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Abstract. A graceful labeling of a graph G with m edges consists in labeling
the vertices of G with distinct integers from 0 to m such that, when each edge
is assigned the absolute difference of the labels of its endpoints, all induced
edge labels are distinct. Rosa established two well known conjectures: all trees
are graceful (1966) and all triangular cacti are graceful (1988). In order to
contribute to both conjectures we study these problems in the context of graph
games. The graceful game was introduced by Tuza in 2017 as a two-players
game on a connected graph in which the players Alice and Bob take turns label-
ing the vertices with distinct integers from 0 to m. Alice’s goal is to gracefully
label the graph as Bob’s goal is to prevent it from happening. In this work,
we present the first results in this area by showing winning strategies for Alice
and Bob in complete graphs, paths, cycles, complete bipartite graphs, caterpil-
lars, prisms, wheels, helms, webs, gear graphs, hypercubes and some powers of
paths.

1. Introduction
Graph labeling is an area of graph theory that has been attaining a particular importance
since the 1960’s. The main concern in this area consists in determining the feasibility
of assigning labels to the elements of a graph satisfying certain conditions. Usually, the
labels are elements of a set that supports some kind of mathematical operation.

One of the oldest and most studied graph labelings is the graceful labeling, so
named by S. W. Golomb [Golomb 1972] and initially introduced by A. Rosa [Rosa 1967]
around 1966. A graceful labeling of a graph G = (V (G), E(G)) with m edges is an
injective function f :V (G) → {0, 1, . . . ,m} such that, when each edge uv ∈ E(G) is
assigned the (induced) label g(uv) = |f(u) − f(v)|, all induced edge labels are distinct.
A graph G that has a graceful labeling is called graceful.

Labeling problems are usually studied from the perpective of determining whether
a given graph has a required labeling or not. An alternative outlook is to analyze
labeling problems from the point of view of combinatorial games. The study of
combinatorial games is a classical area in both discrete mathematics and game the-
ory [Berlekamp et al. 1982]. One of the main characteristics of these types of games
is that there is absolutely no lucky involved, that is, all players have perfect information
and involves no chance. In most combinatorial games, two players — traditionally called
Alice and Bob — alternately select and label vertices or edges (typically one vertex or
edge in each step) in a graph G which is completely known for both players.



In a recent survey, Z. Tuza [Tuza 2017] proposes new labeling games, such as the
graceful game studied in this work. Informally, the graceful game is a two-players game
on a connected graph in which Alice and Bob take turns labeling the vertices of a graphG
with distinct numbers from the set {0, 1, . . . , |E(G)|}. Alice’s goal is to gracefully label
the graph as Bob’s goal is to prevent it from happening.

In this work, we present the first results in the graceful game area and we con-
tribute to the study of Rosa’s conjectures: all trees are graceful [Rosa 1967] and all trian-
gular cacti are graceful [Rosa 1988]. We study winning strategies for Alice and Bob in the
following families of graphs: paths, cycles, complete bipartite graphs, complete graphs,
caterpillars, hypercubes, helms, webs, gear graphs, prisms and 2-nd power of path. The
results of this paper were developed by the student Luisa Frickes under the advisory of
professors Simone Dantas and Atı́lio Luiz. They were presented at the 17th Cologne-
Twente Workshop on Graphs & Combinatorial Optimization University of Twente 2019
(CTW 2019) and published in its proceedings [Frickes et al. 2019].

This paper is organized as follows. Section 2 presents some definitions and auxil-
iary results used in our proofs. Section 3 presents our main results on the graceful game
for some classic families of graphs. Finally, in Section 4 and Section 5, we present our
conclusions and acknowledgements, respectively.

2. Some definitions and auxiliary lemmas
Given a simple graph G and two different vertices u, v ∈ V (G), the distance between u
and v in G is the number of edges in a shortest path between u and v, and is denoted by
dG(u, v). A graph’s diameter is the maximum distance between any pair of vertices in G.
The k-th power of a simple graph G is the simple graph Gk that has V (Gk) = V (G), with
distinct vertices u, v being adjacent in Gk if and only if dG(u, v) ≤ k.

We say that two simple graphsG andH are isomorphic, if there exists a bijection
θ : V (G) → V (H) such that any two vertices u, v ∈ V (G) are adjacent in G if and only
if θ(u) and θ(v) are adjacent in H .

