271 research outputs found

    Synchronization of reaction–diffusion Hopfield neural networks with s-delays through sliding mode control

    Get PDF
    Synchronization of reaction–diffusion Hopfield neural networks with s-delays via sliding mode control (SMC) is investigated in this paper. To begin with, the system is studied in an abstract Hilbert space C([–r; 0];U) rather than usual Euclid space Rn. Then we prove that the state vector of the drive system synchronizes to that of the response system on the switching surface, which relies on equivalent control. Furthermore, we prove that switching surface is the sliding mode area under SMC. Moreover, SMC controller can also force with any initial state to reach the switching surface within finite time, and the approximating time estimate is given explicitly. These criteria are easy to check and have less restrictions, so they can provide solid theoretical guidance for practical design in the future. Three different novel Lyapunov–Krasovskii functionals are used in corresponding proofs. Meanwhile, some inequalities such as Young inequality, Cauchy inequality, Poincaré inequality, Hanalay inequality are applied in these proofs. Finally, an example is given to illustrate the availability of our theoretical result, and the simulation is also carried out based on Runge–Kutta–Chebyshev method through Matlab

    Complex Projective Synchronization in Drive-Response Stochastic Complex Networks by Impulsive Pinning Control

    Get PDF
    The complex projective synchronization in drive-response stochastic coupled networks with complex-variable systems is considered. The impulsive pinning control scheme is adopted to achieve complex projective synchronization and several simple and practical sufficient conditions are obtained in a general drive-response network. In addition, the adaptive feedback algorithms are proposed to adjust the control strength. Several numerical simulations are provided to show the effectiveness and feasibility of the proposed methods

    Robust Control

    Get PDF
    The need to be tolerant to changes in the control systems or in the operational environment of systems subject to unknown disturbances has generated new control methods that are able to deal with the non-parametrized disturbances of systems, without adapting itself to the system uncertainty but rather providing stability in the presence of errors bound in a model. With this approach in mind and with the intention to exemplify robust control applications, this book includes selected chapters that describe models of H-infinity loop, robust stability and uncertainty, among others. Each robust control method and model discussed in this book is illustrated by a relevant example that serves as an overview of the theoretical and practical method in robust control

    Finite time Synchronization of Inertial Memristive Neural Networks with Time Varying Delay

    Get PDF
    Finite time synchronization control of inertial memristor-based neural networks with varying delay is considered. In view of drive and response concept, the sufficient conditions to ensure finite time synchronization issue of inertial memristive neural networks is given. Based on Lyapunov finite time asymptotic theory, a kind of feedback controllers is designed for inertial memristorbased neural networks to realize the finite time synchronization. Based on Lyapunov stability theory, close loop error system can be proved finite time and fixed time stable. Finally, illustrative example is given to illustrate the effectiveness of theoretical results

    Finite-time stabilization for fractional-order inertial neural networks with time varying delays

    Get PDF
    This paper deals with the finite-time stabilization of fractional-order inertial neural network with varying time-delays (FOINNs). Firstly, by correctly selected variable substitution, the system is transformed into a first-order fractional differential equation. Secondly, by building Lyapunov functionalities and using analytical techniques, as well as new control algorithms (which include the delay-dependent and delay-free controller), novel and effective criteria are established to attain the finite-time stabilization of the addressed system. Finally, two examples are used to illustrate the effectiveness and feasibility of the obtained results

    New criteria on global Mittag-Leffler synchronization for Caputo-type delayed Cohen-Grossberg Inertial Neural Networks

    Get PDF
    Our focus of this paper is on global Mittag-Leffler synchronization (GMLS) of the Caputo-type Inertial Cohen-Grossberg Neural Networks (ICGNNs) with discrete and distributed delays. This model takes into account the inertial term as well as the two types of delays, which greatly reduces the conservatism with respect to the model. A change of variables transforms the 2β 2\beta order inertial frame into β \beta order ordinary frame in order to deal with the effect of the inertial term. In the following steps, two novel types of delay controllers are designed for the purpose of reaching the GMLS. In conjunction with the novel controllers, utilizing differential mean-value theorem and inequality techniques, several criteria are derived to determine the GMLS of ICGNNs within the framework of Caputo-type derivative and calculus properties. At length, the feasibility of the results is further demonstrated by two simulation examples
    • …
    corecore