20 research outputs found

    Orientable ℤ \u3c inf\u3e n -distance magic labeling of the Cartesian product of many cycles

    Get PDF
    The following generalization of distance magic graphs was introduced in [2]. A directed ℤn- distance magic labeling of an oriented graph G = (V,A) of order n is a bijection ℓ: V → ℤn with the property that there is a μ ∈ ℤn (called the magic constant) such that If for a graph G there exists an orientation G such that there is a directed ℤn-distance magic labeling ℓ for G, we say that G is orientable ℤn-distance magic and the directed ℤn-distance magic labeling ℓ we call an orientable ℤn-distance magic labeling. In this paper, we find orientable ℤn- distance magic labelings of the Cartesian product of cycles. In addition, we show that even-ordered hypercubes are orientable ℤn-distance magic

    Orientable Z_n-distance Magic Labeling of the Cartesian Product of Many Cycles

    Get PDF
    The following generalization of distance magic graphs was introduced in [2]. A directed Z_n-distance magic labeling of an oriented graph G=(V,A)\overrightarrow{G}=(V,A) of order n is a bijection  ⁣:VZn\overrightarrow{\ell}\colon V \rightarrow Z_n with the property that there is a μZn\mu \in Z_n (called the magic constant) such that w(x)= \sum_{y\in N_{G}^{+}(x)} \overrightarrow{\ell}(y) - \sum_{y\in N_{G}^{-}(x)} \overrightarrow{\ell}(y)= \muforeveryxV(G).IfforagraphGthereexistsanorientation for every x \in V(G). If for a graph G there exists an orientation \overrightarrow{G}suchthatthereisadirectedZndistancemagiclabeling such that there is a directed Z_n-distance magic labeling \overrightarrow{\ell}for for \overrightarrow{G},wesaythatGisorientableZndistancemagicandthedirectedZndistancemagiclabeling, we say that G is orientable Z_n-distance magic and the directed Z_n-distance magic labeling \overrightarrow{\ell}$ we call an orientable Z_n-distance magic labeling. In this paper, we find orientable Z_n-distance magic labelings of the Cartesian product of cycles. In addition, we show that even-ordered hypercubes are orientable Z_n-distance magic

    On the Graceful Game

    Get PDF
    A graceful labeling of a graph GG with mm edges consists of labeling the vertices of GG with distinct integers from 00 to mm such that, when each edge is assigned as induced label the absolute difference of the labels of its endpoints, all induced edge labels are distinct. Rosa established two well known conjectures: all trees are graceful (1966) and all triangular cacti are graceful (1988). In order to contribute to both conjectures we study graceful labelings in the context of graph games. The Graceful game was introduced by Tuza in 2017 as a two-players game on a connected graph in which the players Alice and Bob take turns labeling the vertices with distinct integers from 0 to mm. Alice's goal is to gracefully label the graph as Bob's goal is to prevent it from happening. In this work, we study winning strategies for Alice and Bob in complete graphs, paths, cycles, complete bipartite graphs, caterpillars, prisms, wheels, helms, webs, gear graphs, hypercubes and some powers of paths

