Virtual SATCOM, Long Range Broadband Digital Communications

Abstract

The current naval strategy is based on a distributed force, networked together with high-speed communications that enable operations as an intelligent, fast maneuvering force. Satellites, the existing network connector, are weak and vulnerable to attack. HF is an alternative, but it does not have the information throughput to meet the distributed warfighting need. The US Navy does not have a solution to reduce dependency on space-based communication systems while providing the warfighter with the required information speed. Virtual SATCOM is a solution that can match satellite communications (SATCOM) data speed without the vulnerable satellite. It is wireless communication on a High Frequency (HF) channel at SATCOM speed. We have developed an innovative design using high power and gain, ground-based relay systems. We transmit extremely wide-wideband HF channels from ground stations using large directional antennas. Our system starts with a highly directional antenna with a narrow beam that enables increased bandwidth without interfering with other spectrum users. The beam focus and power provide a high SNR across a wideband channel with data rates of 10 Mbps; 1000 times increase in HF data speed. Our modeling of the ionosphere shows that the ionosphere has more than adequate bandwidth to communicate at 3000 km and high speeds while avoiding detection. We designed a flexible structure adjustable to the dynamic ionosphere. Our design provides a high-speed communications path without the geo-location vulnerability of legacy HF methods. Our invention will benefit mobile users using steerable beam forming apertures with wide bandwidth signals. This dissertation will focus on three areas: an examination of the ionosphere’s ability to support the channel, design of a phased array antenna that can produce the narrow beam, and design of signal processing that can accommodate the wideband HF frequency range. Virtual SATCOM is exciting research that can reduce cost and increase access to long-range, high data rate wireless communications

    Similar works