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Abstract. Synchronization of reaction–diffusion Hopfield neural networks with s-delays via sliding
mode control (SMC) is investigated in this paper. To begin with, the system is studied in an abstract
Hilbert space C([−r, 0], U) rather than usual Euclid space Rn. Then we prove that the state vector
of the drive system synchronizes to that of the response system on the switching surface, which
relies on equivalent control. Furthermore, we prove that switching surface is the sliding mode area
under SMC. Moreover, SMC controller can also force with any initial state to reach the switching
surface within finite time, and the approximating time estimate is given explicitly. These criteria
are easy to check and have less restrictions, so they can provide solid theoretical guidance for
practical design in the future. Three different novel Lyapunov–Krasovskii functionals are used in
corresponding proofs. Meanwhile, some inequalities such as Young inequality, Cauchy inequality,
Poincaré inequality, Hanalay inequality are applied in these proofs. Finally, an example is given to
illustrate the availability of our theoretical result, and the simulation is also carried out based on
Runge–Kutta–Chebyshev method through Matlab.
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1 Introduction

Hopfield neural networks (HNNs) are intensively studied since it was first postulated
in [10] due to their successful applications in numerous areas such as pattern recogni-
tion,parallel computation, and associative memory [22]. The original version of the model
is described by ODEs, which is just an approximation of real world. Several factors are
neglected in this model.

To begin with, the delay is inevitably encountered in electronic implementation of
neural networks (NNs) due to finite speed of switching and transmission of signals [8,21]
or deliberately introduced to deal with moving image processing [27]. It is necessary
to incorporate distributed delays into the system when the NNs usually have a spatial
extent due to presence of a multitude of parallel pathways with a variety of axon sizes
and lengths [27]. After a scrutiny scan of published work on delayed HNNs, we find
that most authors either concentrate on system with discrete delays or distributed delays
independently. However, in the real signal propagation, we often encounter the case that
NNs possess both discrete and distributed delays at the same time. From the viewpoint of
mathematics, s-delays is an accurate and suitable tool to describe discrete and distributed
delays at once since both of them can be included in the s-delays [9]. It has the form∫ 0

−τi fi(ui(t + s)) dκi(s), where fi, i = 1, 2, . . . , n, are activation functions, κi(s) are
Lebesgue–Stieljies measurable functions. So if we study the HNNs with s-delays, it
means that our model is more general than the previous model.

On the other hand, diffusion phenomenon is also neglected in the original model of
HNNs. Actually, diffusion effect cannot be ignored in NNs when electrons move in an in-
homogeneous electromagnetic field [14,16]. Reaction–diffusion Hopfield neural networks
(RDHNNs) not only have theoretical influence, but also have been used in numerous fron-
tier regions such as image encription [32], pattern formation [40]. Compared with original
HNNs, RDHNNs are described through partial differential equations with initial and
boundary conditions. It not only involves the time variable, but also the space variables.

Based on above discussion, the model will be more exact if we study the diffusion
phenomenon and delay effect simultaneously. However, it is worth noting that delay is
a source of oscillation, bifurcation, and instability, which hinders the practical application
of HNNs [8, 14, 21]. Meanwhile, diffusion can also harm the stability of the system [14,
16]. The dynamical behavior of HNNs will be even more complex when incorporating
these two factors.

As an important collective behavior, synchronization of HNNs becomes a hot topic
in recent decades due to their potential applications in secure communications, signal
processing, distributed computation [7, 11, 17, 18, 28, 30, 31, 35, 36, 42]. It means that
solution of drive system converges to the desired trajectory under appropriate control
strategy [26]. However, synchronization of HNNs is still not fully conducted because it is
hard to guide the solution so that it converges to ideal trajectory due to their complexity.
This situation will be even worse if we take both reaction–diffusion phenomenon and
s-delays into consideration.

Many effective strategies have been proposed for the synchronization of HNNs with
either delay or reaction diffusion term. For example, the point-wise and optimal control
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by [31], pinning control by [17, 30], intermittent control by [7, 11, 18], impulse control
by [28, 36, 42], nonlinear feedback control by [6]. It should be pointed out that these
strategies heavily rely on Schur complement theorem, and in these papers, the criteria is
free reaction–diffusion coefficients.

