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Abstract This paper investigates the finite-time synchronization for a class of linearly coupled dy-

namical complex networks with both nonidentical nodes and uncertain disturbance. A set of controllers

are designed such that the considered system can be finite-timely synchronized onto the target node.

Based on the stability of the error equation, the Lyapunov function method and the linear matrix

inequality technique, several sufficient conditions are derived to ensure the finite-time synchronization,

and applied to the case of identical nodes and the one without uncertain disturbance. Also the adaptive

finite-time synchronization is discussed. A numerical example is given to show the effectiveness of the

main results obtained.
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1 Introduction

In the past few decades, complex networks have gained a lot of attention in various fields
of science and humanity worldwide, such as food-webs, ecosystems, metabolic pathways, the
World Wide Webs and so on. Their control and synchronization have been deeply investigated,
and various relevant theoretical results have been established[1–7]. Also many effective con-
trol approaches have been proposed, such as adaptive control[8, 9], intermittent control[10–13],
impulsive control[14–17], slide mode control[18–20] and sampled-data control[21, 22], et al.

It is frequently encountered that many significant differences exist in the relevant individual
nodes. For example, in power systems, because the generators and loads are connected to buses
that are interconnected via transmission lines in a network structure , the power systems can be
considered as a dynamical network with nonidentical nodes[23]. When the dynamics of nodes
in a complex network are nonidentical, the synchronization problems become complicated and
more challenging than the case of identical nodes. By use of free matrices, [23] considered
the case of synchronizing to both a common equilibrium solution of all isolated nodes and the
average state trajectory with nonidentical nodes. Combining the local intermittent controller
with the open-loop controller, [24] established several exponential synchronization criteria for a
class of complex networks with nonidentical nodes. In [25], the pinning cluster synchronization
of complex dynamical networks with time-delayed coupling and dynamic nonidentical nodes
was obtained. [26] studied the finite-time synchronization problem for linearly coupled complex
networks with discontinuous nonidentical nodes.

On the other hand, more and more attention has been paid to the study of complex networks
with perturbations because of the wide application[27–30]. [27] investigated globally exponential
synchronization for linearly coupled neural networks with time-varying delay and impulsive
disturbances. The derived sufficient condition was closely related with the time delay, impulse
strengths, average impulsive interval, and coupling structure of the systems. [28] addressed the
scheme of cluster synchronization of overlapping uncertain complex networks with time-varying
impulse disturbances. In [29], the cluster synchronization problem of coupled complex networks
with uncertain disturbance was considered under an adaptive fixed-time control strategy.

Most of the related research focuses on either nonidentical nodes or uncertain disturbance.
Hence it is very necessary and important, with profound theoretical and practical significance,
to investigate the finite-time synchronization of complex networks subject to both nonidentical
nodes and uncertain disturbance. However, two difficulties have to be faced: (i) What conditions
should be proposed which are applicable to general complex networks with both nonidentical
nodes and uncertain disturbance and are easy to be verified? (ii) Which kind of controller should
be designed such that the nonidentical nodes and the uncertain disturbance can be well dealt
with? This paper aims to overcome these two difficulties and achieve finite-time synchronization
for a class of linearly coupled complex networks with both nonidentical nodes and uncertain
disturbance, and further enrich the theoretical results of finite-time synchronization. The main
contributions in this paper can be summarized as follows: 1) A novel discontinuous controller
is designed for a class of heterogeneous networks with uncertain disturbance and the controller
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can overcome the influence of heterogeneous and uncertain disturbance simultaneously on the
finite-time synchronization of the network; 2) Several criteria have been derived to check the
finite-time synchronization of the considered networks. Different from most of the existing
results, the obtained finite-time synchronization conditions are represented in the form of linear
matrix inequalities, and easy to be verified; 3) The adaptive finite-time synchronization of the
heterogeneous networks are addressed.

Firstly, in order to make the results obtained more easily verified and applied in practice,
a model of the complex network with both nonidentical nodes and uncertain disturbance is es-
tablished. After that, a set of controllers are designed. Based on the finite-time stability for the
error equation, the Lyapunov function method and the linear matrix inequality technique, it is
shown that the complex network considered can be finite-timely synchronized onto any isolated
driving node. Secondly, several sufficient criteria are obtained to guarantee the synchronization
goal, and applied to the case of identical nodes and the one without uncertain disturbance.
Meanwhile, the adaptive finite-time synchronization is also discussed.

