177 research outputs found

    Error analysis of algorithms for camera rotation calculation in GPS/IMU/camera fusion for UAV sense and avoid systems

    Get PDF
    In this paper four camera pose estimation algorithms are investigated in simulations. The aim of the investigation is to show the strengths and weaknesses of these algorithms in the aircraft attitude estimation task. The work is part of a research project where a low cost UAV is developed which can be integrated into the national airspace. Two main issues are addressed with these measurements, one is the sense-and-avoid capability of the aircraft and the other is sensor redundancy. Both parts can benefit from a good attitude estimate. Thus, it is important to use the appropriate algorithm for the camera rotation estimation. Results show that many times even the simplest algorithm can perform at an acceptable level of precision for the sensor fusion. © 2014 IEEE

    Harnessing single board computers for military data analytics

    Get PDF
    Executive summary: This chapter covers the use of Single Board Computers (SBCs) to expedite onsite data analytics for a variety of military applications. Onsite data summarization and analytics is increasingly critical for command, control, and intelligence (C2I) operations, as excessive power consumption and communication latency can restrict the efficacy of down-range operations. SBCs offer power-efficient, inexpensive data-processing capabilities while maintaining a small form factor. We discuss the use of SBCs in a variety of domains, including wireless sensor networks, unmanned vehicles, and cluster computing. We conclude with a discussion of existing challenges and opportunities for future use.https://digitalcommons.usmalibrary.org/books/1010/thumbnail.jp

    Network-on-Chip -based Multi-Processor System-on-Chip: Towards Mixed-Criticality System Certification

    Get PDF
    L'abstract è presente nell'allegato / the abstract is in the attachmen

    Next generation mine countermeasures for the very shallow water zone in support of amphibious operations

    Get PDF
    This report describes system engineering efforts exploring next generation mine countermeasure (MCM) systems to satisfy high priority capability gaps in the Very Shallow Water (VSW) zone in support of amphibious operations. A thorough exploration of the problem space was conducted, including stakeholder analysis, MCM threat analysis, and current and future MCM capability research. Solution-neutral requirements and functions were developed for a bounded next generation system. Several alternative architecture solutions were developed that included a critical evaluation that compared performance and cost. The resulting MCM system effectively removes the man from the minefield through employment of autonomous capability, reduces operator burden with sensor data fusion and processing, and provides a real-time communication for command and control (C2) support to reduce or eliminate post mission analysis.http://archive.org/details/nextgenerationmi109456968N

    Multiple frequency optical mixer and demultiplexer and apparatus for remote sensing

    Get PDF
    A pulsed laser system includes a modulator module configured to provide pulsed electrical signals and a plurality of solid-state seed sources coupled to the modulator module and configured to operate, responsive to the pulsed electrical signals, in a pulse mode. Each of the plurality of solid-state seed sources is tuned to a different frequency channel separated from any adjacent frequency channel by a frequency offset. The pulsed laser system also includes a combiner that combines outputs from each of the solid state seed sources into a single optical path and an optical doubler and demultiplexer coupled to the single optical path and providing each doubled seed frequency on a separate output path

    DragonflEYE: a passive approach to aerial collision sensing

    Get PDF
    "This dissertation describes the design, development and test of a passive wide-field optical aircraft collision sensing instrument titled 'DragonflEYE'. Such a ""sense-and-avoid"" instrument is desired for autonomous unmanned aerial systems operating in civilian airspace. The instrument was configured as a network of smart camera nodes and implemented using commercial, off-the-shelf components. An end-to-end imaging train model was developed and important figures of merit were derived. Transfer functions arising from intermediate mediums were discussed and their impact assessed. Multiple prototypes were developed. The expected performance of the instrument was iteratively evaluated on the prototypes, beginning with modeling activities followed by laboratory tests, ground tests and flight tests. A prototype was mounted on a Bell 205 helicopter for flight tests, with a Bell 206 helicopter acting as the target. Raw imagery was recorded alongside ancillary aircraft data, and stored for the offline assessment of performance. The ""range at first detection"" (R0), is presented as a robust measure of sensor performance, based on a suitably defined signal-to-noise ratio. The analysis treats target radiance fluctuations, ground clutter, atmospheric effects, platform motion and random noise elements. Under the measurement conditions, R0 exceeded flight crew acquisition ranges. Secondary figures of merit are also discussed, including time to impact, target size and growth, and the impact of resolution on detection range. The hardware was structured to facilitate a real-time hierarchical image-processing pipeline, with selected image processing techniques introduced. In particular, the height of an observed event above the horizon compensates for angular motion of the helicopter platform.

    Teleoperation of a service robot using a mobile device

    Get PDF
    Teleoperation is a concept born with the rapid evolution of technology, with an intuitive meaning "operate at a distance." The first teleoperation system was created in the mid 1950s, which were handled chemicals. Remote controlled systems are present nowadays in various types of applications. This dissertation presents the development of a mobile application to perform the teleoperation of a mobile service robot. The application integrates a distributed surveillance (the result of a research project QREN) and led to the development of a communication interface between the robot (the result of another QREN project) and the vigilance system. It was necessary to specify a communication protocol between the two systems, which was implemented over a communication framework 0MQ (Zero Message Queue). For the testing, three prototype applications were developed before to perform the test on the robot

    Proceedings of the Second International Mobile Satellite Conference (IMSC 1990)

    Get PDF
    Presented here are the proceedings of the Second International Mobile Satellite Conference (IMSC), held June 17-20, 1990 in Ottawa, Canada. Topics covered include future mobile satellite communications concepts, aeronautical applications, modulation and coding, propagation and experimental systems, mobile terminal equipment, network architecture and control, regulatory and policy considerations, vehicle antennas, and speech compression

    Virtual SATCOM, Long Range Broadband Digital Communications

    Get PDF
    The current naval strategy is based on a distributed force, networked together with high-speed communications that enable operations as an intelligent, fast maneuvering force. Satellites, the existing network connector, are weak and vulnerable to attack. HF is an alternative, but it does not have the information throughput to meet the distributed warfighting need. The US Navy does not have a solution to reduce dependency on space-based communication systems while providing the warfighter with the required information speed. Virtual SATCOM is a solution that can match satellite communications (SATCOM) data speed without the vulnerable satellite. It is wireless communication on a High Frequency (HF) channel at SATCOM speed. We have developed an innovative design using high power and gain, ground-based relay systems. We transmit extremely wide-wideband HF channels from ground stations using large directional antennas. Our system starts with a highly directional antenna with a narrow beam that enables increased bandwidth without interfering with other spectrum users. The beam focus and power provide a high SNR across a wideband channel with data rates of 10 Mbps; 1000 times increase in HF data speed. Our modeling of the ionosphere shows that the ionosphere has more than adequate bandwidth to communicate at 3000 km and high speeds while avoiding detection. We designed a flexible structure adjustable to the dynamic ionosphere. Our design provides a high-speed communications path without the geo-location vulnerability of legacy HF methods. Our invention will benefit mobile users using steerable beam forming apertures with wide bandwidth signals. This dissertation will focus on three areas: an examination of the ionosphere’s ability to support the channel, design of a phased array antenna that can produce the narrow beam, and design of signal processing that can accommodate the wideband HF frequency range. Virtual SATCOM is exciting research that can reduce cost and increase access to long-range, high data rate wireless communications
    corecore