SMC is considered as a potential approach in synchronization of HNNs, which is
a discontinuous control. Its main advantages are fast response, good transient perfor-
mance, and robustness to external disturbance [1,19,23,25,29,33,34]. A great volume of
the literature has been published on the theory and application of SMC for various systems
[25, 33]. As to HNNs, [22] has pointed out the importance of sliding mode in recurrent
neural networks, especially, how to prevent sliding. [29] investigates the synchronization
of uncertain nonidentical chaotic neural networks with time delays via SMC. To the best
of our knowledge, there is still no existing result on synchronization of delayed reaction–
diffusion Hopfield neural networks via SMC until yet, let alone with s-delays.

Motivated by above discussion, synchronization of reaction–diffusion HNNs with
s-delays is studied in this paper. Challenges and difficulties will be confronted since nu-
merous factors are taken into account in this model. To begin with, both reaction–diffusion
term and s-delay are considered in the model, and the delay is more general than previous
ones. Moreover, reaction–diffusion term is an extension of Laplace operator ∆. At last,
we have checked the published work of SMC for distributed systems, there is still no
simulation on the motion of equivalent control and SMC controller versus time and space.

Compared to some previously published results, our results are less conservative, and
the model is more general. Main contributions are summarized as follows.

(i) Choosing appropriate Hilbert space C([−r, 0], U) for state variables is a critical
step toward analyzing and approximating it. In the previous work of delayed
reaction–diffusion HNNs, phase space is chosen to be the usual Euclidean space
Rn. The structure of Rn is simple, concrete, and easy to grasp. However, the
theoretical result is richer in abstract Hilbert space C([−r, 0], U) than that in Rn,
and the form of the system is much more concise in Hilbert space.

(ii) SMC is successfully applied for the synchronization of this system. It is reliable
and easy to be programmed and operated on the computer. Both sliding mode
equation and control law are established by using the equivalent control. This is
different from the previous work in SMC of other distribution systems, which use
matrix splitting technique [19, 23, 34] or direct design of discontinuous control
law [24, 25].

(iii) There is no existing specialized software suited for synchronization of reaction–
diffusion Hopfield neural networks with s-delays. In order to accomplish these
goals, we discrete this system and write the code by ourselves. Then simulation
is obtained via Matlab to validate the efficiency of our result.

(iv) The proofs of main theorems are based on constructing appropriate Lyapunov–
Krasovskii functionals (LKFs). Meanwhile, some inequalities such as Young in-
equality, Hanalay inequality are used in the process. These criteria are expressed
in the matrix norm, which are also easy to check. These criteria are also explicitly
expressed when compared with LMIs.
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2 Preliminaries and notations

We list some notations, which will be used in the following sections.

• For A ∈ Rn×n, A > 0 means A is a semipositive definite matrix;
• E is the identity matrix of Rn×n;
• A ◦ B = (aijbij)n×n is the Hadmard product between A ∈ Rn×n and B ∈ Rn×n

[20];
• L2(O) denotes the space of square integrable functions on O;
• U = {L2(O)}n, it becomes a Hilbert space when equipped with the usual inner

product (u, v), u, v ∈ U , and the corresponding norm is ‖u‖ =
√

(u, u);
• C([−r, 0], U) is the Banach space of all continuous functionals from [−r, 0] to U

with the supnorm ‖ϕ‖C = sup−r6s60 ‖ϕ(s)‖;
• ut(s) = u(t+ s) for s ∈ [−r, 0];
• tr is the trace operator;
• ‖A‖F =

√
tr(ATA) is called the Frobenius norm of A ∈ Rm×n [20].