Given a graph G with m edges and with a graceful labeling f , the complementary
labeling of f is the labeling f defined as f(v) = m − f(v) for all v ∈ V (G). The
complementary labeling of a graceful labeling of G is also graceful. An α-labeling of a
graph G on m edges is a graceful labeling g with the additional property that, for every
edge uv ∈ E(G), either g(u) ≤ k < g(v) or g(v) ≤ k < g(u), for some integer
k ∈ {0, . . . ,m}.

The graceful game is defined in the following way: Alice and Bob alternately
assign an unused label f(v) ∈ {0, . . . ,m} to a previously unlabeled vertex v of a given
simple graph G = (V (G), E(G)) with m edges. We call a vertex of G free if it is not
labeled yet. If both endpoints of an edge uv ∈ E(G) are already labeled, then the label
of the edge uv is defined as |f(u)− f(v)|. A move (label assignment) is said to be legal
if, after it, all edge labels are distinct. In the graceful game, Alice wins if the whole graph
G is gracefully labeled, and Bob wins if he can prevent this.

It is well known that not every graph is graceful; in fact, most graphs are not
graceful [Golomb 1972]. For non-graceful graphs, it is immediate that Bob is the winner
and, therefore, the game is completely determined for such graphs. In this work, we



investigate classes of graphs for which it is possible to obtain a graceful labeling. The
next two lemmas show properties of the graceful game that are used throughout this work.

Lemma 1. LetG be a simple graph withm edges. Alice can only use the label 0 (resp.m)
to label a vertex v ∈ V (G) if v is adjacent to every remaining free vertex or v is adjacent
to a vertex already labeled by Bob with m (resp. 0).

Lemma 2. Let G be a simple graph with m edges. If Bob assigns label 0 (resp. m) to a
vertex v ∈ V (G), such that v has only one free neighbor or there are two free vertices in
G not adjacent to v, then Alice is forced to label a vertex adjacent to v with m (resp. 0).

3. Main results

In this section we present the results on each class of graphs approached in the research.

A path graph Pn is a connected graph on n vertices whose vertices can be ar-
ranged in a linear sequence (v0, v1, . . . , vn−1) in such a way that two vertices are adjacent
if and only if they are consecutive in the linear sequence. Rosa [Rosa 1967] proved that
all paths are graceful.

Theorem 3. Bob has a winning strategy for any Pn, n ≥ 4. For n = 3 the winner is the
player who starts the game, and Alice has a winning strategy for n ∈ {1, 2}.

Sketch of the proof. It is trivial that Alice always wins on P1 and P2. For P3, if Bob
starts, it is sufficient that he labels v1 with 1, so that Alice cannot get the edge label 2. In
contrast, if Alice starts, she labels v0 with 1, and independently of Bob’s choice, the graph
is graceful. For Pn, n ≥ 4, we show that Bob can exhaust Alice’s possibilities of creating
the edge label m− 1 when he is the first player. Now, when Alice is the first one to play,
paths P4 and Pn, n ≥ 5, are treated separately. For the first one, we refer to the only two
graceful labelings of P4, and, considering Lemma 1, we show that there is no move Alice
can make that leads her to the victory. For the second one, we show that Bob can always
exhaust Alice’s possibilities of creating edge label m or m− 1.

A complete graph Kn is a simple graph in which every pair of distinct vertices is
connected by one edge. Golomb [Golomb 1972] proved that Kn is graceful if and only if
n ≤ 4.

Theorem 4. Alice wins on K3 and Bob on K4, no matter who starts.

Sketch of the proof. The cases where n = 1 or n = 2 resemble to P1 and P2, thus, the
results follow from Theorem 3. Graph K3 is graceful if and only if two of its vertices
are assigned labels 0 and 3. Therefore, Alice’s strategy, when she is the first player, is to
assign these labels to vertices of the graph. On the other hand, when Bob is the first player
he must begin by labeling a vertex with 1 or 2. In both cases, Alice can induce an illegal
move by Bob if he tries to complete his goal. This way, his only possibility is to label the
last vertex in Alice’s favor. Regarding to K4, we refer to its only two graceful labelings
to conclude that none of it assigns 3 to its vertices. Hence, no matter who starts, Bob can
label a vertex with 3, winning the game.



