
Abstract— In this paper four camera pose estimation 

algorithms are investigated in simulations. The aim of the 

investigation is to show the strengths and weaknesses of 

these algorithms in the aircraft attitude estimation task. 

The work is part of a research project where a low cost 

UAV is developed which can be integrated into the 

national airspace. Two main issues are addressed with 

these measurements, one is the sense-and-avoid capability 

of the aircraft and the other is sensor redundancy. Both 

parts can benefit from a good attitude estimate. Thus, it is 

important to use the appropriate algorithm for the 

camera rotation estimation. Results show that many times 

even the simplest algorithm can perform at an acceptable 

level of precision for the sensor fusion. 

Index Terms — UAV, sensor fusion, IMU, GPS, 

Camera, FPGA 

I.  INTRODUCTION 

he UAV technology is close to offer great 

opportunity to run various commercial and 

public services like meteorological measurements, 

surveillance tasks, or agricultural services. Many of 

the possible applications can be run with low cost, 

small size UAVs and in good weather conditions. 

However, these applications are very limited today 

because of limited access to national airspace 

(NAS). 

In order to integrate UAVs into NAS, two of 

the most important features are the sense-and-avoid 

(SAA) capability and hardware redundancy [1]. 

Provided that the size and the energy consumption 

of the UAV is limited, a camera based SAA system 

would provide cost and weight advantages against 

radar based solutions [2], [3]. The main drawbacks 

of camera based systems are the high 

computational need because of the complex 

algorithms that need to be run and that there is no 

direct range information. Lighting conditions 

provide another limitation which is not considered 

in this article but should be part of a future work. 

Fortunately, complex algorithms in real time 

with low power consumption can be implemented 

on today’s kilo-processor chips and the range 

information can be estimated using Kalman filter 

based approaches.  

As an example, in our previous work a camera-

based autonomous on-board collision avoidance 

system and its implementation aspects on kilo-

processor architectures were introduced. In [4] the 

feasibility study and the algorithms of electro-

optical based collision avoidance are presented. In 

[5], [6] and [7] the performance of a solely camera 

based collision avoidance algorithm as well as its 

implementation on a specialised FPGA architecture 

are introduced. In [8] the developed camera-

processor system is introduced.  

The sense-and-avoid task has to be run in 

critical situations as well, for example when one or 

more sensor fails. One solution is redundancy in the 

sense of the number of similar sensor modules or in 

different sensor modalities. In this case the use of 

our camera can be broadened to localisation task 

besides its main function in collision avoidance. 

On the other hand with an IMU/Camera fusion 

better accuracy can be achieved in the ego motion 

as shown in [9]. With these more accurate results 

our SAA algorithm can be speed-up which provides 

even higher separation distance or the avoidance of 

aircrafts with higher speed. 

In [10] performance comparison of tight and 

loose (Kalman filter based), INS-Camera 

integration is studied by Chu et al. through 

simulations. The paper shows that tight coupling 

can provide higher accuracy but it is less stable due 

to the linearization methods of the filters. Thus 

loose integration is favourable in low cost systems. 
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In [11] a monocular camera, INS and GNSS 

integration is presented for ground vehicles by Chu 

et al. This system is validated through a real drive 

test and results show that the system based on 

camera-INS fusion outperforms the conventional 

INS-GNSS systems. However the GNSS 

measurements are not included in the camera-INS 

system. As stated in the paper this step can further 

improve the performance of the system. 

Furthermore, the real-time functionality is a 

challenging task because of the image processing 

algorithms involved. 

For aircraft attitude estimation many different 

image processing algorithms can be used from a 

simple homography based calculation to the more 

complicated five point algorithm. The question is 

how these algorithms can be ranked based on their 

performance and computational complexity in 

realistic simulations. 

The inventors of these algorithms provide 

information about their accuracy [12] [13], and 

there are other papers which assemble and compare 

different algorithms from some perspective [14]. 