The drive system of reaction diffusion HNNs with s-delays is

∂u

∂t
= ∇ ·

(
D(x) ◦ ∇u

)
−Au+ Cf

( 0∫
−r

u(t+ s, x) dη(s)

)
+ I + Pv,

∂u

∂ν
(t, x) = 0, t > 0, x ∈ ∂O,

u(s, x) = φ(s, x), s ∈ [−r, 0],

(1)

where n is the number of neurons, u = (u1, u2, . . . , un)T is the state vector. T denotes the
transpose of matrix. O ⊂ Rl is a connected bounded set with smooth boundary ∂O. Gra-
dient operator of u is∇u = (∇u1,∇u2, . . . ,∇un)T, where∇ui = (∂ui/∂x1, ∂ui/∂x2,
. . . , ∂ui/∂xl)

T, i = 1, 2, . . . , n. f(u) = (f1(u1), f2(u2), . . . , fn(un))T is a diagonal
map with fi, i = 1, 2, . . . , n, represent activation function, A = diag(a1, a2, . . . , an) is
the rate matrix with ai > 0. C = (cij)n×n is weights matrix. I = (I1, I2, . . . , In)T is
bias vector. φ(s, x) = (φ1(s, x), φ2(s, x), . . . , φn(s, x))T is the initial function, which is
continuous in [−r, 0] × O, r is time delay, D(x) = (Dij(x))n×l is diffusion coefficient
matrix, which is determined by Fick’s law [14]. Let Y = (yij)n×l = D ◦ ∇u =
(Dij∂ui/∂xj)n×l is the Hadamard product of matrixD and∇u. Y = (Y1, Y2, . . . , Yn)T,
∇ · Y is the general divergence operator of matrix Y , which is defined as ∇ · Y =
(∇ · Y1,∇ · Y2, . . . ,∇ · Yn)T. ∇ · Yi is the divergence operator of vector Yi. ∂u/∂ν =
(∂u1/∂ν, ∂u2/∂ν, . . . , ∂un/∂ν)T, ∂ui/∂ν = (∂ui/∂x1, ∂ui/∂x2, . . . , ∂ui/∂xm)T.
Adiabatic boundary condition is used in this article.

S-delays are defined through the Lebesgue–Stieljies integral as
∫ 0

−ru(t+s, x) dη(s)=

(
∫ 0

−r u1(t+ s, x) dη1(s), . . . ,
∫ 0

−r un(t+ s, x) dηn(s))T. ηi(s) are nondecreasing func-
tions with bounded variation. In other words, there exist positive constants qi such that∫ 0

−r dηi(s) = qi < ∞. v is the control strategy on drive system. P is the dimensionless
control matrix, which is to be determined.
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The response system of reaction diffusion HNNs with s-delays is

∂ur
∂
t = ∇ ·

(
D(x) ◦ ∇ur)−Aur + Cf

( 0∫
−r

ur(t+ s, x) dη(s)

)
+ I,

∂ur
∂ν

(t, x) = 0, t > 0, x ∈ ∂O,

ur(s, x) = ψ(s, x), s ∈ [−r, 0],

(2)

with ur = (u1r, u
2
r, . . . , u

n
r )T, ψ(s, x) = (ψ1(s, x), ψ2(s, x), . . . , ψn(s, x))T is also

continuous on [−r, 0] × O. Other symbols have the same physical meaning as those
in (1).

The tracking vector error e(t, x) is defined as the difference between the observed
behavior of the drive system (1) and its desired behavior of response system (2), which
means

e(t, x) = u(t, x)− ur(t, x). (3)

From (1)–(3) we have

∂e

∂t
= ∇ ·

(
D(x) ◦ ∇e

)
−Ae+ Cf

( 0∫
−r

u(t+ s, x) dη(s)

)
,

− Cf

( 0∫
−r

ur(t+ s, x) dη(s)

)
+ Pv,

∂e

∂ν
(t, x) = 0, t > 0, x ∈ ∂O,

e(s, x) = $(s, x), x ∈ O, s ∈ [−r, 0],

(4)

where $ = φ(s, x)− ψ(s, x).

Remark 1. Let

ηi(s) =

{
0, −r 6 s < 0,

1, s = 0,

where i = 1, 2, . . . , n. Then, through calculating the Lebesgue–Stieljies integral, the
governing equation of (1) is transformed to

∂u

∂t
= ∇ · (D(x) ◦ ∇u)−Au+ Cf

(
u(t− r, x)

)
+ I + Pv.

This is the system with discrete delay.
If there exists the function κ(s) such that dη(s) = κ(s) ds, then calculating the

Lebesgue–Stieljies integral, the governing equation of (1) is reduced to

∂u

∂t
= ∇ · (D(x) ◦ ∇u)−Au+ Cf

( 0∫
−r

u(t+ s, x)κ(s) ds

)
+ I + Pv.