The remainder of this paper is organized as follows. In Section 2, the complex network
model with both nonidentical nodes and uncertain disturbance is formulated and the finite-
time synchronization problem is introduced. The finite-time synchronization conditions are
obtained in Section 3. Section 4 considers the finite-time synchronization by the adaptive
control method. In Section 5, a numerical example is provided to illustrate the validity of the
method proposed. Some conclusions are made in Section 6, together with some potential future
study.

2 Problem Formulation

Consider an array of nonlinear systems with the linear and diffusive coupling consisting of
N nonidentical nodes in which each node is an n-dimensional dynamical system with uncertain
disturbance as follows

ẋi(t) = fi(t, xi(t)) + hi(t, xi(t)) + c

N∑

j=1

GijΓxj(t), (1)

where xi(t) = [xi1(t), x21(t), · · · , xin(t)]T ∈ R
n is the state vector of the ith dynamical node;

fi(t, xi(t)) : R
+ × R

n → R
n is a smooth nonlinear vector fields describing the modal self-

dynamics, and hi(t, xi(t)) : R
+ × R → R is the uncertain disturbance, i = 1, 2, · · · , N ; c >

0 is a constant and denotes the coupling strength of the whole complex network, and Γ =
diag(γ1, γ2, · · · , γn) ∈ R

n×n is the inner-coupling matrix, which is used to illustrate the way
of linking the components in every pair vector of nodes with γi ≥ 0; G = (Gij)N×N is the
constant coupling configuration matrix which represents the topological structure and may be
defined to be diffusive, i.e., Gij � 0 (i �= j) if there exists a directed connection from node j

to node i; otherwise, Gij = 0 and Gii = −∑N
j=1,j �=i Gij . Here, the coupling matrices G is nor

required to be symmetric or irreducible.
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We refer to the system (2) with x0|t=0 = x0(0) as the driven dynamical node of (1)

ẋ0(t) = f0(t, x0(t)) + h0(t, x0(t)). (2)

Definition 2.1 (see [31]) The complex network (1) is said to be synchronized in finite
time if there exist a designed feedback controller and a constant t∗ > 0, which often depends
on the initial state vector value X(0) = (xT

1 (0), xT
2 (0), · · · , xT

N (0))T, such that

lim
t→t∗

‖ xi(t) − x0(t) ‖= 0.

Then the synchronization performance of drive-response network are achieved in a finite-time,
i.e.,

‖ xi(t) − x0(t) ‖= 0, t > t∗, i = 1, 2, · · · , N.

This paper aims to design feedback controllers for the complex network (1) to achieve the
finite-time synchronization.

Assumption 2.1 (see [32]) There exists a uniformly symmetric positive definite matrix
L = diag(l1, l2, · · · , ln) such that fi(t, x) satisfies

(y − x)T(fi(t, y) − fi(t, x)) ≤ (y − x)TL(y − x), i = 1, 2, · · · , N (3)

for all x, y ∈ R
n and t ≥ 0.

Assumption 2.2 (see [30]) There exists a time-varying function μ(t) ≥ 0 such that

‖(fi(t, x) − f0(t, x)‖ ≤ μ(t), i, j = 1, 2, · · · , N. (4)

Assumption 2.3 The uncertain disturbances hi(t, xi(t)) are continuous at t, xi(t) ≥ 0,
and bounded by a given non-negative number hmax, that is,

|hi(t, xi(t))| ≤ hmax, i = 0, 1, · · · , N. (5)

Remark 2.2 Assumption 2.1 is satisfied with chaotic oscillators and Rössler’s systems
and so on. Assumption 2.2 and Assumption 2.3 impose restrictions on the activation function,
and they are widely used in literatures[23–26].