To the best of our knowledge there is no analysis 

for these algorithms for GPS/IMU/Camera fusion 

which can easily show the strength and weaknesses 

of a specific algorithm in this scenario. 

In this paper the error analysis of four 

algorithms is introduced. The analysis is done with 

realistic flight paths generated by the HIL simulator 

[15]. The camera model is based on the calibration 

of the camera used on board of our test aircraft. 

These results can give a general idea that in which 

situation which algorithm can be used effectively. 

As an application example simulation and 

measurement results from our camera-IMU 

(including GPS) sensor integration are shown. 

The remainder of the paper is as follows: in the 

next chapter the coordinate frames, transformations 

and the algorithmic basics are introduced. In 

section III. the simulations and analysis results are 

shown regarding the image processing algorithms. 

In section IV. simulation examples are presented 

applying a GPS/IMU/Camera fusion algorithm, 

and finally the conclusions are drawn in section V. 

II. ALGORITHMIC BACKGROUND 

In this section the coordinate frames and 

specifically the transformation from world (earth) 

coordinate system (coord. sys.) to the image plane 

are defined and the basics of used camera pose 

calculation algorithms are introduced. For the 

measurements four feature point based relative 

pose estimation algorithm are chosen. A 

homography based solution as a basic algorithm 

with small computational need but with less 

accuracy. The eight point algorithm, as standard 

algorithm in epipolar geometry. The five point 

algorithm, as one of the state of the art algorithms 

with higher computational need, but with 

promising stability over the various scenes. Finally, 

MLESAC, as an iterative, stochastic solution. 

Other algorithms can be tested in the future with the 

same framework. 

A. Coordinate frames and transformations 

In the application example a small UAV is 

considered, which flies only short distances (about 

1km range). This allows considering the North-

East-Down (NED) frame as an inertial (non-

moving, non-rotating) frame (earth frame), which 

is defined in the convention used in [16]. 

The other two applied coordinate systems are 

the body and camera frames. The axes of the 

camera system are in general nonparallel with the 

axes of the body system but in the considered 

system set up for sake of simplicity they are parallel 

but the camera system is rotated (Figure 1.). 

 
Figure 1. The earth, the body and the camera coordinate 

systems in this specific scenario where the origins of body and 

camera systems coincide 

In Figure 1. X is a feature point in the earth 

coord. sys. characterized by vector rX
E (()E means a 

vector with coordinates in earth coord. sys.). rEB
E  

gives the position of the body frame relative to 

earth. The coordinates of point X in the camera 

frame can be calculated as follows:  

𝑋𝑐𝑎𝑚 = 𝑇𝐶𝐵𝑇𝐵𝐸(𝑟𝑋
𝐸 − 𝑟𝐸𝐵

𝐸 ) 

Here, Tf2f1
 defines a transformation matrix 

from frame f1 to f2. In our special case the origins 



of the body and camera system are assumed to 

coincide (see Figure 1.). 

B. IMU models 

Our IMU consists of sensors which are 

required for outdoor waypoint navigation. In our 

system the conventional accelerometer, rate gyro, 

differential and absolute pressure sensor and 

magnetometer are completed with a GPS unit [17]. 

C. Camera measurements 

The electro optical sensor is modelled as a 

projective camera [18]. The camera matrix P 

consists of the internal and external parameters of 

the camera and can be decomposed as follows: 

𝑃 = 𝐾[𝑅|𝑡]  

where R and t are the rotation and translation 

of the camera, which are the extrinsic parameters. 

K contains the intrinsic parameters: the focal length 

f in pixels (it can be different in the x and y 

directions) and the position of camera principal 

point p in the image plane as follows: 

𝐾 = [
f𝑥 0 p𝑥

0 f𝑦 p𝑦

0 0 1

]  

Here the resolution of the camera is interesting 

as well, because the effect of pixelization and 

spatial resolution is studied. As results show a 

projective camera can be characterized by the 

angular resolution of the central pixel (or CPAR), 

which is defined as follows: 

𝐶𝑃𝐴𝑅 = tan−1
1

𝑓
 

where 𝑓 is the focal length of the camera. With 

this measure cameras with different resolution and 

field of view can be compared. 

