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Abstract

Generally speaking, a distance magic-type labeling of a graph G of order n is a

bijection ` from the vertex set of the graph to the first n natural numbers or to the

elements of a group of order n, with the property that the weight of each vertex is the

same. The weight of a vertex x is defined as the sum (or appropriate group operation)

of all the labels of vertices adjacent to x. If instead we require that all weights differ,

then we refer to the labeling as a distance antimagic-type labeling. This idea can be

generalized for directed graphs; the weight will take into consideration the direction

of the arcs.

In this manuscript, we provide new results for d-handicap labeling, a distance

antimagic-type labeling, and introduce a new distance magic-type labeling called

orientable Γ-distance magic labeling.

A d-handicap distance antimagic labeling (or just d-handicap labeling for short) of a

graph G = (V,E) of order n is a bijection ` : V → {1, 2, ..., n} with induced weight

function

w(xi) =
∑

xj∈N(xi)

`(xj)

such that `(xi) = i and the sequence of weights w(x1), w(x2), ..., w(xn) forms an

arithmetic sequence with constant difference d ≥ 1. If a graph G admits a d -handicap

xvii



labeling, we say G is a d-handicap graph.

A d-handicap incomplete tournament, H (n, k, d) is an incomplete tournament of n

teams ranked with the first n natural numbers such that each team plays exactly k

games and the strength of schedule of the ith ranked team is d more than the i+ 1st

ranked team. That is, strength of schedule increases arithmetically with strength of

team. Constructing an H (n, k, d) is equivalent to finding a d-handicap labeling of a

k-regular graph of order n.

In Chapter 2 we provide general constructions for every d ≥ 1 for large classes of both

n and k, providing breadth and depth to the catalog of known H (n, k, d)’s.

In Chapters 3 - 6, we introduce a new type of labeling called orientable Γ-distance

magic labeling. Let Γ be an abelian group of order n. If for a graph G = (V,E) of

order n there exists an orientation
−→
G(V,A) and a companion bijection

−→
` : V → Γ

with the property that there is a µ ∈ Γ (called the magic constant) such that

w(x) =
∑

y∈N+
G (x)

−→
` (y)−

∑
y∈N−G (x)

−→
` (y) = µ for every x ∈ V (G),

where w(x) is the weight of vertex x, we say that G is orientable Γ-distance magic.

In addition to introducing the concept, we provide numerous results on orientable

Zn-distance magic graphs, where Zn is the cyclic group of order n.

xviii



In Chapter 7, we summarize the results of this dissertation and provide suggestions

for future work.
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Chapter 1

Introduction

For many members of society, “recreational mathematics” may sound like an oxy-

moron. Nevertheless, people have found entertainment in mathematical puzzles for

time immemorial. In fact, all one has to do is page through a newspaper to find

evidence that modern society still embraces recreational mathematics (e.g. Sudoku).

One of the most popular and oldest sources of recreational mathematics provides the

motivation for this study. A magic square is an n × n array containing the first n2

natural numbers without repeats such that all entries in each row, each column, main

diagonal, or back diagonal have the same sum. As all things so ancient, the origin

of the magic square is up for debate. Magic squares appear as early as 4,000 years

ago in Chinese folklore. According to legend, a turtle adorned with a representation

1



of the Lo Shu 3 × 3 magic square from Figure 1.1 emerged from the Yellow River,

forever imbibing magic squares into Chinese culture.4 9 2
3 5 7
8 1 6


Figure 1.1: The Lo Shu square

Benjamin Franklin is most well known for his colorful proverbs, but he also con-

structed magic squares. After constructing an incredible 16 × 16 magic square, he

proclaimed it to be, “the most magically magical of any magic square ever made by

any magician [34].” He was possibly referring to other properties that his square pos-

sessed such as; all the entries in every half row or half column have the same sum, all

the entries in every 4× 4 subsquare have the same sum, and all entries in each bent

diagonal have constant sum.

The idea of constructing square arrays with constant row and column sum can be

generalized to rectangles. A magic rectangle is an m × n array containing the first

mn natural numbers such that the sum of all the entries in each row is ρ and the sum

of all the entries in each column is σ, for some ρ and σ. It is an easy exercise to show

that if such an m×n magic rectangle exists, then ρ = n(mn+1)
2

and σ = m(mn+1)
2

, since

1 + 2 + ...+mn = mn(mn+1)
2

.

Magic squares and magic rectangles can be constructed using another popular and

prevalent combinatorial object. A Latin square of order n is an n×n array containing

2



n symbols such that each symbol appears exactly once in every row and every column.

For example, a completed Sudoku puzzle is a Latin square of order 9. Also, the Cayley

table of any finite group of order n is a Latin square of order n. In Chapter 5, Latin
A D C B
B A D C
C B A D
D C B A


Figure 1.2: A Latin square of order 4

squares will play a key role in labeling the vertices of a graph.

We now turn our attention to graphs. A graph, G = (V,E) is an ordered pair where

V is a set of elements called vertices and E is a collection of two element subsets

of V called edges. V and E are called the vertex set and edge set, respectively and

sometimes the notation V (G) and E(G) are used, respectively. If |V | = n, we say the

order of G is n. An assignment of a direction to the edges may also be considered.

An orientation of a graph G = (V,E) is an assignment of a direction to each edge,

turning G into a directed graph
−→
G = (V,A). A graph can be visualized by drawing

a point for each vertex and connecting two points with a line segment whenever the

two points represent an edge. A directed edge may be visualized by using an arrow

instead of a line segment.

Example 1.0.1. The graph G = (V,E), where V = {0, 1, 2, 3} and E =

{{0, 1}, {1, 2}, {2, 3}, {0, 2}} is shown in Figure 1.3. Figure 1.4 shows one possible

orientation of G.
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0 1

23

Figure 1.3: A visual representation of graph G

0 1

23

Figure 1.4: An orientation of G

We will use the standard notations xy to denote the edge {x, y} and x ∼ y to denote

the phrase, “x is adjacent to y.” For a vertex x, the set of all vertices y such that

x ∼ y is called the neighborhood of x and we denote it by N(x). For an oriented graph

−→
G , let N+(x) = {y ∈ V : −→yx ∈ A} and N−(x) = {z ∈ V : −→xz ∈ A} for all x ∈ V (G).

A graph is simple if it contains no edge of the form vv for some v ∈ V and if E

contains no edge more than once. Let G = (V,E) be a simple graph and let C denote

all possible two element subsets of V . Then the graph H = (V,C \ E) is called the

complement of G and we use the notation H = G. For two graphs G = (V,E) and

H = (V,E ′) with the same vertex set, by G + H we mean the graph with vertex set

V and edge set E ∪ E ′. Similarly, G − H will denote the graph with vertex set V

and edge set E ∩E ′, where E ′ is the set complement of E ′. Two graphs G and H are

isomorphic, and we write G ∼= H, if there is a bijection f : V (G)→ V (H) such that

xy ∈ E(G) if and only if f(x)f(y) ∈ E(H). We leave it as an exercise for the reader

to verify that the graph shown in Figure 1.5 is isomorphic to its complement.

4



Figure 1.5: spikedmath.com/580.html

Some graphs are used so commonly they warrant special notation. The complete

graph of order n, denoted Kn is the unique simple graph containing every possible

edge. The complete multipartite graph, Kn1,n2,...,nk
is a graph on n = n1 +n2 + ...+nk

vertices which have been partitioned into k partite sets of size ni for i = 1, 2, ..., k

such that xy ∈ E(Kn1,n2,...,nk
) if and only if x and y are in different partite sets. A

path on n vertices, Pn is a sequence of n− 1 edges such that every pair of consecutive

edges in the sequence share exactly one vertex. Figure 1.6 shows a representation of

P4.

Figure 1.6: A path, P4

A cycle of length n, Cn is the simple graph of order n with vertex set V =

{x1, x2, ..., xn} and edge set E = {xixi+1 : 1 ≤ i ≤ n}, where the addition in

the indices is performed modulo n. For example, the graph in Figure 1.5 is iso-

morphic to C5. Let 0 ≤ d1 < d2 < ... < dm ≤ bn/2c . The circulant graph

Cn(d1, d2, ..., dm) is a graph with vertex set V = {x0, x1, ..., xn−1} and edge set

5



E = {xixi+dj : 1 ≤ i ≤ n, 1 ≤ j ≤ m} with addition in the indices performed

modulo n. Figure 1.7 shows the circulant graph C8(1, 4).

Figure 1.7: The circulant graph, C8(1, 4)

A graph H is a subgraph of the graph G if V (H) ⊆ V (G) and E(H) ⊂ E(G). We say

H is a spanning subgraph of G if V (H) = V (G). A k-factor of a graph G is a spanning

k -regular subgraph of G. A k-factorization of G is a partitioning of E(G) into disjoint

k -factors. If the graph G admits a k -factorization, we say G is k-factorable. When

k = 1, we call the 1-factorization a perfect matching. Figure 1.8 shows a perfect

matching of K4. Each color class is a 1-factor.

Figure 1.8: A perfect matching of K4

Graphs may be combined using a variety of products. In the chapters that follow

we will use four products, all of which are presented in [32]. All four, the Cartesian

6



product G�H, direct product G×H, the strong product G�H, and the lexicographic

product G ◦H, are graphs with the vertex set V (G)× V (H). Two vertices (g, h) and

(g′, h′) are adjacent in:

• G×H if g ∼ g′ in G and h ∼ h′ in H;

• G�H if g = g′ and h ∼ h′ in H, or h = h′ and g ∼ g′ in G;

• G�H if either g = g′ and h ∼ h′ in H, or h = h′ and g ∼ g′ in G, or g ∼ g′ in

G and h ∼ h′ in H;

• G ◦H if and only if either g ∼ g′ in G or g = g′ and h ∼ h′ in H.

For a fixed vertex g of G, the subgraph of either of the above products induced by

the set {(g, h) : h ∈ V (H)} is called an H-layer and is denoted Hg. Similarly, if

h ∈ V (H) is fixed, then Gh, the subgraph induced by {(g, h) : g ∈ V (G)}, is called a

G-layer. Interestingly, when the vertices of the product of two paths are arranged in

the natural grid layout, the edges form a pattern akin to the symbol used to denote

the product, with the exception of the lexicographic product. Figure 1.9 shows the

Cartesian product P2�C4. Notice the graph is composed of 4 isomorphic P2-layers

running vertically and 3 isomorphic C4-layers running horizontally.

Observe that of the products defined above, only the lexicographic product is not

necessarily commutative. The lexicographic product G◦H is sometimes also referred

7



Figure 1.9: P2�C4

to as graph composition and denoted G [H]. The following informal description may

be helpful to construct the graph G ◦H. Replace each vertex of G with an isomor-

phic copy of H. Then for every xy ∈ E(G), construct the complete bipartite graph

K|V (H)|,|V (H)| between the corresponding copies of H. Through this construction, one

can see how a graph may be expressed via the lexicographic product. For example,

K3,3,3,3
∼= K4 ◦K3.

Let G = (V,E) be given. A graph labeling of G is an assignment of integers or group

elements to the elements of V , E, or V ∪ E satisfying certain prescribed properties.

Credit for introducing the concept of graph labeling is most often given to Alex Rosa

who in 1967 used it as a means for decomposing complete graphs into isomorphic

subgraphs [42]. For a graph G on m edges, Rosa defined a β-valuation as an injection

from the vertices of G to the set {0, 1, ...,m − 1} such that for every edge xy, the

induced edge labels |f(x) − f(y)| are all distinct. The term graceful labeling is now

almost exclusively used for this kind of labeling. Determining which graphs allow

a graceful labeling provided the jumping off point for graph labeling research that

8



continues fifty years later. Gallian maintains an online survey of results in graph

labeling containing over 1,200 references [31].

Since Rosa applied graceful labelings to decompose graphs, many applications of

graph labeling have been found, fueling a staggering amount of research. Some appli-

cation areas include coding theory, communication networks, radar, and x-ray crys-

tallography [39]. One application we will consider in Chapter 2 is tournament design.

The focus of this manuscript is on a family of graph labelings called distance

magic/antimagic-type labelings. Let G be a simple, undirected graph on n vertices.

Let ` be a bijection ` : V (G) → {1, 2, ..., n}, and define for every vertex x ∈ V (G),

the weight of x, w(x) =
∑

y∈N(x)

`(y). If the weight of every vertex is equal to the same

number k, called the magic constant, then we say ` is a distance magic labeling of

G. If such a labeling can be found, we say that G is distance magic. If instead it is

required that all weights differ, then we say ` is a distance antimagic labeling of G. If

such a labeling can be found, we say that G is distance antimagic. Figure 1.10 shows

a distance magic labeling of the circulant graph C8(1, 3). Notice the weight of every

vertex is 18.

A d-handicap distance antimagic labeling (or d-handicap labeling for short) of a graph

9



3

4
8

7

6

5
1

2

Figure 1.10: Distance magic labeling of C8(1, 3).

G = (V,E) of order n is a bijection ` : V → {1, 2, ..., n} with induced weight function

w(xi) =
∑

xj∈N(xi)

`(xj),

such that `(xi) = i and the sequence of weights w(x1), w(x2), ..., w(xn) forms an

arithmetic sequence with constant difference d ≥ 1. If a graph G admits a d -handicap

labeling, we say G is a d-handicap graph.

Let Γ be an abelian group of order n with operation +. For two elements g, h ∈ Γ, we

use the notation g − h to mean g + h−1, where h−1 is the additive inverse of h. Also,

for repeated addition g + g + ... + g, where g appears k times, we use the notation

kg. Let G = (V,E) be a simple graph of order n. Let ` be a bijection ` : V (G)→ Γ.

If there exists µ ∈ Γ such that

w(x) =
∑

y∈N(x)

`(y) = µ,

10



for all vertices x ∈ V (G), then we say G is Γ-distance magic. Clearly, if G is distance

magic, then it is also Zn-distance magic (where Zn denotes the cyclic group of order

n), but the converse is not necessarily true.

A directed Γ-distance magic labeling of an oriented graph
−→
G(V,A) of order n is a

bijection
−→
` : V → Γ with the property that there is a γ ∈ Γ, such that

w(x) =
∑

y∈N+
G (x)

−→
` (y)−

∑
y∈N−G (x)

−→
` (y) = γ for every x ∈ V.

If a graph G admits an orientation
−→
G for which a directed Γ-distance magic labeling

−→
` exists, we say that G is orientable Γ-distance magic and we call the directed

Γ-distance magic labeling
−→
` an orientable Γ-distance magic labeling.

One of the most interesting applications of distance magic/antimagic-type labelings is

designing tournaments on ranked teams. Suppose we wish to construct a tournament

of n teams ranked with the first n natural numbers. In practice, this ranking is usually

based on previous performance. Let 1 be the weakest team, 2 be the second weakest

team, and so on, so that n is the strongest team. The tournament may be modeled

with a graph G in the most natural way; each team is represented by a vertex and

xy ∈ E(G) if and only if team x plays team y in the tournament. Define the strength

of schedule of each team x as S(x) =
∑

y∈N(x)

f(y), where f(y) is the ranking of team y.

An equalized incomplete tournament, EIT[n, k] is a tournament in which every team

11



plays exactly k < n − 1 games and S(x) = µ, for some constant µ and every team

x. Therefore, constructing an EIT[n, k] is equivalent to finding a k-regular distance

magic graph of order n. In an equalized incomplete tournament, the strongest teams

should fare better than the weaker teams, since the strength of schedule is the same

for all teams. This observation motivates the next tournament type, designed to assist

the weaker teams.

A d -handicap incomplete tournament, H(n, k, d) is a tournament in which every team

plays exactly k < n − 1 games and the strength of schedule of the ith ranked team

is d more than the (i + 1)st ranked team. That is, strength of schedule increases d-

arithmetically with strength of team. Observe that finding an H(n, k, d) is equivalent

to finding a k-regular d-handicap graph, G of order n. We now have all the tools and

basic notions required to proceed to Chapter 2.
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Chapter 2

d-Handicap tournaments?

2.1 Motivation

When scheduling a tournament, it is common practice to use the rankings of the teams

from the previous season, or some other source to determine the list of opponents for

each team. A tournament may be modeled with a graph in the most natural way;

each team is represented with a vertex and two vertices are adjacent if and only if

the corresponding two teams play each other.

Suppose we have n teams ranked with the first n natural numbers and let i be the

team ranked i. For i ∈ {1, 2, ..., n}, let w(i) represent the sum of the rankings of all

?The material in this chapter has been submitted to Discrete Mathematics
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opponents of team i. We call w the strength of schedule. In a round-robin tournament

(a tournament in which every team plays all other teams), w(i) = n(n+1)
2
− i for each

i. Since MwMi = −1, the strengths of schedules form an arithmetic progression with

difference −1 in a round-robin tournament. Therefore, the weakest team has the

most difficult strength of schedule while the strongest team has the weakest strength

of schedule. Clearly, the strongest team is most likely to benefit from this kind of

tournament. This motivates the following questions that are of interest for both

tournament scheduling reasons and purely graph theoretic reasons.

• Can we design a tournament with less games, but maintain the same weight

structure as the round-robin tournament?

• Can we design a tournament so each team has the same strength of schedule?

• Can we turn things around so that the weakest team has the weakest strength

of schedule?

Clearly, to address these questions, one must consider only incomplete tournaments,

that is tournaments in which each team plays exactly k < n− 1 other teams (unless

otherwise noted, it is assumed that all the tournaments discussed here are regular

tournaments). A fair incomplete tournament is an incomplete tournament where

Mw
Mi = −1 for every team i. These tournaments address the first question above. See

[22, 29] for results regarding fair incomplete tournaments.
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Equalized incomplete tournaments address the second question above. An equalized

incomplete tournament is an incomplete tournament such that w(i) = µ, for some

constant µ, for every team i. The corresponding graph is called a distance magic

graph. A distance magic labeling of a simple graph G = (V,E) of order n is a

bijection f : V → {1, 2, ..., n} such that there exists an integer µ called the magic

constant, so that w(x) =
∑

y∈N(x)

f(y) = µ for all x ∈ V . Here N(x) = {y|xy ∈ E}

represents the open neighborhood of x.

The last question is addressed by a d -handicap tournament. A d-handicap distance

antimagic labeling (or d-handicap labeling for short) of a graph G = (V,E) of order

n is a bijection l` : V → {1, 2, ..., n} with induced weight function

w(xi) =
∑

xj∈N(xi)

`(xj),

such that `(xi) = i and the sequence of weights w(x1), w(x2), ..., w(xn) forms an

arithmetic sequence with constant difference d ≥ 1. If a graph G admits a d -handicap

labeling, we say G is a d-handicap graph. If G is k -regular, then we say G corresponds

to a k-regular d-handicap tournament, and we denote it by H (n, k, d). For d = 1,

the existence for n even has recently been settled for every pair (n, k) (see Theorem

2.5.1) [30] . For d = 1 and n odd, the existence of a 1-handicap tournament with

at least one value of k is settled [28]. For d = 2, one class of n has been completely

settled and one class partially settled (see Theorems 2.4.1, 2.4.2) [20, 21, 26].
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A similar but less restrictive labeling has been considered by Arumugam and Ka-

matchi in [6]. An (a, d)-distance antimagic labeling of a graph G = (V,E) of order n

is a bijection l : V → {1, 2, ..., n} with induced weight function

w(xi) =
∑

xj∈N(xi)

l(xj),

such that the weights form the set {a, a+ d, a+ 2d, ..., a+ (n− 1)d} for some fixed

integers a and d ≥ 0. Therefore, a d -handicap distance antimagic labeling is an

(a, d)-distance magic labeling, but the converse is not necessarily true.

In this chapter we provide necessary conditions for the existence of d-handicap tour-

naments, H(n, k, d), and construct such tournaments for large classes of n and a wide

range of regularities k, for every d ≥ 1. Corollaries of our main result include com-

plete characterizations of 1-handicap tournaments for n ≡ 0 (mod 8) and 2-handicap

tournaments for n ≡ 0 (mod 16), although both results were known [20, 43]. For

larger d, our construction provides a nearly complete characterization for appropriate

classes of n.

For a survey of distance magic and antimagic labelings, see [5]. The survey also

provides a summary of the results regarding the tournaments we have discussed in

this section.
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2.2 Definitions, notation, and tools

All graphs in this chapter are simple, finite graphs. We use the notation V (G) to

denote the vertex set of G and the notation E (G) to denote the edge set of G. If

|V (G)| = n, we say the graph G has order n. The neighborhood of a vertex x ∈ V (G),

denoted N(x) or NG(x), is the set of all vertices in V (G) adjacent to x.

We use the notation xy to denote an edge between vertex x and vertex

y and the notation x ∼ y to mean x is adjacent to y. Let Kn,m =

[x1, x2, ..., xn | y1, y2,..., ym] denote the complete bipartite graphKn,m with partite sets

{x1, x2, ..., xn} and {y1, y2, ..., ym}. Let K(n;d) denote the complete equipartite graph

with d partite sets of size n. For two graphs G and H, we use the notation G + H

to denote the union of graphs G and H. That is, V (G+H) = V (G) ∪ V (H) and

E (G+H) = E(G) ∪ E(H). The complement of G is denoted by G.

The constructions used in this chapter utilize two graph products. Given two

graphs G and H, both products, the lexicographic product, G ◦H, and the Cartesian

product, G�H, have vertex set V (G) × V (H) and two vertices (g1, h1) and (g2, h2)

are adjacent in

17



• G ◦H if and only if g1 ∼ g2 in G or g1 = g2 and h1 ∼ h2 in H,

• G�H if and only if g1 = g2 and h1 ∼ h2 in H, or h1 = h2 and g1 ∼ g2 in G.

The lexicographic product G ◦H has sometimes been called graph composition and

has also been denoted G (H). To construct the graph G ◦H, the following informal

description may be helpful. First, replace each vertex of G with an isomorphic copy

of H. Then for every xy ∈ E(G), construct the complete bipartite graph K|V (H)|,|V (H)|

between the corresponding copies of H. For the graph G ◦ K2, we will refer to each

pair of isolated vertices which replace a vertex of G as blown-up vertices. For a

fixed vertex g of G, the subgraph of either of the above products induced by the set

{(g, h) : h ∈ V (H)} is called an H-layer and is denoted Hg. Similarly, if h ∈ V (H)

is fixed, then Gh, the subgraph induced by {(g, h) : g ∈ V (G)}, is a G-layer.

Circulant graphs are nice candidates for constructing tournaments since they are

vertex-transitive, regular, and can easily be manipulated to be more or less dense.

Let S = {d1, d2, ..., dm} and 1 ≤ d1 < d2 < ... < dm ≤
⌊
m
2

⌋
. We call S the

connection set. Then the circulant graph G = Cn (S) is a graph with vertex set

V (G) = {x0, x1, ..., xn−1} and two vertices xi and xj are adjacent in G if and only

if i− j ≡ dk (mod n) for some k ∈ {1, 2, ...,m}. Froncek and Cichacz in [15] showed

certain classes of circulant graphs are distance magic.

A 1-factor or perfect matching of a graph G is a union of disjoint edges xy ∈ E(G)
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such that every vertex v ∈ V (G) appears exactly once in the union. If for a graph G

the edge set E (G) can be partitioned into a disjoint union of 1-factors, then we say

G is 1-factorable.

Let S = {a, a + 1, a + 2, ..., b} be a set of consecutive integers for integers a, b such

that a ≤ b. If α, β ∈ S such that α + β = a + b, we will refer to the numbers α and

β as S-complements, or simply complements if the set is clear from the context. It is

obvious that if |S| is even, then S can be partitioned into complement pairs.