3 Finite-Time Synchronization

In this section, we design controllers for the finite-time synchronization of the complex
network (1). For this, the controllers ui(t) ∈ Rn are constructed as

ui(t) = −diei(t) − η(t)sign(ei(t)) − ksign(ei(t))|ei(t)|β , i = 1, 2, · · · , N, (6)

where d1, d2, · · · , dN are positive constants to be determined, k > 0 is a constant, sign(ei(t)) =
(sign(ei1(t)), sign(ei2(t)), · · · , sign(ein(t)))T, sign(ei(t)) = diag(sign(ei1(t)), sign(ei2(t)), · · · ,

sign(ein(t))), |ei(t)|β = (|ei1(t)|β , |e21(t)|β , · · · , |ein(t)|β)T, and the real number β follows
0 ≤ β < 1.
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Then the controlled complex dynamical network is given by

ẋi(t) = fi(t, xi) + hi(t, xi(t)) + c

N∑

j=1

GijΓxj(t) + ui(t), i = 1, 2, · · · , N. (7)

By defining the synchronization errors ei(t) = xi−x0, Fi(t) = fi(t, xi)−f0(t, x0) and Hi(t, ei(t)) =
hi(t, xi(t)) − h0(t, x0(t)), the error dynamical system can be represented by

ėi(t) = Fi(t, ei) + Hi(t, ei(t) + c
N∑

j=1

GijΓej + ui(t), i = 1, 2, · · · , N. (8)

Lemma 3.1 (see [33, 34]) Assume that a continuous, differentiable, positive-definite func-
tion V (t) : [0, +∞) → [0, +∞) satisfies

dV (t)
dt

≤ −ηV α(t), ∀t ≥ t0, V (t0) ≥ 0,

where η > 0 and 0 < α < 1 are two constants. For any given t0, one can have

V 1−α(t) ≤ V 1−α(t0) − η(1 − α)(t − t0), t0 ≤ t ≤ t1

and V (t) ≡ 0, t > t1 = t0 + V 1−α(t0)
η(1−α) .

Lemma 3.2 (see [35]) For matrices A, B, C, D with appropriate dimensions and a scalar
α, the following assertions hold.

1) (αA) ⊗ B = A ⊗ (αB);

2) (A + B) ⊗ C = A ⊗ C + B ⊗ C;

3) (A ⊗ B)(C ⊗ D) = (AC) ⊗ (BD);

4) (A ⊗ B)T = AT ⊗ BT,

where ⊗ is the Kronecker product.

Lemma 3.3 (see [36]) Suppose that ai ≥ 0 for i = 1, 2, · · · , n, 0 < p ≤ 1 and 0 < q < 2,
it follows that (

∑n
i=1 ai)p ≤ ∑n

i=1(ai)p and
∑n

i=1(ai)q ≥ (
∑n

i=1 a2
i )

q/2.

Theorem 3.4 Consider the complex network (1) under the set of controllers (6). If
Assumption 2.1, Assumption 2.2 and Assumption 2.3 hold, and

η(t) ≥ μ(t) + 2hmax, IN ⊗ L + c(Gs ⊗ Γ ) − D ⊗ In < 0 (9)

with D = diag{d1, d2, · · · , dN} > 0, Gs = (G + GT)/2, L being given by Assumption 2.1,
then (7) can be synchronized in a finite time with

t∗ =
V (0)

1−β
2

2
β−1
2 k(1 − β))

, (10)

where V (0) = 1
2

∑N
i=1 eT

i (0)ei(0) and ei(0) is the initial condition of ei(t) = xi(t) − x0(t) for
i = 1, 2, · · · , N .
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Proof For (8), a Lyapunov function is constructed by

V (t) =
1
2

N∑

i=1

eT
i (t)ei(t),

whose derivative along the trajectory of System (8) can be calculated as

V̇ (t) =
N∑

i=1

eT
i (t)ėi(t)

=
N∑

i=1

eT
i (t)

⎧
⎨

⎩Fi(t, ei(t)) + Hi(t, ei(t)) + c

N∑

j=1

GijΓej(t) + ui(t)

⎫
⎬

⎭

=
N∑

i=1

eT
i (t)

{−diei(t) − η(t)sign(ei(t)) − ksign(ei(t))|ei(t)|β
}

+I1(t) + I2(t) + I3(t), (11)

with I1(t) = c
∑N

i=1 eT
i (t)

∑N
j=1 GijΓej(t), I2(t)=

∑N
i=1 eT

i (t)Hi(t, ei(t)), and I3(t) =
∑N

i=1

eT
i (t)Fi(t, ei(t)).

