS signals only a difference was found for the O1 

location in which the patient showed higher entropy as well. In the first case a 

lower entropy for the NIRS signals was found. This might be due to the location of 

the lesion but is unfortunately a question that cannot be answered now.  

The linear correlations between the alpha and the hemodynamic parameters 

were low and sometimes reversed from what was expected. A slight increase was 



193 

 

seen when the individual alpha band was used, and the use of the delta band 

even increased the maximum correlations further. When this was tested against 

the healthy sample the delta band was the only band that showed no differences 

from the healthy group in 3 out of 4 correlations. The correlation that did show a 

difference was caused by the reversed pattern in the delta x HbO2 comparison. 

 

When the delta band was analysed as if it were the alpha band the preceding 

analyses showed that fewer differences could be found from the healthy sample. 

This could be an indication that the central oscillating rhythm of this patients 

brain is the delta band instead of the alpha band as is usually seen. However, to 

test this claim the changes in delta band and correlation analyses should also have 

been carried out for the healthy group. Especially because it has been reported 

that out of 20 QEEG measures, the delta power measure has the strongest 

correlation with regional CBF (Tolonen and Sulg, 1981). This correlation however, 

was reported to be negative whereas the alpha correlation in was reported to be 

positive. Since in this case the delta activity seems to behave like the alpha activity 

this would be a very interesting parameter for future research. 

 

When the nonlinear CMIrel was used to investigate the dependencies it appeared 

that all were very low. Also the dependencies of the delta band and the NIRS 

parameters were significantly lower than seen in healthy brains. This is very 

interesting since for the previous measures, the use of the delta band seemed to 

normalize the results. This could be an indication the using the CMIrel as additional 

parameter in investigating brain function in terms of the dependency between 

EEG and NIRS could contribute significantly in differentiating health from 

pathology. Similar to the first case, changes in timing were observed that 

potentially better could be investigated with other measures. 

 

However, caution is warranted in the interpretation of the results of this subject. 

The fact that results were obtained during the measurements in this subject that 

showed differences from the healthy group may not only originate from the 

multiple strokes, but may also have to do with the visual impairments afterwards. 

After all the measurements were conducted over the O1 and O2 locations that 

correspond with the visual cortex (Jasper, 1958). 
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The study of Moosmann et al. (2003) showed that alpha activity over the occipital 

cortex was shown to be positively cross-correlated with the Hbb component of 

simultaneous NIRS measurements. This study was performed in a block design 

switching from eyes open to eyes closed and vice versa, while healthy subjects 

were sitting in a completely dark room with their eyes additionally shielded by an 

eye mask. This generates the believe that it is not necessarily the sight component 

of the eyes open eyes shut paradigm that induces the changes in brain activity 

that are responsible for the underlying physiological relationship between alpha 

activity and NIRS parameters. However, it has been reported that when this visual 

impairment or blindness is innate this causes remarkable plastic changes in both 

function and structure (Hawellek et al., 2013). For example, the visual cortex 

tends to be smaller, but nonetheless the metabolic demands seem heightened 

compared to visually able humans (De Volder et al., 1997). Furthermore a 

decrease in alpha wave activity over the occipital areas is also observed (Kriegseis 

et al., 2006). Nonetheless it has been reported that a distinctive peak can still be 

found in the spectrum in the alpha to beta range of innate blind people as well as 

this is found in healthy people (Hawellek et al., 2013). If these findings are also 

true in acquired blindness, as is the case with subject 2, is describe less coherently 

and less extensively. Findings that would apply to this particular subject are even 

more complicated by the fact that the visual impairments are due to the stroke, 

and that it was unrecorded where the lesion sites of the different strokes were. A 

study of Wang et al. (2012) in stroke patients with hemianopia, which affects 

multiple visual functions, showed during resting state EEG it is the left primary 

visual cortex of the stroke patients that shows diminished activity compared to 

healthy controls. This seems to be compensated with increased activity in the 

more temporal and frontally located brain regions compared to healthy controls 

as well as increased activity in the right associative visual cortex. If these results 

apply to the case under investigation remains debatable. 

 

6.4.3 A future for multimodal imaging in stroke research 

The finding that differences exist between stroke patients in both electrical and 

hemodynamic parameters as well as in their coupling compared to healthy subject 

is not surprising. As mentioned in the introduction it is known that neurovascular 

coupling is disrupted in stroke (Girouard and Iadecola, 2006, Blicher et al., 2012, 

Ayata, 2013). In focal ischemia, the greatest reduction in blood flow is seen in the 
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center of the affected area which is termed ischemic core. At the periphery, or the 

ischemic penumbra, the reduction in blood flow is less pronounced (Girouard and 

Iadecola, 2006). Since the ischemic penumbra has less severe hypoperfusion, 

impaired neuronal activity is seen but it does not necessarily lead to neuronal 

damage, given that therapeutic intervention is administered within the correct 

time window (Canazza et al., 2014). The ischemia causes vasoparalysis in  the 

cerebral circulation which in turn impairs the reactivity to stimuli displaying itself 

as decreased functional activation which causes smaller increases is CBF (Girouard 

and Iadecola, 2006). In fMRI research it is then sometimes observed that the 

BOLD response is undetected. However, BOLD responses in positive direction as 

well as negative direction have also been described (Blicher et al., 2012). Sakatani 

et al. (2007) demonstrated in their combined fMRI- NIRS research that often a lack 

of BOLD response exists because during activation an increase in Hbb is seen, 

leading to false interpretations of fMRI research in stroke. However, BOLD 

activation patterns obtained with fMRI after stroke are closely related with 

aspects of impairment (Stinear and Ward, 2013).  

As stated before an increase in Hbb concentration during activation is seen more 

often after stroke (Nakamura et al., 2010). But that is not the only finding from 

NIRS research. Li et al. (2010)have reported a reduction in spontaneous NIRS 

oscillations in the frontal cortex in stroke patients which could be due to 

increased stiffness in the arterial vessels. This could originate from underlying 

artherosclerosis, which causes ~25% of all ischemic strokes (Mustanoja et al., 

2011).  The accompanying changes in CBV lead to the fact that neural activity is 

not necessarily coupled to regional CBF and CBV changes to the same degree as in 

healthy subjects (Blicher et al., 2012). Given the complexity of the neurovascular 

coupling, the still unknown variables, and the great variability between stroke 

patients it therefore makes sense to investigate functional impairments with 

multimodal neuroimaging as proposed in this chapter. Furthermore, the shift to 

functional connectivity studies may provide the opportunity to investigate 

whether or how surviving tissue is working and what mechanisms of 

reorganization and recovery are used (Carter et al., 2012, Stinear and Ward, 

2013).   

 

 



196 

 

6.5 Conclusion 

The investigation of simultaneous measurements of EEG and NIRS and different 

ways of analysing the data throughout this thesis has mainly been a proof of 

principle. In this chapter the first indication is given that differences can be found 

between health and pathology when using the combined measurements and that 

potentially the CMIrel can contribute in differentiating health from pathology. 

Therefore it is proposed that the measures that are described in this thesis are 

firstly explored further before they are used as markers and implemented as 

clinical evaluation tools. The emphasis in this research should go out to the 

multimodal use of EEG and NIRS as well as connectivity research. 

 

The largest drawback in the analysis of these case studies was the lack of data on 

lesion sites and any additional structural scans or angiograms. These could help 

greatly in explaining results and differences between the two cases. Then the 

number of measurement locations should be expanded in order to investigate 

proximal areas, connections to proximal areas and to investigate differences and 

connectivity between hemispheres on more locations. As Finnigan and Van Putten  

(2013) point out in their review the brain symmetry index is one of the 

parameters that is found to correlate well with recovery outcome. This index too 

needs to be investigated with more than 2 measurement locations. Next the 

timing issue for the CCF and CMIrel would need to be addressed in order to 

address the question of which parameter drives the other or whether perhaps this 

changes when different oscillations are investigated. 

 

Furthermore it should be investigated whether all suggested parameters hold 

promise as additional parameters to standard investigation in increasing 

sensitivity and specificity in differentiating health and disease. Preferably a model 

would be developed in which the contribution of each measure in differentiating 

healthy brains from pathologies and pathologies from other pathologies could be 

analysed. In this model several aspects should be addressed: 1. Which parameters 

are helpful in diagnosis; 2. Which parameters are helpful in determining progress; 

3. Which parameters are helpful in predicting treatment outcome; 4. Which 

parameters are helpful in predicting treatment response? 
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These questions are of major importance in clinical use and if they can be 

answered by an objective brain measurement it holds great promise for future 

healthcare. 
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Chapter 7: General thoughts and conclusions 

 

The aim of this thesis was to explore the use of combined EEG and NIRS 

measurements in order to enlighten brain function. Hereto different forms of 

analysis techniques were used to investigate the modalities separately as well as 

their combined features in an eyes open, eyes closed paradigm. The general 

conclusions and thoughts that can be derived from the body of work carried out in 

this thesis is discussed in this final chapter. Together with pointers and directions 

for future research, this chapter gives an analytical summary of the work 

conducted so far and the potential for transfer to clinical implementation. 

 

7.1 Summary of work 

Brain measurements could provide clinicians with a lot of additional, mostly 

objective information about the functioning of both healthy brains and the brain 

during pathology. By implementing brain measurements as a standard way of care 

into the clinic one could find aid in the process of diagnosis of several pathologies, 

as well as get help in deciding treatment and evaluating treatment progress. This 

will benefit patients as they will be diagnosed faster and more accurately and can 

be offered better tailored care. Several different modalities of brain 

measurements are available on the market today. However, for brain 

measurements to be able to implemented in  general lines of healthcare, 

outpatient clinics as well as small individual health practices the methods chosen 

to objectify brain functioning would benefit from being portable, low cost, and 

the ability to do bedside monitoring.  

 

When investigating brain functioning by performing brain measurements two 

different modalities can contribute to our understanding; electrical neuronal 

activity, and hemodynamic activity. Both observations can provide information 

about brain function and dysfunction. However, a third, additional factor could 

increase our knowledge of pathology even further, the relationship between 

electrical and hemodynamic activity or its shared information content.  

 

In chapter 1 it was pointed out that the measurement of electrical activity by 

(quantitative) EEG and the recording of changes in hemodynamic activity by NIRS 
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seem to possess qualities for clinical use. When additionally a paradigm is used 

which leads to minimal patient exclusion, like measuring resting state activity, or 

use an easy, standardized task in order to measure different brain states (like 

measurements with eyes open and eyes closed) the use in all layers of the clinical 

field is highly promising.  

 

For this reason the aim of this thesis was to explore the use of combined EEG and 

NIRS measurements. Different approaches of analysing the methods separately as 

well as combined were investigated to see whether more information could be 

gained on different brain states. In order to do so, the well established paradigm 

of opening and closing the eyes while measuring the visual cortex was used. After 

the different approaches of analysis, described in chapters 3, 4 and 5 were 

investigated in healthy brains, chapter 6 started the exploration of these different 

measures in two cases of stroke. The pathology of stroke was chosen because it is 

known to display disturbances in  the electrical brain activity, in the hemodynamic 

brain activity, but also in the neurovascular coupling (Girouard and Iadecola, 2006, 

Blicher et al., 2012, Ayata, 2013, Finnigan and van Putten, 2013). If no differences 

can be found between healthy brains and brains of stroke patients in the 

measurement parameters used, the differentiation between more subtle 

differences in brain functioning in other pathologies like psychopathologies will be 

too farfetched. This will lead broad clinical application to be put off. 

 

Before the exploration was commenced, a pilot study on the robustness of NIRS 

measurements was conducted (chapter 2). EEG methods are sensitive to noise 

and different kinds of artefacts in EEG traces are described in every basic EEG 

atlas (Krauss et al., 2006). For NIRS the quality of its robustness to artefacts and 

therefore its ecological validity in measuring real life paradigms is often 

emphasized (Arenth et al., 2007). However, more published evidence becomes 

available of the susceptibility to artefacts in NIRS measurements (see chapter 2). 

Therefore the goal of the pilot study was to investigate different common 

movements during a paradigm in which subjects were sitting in an upright 

position while measuring NIRS from the frontal cortex. The frontal cortex rather 

than the occipital cortex was used in order to limit additional measurement issues 

arising from hair blocking the optodes. A suggestion of a method to remove 

artefacts from experimental NIRS data, the CBSI method (Cui et al., 2010) was 
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tested for its effectiveness towards potential artefacts and the running correlation 

was evaluated in its application to detect artefacts. This pilot study led to the 

conclusion that motion artefacts easily arise during testing, are very variable in 

their morphology and expression between subjects, and that they are hard to 

recognise especially when only automated artefact detection is used. Some 

artefacts need additional attention like the “slow response” artefact,  which is a 

type of artefact that mimics a response expected during brain activation and can 

therefore easily be missed. Besides, motion artefacts are not the only artefacts 

that arise during NIRS measurements. Artefacts that arise due to physiology based 

systemic responses are often coupled to the research paradigm and are therefore 

hard to entangle from the response of interest (Gagnon et al., 2012, Kirilina et al., 

2012). Furthermore, it was established that the proposed CBSI method did not 

improve signal quality when artefacts were induced upon brain activity measured 

in resting state and sometimes even led to a distortion or switch of the actual 

response. The findings in this chapter are quite important to researchers and 

clinicians using NIRS. Since the robustness of NIRS to artefacts is often 

emphasized in the literature, the potential threat of artefacts and incorrect ways 

of repressing them might be lost, leading to false interpretations. Based on this 

pilot, it was decided that all measurements that were conducted afterwards 

needed to be in an upright sitting position in which the participants were 

instructed to sit very still in order to register as little artefacts as possible so the 

only filtering options that were used were a detrending of the signal along with a 

band pass filter between 0.01 and 0.5 Hz. 

 

The data from the healthy group was collected to investigate the eyes open eyes 

shut response on the visual cortex and was used in chapters 3, 4 and 5 in order to 

explore different analysis techniques. In chapter 3, first the general accepted 

methods of analysing static differences between blocks as well as spectral analysis 

were used in order to determine differences between the activity seen in blocks 

measured with eyes open and blocks measured with eyes closed. Differences 

between blocks were found and generally confirmed earlier research findings 

indicating a more active visual cortex during eyes open conditions visible in a 

repression of alpha wave activity and an increase in HbO2 while Hbb diminished. 

However, when the correlation between alpha activity and  NIRS concentrations 

was analyzed in a static way the expected positive and negative correlations could 
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not be confirmed. This could be due to the static nature of the analysis in this 

chapter. But another reason may be that still a controversy exists whether optical 

changes due to neuronal changes that are seen in vitro and during invasive 

measurements can be detected non-invasively by NIRS in human adults 

(Steinbrink et al., 2000, Wolf et al., 2003, Franceschini and Boas, 2004, Steinbrink 

et al., 2005, Medvedev et al., 2008, Gratton and Fabiani, 2010, Tse et al., 2010, 

Biallas et al., 2012). Where Biallas et al. (2012) emphasize the moderate ability of 

CW NIRS measures to detect hemodynamic changes (40 to 55.2 %) together with 

a low within subject reproducibility. If this is an accurate representation the use of 

NIRS to investigate brain activity as well as its use together with EEG in a clinical 

setting becomes drastically less appealing. 

 

In chapter 4 an introduction to a dynamic way of analysing brain activity was given 

which potentially suits the data better since a brain behaves as a dynamical 

system (McKenna et al., 1994, Fox et al., 2005). A dynamic measure that could be 

useful in doing so is the analysis of long range temporal correlations. These were 

found to exist within the alpha oscillations of the participants and differed 

between participants with good and bad quality data. Unfortunately, the 

registered NIRS signal and the chosen paradigm were not appropriate for 

detecting LRTCs in NIRS signals. This chapter also expressed a dynamic approach 

to analyse the correlation between alpha wave activity and HbO2 as well as Hbb 

concentration changes by means of cross correlation analysis. The results of 

previous research in which a positive correlation between alpha activity and Hbb 

concentrations and a negative correlation between alpha activity and HbO2 

concentrations was found in which a delay in response of the hemodynamic signal 

was seen of around 8 seconds (Moosmann et al., 2003) could only be established 

when all data of questionable quality as well as physiological illogical data were 

removed. The most important finding of this replication is that it could only be 

obtained by excluding a major part of the investigated population. Since inter 

individual differences are found to occur within the largest part of the 

investigated population, this emphasizes that the suggested model of an 8 second 

delayed hemodynamic response with respect to the electrical response might not 

be the “golden standard”. In some cases, perhaps it indeed is the change in 

electrical activity that requires an adapted hemodynamic response and causes 

this response to be delayed with regard to the electrical changes. However, the 
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opposite could be argued for as well; when an increased or restricted supply of 

oxygen causes the electrical activity to change. The first (Moosmann et al., 2003) 

as well as the latter (Pfurtscheller et al., 2012) has been proposed already in 

previous research. 