D. Feature extraction and matching 

On the consecutive frames a modified Harris 

corner feature extraction is used [19]. Corner 

features are extracted but two constraints are used: 

1) the feature points should be farther to each other 

in the image than a given threshold and 2) feature 

points should be in the ground region, below the 

horizon. The latter constraint can be satisfied by an 

adaptive threshold, which is applied before the 

corner detection. With these two constraints the 

number of the feature points is limited. The first 

constraint can assure in most cases that degenerate 

feature point combinations are avoided. 

Our UAV will be used mainly in countryside, 

where there are only a few tall buildings (if any). It 

means that static features according to the NED 

frame are located on the ground. That is why 

feature points are searched for on the ground. This 

is viable, because except the take-off and a few 

manoeuvres, the ground can be seen by the camera. 

E. Homography 

As a basic solution for the problem of camera 

pose estimation a scene homography based 

algorithm is tested. In this case the assumption is 

made that the movement of the camera is so small 

that the effect of the movement can be neglected 

thus only the camera rotation is calculated. 

The basic equations of the calculation are used 

for planar panoramic mosaicking as well and also 

known as inhomogeneous DLT. The equations are 

as follows: 

𝐴 = [
0

𝑥𝑖𝑤𝑖
′  

0
𝑦𝑖𝑤𝑖

′  
0

𝑤𝑖𝑤𝑖
′  

−𝑥𝑖𝑤𝑖
′

0
  
−𝑦𝑖𝑤𝑖

′

0
 ⋯

 
−𝑤𝑖𝑤𝑖

′

0
  

𝑥𝑖𝑦𝑖
′

−𝑥𝑖𝑥𝑖
′  

𝑦𝑖𝑦𝑖
′

−𝑦𝑖𝑥𝑖
′]

𝐴 ∗ ℎ = (
−𝑤𝑖𝑦𝑖

′

𝑤𝑖𝑥𝑖
′ )

 

where 𝑥𝑖 ↔ 𝑥𝑖
′ and 𝑦𝑖 ↔ 𝑦𝑖

′ are the coordinates 

of the corresponding feature points on the 

consecutive frames, and the element of ℎ vectors 

are the elements of the homography matrix up to an 

unknown scale. This scale is given by 𝑤𝑖 and 𝑤𝑖
′ for 

each frame and each feature point.  

An optimal solution for the homography can be 

yielded with the SVD of the 𝐴 matrix. And again 

the optimal rotation can be calculated from the 

SVD of the resulting homography matrix. More 

details about the calculation can be found in [18]. 

F. Eight point algorithm 

As a more promising variant the normalised 

eight point algorithm is tested [18]. From feature 

point pairs the fundamental matrix F can be 

calculated. F is defined by the epipolar constraint as 

follows: 

𝑥′𝑇𝐹𝑥 = 0  

If one has a calibrated camera the essential 

matrix E can be obtained from F by multiplying 



with the camera matrix K such as: 

𝐸 = 𝐾′𝑇𝐹𝐾  

Here we have only one camera, so K′ = K. 

G. Five point algorithm 

In the case of calibrated cameras the E matrix 

can be computed directly from five point 

correspondences because it has only five degrees of 

freedom. In [20] and [12] an efficient algorithm is 

presented, which is numerically more stable than 

other methods. Furthermore, the five point 

algorithm should be accurate in the case of pure 

rotational or pure translational movement as well. 

H. MLESAC 

As the member of the RANSAC family, the 

MLESAC algorithm is tested [13]. This is a more 

advanced RANSAC variant where the fundamental 

matrix is robustly calculated based on probability 

features. 

This algorithm is not the best with respect to 

accuracy as stated in [14] but the computational 

complexity of the algorithm is reasonable and the 

implementation is available online. 