From Lemma 3.2 and noticing that Γ is a diagonal matrix, we have

I1(t) = ceT(t)(G ⊗ Γ )e(t)

= ceT(t)
G ⊗ Γ + (G ⊗ Γ )T

2
e(t)

= ceT(t)(Gs ⊗ Γ )e(t). (12)

By use of (5) in Assumption 2.3, one can get

I2(t) =
N∑

i=1

eT
i (t)(Hi(t, x1(t)) − H0(t, x0(t)))

≤
N∑

i=1

‖ei(t)‖2‖Hi(t, x1(t)) − H0(t, x0(t))‖2

≤
N∑

i=1

‖ei(t)‖2(‖Hi(t, x1(t))))‖2 + ‖H0(t, x0(t))‖2)

≤
N∑

i=1

‖ei(t)‖2(2hmax). (13)

Also it can be seen that

I3(t) =
N∑

i=1

eT
i (t)(fi(t, xi(t)) − f0(t, x0(t)))

=
N∑

i=1

eT
i (t)((fi(t, xi(t)) − fi(t, x0(t))) + (fi(t, x0(t)) − f0(t, x0(t))))
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= I31(t) + I32(t) (14)

with I31(t) =
∑N

i=1 eT
i (t)(fi(t, xi(t)) − fi(t, x0(t))) and I32(t) =

∑N
i=1 eT

i (t) (fi(t, x0(t)) −
f0(t, x0(t))). From (3) in Assumption 2.1, it is known that

I31(t) ≤
N∑

i=1

eT
i (t)Lei(t) = eT(t)IN ⊗ Le(t). (15)

By (4) in Assumption 2.2, one can get

I32(t) ≤
N∑

i=1

‖ei(t)‖2‖fi(t, x0(t)) − f0(t, x0(t))‖2

=
N∑

i=1

‖ei(t)‖2μ(t). (16)

Submitting (12)–(16) into (11) yields that

V̇ (t)

≤ eT(t)(IN ⊗ L)e(t) + ceT(t)(Gs ⊗ Γ )e(t) +
N∑

i=1

‖ei‖2μ(t) + 2
N∑

i=1

‖ei(t)‖2hmax

+
N∑

i=1

eT
i (t)

{−diei(t) − η(t)sign(ei(t)) − ksign(ei(t))|ei(t)|β
}

= W1(t) + W2(t) + W3(t), (17)

where

W1(t) = eT(t)(IN ⊗ L)e(t) + ceT(t)(Gs ⊗ Γ )e(t) −
N∑

i=1

eT
i (t)diei(t),

W2(t) =
N∑

i=1

‖ei‖2μ(t) +
N∑

i=1

‖ei(t)‖2(2hmax) −
N∑

i=1

eT
i (t)(η(t)sign(ei(t))),

W3(t) = −
N∑

i=1

eT
i (t)ksign(ei(t))|ei(t)|β .

By virtue of Lemma 3.2 and (9), it is known that

W1(t) = eT(t)(IN ⊗ L)e(t) + ceT(t)(Gs ⊗ Γ )e(t) − eT(t)(D ⊗ In)ei(t)

= eT(t)(IN ⊗ L + c(Gs ⊗ Γ ) − D ⊗ In)e(t)

≤ 0. (18)

Since eT
i (t)sign(ei(t)) = (ei1(t), ei2(t), · · · , ein(t))(sign(ei1(t)), sign(ei2(t)), · · · , sign(ein(t)))T =∑n

j=1 |eij(t)| and ‖ei(t)‖2 − eT
i (t)sign(ei(t))) = (

∑n
j=1 e2

ij(t))
1
2 −∑n

j=1 |eij(t)| ≤ 0 according to
Lemma 3.3, one can give

W2(t) =
N∑

i=1

(μ(t) + 2hmax)‖ei(t)‖2 − η(t)
N∑

i=1

eT
i (t)sign(ei(t))
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≤ (μ(t) + 2hmax)
N∑

i=1

‖ei(t)‖2 − η(t)
N∑

i=1

‖ei(t)‖2

= (μ(t) + 2hmax − η(t))
N∑

i=1

‖ei(t)‖2

≤ 0. (19)