 

Cross correlation analysis can only give insight in linear relationships between two 

signals. In order to illuminate knowledge on nonlinear relationships as well, the 

use of Mutual Information (MI) analysis was explored in chapter 5. The use of MI 

analysis has not been conducted on NIRS measurements before and therefore has 

never been used to analyse possible dependencies of EEG and NIRS parameters. A 

few challenges had to be overcome before this could be initiated, the first being 

the choice of appropriate bin sizes. Chapter 5 therefore provides a guideline 

showing how to choose an appropriate bin size, which has not been described 

detailed in previous research before. The second challenge was the challenge of 

interpreting the obtained results and comparing them between subjects. In order 

to make this process easier the transformation of cross mutual information (CMI) 

into relative CMI (CMIrel) was invented and explained in this chapter as well. This 

chapter is therefore extremely valuable for this thesis. It provides a newly 

suggested method of how EEG and NIRS measurements can be analysed 

simultaneously creating value for both  EEG and NIRS. Furthermore, it broadens 

use of methodology derived from information theoretical measures making it 

applicable to any research field that uses these measures. The transformation 

towards CMIrel required the separate calculation of the entropy or information 

content of each signal. This showed that the information content of HbO2 and Hbb 

signals was significantly different from each other which helps the discussion in 

the field of NIRS research that will enable researchers to report on both measures 

when reporting results and not restrict the results to the use of the Hbb 

parameter alone, which is often done as this is the parameter that is supposed to 

correlate well with fMRI findings. 

 

As a final study, all measures that were used in chapters 3, 4 and 5 were used to 

analyze the data collected from the same eyes open, eyes closed paradigm as 

used before in two stroke patients. A pathology that is known to display changes 

in electrical brain activity, hemodynamic brain activity and the neurovascular 

coupling (Girouard and Iadecola, 2006, Blicher et al., 2012, Ayata, 2013, Finnigan 
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and van Putten, 2013). The cases of stroke described in chapter 6 were two cases 

at opposite ends of the stroke spectrum. The analysis revealed that changes in 

brain activity in the separate modalities as well as the combined analyses were 

found. Because the cases were very different from each other, the differences 

found in the separate measurement modalities were different as well. Caution is 

warranted though with the results of the second case, because due to the 

multiple strokes this person was left blind which might distort the results.  And 

even though a response in brain activity from eyes open to eyes closed is seen 

when subjects are completely shielded from visual input (Moosmann et al., 2003), 

the blindness itself may have caused plastic changes in both function and 

structure in the visual cortex (Hawellek et al., 2013). 

 

In the independent functioning stroke patient, similar responses in the EEG were 

seen as were reported in the literature, but all bands had higher magnitudes 

during all conditions than seen in the healthy sample. The stroke patient with 

large disability showed hardly a response in all EEG bands except for delta. The 

responses seen in hemodynamic parameters were variable, but the striking 

observation occurred that even though in the second patient hardly an EEG 

response was seen, a response was present in the NIRS signals. The differences in 

dynamics investigated with the  LRTC and entropy showed in the first patient 

shorter correlations in time, while a lack of difference between the surrogate 

signals in the second patient even indicated no long range correlations at all. The 

entropy of the alpha band was found to be higher in both patients, indicating 

lower predictability than seen in healthy brains. For the NIRS parameters different 

results between both patients were obtained in which the first patient showed 

NIRS signals with higher predictability than the healthy participants and the 

second patient lower predictability when a difference was found. Also differences 

in the coupling of EEG and NIRS parameters were found in both patients when 

compared to the healthy group. Especially the difference in relative cross mutual 

information which was found to be significantly lower for both patients, provides 

the proof of principle that the analysis of the combined EEG and NIRS measures 

can have added clinical value. Therefore this chapter can be considered the most 

important chapter of the thesis. It provides the proof of concept for transfer to 

other pathologies as well as a transfer to the clinic. 
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7.2 Readiness to transfer to clinical use 

As described in chapter 6 the results found in this thesis are first of all a starting 

point for future research and a proof of principle that the used measurements will 

be able to tell something about brain functioning in health and in pathology. 

Possible future research paths are shortly mentioned in the next paragraph while 

this paragraph will address the issue of transfer to the clinic. 

 

Based on the findings within this thesis the actual transfer of multimodal brain 

measurements with EEG and NIRS to broad clinical use is still a long journey away. 

To start off with, the susceptibility of NIRS measurements to a wide variety of 

motion artefacts and physiological systemic artefacts is something that needs to 

be resolved. Especially because artefacts appear hard to be detected and 

proposed filtering methods produce variable results in filtering these artefacts. In 

determining the efficacy of filtering often the knowledge of the true form of the 

original (noise-free) signal lacks which is necessary to quantify improvement 

(Sweeney et al., 2012). Other methods use second measurement modalities like 

fMRI to regress artefacts out (Kirilina et al., 2012) or use a short distance channel 

(Zhang et al., 2009, Zhang et al., 2007a, Zhang et al., 2007b). However, Gagnon et 

al. (2012) showed that for every measurement channel the short distance channel 

cannot be further away than 1.5 cm which basically means that the number of 

channels which needs to be used increases drastically. The use of additional fMRI 

measurements or multiple additional channels just to correct for possible 

artefacts is not desirable in a clinical environment. Especially because in a clinical 

setting  fast, reliable, and low-cost measurements are needed with limited setup 

time. 

 

A second issue is the measurement quality of the NIRS technology. In chapter 3 it 

was shown that between half and two-thirds of the NIRS data that were measured 

in the healthy group were data of questionable quality. This is in line with the 

sensitivity of NIRS to actual hemodynamic changes of 40 to 55.2 % that has been 

reported before (Biallas et al., 2012). For a measurement to have a clinically 

added value it needs to be possible to get an adequate and accurate registry in 

nearly all patients. Currently this is not the case. Of course, use was made of just 

one system for this thesis and the possibility exists that systems which are capable 
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of delivering higher quality signals are available. However, a lot can be gained on 

the technical side of the measurement, both in optode positioning comfort and 

signal quality. In these investigations and improvements thought should be 

granted to the issue of hair obstructing the light, leading to bad signal quality 

especially in dark pigmented hair. A start already has been made in these 

improvements by the suggestion of the brush optode (Khan et al., 2012) as well as 

the collodion fixed  micro-optode (Yucel et al., 2014) that were briefly mentioned 

in chapter 2.  

 

Furthermore, the possibilities for the combined use of EEG and NIRS needs to be 

expanded. Surely the correlation or shared information content between the two 

measurements is not the only parameter that could be useful in investigating 

brain function. Other factors can be deduced and used to differentiate a healthy 

functioning brain from a brain during pathology and even between different 

pathologies. In doing so, the developments and findings in hybrid EEG and NIRS 

BCI research could be extremely valuable. Whereas BCI research aims at 

classifying ongoing brain states for communication or the control of external 

devices (Pfurtscheller et al., 2010), the classification of brain states to differentiate 

pathologies might not be all that different. Therefore, we can learn from these 

ongoing studies, especially the research stream that uses NIRS measurement to 

improve EEG classification (Pfurtscheller et al., 2010, Fazli et al., 2012). Fazli et al. 

(2012) showed in their research that EEG features are earlier classifiable than 

NIRS parameters and also have higher classification accuracy. However, when 

both measures are used the overall accuracy of classification improves and for 

subjects that showed poor EEG classification these improvements could be 

extensive. This is a promising result when broad clinical use is in order because 

when these methods are brought to the clinic it are single patients that need to 

be diagnosed. The averaging of group results is not of interest to a single patient 

that just needs to obtain the right diagnosis and the correct treatment in order to 

feel better soon.  

 

Besides the technological issues, and the expanding of the parameters from dual 

measurements that can be considered, the proof of principle needs to be 

expanded to multiple measurement channels and other brain areas. Preferably, 

global, whole headed measurements should be possible with the ease of short 
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preparation and measurement time. This way the functioning of the whole brain 

can be evaluated from just one measurement. Short preparation time will reduce 

discomfort for the patient as well as it will save time for the clinician which in 

acute situations can be life saving. When measuring from more sites also the 

connectivity measures can be researched which in their turn also can contribute 

to a more sensitive and specific classification (Fox and Raichle, 2007, Raichle, 

2010, Buckner, 2012). This will be further highlighted in paragraph 7.3. 

 

Furthermore, an appropriate software package needs to become available in 

which the outcomes of a number of measures can be given to the clinician 

without the need for this person to be an expert on the measurement and its 

interpretation. However, a flag should be raised for the automation of results and 

the blind reliance on the analysis techniques used though. Once a algorithm is 

used to analyze brain activity a result will always be obtained despite the 

reliability of the measurement. This occurs in different techniques. For example 

LORETA in which a deeper lying source for the brain activity observed over the 

scalp is always generated despite the possibility of multiple dipole fitting solutions 

or local field potentials that originate strictly cortical or even the influence of 

noise (Buzsáki et al., 2012). These results are then erroneously coupled to tasks 

under investigation leading to papers arguing that different, specific brain areas 

are involved in the pathology or the information processing of the stimulus under 

investigation (Cannon, 2012). LORETA is not the only technique in which this 

occurs. Probably the best known example is the study in which a dead salmon is 

scanned in an fMRI session in which the salmon was shown pictures of human 

interactions in social situations. Upon analyzing the results voxels appeared active 

in the dead fish’s brain region which could be interpreted as the active processing 

of the stimuli by the fish (Bennett et al., 2009). A finding that is physically 

impossible. The authors use this example to raise awareness for a well developed 

methodological and statistical sense in researchers and clinicians using these 

methods when inferring conclusions about obtained results. Knowledge that may 

lack when automated analysis is offered to a broader, less experienced scope of 

users and which therefore will increase the risk of wrong conclusions based on the 

gathered data. Nevertheless, some sort of automation of data analysis with an 

additional reliability check will be a prerequisite in order to transfer multimodal 
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brain measurements to a broad clinical field, making it accessible for the broad 

public.  

 

7.3 Future research 

Clearly more research and development lies ahead before the simultaneous use of 

EEG and NIRS measurements is ready to be transferred to the clinic. With this 

thesis as a starting point several suggestions are given for future  research. 

 

Especially for the NIRS community it would be helpful if a NIRS atlas was devised 

that illustrates, just like EEG atlases do, basic knowledge about NIRS signals. For 

example what aspects of the signal are normal, but that also describes: 

 how to recognise different types of artefacts.  

 what types of filtering exist and what the pros and cons of the different 

options are.  

 what patterns can be expected in healthy brains during rest and due to 

tasks which are easy to implement, like opening and closing of eyes, 

cognitive tasks or simple hand movement paradigms and how these 

responses are known to be different in all kinds of neurological- or 

psychopathologies.  

 analysis guidelines in the form of a Standard Operating Procedure (SOP) 

which would benefit this area of research very much in creating unity in 

the research findings. 

 

Next to the development of guidelines for basic analysis, the use of dynamic 

analyses for the NIRS signals should be investigated further since this is still 

unexplored territory. A starting point of the analysis of dependency between 

electrical and hemodynamic signals is already given in this thesis along with 

guidelines of how to perform the analysis. Additional attention should be directed 

though to the part of the dependency in which is determined which signal drives 

the other and in what kind of situations a switch of driver and follower occurs. 

Once this is established in healthy functioning brains we might discover that it is 

the rigidity in switching from driver to follower of either modality that is an 

underlying cause of pathology. 
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This thesis illustrated the proof of principle of the added value of combined brain 

measurements by means of analysing the pathology of stroke. Other pathologies 

are at least as interesting to study and should be studied before the majority of 

patients can benefit from brain measurements. For instance the pathology of 

depression has shown to express more alpha activity over the left frontal cortex 

and sometimes the right parietal cortex (Debener et al., 2000). It would be 

extremely interesting to find out if these findings go accompanied by changes in 

dependency between alpha activity and NIRS parameters or whether this is only 

the case when late onset depression is diagnosed which seems to go accompanied 

by changes in cerebrovascular function (Motomura et al., 2002). Another way to 

study how this dependency between alpha activity and NIRS parameters changes 

is by introducing a substance which is known to alter both (or one of the two) 

signals. A good candidate for the dependency studied in this thesis would be 

caffeine. Caffeine has been shown to alter alpha activity (Barry et al., 2008) as well 

as oxygenation parameters (Liu et al., 2004). Studies on popular stimulants as 

caffeine could then be followed by studies investigating psychiatric drugs that are 

often prescribed to patients, such as methylphenidate in ADHD or SSRI’s (selective 

serotonin reuptake inhibitors) in depression. These studies could be helpful in 

determining whether certain substances are wise to prescribe when a change in 

the dependency between electrical and hemodynamic activity is found. 

 

As a last suggestion the investigation of resting state networks could be 

conducted for the combination of EEG and NIRS. The steady rise in the number of 

resting state functional neuroimaging studies is a serious indication that the 

importance of the functioning of the brain at rest is being recognised and used to 

explore  brain function (Cole et al., 2010). Breakthroughs in this research have 

been the discovery of the default mode network (Raichle et al., 2001, Greicius et 

al., 2003), and resting state networks (Beckmann et al., 2005, Buckner, 2012). The 

presence of these networks has been established in PET and fMRI first (Raichle et 

al., 2001, Greicius et al., 2003), but can also be identified with EEG (Buzsáki and 

Draguhn, 2004, Mantini et al., 2007) and NIRS (Lu et al., 2010, Mesquita et al., 

2010). Furthermore, differences in connectivity of these networks have been 

indicated in various pathologies, ranging from neurological (Vecchio et al., 2012, 

Diessen et al., 2013) to psychological pathologies (Karbasforoushan and 
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Woodward, 2012, Wang and Lagopoulos, 2012, Vargas et al., 2013). Therefore 

added analysis of functional resting state networks could create more insight in 

the brain behaviour relationship and help distinguishing different pathologies with 

a higher sensitivity and specificity.  Additionally, the use of the resting state as 

measurement condition will include the broadest scope of patients since most of 

them are able to rest for several minutes. 

 

In short, the path into the clinic seems a long route. And many ways can be 

thought of which could move the field of combined EEG and NIRS measurements 

forward. Nevertheless, once the these steps forward are being made the scope of 

clinical utility will be endless. The non-invasive objectifying of complaints can be 

done in all age groups, especially when a resting state measure will suffice. It will 

allow faster and more accurate diagnosis in neurology, but also in 

psychopathology an area that is currently underserved. Furthermore, it can aid in 

choosing the right treatment especially when pharmacological studies are 

included. Besides, the use of regular, multimodal brain measurements in the 

objective monitoring of a patients progress will allow clinicians to adjust their 

treatment plans in time. So to conclude, the advances in non-invasive multimodal 

brain measurements will benefit clinical issues and lead to exiting new findings 

which will benefit patients. But the quest has just begun. 
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Appendices 

Appendix A 

 t df Sig (two 
 tailed) 

Mean 
dif. 

Tested 
value 

Group 
mean 

DeltaEO1 -2.164 38 .037* -1.2359 14.7 13.464 

Theta EO1 -25,593 38 .000* -9.9000 21.10 11.200 

AlphaEO1 -19.490 38 .000* -10.2923 21.40 11.108 

Beta1EO1 -19.137 38 .000* -5.8077 12.20 6.392 

Beta2EO1 -13.890 38 .000* -5.9359 13.7 7.764 

DeltaEC1 -11.434 31 .000* -4.1875 14.5 10.312 

Theta EC1 -20.795 31 .000* -9.6469 20.0 10.353 

AlphaEC1 -9.034 31 .000* -21.1625 43.4 22.238 

Beta1EC1 -8.838 31 .000* -5.0344 13.7 8.666 

Beta2EC1 -13.986 31 .000* -6.8344 15.5 8.666 

DeltaEO2 -1.162 33 .254 -.6176 13.8 13.182 

Theta EO2 -14.357 33 .000* -6.2529 16.9 10.647 

AlphaEO2 -20.020 33 .000* -9.5118 20.1 15.588 

Beta1EO2 -14.538 33 .000* -4.3265 10.4 6.074 

Beta2EO2 -17.115 33 .000* -5.7353 13.1 7.365 

DeltaEC2 -16.577 32 .000* -7.1515 18.1 10.948 

Theta EC2 -20.490 32 .000* -14.7152 26 11.285 

AlphaEC2 -11.985 32 .000* -32.2333 57.7 25.467 

Beta1EC2 -14.811 32 .000* -8.0455 16.9 8.855 

Beta2EC2 -16.417 32 .000* -8.0424 17.2 9.158 

DeltaEO3 -6.030 38 .000* -3.3026 16.3 12.997 

Theta EO3 -24.140 38 .000* -9.2667 20.1 10.833 

AlphaEO3 -24.201 38 .000* -13.9462 25.1 11.154 

Beta1EO3 -27.244 38 .000* -6.8923 13.1 6.308 

Beta2EO3 -14.500 38 .000* -6.2564 14.1 7.844 

DeltaEC3 -3.878 35 .000* -2.5917 14.5 11.908 

Theta EC3 -19.847 35 .000* -13.3806 24.4 11.019 

AlphaEC3 -15.021 35 .000* -35.7917 59.1 23.308 

Beta1EC3 -15.741 35 .000* -8.1250 16.8 8.675 

Beta2EC3 -14.529 35 .000* -7.2222 16.3 9.078 

DeltaEO4 -3.877 38 .000* -2.5179 15.9 13.382 

Theta EO4 -21.300 38 .000* -8.100 18.9 10.800 

AlphaEO4 -19.308 38 .000* -13.3154 25.0 11.685 

Beta1EO4 -29.768 38 .000* -8.1744 14.5 6.326 

Beta2EO4 -20.770 38 .000* -8.3923 16.0 7.608 

DeltaEC4 -12.817 35 .000* -6.7667 18.2 11.433 

Theta EC4 -32.380 35 .000* -19.7528 31.0 11.247 

AlphaEC4 -11.858 35 .000* -28.4500 53.1 24.650 

Beta1EC4 -19.153 35 .000* -10.0333 18.8 8.767 

Beta2EC4 -21.905 35 .000* -9.2722 18.2 8.928 

DeltaEO5 -8.924 38 .000* -4.8487 18.0 13.151 

Theta EO5 -30.954 38 .000* -13.1692 23.8 10.631 

AlphaEO5 -33.355 38 .000* -18.8974 29.9 11.003 

Beta1EO5 -29.616 38 .000* -7.8359 14.1 6.264 
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Beta2EO5 -27.568 38 .000* -10.9385 18.4 7.462 

DeltaEC5 -9.987 36 .000* -6.5568 18.1 11.543 

Theta EC5 -25.138 36 .000* -15.5136 26.6 11.086 

AlphaEC5 -13.294 36 .000* -30.3108 54.1 23.789 

Beta1EC5 -21.457 36 .000* -10.7919 19.2 8.408 

Beta2EC5 -21.512 36 .000* -8.9568 17.9 8.943 
Table A1. Results from the one sample t-tests of all frequency bands on the left occipital 
(O1) location for all eyes open (EO) and eyes closed (EC) blocks. Significant results are 
indicated with an asterisk. 

