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Abstract. This paper deals with the finite-time stabilization of fractional-order inertial neural
network with varying time-delays (FOINNs). Firstly, by correctly selected variable substitution,
the system is transformed into a first-order fractional differential equation. Secondly, by building
Lyapunov functionalities and using analytical techniques, as well as new control algorithms (which
include the delay-dependent and delay-free controller), novel and effective criteria are established
to attain the finite-time stabilization of the addressed system. Finally, two examples are used to
illustrate the effectiveness and feasibility of the obtained results.

Keywords: inertial neural networks, finite-time stabilization, fractional-order system, Caputo
fractional derivative and integral.

1 Introduction

In the last decade, dynamic analysis has developed in many disciplines such as eco-
nomic sciences, ecology and environment, biology and engineer, etc. [1–4]. Especially,
the artificial neural networks (ANNs) dynamical systems are applied in particular to
solve problems of classification, prediction, categorisation, optimization, recognition of
forms, associative memory secure communication [6–8]. In recent years, more outcomes
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on equilibrium-point stability, bifurcation, periodicity analysis and synchronization of
various types of recurrent networks has been widely investigated in [9, 10]. In 1986,
Babcock and Westervelt introduced the inertial neural network, which was characterized
by the second-order differential equation [11]. The addition of inertial terms in electronic
neural networks may give rise to the complicated behaviors such as instability, sponta-
neous concussion and chaotic behavior. Recently, integer-order inertial neural networks
have attracted considerable attention, and numerous excellent results have been published
[5, 12, 13]. The finite-time and fixed-time synchronization of a class of inertial neural
networks with multiproportional delays were obtained using Lyapunov functionals and
analytical techniques [5]. In [12], the problem of synchronization and periodicity of
coupled inertial memristive neural networks with supremums were studied by using the
matrix measure method and Halany inequality techniques. Sufficient conditions on global
asymptotic synchronization of inertial delayed neural networks by using integrating in-
equality techniques was explored [13].

As an extension of integer integral and derivative to arbitrary order, fractional calculus
is a field of pure mathematical theory, whose purpose is to extend the definitions of tradi-
tional integrals and derivatives to noninteger orders. It remains an open problem in signal
processing, laser physics, secure communication, automatic, electricity, electrochemistry
and in many search fields due to the nature of these systems, which are considered as long
memory systems, and they present a complex dynamic [14]. Although, the mathematical
formalism of the noninteger derivative associated with the development of computer tools
allowed to envisage applications in the field of science of the fractional-order differential
engineer. Today, the fractional approach is applied to the modelling of the consequences
of natural disasters [15], to the modelling of electrical devices [16] or to the synthesis of
the control [17]. Fractional modelling is also present in the field of the humanities and
social sciences or even in biological sciences [18]. Due to the extensive applications,
some interesting and important results on fractional-order neural networks have been
obtained [19].

In recent studies, the finite-time stability with control of neural networks have been
intensively considered within the system solution reach the equilibrium point in finite
time. The time function is called the time convergence or the settling time. The finite-time
stability has a greater importance than the usual asymptotic stability in real applications
like robot, optimization problems, pattern recognition, vehicle system and identification
and spacecrafts of dynamical systems [20]. Stabilization control of neural networks has
attracted more and more attention, and there are different types of controllers such that
pinning adaptive control [21], intermittent control [22], fuzzy control [23], sliding mode
control [24]. In [25], the finite-time Mittag-Leffler synchronization of fractional-order
memristive BAM neural networks with time delays was investigated based on Lyapunov
theory and linear feedback controller. The graph theory-based finite-time synchroniza-
tion of fractional-order complex dynamical networks was analyzed based on analysis
techniques and algebraic graph theory method [27]. In [24], the sliding mode control
problem for a normalized singular fractional-order system with matched uncertainties
was investigated by using linear matrix inequality. Adaptive sliding mode control was
presented for a class of fractional-order nonlinear time-delay systems based on fractional-
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Finite-time stabilization for fractional-order inertial neural networks 3

order disturbance observer, and the Gronwall inequality approach is used to ensure that the
output tracking error is uniformly bounded for the fractional-order nonlinear system [28].