Considering that |ei(t)| = (|ei1(t)|, |ei2(t)|, · · · , |ein(t)|)T and |ei(t)|β = (|ei1(t)|β , |ei2(t)|β , · · · ,

|ein(t)|β)T, we have

W3(t) = −
N∑

i=1

eT
i (t)ksign(ei(t))|ei(t)|β

= −k

N∑

i=1

|ei(t)||ei(t)|β

= −k

N∑

i=1

n∑

j=1

|eij(t)|1+β . (20)

By Lemma 3.3, it can be obtained that
( N∑

i=1

n∑

j=1

|eij(t)|1+β

) 1
1+β

≥
( N∑

i=1

n∑

j=1

|eij(t)|2
) 1

2

,

and
( N∑

i=1

n∑

j=1

|eij(t)|1+β

)
≥

( N∑

i=1

n∑

j=1

|eij(t)|2
) 1+β

2

=
( N∑

i=1

ei(t)Tei(t)
) 1+β

2

,

which together with (20) implies that

W3(t) ≤ −k

( N∑

i=1

ei(t)Tei(t)
) 1+β

2

= −k(2V (t))
1+β
2

= −2
1+β
2 kV (t)

1+β
2 . (21)

Submitting (18), (19) and (21) to (17), we can get

V̇ (t) ≤ W1(t) + W2(t) + W3(t) ≤ −2
1+β
2 kV (t)

1+β
2 .

According to Lemma 3.1, V (t) converges to zero in a finite time, and the finite time t∗ is given
by

t∗ =
V (0)1−0.5(1+β)

2
1+β
2 k(1 − 0.5(1 + β))

=
V (0)

1−β
2

2
β−1
2 k(1 − β))

.

Hence, the error vector ei(t) converges to zero within t∗ for i = 1, 2, · · · , N , and (1) under (6)
is finite-timely synchronized in the finite time t∗. The proof is completed.
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Remark 3.5 Theorem 3.4 also provides a method how to select controllers for getting the
finite-time synchronization of a linearly coupled heterogeneous complex network (1) when the
Laplacian matrix G is asymmetric and the nodes are nonidentical. The controller is divided into
three parts: The first part −ηiei(t) overcomes the linear condition of nonlinear function, the
second part −d(t)sign(ei(t)) is used to offset the difference between state functions fi(t, xi(t))
and the uncertain disturbance hi(t, xi(t)), and the last one −ksign(ei(t))|ei(t)|β is used to make
the network achieve the finite-time synchronization.

If the nodes are identical which indicates that f1, f2, · · · , fN are equal to the same function
denoted by f , then (1) becomes

ẋi(t) = f(t, xi) + hi(t, xi(t)) + c

N∑

j=1

GijΓxj(t), i = 1, 2, · · · , N. (22)

The drive dynamical node with x0|t=0 = x0(0) is given by

ẋ0(t) = f(t, x0(t)) + h0(t, x0(t)) (23)

and it can be seen that the error dynamical system is

ėi(t) = F (t, ei(t)) + Hi(t, ei(t) + c

N∑

j=1

GijΓej + ui(t),

where Fi(t) = f(t, xi(t)) − f(t, x0(t)) and Hi(t, ei(t)) = hi(t, xi(t)) − h0(t, x0(t)).
Let

ui(t) = −diei(t) − η(t)sign(ei(t)) − ksign(ei(t))|ei(t)|β , i = 1, 2, · · · , N, (24)

where di ≥ 0 is constant to be determined for i = 1, 2, · · · , N ; k > 0 is a constant; sign(ei(t)) =
(sign(ei1(t)), sign(ei2(t)), · · · , sign(ein(t)))T, |ei(t)|β = (|ei1(t)|β , |ei2(t)|β , · · · , |ein(t)|β)T, sign
(ei(t)) = diag(sign(ei1(t)), sign(ei2(t)), · · · , sign(ein(t))); the real number β satisfies 0 ≤ β < 1.
Then, we can get a criterion on the finite-time synchronization of the complex network with
identical nodes.