 
 

 t df Sig (two 
 tailed) 

Mean 
dif. 

Tested 
value 

Group 
mean 

DeltaEO1 -3.674 38 .001* -2.0692 15.3 13.231 

Theta EO1 -26.559 38 .000* -10.9410 21.8 10.859 

AlphaEO1 -25.494 38 .000* -13.6487 24.4 10.751 

Beta1EO1 -31.858 38 .000* -7.6667 13.8 6.133 

Beta2EO1 -22.986 38 .000* -7.9615 15.3 7.338 

DeltaEC1 -4.895 38 .000* -4.4821 16.9 14.418 

Theta EC1 -16.579 38 .000* -12.4821 24.0 11.518 

AlphaEC1 -10.490 38 .000* -34.0718 61.4 27.328 

Beta1EC1 -16.360 38 .000* -8.8333 17.9 9.067 

Beta2EC1 -27.465 38 .000* -11.4231 20.1 8.677 

DeltaEO2 -4.584 37 .000* -2.4500 15.4 12.950 

Theta EO2 -18.821 37 .000* -8.4526 19.2 10.747 

AlphaEO2 -18.138 37 .000* -13.0711 24.6 11.529 

Beta1EO2 -20.121 37 .000* -5.4895 11.6 6.111 

Beta2EO2 -22.450 37 .000* -7.1895 14.6 7.411 

DeltaEC2 -7.138 38 .000* -6.8615 19.6 12.738 

Theta EC2 -20.616 38 .000* -17.2923 29.3 12.008 

AlphaEC2 -13.737 38 .000* -43.422 70.7 27.626 

Beta1EC2 -20.455 38 .000* -11-5462 20.8 9.254 

Beta2EC2 -30.653 38 .000* -11.9897 21.1 9.110 

DeltaEO3 -8.105 38 .000* -4.3615 17.30 12.938 

Theta EO3 -27.519 38 .000* -11.6051 22.2 10.595 

AlphaEO3 -27.593 38 .000* -17.0692 28.0 10.931 

Beta1EO3 -37.480 38 .000* -8.5769 14.8 6.223 

Beta2EO3 -21.588 38 .000* -7.6641 15.0 7.336 

DeltaEC3 -24.386 27 .000* -7.0750 16.9 9.825 

Theta EC3 -69.093 27 .000* -20.6893 29.6 8.911 

AlphaEC3 -29.198 27 .000* -54.1500 73.5 19.350 

Beta1EC3 -22.739 27 .000* -11.7714 19.7 7.929 

Beta2EC3 -31.093 27 .000* -13.5036 21.8 8.296 

DeltaEO4 -5.802 38 .000* -3.8308 17.1 13.269 

Theta EO4 -27.624 38 .000* -11.0564 21.6 10.544 

AlphaEO4 -25.580 38 .000* -18.1974 29.7 11.503 

Beta1EO4 -37.308 38 .000* -9.5564 15.8 6.244 

Beta2EO4 -30.370 38 .000* -9.8897 17.1 7.210 

DeltaEC4 -9.658 37 .000* -8.0789 20.3 12.221 

Theta EC4 -34.246 37 .000* -24.8132 36.6 11.787 
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AlphaEC4 -14.459 37 .000* -43.9132 71.0 27.087 

Beta1EC4 -21.411 37 .000* -12.0289 21.0 8.971 

Beta2EC4 -36.228 37 .000* -14.4974 23.4 8.903 

DeltaEO5 -12.563 37 .000* -6.3816 18.9 12.518 

Theta EO5 -43.158 37 .000* -16.0289 26.2 10.171 

AlphaEO5 -38.761 37 .000* -22.3395 33.1 10.761 

Beta1EO5 -41.012 37 .000* -10.5474 16.6 6.053 

Beta2EO5 -38.144 37 .000* -12.2105 19.4 7.189 

DeltaEC5 -19.797 34 .000* -10.5886 21.1 10.511 

Theta EC5 -40.674 34 .000* -22.1743 32.6 10.426 

AlphaEC5 -18.064 34 .000* -40.7600 63.9 23.140 

Beta1EC5 -29.428 34 .000* -15.6886 24.2 8.511 

Beta2EC5 -32.259 34 .000* -13.5657 22.5 8.934 
Table A2. Results from the one sample t-tests of all frequency bands on the right occipital 
(O2) location for all eyes open (EO) and eyes closed (EC) blocks. Significant results are 
indicated with an asterisk. 

 
 

 t df Sig (two 
 tailed) 

Mean 
dif. 

Tested 
value 

Group 
mean 

HbO2 EO1 2.800 34 .008* 0.3105 0.0692 0.3796 

Hbb EO1 -2.162 34 .038* -.2048 0.0037 -0.2011 

HbO2 EC1 .983 34 .333 .1155 0.1086 0.2240 

Hbb EC1 -.928 34 .360 -0.8437 -0.0184 -0.1028 

HbO2 EO2 3.360 34 .002* .3893 0.0404 0.4297 

Hbb EO2 -2.344 34 .025* -.2281 0.0086 -.2196 

HbO2 EC2 .328 34 .745 .0345 0.0707 0.1052 

Hbb EC2 -.769 34 .447 -.0702 -0.0029 -0.0731 

HbO2 EO3 2.744 34 .010* .3227 0.0987 0.4214 

Hbb EO3 -1.932 34 .062 -.1860 -0.0126 -0.1986 

HbO2 EC3 .378 34 .708 .0398 0.0644 .01041 

Hbb EC3 -.892 34 .379 -.0831 -0.0078 -0.0909 

HbO2 EO4 2.727 34 .010* .2846 0.1056 0.3902 

Hbb EO4 -1.670 34 .104 -.1586 -0.0346 -0.1932 

HbO2 EC4 .641 34 .526 .0646 0.0295 0.0941 

Hbb EC4 -1.171 34 .250 -.1033 0.0132 -0.0901 

HbO2 EO5 4.225 34 .000* .4391 -0.029 0.4099 

Hbb EO5 -2.260 34 .030* -.2095 -0.0079 -0.2174 

HbO2 EC5 -.474 34 .638 -.0523 0.2231 0.1708 

Hbb EC5 -.278 34 .783 -.0236 -0.0461 -0.0698 
Table A3. Results from the one sample t-test of the oxygenated haemoglobin (HbO2) and 
deoxygenated haemoglobin (Hbb) concentrations on the left occipital cortex (O1) for all 
eyes open (EO) and eyes closed (EC) blocks. Significant results are indicated with an 
asterisk. 

 
 

 t df Sig (two 
 tailed) 

Mean 
dif. 

Tested 
value 

Group 
mean 

HbO2 EO1 -5.863 35 .000* -1.1866 1.7290 .5424 

Hbb EO1 4.548 35 .000* .6163 -1.0161 -.3998 

HbO2 EC1 -5.677 35 .000* -1.1358 1.4819 0.3461 
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Hbb EC1 4.926 35 .000* .6661 -0.9595 -0.2934 

HbO2 EO2 -5.158 35 .000* -1.0903 1.5900 0.4997 

Hbb EO2 4.561 35 .000* .6454 -1.0165 -0.3741 

HbO2 EC2 -8.207 34 .000* -1.3978 1.5702 0.1724 

Hbb EC2 6.141 34 .000* .8152 -1.0516 -0.2364 

HbO2 EO3 -3.467 35 .001* -.7471 1.2864 0.5393 

Hbb EO3 2.650 35 .012* .3829 -0.7889 -0.4061 

HbO2 EC3 -8.749 34 .000* -1.3572 1.5380 0.1808 

Hbb EC3 5.741 34 .000* .7101 -0.9646 -0.2544 

HbO2 EO4 -3.870 35 .000* -.7778 1.3693 0.5915 

Hbb EO4 3.067 35 .004* 0.4401 -0.8710 -0.4309 

HbO2 EC4 -6.611 35 .000* -1.2313 1.5053 0.2740 

Hbb EC4 5.335 35 .000* .6802 -0.9970 -0.3168 

HbO2 EO5 -3.338 35 .002* -.7011 1.2958 0.5947 

Hbb EO5 3.329 35 .002* 0.4706 -0.8986 -0.4280 

HbO2 EC5 -5.943 35 .000* -1.1371 1.4440 0.3070 

Hbb EC5 5.012 35 .000* 0.6516 -0.9285 -0.2769 
Table A4. Results from the one sample t-test of the oxygenated haemoglobin (HbO2) and 
deoxygenated haemoglobin (Hbb) concentrations on the right occipital cortex (O2) for all 
eyes open (EO) and eyes closed (EC) blocks. Significant results are indicated with an 
asterisk. 

 
 

 t df Sig (two 
 tailed) 

Mean 
dif. 

Tested 
value 

Group 
mean 

Alpha x 
HbO2 O1  

-11.011 37 .000* -.4597 0.289 -.1707 

Timing Alpha 
x HbO2 O1 

9.989 37 .000* 245.816 -176 69.82 

Alpha x  
Hbb O1  

10.281 37 .000* .5407 -0.358 0.183 

Timing Alpha 
x Hbb O1 

9.630 37 .000* 223.421 -175 48.42 

Alpha x 
HbO2 O2 

-6.654 37 .000* -.2186 0.099 -.1196 

Timing Alpha 
x HbO2 O2 

7.716 37 .000* 221.421 -209 12.42 

Alpha x 
Hbb O2  

9.523 37 .000* .3105 -0.207 0.1035 

Timing Alpha 
x Hbb O2 

6.648 37 .000* 186.079 -188 -1.92 

Table A5. Results from the one sample t-test of the cross correlation analyses for both the 
correlation value and the time point at which the highest correlation was found. Significant 
results are indicated with an asterisk. Legend: O1= left visual cortex, O2= right visual 
cortex, HbO2= oxygenated haemoglobin, Hbb= deoxygenated haemoglobin. 
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Appendix B 

 

 t df Sig (two 
tailed) 

Mean 
dif. 

Tested 
value 

Group 
mean 

DeltaEO1 1.163 38 .252 .6641 12.8 13.464 

Theta EO1 -6.98 38 .000* -2.7000 13.9 11.200 

AlphaEO1 -10.022 38 .000* -5.2923 16.4 11.108 

Beta1EO1 .963 38 .342 .2923 6.10 6.392 

Beta2EO1 -1.722 38 .093 -.7359 8.5 7.764 

DeltaEC1 -14.984 31 .000* -5.4875 15.8 10.312 

Theta EC1 -8.508 31 .000* -3.9469 14.3 10.353 

AlphaEC1 2.108 31 .043* 4.9375 17.3 22.238 

Beta1EC1 5.206 31 .000* 2.9656 5.7 8.666 

Beta2EC1 .544 31 .591 .2656 8.4 8.666 

DeltaEO2 2.788 33 .009* 1.4824 11.7 13.182 

Theta EO2 -4.484 33 .000* -1.9529 12.6 10.647 

AlphaEO2 -8.865 33 .000* -4.2118 14.8 15.588 

Beta1EO2 -.089 33 .930 -.0265 6.1 6.074 

Beta2EO2 -3.388 33 .002* -1.1353 8.5 7.365 

DeltaEC2 -2.206 32 .035* -.9515 11.9 10.948 

Theta EC2 -.717 32 .478 -.5152 11.8 11.285 

AlphaEC2 4.226 32 .000* 11.3667 14.1 25.467 

Beta1EC2 6.176 32 .000* 3.3545 5.5 8.855 

Beta2EC2 .730 32 .471 .3576 8.8 9.158 

DeltaEO3 4.012 38 .000* 2.1974 10.8 12.997 

Theta EO3 -3.039 38 .004* -1.1667 12.0 10.833 

AlphaEO3 -7.195 38 .000* -4.1462 15.3 11.154 

Beta1EO3 4.774 38 .000* 1.2077 5.1 6.308 

Beta2EO3 -1.058 38 .279 -.4564 8.3 7.844 

DeltaEC3 -6.571 35 .000* -4.3917 16.3 11.908 

Theta EC3 -1.306 35 .200 -.8806 11.9 11.019 

AlphaEC3 2.773 35 .009* 6.6083 16.7 23.308 

Beta1EC3 5.957 35 .000* 3.0750 5.6 8.675 

Beta2EC3 3.375 35 .002* 1.6778 7.4 9.078 

DeltaEO4 5.978 38 .000* 3.8821 9.5 13.382 

Theta EO4 -1.578 38 .123 -.6000 11.4 10.800 

AlphaEO4 -2.197 38 .034* -1.5154 13.2 11.685 

Beta1EO4 2.278 38 .028* .6256 5.7 6.326 

Beta2EO4 -.971 38 .338 -.3923 8 7.608 

DeltaEC4 -10.165 35 .000* -5.3667 16.8 11.433 

Theta EC4 -3.201 35 .003* -1.9528 13.2 11.247 

AlphaEC4 3.230 35 .003* 7.7500 16.9 24.650 

Beta1EC4 6.618 35 .000* 3.4667 5.3 8.767 

Beta2EC4 4.318 35 .000* 1.8278 7.1 8.928 

DeltaEO5 1.935 38 .060 1.0513 12.1 13.151 

Theta EO5 -3.688 38 .001* -1.5692 12.2 10.631 

AlphaEO5 -9.703 38 .000* -5.4974 16.5 11.003 

Beta1EO5 3.266 38 .002* .8641 5.4 6.264 

Beta2EO5 -.601 38 .551 -.2385 7.7 7.462 
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DeltaEC5 -5.821 36 .000* -3.8568 15.4 11.543 

Theta EC5 -5.045 36 .000* -3.1135 14.2 11.086 

AlphaEC5 2.495 36 .017* 5.6892 18.1 23.789 

Beta1EC5 3.993 36 .000* 2.0081 6.4 8.408 

Beta2EC5 -.376 36 .709 -.1568 9.1 8.943 
Table B1. Results from the one sample t-tests of all frequency bands on the left occipital 
(O1) location for all eyes open (EO) and eyes closed (EC) blocks. Significant results are 
indicated with an asterisk. 
 

 t df Sig (two 
tailed) 

Mean 
dif. 

Tested 
value 

Group 
mean 

DeltaEO1 2.896 38 .006* 1.6308 11.6 13.231 

Theta EO1 -8.353 38 .000* -3.4410 14.3 10.859 

AlphaEO1 -6.255 38 .000* -3.3487 14.1 10.751 

Beta1EO1 3.463 38 .001* .8333 5.3 6.133 

Beta2EO1 -.755 38 .455 -2.615 7.6 7.338 

DeltaEC1 -1.946 38 .059 -1.7821 14.2 14.418 

Theta EC1 -3.297 38 .002* -2.4821 14.0 11.518 

AlphaEC1 3.734 38 .001* 12.1282 15.2 27.328 

Beta1EC1 7.717 38 .000* 4.1667 4.9 9.067 

Beta2EC1 3.791 38 .001* 1.5769 7.1 8.677 

DeltaEO2 1.777 37 .084 .9500 12.0 12.950 

Theta EO2 -8.356 37 .000* -3.7526 14.5 10.747 

AlphaEO2 -4.262 37 .000* -3.0711 14.6 11.529 

Beta1EO2 2.604 37 .013* .7105 5.4 6.111 

Beta2EO2 0.970 37 .339 .3105 7.1 7.411 

DeltaEC2 .664 38 .511 .6385 12.1 12.738 

Theta EC2 .725 38 .473 .6077 11.4 12.008 

AlphaEC2 4.760 38 .000* 14.9256 12.7 27.626 

Beta1EC2 7.713 38 .000* 4.3538 4.9 9.254 

Beta2EC2 3.094 38 .004* 1.2103 7.9 9.110 

DeltaEO3 5.646 38 .000* 3.0385 9.9 12.938 

Theta EO3 -3.332 38 .002* -1.4051 12.0 10.595 

AlphaEO3 -3.668 38 .001* -2.2692 13.2 10.931 

Beta1EO3 7.530 38 .000* 1.7231 4.5 6.223 

Beta2EO3 -1.871 38 .069 -.6641 8.0 7.336 

DeltaEC3 -21.284 27 .000* -6.1750 16.0 9.825 

Theta EC3 -5.975 27 .000* -1.7893 10.7 8.911 

AlphaEC3 2.993 27 .006* 5.5500 13.8 19.350 

Beta1EC3 5.464 27 .000* 2.8286 5.1 7.929 

Beta2EC3 1.604 27 .120 .6964 7.6 8.296 

DeltaEO4 6.315 38 .000* 4.1692 9.1 13.269 

Theta EO4 -3.389 38 .002* -1.3564 11.9 10.544 

AlphaEO4 -2.808 38 .008* -1.9974 13.5 11.503 

Beta1EO4 4.074 38 .000* 1.0436 5.2 6.244 

Beta2EO4 -1.197 38 .239 -.3987 7.6 7.210 

DeltaEC4 -6.191 37 .000* -5.1789 17.4 12.221 

Theta EC4 -2.916 37 .006* -2.1132 13.9 11.787 

AlphaEC4 4.177 37 .000* 12.6868 14.4 27.087 

Beta1EC4 7.424 37 .000* 4.1711 4.8 8.971 
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Beta2EC4 3.755 37 .001* 1.5026 7.4 8.903 

DeltaEO5 3.580 37 .001* 1.8184 10.7 12.518 

Theta EO5 -5.732 37 .000* -2.1289 12.3 10.171 

AlphaEO5 -6.141 37 .000* -3.5395 14.3 10.761 

Beta1EO5 3.704 37 .001* .9526 5.1 6.053 

Beta2EO5 -.345 37 .732 -.1105 7.3 7.189 

DeltaEC5 -7.831 34 .000* -4.1886 14.7 10.511 

Theta EC5 -5.639 34 .000* -3.0743 13.5 10.426 

AlphaEC5 3.076 34 .004* 6.9400 16.2 23.140 

Beta1EC5 4.336 34 .000* 2.3114 6.2 8.511 

Beta2EC5 -1.821 34 .077 -.7657 9.7 8.934 
Table B2. Results from the one sample t-tests of all frequency bands on the right occipital 
(O2) location for all eyes open (EO) and eyes closed (EC) blocks. Significant results are 
indicated with an asterisk. 