This is the system with distributed delays.

Nonlinear Anal. Model. Control, 27(2):331–349, 2022
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2.1 Tracking error in the Banach space

Let us define the diffusion operator as

A : D(A) ∈ U → U, Ae = ∇ ·
(
D(x) ◦ ∇e

)
, e ∈ D(A), (5)

and D(A) is the domain of A, which is defined as [14]

D(A) =

{
e: e ∈

{
H2(O)

}n
,
∂e

∂ν

∣∣∣∣
∂O

= 0

}
.

Define the Nemytskii operator as follows [14]:

f(e)(x) = f
(
e(x)

)
, x ∈ O.

Then (4) is equivalent to the following functional differential equation in Hilbert space
C([−r, 0], U):

de

dt
= Pv + Ae−Ae+ Cf̃,

e(s) = $(s), $ ∈ C
(
[−r, 0], U

)
,

(6)

where

f̃ = f

( 0∫
−r

u(t+ s) dη(s)

)
− f

( 0∫
−r

ur(t+ s) dη(s)

)
.

In this paper, we assume

(H1) |fi(ui)− fi(vi)| 6 σi|ui − vi| for all ui, vi ∈ R;
(H2) There exist two positive constants α, β such that α 6 Dij(x) 6 β.

Definition 1. The drive system (1) and response system (2) are said to be exponentially
synchronized under appropriate controller v if there are constants µ > 0 and ι > 0 such
that

‖e‖ 6 ‖$‖C exp{−ιt}, t > 0,

where e is defined in (3) and (6).

Let us construct a new matrix M̃ = (m̃ij)n×n based on M = (mij)n×n with m̃ii =
miiα, and m̃ij = −|mij |β, i 6= j. Then we have

Lemma 1. If (H2) holds and M̃ is a M-matrix, then (u,MAu) 6 0, u ∈ U .

Proof. We first prove the following equality by using the property of Hadmard product,
and the basic relationship∇·(uiYi) = ui∇·Yi+〈∇ui, Yi〉, and 〈·, ·〉 denotes the standard
inner product of Euclid space Rl, then we have

∇ · (XMY ) = ∇ ·

(
n∑
j=1

m1jujYj ,

n∑
j=1

m2jujYj , . . . ,

n∑
j=1

mnjujYj

)T

https://www.journals.vu.lt/nonlinear-analysis
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=

(
n∑
j=1

m1juj∇ · Yj +

n∑
j=1

m1j〈∇uj , Yj〉, . . . ,

n∑
j=1

mnjuj∇ · Yj +

n∑
j=1

mnj〈∇uj , Yj〉

)T

= XM∇Y +


m11 m12 . . . m1n

m21 m22 . . . m2n

. . . . . . . . . . . .
mn1 mn2 . . . mnn



〈∇u1, Y1〉
〈∇u2, Y2〉

. . .
〈∇un, Yn〉

 ,

where X = diag(u1, u2, . . . , un).
Furthermore

〈∇u1, Y1〉
〈∇u2, Y2〉

. . .
〈∇un, Yn〉

 =


∂u1

∂x1
y11 + · · ·+ ∂u1

∂xl
y1l

∂u2

∂x1
y21 + · · ·+ ∂u2

∂xl
y2l

. . .
∂un

∂x1
yn1 + · · ·+ ∂un

∂xl
ynl

 = (∇u ◦ Y )J, (7)

where J = (1, 1, . . . , 1)T, which means

∇ · (XMY ) = XM∇Y +M(∇u ◦ Y )J. (8)

In other words, we have

XM∇Y = ∇ · (XMY )−M(∇u ◦ Y )J. (9)

Let Y=D(x)◦∇u in (9), and use the general Gauss formula for the matrix∫
O

∇·Z dx =

∫
O

∇·(Z1, Z2, . . . , Zn)T dx

=

(∫
O

∇·Z1 dx,

∫
O

∇ · Z2 dx, . . . ,

∫
O

∇ · Zn dx

)T

=

( ∫
∂O

Z1 ds,

∫
∂O

Z2 ds, . . . ,

∫
∂O

Zn ds

)T

=

∫
∂O

(Z1, Z2, . . . , Zn)T ds =

∫
∂O

Z ds,

where Zi is the ith column of Z. By using the adiabatic boundary condition we have∫
O