I. Camera rotation and translation from epipolar 

matrices 

With the eight point algorithm, the MLESAC 

and the five point algorithm the E matrix can be 

calculated from point correspondences. From E the 

two camera matrices can be calculated in canonical 

form (that is the first camera matrix is P = [I|0] and 

the second is P′ = [R|t]), because E=[t]×R, where 

[t]× is a skew symmetric form of translation vector 

t representing vector cross product.  

For the calculation, E has to be decomposed 

with SVD and four solutions result. Only one of 

them satisfy the chirality constraint [21] that is in 

only one arrangement are the reprojected feature 

points in front of both cameras [18]. 

J. Reconstruction of aircraft attitude change from 

camera rotation matrix 

From the matched feature points in two 

consecutive camera frames the camera rotation 

matrix R and translation vector t (with scale 

ambiguity) can be reconstructed assuming 

canonical cameras. Here, normalised coordinates 

and calibrated cameras are considered as stated 

before. 

This way the Xcam (not normalized) vector can 

be transformed into the first frame as (using 

homogenous coordinates): 

𝑥 = 𝑃 [
𝑋𝑐𝑎𝑚

1
] = [𝐼 0] [

𝑋𝑐𝑎𝑚

1
] = 𝑋𝑐𝑎𝑚  

The same Xcam vector can be transformed into 

the second frame considering the transformation 

between the two frames which is the P′ camera 

matrix: 

𝑥′ = 𝑃′ [
𝑋𝑐𝑎𝑚

1
] = [𝑅 𝑡] [

𝑋𝑐𝑎𝑚

1
] = 𝑅𝑋𝑐𝑎𝑚 + 𝑡  

x′ is the image of point X in the second (rotated 

and translated) camera frame which means the 

rotation and translation of the aircraft body frame. 

This way x′ can be also constructed by considering 

the changed TBE
′ matrix and (rEB

E )
′
 vector: 

𝑥′ = 𝑋𝑐𝑎𝑚
′ = 𝑇𝐶𝐵𝑇𝐵𝐸

′(𝑟𝑋
𝐸 − (𝑟𝐸𝐵

𝐸 )′)  

From the two representations of x′ and the 

original expression for Xcam by considering TBE
′ =

TΔTBE and (rEB
E )

′
= rEB

E + ΔrEB
E  one gets the 

aircraft attitude change TΔ as follows: 

𝑇Δ = 𝑇𝐶𝐵
𝑇 ⋅ 𝑅 ⋅ 𝑇𝐶𝐵  

The detailed calculation can be found in [9]. 

III. SIMULATION RESULTS FOR THE ERROR 

ANALYSIS OF IMAGE PROCESSING 

In this section the methodology and results of 

the error analysis of image processing are 

introduced. The pose estimation algorithms 

introduced in the previous section are analysed in a 

realistic simulation environment. The algorithms 

are tested with different image resolutions and 

sampling time. This way the tendencies can be 

pointed out for each algorithm as well as the 

performance of these algorithms can be compared.  

A. Simulation environment 

The simulation environment is based on the 

MATLAB EGT toolbox [22]. For the tests realistic 

flight paths are used, which are generated by a HIL 

simulator [15]. In this paper the results of two 

simulated flight tests are introduced: 1) a sinusoidal 

path with almost constant altitude and 2) a zigzag 

path with also nearly constant altitude. The 

resulting error figures show similar phenomena, 

that is why only one of them is shown as an 

example. 



 
Figure 2. Cameras in the EGT frame 

 
Figure 3. Sinusoidal path in the NED frame 

 
Figure 4. Zigzag path in the NED frame 

 
Figure 5. Camera trajectory and feature points in NED frame 

For the tests 350 feature points are placed 

randomly with uniform distribution in a right prism 

which is 2000m wide, 3000m long and 30m tall. 