We finish this section by introducing the main mechanism for increasing the density

of a d -handicap graph. To the authors’ knowledge, this derived graph was first used

by Shepanik in his master’s thesis in which he coined it a, “bubble graph [43] .”

Let G be a simple k -regular graph of even order n. Let a bijective labeling l :

V (G)→ {1, 2, ..., n} be given and define the weight of a vertex, w(i) =
∑

y∈N(i)

l(y) for

all i ∈ V (G). Then, the bubble graph of G, denoted B (G), is a simple graph with

vertex set

V (B(G)) = {(a,A) : a,A ∈ V (G), l(a) + l(A) = n+ 1, l(a) < l(A)}

and (a,A) (b, B) ∈ E(B(G)) if and only if {ab, aB,Ab,AB} ∩ E(G) is non-empty.

Observe that every edge (a,A) (b, B) ∈ E(B(G)) represents the K2,2 = [a,A | b, B]

19



which may be added to E (G) so that degG (i) = k + 2 and wG (i) is increased by

n + 1, for all i ∈ {a,A, b, B}. Therefore, each 1-factor of B(G) (if one exists) gives

rise to a 2-regular distance magic factor, H which may be added to G, increasing the

regularity of G by two while adding the same weight to every vertex.

In order to simplify notation, we may sometimes refer to a vertex by its label. This

should not cause any confusion since the labelings considered in this chapter are

bijections.

2.3 Necessary conditions and lemmas

We begin with some necessary conditions.

Theorem 2.3.1. If an H (n, k, d) exists, then

1. w(xi) = di+ (k−d)(n+1)
2

, for all i ∈ {1, 2, ..., n}.

2. If n is even, then k ≡ d (mod 2).

3. If n is odd, then k ≡ 0 (mod 2).

4. n ≥
⌈
2
(
d+ 1 +

√
d(d+ 1)

)⌉
.

5.
⌈
n−2−

√
D

2

⌉
≤ k ≤

⌊
n−2+

√
D

2

⌋
, whereD = (n− 2)2 − 4d(n− 1).
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Proof. Let G ∼= H (n, k, d) be given for some n, k, and d with d -handicap distance

antimagic labeling l(xi) = i. Then w(xi) = µ + di for all i ∈ {1, 2, ..., n} and some

integer µ. Then summing the weights, we have

w(G) =
n∑
i=1

w(xi) = µn+ d

n∑
i=1

i

and

w(G) = k

n∑
i=1

i,

since G is k -regular. Therefore,

µ =
k − d
n

n∑
i=1

i =
(k − d)(n+ 1)

2
.

If n is even, then k − d must be even (recall µ is an integer), which implies k ≡

d (mod 2). If n is odd, then obviously k ≡ 0 (mod 2), so we have proven 1, 2 and 3.

The weight of 1 is at least as large as the sum of the smallest k possible neighbors.

Therefore,

w(x1) = d+
(k − d)(n+ 1)

2
≥

k∑
i=1

(i+ 1) = k +
k(k + 1)

2
.

Hence,

−k2 + k(n− 2)− d(n− 1) ≥ 0.
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The discriminant, D = (n− 2)2 − 4d(n− 1) ≥ 0 which implies

n ≥
⌈
2
(
d+ 1 +

√
d(d+ 1)

)⌉

by the quadratic formula and the fact that n is an integer, proving 4. Finally, we

have

2− n−
√
D

2
≤ k ≤ 2− n+

√
D

2

again by the quadratic formula, which gives

⌈
n− 2−

√
D

2

⌉
≤ k ≤

⌊
n− 2 +

√
D

2

⌋

after multiplying through by −1 and acknowledging that k is an integer. Therefore,

5 is true and we are done.

The following theorem was proved by Anderson and Lipman in [2].

Theorem 2.3.2. [2] Let G be a k-regular graph which is 1-factorable and let H be any

r-regular graph. Then the lexicographic product G ◦H is 1-factorable.

We will now prove some factorization lemmas to be used in the main theorems.

Lemma 2.3.3. For every integer n ≥ 2, the graph Cn ◦K2 is 1-factorable.

Proof. Let G = Cn◦K2 with vertex set V (G) =
{
xji : i = 0, 1, ..., n− 1, j = 0, 1

}
and
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edge set E(G) =
{
xjix

p
i+1 : i = 0, 1, ..., n− 1, j, p ∈ {0, 1}

}
, where the arithmetic is

performed modulo n in the subscript. If n is even, then Cn is obviously 1-factorable,

so we are done by Theorem 2.3.2. If n is odd, let

F0 =
{
x0ix

1
i+1 : i = 0, 1, ...,m− 1

}
,

F1 =
{
x1ix

0
i+1 : i = 0, 1, ...,m− 1

}
,

F2 =
{
x0m−1x

1
0

}
∪
{
x0ix

0
i+1, x

1
i+1x

1
i+2 : i = 0, 2, ...,m− 3

}
,

F3 =
{
x1m−1x

0
0

}
∪
{
x1ix

1
i+1, x

0
i+1x

0
i+2 : i = 0, 2, ...,m− 3

}
.

Then it is easy to see that each Fi is a 1-factor. Since it is also clear that the 1-factors

are disjoint and partition E (G), we have found a 1-factorization of G, proving the

lemma.

Lemma 2.3.4. For every integer n ≥ 2, the graph Cn (S)◦K2 is 1-factorable for any

connection set S.

Proof. Let n ≥ 2 and let G ∼= Cn (S) ◦ K2 for some connection set S. Let d ∈ S.

Then it is easy to see that d induces the spanning subgraph n
m

(
Cm ◦K2

)
of G where

m = ordZnd = n
gcd(d,n)

. Therefore, it suffices to show that for any m ≥ 2, the graph

Cm ◦K2 is 1-factorable, so Lemma 2.3.3 gives the result.

The next lemma follows easily.
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Lemma 2.3.5. For every integer n ≥ 2, the graph Cn (S)◦K2 is 1-factorable for any

connection set S.

An equipartite graph is a multipartite graph in which all partite sets have the same

cardinality. We conclude this section by considering regular equipartite graphs. It

is well known that both the even-ordered complete graph, K2n and every regular

bipartite graph allow 1-factorizations. Thus we have the following result.

Lemma 2.3.6. Let G be an equipartite graph with an even number of partite sets. If

the edges between every pair of partite sets form an r-regular subgraph of G for some

fixed r, then G is 1-factorable.

Alspach and Gavlas proved that the graph K2n − I, where I is a 1-factor, may be

decomposed into cycles of length m where m divides the number of edges in G [1].

The next theorem follows easily since K2n−I contains m(n−1) edges where m = 2n.

Theorem 2.3.7. [1] Let G = K2n − I where I is any 1-factor. The graph G allows

a 1-factorization.

The next result follows in the same way as Lemma 2.3.6.

Lemma 2.3.8. Let positive integers n, r be given and let G be an equipartite graph

with partite sets P1, P2, ..., P2n. If for each Pi, there exists exactly one Pj, i 6= j, such

that there are no edges between Pi and Pj and the edges between Pi and Pk, k 6= j

form an r-regular graph, then G is 1-factorable.
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2.4 Even d

2.4.1 Known results

For d = 2, the only work that has been done is by Froncek who used magic rectangle

sets to obtain the following results.

Theorem 2.4.1. [20] If n ≡ 0 (mod 16), then an H (n, k, 2) exists if and only if k is

even and 4 ≤ k ≤ n− 6.

When n ≡ 8 (mod 16), he obtained the following partial results.

Theorem 2.4.2. [26] If n ≡ 8 (mod 16) and n ≥ 56, then an H (n, k, 2) exists if k is

even and 6 ≤ k ≤ n− 50.

One of the primary ingredients for the constructions given in this section are distance

magic graphs. Froncek et. al. proved the following in [29].

Theorem 2.4.3. [29] For n even, an r-regular distance magic graph of order n exists

if and only if 2 ≤ r ≤ n − 2, r ≡ 0 (mod 2), and either n ≡ 0 (mod 4) or r ≡ 0

(mod 4).
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For regular graphs of odd order, the existence question is partially answered by the

following result proved by Froncek in [22].

Theorem 2.4.4. [22] Let n be an odd integer and r = 2sq with q > 1 odd and s ≥ 1.

Then an r-regular distance magic graph of order n exists whenever r ≤ 2
7
(n− 2).

2.4.2 New results

The first construction in this section uses distance magic graphs to produce classes

of 2d-regular d -handicap graphs for any even d ≥ 2.

1

2

36

5

4

Figure 2.1: Distance magic labeling of C6(1, 2).

Theorem 2.4.5. Let d ≥ 2 be an even integer and let G be any d-regular distance

magic graph of order v ≥ d + 2. Let n = vt for any even integer t ≥ d + 2. If d ≡ 0

(mod 4) or t ≡ 0 (mod 4), then there exists an H (n, 2d, d) .

Proof. Let G be a d -regular distance magic graph on v ≥ d + 2 vertices with vertex

set V (G) = {g0, g1, ..., gv−1} and distance magic labeling f . Such a graph exists by

Theorem 2.4.3. We may assume f (gi) = i + 1 for i = 0, 1, ..., v − 1. Then since G is
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distance magic and d -regular,

∑
gp∈N(gi)

f(gp) =
∑

gp∈N(gi)

(p+ 1)

= d+
∑

gp∈N(gi)

p

= µ,

where µ is the magic constant of G. In particular, we will use the identity
∑

gp∈N(gi)

p =

µ− d later. Then µ = d(v+1)
2

since

∑
g∈V (G)

w(g) = d
v∑
i

i=1

= dv(v+1)
2

= vµ.

Let H = C t
2
(1, 2, ..., d

4
) ◦K2 if d ≡ 0 (mod 4) , otherwise let H = C t

2
(1, 2, ..., d−2

4
, t
4
) ◦

K2. Let the vertex set of H be V (H) = {h0, h1, ..., ht−1} where each pair (hj, hj+1) for

j = 0, 2, ..., t − 2 forms the blown-up vertices of H. Let T be the Cartesian product

T = G�H. For ease of notation, let xji = (gi, hj) ∈ V (T ) for i = 0, 1, ..., v − 1, j =

0, 1, ..., t− 1.
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Let l : V (T )→ {1, 2, ..., n} be defined as

l(xji ) = ti+ j
2

+ 1,

l(xj+1
i ) = t(i+ 1)− j

2
,

for all i = 0, 1, ..., v − 1, j = 0, 2, ..., t − 2. Clearly, l is a bijection. Notice that

l(xji ) + l(xj+1
i ) = t(2i+ 1) + 1. Therefore, since H is d -regular, the weight induced on

every vertex by each H -layer is

wH(xji ) =
d

2
(t(2i+ 1) + 1) ,

for all xji ∈ V (T ). Now for j = 0, 2, ..., t− d, we have

NGhj

(
xji
)

=
{
xjp : gp ∈ NG(gi)

}
.

Then for i = 0, 1, ..., v − 1, the weight induced on every vertex by each G-layer is

wG
(
xji
)

=
∑

xjp∈NT (xji )

l(xjp)

= d
(
j
2

+ 1
)

+ t
∑

gp∈NG(gi)

p

= d
(
j
2

+ 1
)

+ t(µ− d)

= d
(
j
2

+ 1− t
)

+ tµ,
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and

wG
(
xj+1
i

)
=

∑
xj+1
p ∈NT (xj+1

i )

l(xj+1
p )

= d
(
t− j

2

)
+ t

∑
gp∈NG(gi)

p

= − jd
2

+ tµ.

Summing the weights, we express the weight of every vertex v ∈ V (T ) by

w(xji ) = wG(xji ) + wH(xji )

= d(j+t(2i−1)+3)
2

+ tµ,

and

w(xj+1
i ) = wG(xji ) + wH(xji )

= d(−j+t(2i+1)+1)
2

+ tµ,

for i = 0, 1, ..., v − 1 and j = 0, 2, ..., t − 2. Now we will show that l is a d -handicap

labeling. Let xji ∈ V (T ) be given.

Case 1. j = 0, 2, ..., t− 4. Then l(xj+2
i )− l(xji ) = [ti+ j+2

2
+ 1]− [ti+ j

2
+ 1] = 1, and

w(xj+2
i )− w(xji ) = d(j+2+t(2i−1)+3)

2
+ tµ−

(
d(j+t(2i−1)+3)

2
+ tµ

)
= d.

Case 2. j = t− 2. Then l(xt−1i )− l(xt−2i ) = [t(i + 1)− t−2
2

]− [ti + t−2
2

+ 1] = 1, and

w(xt−1i )− w(xt−2i ) = d(−(t−2)+t(2i+1)+1)
2

+ tµ−
(
d(t−2+t(2i−1)+3)

2
+ tµ

)
= d.

Case 3. j = 3, 5, ..., t− 1. Then l(xj−2i )− l(xji ) = t(i+ 1)− j−3
2
− [t(i+ 1)− j−1

2
] = 1,

and w(xj−2i )− w(xji ) = d(−(j−3)+t(2i+1)+1)
2

+ tµ− (d(−(j−1)+t(2i+1)+1)
2

+ tµ) = d.
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Therefore, the sequence si = l(x0i ), l(x
2
i ), ..., l(x

t−2
i ), l(xt−1i ), l(xt−3i ), ..., l(x3i ),

l(x1i ) is 1-arithmetic and the corresponding sequence of weights wi = w(x0i ),

w(x2i ), ..., w(xt−2i ), w(xt−1i ), w(xt−3i ), ...w(x3i ), w(x1i ) is d -arithmetic. Now consider the

set S =
{
w(x00), w(x01), ..., w(x0v−1)

}
. We have w(x0i ) = d(t(2i−1)+3)

2
+ tµ. Therefore

S = {w(x00), w(x00) + td, ..., w(x00) + (d− 1)td} since i ∈ {0, 1, ..., v − 1}. Hence, l is a

d -handicap labeling and we have proven the theorem.

If we impose some additional restrictions on the distance magic graph G in the previ-

ous theorem, we can provide a large range of regularities for each class of d -handicap

graphs produced.

Theorem 2.4.6. Let d ≥ 2 and t, v ≥ d + 2 be even integers and let n = vt.

Let G = (V,E) be a d-regular distance magic graph of even order v with vertex set

V = {g0, g1, ..., gv−1} and the following additional properties.

• gigj ∈ E if and only if gv−1−igv−1−j ∈ E and

• G is 1-factorable.

If d ≡ 0 (mod 4) or t ≡ 0 (mod 4), then there exists an H (n, k, d) for all even k

such that 2d ≤ k ≤ n− 2d− 2.

Proof. Let T = G�H be theH (n, 2d, d) constructed in Theorem 2.4.5 with associated

d -handicap labeling l. Observe that l(xji ) + l(xj+1
v−1−i) = l(xj+1

i ) + l(xjv−1−i) = n+ 1 for
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i = 0, 1, ..., v
2
− 1 and j = 0, 2, ..., t − 2. Now consider the bubble graph, B (T ) . We

have

V (B(T )) =
{(
xji , x

j+1
v−1−i

)
,
(
xj+1
i , xjv−1−i

)
, 0 ≤ i ≤ v

2
− 1, j = 0, 2, ..., t− 2

}
.

For ease of notation, let uji =
(
xji , x

j+1
v−i−1

)
and uj+1

i =
(
xj+1
i , xjv−i−1

)
for 0 ≤ i ≤ v

2
−1,

and j = 0, 2, ..., t− 2.

In T, every pair of H -layers, (Hgi , Hgv−1−i) form a subgraph of B(T ) isomorphic

to Hgi for all i = 0, 1, ..., v−1
2
. Indeed, let

[
xji , x

j+1
i | xj+2s

i , xj+1+2s
i

]
⊆ Hgi for some s

belonging to the connection set of H. Then [xjv−1−i, x
j+1
v−1−i | x

j+2s
v−1−i, x

j+1+2s
v−1−i ] ⊆ Hgv−1−i .

Therefore,
[
uji , u

j+1
i | uj+2s

i , uj+1+2s
i

]
⊆ B(T ). Hence, the H-layers of T induce a

subgraph of B(T ) isomorphic to v
2
H.

Similarly, every pair of G-layers
(
Ghj , Ghj+1

)
forms a subgraph of B(T ) isomorphic to

Ghj for all j = 0, 2, ..., t− 2. To see this is true, let xjix
j
i+s ∈ Ghj for j even and some

s. Then recalling that gigi+s ∈ E(G) if and only if gv−1−igv−1−(i+s) ∈ E(G), we obtain

that xj+1
v−1−ix

j+1
v−1−(i+s) ∈ Ghj+1 . Therefore, if s ≤ v

2
− 1 − i, then ujiu

j
i+s ∈ E(B(T ))

and if s > v
2
− 1− i, then ujiu

j+1
v−1−(i+s) ∈ E(B(T )). Hence, the G-layers of T induce a

subgraph of B(T ) isomorphic to t
2
G.

We have shown that B(T ) is 2d-regular (and consequently B(T ) is n
2
−1−2d-regular)

and B(T ) ∼= v
2
H+ t

2
G.We proceed to find 1-factors of B(T ), the complement of B (T ).
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Edges of the form ujiu
j
p or u

j
iu
j+1
q (with i = q ⇐⇒ q = v−1−i) in B(T ) form the graph

t
2
G which is 1-factorable since G is 1-factorable. So far, we count v−1−d 1-factors of

B(T ).Observe thatH contains only edges of the form ujiu
p
i . Let S = {d

4
+1, d

4
+2, ..., t

4
}

when d ≡ 0 (mod 4), otherwise let S = {d−2
4

+ 1, d−2
4

+ 2, ..., t
4
− 1}. Then C t

2
(S) ◦K2

is a spanning subgraph of H and it allows a 1-factorization by Lemma 2.3.4. We have

counted t− d− 2 more 1-factors of B(T ).

Now the remaining edges of B(T ) form an equipartite graph with partite sets

Pj = {uji , u
j+1
i : 0 ≤ i ≤ v

2
− 1} for j = 0, 2, ..., t − 2, and edge set

{ujiusp, u
j+1
i usp, u

j
iu
s+1
p , uj+1

i us+1
p : i 6= p} between any two partite sets Pj and Ps.

If t ≡ 0 (mod 4), these edges allow a 1-factorization (into ( t
2
− 1)(v− 2) 1-factors) by

Lemma 2.3.6. Otherwise, if t ≡ 2 (mod 4), we may partition each Pj into two partite

sets P 1
j = {uji : 0 ≤ i ≤ v

2
− 1} and P 2

j = {uj+1
i : 0 ≤ i ≤ v

2
− 1}, so these edges

form an equipartite graph of the type from Lemma 2.3.8. Thus, the edges allow a

1-factorization into (v
2
−1)(t−2) 1-factors. Since ( t

2
−1)(v−2) = (v

2
−1)(t−2), B(T )

allows a 1-factorization into (v − 1− d) + (t− d− 2) + ( tv
2
− t− v + 2) = n

2
− 2d− 1

1-factors.

Let B(T ) have 1-factorization, B(T ) ∼= I1 + I2 + ...+ In
2
−1−2d. Now define a graph B

with vertex set V (B) = V (T ) and

B = {[u, v | x, y] : (u, v) (x, y) ∈ E(Ii), ∀i} .
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Then construct the graph T +B with vertex set V (T +B) = V (T ), and labeling l as

in the construction of T. Since l(u)+ l(v) = l(x)+ l(y) = n+1, the labeling l remains

a d -handicap labeling and we have proven that a H (n, k, d) exists for all even k such

that 2d ≤ k ≤ 2d+ 2(n
2
− 1− 2d) = n− 2d− 2.

In the proof of Theorem 2.4.3 (which appears as Theorem 3 in [29]), Froncek et. al.

built r-regular distance magic graphs of the form H ◦K2. In particular, they allow H

to be any r
2
-regular spanning subgraph of Kn

2
when n ≡ 0 (mod 4), or any r

2
−regular

spanning subgraph of Kn
2
consisting of r

4
Hamiltionian cycles when n ≡ 2 (mod 4).

Therefore, if n ≡ 0 (mod 4) and r ≡ 0 (mod 4), we may choose H = Cn
2
(1, 2, ..., r

4
).

If n ≡ 0 (mod 4) and r ≡ 2 (mod 4), we may choose H = Cn
2
(1, 2, ..., r−2

4
, n
4
). If

n ≡ 2 (mod 4), we may choose H = Cn
2
(S) where S =

{
1, 2, ..., r

4
+ 2
}
\
{

3, n
6

}
when

n ≡ 0 (mod 6) and S =
{

1, 2, ..., r
4

}
when n 6≡ 0 (mod 6). We exclude

{
3, n

6

}
from

S when n ≡ 0 (mod 6) because the corresponding cycles in H are not Hamiltonian

as these numbers divide n
2
while all other members of S are relatively prime with

n
2
. Since it is clear that graphs of the form H ◦ K2 for our choice of H exhibit the

necessary edge property of Theorem 2.4.6, the next result follows easily from Lemma

2.3.5.

Corollary 2.4.7. Let d ≥ 2 and t, v ≥ d+ 2 be even integers and let n = vt. If d ≡ 0

(mod 4) or v ≡ t ≡ 0 (mod 4), then there exists an H (n, k, d) for all even k such

that 2d ≤ k ≤ n− 2d− 2.
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It should be noted that if a graph G from Theorem 2.4.5 does not meet either the edge

requirement or the 1-factorability requirements necessary to apply Theorem 2.4.6, it

is still possible to provide a range of regularities, k such that 2d ≤ k ≤ r for some

r < n− 2d− 2 using the techniques given in the proof of Theorem 2.4.6.

Example 2.4.8. Suppose we want a 4-handicap tournament with 36 teams in which

each team plays 10 games. We know such a tournament exists by Corollary 2.4.7.

Figure 2.1 shows a graph G = C6(1, 2) and its distance magic labeling. Since G

satisfies the necessary edge property of Theorem 2.4.6, the graph G can be used

to construct 4-handicap tournaments in which each team plays any even number of

games k such that 8 ≤ k ≤ 26. We will use the construction in Theorem 2.4.5 to

build the 8-regular tournament. The 8-regular graph is shown in separate Figures 2.2

and 2.4 for clarity. Figures 2.3 and 2.5 show the corresponding layers in B(T ). To

obtain the 1-regular tournament, we need only add one distance magic K2,2-factor to

complete the construction. We leave it to the reader to accomplish this by finding a

1-factor in the complement of the bubble graph.

One may wonder how close Corollary 2.4.7 comes to providing all feasible regularities

given a class of n. To obtain a partial answer, let v = 2d in Corollary 2.4.7. The

necessary conditions in this case are as follows.

Theorem 2.4.9. If an H (n, k, d) exists where d is even, n ≡ 0 (mod 4d), and n ≥

2d(d+ 2), then d+ 2 ≤ k ≤ n− d− 4.
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Figure 2.2: G-layers of an H (36, 8, 4).
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11,26
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3,34

9,28

15,24

16,21

10,27

4,33

Figure 2.3: Edges of the bubble graph induced by the G-layers.

Proof. Let n = 4dc for some integer c ≥ d
2

+ 1 and let D = (n− 2)2 − 4d(n− 1). Let

b(c) = n−2−
√
D

2
. Then we have b(c) = 2dc− 1−

√
p(c), where p(c) = 4d2c2 − 4dc(d+

1) + (d + 1). Then it is clear that p(c) < (2dc− (d+ 1))2. Therefore, b(c) > d. On

the other hand, we have p(c) > (2dc− (d+ 2))2 since c ≥ d
2

+ 1 > d2+3d+3
4d

. Thus,

d < b(c) < d + 1 which gives db(c)e = d + 1. Then since k must be even, we have

k ≥ d+ 2 by 2 and 5 of Theorem 2.3.1.
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Figure 2.4: H -layers of an H (36, 8, 4).