 
 

 t df Sig (two 
tailed) 

Mean 
dif. 

Tested 
value 

Group 
mean 

HbO2 EO1 4.894 34 .000* .5427 -0.1631 0.3796 

Hbb EO1 -9.075 34 .000* -.8596 0.6584 -0.2011 

HbO2 EC1 2.519 34 .017* .2960 -0.0719 0.2240 

Hbb EC1 -16.405 34 .000* -1.4923 1.389 -0.1028 

HbO2 EO2 4.915 34 .000* .5695 -0.1398 0.4297 

Hbb EO2 -11.680 34 .000* -1.1369 0.9174 -.2196 

HbO2 EC2 .514 34 0.611 .0541 0.0511 0.1052 

Hbb EC2 -11.345 34 .000* -1.0435 0.9705 -0.0731 

HbO2 EO3 4.486 34 .000* .5275 -0.1061 0.4214 

Hbb EO3 -10.873 34 .000* -1.0464 0.8478 -0.1986 

HbO2 EC3 1.240 34 0.223 .1305 -0.0263 .01041 

Hbb EC3 -13.355 34 .000* -1.2446 1.1537 -0.0909 

HbO2 EO4 3.983 34 .000* .4158 -0.0255 0.3902 

Hbb EO4 -9.485 34 .000* -.9007 0.7075 -0.1932 

HbO2 EC4 2.253 34 .031* .2270 -0.1329 0.0941 

Hbb EC4 -17.646 34 .000* -1.5566 1.4665 -0.0901 

HbO2 EO5 4.809 34 .000* .4999 -0.0899 0.4099 

Hbb EO5 -7.899 34 .000* -.7322 0.5148 -0.2174 

HbO2 EC5 -.223 34 .825 -.0247 0.1955 0.1708 

Hbb EC5 -15.954 34 .000* -1.3575 1.2877 -0.0698 
Table B3. Results from the one sample t-test of the oxygenated haemoglobin (HbO2) and 
deoxygenated haemoglobin (Hbb) concentrations on the left occipital cortex (O1) for all 
eyes open (EO) and eyes closed (EC) blocks. Significant results are indicated with an 
asterisk. 

 
 

 t df Sig (two 
tailed) 

Mean 
dif. 

Tested 
value 

Group 
mean 

HbO2 EO1 4.611 35 .000* .9331 -0.3908 .5424 

Hbb EO1 -2.291 35 .028* -.3105 -0.0893 -.3998 

HbO2 EC1 2.089 35 .044* .4180 -0.0719 0.3461 

Hbb EC1 -.816 35 .420 -.1103 -0.1831 -0.2934 

HbO2 EO2 3.765 35 .001* .7959 -0.2961 0.4997 
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Hbb EO2 -1.609 35 .117 -.2277 -0.1464 -0.3741 

HbO2 EC2 1.786 34 .083 .3041 -0.1317 0.1724 

Hbb EC2 -.405 34 .688 -.0538 -0.1826 -0.2364 

HbO2 EO3 3.707 35 .001* .7987 -0.2594 0.5393 

Hbb EO3 -1.553 35 .130 -.2243 -0.1818 -0.4061 

HbO2 EC3 5.123 34 .000* .7947 -0.6139 0.1808 

Hbb EC3 -2.311 34 .027* -.2859 0.0314 -0.2544 

HbO2 EO4 3.102 35 .004* .6233 -0.0318 0.5915 

Hbb EO4 -1.209 35 .235 -.1735 -0.2574 -0.4309 

HbO2 EC4 4.667 35 .000* .8692 -0.5952 0.2740 

Hbb EC4 -1.989 35 .055 -.2536 -0.0632 -0.3168 

HbO2 EO5 4.324 35 .000* .9080 -0.3133 0.5947 

Hbb EO5 -2.462 35 .019* -.3480 -0.0800 -0.4280 

HbO2 EC5 2.696 35 .011* .5159 -0.2089 0.3070 

Hbb EC5 .215 35 .831 -.2793 -0.3048 -0.2769 
Table B4. Results from the one sample t-test of the oxygenated haemoglobin (HbO2) and 
deoxygenated haemoglobin (Hbb) concentrations on the right occipital cortex (O2) for all 
eyes open (EO) and eyes closed (EC) blocks. Significant results are indicated with an 
asterisk. 
 

 t df Sig (two 
tailed) 

Mean 
dif. 

Tested 
value 

Group 
mean 

Alpha x HbO2 O1  -7.945 37 .000* -.3317 0.161 -0.1707 

Timing Alpha x 
HbO2 O1 

5.763 37 .000* 141.816 -72 69.82 

Alpha x Hbb O1  5.090 37 .000* .2677 -0.085 0.1827 

Timing Alpha x 
Hbb O1 

-2.999 37 .005* -69.579 118 48.42 

Alpha x HbO2 O2 -.748 37 .459 -.02455 -0.095 -0.1196 

Timing Alpha x 
HbO2 O2 

-1.135 37 .264 -32.579 45 12.42 

Alpha x Hbb O2  1.119 37 .270 .0365 0.067 0.1035 

Timing Alpha x 
Hbb O2 

-1.569 37 .125 -43.921 42 -1.92 

Individual Alpha  
x HbO2 O1  

-6.029 37 .000* .2517 0.081 -0.1707 

Timing 
Individual Alpha 
x HbO2 O1 

0196 37 .846 4.816 65 69.82 

Individual Alpha 
x Hbb O1  

1.592 37 .120 .0837 0.099 0.1827 

Timing 
Individual Alpha 
x Hbb O1 

-4.508 37 .000* -
104.579 

153 48.42 

Individual Alpha  
x HbO2 O2 

-.047 37 .963 -.068 -0.118 -0.1196 

Timing 
Individual Alpha 
x HbO2 O2 

-2.843 37 .007* -81.579 94 12.42 

Individual Alpha  
x Hbb O2  

.445 37 .659 .0145 0.089 0.1035 



218 

 

Timing 
Individual Alpha 
x Hbb O2 

-3.927 37 .000* -
109.921 

108 -1.92 

Delta x HbO2 O1  -6.939 37 .000* -.28974 0.119 -0.1707 

Timing Delta x 
HbO2 O1 

11.249 37 .000* 276.816 -207 69.82 

Delta x Hbb O1  -1.584 37 .122 -.08329 0.266 0.1827 

Timing Delta x 
Hbb O1 

-1.361 37 .182 -31.579 80 48.42 

Delta x HbO2 O2 2.175 37 .036* .07145 -0.191 -0.1196 

Timing Delta x 
HbO2 O2 

-4.062 37 .000 -
116.579 

129 12.42 

Delta x Hbb O2  -.782 37 .439 -.0255 0.129 0.1035 

Timing Delta x 
Hbb O2 

-4.570 37 .000* -
127,921 

126 -1.92 

Table B5. Results from the one sample t-test of the cross correlation analyses for both the 
correlation value and the time point at which the highest correlation was found. The entire 
healthy sample is evaluated. Significant results are indicated with an asterisk. Legend: O1= 
left visual cortex, O2= right visual cortex, HbO2= oxygenated haemoglobin, Hbb= 
deoxygenated haemoglobin. 

 

 t df Sig (two 
tailed) 

Mean 
dif. 

Tested 
value 

Group 
mean 

Alpha x HbO2 O1  -5.500 10 .000* -.43655 0.161 -.27555 

Timing Alpha x 
HbO2 O1 

3.866 10 .003* 197.636 -72 125.64 

Alpha x Hbb O1  5.678 9 .000* .48840 -0.085 0.403 

Timing Alpha x 
Hbb O1 

.175 9 .865 7.200 118 125.20 

Alpha x HbO2 O2 -.838 9 .427 -.07400 -0.095 -0.169 

Timing Alpha x 
HbO2 O2 

-.262 9 .799 -15.800 45 29.2 

Alpha x Hbb O2  2.785 8 .024* .18411 0.067 0.251 

Timing Alpha x 
Hbb O2 

.665 8 .524 -96.42 42 81.11 

Individual Alpha  
x HbO2 O1  

-4.492 10 .001* -.35655 0.081 -.27555 

Timing 
Individual Alpha 
x HbO2 O1 

1.186 10 .263 60.636 65 125.64 

Individual Alpha 
x Hbb O1  

3.539 9 .006* .30440 0.099 0.403 

Timing 
Individual Alpha 
x Hbb O1 

-.675 9 .517 -27.800 153 125.20 

Individual Alpha  
x HbO2 O2 

-.574 9 .580 -.0510 -0.118 -0.169 

Timing 
Individual Alpha 
x HbO2 O2 

-1.073 9 .311 -64.800 94 29.2 

Individual Alpha  2.452 8 .040* .1621 0.089 0.251 
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x Hbb O2  

Timing 
Individual Alpha 
x Hbb O2 

-.458 8 .659 -26.889 108 81.11 

Delta x HbO2 O1  -4.971 10 .001* -.39455 0.119 -.27555 

Timing Delta x 
HbO2 O1 

6.506 10 .000* 332.636 -207 125.64 

Delta x Hbb O1  1.597 9 .145 .13740 0.266 0.403 

Timing Delta x 
Hbb O1 

1.097 9 .301 45.200 80 125.20 

Delta x HbO2 O2 .248 9 .810 .0220 -0.191 -0.169 

Timing Delta x 
HbO2 O2 

-1.653 9 .133 -99.800 129 29.2 

Delta x Hbb O2  1.847 8 .102 .12211 0.129 0.251 

Timing Delta x 
Hbb O2 

-.764 8 .467 -44.889 126 81.11 

Table B6. Results from the one sample t-test of the cross-correlation analyses for both the 
correlation value and the time point at which the highest correlation was found. Bad data 
are removed from the healthy sample. Significant results are indicated with an asterisk. 
Legend: O1= left visual cortex, O2= right visual cortex, HbO2= oxygenated haemoglobin, 
Hbb= deoxygenated haemoglobin. 
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Appendix C1 

 
The filled out Barthel Index for the patient discussed under case 1. The original 
research data were documented in Dutch. In order to make the given answers on 
the Dutch scale more insightful, the answers were projected on the English 
version of the scale.  
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Appendix C2 

 
The filled out Barthel Index for the patient discussed under case 2. The original 
research data were documented in Dutch. In order to make the given answers on 
the Dutch scale more insightful, the answers were projected on the English 
version of the scale.  

 
 

  

0 

0 

0 

0 

1 

0 

0 

0 

0 

0 

1 



222 

 

References 

 

ABASOLO, D., ESCUDERO, J., HORNERO, R., GOMEZ, C. & ESPINO, P. 2008. 
Approximate entropy and auto mutual information analysis of the 
electroencephalogram in Alzheimer's disease patients. Med Biol Eng 
Comput, 46, 1019-28. 

ABASOLO, D., HORNERO, R., ESPINO, P., ESCUDERO, J. & GOMEZ, C. 2007. 
Electroencephalogram background activity characterization with 
approximate entropy and auto mutual information in Alzheimer's disease 
patients. Conf Proc IEEE Eng Med Biol Soc, 2007, 6192-5. 

ACHARYA, U. R., SREE, S. V., CHATTOPADHYAY, S. & SURI, J. S. 2012. Automated 
diagnosis of normal and alcoholic EEG signals. Int J Neural Syst, 22, 
1250011. 

ALONSO, J. F., MANANAS, M. A., ROMERO, S., HOYER, D., RIBA, J. & BARBANOJ, M. 
J. 2010. Drug effect on EEG connectivity assessed by linear and nonlinear 
couplings. Hum Brain Mapp, 31, 487-97. 

ALONSO, J. F., MANANAS, M. A., ROMERO, S., RIBA, J., BARBANOJ, M. J. & HOYER, 
D. 2007. Connectivity analysis of EEG under drug therapy. Conf Proc IEEE 
Eng Med Biol Soc, 2007, 6188-91. 

ARCA DIAZ, G., CESARON, E., ALFONSO, I., DUNOYER, C. & YAYLALI, I. 2006. Near 
infrared spectroscopy in the management of status epilepticus in a young 
infant. Eur J Paediatr Neurol, 10, 19-21. 

ARENTH, P. M., RICKER, J. H. & SCHULTHEIS, M. T. 2007. Applications of functional 
near-infrared spectroscopy (fNIRS) to Neurorehabilitation of cognitive 
disabilities. Clin Neuropsychol, 21, 38-57. 

ASSOCIATION, A. P. 2000. Diagnostic And Statistical Manual Of Mental Disorders 
DSM-IV-TR Fourth Edition (Text Revision) Author: American Psychiatr. 

AYATA, C. 2013. Spreading depression and neurovascular coupling. Stroke, 44, 
S87-S89. 

BAK, P., TANG, C. & WIESENFELD, K. 1987. Self-organized criticality: An 
explanation of the 1/f noise. Phys Rev Lett, 59, 381-384. 

BARRY, R. J., CLARKE, A. R., JOHNSTONE, S. J., MAGEE, C. A. & RUSHBY, J. A. 2007. 
EEG differences between eyes-closed and eyes-open resting conditions. 
Clin Neurophysiol, 118, 2765-73. 

BARRY, R. J., CLARKE, A. R., JOHNSTONE, S. J. & RUSHBY, J. A. 2008. Timing of 
caffeine's impact on autonomic and central nervous system measures: 
clarification of arousal effects. Biological psychology, 77, 304-316. 

BAZANOVA, O. & VERNON, D. 2013. Interpreting EEG alpha activity. Neuroscience 
& Biobehavioral Reviews. 

BEAR, M. F., CONNORS, B. W. & PARADISO, M. A. 2007. Neuroscience, Wolters 
Kluwer Health. 

BECERRA, J., FERNANDEZ, T., HARMONY, T., CABALLERO, M., GARCIA, F., 
FERNANDEZ-BOUZAS, A., SANTIAGO-RODRÍGUEZ, E. & PRADO-ALCALÁ, R. 
2006. Follow-up study of learning-disabled children treated with 
neurofeedback or placebo. Clinical EEG and neuroscience, 37, 198-203. 

BECKMANN, C. F., DELUCA, M., DEVLIN, J. T. & SMITH, S. M. 2005. Investigations 
into resting-state connectivity using independent component analysis. 
Philos Trans R Soc Lond B Biol Sci, 360, 1001-13. 



223 

 

BENNETT, C. M., MILLER, M. & WOLFORD, G. 2009. Neural correlates of 
interspecies perspective taking in the post-mortem Atlantic Salmon: An 
argument for multiple comparisons correction. Neuroimage, 47, S125. 

BERGER, H. 1929. Über das elektrenkephalogramm des menschen. European 
Archives of Psychiatry and Clinical Neuroscience, 87, 527-570. 

BERGER, H. 1969a. On the electroencephalogram of man. Electroencephalogr Clin 
Neurophysiol, Suppl 28:37+. 

BERGER, H. 1969b. On the electroencephalogram of man. Eighth report. 
Electroencephalogr Clin Neurophysiol, Suppl 28:209+. 

BERGER, H. 1969c. On the electroencephalogram of man. Eleventh report. 
Electroencephalogr Clin Neurophysiol, Suppl 28:255+. 

BERGER, H. 1969d. On the electroencephalogram of man. Fifth report. 
Electroencephalogr Clin Neurophysiol, Suppl 28:151+. 

BERGER, H. 1969e. On the electroencephalogram of man. Fourteenth report. 
Electroencephalogr Clin Neurophysiol, Suppl 28:299+. 

BERGER, H. 1969f. On the electroencephalogram of man. Fourth report. 
Electroencephalogr Clin Neurophysiol, Suppl 28:133+. 