The point coordinates are between -1000 and 1000 

in the Y direction and from 0 to 3000 in the X 

direction. The maximum altitude of the points is 23 

m and the Z coordinate starts from 3 m beyond the 

ground level to simulate small holes. 

The camera can see only feature points which 

are closer than 800m. This way the dense feature 

point cloud can be avoided on the images near the 

horizon level. This is important, because in the real 

images feature points near the horizon cannot be 

extracted because the blurring effect of the distant 

objects. 

 
Figure 6. Feature points of two consecutive frames on the 

image plane; with green squares feature points of frame 5 and 

with red stars the feature points for frame 6; the camera 

resolution is 752×480 

For the camera projection the calibration 

matrix of one of our miniature camera is used. The 

calibration was obtained using the Camera 

Calibration Toolbox in MATLAB [23]. The 

resolution is 752×480 pixel and the Field of View 

(FOV) is ~63°×~43°. Based on this calibration 

matrix 5 virtual cameras are generated with the 

same FOV and different resolution, that is with 

different CPAR as shown in Table 1. 

Resolu-

tion [px] 

564 

× 

360 

752 

× 

480 

1017 

× 

649 

1280 

× 

817 

1540 

× 

960 

1692

× 

1080 

CPAR 

[°/px] 

0.12 0.093 0.068 0.055 0.046 0.041 

Table 1. Resolution and CPAR of cameras 

For these cameras test cases are run with 

absolute feature point precision, which is after the 

projection, there is no pixelization. Thus, the 

coordinates are not rounded to integer pixel values. 

Because many feature point extraction algorithm 

support subpixel resolution, this case is simulated 

as well. To the exact feature point coordinates a 

noise with normal distribution, 0 mean and 0.5 

pixel standard deviation is added later. This way the 



luminance fluctuation and the nature of the point 

spread function in the real case is mimicked. 

Finally, the feature point coordinates are rounded 

to the nearest integer coordinate values to examine 

the effects of pixelization. 

The simulations are run with different sampling 

frequencies. As in our test bed, the camera is 

running at its maximum with 56Hz. In the 

simulation this is approximated with 50Hz base 

sampling frequency that is with 20ms sampling 

time. Due to the processing steps or if we change 

the camera for another with bigger resolution, the 

frame rate can be dropped. The effect of the 

sampling frequency that is the effect of the 

translation on the different algorithms, is 

investigated in ten steps from 20 ms sampling time 

(50Hz) to 200 ms (5Hz). 

Standard implementations of the 

aforementioned algorithms are used. The eight 

point algorithm and the MLESAC is implemented 

in the EGT toolbox [22] and the implementation of 

the five point algorithm is from its authors’ website 

[24]. The homography algorithm was implemented 

in house according to [18]. 

B. Error measures 

In each and every step the direction cosine 

matrix (DCM) between the two frames is extracted 

which describes the rotation from one camera 

orientation to another. Based on this DCM the 

Euler angles are calculated and these are compared 

to the ground truth. To characterize the 

performance of each algorithm the absolute error of 

the three Euler angles are used. 

𝑒𝑖 = √(𝛼𝑖 − 𝛼𝑖
𝑚)2 

where 𝛼𝑖 is the ground truth angle for the ith 

frame (roll, pitch or yaw) and 𝛼𝑖
𝑚 is the calculated 

angle. Additionally, for each run also the mean, the 

median and the corrected standard deviation of the 

absolute error are calculated. 

C. Homography algorithm correction 

To handle that the homography neglects the 

translation a simple correction algorithm is 

introduced based on the sampling time, the 

measured velocity and the altitude. Most of the time 

the error introduced by the translation has a bigger 

effect on the pitch and it has a smaller effect on the 

yaw angle, but the error is distributed 

proportionally to the roll angle. Thus the correction 

term is as follows: 

𝑝𝑖𝑡𝑐ℎ𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑖𝑜𝑛 =
cos(𝑟𝑜𝑙𝑙)+sin(𝑟𝑜𝑙𝑙)

cos(𝑟𝑜𝑙𝑙)
∙ 𝑓(𝜏, 𝑎𝑙𝑡, 𝑣)  