XM∇ ·
(
D(x) ◦ ∇u

)
dx

=

∫
O

∇ ·XM
(
D(x) ◦ ∇u

)
dx−

∫
O

M(∇u ◦
(
D(x) ◦ ∇u)

)
J dx

Nonlinear Anal. Model. Control, 27(2):331–349, 2022
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=

∫
∂O

XM
(
D(x) ◦ ∇u

)
dx−

∫
O

M
(
∇u ◦

(
D(x) ◦ ∇u

))
J dx

= −
∫
O

M
(
∇u ◦

(
D(x) ◦ ∇u

))
J dx. (10)

Then using (H2), (9)–(10), Cauchy inequality (u, v) 6 ‖u‖‖v‖, and (u, u) = ‖u‖2, we
have

(e,MAe) = −
∫
O

n∑
i=1

n∑
j=1

mij〈∇ui, Dj ◦ ∇uj〉dx

6 −
∫
O

n∑
i=1

mii〈∇ui, Di ◦ ∇ui〉dx−
∫
O

∑
i 6=j

mij〈∇ui, Dj ◦ ∇uj〉dx

6 −
(
u+
)T
M̃u+, (11)

where u+ = (‖∇u1‖, ‖∇u2‖, . . . , ‖∇un‖)T. Since M̃ is a M-matrix, then we have

(e,MAe) 6 0. (12)

The proof is complete.

3 Sliding mode equation

In this work, switching surface is defined as a linear combination of the current states

s0 =
{
e: S(e, t) = Ke = 0

}
, (13)

where K satisfies det(KP ) 6= 0, which will be determined later.
According to the SMC theory, when the system trajectories reach onto the switching

surface, it follows that dS/dt = 0. In other words,

K
de

dt
= 0. (14)

By substituting (6) into (14) we get

KPv +KAe−KAe+KCf̃ = 0 (15)

with the assumption that KP is invertible, we obtain the equivalent control

veq = −B̃Ae+ B̃Ae− B̃Cf̃ (16)

with B̃ = (KP )−1K.

https://www.journals.vu.lt/nonlinear-analysis
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By substituting veq into (6) we get the sliding mode

de

dt
= (E −B)Ae− (E −B)Ae+ (E −B)Cf̃,

e(s) = $(s), s ∈ [−r, 0],
(17)

where B = PB̃ = P (KP )−1K. We also assume that M , E − B is invertible
throughout this article.

For the convenience of study, we rewrite system (17) as follows:

de

dt
= MAe−Ae+BAe+MCf̃,

e(s) = $(s), s ∈ [−r, 0].
(18)

We have the following main theorem of this article.

Theorem 1. If system (6) satisfies (H1)–(H2) and

(H3) am − nγ−1‖MC‖2Fσ2
Mq

2 > 0, am = min{a1, a2, . . . , an},
σM = max{σ1, σ2, . . . , σn}, γ = am > 0, q = max{q1, q2, . . . , qn},

A and B is exchangeable, then the state vector of the drive system synchronizes to that of
the response system on the sliding surface (13).

Proof. Let us define the Lyapunov–Krasovskii functional as follows:

V (et) =
∥∥et(0)

∥∥2. (19)

The derivative of V (et) with respect to t along any trajectory of system (18) is given by

d

dt
V (e) = 2

(
de

dt
, e

)
= 2(MAe, e)− 2(Ae, e) + 2(BAe, e) + 2(MCf̃, e). (20)

By Lemma 1 we have
(e,MAe) < 0. (21)

By the positiveness of diagonal entries of A we have

− 2(e,Ae) 6 −2am‖e‖2, (22)

where am = min{a1, a2, . . . , an}.
By using B = P (KP )−1K, Ke = 0 in the sliding mode (18), the exchangeable

assumption, we get
2(BAe, e) = 0. (23)