Notice that several previous works mainly focused on fractional-order neural networks
with only single fractional-order derivative of the states. While it is important to intro-
duce an inertial term to obtain the fractional-order inertial model, which is described
by fractional differential equations with two different fractional-order derivatives of the
state. This models are considered as a powerful tool to produce complicated chaos and
bifurcation behavior. Yet, there exists few literatures on fractional-order inertial models
reported. In [29], the stability and synchronization for Riemann–Liouville fractional-order
time-delayed inertial neural networks are investigated, several feedback controllers were
proposed for different cases of fractional-order time-delayed inertial neural networks
based on composition properties of Riemann–Liouville fractional-order derivative. In-
spired by the analysis above, this paper will focus on finite-time stabilization of fractional-
order inertial neural networks. The main contributions of this paper can be summarized
as follows:

(i) Sufficient conditions are obtained to guarantee that the fractional-order inertial
neural networks with time delays can be stabilized in finite time.

(ii) Different from the existing works, the fractional-order inertial neural networks is
different from integer-order delayed inertial neural networks models in [12, 13],
so those results cannot be directly applied to system given in this paper.

(iii) The settling time of the finite-time stabilization is estimated, and it is shown
theoretically and numerically that the designed feedback controllers are effective.

This article is formulated as follows. In Section 2, some useful definitions, lemmas
and model description are presented. The finite-time stabilization result of our model are
derived in Section 3. To prove the effectiveness of our results, two examples are given in
Section 4. Finally, the conclusion is drawn in section 5.

Notation. R and Rn denote the set of real numbers and the n-dimensional Euclidean
space for x = (x1, . . . , xn)T ∈ Rn, respectively, sign(·) denote the functional sign.

2 Preliminaries and model description

Throughout this paper, the Caputo fractional derivative and integral are involved. In this
section, we introduce some useful definitions and lemmas. To simplify things, we denote
C
0 Dαt g(t) = Dαt g(t).

Consider the following fractional-order differential equation:

Dαt y(t) = f
(
y(t)

)
, y(t) ∈ Rn,

y(0) = y0,

where f is a continuous function such that f(0) = 0.

Nonlinear Anal. Model. Control, 27(1):1–18, 2022
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Definition 1. (See [30].) The Caputo fractional derivative with noninteger order α > 0
of function g(t) is defined as follows:

Dαt g(t) =
1

Γ(n− α)

t∫
0

1

(t− σ)α−n+1

(
d

dσ

)n
g(σ) dσ, α > 0,

where n− 1 < α < n, n ∈ Z+. Particularly, if 0 < α < 1,

Dαt g(t) =
1

Γ(1− α)

t∫
0

g′(σ)

(t− σ)α
dσ.

Proposition 1. (See [30].) For h1(t), h2(t) ∈ Cn([0,∞[,Rn), λ1, λ2 ∈ R and n − 1 <
α < n, we have

Dαt
(
λ1h1(t) + λ2h2(t)

)
= λ1Dαt h1(t) + λ2Dαt h2(t).

Proposition 2. (See [31].) Let y(t) ∈ Rn be a continuous and derivable vector-valued
function. Then, for t > 0, we have

1

2
Dαt y2(t) 6 y(t)Dαt y(t), α ∈ (0, 1).

Lemma 1. (See [27].) Assume that a continuous, positive-definite function V (t) satisfies
the following fractional-order differential inequality:

Dαt V (t) 6 −cV η(t).

Here the constants c > 0, 0 < η < α. Then V (t) satisfies the following inequality:

V α−η(t) 6 V α−η(t0)− cΓ(1 + α− η)(t− t0)α

Γ(1 + α)Γ(1− η)
,

and V (t) = 0 for all t > T , where T is given as follows:

T = t0 +

[
V α−η(t0)

Γ(1 + α)Γ(1− η)

cΓ(1 + α− η)

]1/α
.

Lemma 2. (See [5].) If z1, . . . , zN , q1, q2 ∈ R with 0 < q1 < q2, then the following
inequality holds: [

N∑
k=1

|zk|q2
]1/q2

6

[
N∑
k=1

|zk|q1
]1/q1

.
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2.1 Model description

Consider following Caputo fractional-order inertial neural network with time delays:

D2β
t xi(t) = −aiDβt xi(t)− bixi(t)

+

n∑
k=1

cikf
(
xk(t)

)
+

n∑
k=1

dikfk
(
xk
(
t− τk(t)

))
+ Ii(t), t > 0. (1)