𝑦𝑎𝑤𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑖𝑜𝑛 =
cos(𝑟𝑜𝑙𝑙)−sin(𝑟𝑜𝑙𝑙)

cos(𝑟𝑜𝑙𝑙)
∙ 𝑓(𝜏, 𝑎𝑙𝑡, 𝑣)  

where the correction terms are added to the 

calculated angle values and 𝑓(𝜏, 𝑎𝑙𝑡, 𝑣) is an 

empirical function based on the linear interpolation 

of the measured error term for different 𝜏 (sample 

time), altitude and velocity values. 

 
Figure 7. Pitch compare for homography on sinusoidal path; 

with black stars the ground truth, with green squares the 

homography results; top without correction, bottom with 

correction 

As an example, in Figure 7. the correction of 

the pitch angle is shown. On the upper part, the 

pitch values are compared to the original values 

without correction and on the lower part with 

correction. As it can be seen in Figure 8. the error 

is almost twice without the correction. In this case 

the original camera matrix is used and the sample 

time is 40 ms. 

D. Results with absolute feature point precision 

First, tests with absolute feature point precision 

are run. In this case the best achievable results are 

obtained because there is practically no spatial 

discretization, the effect of the temporal resolution 

change can be investigated independently. 



 

 
Figure 8. Pitch absolute error for homography on sinusoidal 

path; top without correction, bottom with correction 

 
Figure 9. Compare of the four different algorithm with 

absolute feature point precision on sinusoidal; top the roll 

angle, bottom the error of the roll angle; with black star the 

original, with blue triangle the five point, with red triangle the 

eight point, with green square the homography and with 

magenta circle the MLESAC results 

As shown in Figure 9., without any feature 

point coordinate error the five point algorithm is the 

best. The error of the five point algorithm is close 

to the numerical precision of the calculations. The 

errors of other two epipolar geometry based 

solutions are also at least one order of magnitude 

smaller than the 1 pixel angular resolution. And the 

homography has got an error that remains below 1 

pixel. 

The effect of the translation is shown in the 

next figure with the pitch angle, which is most 

affected. Theoretically due to the bigger baseline 

separation bigger translation between the two 

frames could be advantageous for the three 

algorithms which are based on the epipolar 

constraint (5 point, 8 point and MLESAC). It can 

be seen in the figure practically this is not true, the 

error is bigger as the step is bigger in between the 

frames except for the five point algorithm in some 

situations. One possible explanation is that the 

number of the feature points which can be seen in 

both frames is reduced and the feature points are 

more drifted to the side of the image. 

 
Figure 10. Effect of the translation through the sample time 

change on the pitch angle error; on sinusoidal; the pitch angle 

is most affected by the translation effect 

E. Results with subpixel precision 

As mentioned before, the subpixel feature point 

extraction is simulated by random, normal 

distribution noise on absolute precise feature point 

coordinates. 

Surprisingly, the five point algorithm performs 

badly in this situation compared to the others 

(Figure 11.). This could be because this algorithm 

is less robust than the others. Usually high 

performance algorithms have lower robustness. 

On the other hand if the spatial resolution is 

less (CPAR=0.093), again the mean error of the 

five point algorithm is smaller than of the eight 



point and MLESAC with the noisy pixel data. 

(Figure 12.) The effect of the temporal resolution 

change is similar to the previous case and the 

standard deviation shows similar features. 

 
Figure 11. Roll error with subpixel resolution on sinusoidal; 

the five point algorithm performance is worse than expected 

 
Figure 12. Effect of the translation through the sample time 

change on the pitch angle; on sinusoidal 

F. Results with pixelized coordinates 

In this case the performance of the algorithms 

changed again. The best performing algorithm is 

the five point, but most of the time the homography 

can keep up with its performance (see Figure 13.).  