Nonlinear Anal. Model. Control, 27(2):331–349, 2022
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By Young inequality, ‖Ψe‖ 6
√
n‖Ψ‖F ‖e‖ [14], the definition of f̃ , where f is

a diagonal map, condition (H1), and total boundedness of Lebesgue–Stieljies integral∫ 0

−r dηi(s) = qi <∞ we have(
e(t),MCf̃

)
6

1

2
γ‖e‖2 +

1

2
γ−1‖MCf̃‖2 6

1

2
γ‖e‖2 +

1

2
γ−1n‖MC‖2F ‖f̃‖2

6
1

2
γ‖e‖2 +

1

2
γ−1n‖MC‖2Fσ2

Mq
2 sup
s∈[−r,0]

‖et+ s‖2

6
1

2
γ‖e‖2 +

1

2
γ−1n‖MC‖2Fσ2

Mq
2‖et‖2C . (24)

In this case, we choose γ = am. By (19)–(24) we have

dV

dt
6 −γV + c1 sup

s∈[−r,0]
V (t+ s)

with c1 = na−1m ‖MC‖2Fσ2
Mq

2.
By the Hanalay inequality we have V (t) 6 ‖$‖C exp{−(γ−c1)t}. By (H3) we have

γ > c1.
So the solution of (6) is exponentially stable on the sliding mode described by (18).

By Definition 1 the drive system (1) and the response system (2) are synchronized in
(13).

Remark 2. After a scrutiny scan of the latest works of synchronization for delayed or
reaction–diffusion HNNs [2, 4, 7, 11, 12, 17, 18, 30, 37–40], we find that these criteria
are expressed in the form of LMI toolbox, which heavily rely on the Schur complement
theorem and optimization method. Compared with them, our criteria based on matrix
norm are expressed explicitly. But their method is also an efficient tool, especially, when
the uncertain disturbance is also taken into consideration [3, 4, 37, 40]. One of our object
is to apply the LMIs techniques for this subject. Furthermore, our method is similar to the
integral inequality method used in [41] and interval matrix method used in [36]. Although
their criteria have wide range in application, the model in [41] and [36] is belong to an
ordinary differential equation, only time variable is considered. We still hope their meth-
ods can be extended to our model in the future work. By the way, the previous criteria for
synchronization of reaction–diffusion HNNs are free reaction coefficients Dij [7, 11, 17,
18,28,40]. But reaction coefficients is incorporated into our result through (H2) and (H3).

4 Sliding mode area

Theorem 2. Consider system (6) with assumptions (H1)–(H3). Suppose that the switch-
ing surface is given by (13), the SMC law is designed to be

v(x, t) = veq − ε
(KP )−1S

‖Be‖2
, ε > 0, (25)

where veq = −BAe+BAe−BCf̃ , ε is a positive scalar, which will be selected properly.
Then switching surface s0 is the sliding mode area under (25).
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Proof. Consider the Lyapunov–Krasovskii functional as follows:

V (t) =
1

2
‖S‖2. (26)

Using (13), the derivative of (26) with respect to time is given as follows:

d

dt
V =

∫
O

ST ∂S(x, t)

∂t
dx =

∫
O

eTKTK(Ae−Ae+ Cf̃ + Pv) dx.

By substituting SMC controller (25) into above equation we have

d

dt
V =

∫
O

eTKTK

(
Ae−Ae+ Cf̃ + P

(
veq − ε

(KP )−1S

‖Be‖2

))
dx

=

∫
O

eTKTKM(Ae−Ae+ Cf̃) dx

−
∫
O

εeTKTKP (KP )−1
Ke

‖Be‖2
dx.

Since
KB = KP (KP )−1K = K, BP = P (KP )−1KP = P,

we have
eTKTKM = eTKTK(E −B) = eTKT(K −KB) = 0.

Then
d

dt
V = −

∫
O

εeTKTKP (KP )−1
Ke

‖Be‖2
dx

= −ε
∫
O

STS

‖Be‖2
dx = −ε ‖S‖

2

‖Be‖2
.

We finally get
d

dt
V < 0 if S 6= 0,

which means that any trajectory of (6) can be driven to remain on the sliding surface under
SMC controller (25).

