32 research outputs found

    Dissociable neuroanatomical correlates of subsecond and suprasecond time perception

    Get PDF
    The ability to estimate durations varies across individuals. Although previous studies have reported that individual differences in perceptual skills and cognitive capacities are reflected in brain structures, it remains unknown whether timing abilities are also reflected in the brain anatomy. Here, we show that individual differences in the ability to estimate subsecond and suprasecond durations correlate with gray matter (GM) volume in different parts of cortical and subcortical areas. Better ability to discriminate subsecond durations was associated with a larger GM volume in the bilateral anterior cerebellum, whereas better performance in estimating the suprasecond range was associated with a smaller GM volume in the inferior parietal lobule. These results indicate that regional GM volume is predictive of an individual's timing abilities. These morphological results support the notion that subsecond durations are processed in the motor system, whereas suprasecond durations are processed in the parietal cortex by utilizing the capacity of attention and working memory to keep track of time

    Adaptation to temporal structure

    No full text

    Duration reproduction in regular and irregular contexts after unilateral brain damage: Evidence from voxel-based lesion-symptom mapping and atlas-based hodological analysis

    Get PDF
    It has been proposed that not completely overlapping brain networks support interval timing depending on whether or not an external, predictable temporal cue is provided during the task, aiding time estimation. Here we tested this hypothesis in a neuropsychological study, using both a topological approach – through voxel-based lesion-symptom mapping (VLSM), that assesses the relation between continuous behavioral scores and lesion information on a voxel-by-voxel basis – and a hodological approach, using an atlas-based tractography. A group of patients with unilateral focal brain lesions and their matched controls performed a duration reproduction task assessing time processing in two conditions, namely with regularly spaced stimuli during encoding and reproduction (Regular condition), and with irregularly spaced stimuli during the same task (Irregular condition). VLSM analyses showed that scores in the two conditions were associated with lesions involving partly separable clusters of voxels, with lower performance only in the Irregular condition being related to lesions involving the right insular cortex. Performance in both conditions correlated with the probability of disconnection of the right frontal superior longitudinal tract, and of the superior and middle branches of the right superior longitudinal fasciculus. These findings suggest that the dissociation between timing in regular and irregular contexts is not complete, since performance in both conditions relies on the integrity of a common suprasecond timing network. Furthermore, they are consistent with the hypothesis that tracking time without the aid of external cues selectively relies on the integration of psychophysiological changes in the right insula

    Adaptation to temporal structure

    Get PDF

    Adaptation to temporal structure

    Get PDF

    Individual differences in first- and second-order temporal judgment

    Get PDF
    The ability of subjects to identify and reproduce brief temporal intervals is influenced by many factors whether they be stimulus-based, task-based or subject-based. The current study examines the role individual differences play in subsecond and suprasecond timing judgments, using the schizoptypy personality scale as a test- case approach for quantifying a broad range of individual differences. In two experiments, 129 (Experiment 1) and 141 (Experiment 2) subjects completed the O-LIFE personality questionnaire prior to performing a modified temporal-bisect ion task. In the bisection task, subjects responded to two identical instantiations of a luminance grating presented in a 4deg window, 4deg above fixation for 1.5 s Experiment 1) or 3 s (Experiment 2). Subjects initiated presentation with a button- press, and released the button when they considered the stimulus to be half-way through (750/1500 ms). Subjects were then asked to indicate their ‘most accurate estimate’ of the two intervals. In this way we measure both performance on the task (a first-order measure) and the subjects’ knowledge of their performance (a second-order measure). In Experiment 1 the effect of grating-drift and feedback on performance was also examined. Experiment 2 focused on the static/no-feedback condition. For the group data, Experiment 1 showed a significant effect of presentation order in the baseline condition (no feedback), which disappeared when feedback was provided. Moving the stimulus had no effect on perceived duration. Experiment 2 showed no effect of stimulus presentation order. This elimination of the subsecond order-effect was at the expense of accuracy, as the mid-point of the suprasecond interval was generally underestimated. Response precision increased as a proportion of total duration, reducing the variance below that predicted by Weber’s law. This result is consistent with a breakdown of the scalar properties of time perception in the early suprasecond range. All subjects showed good insight into their own performance, though that insight did not necessarily correlate with the veridical bisection point. In terms of personality, we found evidence of significant differences in performance along the Unusual Experiences subscale, of most theoretical interest here, in the subsecond condition only. There was also significant correlation with Impulsive Nonconformity and Cognitive Disorganisation in the sub- and suprasecond conditions, respectively. Overall, these data support a partial dissocation of timing mechanisms at very short and slightly longer intervals. Further, these results suggest that perception is not the only critical mitigator of confidence in temporal experience, since individuals can effectively compensate for differences in perception at the level of metacognition in early suprasecond time. Though there are individual differences in performance, these are perhaps less than expected from previous reports and indicate an effective timing mechanism dealing with brief durations independent of the influence of significant personality trait differences

    Deconstructing Events: The Neural Bases for Space, Time, and Causality

    Get PDF
    Space, time, and causality provide a natural structure for organizing our experience. These abstract categories allow us to think relationally in the most basic sense; understanding simple events requires one to represent the spatial relations among objects, the relative durations of actions or movements, and the links between causes and effects. The present fMRI study investigates the extent to which the brain distinguishes between these fundamental conceptual domains. Participants performed a 1-back task with three conditions of interest (space, time, and causality). Each condition required comparing relations between events in a simple verbal narrative. Depending on the condition, participants were instructed to either attend to the spatial, temporal, or causal characteristics of events, but between participants each particular event relation appeared in all three conditions. Contrasts compared neural activity during each condition against the remaining two and revealed how thinking about events is deconstructed neurally. Space trials recruited neural areas traditionally associated with visuospatial processing, primarily bilateral frontal and occipitoparietal networks. Causality trials activated areas previously found to underlie causal thinking and thematic role assignment, such as left medial frontal and left middle temporal gyri, respectively. Causality trials also produced activations in SMA, caudate, and cerebellum; cortical and subcortical regions associated with the perception of time at different timescales. The time contrast, however, produced no significant effects. This pattern, indicating negative results for time trials but positive effects for causality trials in areas important for time perception, motivated additional overlap analyses to further probe relations between domains. The results of these analyses suggest a closer correspondence between time and causality than between time and space
    corecore