Corollary 3.6 Consider the complex network (22) under the set of controllers (24). If
Assumption 2.1 and Assumption 2.3 hold, and

η(t) ≥ hmax, IN ⊗ L + c(Gs ⊗ Γ ) − D ⊗ In < 0

with D = diag(d1, d2, · · · , dN ) > 0, then (22) can be synchronized to the state of the node (23)
in a finite time

t∗ =
V (0)

1−β
2

2
β−1
2 k(1 − β))

.

Furthermore, if hi = 0 for i = 0, 1, · · · , N in (22), that is, all nodes not only are identical
but also have no uncertain disturbance, then (1) is reduced to

ẋi(t) = f(t, xi(t)) + c

N∑

j=1

GijΓxj(t), (25)
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and the drive dynamical node of the complex network model (25) with x0|t=0 = x0(0) is

ẋ0(t) = f(t, x0(t)).

In this case, the finite-time synchronization of (7) is changed to the problem of the complex
network (25) with identical nodes. A criteria for the finite-time synchronization is given in the
corollary below.

Corollary 3.7 Consider the complex network (25) under the controllers

ui(t) = −diei(t) − ksign(ei(t))|ei(t)|β , i = 1, 2, · · · , N,

where k is a positive constant, 0 ≤ β < 1, |ei(t)|β = (|ei1(t)|β , |ei2(t)|β , · · · , |ein(t)|β)T and
sign(ei(t)) = diag(sign(ei1(t)), sign(ei2(t)), · · · , sign(ein(t))). If Assumption 2.1 holds and

IN ⊗ L + c(Gs ⊗ Γ ) − D ⊗ In < 0

with D = diag(d1, d2, · · · , dN ) > 0, then (25) can be synchronized in a finite time

t∗ =
V (0)

1−β
2

2
β−1
2 k(1 − β))

.

4 Adaptive Finite-Time Synchronization

This section discusses the adaptive finite-time synchronization of (1). We design an adaptive
controllers as follows

ui(t) = −cdi(t)Γei(t) − η(t)sign(ei(t)) − ksign(ei(t))|ei(t)|β ,

ḋi(t) = qie
T
i (t)Γei(t) − k

(
c

qi

) β−1
2

sign(di(t) − d)|di(t) − d|β ,
(26)

where d is a constant to be determined; k > 0 is a constant; |ei(t)|β = (|ei1(t)|β , |ei2(t)|β ,
· · · , |ein(t)|β)T, sign(ei(t)) = (sign(ei1(t)), · · · , sign(ein(t)))T, sign(ei(t)) = diag(sign(ei1(t)),
· · · , sign(ein(t))); the real number β satisfies 0 ≤ β < 1.

Theorem 4.1 Consider the complex network (1) under the set of adaptive controllers (26).
If Assumption 2.1, Assumption 2.2 and Assumption 2.3 hold, and

η(t) ≥ 2hmax, d ≥ 1
c
λmax

(
IN ⊗ (LΓ−1) + cGs ⊗ In

)
,

then (22) can be synchronized in a finite time

t∗ =
V (0)

1−β
2

2
β−1
2 k(1 − β))

, (27)

where λmax(·) represents the largest eigenvalue of a matrix, V (0) = 1
2

∑N
i=1 eT

i (0)ei(0) +∑N
i=1

c
2qi

(di(0)−d)2, and ei(0) is the initial condition of ei(t) = xi(t)−x0(t) for i = 1, 2, · · · , N .
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Proof For (1) under (26), a Lyapunov function is constructed as

V (t) =
1
2

N∑

i=1

eT
i (t)ei(t) +

N∑

i=1

c

2qi
(di(t) − d)2.