1,36 6,31 2,35 5,32 3,34 4,33

7,30 12,25 8,29 11,26 9,28 10,27

13,24 18,19 14,23 17,20 15,22 16,21

Figure 2.5: Edges of the bubble graph induced by the H-layers.

Let b(c) = 2dc− 1 +
√
p(c). It follows from the above bound on p(c) that n− d− 3 <

b(c) < n− d− 2. Then we have k ≤ n− d− 4 by 2 and 5 of Theorem 2.3.1.
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By letting v = 2d in Corollary 2.4.7, we obtain the following result.

Corollary 2.4.10. For every even d and even integer k such that 2d ≤ k ≤ n−2d−2,

there exists an H (n, k, d) if

• n ≡ 0 (mod 8d), n ≥ 2d(d+ 4), and d ≡ 0 (mod 4) or

• n ≡ 4d (mod 8d), n ≥ 2d(d+ 2), and d ≡ 0 (mod 4) or

• n ≡ 0 (mod 8d), n ≥ 2d(d+ 2), and d ≡ 2 (mod 4).

Therefore, Theorem 2.4.1 follows from Corollary 2.4.7 and we observe that for d = 2c,

Corollary 2.4.7 misses only c − 1 of the smallest, and c − 1 of the largest feasible

regularities, k.

2.5 Odd d

2.5.1 Known results

For n even, the question of when an H (n, k, 1) exists has recently been completely

settled for every pair (n, k) [30].
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Theorem 2.5.1. [30] Let H (n, k, 1) be a k-regular 1-handicap graph on n vertices.

For n ≡ 0 (mod 4), an H (n, k, 1) exists if and only if k is odd and 3 ≤ k ≤ n−5. For

n ≡ 2 (mod 4), an H (n, k, 1) exists if and only if k ≡ 3 (mod 4), and 3 ≤ k ≤ n− 7

except for k = 3 and n ≤ 26.

For n odd, an H (n, k, 1) is known to exist for every feasible n and some k [28].

Theorem 2.5.2. [28] Let n be an odd positive integer. Then an H (n, k, 1) exists for

at least one value of k if and only if n = 9 or n ≥ 13.

2.5.2 New results

The following theorem indicates why the construction for even d will not work when

d is odd. It was originally proved by Vilfred in his Ph.D. thesis in 1999.

Theorem 2.5.3. [44] Let d ≥ 1 be an odd integer. No d-regular graph is distance

magic.

The construction in this section is a generalization of the class of 1-handicap graphs

constructed by Shepanik in [43]. As was the case for even d, our approach will be to

first construct a class of d -handicap graphs for a small regularity k, and then use the

bubble graph to add distance magic layers to increase k until the bound is met.
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Theorem 2.5.4. For every odd d, there exists an H (n, 2d+ 1, d) provided

• n ≡ 0 (mod 4d+ 4), n ≥ (d+ 1)(d+ 3), and d ≡ 1 (mod 4) or

• n ≡ 0 (mod 4d+ 4), n ≥ (d+ 1)(d+ 5), and d ≡ 3 (mod 4) or

• n ≡ 2d+ 2 (mod 4d+ 4), n ≥ (d+ 1)(d+ 3), and d ≡ 3 (mod 4).

Proof. Let G = Kd+1 with vertex set V (G) = {g0, g1, ..., gd}. Define t = n
d+1

and if

d ≡ 1 (mod 4), let H = C t
2

(
t
4
, 1, 2, ..., d−1

4

)
◦K2 , otherwise let H = C t

2

(
1, 2, ..., d+1

4

)
◦

K2. Let V (H) = {h0, h1, ..., ht−1} where each pair of isolated vertices, (hj, hj+1)

for j = 0, 2, ..., t − 2, corresponds to the blown-up vertices in H. Notice that if

d ≡ 1 (mod4), then n ≥ (d + 1)(d + 3) implies d−1
4

< t
4
. If d ≡ 3 (mod4) and

n ≡ 0 (mod 4d+ 4), then n ≥ (d+ 1)(d+ 5) implies d+1
4
< t

4
. Finally, if d ≡ 3 (mod4)

and n ≡ 2d + 2 (mod 4d + 4), then n ≥ (d + 1)(d + 3) implies d+1
4
≤ t−2

4
. Now let

T = G�H and denote by xji each vertex (gi, hj) ∈ V (T ) for all i = 0, 1, ..., d and

j = 0, 1, ..., t− 1. Define l : V (T )→ {1, 2, ..., n} by

l(xji ) =


ti+ j+2

2
, j = 0, 2, ..., t− 2

t(i+ 1)− j−1
2
, j = 1, 3, ..., t− 1

for all i = 0, 1, ..., d. Clearly, l is a bijection.

Notice that l(xji ) + l(xj+1
i ) = t(2i + 1) + 1 for j = 0, 2, ..., t − 2, so each pair
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(
l(xji ), l(x

j+1
i )

)
are Si+1-complements. For every vertex xji ∈ V (T ), we have

w(xji ) =
∑
p6=i
l(xjp) + d+1

2
[t(2i+ 1) + 1]

=
∑

p=0,1,...,d

l(xjp)− l(x
j
i ) + d+1

2
[t(2i+ 1) + 1]

=


n(d+2i+1)+(d+1)(j+3)

2
− l(xji ), j = 0, 2, ..., t− 2

n(d+2i+3)−(d+1)(j−2)
2

− l(xji ), j = 1, 3, ..., t− 1

.

For every i = 0, 1, ..., d, define the sequences

si = l(x0i ), l(x
2
i ), ..., l(x

t−2
i ), l(xt−1i ), l(xt−3i ), ..., l(x3i ), l(x

1
i )

and

wi = w(x0i ), w(x2i ), ..., w(xt−2i ), w(xt−1i ), w(xt−3i ), ..., w(x3i ), w(x1i ).

Observe that l(xj+2
i ) − l(xji ) = 1 for j = 0, 2, ..., t − 4, l(xji ) − l(xj+2

i ) = 1 for j =

1, 3, ..., t − 3, and l(xt−1i ) − l(xt−2i ) = 1. Similarly, we have w(xj+2
i ) − w(xji ) = d for

j = 0, 2, ..., t−4, w(xji )−w(xj+2
i ) = d for j = 1, 3, ..., t−3, and w(xt−1i )−w(xt−2i ) = d.

Therefore, si = ti+1, ti+2, ..., ti+t and wi = w(x0i ), d+w(x0i ), 2d+w(x0i ), ..., (t−1)d+

w(x0i ). Then since l(xji+1) = l(xji ) + t and w(xji+1) = w(xji ) + td, for all i = 0, 2, ..., d−

1, j = 0, 1, ..., t− 1, we conclude that the sequence s0, s1, ..., sd = 1, 2, 3, ..., n and the

sequence w0, w1, ..., wd = w0, d+w0, 2d+w0, ..., (n− 1)d+w0, proving that T is a d -

handicap graph. Since T is 2d+1-regular, we have constructed anH (n, 2d+ 1, d).
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We will now employ the bubble graph to give a wide range of possible densities given

n and d.

Theorem 2.5.5. For every odd d, there exists an H (n, k, d) for every odd k such

that 2d+ 1 ≤ k ≤ n− (2d+ 3) provided

• n ≡ 0 (mod 4d+ 4), n ≥ (d+ 1)(d+ 3), and d ≡ 1 (mod 4) or

• n ≡ 0 (mod 4d+ 4), n ≥ (d+ 1)(d+ 5), and d ≡ 3 (mod 4) or

• n ≡ 2d+ 2 (mod 4d+ 4), n ≥ (d+ 1)(d+ 3), and d ≡ 3 (mod 4).

Proof. Let T = G�H be the H (n, 2d+ 1, d) produced in Theorem 2.5.4 with d -

handicap labeling l and recall that t = n
d+1

. Observe that l(xji ) + l(xj+1
d−i ) =

l(xjd−i) + l(xj+1
i ) = n + 1 for i = 0, 1, ..., d−1

2
and j = 0, 2, ..., t − 2. So the pairs(

l(xji ), l(x
j+1
d−i )

)
,
(
l(xjd−i), l(x

j+1
i )

)
partition {1, 2, ..., n} into complements. Consider

now B (T ). For i = 0, 1, ..., d−1
2
, j = 0, 2, ..., t− 2, let

V (B(T )) =
{
uji = (xji , x

j+1
d−i ), u

j+1
i = (xj+1

i , xjd−i)
}
.

From here, the proof is essentially the same as the proof of Theorem 2.4.6 since the

graph G = Kd+1 meets the edge requirements of Theorem 2.4.6 and the graph H

allows a 1-factorization. Therefore, we omit the details.
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One may wonder how close Theorem 2.5.5 comes to providing tournaments for all fea-

sible regularities given a class of n. We provide the appropriate corollary to Theorem

2.3.1 below.

Corollary 2.5.6. If an H (n, k, d) exists where d is odd and n ≡ 0 (mod 2d+ 2),n ≥

(d+ 1)(d+ 5), then d+ 2 ≤ k ≤ n− d− 4.

Proof. Let n = (d+1)2c for some integer c ≥ 1
2
(d+5) and letD = (n− 2)2−4d(n−1).

Let b(c) = n−2−
√
D

2
and let u = d+1. Then we have b(c) = cu−1−

√
u
√
c(c− 2)u+ 1

in terms of c and u. Then since d + 1 > 1, it follows that (c− 1)2u > c(c− 2)u + 1.

Therefore, b(c) > d. On the other hand, we have (u(c−1)−1)2 < u2c(c−2)+u since

c ≥ 1
2
(d + 5) > 1

2
u + 2 > u2+u+1

2u
. Thus, d < b(c) < d + 1 which gives db(c)e = d + 1.

Then since r must be odd, we have r ≥ d+ 2 by 2 and 5 of Theorem 2.3.1.

Let b(c) = n−2+
√
D

2
. It follows from the above bound on b(c) that n− d− 3 < b(c) <

n − d − 2. Then we have
⌊
b(c)

⌋
= n − d − 3 r ≤ n − d − 4 by 2 and 5 of Theorem

2.3.1.

Therefore, if d = 2c+1, Theorem 2.5.5 gives all feasible regularities with the exception

of the c smallest and c largest values of k. This leads to the following corollary of

Theorems 2.3.1 and 2.5.5 first proved by Shepanik in [43].

Corollary 2.5.7. [43] Let n ≡ 0 (mod 8), n ≥ 8 be given. Then an H (n, k, 1) exists

if and only if k is an odd number such that 3 ≤ k ≤ n− 5.
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2.6 Conclusion

We have constructed many classes of k -regular d -handicap tournaments for every

d ≥ 1, addressing the spectrum question for all three parameters; number of teams,

number of games, and handicap number. Also, it is an easy observation that the

complement of a d -handicap graph is an antimagic graph in which the weights form

an arithmetic sequence with difference −1−d. Therefore, in combination with results

on distance magic graphs (“d = 0”), we have provided infinite classes of graphs which

can be labeled f(xi) = i with the first n natural numbers such that the induced

weights w(x1), w(x2), ..., w(xn) form a d -arithmetic progression for any integer d.

One direction forward is to find constructions for the extreme values of k missed

by Theorems 2.4.6 and 2.5.5 for d ≥ 3. We conjecture that d -handicap graphs can

be found for these missing parameters, but it will take a new approach perhaps not

considered here. Another direction forward is to find classes of d -handicap graphs for

the missing classes of n, for example d = 2, n ≡ 4 (mod 8).
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Chapter 3

Orientable Zn-distance magic graphs?

3.1 Introduction

All graphs considered in this chapter are simple finite graphs. Consider a simple

graph G. We denote by V (G) the vertex set and E(G) the edge set of G. We denote

the order of G by |V (G)| = n. The open neighborhood N(x) of a vertex x is the set of

vertices adjacent to x, and the degree d(x) of x is |N(x)|, the size of the neighborhood

of x. By Cn we denote a cycle on n vertices.

In this chapter we investigate distance magic labelings, which belong to a large family

of magic-type labelings. Generally speaking, a magic-type labeling of a graph G =

?The material in this chapter has been submitted to Discussiones Mathematicae Graph Theory
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(V,E) is a mapping from V,E, or V ∪ E to a set of labels which most often is a

set of integers or group elements. Then the weight of a graph element is typically

the sum of labels of the neighboring elements of one or both types. If the weight

of each element is required to be equal, then we speak about magic-type labeling;

when the weights are all different (or even form an arithmetic progression), then we

speak about an antimagic-type labeling. Probably the best known problem in this

area is the antimagic conjecture by Hartsfield and Ringel [33], which claims that

the edges of every graph except K2 can be labeled by integers 1, 2, . . . , |E| so that

the weight of each vertex is different. A comprehensive dynamic survey of graph

labelings is maintained by Gallian [31]. A more detailed survey related to our topic

by Arumugam et al. [5] was published recently.

A distance magic labeling (also called sigma labeling) of a graph G = (V,E) of order

n is a bijection ` : V → {1, 2, . . . , n} with the property that there is a positive integer

k (called the magic constant) such that

w(x) =
∑

y∈NG(x)

`(y) = k for every x ∈ V (G),

where w(x) is the weight of vertex x. If a graph G admits a distance magic labeling,

then we say that G is a distance magic graph.

The following observations were proved independently:
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Observation 3.1.1 ([35], [38], [40], [44]). Let G be an r-regular distance magic graph

on n vertices. Then k = r(n+1)
2

.

Observation 3.1.2 ([35], [38], [40], [44]). There is no distance magic r-regular graph

with r odd.

The notion of group distance magic labeling of graphs was introduced in [23]. A

Γ-distance magic labeling of a graph G = (V,E) with |V | = n is an injection from V

to an abelian group Γ of order n such that the weight of every vertex evaluated under

group operation x ∈ V is equal to the same element µ ∈ Γ. Some families of graphs

that are Γ-distance magic were studied in [10, 12, 15, 23].

An orientation of an undirected graph G = (V,E) is an assignment of a direction

to each edge, turning the initial graph into a directed graph
−→
G = (V,A). An arc

−→xy is considered to be directed from x to y, moreover y is called the head and x is

called the tail of the arc. For a vertex x, the set of head endpoints adjacent to x is

denoted by N−(x), and the set of tail endpoints adjacent to x denoted by N+(x). Let

deg−(x) = |N−(x)|, deg+(x) = |N+(x)| and deg(x) = deg−(x) + deg+(x).

Bloom and Hsu defined graceful labelings on directed graphs [7]. Bloom et al.

also defined magic labelings on directed graphs [8]. Probably the biggest challenge

(among directed graphs) are Tutte’s flow conjectures. An H-flow on D is an

assignment of values of H to the edges of D, such that for each vertex v, the
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sum of the values on the edges going in is the same as the sum of the values on

the edges going out of v. The 3-flow conjecture says that every 4-edge-connected

graph has a nowhere-zero 3-flow (which is equivalent that it has an orientation

such that each vertex has the same outdegree and indegree modulo 3). In this

chapter we ask when we can assign n distinct labels from the set {1, 2, . . . , n} to

the vertices of a graph G of order n such that the the sum of the labels on heads

minus the sum of the labels on tails is constant modulo n for each vertex of G.

Therefore we introduce a generalization of distance magic labeling on directed graphs.

Assume Γ is an abelian group of order n with the operation denoted by +. For

convenience we will write ka to denote a+ a+ . . .+ a (where the element a appears

k times), −a to denote the inverse of a and we will use a− b instead of a + (−b). A

directed Γ-distance magic labeling of an oriented graph
−→
G = (V,A) of order n is a

bijection
−→
` : V → Γ with the property that there is µ ∈ Γ (called the magic constant)

such that

w(x) =
∑

y∈N+
G (x)

−→
` (y)−

∑
y∈N−G (x)

−→
` (y) = µ for every x ∈ V (G).

If for a graph G there exists an orientation
−→
G such that there is a directed Γ-distance

magic labeling
−→
` for

−→
G , we say that G is orientable Γ-distance magic and the directed
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0

1 2

Figure 3.1: An orientable Z3-distance magic labeling of C3.

Γ-distance magic labeling
−→
` we call an orientable Γ-distance magic labeling.

The following cycle-related result was proved by Miller, Rodger, and Simanjuntak.

Theorem 3.1.3 ([38]). The cycle Cn of length n is distance magic if and only if

n = 4.

One can check that Cn is distance magic if and only if n = 4, however it is not longer

true for the case of orientable Zn-distance magic labeling (see Fig.3.1).

Circulant graphs are an interesting family of vertex-transitive graphs. These graphs

arise in various settings; for instance, they are the Cayley graphs over the cyclic group

of order n. The circulant graph Cn(s1, s2, . . . , sk) for 0 ≤ s1 < s2 < . . . < sk ≤ n/2

is the graph on the vertex set V = {x0, x1, . . . , xn−1} with edges (xi, xi+sj) for i =

0, . . . , n− 1, j = 1, . . . , k where i+ sj is taken modulo n.

We recall three graph products (see [32]). All three, the Cartesian product G2H,

lexicographic product G ◦ H, direct product G × H are graphs with the vertex set

V (G)× V (H). Two vertices (g, h) and (g′, h′) are adjacent in:
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• G2H if and only if g = g′ and h ∼ h′ in H, or h = h′ and g ∼ g′ in G;

• G×H if g ∼ g′ in G and h ∼ h′ in H;

• G ◦H if and only if either g ∼ g′ in G or g = g′ and h ∼ h′ in H.

For a fixed vertex g of G, the subgraph of any of the above products induced by the

set {(g, h) : h ∈ V (H)} is called an H-layer and is denoted Hg. Similarly, if h ∈ H

is fixed, then Gh, the subgraph induced by {(g, h) : g ∈ V (G)}, is a G-layer.

In this chapter we show some families of orientable Zn-distance magic graphs.

3.2 Circulant graphs and their products

We start by proving a general theorem for orientable Γ-distance magic labeling similar

to Theorem 3.1.2.

Theorem 3.2.1. Let G have order n ≡ 2 (mod 4) and all vertices of odd degree.

There does not exist an orientable Γ-distance magic labeling of G for any abelian

group Γ of order n.

Proof. Suppose to the contrary that G is orientable Γ-distance magic with orientation

−→
G , orientable Γ-distance magic labeling

−→
` , and magic constant µ. Since
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n ≡ 2 (mod 4), we may assume that Γ is a direct product of cyclic groups containing

Z2. For all g ∈ Γ, let g0 denote the Z2 component of g. Similarly, for all x ∈ V (G), let

w0(x) and
−→
`0 (x) denote the Z2 component of w (x) and

−→
` (x) respectively. Observe

that

w0(x) =
∑

y∈N+
G (x)

−→
`0 (y)−

∑
y∈N−G (x)

−→
`0 (y) =

∑
y∈NG(x)

−→
`0 (y) for everyx ∈ V (G).

Let w0(
−→
G) =

∑
x∈V (G)

w0(x). Then clearly w0(
−→
G) = nµ0 = 0. However, since each

vertex has odd degree and n
2
is odd, we have w0(

−→
G) =

∑
x∈V (G)

∑
y∈NG(x)

−→
`0 (y) = 1, a

contradiction.

Notice that the above proof also shows that there exists no abelian group Γ of order

n ≡ 2 (mod 4) such that G is Γ-distance magic. From the above Theorem 3.2.1 the

below observation easily follows:

Observation 3.2.2. Let G be an r-regular graph on n ≡ 2 (mod 4) vertices, where

r is odd. There does not exist an orientable Zn-distance magic labeling for the graph

G.

However, there are (2k + 1)-regular graphs on n ≡ 0 (mod 4) vertices that are not

orientable Zn-distance magic (see Theorem 3.3.1), the converse of the above Theo-

rem 3.2.1 is not true in general for n ≡ 0 (mod 4). Consider the graph G = K3,3,3,3

with the partition vertex sets A1 = {x10, x11, x12}, A2 = {x20, x21, x22}, A3 = {x30, x31, x32}
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and A4 = {x40, x41, x42}. Let o(uv) be the orientation for the edge uv ∈ E(G) such that:

o(xjix
p
k) =



−−→
x2ix

1
0 for i = 0, 1, 2,

−−→
x1ix

2
k for i = 1, 2, k = 0, 1, 2,

−−→
x1ix

p
k for i = 0, 1, 2, k = 0, 1, 2, p = 3, 4,

−−→
xjix

p
k for i, k = 0, 1, 2, 2 ≤ j < p ≤ 4.

Let now:

−→
` (x10) = 3,

−→
` (x20) = 6,

−→
` (x30) = 1,

−→
` (x40) = 11,

−→
` (x11) = 9,

−→
` (x21) = 2,

−→
` (x31) = 4,

−→
` (x41) = 8,

−→
` (x12) = 0,

−→
` (x22) = 10,

−→
` (x32) = 7,

−→
` (x42) = 5.

.

Obviously w(x) = 6 for any x ∈ V (G).

Theorem 3.2.3. If G = Cn(s1, s2, . . . , sk) is a circulant graph such that sk < n/2,

then p copies of G is orientable Znp-distance magic for any p ≥ 1.

Proof. Note that G is a 2k-regular graph, because sk < n/2. Let V i = xi0, x
i
1, . . . , x

i
n−1

be the set of vertices of ith copy Gi of the graph G, i = 0, 1, . . . , p−1. It is easy to see

that we can partition G into disjoint cycles xj, xj+sh , xj+2sh , . . . , xj of length of order

of the subgroup 〈sh〉 for h ∈ {1, 2, . . . , k} and j = 0, 1, . . . , sh − 1. Orient each copy

of G such that the orientation is clockwise (in which order the subscripts go) around
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each cycle xj, xj+sh , xj+2sh , . . . , xj for h ∈ {1, 2, . . . , k} and j = 0, 1, . . . , sh − 1. Set

now
−→
` (xim) = mp + i for m = 0, 1, . . . , n − 1, i = 0, 1, . . . , p − 1. Obviously

−→
` is a

bijection. Moreover w(x) =
∑

y∈N+(x)

−→
` (y)−

∑
y∈N−(x)

−→
` (y) = −2p

∑k
j=1 sj for any

x ∈ V (pG).

From the above proof of Theorem 3.2.3 it is easy to conclude that in general the

magic constant for orientable Zn-distance magic graphs is not unique (just take coun-

terclockwise orientation in each cycle).

Theorem 3.2.4. If G = Cn(s1, s2, . . . , sk) and H = Cm(s′1, s
′
2, . . . , s

′
p) are circulant

graphs such that sk < n/2, s′p < m/2 and gcd(m,n) = 1, then the Cartesian product

G2H is orientable Znm-distance magic.

Proof. Let G be a graph with the vertex set V (G) = {g0, g1, . . . , gn−1}, whereas

V (H) = {x0, x1, . . . , xm−1}. As in the proof of Theorem 3.2.3 we orient each

copy of H (i.e Hg-layer for any g ∈ V (G)) such that the orientation is clock-

wise around each cycle (gi, xj), (gi, xj+s′a), (gi, xj+2s′a), . . . , (gi, xj) for a = 1, 2, . . . , p,

j = 0, 1, . . . , s′a − 1 and i = 0, 1, . . . , n − 1, whereas each copy of G (i.e Gh-

layer for any h ∈ V (H)) such that the orientation is clockwise around each cycle

(gi, xj), (gi+sb , xj), (gi+2sb , xj), . . . , (gi, xj) for b = 1, 2, . . . , k,i = 0, 1, . . . , sb − 1 and

j = 0, 1, . . . ,m− 1.