 
Figure 13. Roll error with pixelization on sinusoidal path; the 

homography is almost as good as the five point algorithm 

This is important because the computational 

need of the homography algorithm is much less 

than the others. That is the pixelization has got a 

smaller effect on the homography algorithm. An 

extreme example is the roll error of homography 

which is almost independent to the CPAR (see 

Figure 14.). 

 
Figure 14. Roll error mean with pixelization on sinusoidal; 

the roll error mean of the homography is almost independent 

on the resolution 

G. Results with pixelized coordinates and noise 

The noise added to the pixelized coordinates 

causes only a slightly higher error level compared 

to the pixelization. The results here are very similar 

to the results in the previous section. For example 

the yaw error change of the homography can be 

seen in Table 2. 

 mean median sd 

Absolute precision 4.422·10-2 3.119·10-2 4.670·10-2 

With noise 4.609·10-2 3.278·10-2 5.065·10-2 

Pixelized 6.036·10-2 3.845·10-2 6.924·10-2 

Pixelized & noise 7.002·10-2 4.051·10-2 9.379·10-2 

Table 2. Yaw error of homography changing with different 

feature point precision for the CPAR=0.055°/px camera 

IV. HIL SIMULATION AND MEASUREMENT 

RESULTS 

In this section the coupled GPS/IMU/Camera 

attitude estimator system is introduced. As a 

measurement example some of the datasets from 

the HIL simulation tests are run in this system. 

The HIL simulation includes the aircraft 

dynamical model in MATLAB Simulink 

completed with the RC transmitter, and on-board 

microcontroller. The control inputs from the 

transmitter and microcontroller are sent into the PC 

through an RS-232 or CAN interface. The sensory 

system of the aircraft is emulated in Simulink, the 

sensor data is sent to the microcontroller again 

through an RS-232 or CAN interface. This way the 



real electronics controls the aircraft simulation (for 

details about a HIL configuration see [15]). 

A. Coupled GPS/IMU/Camera attitude estimator 

implementation 

In this section the coupling of a GPS/IMU-

based aircraft attitude estimation algorithm (from 

[25]) with the camera-based rotation matrix 

increment estimate (𝑇Δ) is introduced. 

The original estimator is an extended kalman 

filter (EKF) which uses the angular rate and 

acceleration measurements to propagate the 

attitude, velocity and (latitude, longitude, altitude = 

LLA) position dynamics of the aircraft. The Euler 

angles, earth relative velocity and position are 

predicted using system dynamic equations. 

In the correction step of the EKF GPS position 

and velocity measurements are used to calculate the 

prediction error and update the attitude, velocity 

and position accordingly. The rate gyro and 

accelerometer biases are also estimated. 

The camera based rotation increment can be 

included into the measurement step as an 

information about the change of the direction 

cosine matrix (DCM). This is explained in the 

forthcoming part. 

The algorithm was implemented in MATLAB, 

and tested on the same data used in the previous 

section. 

This data was generated in HIL excluding 

sensor noise and wind disturbance. The goal is to 

test the sensor fusion on exact data and so compare 

the performance of the different image processing 

algorithms in an ideal situation. From HIL, the real 

Euler angles are known. The attitude considers the 

error in the DCM (here 𝑇𝐵𝐸) instead of the error of 

Euler angles. The aircraft orientation in the second 

camera frame can now be represented in two 

different ways: 

TBE
′ = TΔTBE(𝑐𝑎𝑚) from the camera 

TBE
′ = (𝐼 + [𝛿𝐸^])TBE(−) from the GPS/IMU.  