Here 1/2 < β < 1, n > 2 is the amount of units in the neural network, xi(·) stands
for the neuron state, ai, bi > 0 are constants, fk(·) denote the activations functions of
kth neuron at time t, τk(·) is the time delay with 0 6 τk(·) 6 τ , cik and dik stand for
the interconnection weight coefficients of the neurons 1 6 i, k 6 n, Ii(·) is the external
input. The initial conditions of system (1) are given by

xi(s) = ϕ̌i(s),
dxi(s)

dt
= ψ̌i(s), s ∈ (−∞, 0], i = 1, . . . , n,

where ϕ̌i(·) and ψ̌i(·) are real-valued continuous functions on [−∞, 0]. Now, let us
introduce the following assumption to derive the main results of this paper:

(A1) For k = 1, . . . , n, the activation function fk satisfies the Lipschitz condition:
that is, for δ, δ̃ ∈ R, there exists Mk > 0 such that∣∣fk(δ)− fk(δ̃)

∣∣ 6Mk|δ − δ̃| and fk(0) = 0.

Let x∗ be an equilibrium point of system (1). By a simple transformation pi(t) =
xi(t) − x∗ ∈ R we can shift the equilibrium point to the origin. Then system (1) can be
rewritten as follows:

D2β
t pi(t) = −aiDβt pi(t)− bipi(t)

+

n∑
k=1

cikf̃
(
pk(t)

)
+

n∑
k=1

dikf̃k
(
pk
(
t− τk(t)

))
, (2)

where f̃k(pk) = fk(pj + x∗)− fj(x∗j ). The initial conditions of system (2) are given by

pi(s) = ϕ̌i(s)− y∗ = ϕ(s),

dzi(s)

dt
= ψ̌i(s)− y∗ = ψ(s), s ∈ (−∞, 0], i = 1, . . . , n.

Letting hi(t) = Dβt pi(t) + pi(t) for i = 1, . . . , n, then system (2) with the control
variables can be rewritten as

Dβt pi(t) = −pi(t) + hi(t) + Ui(t),

Dβt hi(t) = −(ai − 1)hi(t)− (bi − ai + 1)pi(t)

−
n∑
k=1

cikf̃k(pk(t)) +

n∑
k=1

dikf̃k
(
pj
(
t− τk(t)

))
+ Ūi(t),

(3)

Nonlinear Anal. Model. Control, 27(1):1–18, 2022
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where U(·) = (U1(·), . . . , Un(·))T and Ū(·) = (Ū1(·), . . . , Ūn(·))T are the control
variables, and the initial conditions become

pi(s) = ϕ(s),

hi(t) = ϕ(s) + ψ(s), s ∈ (−∞, 0], i = 1, . . . , n.
(4)

Definition 2. System (3) is finite-time stabilizable if under a suitable designed feedback
controls Ui(t) and Ūi(t), there exists T dependent on the initial conditions (4) such that
the closed-loop system is finite-time stable.

3 Main results

In this section, the finite-time stabilization of Caputo fractional-order inertial neural net-
works (CFOINN) with time-delays will be investigated.

Theorem 1. Assume that (A1) holds and the time-varying delay τk(·) is known. Sys-
tem (3) is finite-time stabilized under the following feedback control law:

Ui(t) = −wi1pi(t)− wi2 sign
(
pi(t)

)∣∣pi(t)∣∣υ,
Ūi(t) = −w̄i1hi(t)− w̄i2 sign

(
hi(t)

)∣∣hi(t)∣∣υ
−

n∑
k=1

dikf̃k
(
pk
(
t− τk(t)

))
,

(5)

where

2wi1 > |ai − bi − 1| − 1 +

n∑
k=1

|cki|Mi (6)

and

2w̄i1 > −2ai + |ai − bi − 1|+
n∑
k=1

|cik|Mk + 3, (7)

wi2 > 0, w̄i2 > 0, 0 < υ < β. (8)

The settling time stabilization T will be estimated by

T =

[
V β−

1+υ
2 (0)

Γ(1 + β)Γ(1− 1+υ
2 )

$2(υ+1)/2Γ(1 + β − 1+υ
2 )

]1/β
, (9)

where

V (0) =
1

2

[
n∑
i=1

h2i (0) +

n∑
i=1

p2i (0)

]
, $ = min

{
min

16i6n
{wi2}, min

16i6n
{w̄i2}

}
.