Recall that Zn×Zm ∼= Znm because gcd(n,m) = 1. Define
−→
` : V (G2H)→ Zn×Zm
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as
−→
` (gi, xj) = (i, j) for i = 0, 1, . . . , n − 1, j = 0, 1, . . . ,m − 1. Obviously

−→
`

is a bijection. Notice that w(gi, xj) =
∑

y∈N+(gi,xj)

−→
` (y) −

∑
y∈N−(gi,xj)

−→
` (y) =

(−2
∑k

i=1 si,−2
∑p

j=1 s
′
j), thus we obtain that G2H is orientable Znm-distance

magic.

Note that the above Theorem 3.2.4 is not “if and only if” since the Cartesian product

Cn2Cm is orientable Znm-distance magic for any n,m ≥ 3, see [19].

We will show now some sufficient conditions for the lexicographic product to be

orientable Zn-distance magic.

Theorem 3.2.5. Let H = C2n(s1, s2, . . . , sk) be a circulant graph such that sk < n

and G be a graph of order t. The lexicographic product G◦H is orientable Z2tn-distance

magic, if one of the following holds:

• graph G has all degrees of vertices of the same parity,

• n is even.

Proof. Let G be a graph with the vertex set V (G) = {g0, g1, . . . , gt−1}, whereas

V (H) = {x0, x1, . . . , x2n−1}. Let now (gi, xj) = xij. As in the proof of Theo-

rem 3.2.3 we orient each copy of H (i.e Hg-layer for any g ∈ V (G)) such that the

orientation is clockwise around each cycle xij, xij+sa , x
i
j+2sa , . . . , x

i
j for a = 1, 2, . . . , k,
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j = 0, 1, . . . , sa−1 and i = 0, 1, . . . , t−1. If gigp ∈ E(G) (i < p), then the orientation

o(xijx
p
b) for an edge xijx

p
b ∈ E(G ◦H) is given in the following way:

o(xijx
p
b) =


−−→
xijx

p
b , for j, b < n or j, b ≥ n,

−−→
xpbx

i
j, otherwise.

Set now
−→
` (xim) = mt+ i for m = 0, 1, . . . , 2n− 1, i = 0, 1, . . . , t− 1. Obviously

−→
` is

a bijection. Notice that w(xij) =
∑

y∈N+(xij)

−→
` (y)−

∑
y∈N−(xij)

−→
` (y) = −2t

∑k
j=1 sj +

deg(gi)n(tn). If now deg(gi) ≡ c (mod 2) then we are done. If n is even, then

n(tn) ≡ 0 (mod 2tn), thus we obtain that G◦H is orientable Z2tn-distance magic.

One can ask if G ◦H of order n is still orientable Zn-distance magic if the circulant

graph H has an odd number of vertices. The partial answer is given in the Theo-

rems 3.2.7, 3.2.8 and 3.2.9. Before we proceed, we will need the following theorem.

Theorem 3.2.6 ([36]). Let n = r1 + r2 + . . .+ rq be a partition of the positive integer

n, where ri ≥ 2 for i = 1, 2, . . . , q. Let A = {1, 2, . . . , n}. Then the set A can be

partitioned into pairwise disjoint subsets A1, A2, . . . , Aq such that for every 1 ≤ i ≤ q,

|Ai| = ri with
∑

a∈Ai
a ≡ 0 (mod n + 1) if n is even and

∑
a∈Ai

a ≡ 0 (mod n) if n

is odd.

Theorem 3.2.7. If G is a graph of odd order t, then the lexicographic product G ◦

K2n+1 is orientable Zt(2n+1)-distance magic for n ≥ 1.
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Proof. Let G be a graph with the vertex set V (G) = {g0, g1, . . . , gt−1}, whereas

V (K2n+1) = {x0, x1, . . . , x2n}. Give first to the graph G any orientation and now

orient the graph G ◦ K2n+1 such that each edge (gi, xj)(gp, xh) ∈ E(G ◦ K2n+1) has

the corresponding orientation to the edge gigp ∈ E(G).

Since t, 2n+1 are odd, there exists a partition A1, A2, . . . , At of the set {1, 2, . . . , (2n+

1)t} such that for every 1 ≤ i ≤ t, |Ai| = 2n + 1 with
∑

a∈Ai
a ≡ 0 (mod (2n + 1)t)

by Theorem 3.2.6. Label the vertices of the ith copy of K2n+1 using elements from

the set Ai for i = 1, 2, . . . , t. Notice that
∑2n+1

j=1

−→
` (gi, xj) = 0 for i = 1, 2, . . . , t.

Therefore w(gi, xj) =
∑

y∈N+(gi,xj)

−→
` (y)−

∑
y∈N−(gi,xj)

−→
` (y) = 0.

Theorem 3.2.8. If G = Cn(s1, s2, . . . , sk) and H = Cm(s′1, s
′
2, . . . , s

′
p) are circulant

graph such that sk < n/2, s′p < m/2 and gcd(m,n) = 1, then lexicographic product

G ◦H is orientable Znm-distance magic.

Proof. Let G be a graph with the vertex set V (G) = {g0, g1, . . . , gn−1}, whereas

V (H) = {x0, x1, . . . , xm−1}. Give first to the graph G the orientation as in the proof

of Theorem 3.2.3, i.e. gi, gi+sb , gi+2sb , . . . , gi for b = 1, 2, . . . , k, i = 0, 1, . . . , sb − 1.

For i 6= p orient now each edge (gi, xj)(gp, xh) ∈ E(G ◦ H) such that it has the

corresponding orientation to the edge gigp ∈ E(G). Recall that for each ver-

tex g ∈ V (G) we have deg+(g) = deg−(g). Each copy of H (i.e Hg-layer for

any g ∈ V (G)) we orient such that the orientation is clockwise around each cycle

(gi, xj), (gi, xj+s′a), (gi, xj+2s′a), . . . , (gi, xj) for a = 1, 2, . . . , p,j = 0, 1, . . . , s′a − 1 and
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i = 0, 1, . . . , n − 1. Recall that Zn × Zm ∼= Znm because gcd(n,m) = 1. Then

define
−→
` : V (G ◦ H) → Zn × Zm as

−→
` (gi, xj) = (i, j) for i = 0, 1, . . . , n − 1,

j = 0, 1, . . . ,m − 1. Obviously
−→
` is a bijection. Notice that w(gi, xj) =∑

y∈N+(gi,xj)

−→
` (y)−

∑
y∈N−(gi,xj)

−→
` (y) = (−2m

∑k
i=1 si,−2

∑p
j=1 s

′
j), thus we obtain

that G ◦H is orientable Znm-distance magic.

Theorem 3.2.9. The lexicographic product Cn◦ Cm is orientable Znm-distance magic

for all n, m ≥ 3.

Proof. LetG = Cn, H = Cm be graphs with the vertex sets V (G) = {g0, g1, . . . , gn−1},

V (H) = {x0, x1, . . . , xm−1}. Give first to the graph G the orientation counter-

clockwise around the cycle g0, g1, g2, . . . , g0. For each i orient now each edge

(gi, xj)(gi+1, xh) ∈ E(G◦H) such that it has the corresponding orientation to the edge

gigi+1 ∈ E(G). Each copy ofH (i.eHg-layer for any g ∈ V (G)) we orient such that the

orientation is counter-clockwise around each cycle (gi, x0), (gi, x1), (gi, x2), . . . , (gi, x0)

for i = 0, 1, . . . , n − 1. Define
−→
` : V (G ◦ H) → Zmn as

−→
` (gi, xj) = jn + i for

i = 0, 1, . . . , n− 1, j = 0, 1, . . . ,m− 1.

w(gi, xj) =
∑m−1

h=0

(−→
` (gi+1, xh)−

−→
` (gi−1, xh)

)
+
−→
` (gi, xj+1)−

−→
` (gi, xj−1)

= 2n+ 2m,

proving that G ◦H is orientable Znm-distance magic.
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The analogous theorem is also true for a direct product of cycles shown in the following

theorem.

Theorem 3.2.10. The direct product Cn × Cm is orientable Znm-distance magic for

all n, m ≥ 3.

Proof. Let G = Cn = g0, g1, . . . , gn−1 and H = Cm = x0, x1, . . . , xm−1.

For all i and j, orient counter-clockwise with respect to j each cycle of

the form (gi, xj), (gi−1, xj+1), (gi−2, xj+2), . . . , (gi, xj) and each cycle of the form

(gi, xj), (gi+1, xj+1), (gi+2, xj+2), . . . , (gi, xj), where the arithmetic in the indices is

performed modulo n and m respectively. Then define
−→
` : V (G × H) → Znm as

−→
` (gi, xj) = jn+ i for i = 0, 1, . . . , n− 1, j = 0, 1, . . . ,m− 1. Therefore for all i and

j we have,

w(gi, xj) =
−→
` (gi−1, xj+1) +

−→
` (gi+1, xj+1)−

−→
` (gi−1, xj−1)−

−→
` (gi+1, xj−1)

= 4n.

Since
−→
` is obviously a bijection, we have proved that G×H is orientable Znm-distance

magic.

Theorem 3.2.11. Let H = C2n(1, 3, 5, . . . , 2
⌈
n
2

⌉
− 1). If G is an Eulerian graph of

order t, then the direct product G×H is orientable Z2nt-distance magic.

Proof. Let G be a graph with the vertex set V (G) = {g0, g1, . . . , gt−1}, whereas
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V (H) = {x0, x1, . . . , x2n−1}. Give first to the graph G the orientation accord-

ing to Fleury’s Algorithm for finding an Eulerian trail in G and now orient the

graph G × H such that each edge (gi, xj)(gp, xh) ∈ E(G × H) has the correspond-

ing orientation to the edge gigp ∈ E(G). Recall that for each vertex g ∈ V (G)

we have deg+(g) = deg−(g). Observe that H ∼= Kn,n with the partition sets

A = {x0, x2, . . . , x2n−2} and B = {x1, x3, . . . , x2n−1}.

Define

−→
` (gi, xj) =


ti+ j for j = 0, 2, . . . , 2n− 2,

2tn− 1−
−→
` (gi, xj−1) for j = 1, 3, . . . , 2n− 1,

for i = 0, 1, . . . , t− 1.

Notice that
−→
` (gi, xj)+

−→
` (gi, xj−1) = 2tn−1 for i = 0, 1, . . . , t−1, j = 1, 3, . . . , 2n−1.

Therefore w(gi, xj) =
∑

y∈N+(gi,xj)

−→
` (y)−

∑
y∈N−(gi,xj)

−→
` (y) = deg+(gi)

2
2n(2nt− 1)−

deg−(gi)
2

2n(2nt− 1) = 0.

3.3 Complete t-partite graphs

Theorem 3.3.1. Kn is orientable Zn-distance magic if and only if n is odd.

Proof. Suppose first that n is odd. Then Kn
∼= Cn(1, 2, . . . , (n− 1)/2) and thus it is
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orientable Zn-distance magic by Theorem 3.2.3. By Theorem 3.2.1 we can consider

now only the case when n ≡ 0 (mod 4). Suppose that Kn is orientable Zn-distance

magic. Let
−→
` (x) = 1,

−→
` (u) = 0, then it is easy to see that w(x) =

∑
y∈N+(x)

−→
` (y)−∑

y∈N−(x)
−→
` (y) ≡ 1 (mod 2), whereas w(u) =

∑
y∈N+(u)

−→
` (y)−

∑
y∈N−(u)

−→
` (y) ≡ 0

(mod 2), a contradiction.

Observation 3.3.2. Let G = Kn1,n2,n3,...,nk
be a complete k-partite graph such that

1 ≤ n1 ≤ n2 ≤ . . . ≤ nk and n = n1 + n2 + . . .+ nk is odd. The graph G is orientable

Zn-distance magic graph if n2 ≥ 2.

Proof. Give first to the graph G an orientation such that all arcs from the set of

lower index go to the set of higher index. Since n is odd, there exists a partition

A0, A1, . . . , Ak−1 of {1, 2, . . . , n} such that for every 0 ≤ i ≤ k − 1, |Ai| = ni with∑
a∈Ai

a ≡ 0 (mod n) by Theorem 3.2.6. Label the vertices from ith partition set of

G using elements from the set Ai for i = 0, 1, . . . , k − 1.

Notice that w(x) = 0 for any x ∈ V (G).

Notice that the above Observation 3.3.2 is not “if and only if” since K1,1,1
∼= C3(1) is

orientable Z3-distance magic graph by Theorem 3.2.3.

Observation 3.3.3. Kn,n is orientable Z2n-distance magic if and only if n is even.

Proof. Suppose first that n is even then Kn,n
∼= C2n(1, 3, 5 . . . , n−1) thus is orientable

60



Z2n-distance magic by Theorem 3.2.3. If n is odd, then because 2n ≡ 2 (mod 4), then

Kn,n is not orientable Z2n-distance magic by Theorem 3.2.1.

Recall that if n = n1 + n2 ≡ 2 (mod 4) and n1, n2 are both odd, then Kn1,n2 is not

orientable Zn-distance magic by Theorem 3.2.1. It was proved in [17] that if Kn1,n2

is orientable Zn-distance magic, then n 6≡ 2 (mod 4). The next theorem proves the

converse is also true.

Theorem 3.3.4. Let G = Kn1,n2 and n = n1 + n2. If n 6≡ 2 (mod 4), then G is

orientable Zn-distance magic.

Proof. Let G = Kn1,n2 with the partition vertex sets Ai = {xi0, xi1, . . . , xini−1} for

i = 1, 2. Without loss of generality we can assume that n1 ≥ n2.

Let Zn = {a0, a1, a2, . . . , an−1} such that a0 = 0, a1 = n/4, a2 = n/2, a3 = 3n/4

and ai+1 = −ai for i = 4, 6, 8, . . . , n − 2. Let o(uv) be the orientation for the edge

uv ∈ E(G) such that:

o(xjix
p
k) =


−−→
x2ix

1
0 for i = 0, 1, . . . , n2 − 1,

−−→
x1ix

2
k for i = 1, 2, . . . , n1 − 1, k = 0, 1, . . . , n2 − 1.

.

Case 1. n1, n2 are both odd.

−→
` (x10) = a1,

−→
` (x11) = a3,

−→
` (x12) = a0 and

−→
` (x1i ) = a1+i for i = 3, 4, . . . , n1 − 1.

−→
` (x20) = a2 and

−→
` (x2i ) = an1+i for i = 1, 2, . . . , n2 − 1.
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Case 2. n1, n2 are both even.

−→
` (x10) = a1,

−→
` (x11) = a3 and

−→
` (x1i ) = a2+i for i = 2, 3, . . . , n1 − 1.

−→
` (x20) = a2,

−→
` (x21) = a0 and

−→
` (x2i ) = an1+i for i = 2, 3, . . . , n2 − 1.

Note that in both cases w(x) = n/2 for any x ∈ V (G).

Theorem 3.3.5. Let G = Kn1,n2,n3 and n = n1 + n2 + n3. Then G is orientable

Zn-distance magic for all n1, n2, n3.

Proof. Let G = Kn1,n2,n3 with the partition vertex sets Ai = {xi0, xi1, . . . , xini−1} for

i = 1, 2, 3.

Assume first that n is odd. We have to consider only the case n1 = n2 = 1 by

Observation 16. If n3 = 1, then G ∼= C3 is orientable Zn-distance magic, so assume

n3 ≥ 3 is odd. Set the orientation o (uv) for the edge uv ∈ E(G) such that:

o
(
xjix

p
k

)
=


−−→
x10x

2
0,

−−→
x3ix

2
0 i = 0, 1, . . . , n3 − 1

.

We will orient the remaining edges of the form x10x
3
i for i = 0, 1, . . . , n3−1 later. Now

let
−→
` (x10) = 0,

−→
` (x20) = n − 1, and

−→
` (x3i ) = i + 1 for i = 0, 1, . . . , n3 − 1. Notice

that
∑n3−1

i=0

−→
` (x3i ) = 1. Observe now that w(x20) and w(x3i ) for i = 0, 1, . . . , n3− 1 are

independent of the yet-to-be oriented edges and hence w(x20) = w(x3i ) = 1. So all that

remains is to orient the edges of the form x10x
3
i for i = 0, 1, . . . , n3−1 so that w(x10) = 1.

It is easy to see that this is equivalent to finding a, b ∈ {1, 2, . . . , n − 2} ⊆ Zn such
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that a+ b = n+1
2
, a 6= b. Clearly such a and b exist for all odd n ≥ 5 since the group

table for Zn is a latin square. Therefore, set the orientation

o
(
xjix

p
k

)
=


−−→
x10x

3
i , i = a− 1, b− 1,

−−→
x3ix

1
0, otherwise,

which implies that w(v) = 1 for any v ∈ V (G).

From now on n is even. Without loss of generality we assume that n1 is even. Let

Zn = {a0, a1, a2, . . . , an−1}. We will consider now two cases:

Case 1. n ≡ 0 (mod 4).

Let a0 = 0, a1 = n/4, a2 = n/2, a3 = 3n/4 and ai+1 = −ai for i = 4, 6, 8, . . . , n − 2.

Set the orientation o(uv) for the edge uv ∈ E(G) such that:

o(xjix
p
k) =



−−→
x2ix

1
0 for i = 0, 1, . . . , n2 − 1,

−−→
x1ix

2
k for i = 1, 2, . . . , n1 − 1, k = 0, 1, . . . , n2 − 1,

−−→
x1ix

3
k for i = 0, 1, . . . , n1 − 1, k = 0, 1, . . . , n3 − 1,

−−→
x2ix

3
k for i = 0, 1, . . . , n2 − 1, k = 0, 1, . . . , n3 − 1.

Let now
−→
` (x10) = a1,

−→
` (x11) = a3 and

−→
` (x1i ) = ai+2 for i = 2, 3, . . . , n1 − 1.

Case 1.1 n2, n3 are both odd.

−→
` (x20) = a2 and

−→
` (x2i ) = an1+1+i for i = 1, 2, . . . , n2 − 1.

−→
` (x30) = a0 and

−→
` (x3i ) = an1+n2+i for i = 1, 2, . . . , n3 − 1.
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Case 1.2. n2, n3 are both even.

−→
` (x20) = a0,

−→
` (x21) = a2 and

−→
` (x2i ) = an1+i for i = 2, 3 . . . , n2 − 1.

−→
` (x3i ) = an1+n2+i for i = 0, 1, . . . , n3 − 1.

Note that in both subcases w(v) = n/2 for any v ∈ V (G).

Case 2. n ≡ 2 (mod 4).

Without loss of generality we can assume that n2 ≥ n3.

Let a0 = 0, a1 = n/2, a2 = 1, a3 = n/2− 1, a4 = n− 1, a5 = n/2 + 1 and ai+1 = −ai

for i = 6, 8, 10, . . . , n−2. Set the orientation o(uv) for the edge uv ∈ E(G) such that:

o(xjix
p
k) =

{
−−→
xjix

p
k for j < p.

Let now
−→
` (x10) = a2,

−→
` (x11) = a3 and

−→
` (x1i ) = ai+4 for i = 2, 3, . . . , n1 − 1.

Case 2.1. n2, n3 are both even.

−→
` (x20) = a4,

−→
` (x21) = a5 and

−→
` (x2i ) = an1+2+i for i = 2, 3, . . . , n2 − 1.

−→
` (x30) = a0,

−→
` (x31) = a1 and

−→
` (x3i ) = an1+n2+i for i = 2, 3, . . . , n3 − 1.

Note that
∑

x∈Ai

−→
` (x) = n/2 for i = 1, 2, 3 thus w(v) = 0 for any v ∈ V (G).

Case 2.2 n2, n3 are both odd.

Assume first that n2 ≥ 3. Set
−→
` (x20) = a0,

−→
` (x21) = a4,

−→
` (x22) = a5 and

−→
` (x1i ) = an1+1+i for i = 3, 4, . . . , n2 − 1.

−→
` (x30) = a1 and

−→
` (x3i ) = an1+n2+i for i = 1, 2, . . . , n3 − 1. As in Case 2.1∑

x∈Ai

−→
` (x) = n/2 for i = 1, 2, 3 thus w(v) = 0 for any v ∈ V (G).
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Let now n2 = n3 = 1, then n1 ≡ 0 (mod 4). Set the orientation o (uv) for the edge

uv ∈ E(G) such that:

o
(
xjix

p
k

)
=



−−→
x20x

1
i , i even

−−→
x1ix

2
0, i odd

−−→
x30x

1
i , i = 0, 1, . . . , n1 − 1

−−→
x30x

2
0.

Then let
−→
` (x20) = n

2
,
−→
` (x30) = n

2
+ 2,

−→
` (x1n/2) = n

2
+ 1, and

−→
` (x1i ) =


i, i = 0, 1, . . . , n

2
− 1,

i+ 2, i = n
2

+ 1, n
2

+ 2, . . . , n1 − 1.

Observe that
∑
g∈Zn

g = n
2
since n ≡ 2 (mod 4), and also

∑
i odd

−→
` (x1i ) −

∑
i even

−→
` (x1i ) = n

2
,

so w(v) = 2 for any v ∈ V (G).

We finish this section with the following conjecture.

Conjecture 3.3.6. If G is a 2r-regular graph of order n, then G is orientable Zn-

distance magic.
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Chapter 4

Orientable Zn-distance magic graphs

via products?

4.1 Introduction

In this chapter we study a generalization of distance magic graphs introduced recently

in [14]. Let G be a simple, undirected graph on n vertices. Let ` be a bijection

` : V (G) → {1, 2, ..., n}, and define for every vertex x ∈ V (G), the weight of x,

w(x) =
∑

y∈N(x)

`(y). If the weight of every vertex is equal to the same number k, called

the magic constant, then we say ` is a distance magic labeling of G. If such a labeling

?The material in this chapter has been submitted to Australasian Journal of Combinatorics
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can be found, we say that G is distance magic. For a survey of distance magic graphs

see [5]. If one uses group element as labels, the following generalization of distance

magic labeling is possible.

Let Γ be an abelian group of order n with operation +. Let f be a bijection f :

V (G) → Γ. If there exists µ ∈ Γ such that w(x) =
∑

y∈N(x)

f(y) = µ, for all vertices

x ∈ V (G), then we say G is Γ-distance magic. Clearly if G is distance magic, then it

is also Zn-distance magic, but the converse is not necessarily true.

We now consider the analogous labeling in the setting of directed graphs first intro-

duced in [14]. We begin with an undirected graph G = (V,E). A replacement of each

edge in E with an arc, having a head at one vertex and tail at the other is called an

orientation of G, denoted
−→
G(V,A). For a vertex x, let N+(x) = {y ∈ V : −→yx ∈ A}

and N−(x) = {z ∈ V : −→xz ∈ A}. Let indeg(x) = |N+(x)| and outdeg(x) = |N−(x)|.

Let Γ be an abelian group of order n with operation +. For two elements g, h ∈ Γ, we

use the notation g − h to mean g + h−1, where h−1 is the additive inverse of h. Also,

for repeated addition g + g + ... + g, where g appears k times, we use the notation

kg. A directed Γ-distance magic labeling of an oriented graph
−→
G(V,A) of order n is

a bijection
−→
` : V → Γ with the property that there is a µ ∈ Γ, called the magic

constant, such that

w(x) =
∑

y∈N+
G (x)

−→
` (y)−

∑
y∈N−G (x)

−→
` (y) = µ for every x ∈ V (G).
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It should be emphasized that the arithmetic takes place in Γ. If a graph G admits an

orientation
−→
G for which a directed Γ-distance magic labeling

−→
` exists, we say that

G is orientable Γ-distance magic and we call the directed Γ-distance magic labeling

−→
` an orientable Γ-distance magic labeling.

Let Zn be the cyclic group of order n. With regards to orientable Zn-distance magic

labeling, Cichacz et. al characterized complete graphs, complete bipartite graphs,

complete tripartite graphs, circulant graphs, and certain products of graphs in [14].

They also showed that some graphs are not orientable Zn-distance magic. In partic-

ular, they proved the following.