A cycle graphCn, with n ≥ 3 vertices, is a connected simple graph such that all of
its vertices can be arranged in a cyclic sequence (v0, v1, . . . , vn−1) such that two vertices
are adjacent if and only if they are consecutive in the sequence. Rosa [Rosa 1967] proved
that the cycle graph Cn is graceful if and only if n ≡ 0, 3 (mod 4).

The proof of Theorem 5 follows Theorem 4 forC3
∼= K3, and uses similar strategy

for C4, guided by its only two graceful labelings. Generalizing to Cn, n > 4 and n ≡ 0, 3
(mod 4), Bob can exhaust Alice’s chances of creating the edge label n− 1.

Theorem 5. Bob has a winning strategy for Cn, n ≥ 4, and Alice wins on C3.

A bipartite graph is a graph G = (V (G), E(G)) such that there exists a partition
P = (X, Y ) of V (G) such that, for every edge uv ∈ E(G), u ∈ X and v ∈ Y . A
complete bipartite graph Kp,q is a bipartite graph in which each vertex of X is joined
to every vertex of Y , with p = |X| and q = |Y |. Note that |V (Kp,q)| = p + q and
|E(Kp,q)| = pq.

Theorem 6. Bob has a winning strategy for all Kp,q, p, q ≥ 2. Alice wins the Graceful
game in any star K1,q if she is the first player.

Sketch of the proof. Results for K1,0, K1,1 and K1,2 follows from Theorem 3. For K1,q,
q ≥ 3, we consider P = (X, Y ) a bipartition of K1,q and |X| = 1 (wlog). Alice’s strategy
when she is the first player is to label the vertex in X with 0 ou q. In the other hand, when
Bob is the first player, it suffices him to label this same vertex with any label but 0 ou q.
The result for K2,2

∼= C4 follows from Theorem 5. Consider Kp,q, p ≥ 2 and q ≥ 3, and
let (X, Y ) be a bipartition of Kp,q. When Bob is the first player he establishes a pattern of
moves that forces Alice to assign specific labels to vertices in Y till all of its free vertices
are exhausted. When q is even, Bob can prevent Alice from creating the edge label m− q

2
.

When q is odd, in order to get the edge label m − ( q
2
+ 1), Alice would create a second

edge label q
2
, making it impossible for her to do so.

When Alice is the first player, we address K2,q, q ≥ 3, and Kp,q, p ≥ 3 and q ≥ 3,
separately. For K2,q, q ≥ 3, we show that Bob can prevent Alice from creating the edge
label m− 1, since it would generate a repeated edge label i− 1 or m− i− 1, i being the
label she chooses for her first move. The case Kp,q, p ≥ 3 and q ≥ 3, is divided in the
following way. Case 1: x < i < m − x, where x =

(
p−2
2

)
if p is even; or x =

(
p−1
2

)
,

otherwise. If p is odd, it takes place the same pattern that occurs when Bob is the first
player, until the free vertices in X are exhausted. If p is even, we show Bob can induce
Alice into a move that creates a repeated edge label x = |(x + 1) − 1|. Therefore, Alice
looses the game. Case 2: i = k or i = m − k, for 1 ≤ k ≤ x, where x =

(
p−2
2

)
if p is

even; or x =
(
p−1
2

)
, otherwise. If i = k (i = m− k is analogous), Bob can prevent Alice

from creating the edge label m− k.

A caterpillar cat(k1, k2, . . . , ks) is a special tree obtained from a path P =
(v1, v2, . . . , vs), called spine, by joining kj leaf vertices to vj , for each j ∈ {1, . . . , s}.
Rosa [Rosa 1967] proved that every caterpillar has an α-labeling.

If a caterpillar H has diameter at most two, then H is isomorphic to a star K1,m

and, we apply Theorem 6. Theorem 8 characterizes the graceful game for caterpillars
with diameter at least three. Lemma 7 is used in the proof of Theorem 8.



Lemma 7. Let H = cat(k1, k2, . . . , ks) be a caterpillar with m edges and vj be an
arbitrary vertex in the spine with kj > 0 adjacent leaves, for j ∈ {1, . . . , s}. If there
exists a leaf u not yet labeled adjacent to vj and, the colors 0 or m have not been used,
then Alice cannot label vj with any color.

Theorem 8. Bob has a winning strategy for all caterpillars with diameter at least three.