Remark 3. As we all know, chattering cannot be eliminated in the SMC. It is one of the
shortages associated with this method. If we replace (25) with

v = veq − ε
(KP )−1S

‖Be‖2 + δ
, ε > 0, δ > 0,

the SMC controller becomes continuous, then chattering will disappear. However, the
total robustness of SMC also will be lost correspondingly if continuation is utilized. So
the reasonable strategy is to reduce rather than remove chattering in the future study.
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5 Approximate time to the sliding manifolds

Theorem 3. If the SMC law is chosen as (25), it can be shown that the reachability of the
switching surface s0 is guaranteed, and the reaching time Tr satisfies

Tr =
1

2
ε−1
∥∥P (KP )−1K$

∥∥2. (27)

Proof. Let us construct the Lyapunov–Krasovskii functional as follows:

V (t) =
1

2

∥∥Bet(0)
∥∥2. (28)

By using (25) the derivative of V with respect to t is given as follows:

d

dt
V = −

∫
O

eTBTB
∂e

∂t
dx

=

∫
O

eTBTB(Ae−Ae+ Cf̃ + Pv) dx

=

∫
O

eTBT
(
B2 −B

)
(Ae−Ae+ Cf̃) dx− ε

∫
O

eTBTBP
(KP )−1Be

‖Be‖2
dx.

By using

B2 =
(
P (KP )−1K

)2
= B, BP = P, KB = K, B = PB̃

we have
d

dt
V = −ε

∫
O

(Be)TBe

‖Be‖2
dx = −ε.

We suppose that the trajectory of (6) will reach s0 at time Tr, and by definition of
S(e), which means S(e(Tr)) = 0,∥∥Be(Tr)∥∥2 − ∥∥Be(0)

∥∥2 = −2εTr.

So

Tr =
1

2
ε−1
∥∥P (KP )−1K$

∥∥2. (29)

In other words, the SMC law (25) can drive error system (6) to the switching surface s0
in finite time Tr.

Remark 4. It can be seen from Theorems 1 and 3 that control law based on equivalent
control is efficient for the target studied in this paper. The construction of control law is
very tricky, and the method is direct. This is different from the previous work in SMC
for other distribution systems, which use matrix splitting technique [19, 23, 34] or direct
design of discontinuous control law [24,25]. Their methods are suitable for those system,
which is difficult to build equivalent control and can be utilized to deal with complex
model. We will attempt to apply those methods to our system in the future study.
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6 Example and simulation

In this example,

u = (u1, u2)T, ur =
(
u1r, u

2
r

)T
, U =

{
L2(O)

}2
,

φ =
(
cos(0.2πx), cos(0.2πx)

)T
, ψ =

(
3 cos(0.2πx),−2 cos(0.2πx)

)T
.

Both of them are continuous in [−1, 0]×O, and

$ = φ− ψ =
(
2 cos(0.2πx),−3 cos(0.2πx)

)T
.

r = 1 and

η1(s) = η2(s) =

{
0, −1 6 s < 0,

1, s = 0.
(30)

Through calculating Leabesgue–Stieljies integral, we get

0∫
−1

ui(t+ s, x) dη(s) = ui(t− 1, x), i = 1, 2.

We also have
∫ 0

−1 dηi(s) = 1 by calculation. q1 = q2 = 1 are selected in this case.
Moreover, f1(u1) = tanh(u1), f2(u2) = tanh(u2), so f is a diagonal map. Since

| tanh(x) − tanh(y)| < |x − y|, x, y ∈ R, so f1(u1), f2(u2) are global Lipschitz con-
tinuous functions with σ1 = 1, σ2 = 1, and σM = 1. So (H1) is satisfied. We also
have

A =

[
4 0
0 4

]
, C =

[
0.5 −0.2
−5 0.5

]
, I =

[
5
2

]
, P =

[
0.1
0.2

]
,

D1(x) = 1, D2(x) = 1 such that ∇ · (D1(x)∇u1) = ∆u1, ∇ · (D2(x)∇u2) = ∆u2,
∆ is a Laplacian operator.