BERGER, H. 1969g. On the electroencephalogram of man. Ninth report. 
Electroencephalogr Clin Neurophysiol, Suppl 28:225+. 

BERGER, H. 1969h. On the electroencephalogram of man. Second report. 
Electroencephalogr Clin Neurophysiol, Suppl 28:75+. 

BERGER, H. 1969i. On the electroencephalogram of man. Seventh report. 
Electroencephalogr Clin Neurophysiol, Suppl 28:191+. 

BERGER, H. 1969j. On the electroencephalogram of man. Sixth report. 
Electroencephalogr Clin Neurophysiol, Suppl 28:173+. 

BERGER, H. 1969k. On the electroencephalogram of man. Tenth report. 
Electroencephalogr Clin Neurophysiol, Suppl 28:243+. 

BERGER, H. 1969l. On the electroencephalogram of man. Third report. 
Electroencephalogr Clin Neurophysiol, Suppl 28:95+. 

BERGER, H. 1969m. On the electroencephalogram of man. Thirteenth report. 
Electroencephalogr Clin Neurophysiol, Suppl 28:291+. 

BERGER, H. 1969n. On the electroencephalogram of man. Twelfth report. 
Electroencephalogr Clin Neurophysiol, Suppl 28:267+. 

BERSANI, F. S., MINICHINO, A., ENTICOTT, P. G., MAZZARINI, L., KHAN, N., 
ANTONACCI, G., RACCAH, R. N., SALVIATI, M., DELLE CHIAIE, R., BERSANI, 
G., FITZGERALD, P. B. & BIONDI, M. 2013. Deep transcranial magnetic 
stimulation as a treatment for psychiatric disorders: a comprehensive 
review. Eur Psychiatry, 28, 30-9. 

BIALLAS, M., TRAJKOVIC, I., HAENSSE, D., MARCAR, V. & WOLF, M. 2012. 
Reproducibility and sensitivity of detecting brain activity by simultaneous 
electroencephalography and near-infrared spectroscopy. Experimental 
brain research, 222, 255-264. 

BISWAL, B., YETKIN, F. Z., HAUGHTON, V. M. & HYDE, J. S. 1995. Functional 
connectivity in the motor cortex of resting human brain using echo-planar 
MRI. Magn Reson Med, 34, 537-41. 

BLICHER, J. U., STAGG, C. J., O'SHEA, J., ØSTERGAARD, L., MACINTOSH, B. J., 
JOHANSEN-BERG, H., JEZZARD, P. & DONAHUE, M. J. 2012. Visualization of 
altered neurovascular coupling in chronic stroke patients using 
multimodal functional MRI. Journal of Cerebral Blood Flow & Metabolism, 
32, 2044-2054. 



224 

 

BOAS, D. A., DALE, A. M. & FRANCESCHINI, M. A. 2004. Diffuse optical imaging of 
brain activation: approaches to optimizing image sensitivity, resolution, 
and accuracy. Neuroimage, 23 Suppl 1, S275-88. 

BODIZS, R., SVERTECZKI, M. & MESZAROS, E. 2008. Wakefulness-sleep transition: 
emerging electroencephalographic similarities with the rapid eye 
movement phase. Brain Res Bull, 76, 85-9. 

BODY, L. C. P. & DE ROSA, E. 2007. Cholinergic influences on feature binding. 
Behavioral Neuroscience, 121, 264-276. 

BONNÉRY, C., LECLERC, P.-O., DESJARDINS, M., HOGE, R., BHERER, L., POULIOT, P. 
& LESAGE, F. 2012. Changes in diffusion path length with old age in diffuse 
optical tomography. Journal of biomedical optics, 17, 0560021-0560028. 

BOX, G. E., JENKINS, G. M. & REINSEL, G. C. 2013. Time series analysis: forecasting 
and control, Wiley. com. 

BRABOSZCZ, C. & DELORME, A. 2011. Lost in thoughts: neural markers of low 
alertness during mind wandering. Neuroimage, 54, 3040-7. 

BRIGADOI, S., CECCHERINI, L., CUTINI, S., SCARPA, F., SCATTURIN, P., SELB, J., 
GAGNON, L., BOAS, D. A. & COOPER, R. J. 2014. Motion artifacts in 
functional near-infrared spectroscopy: A comparison of motion correction 
techniques applied to real cognitive data. Neuroimage, 85 Pt 1, 181-91. 

BROYD, S. J., HELPS, S. K. & SONUGA-BARKE, E. J. 2011. Attention-induced 
deactivations in very low frequency EEG oscillations: differential 
localisation according to ADHD symptom status. PLoS One, 6, e17325. 

BRUMMER, V., SCHNEIDER, S., VOGT, T., STRUDER, H., CARNAHAN, H., ASKEW, C. 
D. & CSUHAJ, R. 2011. Coherence between brain cortical function and 
neurocognitive performance during changed gravity conditions. J Vis Exp. 

BUCHHEIM, K., OBRIG, H., MÜLLER, A., HEEKEREN, H., VILLRINGER, A. & 
MEIERKORD, H. 2004. Decrease in haemoglobin oxygenation during 
absence seizures in adult humans. Neuroscience letters, 354, 119-122. 

BUCKHOLTZ, J. W. & MEYER-LINDENBERG, A. 2012. Psychopathology and the 
human connectome: toward a transdiagnostic model of risk for mental 
illness. Neuron, 74, 990-1004. 

BUCKNER, R. L. 2012. The serendipitous discovery of the brain's default network. 
Neuroimage, 62, 1137-45. 

BULLMORE, E., BARNES, A., BASSETT, D. S., FORNITO, A., KITZBICHLER, M., 
MEUNIER, D. & SUCKLING, J. 2009. Generic aspects of complexity in brain 
imaging data and other biological systems. Neuroimage, 47, 1125-34. 

BUTTI, M., PASTORI, A., MERZAGORA, A., ZUCCA, C., BIANCHI, A., RENI, G. & 
CERUTTI, S. 2006. Multimodal analysis of a sustained attention protocol: 
continuous performance test assessed with near infrared spectroscopy 
and EEG. Conf Proc IEEE Eng Med Biol Soc, 1, 1040-3. 

BUXTON, R. B., WONG, E. C. & FRANK, L. R. 1998. Dynamics of blood flow and 
oxygenation changes during brain activation: the balloon model. Magn 
Reson Med, 39, 855-64. 

BUZSÁKI, G., ANASTASSIOU, C. A. & KOCH, C. 2012. The origin of extracellular 
fields and currents—EEG, ECoG, LFP and spikes. Nature Reviews 
Neuroscience, 13, 407-420. 

BUZSÁKI, G. & DRAGUHN, A. 2004. Neuronal oscillations in cortical networks. 
Science, 304, 1926-1929. 

CABALLERO-GAUDES, C., VAN DE VILLE, D., GROUILLER, F., LEMIEUX, L., SEECK, M., 
LAZEYRAS, F. & VULLIEMOZ, S. 2012. Mapping interictal epileptic 
discharges using mutual information between concurrent EEG and fMRI. 
Neuroimage. 



225 

 

CANAZZA, A., MINATI, L., BOFFANO, C., PARATI, E. & BINKS, S. 2014. Experimental 
models of brain ischemia: a review of techniques, magnetic resonance 
imaging, and investigational cell-based therapies. Frontiers in neurology, 
5. 

CANNON, R. L. 2012. Low resolution brain electromagnetic tomography (LORETA): 
Basic concepts and clinical applications, BMED Press. 

CARSKADON, M. A. & DEMENT, W. C. 1994. Normal human sleep: an overview. 
Principles and practice of sleep medicine, 4, 13-23. 

CARTER, A. R., SHULMAN, G. L. & CORBETTA, M. 2012. Why use a connectivity-
based approach to study stroke and recovery of function? Neuroimage, 
62, 2271-2280. 

CATON, R. 1875. Electrical currents of the brain. The Journal of Nervous and 
Mental Disease, 2, 610. 

CAULI, B. & HAMEL, E. 2010. Revisiting the role of neurons in neurovascular 
coupling. Frontiers in neuroenergetics, 2. 

CHEN, C.-C., HSU, C.-Y., CHIU, H.-W., HU, C.-J. & LEE, T.-C. 2013. Frequency power 
and coherence of electroencephalography are correlated with the 
severity of Alzheimer's disease: A multicenter analysis in Taiwan. Journal 
of the Formosan Medical Association. 

CHEN, S. & LI, X. 2012. Functional magnetic resonance imaging for imaging neural 
activity in the human brain: the annual progress. Comput Math Methods 
Med, 2012, 613465. 

CHIALVO, D. R. 2006. The brain near the edge. arXiv preprint q-bio/0610041. 
CLARKE, A. R., BARRY, R. J., MCCARTHY, R., SELIKOWITZ, M. & BROWN, C. R. 2002. 

EEG evidence for a new conceptualisation of attention deficit 
hyperactivity disorder. Clinical Neurophysiology, 113, 1036-1044. 

COBURN, K. L., LAUTERBACH, E. C., BOUTROS, N. N., BLACK, K. J., ARCINIEGAS, D. 
B. & COFFEY, C. E. 2006. The value of quantitative 
electroencephalography in clinical psychiatry: a report by the Committee 
on Research of the American Neuropsychiatric Association. J 
Neuropsychiatry Clin Neurosci, 18, 460-500. 

COLD, C. S. H. P. M. & COLD, C. S. H. H. B. 2007. Observed brain dynamics, Oxford 
University Press. 

COLE, D. M., SMITH, S. M. & BECKMANN, C. F. 2010. Advances and pitfalls in the 
analysis and interpretation of resting-state FMRI data. Front Syst Neurosci, 
4, 8. 

COLZATO, L. S., VAN WOUWE, N. C. & HOMMEL, B. 2007. Feature binding and 
affect: emotional modulation of visuo-motor integration. 
Neuropsychologia, 45, 440-6. 

COOLEY, J. W. & TUKEY, J. W. 1965. An algorithm for the machine calculation of 
complex Fourier series. Mathematics of computation, 19, 297-301. 

COOPER, R. J., SELB, J., GAGNON, L., PHILLIP, D., SCHYTZ, H. W., IVERSEN, H. K., 
ASHINA, M. & BOAS, D. A. 2012. A systematic comparison of motion 
artifact correction techniques for functional near-infrared spectroscopy. 
Front Neurosci, 6, 147. 

COPE, M. & DELPY, D. T. 1988. System for long-term measurement of cerebral 
blood and tissue oxygenation on newborn infants by near infra-red 
transillumination. Med Biol Eng Comput, 26, 289-94. 

COTILLON-WILLIAMS, N. & EDELINE, J. M. 2004. Evoked oscillations in unit 
recordings from the thalamo-cortical auditory system: an aspect of 
temporal processing or the reflection of hyperpolarized brain states? Acta 
Neurobiologiae Experimentalis, 64, 253-270. 



226 

 

CUI, X., BRAY, S. & REISS, A. L. 2010. Functional near infrared spectroscopy (NIRS) 
signal improvement based on negative correlation between oxygenated 
and deoxygenated hemoglobin dynamics. Neuroimage, 49, 3039-46. 

CUSPINEDA, E., MACHADO, C., GALAN, L., AUBERT, E., ALVAREZ, M., LLOPIS, F., 
PORTELA, L., GARCÍA, M., MANERO, J. & AVILA, Y. 2007. QEEG prognostic 
value in acute stroke. Clinical EEG and neuroscience, 38, 155-160. 

DALY, I., NICOLAOU, N., NASUTO, S. J. & WARWICK, K. 2013. Automated Artifact 
Removal From the Electroencephalogram A Comparative Study. Clinical 
EEG and neuroscience, 44, 291-306. 

DAVID, O., COSMELLI, D. & FRISTON, K. J. 2004. Evaluation of different measures 
of functional connectivity using a neural mass model. Neuroimage, 21, 
659-73. 

DAVIDSON, R. J. 1992. Emotion and affective style: Hemispheric substrates. 
Psychological science, 3, 39-43. 

DAVIDSON, R. J. 1998. Anterior electrophysiological asymmetries, emotion, and 
depression: conceptual and methodological conundrums. 
Psychophysiology, 35, 607-14. 

DE GENNARO, L., MARZANO, C., VENIERO, D., MORONI, F., FRATELLO, F., CURCIO, 
G., FERRARA, M., FERLAZZO, F., NOVELLI, L. & CONCETTA PELLICCIARI, M. 
2007. Neurophysiological correlates of sleepiness: a combined TMS and 
EEG study. Neuroimage, 36, 1277-1287. 

DE HAAN, R., LIMBURG, M., SCHULING, J., BROESHART, J., JONKERS, L. & VAN 
ZUYLEN, P. 1993. [Clinimetric evaluation of the Barthel Index, a measure 
of limitations in dailly activities]. Ned Tijdschr Geneeskd, 137, 917-21. 

DE VOLDER, A. G., BOL, A., BLIN, J., ROBERT, A., ARNO, P., GRANDIN, C., MICHEL, 
C. & VERAART, C. 1997. Brain energy metabolism in early blind subjects: 
neural activity in the visual cortex. Brain research, 750, 235-244. 

DEBENER, S., BEAUDUCEL, A., EACUTE, NESSLER, D., BROCKE, B., HEILEMANN, H., 
KAYSER, J. & RGEN, U. 2000. Is resting anterior EEG alpha asymmetry a 
trait marker for depression? Neuropsychobiology, 41, 31-37. 

DELPY, D. T., COPE, M., VAN DER ZEE, P., ARRIDGE, S., WRAY, S. & WYATT, J. 1988. 
Estimation of optical pathlength through tissue from direct time of flight 
measurement. Physics in medicine and biology, 33, 1433. 

DEMYTTENAERE, K., BRUFFAERTS, R., POSADA-VILLA, J., GASQUET, I., KOVESS, V., 
LEPINE, J., ANGERMEYER, M. C., BERNERT, S., DE GIROLAMO, G. & 
MOROSINI, P. 2013. Prevalence, severity, and unmet need for treatment 
of mental disorders in the World Health Organization World Mental 
Health Surveys. 

DIESSEN, E., DIEDEREN, S. J., BRAUN, K. P., JANSEN, F. E. & STAM, C. J. 2013. 
Functional and structural brain networks in epilepsy: What have we 
learned? Epilepsia, 54, 1855-1865. 

DIETSCH, G. 1932. Fourier-analyse von elektrencephalogrammen des menschen. 
Pflüger's Archiv für die gesamte Physiologie des Menschen und der Tiere, 
230, 106-112. 

DOMÍNGUEZ, L. G., VELÁZQUEZ, J. L. P. & GALÁN, R. F. 2013. A model of functional 
brain connectivity and background noise as a biomarker for cognitive 
phenotypes: application to autism. PloS one, 8, e61493. 

DUFFY, F. H., ALBERT, M. S., MCANULTY, G. & GARVEY, A. J. 1984. Age‐related 
differences in brain electrical activity of healthy subjects. Annals of 
neurology, 16, 430-438. 

DUNCAN, A., MEEK, J. H., CLEMENCE, M., ELWELL, C. E., FALLON, P., TYSZCZUK, L., 
COPE, M. & DELPY, D. T. 1996. Measurement of cranial optical path length 



227 

 

as a function of age using phase resolved near infrared spectroscopy. 
Pediatr Res, 39, 889-94. 

EGNER, T., ZECH, T. F. & GRUZELIER, J. H. 2004. The effects of neurofeedback 
training on the spectral topography of the electroencephalogram. Clin 
Neurophysiol, 115, 2452-60. 

EHLIS, A. C., RINGEL, T. M., PLICHTA, M. M., RICHTER, M. M., HERRMANN, M. J. & 
FALLGATTER, A. J. 2009. Cortical correlates of auditory sensory gating: a 
simultaneous near-infrared spectroscopy event-related potential study. 
Neuroscience, 159, 1032-43. 

ELIASSEN, J. C., BOESPFLUG, E. L., LAMY, M., ALLENDORFER, J., CHU, W.-J. & 
SZAFLARSKI, J. P. 2008. Brain-mapping techniques for evaluating 
poststroke recovery and rehabilitation: a review. Topics in stroke 
rehabilitation, 15, 427-450. 

ENGEL, A. K. & FRIES, P. 2010. Beta-band oscillations--signalling the status quo? 
Curr Opin Neurobiol, 20, 156-65. 

ESCUDERO, J., HORNERO, R. & ABASOLO, D. 2009. Interpretation of the auto-
mutual information rate of decrease in the context of biomedical signal 
analysis. Application to electroencephalogram recordings. Physiol Meas, 
30, 187-99. 

ESCUDERO, J., HORNERO, R., ABASOLO, D. & LOPEZ, M. 2008. On the application 
of the auto mutual information rate of decrease to biomedical signals. 
Conf Proc IEEE Eng Med Biol Soc, 2008, 2137-40. 

FAES, L. & NOLLO, G. 2013. Decomposing the transfer entropy to quantify lag-
specific Granger causality in cardiovascular variability. Conf Proc IEEE Eng 
Med Biol Soc, 2013, 5049-52. 

FAZEKAS, F., NIEDERKORN, K., EBNER, F. & DIEZ-TEJEDOR, E. 2009. Relevance of 
neuroimaging in the evaluation of cerebral ischemia. Cerebrovasc Dis, 27 
Suppl 1, 1-8. 