Here TBE(𝑐𝑎𝑚) is the rotation matrix related to 

the first camera frame. TBE(−) is the rotation 

matrix predicted from actual IMU data. 𝛿𝐸 is the 

vector representing rotation errors and [𝛿𝐸^] is the 

skew-symmetric matrix created from it. Comparing 

the two equations [𝛿𝐸^] can be expressed: 

TΔTBE(𝑐𝑎𝑚)(TBE(−))𝑇 –I=[𝛿𝐸^]′ 

Of course, because of measurement and 

numerical errors [𝛿𝐸^]′ will not be skew-

symmetric (this is denoted by ()′). But it can be 

made skew-symmetric with the following 

transformation: 

[𝛿𝐸^] =
[𝛿𝐸^]′ − ([𝛿𝐸^]′)𝑇

2
 

From [𝛿𝐸^] the rotation error terms can be 

directly incorporated into the attitude estimator 

algorithm as measurements. 

With the inclusion of camera data three 

working modes should be defined in the attitude 

estimator considering 5Hz GPS and 50Hz camera 

data: 

1. Only GPS data, correction with GPS 

measurement 

2. Only camera data, correction with camera 

measurement 

3. Both GPS and camera data, correction with 

both of them 

This means that the measurement equations of 

the attitude estimator Extended Kalman Filter 

(EKF) are changing according to the available data. 

In this application only the first and third modes are 

used, because the second mode needs some 

reformulation or tuning according to the simulation 

results. 

B. Coupled GPS/IMU/Camera attitude estimator 

Results 

Two examples are shown here. First the 

GPS/IMU solution and the error against the ground 

truth is plotted (Figure 15. and Figure 16.), and then 

the results of the homography and five point 

algorithm run with the random noise case are 

shown (Figure 17. and Figure 18.). In both the 

homography and the five point cases the sample 

time is minimum, that is 20ms, the CPAR is 0.093, 

and the sinusoidal path is used. For the five point 

algorithm only the errors are plotted (Figure 18.), 

because the angle comparison is very similar to the 

homography. 

The comparison of the GPS/IMU results with 

the GPS/IMU/Camera solution shows that the latter 

has a better precision as with the inclusion of the 

Camera data the bias of the pitch estimation is 

removed. 



 

 

  
Figure 15. The result of the GPS/IMU fusion with respect to 

the ground truth; with red solid line the ground truth and with 

blue dashed line the result of the EKF; The bias in the pitch 

value can be seen in the middle figure 

 
Figure 16. The error of the GPS/IMU fusion with respect to 

the ground truth 

 

 

 
Figure 17.The result of the GPS/IMU/Camera fusion with the 

homography with respect to the ground truth; with red solid 

line the ground truth and with blue dashed line the result of 

the EKF; The pitch bias is eliminated 

The comparison of the homography and the 

five point algorithm shows that the homography is 

indeed less affected by the noise as it was stated in 

III.E. The yaw angle error is less for the 

homography and the other two angles are at the 

same level. (Figure 19.) 
  



 

 
Figure 18. The Euler angle error of the GPS/IMU/Camera 

fusion with respect to the ground truth; top the results of the 

homography, bottom the results of the five point algorithm; 

the trends are similar 

 

Figure 19. The yaw error of the GPS/IMU/Camera fusion 

with respect to the ground truth 

V. CONCLUSIONS 

In this paper the error analysis of four image 

processing algorithms targeting the reconstruction 

of camera orientation change is introduced. It is 

shown how the change of the spatial or temporal 

resolution as well as random noise affects these 

algorithms. It can be stated that the homography 

algorithm can be used in those situations where the 

computational power is restricted. If the precision 

is important than either the five point algorithm and 

the homography can be used keeping in mind the 

effect of translation and the pixelization. 

Another contribution of the paper is the 

presentation of our first results with a coupled 

GPS/IMU/Camera based attitude estimator 

algorithm. It is shown that the inclusion of image 

based attitude changes can remove the bias error 

from pitch estimation of the GPS/IMU algorithm 

and so improve precision. 

The next steps in the development will be the 

activation of mode 2 which means measurement 

correction based solely on camera orientation 

change and test and tuning based-on real flight data. 

The analysis of image processing algorithms 

can be broadened to test others, for example a more 

advanced RANSAC variant. Other opportunity is 

the investigation of the effect of outliers in the 

paired feature points. 
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