    Combinatorial Structures in Hypercubes

    Get PDF

    Distance magic-type and distance antimagic-type labelings of graphs

    Get PDF
    Generally speaking, a distance magic-type labeling of a graph G of order n is a bijection f from the vertex set of the graph to the first n natural numbers or to the elements of a group of order n, with the property that the weight of each vertex is the same. The weight of a vertex x is defined as the sum (or appropriate group operation) of all the labels of vertices adjacent to x. If instead we require that all weights differ, then we refer to the labeling as a distance antimagic-type labeling. This idea can be generalized for directed graphs; the weight will take into consideration the direction of the arcs. In this manuscript, we provide new results for d-handicap labeling, a distance antimagic-type labeling, and introduce a new distance magic-type labeling called orientable Gamma-distance magic labeling. A d-handicap distance antimagic labeling (or just d-handicap labeling for short) of a graph G=(V,E) of order n is a bijection f from V to {1,2,...,n} with induced weight function w(x_{i})=\underset{x_{j}\in N(x_{i})}{\sum}f(x_{j}) \] such that f(x_{i})=i and the sequence of weights w(x_{1}),w(x_{2}),...,w(x_{n}) forms an arithmetic sequence with constant difference d at least 1. If a graph G admits a d-handicap labeling, we say G is a d-handicap graph. A d-handicap incomplete tournament, H(n,k,d) is an incomplete tournament of n teams ranked with the first n natural numbers such that each team plays exactly k games and the strength of schedule of the ith ranked team is d more than the i+1st ranked team. That is, strength of schedule increases arithmetically with strength of team. Constructing an H(n,k,d) is equivalent to finding a d-handicap labeling of a k-regular graph of order n. In Chapter 2 we provide general constructions for every d at least 1 for large classes of both n and k, providing breadth and depth to the catalog of known H(n,k,d)\u27s. In Chapters 3 - 6, we introduce a new type of labeling called orientable Gamma-distance magic labeling. Let Gamma be an abelian group of order n. If for a graph G=(V,E) of order n there exists an orientation of G and a companion bijection f from V to Gamma with the property that there is an element mu in Gamma (called the magic constant) such that \[ w(x)=\sum_{y\in N_{G}^{+}(x)}\overrightarrow{f}(y)-\sum_{y\in N_{G}^{-}(x)}\overrightarrow{f}(y)=\mu for every x in V where w(x) is the weight of vertex x, we say that G is orientable Gamma-distance magic}. In addition to introducing the concept, we provide numerous results on orientable Z_n distance magic graphs, where Z_n is the cyclic group of order n. In Chapter 7, we summarize the results of this dissertation and provide suggestions for future work

    A SURVEY OF DISTANCE MAGIC GRAPHS

    Get PDF
    In this report, we survey results on distance magic graphs and some closely related graphs. A distance magic labeling of a graph G with magic constant k is a bijection l from the vertex set to {1, 2, . . . , n}, such that for every vertex x Σ l(y) = k,y∈NG(x) where NG(x) is the set of vertices of G adjacent to x. If the graph G has a distance magic labeling we say that G is a distance magic graph. In Chapter 1, we explore the background of distance magic graphs by introducing examples of magic squares, magic graphs, and distance magic graphs. In Chapter 2, we begin by examining some basic results on distance magic graphs. We next look at results on different graph structures including regular graphs, multipartite graphs, graph products, join graphs, and splitting graphs. We conclude with other perspectives on distance magic graphs including embedding theorems, the matrix representation of distance magic graphs, lifted magic rectangles, and distance magic constants. In Chapter 3, we study graph labelings that retain the same labels as distance magic labelings, but alter the definition in some other way. These labelings include balanced distance magic labelings, closed distance magic labelings, D-distance magic labelings, and distance antimagic labelings. In Chapter 4, we examine results on neighborhood magic labelings, group distance magic labelings, and group distance antimagic labelings. These graph labelings change the label set, but are otherwise similar to distance magic graphs. In Chapter 5, we examine some applications of distance magic and distance antimagic labeling to the fair scheduling of tournaments. In Chapter 6, we conclude with some open problems

    A Creative Review on Coprime (Prime) Graphs

    Get PDF
    Coprime labelings and Coprime graphs have been of interest since 1980s and got popularized by the Entringer-Tout Tree Conjecture. Around the same time Newman's coprime mapping conjecture was settled by Pomerance and Selfridge. This result was further extended to integers in arithmetic progression. Since then coprime graphs were studied for various combinatorial properties. Here, coprimality of graphs for classes of graphs under the themes: Bipartite with special attention to Acyclicity, Eulerian and Regularity. Extremal graphs under non-coprimality and Eulerian properties are studied. Embeddings of coprime graphs in the general graphs, the maximum coprime graph and the Eulerian coprime graphs are studied as subgraphs and induced subgraphs. The purpose of this review is to assimilate the available works on coprime graphs. The results in the context of these themes are reviewed including embeddings and extremal problems

    Combinatorics and Geometry of Transportation Polytopes: An Update

    Full text link
    A transportation polytope consists of all multidimensional arrays or tables of non-negative real numbers that satisfy certain sum conditions on subsets of the entries. They arise naturally in optimization and statistics, and also have interest for discrete mathematics because permutation matrices, latin squares, and magic squares appear naturally as lattice points of these polytopes. In this paper we survey advances on the understanding of the combinatorics and geometry of these polyhedra and include some recent unpublished results on the diameter of graphs of these polytopes. In particular, this is a thirty-year update on the status of a list of open questions last visited in the 1984 book by Yemelichev, Kovalev and Kravtsov and the 1986 survey paper of Vlach.Comment: 35 pages, 13 figure
    corecore