FAZLI, S., MEHNERT, J., STEINBRINK, J., CURIO, G., VILLRINGER, A., MÜLLER, K.-R. & 
BLANKERTZ, B. 2012. Enhanced performance by a hybrid NIRS–EEG brain 
computer interface. Neuroimage, 59, 519-529. 

FERRARI, M., MOTTOLA, L. & QUARESIMA, V. 2004. Principles, techniques, and 
limitations of near infrared spectroscopy. Can J Appl Physiol, 29, 463-87. 

FERRARI, M. & QUARESIMA, V. 2012. A brief review on the history of human 
functional near-infrared spectroscopy (fNIRS) development and fields of 
application. Neuroimage, 63, 921-35. 

FINNIGAN, S. & VAN PUTTEN, M. J. 2013. EEG in ischaemic stroke: quantitative 
EEG can uniquely inform (sub-)acute prognoses and clinical management. 
Clin Neurophysiol, 124, 10-9. 

FINNIGAN, S. P., ROSE, S. E., WALSH, M., GRIFFIN, M., JANKE, A. L., MCMAHON, K. 
L., GILLIES, R., STRUDWICK, M. W., PETTIGREW, C. M., SEMPLE, J., 
BROWN, J., BROWN, P. & CHALK, J. B. 2004. Correlation of quantitative 
EEG in acute ischemic stroke with 30-day NIHSS score: comparison with 
diffusion and perfusion MRI. Stroke, 35, 899-903. 

FOX, M. D. & RAICHLE, M. E. 2007. Spontaneous fluctuations in brain activity 
observed with functional magnetic resonance imaging. Nat Rev Neurosci, 
8, 700-11. 

FOX, M. D., SNYDER, A. Z., VINCENT, J. L., CORBETTA, M., VAN ESSEN, D. C. & 
RAICHLE, M. E. 2005. The human brain is intrinsically organized into 
dynamic, anticorrelated functional networks. Proc Natl Acad Sci U S A, 
102, 9673-8. 



228 

 

FRANCESCHINI, M. A. & BOAS, D. A. 2004. Noninvasive measurement of neuronal 
activity with near-infrared optical imaging. Neuroimage, 21, 372-386. 

FRASER, A. M. & SWINNEY, H. L. 1986. Independent coordinates for strange 
attractors from mutual information. Phys Rev A, 33, 1134-1140. 

FRIES, P. 2009. Neuronal gamma-band synchronization as a fundamental process 
in cortical computation. Annu Rev Neurosci, 32, 209-24. 

FRISTON, K. 2010. The free-energy principle: a unified brain theory? Nature 
Reviews Neuroscience, 11, 127-138. 

FUHRMANN ALPERT, G., HEIN, G., TSAI, N., NAUMER, M. J. & KNIGHT, R. T. 2008. 
Temporal characteristics of audiovisual information processing. J 
Neurosci, 28, 5344-9. 

GAGNON, L., COOPER, R. J., YÜCEL, M. A., PERDUE, K. L., GREVE, D. N. & BOAS, D. 
A. 2012. Short separation channel location impacts the performance of 
short channel regression in NIRS. Neuroimage, 59, 2518-2528. 

GAO, J. & HU, J. 2013. Fast monitoring of epileptic seizures using recurrence time 
statistics of electroencephalography. Front Comput Neurosci, 7, 122. 

GAZZANIGA, M. S., IVRY, R. B. & MANGUN, G. R. 2002. Cognitive Neuroscience. 
GHOSH, A., ELWELL, C. & SMITH, M. 2012. Review article: cerebral near-infrared 

spectroscopy in adults: a work in progress. Anesth Analg, 115, 1373-83. 
GIROUARD, H. & IADECOLA, C. 2006. Neurovascular coupling in the normal brain 

and in hypertension, stroke, and Alzheimer disease. Journal of Applied 
Physiology, 100, 328-335. 

GÓMEZ-VERDEJO, V., MARTÍNEZ-RAMÓN, M., FLORENSA-VILA, J. & OLIVIERO, A. 
2012. Analysis of fmri time series with mutual information. Medical Image 
Analysis, 16, 451-458. 

GRANDY, T. H., WERKLE-BERGNER, M., CHICHERIO, C., LOVDEN, M., SCHMIEDEK, 
F. & LINDENBERGER, U. 2013a. Individual alpha peak frequency is related 
to latent factors of general cognitive abilities. Neuroimage, 79, 10-8. 

GRANDY, T. H., WERKLE-BERGNER, M., CHICHERIO, C., SCHMIEDEK, F., LOVDEN, 
M. & LINDENBERGER, U. 2013b. Peak individual alpha frequency qualifies 
as a stable neurophysiological trait marker in healthy younger and older 
adults. Psychophysiology, 50, 570-82. 

GRATTON, G. & FABIANI, M. 2010. Fast optical imaging of human brain function. 
Frontiers in human neuroscience, 4. 

GREICIUS, M. D., KRASNOW, B., REISS, A. L. & MENON, V. 2003. Functional 
connectivity in the resting brain: a network analysis of the default mode 
hypothesis. Proc Natl Acad Sci U S A, 100, 253-8. 

GUDMUNDSSON, S., RUNARSSON, T. P., SIGURDSSON, S., EIRIKSDOTTIR, G. & 
JOHNSEN, K. 2007. Reliability of quantitative EEG features. Clinical 
Neurophysiology, 118, 2162-2171. 

HAIMOVICI, A., TAGLIAZUCCHI, E., BALENZUELA, P. & CHIALVO, D. R. 2013. Brain 
organization into resting state networks emerges at criticality on a model 
of the human connectome. Physical review letters, 110, 178101. 

HANDWERKER, D. A., OLLINGER, J. M. & D'ESPOSITO, M. 2004. Variation of BOLD 
hemodynamic responses across subjects and brain regions and their 
effects on statistical analyses. Neuroimage, 21, 1639-51. 

HANSLMAYR, S., SAUSENG, P., DOPPELMAYR, M., SCHABUS, M. & KLIMESCH, W. 
2005. Increasing individual upper alpha power by neurofeedback 
improves cognitive performance in human subjects. Applied 
psychophysiology and biofeedback, 30, 1-10. 



229 

 

HARI, R. & SALMELIN, R. 2012. Magnetoencephalography: From SQUIDs to 
neuroscience. Neuroimage 20th anniversary special edition. Neuroimage, 
61, 386-96. 

HARMONY, T., MAROSI, E., BECKER, J., RODRÍGUEZ, M., REYES, A., FERNÁNDEZ, T., 
SILVA, J. & BERNAL, J. 1995. Longitudinal quantitative EEG study of 
children with different performances on a reading-writing test. 
Electroencephalography and clinical neurophysiology, 95, 426-433. 

HARRISON, L. M., DUGGINS, A. & FRISTON, K. J. 2006. Encoding uncertainty in the 
hippocampus. Neural Netw, 19, 535-46. 

HAWELLEK, D. J., SCHEPERS, I. M., ROEDER, B., ENGEL, A. K., SIEGEL, M. & HIPP, J. 
F. 2013. Altered intrinsic neuronal interactions in the visual cortex of the 
blind. The Journal of Neuroscience, 33, 17072-17080. 

HERFF, C., PUTZE, F., HEGER, D., GUAN, C. & SCHULTZ, T. 2012. Speaking mode 
recognition from functional Near Infrared Spectroscopy. Conf Proc IEEE 
Eng Med Biol Soc, 2012, 1715-8. 

HINRICHS, H., HEINZE, H. J. & SCHOENFELD, M. A. 2006. Causal visual interactions 
as revealed by an information theoretic measure and fMRI. Neuroimage, 
31, 1051-60. 

HORNERO, R., ABASOLO, D., ESCUDERO, J. & GOMEZ, C. 2009. Nonlinear analysis 
of electroencephalogram and magnetoencephalogram recordings in 
patients with Alzheimer's disease. Philos Trans A Math Phys Eng Sci, 367, 
317-36. 

HOWARTH, C. 2014. The contribution of astrocytes to the regulation of cerebral 
blood flow. Frontiers in neuroscience, 8. 

HOWELL, D. C. 2011. Statistical methods for psychology, Cengage Learning. 
HOWLAND, R. H., SHUTT, L. S., BERMAN, S. R., SPOTTS, C. R. & DENKO, T. 2011. 

The emerging use of technology for the treatment of depression and 
other neuropsychiatric disorders. Ann Clin Psychiatry, 23, 48-62. 

HUPPERT, T. J., DIAMOND, S. G., FRANCESCHINI, M. A. & BOAS, D. A. 2009. 
HomER: a review of time-series analysis methods for near-infrared 
spectroscopy of the brain. Appl Opt, 48, D280-98. 

IBER, C. 2007. The AASM manual for the scoring of sleep and associated events: 
rules, terminology and technical specifications, American Academy of 
Sleep Medicine. 

IRANI, F., PLATEK, S. M., BUNCE, S., RUOCCO, A. C. & CHUTE, D. 2007. Functional 
near infrared spectroscopy (fNIRS): an emerging neuroimaging technology 
with important applications for the study of brain disorders. Clin 
Neuropsychol, 21, 9-37. 

IRIARTE, J., URRESTARAZU, E., VALENCIA, M., ALEGRE, M., MALANDA, A., VITERI, 
C. & ARTIEDA, J. 2003. Independent component analysis as a tool to 
eliminate artifacts in EEG: a quantitative study. Journal of clinical 
neurophysiology, 20, 249-257. 

ISHII, Y., OGATA, H., TAKANO, H., OHNISHI, H., MUKAI, T. & YAGI, T. 2008. Study 
on mental stress using near-infrared spectroscopy, 
electroencephalography, and peripheral arterial tonometry. Conf Proc 
IEEE Eng Med Biol Soc, 2008, 4992-5. 

IVERSEN, J. R., REPP, B. H. & PATEL, A. D. 2009. Top-down control of rhythm 
perception modulates early auditory responses. Ann N Y Acad Sci, 1169, 
58-73. 

IZZETOGLU, M., CHITRAPU, P., BUNCE, S. & ONARAL, B. 2010. Motion artifact 
cancellation in NIR spectroscopy using discrete Kalman filtering. Biomed 
Eng Online, 9, 16. 



230 

 

IZZETOGLU, M., DEVARAJ, A., BUNCE, S. & ONARAL, B. 2005. Motion artifact 
cancellation in NIR spectroscopy using Wiener filtering. IEEE Trans Biomed 
Eng, 52, 934-8. 

JASPER, H. H. 1958. The ten twenty electrode system of the international 
federation. Electroencephalography and clinical neurophysiology, 10, 371-
375. 

JEONG, J., GORE, J. C. & PETERSON, B. S. 2001. Mutual information analysis of the 
EEG in patients with Alzheimer's disease. Clin Neurophysiol, 112, 827-35. 

JIN, S. H., KWON, Y. J., JEONG, J. S., KWON, S. W. & SHIN, D. H. 2006. Increased 
information transmission during scientific hypothesis generation: mutual 
information analysis of multichannel EEG. Int J Psychophysiol, 62, 337-44. 

JIN, S. H., LIN, P. & HALLETT, M. 2010. Linear and nonlinear information flow 
based on time-delayed mutual information method and its application to 
corticomuscular interaction. Clin Neurophysiol, 121, 392-401. 

JOBSIS, F. F. 1977. Noninvasive, infrared monitoring of cerebral and myocardial 
oxygen sufficiency and circulatory parameters. Science, 198, 1264-7. 

JORDAN, K. G. 2004. Emergency EEG and continuous EEG monitoring in acute 
ischemic stroke. J Clin Neurophysiol, 21, 341-52. 

KAISER, D. A. 2005. Basic principles of quantitative EEG. Journal of Adult 
Development, 12, 99-104. 

KARBASFOROUSHAN, H. & WOODWARD, N. 2012. Resting-state networks in 
schizophrenia. Current topics in medicinal chemistry, 12, 2404-2414. 

KATO, H., IZUMIYAMA, M., KOIZUMI, H., TAKAHASHI, A. & ITOYAMA, Y. 2002. 
Near-infrared spectroscopic topography as a tool to monitor motor 
reorganization after hemiparetic stroke: a comparison with functional 
MRI. Stroke, 33, 2032-6. 

KHAMSI, R. 2012. Diagnosis by default. Nat Med, 18, 338-40. 
KHAN, B., WILDEY, C., FRANCIS, R., TIAN, F., DELGADO, M. R., LIU, H., 

MACFARLANE, D. & ALEXANDRAKIS, G. 2012. Improving optical contact 
for functional nearinfrared brain spectroscopy and imaging with brush 
optodes. Biomed Opt Express, 3, 878-98. 

KHAN, M. J., HONG, M. J. & HONG, K.-S. 2014. Decoding of four movement 
directions using hybrid NIRS-EEG brain-computer interface. Frontiers in 
human neuroscience, 8. 

KIM, B., BOES, J. L., BLAND, P. H., CHENEVERT, T. L. & MEYER, C. R. 1999. Motion 
correction in fMRI via registration of individual slices into an anatomical 
volume. Magn Reson Med, 41, 964-72. 

KIRILINA, E., JELZOW, A., HEINE, A., NIESSING, M., WABNITZ, H., BRÜHL, R., 
ITTERMANN, B., JACOBS, A. M. & TACHTSIDIS, I. 2012. The physiological 
origin of task-evoked systemic artefacts in functional near infrared 
spectroscopy. Neuroimage, 61, 70-81. 

KLIMESCH, W. 1999. EEG alpha and theta oscillations reflect cognitive and 
memory performance: a review and analysis. Brain research reviews, 29, 
169-195. 

KLIMESCH, W., DOPPELMAYR, M., SCHIMKE, H. & PACHINGER, T. 1996. Alpha 
frequency, reaction time, and the speed of processing information. 
Journal of clinical neurophysiology, 13, 511-518. 

KLIMESCH, W., SAUSENG, P. & GERLOFF, C. 2003. Enhancing cognitive 
performance with repetitive transcranial magnetic stimulation at human 
individual alpha frequency. European Journal of Neuroscience, 17, 1129-
1133. 



231 

 

KLIMESCH, W., SAUSENG, P. & HANSLMAYR, S. 2007. EEG alpha oscillations: the 
inhibition-timing hypothesis. Brain Res Rev, 53, 63-88. 

KLIMESCH, W., SCHIMKE, H. & PFURTSCHELLER, G. 1993. Alpha frequency, 
cognitive load and memory performance. Brain topography, 5, 241-251. 

KLOPPEL, S., ABDULKADIR, A., JACK, C. R., JR., KOUTSOULERIS, N., MOURAO-
MIRANDA, J. & VEMURI, P. 2012. Diagnostic neuroimaging across 
diseases. Neuroimage, 61, 457-63. 

KOBAYASHI, K., YOSHINAGA, H., OHTSUKA, Y. & GOTMAN, J. 2005. Dipole 
modeling of epileptic spikes can be accurate or misleading. Epilepsia, 46, 
397-408. 

KOCH, S. P., KOENDGEN, S., BOURAYOU, R., STEINBRINK, J. & OBRIG, H. 2008. 
Individual alpha-frequency correlates with amplitude of visual evoked 
potential and hemodynamic response. Neuroimage, 41, 233-42. 

KOCH, S. P., STEINBRINK, J., VILLRINGER, A. & OBRIG, H. 2006. Synchronization 
between background activity and visually evoked potential is not mirrored 
by focal hyperoxygenation: implications for the interpretation of vascular 
brain imaging. J Neurosci, 26, 4940-8. 

KOCH, S. P., WERNER, P., STEINBRINK, J., FRIES, P. & OBRIG, H. 2009. Stimulus-
induced and state-dependent sustained gamma activity is tightly coupled 
to the hemodynamic response in humans. J Neurosci, 29, 13962-70. 

KONDACS, A. & SZABO, M. 1999. Long-term intra-individual variability of the 
background EEG in normals. Clin Neurophysiol, 110, 1708-16. 

KOO, B., LEE, H.-G., NAM, Y., KANG, H., KOH, C. S., SHIN, H.-C. & CHOI, S. 2014. A 
hybrid NIRS-EEG system for self-paced brain computer interface with 
online motor imagery. Journal of neuroscience methods. 

KOPRUNER, V., PFURTSCHELLER, G. & AUER, L. M. 1984. Quantitative EEG in 
normals and in patients with cerebral ischemia. Prog Brain Res, 62, 29-50. 

KRAUSS, G. L., FISHER, R. S. & KAPLAN, P. W. 2006. The Johns Hopkins atlas of 
digital EEG: an interactive training guide, Johns Hopkins University Press. 

KRIEGSEIS, A., HENNIGHAUSEN, E., RÖSLER, F. & RÖDER, B. 2006. Reduced EEG 
alpha activity over parieto-occipital brain areas in congenitally blind 
adults. Clinical neurophysiology, 117, 1560-1573. 

KUGIUMTZIS, D. 2013. Direct-coupling information measure from nonuniform 
embedding. Phys Rev E Stat Nonlin Soft Matter Phys, 87, 062918. 

LANSBERGEN, M. M., ARNS, M., VAN DONGEN-BOOMSMA, M., SPRONK, D. & 
BUITELAAR, J. K. 2011. The increase in theta/beta ratio on resting-state 
EEG in boys with attention-deficit/hyperactivity disorder is mediated by 
slow alpha peak frequency. Prog Neuropsychopharmacol Biol Psychiatry, 
35, 47-52. 