Sketch of the proof. The strategy taken by Bob when he is the first player is to prevent
Alice from creating the edge label m − 1 by labeling a leaf u with 0, then, using label 1
on a vertex not adjacent u’s “spine vertex”. When Alice is the first player, by Lemma 7,
she can only label a leaf or a vertex vj in the spine whose kj = 0, j ∈ {1, . . . , s}. In both
cases, Bob can also prevent her from creating the edge label m − 1 by similar strategy.
Although, the previous strategy cannot be applied to H = cat(1, k2). Thus, this graph
is approached differently and the proof depends on the parity of m. For either m even
or m odd, Bob can manage a sequence of moves in which Alice, trying to create all the
edge labels for a graceful labeling, is faced with a move in which she would generate a
repeated edge label i− 1 and i, respectively.

A wheel Wn is a graph formed by connecting a single vertex vn, called cen-
tral vertex of Wn, to all vertices v0, v1, . . . , vn−1 of a cycle Cn, where n ≥ 3. By
definition, a wheel Wn has n + 1 vertices and 2n edges. In 1987, C. Hoede and
H. Kuiper [Hoede and Kuiper 1987] proved that all wheels are graceful. Lemma 9 im-
mediately implies Theorem 10.

Lemma 9 ([Frucht 1979]). Let vn be the central vertex of the wheel graph Wn. There
exist no graceful labeling f of Wn with f(vn) = n.

Theorem 10. When Bob is the first player, he has a winning strategy for all wheel graphs.

Theorem 11. Bob has a winning strategy for the wheel graphs W3, W4 and W5 even
when Alice is the first player.

Sketch of the proof. For n = 3, the result follows from Theorem 4 since W3
∼= K4.

For n = 4, we refer to the eight possible graceful labelings of W4, obtained through
computational search. In that case, we reached only two options for Alice: either (a) she
labels a vertex other than v4 with 4 (precluding Bob from assigning label 4 to the central
vertex); or (b) she labels v4 with a label i ∈ {0, 1, . . . , 8} and i 6= 4 (by Lemma 1 and
Lemma 9). In (a), she is forced by Bob to make a set of moves that leads to labelings
of W4 that are not graceful. In (b), no matter what move Alice makes, Bob always has a
label he can use on his next move in which precludes Alice from gracefully labeling the
graph.

For W5, the case where Alice labels a vertex vj , 0 ≤ j ≤, 4, and the one she labels
v5 are treated separately. In the first one, Bob makes a set of moves that leads Alice into a
move that creates a second edge label 1. The second case is divided into four subcases. In
Subcases 2.1 and 2.2 (Alice labels v5 with a label i, 3 ≤ i ≤ 8 and i 6= 5, and, Alice labels
v5 with i = 2, respectively), Bob makes it impossible for Alice to create the edge label 9.
In Subcase 2.3 (Alice labels v5 with i ∈ {1, 9}), Bob forces Alice into a move that would



generate a second edge label 1. In Subcase 2.4 (Alice labels v5 with i = 0 (resp. i = 10)),
we refer to all four graceful labelings of W5 that assign label 0 (resp. i = 10) to v5 in
order to conclude that Bob can prevent Alice from gracefully labeling the graph.

The approach used in the proof of Theorem 11 for W5 can almost be successfully
extended for arbitrary wheels Wn with n ≥ 6, with exception of Subcase 2.4. However,
we conjecture that Bob has a winning strategy for all these graphs.

Conjecture 12. Bob has a winning strategy for all wheel graphs Wn with n ≥ 6.

A gear graph Gn, n ≥ 3, is a simple graph obtained by subdividing each edge
of the outer n-cycle (v0, v1, . . . , vn−1) of a wheel graph Wn exactly once. The ver-
tices of Gn are named as follows: vn ∈ V (Gn) is the original central vertex of Wn,
v0, v1, . . . , vn−1 are the original vertices of the outer n-cycle (these vertices are adjacent
to vn) and, for each j ∈ {0, . . . , n − 1}, wj is the vertex adjacent to vj and vj+1, indices
taken modulo n. Note that, by definition, Gn has 2n + 1 vertices and 3n edges. Ma and
Feng [Ma and Feng 1984] proved in 1984 that all gear graphs are graceful.