Theorem 4.1.1. [14] Let G have order n ≡ 2 (mod 4) and all vertices of odd degree.

Then G is not orientable Zn-distance magic.

The motivation for our study is a conjecture stated in their concluding remarks [14].

Conjecture 4.1.2. If G is a 2r-regular graph of order n, then G is orientable Zn-

distance magic.

Determining whether an arbitrary graph is orientable Zn-distance magic is not prac-

tical. One strategy for building classes of graphs that are more fruitful to study is to

combine common families of graphs via graph products. The three graph products

we will use in this chapter are recalled in [32]. All three, the direct product G ×H,

the strong product G �H,and the lexicographic product G ◦H, are graphs with the
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vertex set V (G)× V (H). Two vertices (g, h) and (g′, h′) are adjacent in:

• G×H if g ∼ g′ in G and h ∼ h′ in H;

• G�H if either g = g′ and h ∼ h′ in H, or h = h′ and g ∼ g′ in G, or g ∼ g′ in

G and h ∼ h′ in H;

• G ◦H if and only if either g ∼ g′ in G or g = g′ and h ∼ h′ in H.

If V (G) = {g0, g1, ..., gm−1} and V (H) = {h0, h1, ..., hm−1} for some m and n, re-

spectively, we use the notation (i, j) to denote the vertex (gi, hj) in any of the above

products. If (i, j) appears as an argument in a function f , for easier reading and

more transparent typesetting, we will use the notation f (i, j) rather than f ((i, j)) .

We will also use (i, j) to refer both to the vertex and the label of the vertex. Since the

labelings considered in this chapter are bijections, this should cause no ambiguity.

Observe that of the products defined above, only the lexicographic product is not

necessarily commutative. The lexicographic product G◦H is sometimes also referred

to as graph composition and denoted G [H].

Let [n] = {0, 1, ..., n− 1} for a natural number n. Furthermore, for a given i ∈ [n]

and any integer j, let i + j denote the smallest integer in [n] such that i + j ≡

i + j (modn).
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Let Cn = x0, x1, ..., xn−1, x0 denote a cycle of length n. If the edges in Cn are oriented

such that every arc has the form −−−−→xixi+1 for all i ∈ [n], then we say the cycle is oriented

clockwise. On the other hand, if all the edges of the cycle are oriented such that every

arc has the form −−−−→xixi−1 for all i ∈ [n], then we say the cycle is oriented counter-

clockwise. In addition, we use the notation Ḡ to denote the graph complement of G

and the notation pG to denote p disjoint copies of the graph G.

4.2 Direct product of cycles

In this section, we turn our attention to the direct product. The direct product of

two cycles is a four-regular graph. Anholcer et. al obtained the following result in

[3].

Theorem 4.2.1. [3] The direct product Cm × Cn is distance magic if and only if

m = 4 or n = 4 or m,n ≡ 0 (mod 4).

If instead the elements of Zmn are used as labels, Anholcer et. al obtained the following

similar result in [4].

Theorem 4.2.2. [4] The direct product Cm × Cn is Zmn-distance magic if and only

if m ∈ {4, 8} or n ∈ {4, 8}, or m,n ≡ 0 (mod 4).

Allowing an orientation of the edges yields the following result.
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Theorem 4.2.3. For any p ≥ 1, m ≥ 3, and n ≥ 3, p copies of the direct product

Cm × Cn is orientable Zpmn-distance magic.

Proof. Let G = Cm = g0, g1, ..., gm−1, g0 and H = Cn = h0, h1, ..., hn−1, h0. Then

orient each copy of G × H as follows. For each i ∈ [m] and j ∈ [n], orient counter-

clockwise with respect to j each cycle of the form {(i, j) , (i + 1, j + 1) ,

(i + 2, j + 2) , ..., (i, j)}. Similarly, orient counter-clockwise with respect to j each

cycle of the form {(i, j) , (i − 1, j + 1) , (i − 2, j + 2) , ..., (i, j)} . Since the graph

G × H can be edge-decomposed into cycles of those two forms, we have oriented

every edge in each copy of G×H. Now let (i, j, k) denote the vertex (i, j) of the kth

copy of G×H for i ∈ [m], j ∈ [n], and k = 1, 2, ..., p. Now for all such i, j, an k, let

−→
` : V (p(G×H))→ Zpmn where

~̀(i, j, k) = pmj + i+m(k − 1),

where the arithmetic is performed in Zpmn. To show that ~̀ is injective, we have

~̀(i, j, k) = ~̀(i′, j′, k′) if and only if

pmj + i+m(k − 1) ≡ pmj′ + i′ +m(k′ − 1) (mod pmn).

Reducing this equation modulo m gives i ≡ i′ (modm), which implies i = i′ since

i, i′ ∈ [m]. Then we have m(pj + k − 1) ≡ m(pj′ + k′ − 1) (mod pmn), which implies
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p(j − j′) ≡ k′ − k (mod pn). Thus j = j′ and k = k′ since 0 ≤ |j − j′| ≤ n − 1 and

0 ≤ |k − k′| ≤ p − 1. Therefore ~̀ is injective, hence bijective. Finally, recalling that

w(i, j, k) ∈ Zpmn, for any i, j, and k we have,

w(i, j, k) =
∑

y∈N+(i,j,k)
~̀(y)−

∑
y∈N−(i,j,k)

~̀(y)

= ~̀(i + 1, j + 1, k) + ~̀(i − 1, j + 1, k)

− ~̀(i + 1, j − 1, k)− ~̀(i − 1, j − 1, k)

= 2pm [(j + 1)− (j − 1)] .

If j ∈ {0, n− 1}, then

w(i, j, k) = 2pm(2− n)

= 4pm− 2pmn

= 4pm,

while if 0 < j < n− 1, we have

w(i, j, k) = 2pm · 2

= 4pm.

Hence, p copies of the direct product Cm×Cn is orientable Zpmn-distance magic.
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4.3 Lexicographic product

We begin this section by considering the lexicographic product of two cycles. The

graph Cm ◦Cn is a (2n+ 2)-regular graph. The following was proved by Anholcer et.

al in [3].

Theorem 4.3.1. [3] The lexicographic product of two cycles Cm ◦ Cn, m, n ≥ 3 is

distance magic if and only if n = 4.

For oriented graphs, every cycle length is allowed.

Theorem 4.3.2. For any p ≥ 1, m ≥ 3, and n ≥ 3, p copies of the lexicographic

product of two cycles Cm ◦ Cn is orientable Zpmn-distance magic.

Proof. Let G = Cm = g0, g1, ..., gm−1, g0 andH = Cn = h0, h1, ..., hn−1, h0. Let (i, j, k)

denote the vertex (i, j) of the kth copy ofG◦H for i ∈ [m], j ∈ [n], and k ∈ {1, 2, ..., p}.

For each copy of G ◦ H , orient the edges so that N+(i, j, k) = {(i, j + 1, k)} ∪

{(i + 1, t, k) : t ∈ [n]} and N−(i, j, k) = {(i, j − 1, k)} ∪ {(i − 1, t, k) : t ∈ [n]}.

Now for all such i, j, and k, let
−→
` : V (p(G ◦H))→ Zpmn where

−→
` (i, j, k) = p(mj + i) + (k − 1),

where the arithmetic is performed modulo pmn. Clearly,
−→
` is bijective.

74



For any i, j, and k we now have,

w(i, j, k) =
∑

y∈N+(i,j,k)

−→
` (y)−

∑
y∈N−(i,j,k)

−→
` (y)

=
−→
` (i, j + 1, k) +

∑
t∈[n]

−→
` (i + 1, t, k)

−
−→
` (i, j − 1, k)−

∑
t∈[n]

−→
` (i − 1, t, k)

= pm [(j + 1)− (j − 1)] + pn [(i + 1)− (i − 1)]

= pma+ pnb,

where a =


2, if j ∈ {0, n− 1}

2− n, otherwise
, and b =


2, if i ∈ {0,m− 1}

2−m, otherwise
. Then since

pma + pnb ≡ 2pm + 2pn (mod pmn), we have that w(i, j, k) = 2pm + 2pn for all

(i, j, k) ∈ V (p(G ◦H)), proving the result.

Next we turn our attention to complete multipartite graphs. Cichacz et. al proved

the following in [14].

Theorem 4.3.3. [14] The complete graph Kn is orientable Zn-distance magic if and

only if n is odd.

For complete bipartite graphs, they proved the following sufficient conditions.

Theorem 4.3.4. [14] Let G = Kn1,n2 and n1 + n2 = n. If n 6≡ 2 (mod 4), then G is

orientable Zn-distance magic.
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Combined with Theorem 4.3.4, the next result settles the spectrum for complete

bipartite graphs and more.

Theorem 4.3.5. Let n1 + n2 + ... + np = n. If n ≡ 2 (mod 4) and p = 1 or p is

even, then Kn1,n2,...,np is not orientable Zn-distance magic.

Proof. Let G = Kn1,n2,...,np . If p = 1, then G ∼= Kn is an odd regular graph on

n ≡ 2 (mod 4) vertices, so it is not orientable Zn-distance magic by Theorem 4.1.1.

So assume p is even. For the sake of contradiction, suppose n ≡ 2 (mod 4) and G

is orientable Zn-distance magic with orientation
−→
G and orientable Zn-distance magic

labeling
−→
` : V (G) → Zn. Observe that Zn ∼= Z2 × Zn/2 by the Fundamental

Theorem of Abelian Groups since gcd
(
2, n

2

)
= 1. Therefore, there exists a labeling

~f : V (G)→ Z2 × Zn/2 and element (a, b) ∈ Z2 × Zn/2 such that w(v) = (a, b) for all

v ∈ V (G). Let
−→
f2(v) represent the Z2 component of

−→
f (v) for all v ∈ V (G). Therefore,

a =
∑

y∈N+(v)

−→
f2(y)−

∑
y∈N−(v)

−→
f2(y) =

∑
y∈N(v)

−→
f2(y).

Since
−→
f is bijective, there exists an odd number of v ∈ V (G) such that

−→
f2(v) = 1.

Since p is even, it follows that there exists an odd number of partite sets A such that∑
v∈A

−→
f2(v) = 1 and an odd number of partite sets B such that

∑
v∈B

−→
f2(v) = 0. But this

is leads to a contradiction, since for x ∈ A and y ∈ B,

w(x) = (0, b) 66= (1, b) = w(y).
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Corollary 4.3.6. Let G = Kn1,n2 be a complete bipartite graph such that n1+n2 = n.

Then G is orientable Zn-distance magic if and only if n 6≡ 2 (mod 4).

The next result serves as a cautionary tale for the lexicographic product.

Corollary 4.3.7. Let n = n1 + n2 ≡ 1, 3 (mod 4) and k ≡ 2 (mod 4). Then Kn1,n2

is orientable Zn-distance magic, but Kn1,n2 ◦Kk is not orientable Znk-distance magic.

Proof. The proof is clear since Kn1,n2 ◦Kk
∼= Kkn1,kn2 and kn1 +kn2 ≡ 2 (mod 4).

Next we recall a theorem regarding distance magic labelings proved by Miller, Rodger,

and Simanjuntak in [38].

Theorem 4.3.8. [38] If H is an r-regular graph, then G = H ◦K2k is distance magic.

Now we prove an analogous theorem in the setting of oriented graphs.

Theorem 4.3.9. If H is an orientable Zn-distance magic graph of order n, then the

lexicographic product G = H ◦ Kk is orientable Znk-distance magic except possibly

when k ≡ 2 (mod 4) and H contains a vertex x such that indeg(x) 6≡ outdeg(x)

(mod 2).

Proof. Let H be an orientable Zn-distance magic graph on n vertices with directed

Zn-distance magic labeling ~f : V (H) → Zn, orientation ~H, and magic constant
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µ ∈ Zn. Then construct the graph G = H ◦ Kk with vertex set V (G) = {(i, j) :

i ∈ V (H), j = 1, 2, ..., k} by replacing each vertex i of H with k isolated vertices

such that two of the new vertices are adjacent whenever their counterparts in H are

adjacent. We will orient the edges of G later. For all i ∈ V (H), let Bi represent the

set of k vertices which have replaced the vertex i. We will now label the vertices in

each set Bi. For i ∈ [n], define cosets Ai = {i+〈n〉} ⊆ Znk, where 〈n〉 is the subgroup

generated by n. Clearly, Znk = A0 ∪A1 ∪ ...∪An−1 and Ai ∩Aj = ∅ ⇔ i 6= j. For all

i ∈ [n], let
−→
l : Ai → Bi be an arbitrary bijection.

Case 1. k is odd or indeg(x) and outdeg(x) have the same parity for all x ∈ V (H).

Orient the edges of G so that each edge (i, j)(p, q) for (i, j) ∈ Bi and (p, q) ∈ Bp has

the same orientation as its counterpart ip in
−→
H . Let

Si =
∑
x∈Bi

−→
l (x)

=
∑
a∈Ai

a

= i+ (n+ i) + ...+ ((k − 1)n+ i)

= k[2i+(k−1)n]
2

,

with all arithmetic performed modulo nk. Let x ∈ Bi and let N+
H (i) = {a1, ..., ap} and

N−H (i) = {b1, ..., bq} where p = indeg(i) and q = outdeg(i). If we write
p∑
i=1

ai = a and
q∑
i=1

bi = b, then a− b = µ, (with all arithmetic performed in Zn) since H is orientable
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Zn-distance magic. Then recalling k is odd or p ≡ q (mod 2), we have

w(x) =
p∑
i=1

Sai−
q∑
i=1

Sbi

= k[2(a1+...+ap)+p(k−1)n]
2

− k[2(b1+...+bq)+q(k−1)n]
2

= Sa1+...+ap + k(k−1)(p−1)n
2

− Sb1+...+bq −
k(k−1)(q−1)n

2

= Sa − Sb + (k−1)(p−q)
2

nk

≡ Sa − Sb (modnk)

≡ k(a− b) (modnk)

≡ kµ (modnk),

which shows
−→
l is a directed Znk-distance magic labeling of G.

Case 2. k ≡ 0 (mod 4).

Notice that every vertex in Bi can be expressed uniquely as i + tn for some t ∈ [k].

For every edge ij ∈ E(H), orient the edges in G between Bi and Bj as follows. For

all a, b ∈ [k], orient the edges between i + an ∈ Bi and j + bn ∈ Bj such that if

a ≡ 0, 3 (mod 4),

N+
G (i+ an) = {j + bn : b ≡ 0, 3 (mod 4)} ,

N−G (i+ an) = {j + bn : b ≡ 1, 2 (mod 4)} ,
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and if a ≡ 1, 2 (mod 4)

N+
G (i+ an) = {j + bn : b ≡ 1, 2 (mod 4)} ,

N−G (i+ an) = {j + bn : b ≡ 0, 3 (mod 4)} .

Let i+ an ∈ Bi for some a ∈ [k] and let ij ∈ E(H). Denote wij(i+ an) as the weight

of i+ an in G induced by the edge ij ∈ E(H). If a ≡ 0, 3 (mod 4), then

wij(i+ an) =
∑

b≡0,3 (mod 4)

(j + bn)−
∑

b≡1,2 (mod 4)

(j + bn)

= [(0n+ 3n)− (1n+ 2n)] + ...+ [(4n+ 7n)− (5n+ 6n)]

+ [((k − 4)n+ (k − 1)n)− ((k − 3)n+ (k − 2)n)]

= 0.

If a ≡ 1, 2 (mod 4), essentially the same calculation shows wij(i+an) = 0 . Therefore,

each edge ij in H induces 0 weight in G, so the graph G is orientable Znk-distance

magic.

4.4 Strong product of cycles

The strong product of two cycles, Cm � Cn is an eight-regular graph which contains

the direct product Cm × Cn as a spanning subgraph. For all of the theorems in this

section, let m,n ≥ 3 be given and let G = Cm = g0, g1, ..., gm−1, g0 and
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H = Cn = h0, h1, ..., hn−1, h0. Form the strong product G � H with vertex set

V (G � H) = {(i, j) : i ∈ [m], j ∈ [n]}. The graph G � H can be edge-decomposed

into cycles of the following four types:

I. (i, j), (i, j + 1), (i, j + 2), ..., (i, j),

II. (i, j), (i − 1, j + 1), (i − 2, j + 2), ..., (i, j),

III. (i, j), (i + 1, j + 1), (i + 2, j + 2), ..., (i, j),

IV. (i, j), (i + 1, j), (i + 2, j), ..., (i, j).

Orient each cycle of types I, II, and III counter-clockwise with respect to j, and

orient each cycle of type IV counter-clockwise with respect to i. For a given bijection

−→
` : V (G�H) 7−→ Zmn and any vertex (i, j) ∈ V (G�H), we have

w(i, j) =
∑

x∈N+(i,j)

−→
` (x)−

∑
x∈N−(i,j)

−→
` (x)

=
−→
` (i + 1, j) +

−→
` (i + 1, j + 1) +

−→
` (i, j + 1) +

−→
` (i − 1, j + 1)

−
[−→
` (i − 1, j) +

−→
` (i − 1, j − 1) +

−→
` (i, j − 1) +

−→
` (i + 1, j − 1)

]
.

The first set of constructions is based on the greatest common divisor of the cycle

lengths.

Theorem 4.4.1. If gcd (m,n) = 1, then the strong product Cm � Cn is orientable

Zmn-distance magic.

Proof. If gcd(m,n) = 1, then Zmn ∼= Zm × Zn by the Fundamental Theorem of
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Abelian Groups. Define
−→
` : V (Cm � Cn)→ Zm × Zn where

−→
` (i, j) = (i, j) .

For all (i, j) ∈ V (Cm � Cn), we have

w(i, j) = (4i+ 1, 4j + 3)− (4i− 1, 4j − 3)

= (2, 6) ,

proving the theorem.

To prove the next theorem, we use a labeling similar to the one used by Froncek

on the Cartesian product of two cycles in [23]. The Cartesian product Cm�Cn is a

spanning subgraph of Cm � Cn.

Theorem 4.4.2. If gcd(m,n) = 2 or 4, then Cm � Cn is orientable Zmn-distance

magic.

Proof. Assumem ≤ n and let a diagonal of Cm�Cn be a sequence of vertices (i, 0), (i+

1, 1), ..., (m−1,m−1), (0,m), (1,m+1), ..., (i−1, n−1) of length l. Let g = gcd(m,n).

Clearly, l = lcm(m,n) and there are mn
l

= g diagonals. For ease of notation, we will

denote the diagonal Di = (di0, d
i
1, ..., d

i
l−1) for i = 0, 1, ..., g − 1. Similarly, we define a

back diagonal as a sequence of vertices (i, 0), (i− 1, 1), ..., (0, i), (m− 1, i+ 1), ..., (i+

1, n− 1) and denote it by Bi = (bi0, b
i
1, ..., b

i
l−1) for i = 0, 1, ..., g − 1.

82



Let H ∼=< g >, the subgroup of Zmn generated by g. Define
−→
` : V (Cm � Cn)

→ Zmn by labeling the vertices of the diagonal Di with the elements of the coset

H + i in increasing order for i = 0, 1, ..., g − 1. Divide n by m and write n = km+ r

for 0 ≤ r ≤ m− 1.

Case 1. g = 2.

Because there are only two diagonals, bi1 = dih for some h. Counting steps through

the lattice, it is not difficult to see that h = (m−2)n
r

+ 1. Therefore the two

sequences, (bi0, b
i
1, ..., b

i
l−1) and (di0, d

i
h, d

i
2h, ...) are equal since |Bi| = |Di| . Notice

for any vertex (i, j) = dta on Dt, we have N+(i, j) = {dta+1, b
t
c+2, d

t+1
p+1, d

t+1
q+1} and

N−(i, j) =
{
dta−1, b

t
c, d

t+1
p , dt+1

q

}
for some numbers c, p, q, and t+ 1 is performed mod-

ulo 2. Therefore,

w(i, j) = (dta+1 − dta−1) + (dt+1
p+1 − dt+1

p )

+ (dt+1
q+1 − dt+1

q ) + (btc+2 − btc)

= 2g + g + g + 2gh

= 2g(2g + h).

Case 2. g = 4.

Since the graph contains exactly four diagonals, bi2 = dih′ for some h′. Along the lines

of the previous case, we obtain h′ = (m−4)n
r

+ 2 and consequently bic − bic−2 = gh.
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For any vertex (i, j) = dta on Dt, we have N+(i, j) =
{
dta+1, b

t′
c+2, d

t+1
p+1, d

t−1
q+1

}
and

N−(i, j) =
{
dta−1, b

t′
c , d

t+1
p , dt−1q

}
for some numbers c, p, q, and t + 1 and t − 1 are

performed modulo 4. Therefore,

w(i, j) = (dta+1 − dta−1) + (dt+1
p+1 − dt+1

p )

+ (dt−1q+1 − dt−1q ) + (bt
′
c+2 − bt

′
c )

= 2g + g + g + gh

= g(4 + h).

Since h is independent of i and j, we have proven the result.

The next theorem uses an isomorphic group to provide the labeling.

Theorem 4.4.3. Let gcd(m,n) = d where d = 3,5, or 6. If d2 - m and d2 - n, then

Cm � Cn is orientable Zmn-distance magic.

Proof. Let gcd(m,n) = d ∈ {3, 5, 6}, d2 - m, and d2 - n. Therefore, gcd(m
d
, d) =

gcd(n
d
, d) = 1 which implies gcd(m

d
, n
d
) = gcd(m

d
, d2) = gcd(n

d
, d2) = 1 and Zmn ∼=

Zd2 × Zm
d
× Zn

d
. Let ī and j̄ represent the remainder of i divided by d and j divided

by d, respectively.
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Define
−→
` : V (Cm � Cn)→ Zd2 × Zm

d
× Zn

d
as

−→
` (i, j) = (αd, β, γ) ,

where 0 ≤ β ≤ m
d
, β ≡ i (mod m

d
) , 0 ≤ γ ≤ n

d
,γ ≡ j (mod n

d
), and αd is defined as

follows. If d = 3, let

α3 = 3̄i+ j̄.

If d = 5, let

α5 = 5j̄ + i− 2j.

If d = 6, let

α6 =


6̄i+ 2j̄, i even

6(i− 1) + 2j̄ + 1, i odd
,

where the arithmetic is performed modulo d2.

To show
−→
` is injective, we have

−→
` (i, j) = (αd, β, γ) = (α′d, β

′, γ′) =
−→
` (i′, j′) if and

only if αd ≡ α′d (mod d2) and β ≡ β′ (mod m
d

) and γ ≡ γ′ (mod n
d
). Consequently,

β = β′ ⇐⇒ i− i′ ≡ 0 (mod m
d

)

γ = γ′ ⇐⇒ j − j′ ≡ 0 (mod n
d
)

.

Therefore, i− i′ = am
d
for some integer a : |a| < d, and j − j′ = bn

d
for some integer

b : |b| < d.
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If d = 3, then

α3 ≡ α′3 (mod 32) =⇒ 3̄i+ j̄ ≡ 3ī′ + j̄′ (mod 32)

=⇒ j̄ ≡ j̄′ (mod 3)

=⇒ j̄ − j̄′ ≡ 0 (mod 3)

=⇒ j̄ − j̄′ ≡ 0 (modn)

=⇒ j = j′,

since j̄ − j̄′ ≡ 0 (mod n
3
) and gcd(3, n

3
) = 1 by assumption. But,

j = j′ =⇒ 3̄i ≡ 3ī′ (mod 32)

=⇒ 3(̄i− ī′) ≡ 0 (mod 32)

=⇒ ī− ī′ ≡ 0 (mod 3)

=⇒ ī− ī′ ≡ 0 (modn)

=⇒ i = i′.