Proof. Let us choose the following Lyapunov function candidate:

V (t) =
1

2

[
n∑
i=1

h2i (t) +

n∑
i=1

p2i (t)

]
. (10)
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By Propositions 1 and 2 the time derivative of (10) along the trajectories of system (3)
can be calculated as follows:

Dβt V (t) = Dβt
1

2

[
n∑
i=1

h2i (t) +

n∑
i=1

p2i (t)

]
=

1

2

n∑
i=1

Dβt h2i (t) +
1

2

n∑
i=1

Dβt p2i (t)

6
n∑
i=1

[
hi(t)Dβt hi(t) + pi(t)Dβt pi(t)

]
6

n∑
i=1

[
−(ai − 1)h2i (t)− (bi − ai + 1)pi(t)hi(t)

+

n∑
k=1

cikf̃k
(
pk(t)

)
hi(t)− w̄i1h2i (t)− w̄i2

∣∣hi(t)∣∣υ+1

− p2i (t) + hi(t)pi(t)− wi1p2i (t)− wi2
∣∣pi(t)∣∣υ+1

]

6
n∑
i=1

[
−(ai − 1)h2i (t) + |ai − bi − 1|

∣∣pi(t)∣∣∣∣hi(t)∣∣
+

n∑
k=1

|cik|
∣∣f̃k(pk(t)

)∣∣∣∣hi(t)∣∣− w̄i1h2i (t)− w̄i2∣∣hi(t)∣∣υ+1

− p2i (t) +
∣∣hi(t)∣∣∣∣pi(t)∣∣− wi1p2i (t)− wi2∣∣pi(t)∣∣υ+1

]
.

Since we have 2xy 6 x2 + y2 for all x, y ∈ R+, it follows that∣∣pi(t)∣∣∣∣hi(t)∣∣ 6 1

2
p2i (t) +

1

2
h2i (t).

It follows that

Dβt V (t) 6
n∑
i=1

{(
1− ai +

|ai − bi − 1|
2

+
1

2

n∑
k=1

|cik|Mk +
1

2
− w̄i1

)
h2i (t)

+

(
|ai − bi − 1|

2
− 1

2
+

1

2

n∑
k=1

|cki|Mi − wi1

)
p2i (t)

− w̄i2
∣∣hi(t)∣∣υ+1 − wi2

∣∣pi(t)∣∣υ+1

}
.

From (6) and (7) we obtain

Dβt V (t) 6
n∑
i=1

{
−w̄i2|hi(t)|υ+1 − wi2

∣∣pi(t)∣∣υ+1}
.
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Since 0 < υ + 1 < 2, from Lemma 2 we have

−

[
n∑
j=1

∣∣pj(t)∣∣υ+1

]1/(υ+1)

6 −

[
n∑
j=1

∣∣pj(t)∣∣2]1/2
and

−

[
n∑
j=1

∣∣hj(t)∣∣υ+1

]1/(υ+1)

6 −

[
n∑
j=1

∣∣hj(t)∣∣2]1/2.
So,

−

[
n∑
j=1

∣∣pj(t)∣∣υ+1

]
6 −

[
n∑
j=1

∣∣pj(t)∣∣2](υ+1)/2

and

−

[
n∑
j=1

∣∣hj(t)∣∣υ+1

]
6 −

[
n∑
j=1

∣∣hj(t)∣∣2](υ+1)/2

.

Then we obtain

Dβt V (t) 6 −min
{

min
16i6n

{wi2}, min
16i6n

{w̄i2}
}

2(υ+1)/2V (υ+1)/2(t).

That is,
Dβt V (t) 6 −$2(υ+1)/2V (υ+1)/2(t).

Since we have 0 < υ < β and 1/2 < β < 1, then 0 < β− (υ+ 1)/2. So, (υ+ 1)/2 < β.
Therefore, from Lemma 1, system (3) is finite-time stabilizable, and the settling time T is
given by (9).

In Theorem 1, by designing a special fixed-time controller we achieved the fixed-time
stabilization of system (3). However, Ūi in (5) is a delay dependent feedback control,
which is not suitable for real-world applications. Thus, we seek to obtain a fixed-time con-
troller that is more suitable in practice and able to stabilize in fixed-time the FOINNs (3).
To this end, we need to impose the boundedness of our activation functions:

(A2) There exists Lk ∈ R∗+ such that∣∣f̃k(·)
∣∣ 6 Lk for k = 1, . . . , n.