The simulation is carried out through Matlab. The code is based on the finite difference
method. Specifically, the second-order centered difference scheme is utilized to discrete
the space. The Runge–Kutta–Chebyshev method is used to discrete the time. We use
this scheme to simulate the dynamical behavior of uncontrolled part of drive system. For
detailed information, please see Figs. 1–2. From Fig. 1 the surface of response system
is very complicated, especially, it seems that there is no equilibrium for ur. It is unstable
for them. To give a clear description of it, we also simulate the frequency of ur in Fig. 1,
which coincides with Fig. 1.

We also design

K = (1, 2), PK =

[
0.1 0.2
0.2 0.4

]
, KP = 0.5,
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Figure 1. Simulation of u1
r (left) and u2

r (right) in response system.
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Figure 2. Frequency of u1
r (left) and u2

r (right) in response system.

then

B̃ = (KP )−1K = (2, 4), B = P (KP )−1K =

[
0.2 0.4
0.4 0.8

]
,

M = E −B =

[
0.8 −0.4
−0.4 0.2

]
.

Since α = β = 1 is chosen, then M̃ = M is the semipositive definite matrix,

MC =

[
2.4 −0.36
−1.2 0.18

]
, ‖MC‖F = 7.3620.

This means am−na−1m ‖MC‖2Fσ2
Mq

2 = 0.3190 > 0. So (H3) is fulfilled. By Theorem 1
the behavior of (2) synchronizes to (1) in the switching surface s0 = {e: e1 + 2e2 = 0}.

According to (16), the equivalent control is

veq = 2∆e1 + 4∆e2 − 2e1 − 4e2

+ 19
(
tanh

(
u1(t− 1)

)
− tanh

(
u1r(t− 1)

))
− 1.6

(
tanh

(
u2(t− 1)

)
− tanh

(
u2r(t− 1)

))
.
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Figure 3. Simulation of e1 (left) and e2 (right) in error system.
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Figure 4. Frequency of e1 (left) and e2 (right) in error system under SMC.

Furthermore, the SMC is defined as

v = veq −
8e1 + 16e2∫ 20

0
(e1 + e2)2 dx

when ε = 1.
Figure 3 presents the asymptotic behavior for error system. The reason why we choose

3-D plot is that it is visual and intuitive. We can check the evolution of the system not
only from the time span, but also from the space span. We can see that as time t increases
to the infinity, the error surfaces of e1 and e2 converge to the equilibrium 0 in the sliding
manifold. It coincides with the result of Theorem 1.

To present a more clear information of e1, e2, we also give the trajectory of e1, e2 for
some chosen x in Fig. 4, which coincides with Fig. 3.

We also give the simulation of equivalent control veq and SMC v in Fig. 5. We
can see that v is slightly enhanced versus time to drive the error dynamics e into the
equilibrium 0.
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7 Conclusion and discussion

This paper focuses on theoretical analysis of synchronization for reaction–diffusion Hop-
field neural networks with s-delays, which is a prerequisite step for practical design of
NNs. SMC is used in this process. Namely, linear switching surface is constructed and
equivalent control involving delay and diffusion term is obtained in the Hilbert space
C([−r, 0], U). SMC is designed based on the equivalent control. We find that state vector
of error system converges to the switching surface in finite time. Approximate time and
sliding mode area is obtained by using the LKFs. Moreover, the exponentially stability of
solution on the switching surface is also obtained by using Lyapunov–Krasovskii func-
tional. These LKFs are different. Last, we provide an example to show the availability of
our method, and the corresponding simulation is also given by using the Matlab. We can
find that SMC v is enhanced versus time to ensure the ideal property of controlled system.

SMC is still a promising field. Many different strategies have been proposed for SMC.
For instance, integral sliding surface is a reasonable alternative for linear sliding surface.
Unfortunately, after a scrutiny scan into published results on SMC for distributed systems,
we find that the linear sliding surface is still the only option in selecting switching surface
due to its distinct structure [1,13,19,25]. So exploiting nonlinear sliding surface is one of
our research direction in the future. The splitting technique will also be discussed for the
design of SMC for distributed systems in the future work [19]. By the way, the noise is
unavoidable in the real world [14, 15], so synchronization of stochastic reaction diffusion
HNNs with s-delays will be considered in the next work. LMIs are also potential tools in
the synchronization of this system, which are easy to be examined through Matlab toolbox
by finding feasible solutions [5].
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