The strategies taken to show, in Theorem 13, that Bob wins in all gear graphs are
set as follows. When Bob is the first player, it suffices him to label a vertex wj with 0
in order to preclude Alice from creating the edge label m − 1. When we address Alice
as the first player we divide the proof into three different cases: (i) she starts labeling a
vertex wj , 0 ≤ j ≤ n − 1; (ii) she starts labeling a vertex vj , 0 ≤ j ≤ n − 1; (iii) she
starts labeling vn. In all of them, Bob precludes Alice from creating the edge label m− 1.
The graph G3 has particularities and it is, therefore, treated separately using its graceful
labelings. We obtain that Alice cannot start the game by labeling v3 since Bob wins by
choosing between 0 and 9 to label a neighbor of v3. In addition, if Alice starts by labeling
a vertex other than v3, Bob will also prevent her from gracefully labeling the graph.

Theorem 13. Bob has a winning strategy for all gear graphs.

A helm Hn, n ≥ 3, is the graph obtained from Wn creating a new vertex for each
non-central vertex vj ofWn, and linking vj with this new vertex. By definition, a helmHn

is a graph on 3n edges and 2n + 1 vertices, that are named as follows: the unique vertex
with degree n is called center and is denoted by v0; the neighbors of v0 are called cycle
vertices and are denoted by v1, . . . , vn; the remaining vertices are called pendent vertices
and are denoted by vn+1, . . . , v2n. Moreover, we consider that vk and vn+k, 1 ≤ k ≤ n,
are adjacent and are arranged linearly. In 1984, Ayel [Ayel and Favaron 1984] proved that
all helms are graceful.

Lemma 14. Given a helm Hn, for j ∈ {1, . . . , n}, Alice can label a cycle vertex vj of
Hn in only two cases: when vj’s respective pendent vertex is already labeled or, when the
colors 0 or 3n (or both) have already been assigned to a vertex.

Theorem 15. Bob has a winning strategy for all helms.

Proof. Given a helm graph Hn, n ≥ 3, consider the case where Bob is the first player.
He starts by labeling a pendent vertex vn+j , 1 ≤ j ≤ n, with 0. According to Lemma 2,
Alice is forced to label vj with 3n. Then, Bob assigns label 1 to a vertex not adjacent to
vj . Since there are no possibilities left for Alice to create the edge label 3n− 1, Bob wins



the game. Now, suppose that Alice is the first player. By Lemma 14, she has only two
options for her first move: to label the center or a pendent vertex. Suppose Alice chooses
to label the center with a arbitrary color i, 1 ≤ i ≤ 3n−1. If i = 1 (resp. i 6= 1), then Bob
labels a pendent vertex vn+p, 1 ≤ p ≤ n, with 3n (resp. 0). Alice is now forced to label
vp with 0 (resp. 3n). In order to win, Bob labels a vertex not adjacent to vp with 3n − 1
(resp. 1). Next, suppose that Alice chooses to label a pendent vertex vn+j , 1 ≤ j ≤ n,
with an arbitrary color i, 1 ≤ i ≤ 3n− 1. Then, Bob assigns 0 to a second pendent vertex
vn+p, 1 ≤ p ≤ n and p 6= j. This way, Alice is forced to label vp with 3n. If i = 1, then
Bob wins since there is no way for Alice to generate the edge label 3n− 1. If i 6= 1, Bob
assigns label 1 to a vertex not adjacent to vp and the result follows.

Web graphs were defined by Koh et al. [Kho et al. 1980] as a graph ob-
tained by connecting the pendent vertices vn+1, vn+2, . . . , v2n of a helm into a cycle
(vn+1, vn+2, . . . , v2n) and then linking a single new pendent vertex to each vertex of this
outer cycle. Later, Kang et al. [Kang et al. 1996] extended the definition of web graphs
so that the process of creating a new cycle by joining the pendent vertices and adding a
pendent edge to each vertex of the outer cycle could be repeated as many times as desired.
In this paper, we use the definition proposed by Kang et al. [Kang et al. 1996], in which
W (t, n) denotes the web graph formed by t vertex-disjoint n-cycles, where t ≥ 2. These
t n-cycles are called the concentric cycles of W (t, n).