We have the following result:

Theorem 2. If assumptions (A1) and (A2) hold and conditions (6), (7) and (8) are
satisfied, let

w̄i3 >
n∑
k=1

|dik|Lk. (11)

https://www.journals.vu.lt/nonlinear-analysis
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Then system (3) is finite-time stabilizable under the feedback control law

Ui(t) = −wi1pi(t)− wi2 sign
(
pi(t)

)∣∣pi(t)∣∣υ,
Ūi(t) = −w̄i1hi(t)− w̄i2 sign

(
hi(t)

)∣∣hi(t)∣∣υ − w̄i3 sign
(
hi(t)

)
,

(12)

and the settling time is expressed as (9).

Proof. Let us choose the following Lyapunov function candidate:

V (t) =
1

2

[
n∑
i=1

h2i (t) +

n∑
i=1

p2i (t)

]
. (13)

By Propositions 1 and 2 the time derivative of (13) along the trajectories of system (3)
can be calculated as follows:

Dβt V (t) = Dβt
1

2

[
n∑
i=1

h2i (t) +

n∑
i=1

p2i (t)

]
=

1

2

n∑
i=1

Dβt h2i (t) +
1

2

n∑
i=1

Dβt p2i (t)

6
n∑
i=1

[
hi(t)Dβt hi(t) + pi(t)Dβt pi(t)

]
6

n∑
i=1

[
−(ai − 1)h2i (t) + |ai − bi − 1|pi(t)hi(t)

+

n∑
k=1

|cik|
∣∣f̃k(pk(t)

)∣∣hi(t) +

n∑
k=1

|dik|
∣∣f̃k(pk(t− τk(t)

))∣∣∣∣hi(t)∣∣
− w̄i1h2i (t)− w̄i2

∣∣hi(t)∣∣υ+1 − w̄i3
∣∣hi(t)∣∣

− p2i (t) + hi(t)pi(t)− wi1p2i (t)− wi2
∣∣pi(t)∣∣υ+1

]
.

From (A1) and (A2) we obtain

Dβt V (t) 6
n∑
i=1

[
−(ai − 1)h2i (t) + |ai − bi − 1|pi(t)hi(t)

+

n∑
k=1

|cik|Mk

∣∣(pk(t)
)∣∣hi(t) +

n∑
k=1

|dik|Lk
∣∣hi(t)∣∣

− w̄i1h2i (t)− w̄i2
∣∣hi(t)∣∣υ+1 − w̄i3

∣∣hi(t)∣∣
− p2i (t) + hi(t)pi(t)− wi1p2i (t)− wi2

∣∣pi(t)∣∣υ+1

]

6
n∑
i=1

{(
1− ai +

|ai − bi − 1|
2

+
1

2

n∑
k=1

|cik|Mk +
1

2
− w̄i1

)
h2i (t)

Nonlinear Anal. Model. Control, 27(1):1–18, 2022
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+

(
n∑
k=1

|dik|Lk − w̄i3

)∣∣hi(t)∣∣
+

(
|ai − bi − 1|

2
− 1

2
+

1

2

n∑
k=1

|cki|Mi − wi1

)
p2i (t)

− w̄i2
∣∣hi(t)∣∣υ+1 − wi2

∣∣pi(t)∣∣υ+1

}
.

From (6), (7) and (11) we get

Dβt V (t) 6
n∑
i=1

{
−w̄i2

∣∣hi(t)∣∣υ+1 − wi2
∣∣pi(t)∣∣υ+1}

.

At this stage, we notice that the delays have been removed from the calculus. So, the
proof can be continued as for a delay-free system. We have

Dβt V (t) 6 −min
{

min
16i6n

{wi2}, min
16i6n

{w̄i2}
}

2(υ+1)/2V (υ+1)/2(t).

That is,

Dβt V (t) 6 −$2(υ+1)/2V (υ+1)/2(t).

Therefore, from Lemma 1, system (3) is finite-time stable, and the settling time T is given
by (9).

Remark 1. It should be noted that the setting time T can be theoretically determined
according to the equality 9 in Theorems 1 and 2. In 9, we see that the setting time T not
only depends on the initial states h(0) and p(0), but also depends on the fractional order
β, parameters υ and $.