Therefore,
−→
` is bijective when d = 3. A similar argument can be made to show

−→
` is

bijective when d = 5, 6.

Let (i, j) ∈ V (Cm � Cn). We calculate w(i, j) component-wise. Let

w(i, j) = (w1, w2, w3) ,

where w1 ∈ Zd2 , w2 ∈ Zm
d
, and w3 ∈ Zn

d
. First we determine w1 for each d ∈ {3, 5, 6}.
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Consequently, the arithmetic will be performed in Zd2 .

If d = 3,

w1 =
(
3(i+ 1) + j̄

)
+
(
3(i+ 1) + (j + 1)

)
+

(
3i+ (j + 1)

)
+
(
3(i− 1) + (j + 1)

)
−

[(
3(i− 1) + j̄

)
+
(
3(i+ 1) + (j − 1)

)]
−

[(
3i+ (j − 1)

)
+
(
3(i+ 1) + (j − 1)

)]
= 3.

If d = 5,

w1 =
(
5j + i+ 1− 2j

)
+
(
5(j + 1) + (i+ 1− 2j − 2)

)
+

(
5(j + 1) + (i− 2j − 2)

)
+
(
5(j + 1) + (i− 1− 2j − 2)

)
−

[(
5j + i− 1− 2j

)
+
(
5(j − 1) + (i− 1− 2j + 2)

)]
−

(
5(j − 1) + (i− 2j + 2)

)
+
(
5(j − 1) + (i+ 1− 2j + 2)

)
= 15

[
(j + 1)− (j − 1)

]
+ i− 2j − 2− i− 2j + 3

+ i− 2j + 2− i− 2j − 3

= 15
[
(j + 1)− (j − 1)

]
,

since i− 2j − 2 = i− 2j + 3 and i− 2j + 2 = i− 2j − 3. Then for j̄ ∈ {1, 2, 3}, we

have w1 = 15·2 ≡ 5 (mod 25), and for j̄ ∈ {0, 4}, we have w1 = 15·(−3) ≡ 5 (mod 25).

Therefore, w1 = 5.
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Finally, if d = 6 and i is even we have,

w1 = (6̄i+ 2j̄ + 1) +
(
6̄i+ 2(j + 1) + 1

)
+

(
6̄i+ 2(j + 1)

)
+
(
6(i− 2) + 2(j + 1) + 1

)
−

[(
6(i− 2) + 2j̄ + 1

)
+
(
6(i− 2) + 2(j − 1) + 1

)]
−

[(
6̄i+ 2(j − 1)

)
+
(
6̄i+ 2(j − 1) + 1

)]
= 6

(̄
i− (i− 2)

)
+ 6

(
(j + 1)− (j − 1)

)
.

Notice, 6
(̄
i− (i− 2)

)
≡ 12 (mod 36) for all i and 6

(
(j + 1)− (j − 1)

)
≡ 12 (mod 36)

for all j, so w1 = 24.

If d = 6 and i is odd,

w1 =
(
6(i+ 1) + 2j̄

)
+
(
6(i+ 1) + 2(j + 1)

)
+

(
6(i− 1) + 2(j + 1) + 1

)
+
(
6(i− 1) + 2(j + 1)

)
−

[(
6(i− 1) + 2j̄

)
+
(
6(i− 1) + 2(j − 1)

)]
−

[(
6(i− 1) + 2(j − 1) + 1

)
+
(
6(i+ 1) + 2(j − 1)

)]
= 6

(
(i+ 1)− (i− 1)

)
+ 6

(
(j + 1)− (j − 1)

)
.

But, 6
(
(i+ 1)− (i− 1)

)
≡ 12 (mod 36) for all i and 6

(
(j + 1)− (j − 1)

)
≡

12 (mod 36) for all j, so w1 = 24.

Next we calculate w2 and w3 which are each independent of d.
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Recall w2 ∈ Zm
d
and w3 ∈ Zn

d
. We have

w2 = 2(i− 1) + i+ (i+ 1)

− [2(i+ 1) + i+ i− 1]

= −2,

and

w3 = j + 3(j + 1)

− [j + 3(j − 1)]

= 6.

Hence,

w(i, j) = (w1,−2, 6) ,

where

w1 =


3, for d = 3

5, for d = 5

12, for d = 6

,

proving the theorem.

The next set of constructions is based on the modulo 4 congruence class of the cycle

lengths.

Theorem 4.4.4. If mn ≡ 2 (mod 4), then Cm�Cn is orientable Zmn-distance magic.
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Proof. If mn ≡ 2 (mod 4), then 2 divides exactly one of m or n. Without loss of

generality, we may assume 2 | m. By the Fundamental Theorem of Abelian Groups,

we have Zmn ∼= Z2 × Zmn
2
. Define

−→
` : V (Cm � Cn)→ Z2 × Zmn

2
where

−→
` (i, j) =


(
0, i

2
n+ j

)
, i even(

1, i−1
2
n+ j

)
, i odd

.

Clearly
−→
` is a bijection, and if i is even we have,

w(i, j) =
(
1, i

2
n+ j

)
+
(
1, i

2
n+ j + 1

)
+

(
1, i

2
n+ j

)
+
(
1, i

2
n+ j + 1

)
−

(
1, i−2

2
n+ j

)
−
(
1, i−2

2
n+ j − 1

)
−

(
0, i

2
n+ j − 1

)
−
(
1, i

2
n+ j − 1

)
= (0, n+ 6).

While if i is odd we have,

w(i, j) =
(
0, i+1

2
n+ j

)
+
(
0, i+1

2
n+ j + 1

)
+

(
1, i−1

2
n+ j + 1

)
+
(
1, i−1

2
n+ j + 1

)
−

(
0, i−1

2
n+ j

)
−
(
0, i−1

2
n+ j − 1

)
−

(
1, i−1

2
n+ j − 1

)
−
(
0, i+1

2
n+ j − 1

)
= (0, n+ 6),

proving the theorem.
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One may ask what can be said of Cm � Cn if mn ≡ 0 (mod 4). A partial answer is

given in the next theorem.

Theorem 4.4.5. If m ≡ n ≡ 2 (mod 4), then Cm � Cn is orientable Zmn-distance

magic.

Proof. Let gcd(m
2
, n
2
) = δ. We establish two cases based on δ.

Case 1. δ = 1.

Since gcd(m
2
, n
2
) = 1 and both m

2
and n

2
are odd, we have Zmn ∼= Z4×Zm

2
×Zn

2
by the

Fundamental Theorem of Abelian Groups. Define
−→
` : V (Cm � Cn)→ Z4×Zm

2
×Zn

2

where

−→
` (i, j) = (r, ī, j̄) ,

where

r =



0, i even, j even

1, i even, j odd

2, i odd, j even

3, i odd, j odd

,

ī ∈ Zm
2
and ī ≡ i (mod m

2
), and j̄ ∈ Zn

2
and j̄ ≡ j (mod n

2
). To show

−→
` is injective, we

observe that

−→
` (i, j) = (r, ī, j̄) = (r, ī′, j̄′) =

−→
` (i′, j′)
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implies i ≡ i′ (mod m
2

). Say i = am
2

+b and i′ = cm
2

+b for some a, c ∈ {0, 1} and some

0 ≤ b < m
2
. Since m

2
is odd, and r = r′ implies that i and i′ have the same parity,

it must be the case that a = c, and hence i = i′. Essentially the same argument

shows that j = j′. Therefore,
−→
` is injective, and hence bijective. We calculate w(i, j)

component-wise. Let

w(i, j) = (w1, w2, w3) ,

where w1 ∈ Z4, w2 ∈ Zm
2
, and w3 ∈ Zn

2
. We leave it to the reader to show w1 = 0.

Then

w2 = 2(i+ 1) + i+ (i− 1)

− [2(i− 1) + i+ (i+ 1)]

= 2,

and

w3 = j + 3(j + 1)

− [j + 3(j − 1)]

= 6.

We conclude that for any (i, j) ∈ V (Cm � Cn), we have

w(i, j) = (0, 2, 6) .

Case 2. δ > 1.
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Since mn
4

is odd we have Zmn ∼= Z4 × Zmn
4
. Define

−→
` : V (Cm � Cn) → Z4 × Zmn

4

where

−→
`
(
xji
)

=


(
r, in

4
+ j
)

i even(
r, (i−1)n

4
+ j
)

i odd
,

where r is as in the previous case. To show
−→
` is injective, assume that

−→
` (i, j) =

−→
` (i′, j′). As in the previous case, r = r′ implies that i and i′ have the same parity.

Suppose i and i′ are both even. Then i
2
n
2

+ j ≡ i′

2
n
2

+ j′ (mod mn
4

) implies j ≡

j′ (mod n
2
). By the same argument used in the previous case, it follows that j = j′.

But then we have i
2
n
2
≡ i′

2
n
2

(mod mn
4

) which implies i ≡ i′ (mod mn
4

) since n is even

and mn
4

is odd. But this along with the fact that 0 ≤ |i− i′| < m implies that i = i′.

The argument proving i = i′ and j = j′ if i and i′ are both odd is essentially the

same and is left to the reader. Therefore,
−→
` is injective, hence bijective and we

proceed to determine the weights. As in the previous case, we calculate w(i, j) for

any (i, j) ∈ V (Cm � Cn), component-wise. Let

w(i, j) = (w1, w2)

where w1 = 0 ∈ Z4 (from Case 1) and w2 ∈ Zmn
4
. If i is even,

w2 =
(
i
2
n
2

+ j
)

+
(
i
2
n
2

+ j + 1
)

+
(
i
2
n
2

+ j + 1
)

+
(
i−2
2

n
2

+ j + 1
)

−
[(

i−2
2

n
2

+ j
)

+
(
i−2
2

n
2

+ j − 1
)

+
(
i
2
n
2

+ j − 1
)

+
(
i
2
n
2

+ j − 1
)]

= n
2

+ 6,
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while if i is odd,

w2 =
(
i+1
2

n
2

+ j
)

+
(
i+1
2

n
2

+ j + 1
)

+
(
i−1
2

n
2

+ j + 1
)

+
(
i−1
2

n
2

+ j + 1
)

−
[(

i−1
2

n
2

+ j
)

+
(
i−1
2

n
2

+ j − 1
)

+
(
i−1
2

n
2

+ j − 1
)

+
(
i+1
2

n
2

+ j − 1
)]

= n
2

+ 6.

Hence,

w(i, j) =
(

0,
n

2
+ 6
)
,

proving the theorem.

We conclude this section with a labeling over the group Zn × Zn.

Theorem 4.4.6. For any n ≥ 3, the graph Cn � Cn is orientable Zn × Zn-distance

magic.

Proof. Define
−→
` : V (Cn � Cn)→ Zn × Zn where

−→
` (i, j) =

(
j − i, j

)
,

and j − i represents the remainder of j − i divided by n. Clearly,
−→
` is a bijection
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and for any (i, j) ∈ V (Cn � Cn), we have

w(i, j) = (j − i− 1 , j) + (j − i , j + 1) + (j − i+ 1 , j + 1) + (j − i , j + 1)

− [(j − i+ 1 , j) + (j − i , j − 1) + (j − i− 1 , j − 1) + (j − i , j − 1)]

= (0, 6) ,

which proves the theorem.

4.5 Conclusion

We have proven that for two cycles Cm and Cn, both the lexicographic product and

the direct product are orientable Zmn-distance magic. We have also provided some

constructions for labeling lexicographic products of regular graphs. With regards to

the strong product of two cycles, we have settled some cases. Hence, we conclude

with the following open problem.

Problem 4.5.1. Find an orientable Zmn-distance magic labeling for Cm�Cn for all

m,n ≥ 3.
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Chapter 5

Orientable Zn-distance magic labeling

of Cartesian product of two cycles?

5.1 Definitions and known results

A distance magic labeling of a graph G = (V,E) of order n is a bijection f : V →

{1, 2, . . . , n} with the property that there is a positive integer k (called the magic

constant) such that

w(x) =
∑

y∈N(x)

f(y) = k for every x ∈ V (G),

?The material in this chapter has been submitted to Australasian Journal of Combinatorics
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where N(x) = {y|xy ∈ E} is the open neighborhood of vertex x. We call w(x) the

weight of vertex x. See [5] for a survey of results regarding distance magic graphs.

Froncek adapted distance magic labeling by using the elements from an abelian group

as labels rather than integers in [23]. Let G = (V,E) be a graph of order n and let Γ

be an abelian group of order n. Then if there exists a bijection ` : V → Γ with the

property that there is an element µ ∈ Γ such that

w(x) =
∑

y∈N(x)

`(y) = µ for every x ∈ V (G),

we say the labeling ` is a Γ-distance magic labeling and we say the graph G is Γ-

distance magic. If such a labeling exists for every abelian group of order n, then we

say G is group distance magic.

The Cartesian product G�H of two graphs G and H is a graph with vertex set

V (G) × V (H) and two vertices (g, h) and (g′, h′) are adjacent in G�H if and only

if g = g′ and h is adjacent to h′ in H, or h = h′ and g is adjacent to g′ in G. Let

Cn = x0, x1, ..., xn−1, x0 denote a cycle of length n. Froncek proved the following

result in [23].

Theorem 5.1.1. [23] The Cartesian product Cm�Cn is Zmn-distance magic if and

only if mn is even.
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Cichacz made progress towards settling when Cm�Cn is group distance magic by

proving the following in [9].

Theorem 5.1.2. [9] Let l = lcm (m,n). If m or n is even, then Cm�Cn is Zα × Γ-

distance magic for any α ≡ 0 (mod l) and any abelian group Γ of order mn
α
.

Cichacz and Froncek proved the following non-existence result in [15].

Theorem 5.1.3. [15] If G is an r-regular graph of order n and r is odd, then G is

not Zn-distance magic.

The following analog of group distance magic labeling for directed graphs was intro-

duced in [14]. Let G = (V,E) be a graph. Assigning a direction to the edges of

G gives an oriented graph
−→
G(V,A). In this chapter, we will use the notation −→xy to

denote an edge directed from vertex x to vertex y. Let N+(x) = {y|−→yx ∈ A} and

N−(x) = {z|−→xz ∈ A}. A directed Γ-distance magic labeling of an oriented graph

−→
G = (V,A) of order n is a bijection

−→
` : V → Γ with the property that there is a

µ ∈ Γ (called the magic constant) such that

w(x) =
∑

y∈N+(x)

−→
` (y)−

∑
y∈N−(x)

−→
` (y) = µ for every x ∈ V (G).

If for a graph G there exists an orientation
−→
G such that there is a directed Γ-distance

magic labeling
−→
` for

−→
G , we say that G is orientable Γ-distance magic.
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In this chapter, we focus on orientable Zn-distance magic labeling, where Zn is the

cyclic group of order n. For the sake of orienting a cycle Cn, if the edges are oriented

such that every arc has the form −−−→xixi+1 for all i ∈ {0, 1, ..., n− 1} (where the addition

in the subscript is taken modulo n), then we say the cycle is oriented clockwise. On the

other hand, if all the edges of the cycle are oriented such that every arc has the form

−−−→xixi−1 for all i ∈ {0, 1, ..., n− 1}, then we say the cycle is oriented counter-clockwise.

0 1

23

Figure 5.1: Orientable Z4-distance magic labeling of C4

It is an easy observation that Cn is orientable Zn-distance magic for all n ≥ 3 (orient

all the edges in the same direction around the cycle and label the vertices consecutively

{0, 1, ...n− 1}).

The following theorem was proved by Cichacz et. al in [14] .

Theorem 5.1.4. [14] Let G be a graph of order n in which every vertex has odd

degree. If n ≡ 2 (mod 4), then G is not orientable Zn-distance magic.

Regarding the Cartesian product of two cycles, they obtained the following partial

result.

Theorem 5.1.5. [14] If gcd(m,n) = 1, then the Cartesian product Cm�Cn is ori-

entable distance magic.
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In Section 5.2 we prove that Theorem 5.1.5 is true without the assumption

gcd (m,n) = 1.

5.2 Cartesian product of two cycles

We begin with a construction for the case when one cycle length is a multiple of the

other.

Theorem 5.2.1. The Cartesian product Cm�Ckm is orientable Zkm2-distance magic

for all m ≥ 3 and k ≥ 1.

Proof. Let G = Cm = g0, g1, ..., gm−1, g0 and H = Ckm = h0, h1, ..., hkm−1, h0. Then

orient each copy of G�H as follows. Fix j ∈ [km]. Then for all i ∈ [m], ori-

ent counter-clockwise each cycle of the form (gi, hj) , (gi+1, hj) , ..., (gi−1, hj) , (gi, hj),

where the arithmetic in the subscript is performed modulo m. Similarly, fix

i ∈ [m]. Then for all j ∈ [km], orient counter-clockwise each cycle of the form

(gi, hj) , (gi, hj+1) , ..., (gi, hj−1) , (gi, hj) , where the arithmetic in the subscript is per-

formed modulo km. Since the graph G�H can be edge-decomposed into cycles

of those two forms, we have oriented every edge in G�H. For a given a, let

0 ≤M(a) < m be defined as the remainder of a divided bym. That is, a = qm+M(a)

for some positive integer q. Now let xji denote the vertex (gi, hj) ∈ V (G�H) for
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i ∈ [m], j ∈ [km]. Now define
−→
l : V → Zkm2 by

~l(xji ) = mj +M(i− j).

Expressing ~l(xji ) in the following alternative way,

~l(xji ) =



mj,

mj + 1,

mj + 2,

...

mj + (m− 1),

for i ≡ j (modm)

for i ≡ j + 1 (modm)

for i ≡ j + 2 (modm)

...

for i ≡ j − 1 (modm)

,

we see that
−→
l is clearly bijective.

Then for all xji we have N+
(
xji
)

= {xj+1
i , xji+1} and N−

(
xji
)

= {xj−1i , xji−1} where the

arithmetic is performed modulo km in the superscript and modulo m in the subscript.
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Therefore,

w(xji ) = ~l(xj+1
i ) +~l(xji+1)− [~l(xji−1) +~l(xj−1i )]

= m(j + 1) +mj −mj −m(j − 1)

+ [M(i− j − 1) +M(i− j + 1)−M(i− j − 1)−M(i− j + 1)]

=


m(2− km), j ∈ {0, km− 1}

m · 2, j ∈ {1, ..., km− 2}

= 2m,

since m(2− km) ≡ 2m (mod km2).

Thus, ~l is an orientable Zkm2-distance magic labeling.

For a given integer a, let 0 ≤ R(a) < d represent the remainder when a is divided

by d. That is, a = qd + R(a) for some positive integer q. For a given natural

number p, let [p] denote the set {0, 1, ..., p− 1} . For a set S and a number c, let

S + c = {x+ c : x ∈ S} . Each case in the proof of the next theorem uses a directed

labeling which is shown to be a bijection from the vertex set of the graph to the

appropriate group in the Appendix.

Theorem 5.2.2. The Cartesian product Cm�Cn is orientable Zmn-distance magic

for all m,n ≥ 3.

Proof. Let m,n ≥ 3 be given and let gcd(m,n) = d. Then define λ = m+n
d

and let
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gcd(m
d
, d) = α. By Theorem 5.1.5, we may assume d ≥ 2. By Theorem 5.2.1 and the

fact that the product is commutative, we may further assume d < min{m,n}. Let

G = Cm = {g0, g1, ..., gm−1, g0} and H = Cn = {h0, h1, ..., hn−1, h0}. Then orient each

copy of G�H as in Theorem 5.2.1. Now let xji denote the vertex (gi, hj) ∈ V (G�H)

for all i ∈ [m] and j ∈ [n]. We proceed in three cases based on the parity of m and n.

Since we will define a different directed labeling for each case, we first pause to make

the following observation. For any directed labeling ~l : V (G�H)→ Zmn of
−−−→
G�H, we

have

w(xji ) =
∑

y∈N+(xji )

−→
l (y)−

∑
y∈N−(xji )

−→
l (y)

= ~l(xj+1
i ) +~l(xji+1)− [~l(xji−1) +~l(xj−1i )],

for every vertex xji ∈ V (G�H), where the arithmetic is performed modulo n in the

superscript and modulo m in the subscript. However, it should be emphasized that

the weight calculation is performed in the group Zmn.

Case 1.1. m and n both odd and gcd (λ, d) = 1.

For all xji ∈ V (G�H), define ~l : V (G�H)→ Zmn where

~l
(
xji
)

= jm+ in+R (j − i) .
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Then,

w(xji ) = (j + 1)m+ in+ jm+ (i+ 1)n

− [jm+ (i− 1)n+ (j − 1)m+ in]

+ R (j − i+ 1)−R (j − i+ 1) +R (j − i− 1)−R (j − i− 1)

= sm+ rn,

where s ∈ {2, 2− n} and r ∈ {2, 2−m}. But, sm+ rn ≡ 2m+ 2n (modmn), so

w(xji ) = 2m+ 2n.

In the remaining cases we will omit the equality involving s and r above and only

show the final congruence modulo mn.

Case 1.2. m and n both odd and gcd (λ, d) > 1.

Let k = 1 when α2 - d and let k = 2 when α2 | d. Then for all xji ∈ V (G�H), define

~lαk : V (G�H)→ Zmn where

~lαk

(
xji
)

= jm+ in
d

αk
+R (j − i) .
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Therefore,

w(xji ) = (j + 1)m+ in d
αk + jm+ (i+ 1)n d

αk

−
[
jm+ (i− 1)n d

αk + (j − 1)m+ in d
αk

]
+ R (j − i+ 1)−R (j − i+ 1) +R (j − i− 1)−R (j − i− 1)

= 2m+ 2n d
αk .

Suppose exactly one of m and n is odd. Since the Cartesian product is commutative,

we may assume without loss of generality that m is even and n is odd. Then as in

the previous case, gcd (λ, d) establishes two subcases.

Case 2.1. m even, n odd, and gcd (λ, d) = 1.

For all xji ∈ V (G�H), define ~l : V (G�H)→ Zmn where

~l(xji ) =


jm+ in+R(j − i), i even

(j − 1)m+ (i− 1)n+ d+R(j − i), i odd
.

If i is even we have

w(xji ) = (j + 1)m+ in+ (j − 1)m+ in+ d

− [(j − 1)m+ (i− 2)n+ d+ (j − 1)m+ in]

+ R (j − i+ 1)−R (j − i+ 1) +R (j − i− 1)−R (j − i− 1)

= 2m+ 2n.
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While if i is odd we have

w(xji ) = jm+ (i− 1)n+ d+ jm+ (i+ 1)n

− [jm+ (i− 1)n+ (j − 2)m+ (i− 1)n+ d]

+ R (j − i+ 1)−R (j − i+ 1) +R (j − i− 1)−R (j − i− 1)

= 2m+ 2n.

Case 2.2. m even, n odd, and gcd (λ, d) > 1.

As in Case 1.2, let k = 1 when α2 - d and let k = 2 when α2 | d. For all xji ∈ V (G�H),

define ~lαk : V (G�H)→ Zmn where

~lαk(xji ) =


jm+ in d

αk +R(j − i), i even

(j − 1)m+ (i− 1)n d
αk + d+R(j − i), i odd

.

If i is even we have

w(xji ) = (j + 1)m+ in d
αk + (j − 1)m+ in d

αk

−
[
(j − 1)m+ (i− 2)n d

αk + d+ (j − 1)m+ in d
αk

]
+ R (j − i+ 1)−R (j − i+ 1) +R (j − i− 1)−R (j − i− 1)

= 2m+ 2n d
αk .

107



While if i is odd we have

w(xji ) = jm+ (i− 1)n d
αk + d+ jm+ (i+ 1)n d

αk

−
[
jm+ (i− 1)n d

αk + (j − 2)m+ (i− 1)n d
αk + d

]
+ R (j − i+ 1)−R (j − i+ 1) +R (j − i− 1)−R (j − i− 1)

= 2m+ 2n d
αk .