LEE, T. W., YU, Y. W., HONG, C. J., TSAI, S. J., WU, H. C. & CHEN, T. J. 2011. The 
effects of catechol-O-methyl-transferase polymorphism Val158Met on 
functional connectivity in healthy young females: a resting EEG study. 
Brain Res, 1377, 21-31. 

LEISTEDT, S., DUMONT, M., LANQUART, J. P., JURYSTA, F. & LINKOWSKI, P. 2007. 
Characterization of the sleep EEG in acutely depressed men using 
detrended fluctuation analysis. Clin Neurophysiol, 118, 940-50. 

LENNE, B., BLANC, J. L., NANDRINO, J. L., GALLOIS, P., HAUTECAEUR, P. & PEZARD, 
L. 2013. Decrease of mutual information in brain electrical activity of 
patients with relapsing-remitting multiple sclerosis. Behav Neurol, 27, 
201-12. 

LEON-CARRION, J., MARTIN-RODRIGUEZ, J. F., DAMAS-LOPEZ, J., BARROSO Y 
MARTIN, J. M. & DOMINGUEZ-MORALES, M. R. 2009. Delta–alpha ratio 



232 

 

correlates with level of recovery after neurorehabilitation in patients with 
acquired brain injury. Clinical Neurophysiology, 120, 1039-1045. 

LI, Z., WANG, Y., LI, Y., WANG, Y., LI, J. & ZHANG, L. 2010. Wavelet analysis of 
cerebral oxygenation signal measured by near infrared spectroscopy in 
subjects with cerebral infarction. Microvascular research, 80, 142-147. 

LINDSLEY, D. B. 1939. A longitudinal study of the occipital alpha rhythm in normal 
children: Frequency and amplitude standards. The Pedagogical Seminary 
and Journal of Genetic Psychology, 55, 197-213. 

LINKENKAER-HANSEN, K., MONTO, S., RYTSÄLÄ, H., SUOMINEN, K., ISOMETSÄ, E. 
& KÄHKÖNEN, S. 2005. Breakdown of long-range temporal correlations in 
theta oscillations in patients with major depressive disorder. The Journal 
of Neuroscience, 25, 10131-10137. 

LINKENKAER-HANSEN, K., NIKOULINE, V. V., PALVA, J. M. & ILMONIEMI, R. J. 2001. 
Long-range temporal correlations and scaling behavior in human brain 
oscillations. J Neurosci, 21, 1370-7. 

LIU, T. T., BEHZADI, Y., RESTOM, K., ULUDAG, K., LU, K., BURACAS, G. T., 
DUBOWITZ, D. J. & BUXTON, R. B. 2004. Caffeine alters the temporal 
dynamics of the visual BOLD response. Neuroimage, 23, 1402-1413. 

LU, C. F., TENG, S., HUNG, C. I., TSENG, P. J., LIN, L. T., LEE, P. L. & WU, Y. T. 2011. 
Reorganization of functional connectivity during the motor task using EEG 
time-frequency cross mutual information analysis. Clin Neurophysiol, 122, 
1569-79. 

LU, C. M., ZHANG, Y. J., BISWAL, B. B., ZANG, Y. F., PENG, D. L. & ZHU, C. Z. 2010. 
Use of fNIRS to assess resting state functional connectivity. J Neurosci 
Methods, 186, 242-9. 

LUO, A. & SAJDA, P. 2009. Comparing neural correlates of visual target detection 
in serial visual presentations having different temporal correlations. Front 
Hum Neurosci, 3, 5. 

MACHADO, A., LINA, J. M., TREMBLAY, J., LASSONDE, M., NGUYEN, D. K., LESAGE, 
F. & GROVA, C. 2011. Detection of hemodynamic responses to epileptic 
activity using simultaneous Electro-EncephaloGraphy (EEG)/Near Infra 
Red Spectroscopy (NIRS) acquisitions. Neuroimage, 56, 114-25. 

MACHLEIDT, W. & GUTJAHR, L. 1984. Ultradian periodicity, diurnal and circannual 
rhythms in the electroencephalogram]. Fortschritte der Neurologie-
Psychiatrie, 52, 135. 

MALLIANI, A., PAGANI, M., LOMBARDI, F. & CERUTTI, S. 1991. Cardiovascular 
neural regulation explored in the frequency domain. Circulation, 84, 482-
492. 

MANDELL, D. M., HAN, J. S., POUBLANC, J., CRAWLEY, A. P., STAINSBY, J. A., 
FISHER, J. A. & MIKULIS, D. J. 2008. Mapping cerebrovascular reactivity 
using blood oxygen level-dependent MRI in patients with arterial steno-
occlusive disease comparison with arterial spin labeling MRI. Stroke, 39, 
2021-2028. 

MANTINI, D., PERRUCCI, M. G., DEL GRATTA, C., ROMANI, G. L. & CORBETTA, M. 
2007. Electrophysiological signatures of resting state networks in the 
human brain. Proceedings of the National Academy of Sciences, 104, 
13170-13175. 

MCCORMICK, D. A., WANG, Z. & HUGUENARD, J. 1993. Neurotransmitter control 
of neocortical neuronal activity and excitability. Cerebral Cortex, 3, 387-
398. 

MCKENNA, T. M., MCMULLEN, T. A. & SHLESINGER, M. F. 1994. The brain as a 
dynamic physical system. Neuroscience, 60, 587-605. 



233 

 

MEDVEDEV, A. V., KAINERSTORFER, J., BORISOV, S. V., BARBOUR, R. L. & 
VANMETER, J. 2008. Event-related fast optical signal in a rapid object 
recognition task: improving detection by the independent component 
analysis. Brain research, 1236, 145-158. 

MEINZER, M., ELBERT, T., WIENBRUCH, C., DJUNDJA, D., BARTHEL, G. & 
ROCKSTROH, B. 2004. Intensive language training enhances brain 
plasticity in chronic aphasia. BMC Biol, 2, 20. 

MERKER, B. 2013. Cortical gamma oscillations: the functional key is activation, not 
cognition. Neurosci Biobehav Rev, 37, 401-17. 

MESQUITA, R. C., FRANCESCHINI, M. A. & BOAS, D. A. 2010. Resting state 
functional connectivity of the whole head with near-infrared 
spectroscopy. Biomed Opt Express, 1, 324-336. 

MICHEL, C. M. & MURRAY, M. M. 2012. Towards the utilization of EEG as a brain 
imaging tool. Neuroimage, 61, 371-385. 

MIGUEL-HIDALGO, J. J. 2013. Brain structural and functional changes in 
adolescents with psychiatric disorders. International journal of adolescent 
medicine and health, 25, 245-256. 

MIN, B. C., JIN, S. H., KANG, I. H., LEE, D. H., KANG, J. K., LEE, S. T. & SAKAMOTO, K. 
2003. Analysis of mutual information content for EEG responses to odor 
stimulation for subjects classified by occupation. Chem Senses, 28, 741-9. 

MIYAI, I., YAGURA, H., HATAKENAKA, M., ODA, I., KONISHI, I. & KUBOTA, K. 2003. 
Longitudinal optical imaging study for locomotor recovery after stroke. 
Stroke, 34, 2866-70. 

MONASTRA, V. J., LUBAR, J. F., LINDEN, M., VANDEUSEN, P., GREEN, G., WING, W., 
PHILLIPS, A. & FENGER, T. N. 1999. Assessing attention deficit 
hyperactivity disorder via quantitative electroencephalography: an initial 
validation study. Neuropsychology, 13, 424-33. 

MONTEZ, T., POIL, S.-S., JONES, B. F., MANSHANDEN, I., VERBUNT, J. P., VAN DIJK, 
B. W., BRUSSAARD, A. B., VAN OOYEN, A., STAM, C. J. & SCHELTENS, P. 
2009. Altered temporal correlations in parietal alpha and prefrontal theta 
oscillations in early-stage Alzheimer disease. Proceedings of the National 
Academy of Sciences, 106, 1614-1619. 

MOORE, D. S., MCCABE, G. P. & CRAIG, B. A. 2012. Introduction to the Practice of 
Statistics, WH Freeman. 

MOOSMANN, M., RITTER, P., KRASTEL, I., BRINK, A., THEES, S., BLANKENBURG, F., 
TASKIN, B., OBRIG, H. & VILLRINGER, A. 2003. Correlates of alpha rhythm 
in functional magnetic resonance imaging and near infrared spectroscopy. 
Neuroimage, 20, 145-158. 

MORETTI, D. V., BABILONI, C., BINETTI, G., CASSETTA, E., DAL FORNO, G., 
FERRERIC, F., FERRI, R., LANUZZA, B., MINIUSSI, C. & NOBILI, F. 2004. 
Individual analysis of EEG frequency and band power in mild Alzheimer's 
disease. Clinical Neurophysiology, 115, 299-308. 

MORITZ, S., KASPRZAK, P., ARLT, M., TAEGER, K. & METZ, C. 2007. Accuracy of 
cerebral monitoring in detecting cerebral ischemia during carotid 
endarterectomy: a comparison of transcranial Doppler sonography, near-
infrared spectroscopy, stump pressure, and somatosensory evoked 
potentials. Anesthesiology, 107, 563-9. 

MOTOMURA, E., INUI, K., NAKASE, S., HAMANAKA, K. & OKAZAKI, Y. 2002. Late-
onset depression: can EEG abnormalities help in clinical sub-typing? 
Journal of affective disorders, 68, 73-79. 

MURATA, Y., SAKATANI, K., HOSHINO, T., FUJIWARA, N., KANO, T., NAKAMURA, S. 
& KATAYAMA, Y. 2006. Effects of cerebral ischemia on evoked cerebral 



234 

 

blood oxygenation responses and BOLD contrast functional MRI in stroke 
patients. Stroke, 37, 2514-20. 

MUSTANOJA, S., MERETOJA, A., PUTAALA, J., VIITANEN, V., CURTZE, S., ATULA, S., 
ARTTO, V., HÄPPÖLÄ, O. & KASTE, M. 2011. Outcome by stroke etiology in 
patients receiving thrombolytic treatment descriptive subtype analysis. 
Stroke, 42, 102-106. 

NA, S. H., JIN, S. H. & KIM, S. Y. 2006. The effects of total sleep deprivation on 
brain functional organization: mutual information analysis of waking 
human EEG. Int J Psychophysiol, 62, 238-42. 

NA, S. H., JIN, S. H., KIM, S. Y. & HAM, B. J. 2002. EEG in schizophrenic patients: 
mutual information analysis. Clin Neurophysiol, 113, 1954-60. 

NAKAMURA, S., SAKATANI, K., KANO, T., HOSHINO, T., FUJIWARA, N., MURATA, Y. 
& KATAYAMA, Y. 2010. Effects of revascularisation on evoked cerebral 
blood oxygenation responses in stroke patients. Adv Exp Med Biol, 662, 
525-30. 

NIKULIN, V. V., JONSSON, E. G. & BRISMAR, T. 2012. Attenuation of long-range 
temporal correlations in the amplitude dynamics of alpha and beta 
neuronal oscillations in patients with schizophrenia. Neuroimage, 61, 162-
9. 

NOLTE, C., KOHL, M., SCHOLZ, U., WEIH, M. & VILLRINGER, A. 1998. 
Characterization of the pulse signal over the human head by near infrared 
spectroscopy. Adv Exp Med Biol, 454, 115-23. 

OBRIG, H. 2013. NIRS in clinical neurology - a 'promising' tool? Neuroimage. 
OBRIG, H. & STEINBRINK, J. 2011. Non-invasive optical imaging of stroke. Philos 

Trans A Math Phys Eng Sci, 369, 4470-94. 
OBRIG, H. & VILLRINGER, A. 2003. Beyond the visible--imaging the human brain 

with light. J Cereb Blood Flow Metab, 23, 1-18. 
OKAZAKI, M., KANEKO, Y., YUMOTO, M. & ARIMA, K. 2008. Perceptual change in 

response to a bistable picture increases neuromagnetic beta-band 
activities. Neurosci Res, 61, 319-28. 

ORGANIZATION, W. H. 2000. International Consortium in Psychiatric 
Epidemiology. Cross-national comparisons of the prevalences and 
correlates of mental disorders. Bull World Health Organ, 78, 413-426. 

OSTWALD, D., PORCARO, C. & BAGSHAW, A. P. 2010. An information theoretic 
approach to EEG-fMRI integration of visually evoked responses. 
Neuroimage, 49, 498-516. 

OSTWALD, D., PORCARO, C. & BAGSHAW, A. P. 2011. Voxel-wise information 
theoretic EEG-fMRI feature integration. Neuroimage, 55, 1270-86. 

OSTWALD, D., PORCARO, C., MAYHEW, S. D. & BAGSHAW, A. P. 2012. EEG-fMRI 
Based Information Theoretic Characterization of the Human Perceptual 
Decision System. PLoS One, 7, e33896. 

PALANCA, B. J. A. & DEANGELIS, G. C. 2005. Does neuronal synchrony underlie 
visual feature grouping? Neuron, 46, 333-346. 

PALMER, S. J., LEE, P. W., WANG, Z. J., AU, W. L. & MCKEOWN, M. J. 2010. theta, 
beta But not alpha-band EEG connectivity has implications for dual task 
performance in Parkinson's disease. Parkinsonism Relat Disord, 16, 393-7. 

PARZEN, E. 1962. On estimation of a probability density function and mode. The 
annals of mathematical statistics, 33, 1065-1076. 

PASCUAL-MARQUI, R. D., ESSLEN, M., KOCHI, K. & LEHMANN, D. 2002. Functional 
imaging with low-resolution brain electromagnetic tomography (LORETA): 
a review. Methods Find Exp Clin Pharmacol, 24 Suppl C, 91-5. 



235 

 

PASCUAL-MARQUI, R. D., MICHEL, C. M. & LEHMANN, D. 1994. Low resolution 
electromagnetic tomography: a new method for localizing electrical 
activity in the brain. Int J Psychophysiol, 18, 49-65. 

PFURTSCHELLER, G. 1992. Event-related synchronization (ERS): an 
electrophysiological correlate of cortical areas at rest. Electroencephalogr 
Clin Neurophysiol, 83, 62-9. 

PFURTSCHELLER, G., ALLISON, B. Z., BRUNNER, C., BAUERNFEIND, G., SOLIS-
ESCALANTE, T., SCHERER, R., ZANDER, T. O., MUELLER-PUTZ, G., NEUPER, 
C. & BIRBAUMER, N. 2010. The hybrid BCI. Frontiers in neuroscience, 4. 

PFURTSCHELLER, G., DALY, I., BAUERNFEIND, G. & MULLER-PUTZ, G. R. 2012. 
Coupling between intrinsic prefrontal HbO2 and central EEG beta power 
oscillations in the resting brain. PLoS One, 7, e43640. 

PFURTSCHELLER, G., NEUPER, C. & MOHL, W. 1994. Event-related 
desynchronization (ERD) during visual processing. Int J Psychophysiol, 16, 
147-53. 

PHAN, T. G. & BULLEN, A. 2010. Practical intravital two-photon microscopy for 
immunological research: faster, brighter, deeper. Immunol Cell Biol, 88, 
438-44. 

PIEVANI, M., DE HAAN, W., WU, T., SEELEY, W. W. & FRISONI, G. B. 2011. 
Functional network disruption in the degenerative dementias. Lancet 
Neurol, 10, 829-43. 

PINEL, J. 2003. Biopsychology. 5th. Allyn and Bacon Boston, MA:. 
POPA-WAGNER, A., CARMICHAEL, S. T., KOKAIA, Z., KESSLER, C. & WALKER, L. C. 

2007. The response of the aged brain to stroke: too much, too soon? Curr 
Neurovasc Res, 4, 216-27. 

PORTNOW, L. H., VAILLANCOURT, D. E. & OKUN, M. S. 2013. The history of 
cerebral PET scanning: from physiology to cutting-edge technology. 
Neurology, 80, 952-6. 

PUTNAM, K. M. & MCSWEENEY, L. B. 2008. Depressive symptoms and baseline 
prefrontal EEG alpha activity: a study utilizing Ecological Momentary 
Assessment. Biol Psychol, 77, 237-40. 

R CHIALVO, D. 2004. Critical brain networks. Physica A: Statistical Mechanics and 
its Applications, 340, 756-765. 

RAICHLE, M. E. 2010. The brain's dark energy. Sci Am, 302, 44-9. 
RAICHLE, M. E., MACLEOD, A. M., SNYDER, A. Z., POWERS, W. J., GUSNARD, D. A. 

& SHULMAN, G. L. 2001. A default mode of brain function. Proc Natl Acad 
Sci U S A, 98, 676-82. 

RAKIC, P. 2009. Evolution of the neocortex: a perspective from developmental 
biology. Nature Reviews Neuroscience, 10, 724-735. 

RAMANAND, P., BRUCE, M. C. & BRUCE, E. N. 2010. Mutual information analysis 
of EEG signals indicates age-related changes in cortical interdependence 
during sleep in middle-aged versus elderly women. J Clin Neurophysiol, 
27, 274-84. 

RAUSCHENBERGER, R. & YANTIS, S. 2006. Perceptual encoding efficiency in visual 
search. Journal of Experimental Psychology-General, 135, 116-131. 

RAZ, N. & RODRIGUE, K. M. 2006. Differential aging of the brain: patterns, 
cognitive correlates and modifiers. Neurosci Biobehav Rev, 30, 730-48. 