Remark 2. Theoretically, there are no restrictions on activations functions f̃i (i = 1,
. . . , n) and time delays in Theorems 1 and 2. But from the view of engineering the
functions f̃i (i = 1, . . . , n) and τ(·) are needed to be known in advance, which is the
main limitation of our theoretical results and needs to be relaxed in the future work.

4 Numerical examples

To illustrate the effectiveness of our results, two examples are presented in this section.

Example 1. Consider the following CFOINN for i = 1, 2, 3:

D2β
t pi(t) = −aiDβt pi(t)− bipi(t)

+

3∑
k=1

cikfk
(
pk(t)

)
+

3∑
k=1

dikfk
(
pk(t− τk)

)
+ Ii. (14)
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Figure 1. Trajectories state of system (15) without control.

The system parameters are set as follows:

a1 = a2 = a3 = 1.01, b1 = b2 = b3 = 4.01,

υ = 0.6, f̃k(·) = sin(·),

I1 = I2 = I3 = 0, β = 0.98,

C =

1.6 −1.5 2.8
−2 −2.1 1.5
1.9 2 1.7

 , D =

 1 −1.5 −2
−1.5 2 −0.5
−2 2 −1.5

 .

Letting hi(t) = Dβt pi(t) + pi(t), i = 1, 2, 3, system (14) with control can be rewritten as

Dβt pi(t) = −pi(t) + hi(t) + Ui(t),

Dβt hi(t) = −(ai − 1)hi(t)− (bi − ai + 1)pi(t)

+

3∑
k=1

cikf̃k
(
pk(t)

)
+

3∑
k=1

dikf̃k
(
pk
(
t− τk(t)

))
+ Ūi.

(15)

The state trajectories of system (15) without control is depicted in Fig. 1. Afterwards,
according to the conditions presented in Theorem 1, we choose

w11 = 5 >
1

2
|a1 − b1 − 1| − 1

2
+

1

2

3∑
k=1

|ck1|,

w21 = 5 >
1

2
|a2 − b2 − 1| − 1

2
+

1

2

3∑
k=1

|ck2|,

w31 = 5 >
1

2
|a3 − b3 − 1| − 1

2
+

1

2

3∑
k=1

|ck3|
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Figure 2. Trajectories state of system (15) under control (5).

and

w̄11 = 6 > −a1 +
1

2
|a1 − b1 − 1|+ 1

2

3∑
k=1

|c1k|+
3

2
,

w̄21 = 5.5 > −a2 +
1

2
|a2 − b2 − 1|+ 1

2

3∑
k=1

|c2k|+
3

2
,

w̄31 = 5.5 > −a3 +
1

2
|a3 − b3 − 1|+ 1

2

3∑
k=1

|c3k|+
3

2
.

The Lipschitz condition is Mk = 1, and if we choose the parameters w12 = 2 > 0,
w22 = 1.7 > 0, w32 = 2 > 0, w̄12 = 1.7 > 0, w̄22 = 1.8 > 0, w̄32 = 1.8 > 0,
all condition of Theorem 1 are justified. Then system (15) is finite-time stabilizable by
controller (5). Taking the initial values as

p1(0) = 0.1, p2(0) = 0.2, p3(0) = −0.2,

h1(0) = −0.1, h2(0) = −0.3, h3(0) = 0.3.

The settling time is estimated by

T =

[
V 0.98−(1+0.6)/2(0)

Γ(1 + 0.98)Γ(1− 1+0.6
2 )

$2(0.6+1)/2Γ(1 + 0.98− 1+0.6
2 )

]1/0.98
= 1.1725

with

V (0) =
1

2

[
n∑
i=1

h2i (0) +

n∑
i=1

p2i (0)

]
= 0.14,

$ = min
{

min
16i63

{wi2}, min
16i63

{w̄i2}
}

= 1.7.

Trajectories states of system (15) under control (12) are shown in Fig. 2.
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Remark 3. Up to now, stability and synchronization for integer-order inertial neural net-
works with delay have been intensively studied [13]. In this paper, finite-time stabilization
for fractional-order inertial neural networks with time-varying delays are investigated.
Note that when β = 1, fractional-order inertial neural network will be reduced to integer-
order inertial neural network. Therefore, integer-order inertial neural network can be seen
as a special case of fractional-order inertial neural networks. The model proposed in this
paper is less conservative and more general.