Suppose that both m and n are even. Since gcd (m,n) = d, at most one of m
d
and n

d

is even. Since the Cartesian product is commutative, if one of m
d
and n

d
is even, we

may assume without loss of generality that n
d
is odd. Then as in the previous cases,

gcd (λ, d) establishes two subcases.

Case 3.1. m
d
even, n

d
odd, and gcd (λ, d) = 1.

For all xji ∈ V (G�H), define ~f : V (G�H)→ Zmn and ~l : V (G�H)→ Zmn where

~f(xji ) =


jm+ in+R(j − i), for i ≡ j ≡ 0 (mod 2)

(j − 1)m+ (i− 1)n+ d+R(j − i), for i ≡ j ≡ 1 (mod 2)

,

and

~l(xji ) =


~f(xji ), for i ≡ j (mod 2)

~f(xj−1i ) + 1, for i 6≡ j (mod 2)

.

By Lemma 5.4.7, ~f maps the vertices {xji : i ≡ j (mod 2)} bijectively to 2Zmn.
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Then clearly ~f + 1 maps the vertices {xj−1i : i 6≡ j (mod 2)} bijectively to 2Zmn + 1.

Therefore, ~l : V (G�H) → Zmn is a bijection since Zmn ∼= 2Zmn ∪ 2Zmn + 1. If

i ≡ j (mod 2) we have

w(xji ) = ~l(xj+1
i ) +~l(xji+1)− [~l(xji−1) +~l(xj−1i )]

= ~f(xji ) + 1 + ~f(xj−1i+1 ) + 1−
[
~f(xj−1i−1 ) + 1 + ~f(xj−2i ) + 1

]
= ~f ′(xji ) + ~f ′(xj−1i+1 )−

[
~f ′(xj−1i−1 ) + ~f ′(xj−2i )

]
+ R(j − i) +R(j − i− 2)−R(j − i)−R(j − i− 2)

= 2m+ 2n.

While if i 6≡ j (mod 2) we have

w(xji ) = ~l(xj+1
i ) +~l(xji+1)− [~l(xji−1) +~l(xj−1i )]

= ~f(xj+1
i ) + ~f(xji+1)−

[
~f(xji−1) + ~f(xj−1i )

]
= ~f ′(xj+1

i ) + ~f ′(xji+1)−
[
~f ′(xji−1) + ~f ′(xj−1i )

]
+ R(j − i+ 1) +R(j − i− 1)−R(j − i+ 1)−R(j − i− 1)

= 2m+ 2n.

Case 3.2. m
d
even, n

d
odd, and gcd (λ, d) > 1.

As in the previous cases, let k = 1 when α2 - d, let k = 2 when α2 | d, and for all
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xji ∈ V (G�H), define ~fαk : V (G�H)→ Zmn and ~lαk : V (G�H)→ Zmn where

~fαk(xji ) =


jm+ in d

αk +R(j − i), for i ≡ j ≡ 0 (mod 2)

(j − 1)m+ (i− 1)n d
αk + d+R(j − i), for i ≡ j ≡ 1 (mod 2)

,

and

~lαk(xji ) =


~fαk(xji ), for i ≡ j (mod 2)

~fαk(xj−1i ) + 1, for i 6≡ j (mod 2)

.

By Lemma 5.4.8 and essentially the same argument used in Case 3.1, we conclude

that ~lαk : V (G�H)→ Zmn is a bijection.

Finally, if i ≡ j (mod 2) we have

w(xji ) = ~lαk(xj+1
i ) + ~lαk(xji+1)− [~lαk(xji−1) + ~lαk(xj−1i )]

= ~fαk(xji ) + 1 + ~fαk(xj−1i+1 ) + 1−
[
~fαk(xj−1i−1 ) + 1 + ~fαk(xj−2i ) + 1

]
= ~f ′

αk(xji ) + ~f ′
αk(xj−1i+1 )−

[
~f ′
αk(xj−1i−1 ) + ~f ′

αk(xj−2i )
]

+ R(j − i) +R(j − i− 2)−R(j − i)−R(j − i− 2)

= 2m+ 2n d
αk .
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While if i 6≡ j (mod 2) we have

w(xji ) = ~lαk(xj+1
i ) +~lαk(xji+1)− [ ~lαk(xji−1) + ~lαk(xj−1i )]

= ~fαk(xj+1
i ) + ~fαk(xji+1)−

[
~fαk(xji−1) + ~fαk(xj−1i )

]
= ~f ′

αk(xj+1
i ) + ~f ′

αk(xji+1)−
[
~f ′
αk(xji−1) + ~f ′

αk(xj−1i )
]

+ R(j − i+ 1) +R(j − i− 1)−R(j − i+ 1)−R(j − i− 1)

= 2m+ 2n d
αk .

In every case, w(xji ) is constant for all xji ∈ V (G�H). Hence, Cm�Cn is orientable

Zmn-distance magic.

It is worth mentioning that finding a directed Zmn-distance magic labeling of Cm�Cn

oriented as in Theorem 5.2.2 is equivalent to constructing an m× n array A = (ai,j)

containing each element of Zmn exactly once with the property that

ai,j+1 − ai,j−1 + ai+1,j − ai−1,j (+)

for every ai,j. Accordingly, the R(j − i) term which appears in the labelings of the

proof of Theorem 5.2.2 corresponds to a d×d sub-array which is a Latin square having

property (+).
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5.3 Future work

We have shown that the Cartesian product of any two cycles is orientable Zn-distance

magic. In [18] we showed that the repeated Cartesian product of a cycle is orientable

Zn-distance magic. Then a natural direction forward is to generalize to the Cartesian

product of many cycles of various lengths. We pose the following problem.

Problem 5.3.1. For what numbers n1, n2, ..., nk is the Cartesian product

Cn1�Cn2�...�Cnk
orientable Zn1,n2,..,nk

-distance magic?

Another possibility for future work is to consider abelian groups other than the cyclic

group. Therefore we pose the following.

Problem 5.3.2. Determine all abelian groups Γ such that Cm�Cn is orientable Γ-

distance magic.

One may wonder whether an orientable distance magic graph G of order n is also

Zn-distance magic, or vice versa. Since Zn-distance magic labeling is more restrictive

than orientable Zn-distance magic labeling, intuitively it should not be the case that

orientable Zn-distance magic implies Zn-distance magic. Indeed, Theorems 5.1.1 and

5.2.2 show that this is not the case.

But perhaps Zn-distance magic implies orientable Zn-distance magic. Theorems 5.1.3
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and 5.1.4 indicate that the contrapositive checks for the case of odd regular graphs

on n ≡ 2 (mod 4) vertices. Therefore, we end by posing the following conjecture.

Conjecture 5.3.3. If a graph G of order n is Zn-distance magic, then it is orientable

Zn-distance magic.

5.4 Appendix

In this section, we prove a series of lemmas regarding the labelings used in the main

theorem of Section 5.2. Recall for a given integer a, we let 0 ≤ R(a) < d represent

the remainder when a is divided by d. Let m,n ≥ 3 be given. Let gcd(m,n) = d,

gcd(m
d
, d) = α, and define λ = m+n

d
. We begin by establishing some relationships

between m, n, d, and α. Assume 1 < d < min{m,n} for the lemmas that follow.

Observation 5.4.1. If α2 - d, then gcd
(
αm
d
, d
)

= α and gcd
(
m
d
, n
α

)
= 1.

Proof. By elementary properties of the greatest common divisor, gcd
(
m
d
, n
d

)
= 1

implies gcd
(
m
d
· n
d
, n
α

)
= gcd

(
m
d
, n
α

)
gcd

(
n
d
, n
α

)
. But gcd

(
m
d
· n
d
, n
α

)
= n

d
gcd

(
m
d
, d
α

)
,

and gcd
(
n
d
, n
α

)
= n

d
gcd

(
1, d

α

)
= n

d
. Therefore, gcd

(
m
d
, d
α

)
= gcd

(
m
d
, n
α

)
. Multiply-

ing both sides by α gives gcd
(
αm
d
, d
)

= α gcd
(
m
d
, n
α

)
. But since α2 - d, we have

gcd
(
αm
d
, d
)

= α and hence, gcd
(
m
d
, n
α

)
= 1.
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Observation 5.4.2. If α2 | d, then gcd
(
α2m

d
, d
)

= α2 and gcd
(
m
d
, n
α2

)
= 1.

Proof. Essentially the same argument as in the proof of Observation 5.4.1 gives

gcd
(
αm
d
, d
α

)
= α gcd

(
m
d
, n
α2

)
. Since α2 | d, we have gcd

(
αm
d
, d
)

= α2 and thus

gcd
(
αm
d
, d
α

)
= α. Hence, gcd

(
m
d
, n
α2

)
= 1. The fact that gcd

(
α2m

d
, d
)

= α2 follows

from gcd
(
αm
d
, d
α

)
= α.

For the following lemmas, let Zmn be the cyclic group of order mn, let V =

{(i, j) : i ∈ [m], j ∈ [n]}, and for a given function g : V 7−→ Zmn, define g′ (i, j) =

g (i, j) − R(j − i). For an element g ∈ Zmn, we denote by < g >, the subgroup

generated by g .

Lemma 5.4.3. If gcd (λ, d) = 1, then the mapping g : V 7−→ Zmn given by g(i, j) =

jm+ in+R(j − i), is a bijection.

Proof. To show that g is injective suppose that g′ (i, j) = g′ (a, b) for some

(a, b), (i, j) ∈ V . Therefore, we have

jm+ in ≡ bm+ an (modmn) . (5.1)

Rearranging this equation gives (j − b)m + (i − a)n ≡ 0 (modmn). For ease of

notation, let x = j − b and y = i − a. Then since |x| ≤ n − 1, |y| ≤ m − 1, and

xm + yn ≡ 0 (modmn), we have that xm + yn = kmn for some k ∈ {−1, 0, 1}.
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Suppose k = ±1. Then |y| = |i− a| = m(n−x)
n
∈ Z if and only if x = 0 since n - m

by assumption (recall d < min{m,n}). But if x = 0, then yn = ±mn, but this

is impossible since |y| < m. Hence, xm + yn = 0. Then dividing by d, we have

xm
d

+ y n
d

= 0. Since m
d

and n
d
are relatively prime, the solutions have the form

(x, y) =
(
n
d
r,−m

d
r
)
, ∀r ∈ [d]. We have now established that there are exactly d

ordered pairs in V which have the same value under g′. This means that in order

for g to be a bijection, we must show that {R(yr − xr) : r ∈ [d]} = [d]. To this

end, observe that R(yr − xr) ≡ (yr − xr) ≡ −m
d
r − n

d
r ≡ −rλ (mod d) for each

r ∈ [d]. Since gcd (λ, d) = 1, we have 〈λ〉 ∼= Zd, hence 〈−λ〉 ∼= Zd. Therefore,

{R(yr − xr) : r ∈ [d]} = [d], so ~l is an injection, hence bijection.

Lemma 5.4.4. If gcd(λ, d) > 1, let k = 1 if α2 - d and let k = 2 if α2 | d. Then the

mapping gαk : V 7−→ Zmn given by gαk(i, j) = jm+ in d
αk +R(j − i), is a bijection.

Proof. Suppose that g′
αk (i, j) = g′

αk (a, b) for some (i, j), (a, b) ∈ V . Then we have

jm + in d
αk ≡ bm + an d

αk (modmn). Letting t = j − b, and u = i− a, dividing by d,

and observing that αk | n gives

t
m

d
+ u

n

αk
≡ 0 (mod

m

d
n). (5.2)

Now observe that gcd
(
m
d
, d
)

= α =⇒ α2 | m. Therefore, α - n
αk since otherwise,

α | n
αk =⇒αk+1 | n. Then if k = 1, we have α2 | n and α2 - d implies that α | n

d
which

in turn implies gcd(m
d
, n
d
) > 1, contradicting the assumption, gcd(m,n) = d. While
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if k = 2, we have α3 | n implies gcd(m
d
, n
α2 ) > 1, a contradiction of Observation 5.4.2.

Then since α | m
d

but α - n
αk , we have that α | u from (5.2). But also, m

d
| u n

αk .

By equation (5.2) and Observations 5.4.1 and 5.4.2, gcd
(
m
d
, n
αk

)
= 1 =⇒ m

d
| u.

Therefore, both α and m
d
must divide u. Similarly, n

αk must divide tm
d
, which implies

that n
αk | t. This allows us to provide a full description of the pairs (u, t) satisfying

(5.2). Let S be the set of all such pairs. Then for all p ∈
[
d
αk

]
, we have

S = {(m
d
αkp, 0), (m

d
αkp− m

d
, n
αk ), (m

d
αkp− 2m

d
, 2n
αk ),

..., (m
d
αkp− (αk − 1)m

d
, (α

k−1)n
αk )}.

Note that there are exactly αk · d
αk = d pairs in S. Therefore, we have established

that exactly d ordered pairs in V share the same value under g′
αk . Now it remains to

show that these ordered pairs have distinct values under R. For ease of notation, let

x = R(−m
d
αk), y = R( n

αk ), and z = R(m
d

). Furthermore, let H = 〈x〉 6 Zd. Then,

|H| = ordZd
(x) = d

gcd(x,d)
= d

αk , by Observations 5.4.1 and 5.4.2. Applying R to each

member of S defines the multiset,

R(S) =
{
H + 0, H + (y + z), H + 2(y + z), ..., H + (αk − 1)(y + z)

}
.

It remains to show that the cosets of H in R(S) partition [d]. First observe that

y + z 6≡ 0 (mod d) since otherwise we have α | n
αk which we have already established

is a contradiction. Secondly, suppose (y + z) ∈ H. Then n
αk + m

d
≡ −m

d
αkq (mod d)
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for some q ∈
[
d
αk

]
. But since α | m

d
, it must be the case that α | n

αk , which leads to

the same contradiction as before. Therefore, (y + z) /∈ H. Hence R(S) = [d], and so

gαk is an injection, hence bijection.

Lemma 5.4.5. Let m be even and n be odd. If gcd(λ, d) = 1, then the mapping

g : V 7−→ Zmn given by g(i, j) =


jm+ in+R(j − i), i even

(j − 1)m+ (i− 1)n+ d+R(j − i), i odd
is a

bijection.

Proof. Suppose that g′ (i, j) = g′ (a, b) for some (i, j), (a, b) ∈ V . It cannot be the case

that i and a have different parities. For the sake of contradiction, suppose i is even

and a is odd. Then we have jm+ in ≡ d+ (b− 1)m+ (a− 1)n (modmn). Therefore,

(j−b+1)m+(i−a+1)n ≡ d (modmn). But this is a contradiction since (j−b+1)m

and (i−a+1)n are both even and d is necessarily odd. So it cannot be the case that i

is even and a is odd. Essentially the same argument shows it cannot be the case that i

is odd and a is even. Therefore, i and a must be of the same parity. If i and a are both

even, then g′ (i, j) = g′ (a, b) implies equation (5.1) from Lemma 5.4.3, while if i and a

are both odd, then we have d+(j−1)m+(i−1)n ≡ d+(b−1)m+(a−1)n (modmn),

which also is equivalent with (5.1). Thus g is a bijection by the same argument as in

Lemma 5.4.3.
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Lemma 5.4.6. Let m be even and n be odd. If gcd(λ, d) > 1, let k = 1 when α2 - d,

and let k = 2 when α2 | d. Then the mapping gαk : V 7−→ Zmn given by

gαk(i, j) =


jm+ in d

αk +R(j − i), i even

(j − 1)m+ (i− 1)n d
αk + d+R(j − i), i odd

is a bijection.

Proof. Suppose that g′
αk (i, j) = g′

αk (a, b) for some (i, j), (a, b) ∈ V . As in Lemma

5.4.5, i and a must be of the same parity. If i and a are both even, then necessarily

jm + in d
αk ≡ bm+ an d

αk (modmn). Whereas, if i and a are both odd, then we have

that d + (j − 1)m + (i − 1)n d
αk ≡ d + (b − 1)m + (a − 1)n d

αk (modmn). However,

letting t = j − b, u = i − a, dividing by d, and observing that αk | n, we see that

both equations are equivalent to (5.2) from Lemma 5.4.4. Hence in either case, gαk

is a bijection by the same argument used in Lemma 5.4.4.

In the next three lemmas, assume m and n are even. Then let V2 =

{(i, j) ∈ V : i ≡ j (mod 2)} ⊆ V . Let 2Zmn = {2h : h ∈ Zmn} denote the

subgroup of Zmn consisting of the even integers contained in Zmn. Similarly, let

2 [d] = {2h : h ∈ Zd}. Also note that since m and n are both even, then at most one

of m
d
and n

d
may be even. So assume without loss of generality that n

d
is always odd.

Lemma 5.4.7. Let m and n be even. If gcd(λ, d) = 1, then the mapping g : V2 7−→

2Zmn given by

g(i, j) =


jm+ in+R(j − i), for i ≡ j ≡ 0 (mod 2)

(j − 1)m+ (i− 1)n+ d+R(j − i), for i ≡ j ≡ 1 (mod 2)

is a bijection.
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Proof. Suppose g′ (i, j) = g′ (a, b) for some (i, j), (a, b) ∈ V . Observe that it cannot be

the case that i, j are both even and a, b are both odd, since otherwise (j−b+1)m+(i−

a+1)n = kmn+d for some integer k would imply (j−b+1)m
d

+(i−a+1)n
d

= kmn
d

+1,

a contradiction since the left hand side of the equation is even and the right hand side

is odd (recall that n
d
is odd). For the same reason, it cannot be the case that i, j are

both odd while a, b are both even. Therefore, i, j, a, and b are all of the same parity.

Consequently, g′ (i, j) = g′ (a, b) implies equation (5.1) from Lemma 5.4.3. With no

restriction on the parities of x = j− b and y = i− a, this equation was found to have

the d solutions (xr, yr) =
(
n
d
r,−m

d
r
)
for each r ∈ [d] in the proof of Lemma 5.4.3.

However, in the present case we require that x and y both be even. Recall that n
d
is

odd. Therefore, the d
2
solutions to (5.1) are (xr, yr) =

(
n
d
2r,−m

d
2r
)
for each r ∈

[
d
2

]
.

We have now established that there are exactly d
2
ordered pairs in V2 having the same

value under g′. This means that in order for g to be a bijection, we must show that

the set
{
R(yr − xr) : r ∈

[
d
2

]}
= 2[d]. To this end, observe R (yr − xr) ≡ (yr−xr) ≡

−m
d

2r− n
d
2r ≡ −2rλ (mod d) for each r ∈

[
d
2

]
. Since gcd (λ, d) = 1, we have 〈λ〉 ∼= Zd,

hence 〈−λ〉 ∼= Zd . Therefore,
{
R(xr, yr) : r ∈

[
d
2

]}
= 2[d]. Therefore, the d

2
ordered

pairs of V2 having the same value under g′ have distinct and even values under R.

Hence, g : V2 7−→ 2Zmn is an injection, hence bijection.
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Lemma 5.4.8. Let m and n both be even. If gcd(λ, d) > 1, let k = 1 when α2 - d,

and let k = 2 when α2 | d. Then the mapping gαk : V2 7−→ 2Zmn given by

gαk(i, j) =


jm+ in d

αk +R(j − i), for i ≡ j ≡ 0 (mod 2)

(j − 1)m+ (i− 1)n d
αk + d+R(j − i), for i ≡ j ≡ 1 (mod 2)

is a bi-

jection.

Proof. Suppose g′
αk (i, j) = g′

αk (a, b) for some (i, j), (a, b) ∈ V . As in Lemma 5.4.7, it

must be the case that i, j, a, and b are all of the same parity. Then letting u = i− a,

t = j − b, dividing by d, and observing that αk | n we have that g′
αk (i, j) = g′

αk (a, b)

implies equation (5.2) from Lemma 5.4.4. With no restriction on the parities of u

and t, we observed in the proof of Lemma 5.4.4 that a full description of the d pairs

(u, t) satisfying (5.2) is given by

S = {(m
d
αkp, 0), (m

d
αkp− m

d
, n
αk ), (m

d
αkp− 2m

d
, 2n
αk ),

..., (m
d
αkp− (αk − 1)m

d
, (α

k−1)n
αk )},

for all p ∈
[
d
αk

]
. However, in this case we are restricted to the pairs in S such that u

and t are both even.

If m
d
is odd, then gcd(m

d
, d) = α is odd, since d is even. So αk is also odd, and hence

n
αk is even, since n is even. Then for all p ∈ {0, 2, ..., d

αk } and all l ∈ {1, 3, ..., d
αk − 1},
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S1 ⊂ S where

S1 = {(m
d
αkp, 0), (m

d
αkl − m

d
, n
αk ), (m

d
αkp− 2m

d
, 2n
αk ),

..., (m
d
αkl − (αk − 2)m

d
, (α

k−2)n
αk ), (m

d
αkp− (αk − 1)m

d
, (α

k−1)n
αk )},

is the full set of d
2
solutions to (5.2) in this case.

On the other hand, if m
d
is even we have gcd(m

d
, d) = α is even, so αk is also even.

Then since gcd
(
m
d
, d
αk

)
= 1 by Observations 5.4.1 and 5.4.2, we have that d

αk is odd

and hence n
αk = d

αk · nd is odd, since n
d
is odd. Then for all p ∈

[
d
αk

]
, S2 ⊂ S where

S2 = {(m
d
αkp, 0), (m

d
αkp− 2m

d
, 2n
αk ), (m

d
αkp− 4m

d
, 4n
αk ),

..., (m
d
αkp− (αk − 2)m

d
, (α

k−2)n
αk )},

is the full set of d
2
solutions to (5.2) in this case. Therefore, in either case we have

established that exactly d
2
ordered pairs in V2 share the same value under g′

αk . Now

we will show that these ordered pairs have distinct values under R. We have already

observed that R(S) = [d] in the proof of Lemma 5.4.4. Then since S1, S2 ⊆ S and

|S1|
|S| = |S2|

|S| = 1
2
and both S1 and S2 contain ordered pairs of the form (u, t) where u

and t are both even, we conclude that R(S1) = R(S2) = 2[d]. Hence, the mapping

gαk : V2 7−→ 2Zmn is an injection, hence bijection.
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Chapter 6

Orientable Zn-distance magic labeling

of Cartesian product of many cycles?

6.1 Introduction

A distance magic labeling of a undirected graph G of order n is a bijection ` : V (G)→

{1, 2, ..., n} such that the weight of every vertex, w(x) =
∑

y∈N(x)

`(y), is equal to some

constant, µ (called the magic constant) for every x ∈ V (G). For a comprehensive

survey of distance magic labeling, we refer the reader to [5].

Let Zn be the cyclic group of order n. An orientable Zn-distance magic labeling of a

?The material in this chapter was submitted to Electronic Journal of Graph Theory
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graph, first introduced by Cichacz et. al in [14], is a generalization of distance magic

labeling. Let G = (V,E) be an undirected graph on n vertices. Assigning a direction

to the edges of G gives an oriented graph
−→
G(V,A). In this chapter, we will use the

notation −→xy to denote an edge directed from vertex x to vertex y. That is, the tail of

the arc is x and the head is y. For a vertex x, the set of head endpoints adjacent to x

is denoted by N−(x) , while the set of tail endpoints is denoted by N+(x). A directed

Zn-distance magic labeling of an oriented graph
−→
G(V,A) of order n is a bijection

−→
` : V → Zn with the property that there is a µ ∈ Zn (called the magic constant)

such that

w(x) =
∑

y∈N+
G (x)

−→
` (y)−

∑
y∈N−G (x)

−→
` (y) = µ for every x ∈ V (G).