Along the trajectory of the error system (8), the derivative of V (t) can be

V̇ (t) =
N∑

i=1

eT
i (t)ėi(t) +

N∑

i=1

c

qi
(di(t) − d) ˙di(t)

=
N∑

i=1

eT
i (t)

⎧
⎨

⎩Fi(t, ei(t)) + Hi(t, ei(t)) + c

N∑

j=1

GijΓej(t) + ui(t)

⎫
⎬

⎭

+
N∑

i=1

c

qi
(di(t) − d)

{
qie

T
i (t)Γei(t) − k

(
c

qi

) β−1
2

sign(di(t) − d)|di(t) − d|β
}

=
N∑

i=1

eT
i (t)Fi(t, ei(t)) +

N∑

i=1

eT
i (t)Hi(t, ei(t)) + c

N∑

i=1

eT
i (t)

N∑

j=1

GijΓej(t)

+
N∑

i=1

eT
i (t)

{−cdi(t)Γei(t) − η(t)sign(ei(t)) − ksign(ei(t))|ei(t)|β
}

+c

N∑

i=1

(di(t) − d)eT
i (t)Γei(t)

−
N∑

i=1

k

(
c

qi

) 1+β
2

(di(t) − d)sign(di(t) − d)|di(t) − d|β)

= W1(t) + W2(t) + W3(t), (28)

where

W1(t) =
N∑

i=1

eT
i (t)Fi(t, ei(t)) + c

N∑

i=1

eT
i (t)

N∑

j=1

GijΓej(t)

−
N∑

i=1

eT
i (t)cdi(t)Γei(t) + c

N∑

i=1

(di(t) − d)eT
i (t)Γei(t),

W2(t) =
N∑

i=1

eT
i (t)Hi(t, ei(t)) −

N∑

i=1

eT
i (t)(η(t)sign(ei(t))),

W3(t) = −
N∑

i=1

eT
i (t)ksign(ei(t))|ei(t)|β

−
N∑

i=1

k

(
c

qi

) 1+β
2

(di(t) − d)sign(di(t) − d)|di(t) − d|β).
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Letting d ≥ 1
cλmax(IN ⊗ (LΓ−1) + cGs ⊗ In), and similar to the proof of Theorem 3.4, we can

obtain

W1(t) = eT(t)(IN ⊗ L)e(t) + ceT(t)(Gs ⊗ Γ )e(t) − c

N∑

i=1

eT
i (t)dΓei(t)

= eT(t)(IN ⊗ L + c(Gs − dIN ) ⊗ Γ )e(t) ≤ 0, (29)

W2(t) =
N∑

i=1

‖ei(t)‖2(2hmax) −
N∑

i=1

eT
i (t)(η(t)sign(ei(t)))

≤ η(t)
( N∑

i=1

‖ei(t)‖2 −
N∑

i=1

|ei(t)|
)

≤ 0 (30)

and

W3(t) = −k

( N∑

i=1

|ei(t)|1+β +
N∑

i=1

(
c

qi

) 1+β
2

|di(t) − d|1+β

)

≤ −k

( N∑

i=1

‖ ei(t) ‖2
2 +

N∑

i=1

c

qi
|di(t) − d|2

) 1+β
2

= −2
1+β
2 kV (t)

1+β
2 . (31)

Submitting (29)–(31) into (28), we can get

V̇ (t) ≤ W1(t) + W2(t) + W3(t) ≤ −2
1+β
2 kV (t)

1+β
2 .

By Lemma 3.1, V (t) converges to zero in a finite time, and the finite time t∗ is given by

t∗ =
V (0)1−0.5(1+β)

2
1+β
2 k(1 − 0.5(1 + β))

=
V (0)

1−β
2

2
β−1
2 k(1 − β))

.

Hence, the error vector ei(t), i = 1, 2, · · · , N, can converge to 0 within t∗. Consequently, under
the controllers (26), the complex network (1) is synchronized in the finite time t∗. The proof is
completed.