By definition, a web graph W (t, n) has n(t + 1) + 1 vertices and m = n(2t + 1)
edges. We partition the vertex set of W (t, n) into t + 2 parts. The first part comprises
only the central vertex v0, also called center. The second part comprises the pendent
vertices, denoted by v1, v2, . . . , vn. The other t parts are each one formed by the vertices
that give rise to each concentric cycle. We denote vn+1, vn+2, . . . , v2n the vertices of the
outer concentric cycle; v2n+1, v2n+2, . . . , v3n the vertices of the next concentric cycle, and
so on, until the inner concentric cycle vtn+1, vtn+2, . . . , v(t+1)n. We also consider that
vk, vn+k, v2n+k, . . . , vtn+k, v0, for any k ∈ {1, . . . , n}, are arranged linearly.

Kang et al. [Kang et al. 1996] proved thatW (2, n),W (3, n),W (4, n) are graceful
and, Abhyankar [Abhyankar 2002] proved the same for W (t, 5), 5 ≤ t ≤ 13. Even
though there are not many results for the gracefulness of the web graphs, we provide a
strategy in which we guarantee that Bob is the winner on any web graph.

Lemma 16. Given a web graph W (t, n) with m edges, Alice can label an outer cycle
vertex vj , j ∈ {n + 1, . . . , 2n}, in only two cases: when vj’s respective pendent vertex
is already labeled or, when the colors 0 or m (or both) have already been assigned to a
vertex.

Theorem 17. Bob has a winning strategy for all webs.

Proof. Let W (t, n) be a web graph with m edges. When Bob is the first player he assigns
label 0 to a pendent vertex vj , j ∈ {1, . . . , n}. By Lemma 2, Alice’s only option is to
label vn+j with m. Now, Bob assigns label 1 to a vertex not adjacent to vn+j and he wins.
Now, suppose that Alice is the first player. By Lemma 16 and by the symmetry of the
graph, we conclude that Alice has only three options for her first move. Option 1: Alice
labels v0 with an arbitrary color i ∈ {1, . . . ,m− 1}. In this case, Bob assigns the color 0
to a pendent vertex vp, p ∈ {1, . . . , n}, forcing Alice to label vn+p with m. If i = 1, then



the game is over and Bob is the winner since there is no possibility left for Alice to create
the edge label m− 1. If i 6= 1, in order to win the game Bob labels any vertex that is not
adjacent to vn+p with 1. Option 2: Alice labels a pendent vertex vj , j ∈ {1, . . . , n} with
an arbitrary color i ∈ {1, . . . ,m−1}. In this case, Bob labels a second pendent vertex vp,
p ∈ {1, . . . , n} and p 6= j, with 0. Alice is now forced to label vn+p with m. If i = 1 then
the game is over and Bob wins. If i 6= 1, Bob labels any vertex that is not adjacent to vn+p

with 1 in order to win. Option 3: Alice labels a vertex vj , j ∈ {2n + 1, . . . , (t + 1)n},
with an arbitrary color i ∈ {1, . . . ,m− 1}. In this case, Bob assigns label 0 to a pendent
vertex vp, p ∈ {1, . . . , n}, so that vj and vp are not arranged linearly. This forces Alice to
label vn+p with m. If i = 1 then the game is over and Bob wins. If i 6= 1, Bob must label
any vertex that is not adjacent to vn+p with 1 and he also wins.

An n-dimensional hypercube Qn is defined recursively in terms of the Cartesian
product of two graphs as follows: (i) Q1 = K2; and (ii) Qn = K2�Qn−1. It is well
known [Harary et al. 1988] that every Qn is bipartite, n-regular and has |V (Qn)| = 2n

and |E(Qn)| = n2n−1. In 1981, Kotzig [Kotzig 1981] proved that all hypercubes are
graceful.

The strategies used to prove Theorem 18 follow the ideas presented next. Since
Q2
∼= C4, its result follows from Theorem 5. For Qn, n ≥ 3, the reasoning used when

Bob is the first player is similar to the one used for the complete bipartite when he is also
the first one to play. As for when Alice is the first player, she starts by labeling v1 ∈ X
with an arbitrary label i and we split into four different cases: (i) i = 1 or i = m− 1; (ii)
2 ≤ i ≤

⌊
n
2

⌋
; (iii)

⌊
n
2

⌋
< i < m −

⌊
n
2

⌋
; and (iv) i = m − k for 2 ≤ k ≤

⌊
n
2

⌋
. We show

Bob can prevent her from creating the edge labels m − 1, m − i, m − bn/2c and m − k
on each case, respectively.