If for a graph G there exists an orientation
−→
G such that there is a directed Zn-

distance magic labeling
−→
` for

−→
G , we say that G is orientable Zn-distance magic and

the directed Zn-distance magic labeling
−→
` , we call an orientable Zn-distance magic

labeling.

Throughout this chapter we will use the notation [n] to represent the set

{0, 1, ..., n− 1} for a natural number n. Furthermore, for a given i ∈ [n] and any

integer j, let i + j denote the smallest integer in [n] such that i+ j ≡ i + j (modn).

For a set S and a number a, let S + a = {s+ a : s ∈ S}.
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Let Cn = x0, x1, ..., xn−1, x0 denote a cycle of length n. For the sake of orienting the

cycle, if the edges are oriented such that every arc has the form −−−−→xixi+1 for all i ∈ [n],

then we say the cycle is oriented clockwise. On the other hand, if all the edges of the

cycle are oriented such that every arc has the form −−−−→xixi−1 for all i ∈ [n], then we say

the cycle is oriented counter-clockwise.

6.2 Cartesian Product of Two Cycles

The Cartesian product G2H is a graph with the vertex set V (G) × V (H). Two

vertices (g, h) and (g′, h′) are adjacent in G2H if and only if g = g′ and h is adjacent

with h′ in H, or h = h′ and g is adjacent with g′ in G. Hypercubes are interesting

graphs which arise via the Cartesian product of cycles. The hypercube of order 2k,

Q2k is equivalent to the graph C4�C4�...�C4, where C4 appears k times in the

product. This graph is 2k -regular on 4k vertices. Labeling hypercubes has provided

the motivation for the following theorems. Recall the following theorem proved in

[19] (Chapter 5 of this dissertation).

Theorem 6.2.1. [19] The Cartesian product of cycles, Cm�Cn is orientable Zmn-

distance magic for all m ≥ 3 and n ≥ 3.

The next theorem lays the groundwork for labeling hypercubes.
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Theorem 6.2.2. For any p ≥ 1, and n ≥ 2, p disjoint copies of the graph Cm�Cm

is orientable Zpm2-distance magic.

Proof. Let G = Cm = g0, g1, ..., gm−1, g0 and H = Cm = h0, h1, ..., hm−1, h0. Then

orient each copy of G�H as follows. Fix j ∈ [m]. Then for all i ∈ [m], orient

counter-clockwise each cycle of the form (gi, hj) , (gi+1, hj) , ..., (gi−1, hj) , (gi, hj) in

every copy of G�H. Similarly, fix i ∈ [m]. Then for all j ∈ [m], orient counter-

clockwise each cycle of the form (gi, hj) , (gi, hj+1) , ..., (gi, hj−1) , (gi, hj) in every copy

of G�H. Since the graph G�H can be edge-decomposed into cycles of those two

forms, we have oriented every edge in each copy of G�H. Now let kxji denote the

vertex (gi, hj) of the kth copy of G�H for i, j ∈ [m], and k ∈ {1, 2, ..., p}. Then, for

each k ∈ {1, 2, ..., p}, define
−→
` : V → Zpm2 by

`(kxji ) = pmj + (k − 1)m+ i − j,

where the arithmetic is done modulo pm2. Expressing ~̀(kxji ) in the following alter-

native way

`(kxji ) = pmj + (k − 1)m+ α,

for i ≡ j (modm), α ∈ [m] makes it clear that
−→
` is bijective. Then for any given k and

for all i, j ∈ [m] we have N+
(
kxji
)

= {kxj+1
i , kxji+1} and N−

(
xji
)

= {kxj−1
i , kxji−1}.

Recalling that w(kxji ) ∈ Zpm2 , we have

126



w(kxji ) = ~̀(kxj+1
i ) + ~̀(kxji+1)− [~̀(kxji−1) + ~̀(kxj−1

i )]

= [j + 1 + j − j − j − 1]pm

+ (i − j − 1)− (i − j − 1) + (i − j + 1)− (i − j + 1)

= [(j + 1)− (j − 1)]pm

=


(2−m)pm, j ∈ {0,m− 1}

2pm, 0 < j < m− 1

= 2pm,

so ~̀ is an orientable Zpm2-distance magic labeling, proving the result.

6.3 Cartesian Product of Many Cycles

In this section we consider the repeated Cartesian product of a cycle.

Theorem 6.3.1. For any m ≥ 3, the Cartesian product Cm�Cm�...�Cm is ori-

entable Zmn-distance magic.

Proof. Let Gn = Cm�Cm�...�Cm, the Cartesian product of n Cm’s. Then for n ≥ 2

we may describe Gn recursively as Gn
∼= Gn−1�Cm. We also have |V (Gn)| = mn, so

the labeling will take place in Zmn . The proof is by induction. For n = 1, we apply the

labeling
{
x00, x

1
0, ..., x

m−1
0

}
7−→ {0, 1, ...,m− 1} and orient the cycle counter-clockwise.

Clearly for j ∈ {0,m − 1}, w(xj0) = 2 −m ≡ 2 (modm) and for 0 < j < m − 1 , we
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have w(xj0) = 2 ≡ 2 (modm), so G1 is orientable Zm-distance magic.

For n = 2, Theorem 6.2.2 gives that G2 is orientable Zm2-distance magic and using

the nomenclature from Theorem 6.2.2, we have w(xji ) = (2 − m)m ≡ 2m (modm2)

for j ∈ {0,m− 1}, i ∈ [m] and w(xji ) = 2m for 0 < j < m− 1, i ∈ [m]. Furthermore,

for each fixed j, the labels of xji belong to the set [m] + jm for both base cases.

Now construct Gn
∼= Gn−1�Cm as follows. Let H i

∼= Gn−1 for i ∈ [m]. Furthermore,

for a given i, let Hj
i
∼= Gn−2 for j ∈ [m]. Let xji denote an arbitrary vertex in the

subgraph Hj
i . Then for any integers a, b let xj+b

i+a denote the corresponding vertex

in the isomorphic subgraph Hj+b
i+a . Using this terminology, we have NGn

(
xji
)

=

NGn−1(x
j
i ) ∪

{
xji+1, x

j
i−1

}
. Let wHi

(xji ) denote the weight (in Zmn) induced on

xji by the subgraph H i and wHj
i
(xji ) denote the weight (again in Zmn) induced on

xji by the subgraph Hj
i . Now partition Zmn−1 = P0 ∪ P1 ∪ P2 ∪ ... ∪ Pm−1 so that

Pj = [mn−2] + jmn−2 for j ∈ [m].

Assume Gn−1 is orientable Zmn−1-distance magic with labeling ~̀′ : V (Gn−1)→ Zmn−1

and orientation
−−−→
Gn−1. Then in Gn, apply ~̀′ and its corresponding orientation to

H0
∼= Gn−1. As in the base cases, we may assume that the labels of Hj

0 belong to P j

for j ∈ [m] and

wH0(x
j
0) =


(2−m)mn−2, j ∈ {0,m− 1}

2mn−2, j ∈ {1, 2, ...m− 2}
.
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Next, orient all the edges in each subgraph H1, H2, ..., Hm−1 as in H0. Then the only

edges left to orient in Gn are cycles of the type
{
xj0, x

j
1, ..., x

j
m−1
}
for fixed j. Orient

each of these cycles counter-clockwise. Now define
−→
` : V (Gn)→ Zmn as follows.

~̀(xji ) =


~̀′(xj0) + i(m− 1)mn−2 +mn−1, 0 ≤ j < i

~̀′(xj0) + i(m− 1)mn−2, i ≤ j ≤ m− 1

.

To show that ~̀ is a bijection, it suffices to show that for each fixed i, ~̀ : Pj 7−→

Pj−i + imn−1for all j, since for each fixed i, j − i runs through [m] as j runs through

[m]. Since the labels of Hj
0 belong to P j for j ∈ [m], we have

~̀ : Pj 7−→


Pj + i(m− 1)mn−2 +mn−1, 0 ≤ j < i

Pj + i(m− 1)mn−2, i ≤ j ≤ m− 1

.

Now, if 0 ≤ j < i, we have

Pj 7→ Pj + i(m− 1)mn−2 +mn−1

= [mn−2] + jmn−2 + i(m− 1)mn−2 +mn−1

= [mn−2] + (j − i)mn−2 + (i+ 1)mn−1

= [mn−2] + (j − i)mn−2 +mmn−2 + imn−1

= [mn−2] + (m+ j − i)mn−2 + imn−1

= Pj−i + imn−1.
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While if i ≤ j ≤ m− 1, we have

Pj 7→ Pj + i(m− 1)mn−2

= [mn−2] + jmn−2 + i(m− 1)mn−2

= [mn−2] + (j − i)mn−2 + imn−1

= Pj−i + imn−1.

Therefore, it is clear that for each i ∈ [m], the label set used on H i is i ·mn−1 + {P0∪

P1 ∪ ... ∪ Pm−1} = Zmn−1 + imn−1 , so we see that
−→
` : V (Gn) → Zmn is bijective.

This completes the labeling and orientation of Gn.

Observe that ~̀(xji ) ≡ ~̀′(xj0) (modmn−2). Therefore, wHj
i
(xji ) = wHj

0
(xj0) in Zmn . Then

we have,

wHi
(xji ) = wHj

i
(xji ) + ~̀(xj+1

i )− ~̀(xj−1
i )

= wHj
0
(xj0) + ~̀(xj+1

i )− ~̀(xj−1
i )

But

wHj
0
(xj0) = wH0(x

j
0)− [~̀′(xj+1

0 )− ~̀′(xj−1
0 )].

Therefore,

wHi
(xji ) = wH0(x

j
0)− ~̀′(x

j+1
0 ) + ~̀′(xj−1

0 ) + ~̀(xj+1
i )− ~̀(xj−1

i )

= wH0(x
j
0) + [~̀(xj+1

i )− ~̀′(xj+1
0 )]− [(~̀(xj−1

i )− ~̀′(xj−1
0 )]

= a+ b− c,
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where a = 2mn−2−mn−1I{j = 0 or m− 1}, b = i(m− 1)mn−2 +mn−1I{0 ≤ j + 1 ≤

i − 1}, and c = i(m− 1)mn−2 +mn−1I{0 ≤ j − 1 ≤ i − 1}, where I is the indicator

function. Then we can write

wHi
(xji ) = 2mn−2 +mn−1[I{0 ≤ j + 1 ≤ i − 1}−

I{j = 0 or m− 1} − I{0 ≤ j − 1 ≤ i − 1}]

Let I = I{0 ≤ j + 1 ≤ i − 1}− I{j = 0 or m− 1}− I{0 ≤ j − 1 ≤ i − 1}. We will

now show that I = −1 when j ≡ i or i− 1 (modm) and I = 0 otherwise.

Case 1. j ≡ i (modm).

Since j, i ∈ [m], we have j = i and hence I = 1−1−1 = −1 when j = 0 or j = m−1.

Otherwise, if 1 ≤ j ≤ m− 2, we have I = 0− 0− 1 = −1.

Case 2. j ≡ i− 1 (modm).

If j = 0, we have I = 0−1−0 = −1, while if j = m−1, we obtain I = 1−1−1 = −1.

If 1 ≤ j ≤ m− 2, we have I = 0− 0− 1 = −1.

Case 3. j 6≡ i, i− 1 (modm).

If j = 0, we have I = 1− 1− 0 = 0, while if j = m− 1, we have I = 1− 1− 0 = 0.

Otherwise, if 1 ≤ j ≤ i − 2, we have I = 1 − 0 − 1 = 0, and if i + 1 ≤ j ≤ m − 2,
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we have I = 0− 0− 0 = 0.

In all cases, we have shown I = −1 when j ≡ i or i−1 (modm) and I = 0 otherwise.

We have now fully determined the weight induced by the subgraphH i for each i ∈ [m].

We have,

wHi
(xji ) =


(2−m)mn−2, j ≡ i or i− 1 (modm)

2mn−2, otherwise
.

We are ready to determine the weight of each vertex. To this end we have w(xji ) =

wHi
(xji ) + ~̀(xji+1) − ~̀(xji−1) and we recall that the arithmetic is to be performed in

Zmn .

Suppose j ≡ i or i− 1 (modm). Then we have

w(xji ) = (2−m)mn−2 +


2(m− 1)mn−2 +mn−1, 1 ≤ i ≤ m− 2

(2−m)(m− 1)mn−2, i ∈ {0,m− 1}

=


2mn−1, 1 ≤ i ≤ m− 2

2mn−1 −mn, i ∈ {0,m− 1}

≡ 2mn−1 (modmn),

since (i + 1) − (i − 1) ≡ 2 (modmn) when 1 ≤ i ≤ m − 2 and (i + 1) − (i − 1) ≡

2−m (modmn) when i ∈ {0,m− 1}.
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On the other hand, suppose j 6≡ i, i− 1 (modm). We have

w(xji ) = 2mn−2 +


2(m− 1)mn−2, 1 ≤ i ≤ m− 2

(2−m)(m− 1)mn−2 −mn−1, i ∈ {0,m− 1}

=


2mn−1, 1 ≤ i ≤ m− 2

2mn−1 −mn, i ∈ {0,m− 1}

≡ 2mn−1 (modmn).

Hence, w(xji ) = 2mn−1 for all i, j ∈ [m], so Gn is orientable Zmn-distance magic for

all n ≥ 1.

Corollary 6.3.2. The hypercube Q2k is orientable Z4k-distance magic for all k ≥ 1.

Proof. Since Q2k
∼= C4�C4�...�C4, the Cartesian product of k C4’s, Theorem 6.3.1

gives the result.

One may wonder if the hypercube Q2k+1 is orientable distance magic. Since the graph

is odd regular, a little pessimism is understandable. Indeed, Cichacz et. al proved

in [14] that no odd regular graph on n ≡ 2 (mod 4) vertices is orientable Zn-distance

magic. However, Q2k+1 contains 22k+1vertices, a number divisible by 4, so it is possible

that Q2k+1 is orientable Z22k+1-distance magic for some k. It can easily be checked

that Q1
∼= K2 is not. The following theorem rules out Q3 as well.
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Theorem 6.3.3. The hypercube Q3 is not orientable Z8-distance magic.

x4

x5

x1

x6

x2

x7

x3

x8

Figure 6.1: The hypercube, Q3

Proof. Let G ∼= Q3 as shown in Figure 6.1. An important fact we will use is that

regardless of the orientation of the edges, the (directed) weight of a given vertex has

the same parity as the sum (performed in Z8 of course) of its neighbors. Suppose

for the sake of contradiction that G is orientable Z8-distance magic with orientable

Z8-distance magic labeling ~̀ : V (G)→ Z8 and associated magic constant µ.

Suppose µ is even. Observe that N(x1) = {x2, x4, x6}. Then since µ is even, either all

three of ~̀(x2), ~̀(x4), ~̀(x6) are even or exactly one is even. Suppose it is the case that

all three of ~̀(x2), ~̀(x4), ~̀(x6) are even. That leaves but one other vertex with an even

label. SinceN(x3) = {x2, x4, x8}, and w(x3) = µ is even, it must be the case that ~̀(x8)

is even. Consequently, ~̀(x1), ~̀(x3), ~̀(x5) must all be odd. But N(x4) = {x1, x3, x5},

so w(x4) = µ is odd, a contradiction. Therefore, it cannot be the case that all three

of ~̀(x2), ~̀(x4), ~̀(x6) are even. In fact, because the graph is vertex transitive, we have

shown that no vertex may be adjacent to three even labeled vertices. So it must

be the case that every vertex is adjacent to exactly one even-labeled vertex and two
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odd-labeled vertices. But this is impossible since there are an equal number of odd

and even elements in Z8.

If µ is odd, essentially the same argument leads to another contradiction. Hence, Q3

is not orientable Z8-distance magic.

We conclude this section with the following conjecture.

Conjecture 6.3.4. The odd-ordered hypercube, Q2k+1 is not orientable Z22k+1-

distance magic for any k.

6.4 Conclusion

We have proven that any number of disjoint copies of the Cartesian product of two

cycles is orientable Zn-distance magic. We have also shown that the repeated Carte-

sian product of a cycle is orientable Zn-distance magic, a result which encompasses

even-ordered hypercubes. Finally, we have shown that the two smallest odd-ordered

hypercubes are not orientable Zn-distance magic graphs. One possible direction for-

ward is to prove Conjecture 6.3.4. Another area for improvement is to consider the

Cartesian product, Cn1�Cn2�...�Cnk
for integers n1, n2, ..., nk.
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Chapter 7

Conclusion and future work

My research on two problems are presented in this dissertation. The first problem

asks which graphs allow a d-handicap labeling. That is, a labeling of the n vertices of

a graph using the first n natural numbers is sought so that the weight of the vertex

labeled i is d more than the vertex labeled i − 1. The second problem asks which

graphs admit an orientable Zn-distance magic labeling. That is, for a simple graph

G of order n, an orientation of the edges and a bijective labeling of the vertices using

the elements of Zn is sought so that the weight of every vertex is equal to the same

constant.
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7.1 d-Handicap tournaments

7.1.1 Conclusions on d-handicap tournaments

In Chapter 2, the notion of handicap labeling is generalized to d-handicap labeling.

Necessary conditions for the existence of a d-handicap graph, H(n, k, d) are identified

and families of d-handicap graphs for large classes of n and a wide range of regularities

k, for every d ≥ 1 are constructed. The following theorems provide a summary of the

results from Chapter 2.

Theorem 7.1.1. If an H (n, k, d) exists, then

1. w(xi) = di+ (k−d)(n+1)
2

, for all i ∈ {1, 2, ..., n}.

2. If n is even, then k ≡ d (mod 2).

3. If n is odd, then k ≡ 0 (mod 2).

4. n ≥
⌈
2
(
d+ 1 +

√
d(d+ 1)

)⌉
.

5.
⌈
n−2−

√
D

2

⌉
≤ k ≤

⌊
n−2+

√
D

2

⌋
, whereD = (n− 2)2 − 4d(n− 1).

Theorem 7.1.2. Let d ≥ 2 be an even integer and let G be any d-regular distance

magic graph of order v ≥ d + 2. Let n = vt for any even integer t ≥ d + 2. If d ≡ 0

(mod 4) or t ≡ 0 (mod 4), then there exists an H (n, 2d, d) .
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Theorem 7.1.3. Let d ≥ 2 and t, v ≥ d+ 2 be even integers and let n = vt. If d ≡ 0

(mod 4) or v ≡ t ≡ 0 (mod 4), then there exists an H (n, k, d) for all even k such

that 2d ≤ k ≤ n− 2d− 2.

Theorem 7.1.4. For every odd d, there exists an H (n, k, d) for every odd k such

that 2d+ 1 ≤ k ≤ n− (2d+ 3) provided

• n ≡ 0 (mod 4d+ 4), n ≥ (d+ 1)(d+ 3), and d ≡ 1 (mod 4) or

• n ≡ 0 (mod 4d+ 4), n ≥ (d+ 1)(d+ 5), and d ≡ 3 (mod 4) or

• n ≡ 2d+ 2 (mod 4d+ 4), n ≥ (d+ 1)(d+ 3), and d ≡ 3 (mod 4).

7.1.2 Future work regarding d-handicap tournaments

When compared with the necessary conditions, it was shown in Chapter 2 that The-

orems 7.1.3 and 7.1.4 leave only a small number of feasible regularities k for which an

H(n, k, d) may exist. In fact, for d = 1 and d = 2, the necessary conditions are met for

the appropriate class of n. Therefore, a natural direction forward is to "fill the holes"

by finding a construction for these extreme values of k. The smallest open cases are

presented in the following problems. Solutions to the problems would provide a full

characterization of 3- and 4-handicap tournaments, respectively, for n ≡ 0 (mod 16).
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Problem 7.1.5. For all n ≡ 0 (mod 16), n ≥ 32 construct an H(n, k, 3) for k ∈

{5, n− 7}.

Problem 7.1.6. For all n ≡ 0 (mod 16), n ≥ 48 construct an H(n, k, 4) for k ∈

{6, n− 8}.

Another more ambitious direction forward is to consider the following problem.

Problem 7.1.7. For a given d ≥ 1, characterize all n such that an H(n, k, d) exists

for some k.

A solution to Problem 7.1.7 would provide a full list of the number of teams that

could play a d-handicap tournament. In Chapter 2 it is shown that this problem has

recently been solved for d = 1 and n even [30]. For d even, Theorem 7.1.2 ties possible

n to the existence of distance magic graphs. For d odd, Theorem 7.1.4 provides a

partial characterization of such n.

7.2 Orientable Zn-distance magic graphs

In Chapters 3 - 6 the notion of distance magic labeling is generalized to directed

graphs.
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7.2.1 Conclusions on orientable Zn-distance magic graphs

For the purposes of this subsection, for a given graph, G, let n be the order of G. A

summary of the findings in Chapters 3 - 6 is provided by the following theorems.

Theorem 7.2.1. The following graphs are not orientable Zn-distance magic.

• Any graph G having all vertices of odd-degree and n ≡ 2 (mod 4).

• Kn1,n2,...,np, n ≡ 2 (mod 4), and p is even.

• The hypercube, Q3.

Theorem 7.2.2. The following graphs are orientable Zn-distance magic.

• Every cycle, Cn.

• The hypercube, Qm, m even.

• Any number p copies of cycle related products; Cn1�Cn2 , Cn1×Cn2 , or Cn1 ◦Cn2 .

• Repeated Cartesian product of a cycle, Cm�Cm�...�Cm.

• The strong product of cycles Cn1�Cn2 if gcd(n1, n2) ∈ {1, 2, 4} or gcd(n1, n2) =

d ∈ {3, 5, 6}, d2 - n1, and d2 - n2.

• Cn1 � Cn2 if n1n2 ≡ 2 (mod 4) or n1 ≡ n2 ≡ 2 (mod 4).
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• Any number p copies of the circulant graph, Cm(S), for any connection set S

such that m
2
/∈ S.

• The products of circulants Cn1(S1) ◦ Cn2(S2) and Cn1(S1)�Cn2(S2), if

gcd(n1, n2) = 1, n1

2
/∈ S1,

n2

2
/∈ S2.

• The lexicographic product G ◦C2m(S), m /∈ S, for odd ordered graph G with all

vertices of the same parity or m even.

• The lexicographic product G ◦K2m+1 for odd ordered graph G.

• The lexicographic product G◦Kk for any orientable Zm-distance magic graph G

except possibly when k ≡ 2 (mod 4) and G contains a vertex having indegree

and outdegree of different parities.

• The direct product G× C2m(1, 3, 5, ..., 2
⌈
m
2

⌉
− 1), G is an Eulerian graph.

• Kn if and only if n is odd.

• Kn1,n2, n 6≡ 2 (mod 4).

• Kn1,n2,n3, for all n.

• Kn1,n2,...,nk
, 1 ≤ n1 ≤ n2 ≤ ... ≤ nk, n2 ≥ 2, n odd.
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7.2.2 Future work regarding orientable Zn-distance magic

graphs

The most obvious direction for future work is characterizing complete multipartite

graphs. These graphs were characterized up to and including complete tripartite

graphs in Chapter 3. Another more ambitious goal is to prove the conjecture stated

at the end of Chapter 3 that all 2r-regular graphs admit an orientable Zn-distance

magic labeling. Clearly, this cannot be proven by a construction. Rather, a novel

approach must be found, perhaps using the adjacency matrix and linear algebra.

Another direction forward is to consider groups other than the cyclic groups, possibly

classifying for a given graph G of order n all abelian groups Γ of order n which provide

an orientable Γ-distance magic labeling of G. Alternatively, one may consider using

the natural numbers as labels which would provide applications akin to tournament

scheduling seen in Chapter 2.
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