RICHARD CLARK, C., VELTMEYER, M. D., HAMILTON, R. J., SIMMS, E., PAUL, R., 
HERMENS, D. & GORDON, E. 2004. Spontaneous alpha peak frequency 
predicts working memory performance across the age span. International 
Journal of Psychophysiology, 53, 1-9. 



236 

 

ROCHE-LABARBE, N., WALLOIS, F., PONCHEL, E., KONGOLO, G. & GREBE, R. 2007. 
Coupled oxygenation oscillation measured by NIRS and intermittent 
cerebral activation on EEG in premature infants. Neuroimage, 36, 718-27. 

ROCHE-LABARBE, N., ZAAIMI, B., BERQUIN, P., NEHLIG, A., GREBE, R. & WALLOIS, 
F. 2008. NIRS-measured oxy- and deoxyhemoglobin changes associated 
with EEG spike-and-wave discharges in children. Epilepsia, 49, 1871-80. 

ROCHE-LABARBE, N., ZAAIMI, B., MAHMOUDZADEH, M., OSHARINA, V., WALLOIS, 
A., NEHLIG, A., GREBE, R. & WALLOIS, F. 2010. NIRS-measured oxy- and 
deoxyhemoglobin changes associated with EEG spike-and-wave 
discharges in a genetic model of absence epilepsy: the GAERS. Epilepsia, 
51, 1374-84. 

ROLLS, E. T. & DECO, G. 2006. Attention in natural scenes: Neurophysiological and 
computational bases. Neural Networks, 19, 1383-1394. 

SAKATANI, K., MURATA, Y., KATAYAMA, Y., FUJIWARA, N., HOSHINO, T., 
NAKAMURA, S. & KANO, T. 2007. Comparison of blood-oxygen-level–
dependent functional magnetic resonance imaging and near-infrared 
spectroscopy recording during functional brain activation in patients with 
stroke and brain tumors. Journal of biomedical optics, 12, 062110-062110-
8. 

SAKKALIS, V., GIANNAKAKIS, G., FARMAKI, C., MOUSAS, A., PEDIADITIS, M., 
VORGIA, P. & TSIKNAKIS, M. 2013. Absence seizure epilepsy detection 
using linear and nonlinear eeg analysis methods. Conf Proc IEEE Eng Med 
Biol Soc, 2013, 6333-6. 

SALETU, B., ANDERER, P. & SALETU-ZYHLARZ, G. M. 2010. EEG topography and 
tomography (LORETA) in diagnosis and pharmacotherapy of depression. 
Clin EEG Neurosci, 41, 203-10. 

SALINSKY, M. C., OKEN, B. S. & MOREHEAD, L. 1991. Test-retest reliability in EEG 
frequency analysis. Electroencephalogr Clin Neurophysiol, 79, 382-92. 

SALVADOR, R., MARTINEZ, A., POMAROL-CLOTET, E., SARRO, S., SUCKLING, J. & 
BULLMORE, E. 2007. Frequency based mutual information measures 
between clusters of brain regions in functional magnetic resonance 
imaging. Neuroimage, 35, 83-8. 

SASAI, S., HOMAE, F., WATANABE, H., SASAKI, A. T., TANABE, H. C., SADATO, N. & 
TAGA, G. 2012. A NIRS-fMRI study of resting state network. Neuroimage, 
63, 179-93. 

SASAI, S., HOMAE, F., WATANABE, H. & TAGA, G. 2011. Frequency-specific 
functional connectivity in the brain during resting state revealed by NIRS. 
Neuroimage, 56, 252-7. 

SCHOLKMANN, F., SPICHTIG, S., MUEHLEMANN, T. & WOLF, M. 2010. How to 
detect and reduce movement artifacts in near-infrared imaging using 
moving standard deviation and spline interpolation. Physiol Meas, 31, 
649-62. 

SCHREIBER, T. 2000. Measuring information transfer. Phys Rev Lett, 85, 461-4. 
SCHWILDEN, H. 2006. Concepts of EEG processing: from power spectrum to 

bispectrum, fractals, entropies and all that. Best Pract Res Clin 
Anaesthesiol, 20, 31-48. 

SELVAM, V. S. & SHENBAGADEVI, S. 2011. Brain tumor detection using scalp eeg 
with modified Wavelet-ICA and multi layer feed forward neural network. 
Conf Proc IEEE Eng Med Biol Soc, 2011, 6104-9. 

SHANNON, C. E. 1948. A mathematical theory of communication. Bell System 
Technical Journal, 27, 379-423. 



237 

 

SHE, H. C., JUNG, T. P., CHOU, W. C., HUANG, L. Y., WANG, C. Y. & LIN, G. Y. 2012. 
EEG dynamics reflect the distinct cognitive process of optic problem 
solving. PLoS One, 7, e40731. 

SMITH, C., GOSWAMI, N., ROBINSON, R., VON DER WIESCHE, M. & SCHNEIDER, S. 
2013. The relationship between brain cortical activity and brain 
oxygenation in the prefrontal cortex during hypergravity exposure. J Appl 
Physiol (1985), 114, 905-10. 

SMITH, J. R. 1938. The electroencephalogram during normal infancy and 
childhood: II. The nature of the growth of the alpha waves. The 
Pedagogical Seminary and Journal of Genetic Psychology, 53, 455-469. 

SMITH, S. M., FOX, P. T., MILLER, K. L., GLAHN, D. C., FOX, P. M., MACKAY, C. E., 
FILIPPINI, N., WATKINS, K. E., TORO, R., LAIRD, A. R. & BECKMANN, C. F. 
2009. Correspondence of the brain's functional architecture during 
activation and rest. Proc Natl Acad Sci U S A, 106, 13040-5. 

STEINBRINK, J., KEMPF, F. C., VILLRINGER, A. & OBRIG, H. 2005. The fast optical 
signal—robust or elusive when non-invasively measured in the human 
adult? Neuroimage, 26, 996-1008. 

STEINBRINK, J., KOHL, M., OBRIG, H., CURIO, G., SYRE, F., THOMAS, F., WABNITZ, 
H., RINNEBERG, H. & VILLRINGER, A. 2000. Somatosensory evoked fast 
optical intensity changes detected non-invasively in the adult human 
head. Neuroscience Letters, 291, 105-108. 

STERN, R. M. 2001. Brain: Electroncephalography and Imaging, Oxford, Oxford 
University Press. 

STINEAR, C. M. & WARD, N. S. 2013. How useful is imaging in predicting outcomes 
in stroke rehabilitation? International Journal of Stroke, 8, 33-37. 

STRANGMAN, G., BOAS, D. A. & SUTTON, J. P. 2002. Non-invasive neuroimaging 
using near-infrared light. Biol Psychiatry, 52, 679-93. 

STRANGMAN, G., FRANCESCHINI, M. A. & BOAS, D. A. 2003. Factors affecting the 
accuracy of near-infrared spectroscopy concentration calculations for 
focal changes in oxygenation parameters. Neuroimage, 18, 865-79. 

STRENS, L. H., ASSELMAN, P., POGOSYAN, A., LOUKAS, C., THOMPSON, A. J. & 
BROWN, P. 2004. Corticocortical coupling in chronic stroke: its relevance 
to recovery. Neurology, 63, 475-84. 

SWEENEY, K. T., AYAZ, H., WARD, T. E., IZZETOGLU, M., MCLOONE, S. F. & 
ONARAL, B. 2012. A methodology for validating artifact removal 
techniques for physiological signals. Information Technology in 
Biomedicine, IEEE Transactions on, 16, 918-926. 

TAKAHASHI, T., CHO, R. Y., MIZUNO, T., KIKUCHI, M., MURATA, T., TAKAHASHI, K. 
& WADA, Y. 2010. Antipsychotics reverse abnormal EEG complexity in 
drug-naive schizophrenia: a multiscale entropy analysis. Neuroimage, 51, 
173-82. 

TAKEDA, K., GOMI, Y., IMAI, I., SHIMODA, N., HIWATARI, M. & KATO, H. 2007. Shift 
of motor activation areas during recovery from hemiparesis after cerebral 
infarction: a longitudinal study with near-infrared spectroscopy. Neurosci 
Res, 59, 136-44. 

TEPLAN, M. 2002. Fundamentals of EEG measurement. Measurement science 
review, 2, 1-11. 

TEPLAN, M., KRAKOVSKA, A. & STOLC, S. 2006. EEG responses to long-term audio-
visual stimulation. Int J Psychophysiol, 59, 81-90. 

THAKOR, N. V. & TONG, S. 2004. Advances in quantitative electroencephalogram 
analysis methods. Annu Rev Biomed Eng, 6, 453-95. 



238 

 

TOET, M. C., FLINTERMAN, A., LAAR, I., VRIES, J. W., BENNINK, G. B., UITERWAAL, 
C. S. & BEL, F. 2005. Cerebral oxygen saturation and electrical brain 
activity before, during, and up to 36 hours after arterial switch procedure 
in neonates without pre-existing brain damage: its relationship to 
neurodevelopmental outcome. Exp Brain Res, 165, 343-50. 

TOET, M. C. & LEMMERS, P. M. 2009. Brain monitoring in neonates. Early Hum 
Dev, 85, 77-84. 

TOLONEN, U. & SULG, I. A. 1981. Comparison of quantitative EEG parameters 
from four different analysis techniques in evaluation of relationships 
between EEG and CBF in brain infarction. Electroencephalogr Clin 
Neurophysiol, 51, 177-85. 

TOMITA, Y., VIALATTE, F.-B., DREYFUS, G., MITSUKURA, Y., BAKARDJIAN, H. & 
CICHOCKI, A. 2014. Bimodal BCI using simultaneously NIRS and EEG. 

TONG, Y. & FREDERICK, B. D. 2010. Time lag dependent multimodal processing of 
concurrent fMRI and near-infrared spectroscopy (NIRS) data suggests a 
global circulatory origin for low-frequency oscillation signals in human 
brain. Neuroimage, 53, 553-64. 

TONG, Y., HOCKE, L. M., NICKERSON, L. D., LICATA, S. C. & LINDSEY, K. P. 2013. 
Evaluating the effects of systemic low frequency oscillations measured in 
the periphery on the independent component analysis results of resting 
state networks. Neuroimage, 76, 202-215. 

TORONOV, V. Y., ZHANG, X. & WEBB, A. G. 2007. A spatial and temporal 
comparison of hemodynamic signals measured using optical and 
functional magnetic resonance imaging during activation in the human 
primary visual cortex. Neuroimage, 34, 1136-1148. 

TREGELLAS, J. R., SMUCNY, J., HARRIS, J. G., OLINCY, A., MAHARAJH, K., 
KRONBERG, E., EICHMAN, L. C., LYONS, E. & FREEDMAN, R. 2014. Intrinsic 
hippocampal activity as a biomarker for cognition and symptoms in 
schizophrenia. American Journal of Psychiatry, 171, 549-556. 

TSE, C.-Y., GORDON, B. A., FABIANI, M. & GRATTON, G. 2010. Frequency analysis 
of the visual steady-state response measured with the fast optical signal 
in younger and older adults. Biological psychology, 85, 79-89. 

TZOVARA, A., MURRAY, M. M., MICHEL, C. M. & DE LUCIA, M. 2012. A tutorial 
review of electrical neuroimaging from group-average to single-trial 
event-related potentials. Dev Neuropsychol, 37, 518-44. 

ULUDAG, K., DUBOWITZ, D. J., YODER, E. J., RESTOM, K., LIU, T. T. & BUXTON, R. B. 
2004a. Coupling of cerebral blood flow and oxygen consumption during 
physiological activation and deactivation measured with fMRI. 
Neuroimage, 23, 148-55. 

ULUDAG, K., STEINBRINK, J., VILLRINGER, A. & OBRIG, H. 2004b. Separability and 
cross talk: optimizing dual wavelength combinations for near-infrared 
spectroscopy of the adult head. Neuroimage, 22, 583-9. 

UMEYAMA, S. & YAMADA, T. 2009. New cross-talk measure of near-infrared 
spectroscopy and its application to wavelength combination optimization. 
J Biomed Opt, 14, 034017. 

VARGAS, C., LÓPEZ-JARAMILLO, C. & VIETA, E. 2013. A systematic literature review 
of resting state network—functional MRI in bipolar disorder. Journal of 
affective disorders, 150, 727-735. 

VECCHIO, F., BABILONI, C., LIZIO, R., FALLANI, F. V., BLINOWSKA, K., VERRIENTI, G., 
FRISONI, G. & ROSSINI, P. 2012. Resting state cortical EEG rhythms in 
Alzheimer's disease: toward EEG markers for clinical applications: a 
review. Supplements to Clinical neurophysiology, 62, 223-236. 



239 

 

WALTERS-WILLIAMS J., L. Y. 2009. Estimation of Mutual Information: A Survey. In: 
WEN P., L. Y., POLKOWSKI L., YAO Y., TSUMOTO S, WANG G (ed.) Rough 
Sets and Knowledge Technology. Berlin: Springer Berlin Heidelberg. 

WANG, L., GUO, X., SUN, J., JIN, Z. & TONG, S. Year. Cortical networks of 
hemianopia stroke patients: A graph theoretical analysis of EEG signals at 
resting state. In:  Engineering in Medicine and Biology Society (EMBC), 
2012 Annual International Conference of the IEEE, 2012. IEEE, 49-52. 

WANG, L. & LAGOPOULOS, J. 2012. A systematic review of resting-state 
functional-MRI studies in major depression. Journal of affective disorders, 
142, 6-12. 

WANG, Z. J., LEE, P. W. & MCKEOWN, M. J. 2009. A novel segmentation, mutual 
information network framework for EEG analysis of motor tasks. Biomed 
Eng Online, 8, 9. 

WARD, T. E. 2013. Hybrid Optical–Electrical Brain Computer Interfaces, Practices 
and Possibilities. Towards Practical Brain-Computer Interfaces. Springer. 

WARWICK, J. M. 2004. Imaging of brain function using SPECT. Metabolic brain 
disease, 19, 113-123. 

WASCHER, E., RASCH, B., SANGER, J., HOFFMANN, S., SCHNEIDER, D., 
RINKENAUER, G., HEUER, H. & GUTBERLET, I. 2013. Frontal theta activity 
reflects distinct aspects of mental fatigue. Biol Psychol. 

WHITE, B. R., SNYDER, A. Z., COHEN, A. L., PETERSEN, S. E., RAICHLE, M. E., 
SCHLAGGAR, B. L. & CULVER, J. P. 2009. Resting-state functional 
connectivity in the human brain revealed with diffuse optical tomography. 
Neuroimage, 47, 148-56. 

WHITFIELD-GABRIELI, S. & FORD, J. M. 2012. Default mode network activity and 
connectivity in psychopathology. Annual review of clinical psychology, 8, 
49-76. 

WHO. Available: 
http://www.who.int/healthinfo/statistics/bod_cerebrovasculardiseasestr
oke.pdf [Accessed 02-12-2013 2013]. 

WOLF, M., WOLF, U., CHOI, J. H., TORONOV, V., ADELINA PAUNESCU, L., 
MICHALOS, A. & GRATTON, E. 2003. Fast cerebral functional signal in the 
100‐ms range detected in the visual cortex by frequency‐domain 
near‐infrared spectrophotometry. Psychophysiology, 40, 521-528. 

XU, J., LIU, Z.-R., LIU, R. & YANG, Q.-F. 1997. Information transmission in human 
cerebral cortex. Physica D: Nonlinear Phenomena, 106, 363-374. 

YENER, G. G. & BAŞAR, E. 2012. Biomarkers in Alzheimer's disease with a special 
emphasis on event-related oscillatory responses. Supplements to Clinical 
neurophysiology, 62, 237-273. 

YUCEL, M. A., SELB, J., BOAS, D. A., CASH, S. S. & COOPER, R. J. 2014. Reducing 
motion artifacts for long-term clinical NIRS monitoring using collodion-
fixed prism-based optical fibers. Neuroimage, 85 Pt 1, 192-201. 

ZHANG, H., ZHANG, Y. J., LU, C. M., MA, S. Y., ZANG, Y. F. & ZHU, C. Z. 2010. 
Functional connectivity as revealed by independent component analysis 
of resting-state fNIRS measurements. Neuroimage, 51, 1150-61. 

ZHANG, Q., BROWN, E. N. & STRANGMAN, G. E. 2007a. Adaptive filtering for 
global interference cancellation and real-time recovery of evoked brain 
activity: a Monte Carlo simulation study. Journal of biomedical optics, 12, 
044014-044014-12. 

ZHANG, Q., BROWN, E. N. & STRANGMAN, G. E. 2007b. Adaptive filtering to 
reduce global interference in evoked brain activity detection: a human 
subject case study. Journal of biomedical optics, 12, 064009-064009-12. 

http://www.who.int/healthinfo/statistics/bod_cerebrovasculardiseasestroke.pdf
http://www.who.int/healthinfo/statistics/bod_cerebrovasculardiseasestroke.pdf


240 

 

ZHANG, Q., STRANGMAN, G. E. & GANIS, G. 2009. Adaptive filtering to reduce 
global interference in non-invasive NIRS measures of brain activation: 
How well and when does it work? Neuroimage, 45, 788-794. 

ZHANG, Y., BROOKS, D. H., FRANCESCHINI, M. A. & BOAS, D. A. 2005. Eigenvector-
based spatial filtering for reduction of physiological interference in diffuse 
optical imaging. Journal of biomedical optics, 10, 011014-01101411. 

 
 