Theorem 18. Bob has a winning strategy for all hypercubes Qn with n ≥ 2.

The prism graph Pr,2, r ≥ 3, is defined as the cartesian product Cr�P2 of a cycle
on r vertices and path P2. Frucht and Gallian [Frucht and Gallian 1988] proved that every
prism is graceful.

In the proof of Theorem 19, we approach Pr,2, r ≥ 4 and P3,2 separately. For
Pr,2, r ≥ 4, when Bob is the first player, we show he can prevent Alice from creating
the edge label m − 2 and, when Alice is the first one to play, we divide it into Case 1,
2 ≤ i ≤ m− 2, and, Case 2, i ∈ {1,m− 1}, where, in both cases, i is the color assigned
by Alice on her first move. In both cases, Bob can prevent Alice from creating the edge
label m− 1, therefore, winning the game.

Theorem 19. Bob has a winning strategy for all prisms.

The family of powers of paths comprises all graphs Gk obtained when G ∼= Pn,
n ≥ 1. The k-th power of a path Pn is denoted by P k

n . It is known that all graphs P 2
n are

graceful [Kang et al. 1996] and Theorem 20 characterizes the graceful game for P 2
n .

Theorem 20. Bob has a winning strategy for all P 2
n with n ≥ 4. Alice wins on P 2

3 .

Sketch of the proof. Since P 2
1
∼= P1, P 2

2
∼= P2 and P 2

3
∼= C3, the result for these graphs

follows from Theorems 3 and 5. Now, consider P 2
n , n ≥ 3. When Bob is the first player,



he assigns 0 to v0, forcing Alice to assign m to v1 or v2 (Lemma 2). Regardless of her
option, Bob can prevent her from creating the edge labelm−1 (using the rule of the game
in his favor) and, the edge label m− 2, respectively. The instance where Alice is the first
player is divided into seven cases. Case 1: P 2

n , n ≥ 10. Bob can induce Alice into a
move that, in order to create edge label m − 2, she would generate a repeated edge label
m−3
2

. Case 2: P 2
4 . We refer to all graceful labelings of P 2

4 to show that, no matter what
Alice’s move, Bob can always preclude her from gracefully labeling the graph. Case 3:
P 2
5 . Subdivided into eight cases. In all subcases, Bob induces Alice into a illegal move,

precluding her from achieving her goal. Case 4: P 2
6 . Subdivided into four cases. In

Subcases 4.1 to 4.4, Bob prevents her from creating the edge label 8. Subcase 4.5 applies
to Case 1. Case 5: P 2

7 . Case 6: P 2
8 . Case 7: P 2

9 . All three last cases applies to Cases 1
and 4.

4. Conclusion

The results of this work are the first in the area of graceful labeling games, opened in 2017
by Tuza [Tuza 2017], and they also contribute to the study of the two famous graceful
graph conjectures posed by Rosa [Rosa 1967, Rosa 1988]. We note that the techniques
used in the proofs have a common core but they are strongly dependent on the graph
structure, the player who initiates, the order of the chosen labels, and therefore it is not
possible to apply a generalization for all classes.

Table 1. Graph classes and winners: A (Alice) and B (Bob).

Graph class First player
Alice Bob

Pn, n = 1, 2 A A
P3 A B

Pn, n ≥ 4 B B
K3 A A
K4 B B

Cn, n ≥ 4 B B
K1,q, q ≥ 2 A B
Kp,q, p, q ≥ 2 B B

cat(k1, . . . , ks), s ≥ 2 B B
Wn, n = 3, 4, 5 B B
Wn, n ≥ 6 ? B
Hn, n ≥ 3 B B

W (t, n), t ≥ 2, n ≥ 3 B B
Gn, n ≥ 3 B B
Qn, n ≥ 2 B B
P 2
n , n ≥ 4 B B

Our results are summarized in Table 1. We observe that Alice has winning strate-
gies for only few cases such as: complete graphs Ki, i ≤ 3, and stars K1,q, q ≥ 2 when
she is the first player. We also leave it open the Conjecture 12, in which we believe that



Bob has a winning strategy for all Wn, n ≥ 6. This conjecture also contributes to the
continuity of studies in the area.
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