5 Numerical Example

Consider a five-pendulum coupled nonlinear system[37] with linearly and diffusively coupling
in which the dynamics of the ith node is described by

ẋi(t) = fi(t, xi) + hi(t, xi) + c

5∑

j=1

GijΓxj(t), i = 1, 2, · · · , 5 (32)

with initial values X(0) = (xT
1 (0), xT

2 (0), · · · , xT
5 (0))T = (0.6 0.9 1.2 −0.3 −0.9 0 −1.2 1.5 1.05 −

1.2)T. The inner-coupling matrix Γ and the Laplacian matrix G are
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Γ =

[
1 0
0 0

]
, G =

⎡

⎢⎢⎢⎢⎣

−1 1 0 0 0
0 −2 2 0 0
0 0 −2 2 0
0 0 0 −1 1
0 0 0 0 0

⎤

⎥⎥⎥⎥⎦
.

Its activation function fi(t, xi(t)) = (xi2,−qxi2 − ri sin(xi1))T and its uncertain disturbance
hi(t, xi) = (0, φi(t))T, where q = 3.15, ri = 0.02 for i = 1, 2, · · · , 5, and (φ1, φ2, · · · , φ5)T =
(0.1 sin(t),−0.15 sin(t), −0.2 sin(t), 0.15 sin(t), 0.2 sin(t))T. The drive dynamical node is

ẋ0(t) = f0(t, xi) + h0(t, xi)

with initial values x0(0) = (1, 1)T, where f0(t, x0) = (x02,−qx02)T, h0(t, x0) = (0, 0)T, and the
coupling strength c = 2.0.

As a comparison, the state response trajectory and the state error response track of the
heterogeneous complex dynamic network (32) without control are given. It can be seen from
Figure 1 that before the application of the control the synchronization errors of each node do
not tend to 0, and then the states of nodes have not been synchronized.

times(sec)
0 5 10 15

x i
1(t)

, i
=1

,2
,..

.,5

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

(a) State response xi1

times(sec)
0 5 10 15

x i
2(t)

, i
=1

,2
,..

.,5

-1.5

-1

-0.5

0

0.5

1

1.5

(b) State response xi2

times(sec)
0 5 10 15 20 25 30

e i
1(t)

, i
=1

,2
,..

.,5

-2

-1.5

-1

-0.5

0

0.5

1

(c) Synchronization error ei1

times(sec)
0 5 10 15 20 25 30

e i
2(t)

, i
=1

,2
,..

.,5

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

(d) Synchronization error ei2

Figure 1 State responses and synchronization error without control
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Let L = I2, μ(t) = 0.1 and hmax = 0.5, which implies that Assumption 2.1, Assumption 2.2
and Assumption 2.3 hold since ‖fi(t, x) − f0(t, x)‖ = ‖(0,−ri sin(x1)‖ = ri ≤ 0.1. With
D = diag(2, 2, 2, 2, 2), it is known that λmax(IN ⊗ L + c(Gs ⊗ Γ ) − D ⊗ In) = −0.3592, which
indicates that (9) can be satisfied. According to Theorem 3.4 with η(t) = μ(t)+hmax = 0.6, k =
1, β = 0.6, by use of (6), (32) can be synchronized to the drive node (33). From Figure 2, it
can be seen that the synchronization error of each node is reduced to 0 within t∗ = 4.3766, and
the node state is synchronized within t∗ = 4.3766. In fact, the time of the numerical simulation
actually synchronizes is 0.6090 seconds.

Furthermore, we use (26) with d = 5 and the initial values X(0) = [xT
1 (0), XT

2 (0), xT
3 (0),

xT
4 (0), xT

5 (0)]T = [2 3 4 − 1 − 3 0 − 4 5 3.5 − 4]T, x0(0) = [1 1]T. From Theorem 4.1 and (27),
it can be seen that (32) can be synchronized within the finite time t∗ = 10.4051 and the actual
synchronization time is 0.1074 seconds, which is illustrated by Figure 3.
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Figure 2 Finite-time synchronization
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Figure 3 Adaptive finite-time synchronization

6 Conclusions

This paper has discussed the finite-time synchronization for a class of dynamical complex
network with nonidentical nodes and uncertain disturbance, some sufficient conditions have
been proposed by using the Lyapunov function method and the linear matrix inequality tech-
nique, and they have been applied to the case of identical nodes and the one without uncertain
disturbance. Also the adaptive finite-time synchronization has been studied. Future work
can focus on the fixed-time synchronization for complex networks with nonidentical nodes and
uncertain disturbance.
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