Remark 4. Noting that there are few results dealing with the finite-time stability or
synchronization for FONNs [25, 26]. In [26], authors investigated the problem of finite-
time Mittag-Leffler synchronization of FONNs by mean of Laplace transform and the
generalized Gronwall inequality. In [25], Xiao et al. studied the finite-time Mittag-Leffler
synchronization of a class of fractional memristive BAM neural networks with time de-
lays. It should be noticed that the authors do not give the value of setting time T . In this
paper, based on Lemma 1 and Lyapunov theory, we investigate the finite-time stabilization
of fractional-order inertial neural network and give the value of the setting time T . Com-
pared with previous works [25,26], our result obtained in this paper has better application.
On the other hand, our study offers an improvement compared with [13], where only
asymptotic and exponential stability of neural networks are considered.

Example 2. Now, consider the following CFOINN for i = 1, . . . , 3:

D2β
t pi(t) = −aiDβt pi(t)− bipi(t)

+

3∑
k=1

cikfk
(
pk(t)

)
+

3∑
k=1

dikfk
(
pk
(
t− τk)

)
+ Ii,

where
a1 = a2 = a3 = 1.02, b1 = b2 = b3 = 4.02,

τ = 0.9, υ = 0.5, f̃k(·) = tanh(·),

I1 = I2 = I3 = 2, β = 0.99, Mk = 1, Lk = 1,

C =

 1.5 1.4 2.7
−1.9 −2 1.4
1.8 1.9 1.6

 , D =

 0.9 −1.4 −1.9
−1.4 1.9 −0.4
−1.9 1.9 −1.4

 .

Let hi(t) = Dβt pi(t) + pi(t) for i = 1, . . . , 3, then system (14) with control can be
rewritten as

Dβt pi(t) = −pi(t) + hi(t) + Ui(t),

Dβt hi(t) = −(ai − 1)hi(t)− (bi − ai + 1)pi(t)

+

3∑
k=1

cikf̃k
(
pk(t)

)
+

3∑
k=1

dikf̃k
(
pk
(
t− τk(t)

))
+ Ūi.

(16)
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Figure 3. Trajectories state of system (16) without control.

The sate trajectories of system (16) without control input is shown in Fig. 3. Accord-
ing to the conditions presented in Theorem 2, we choose

w11 = 4.5 >
1

2
|a1 − b1 − 1| − 1

2
+

1

2

3∑
k=1

|ck1| = 4.1,

w21 = 4.5 >
1

2
|a2 − b2 − 1| − 1

2
+

1

2

3∑
k=1

|ck2| = 4.2,

w31 = 4.5 >
1

2
|a3 − b3 − 1| − 1

2
+

1

2

3∑
k=1

|ck3| = 4.35,

w̄11 = 5.5 > −a1 +
1

2
|a1 − b1 − 1|+ 1

2

3∑
k=1

|c1k|+
3

2
= 5.28,

w̄21 = 5.5 > −a2 +
1

2
|a2 − b2 − 1|+ 1

2

3∑
k=1

|c2k|+
3

2
= 5.13,

w̄31 = 5.5 > −a3 +
1

2
|a3 − b3 − 1|+ 1

2

3∑
k=1

|c3k|+
3

2
= 5.13

and

w̄13 = 4.5 >
3∑
k=1

|d1k|Lk = 4.2, w̄23 = 4 >
3∑
k=1

|d2k|Lk = 3.7,

w̄33 = 5.5 >
3∑
k=1

|d3k|Lk = 5.2.

The Lipschitz condition is Mk = 1, Lk = 1, and if we choose the parameters w12 =
1.8 > 0, w22 = 1.8> 0, w32 = 1.5> 0, w̄12 = 1.7> 0, w̄22 = 1.6> 0, w̄32 = 1.7> 0,
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Figure 4. Trajectories state of system (16) under control (12).

then system (16) is finite-time stabilizable by controller (12). Taking the initial values as

p1(0) = 0.4, p2(0) = 0.3, p3(0) = −0.5,

h1(0) = −0.3, h2(0) = −0.4, h3(0) = 1,

the settling time is estimated by

T =

[
V 0.99−(1+0.5)/2(0)

Γ(1 + 0.99)Γ(1− 1+0.5
2 )

$2(0.5+1)/2Γ(1 + 0.99− 1+0.5
2 )

]1/0.99
= 1.7352

with

V (0) =
1

2

[
n∑
i=1

h2i (0) +

n∑
i=1

p2i (0)

]
= 1.25,

$ = min
{

min
16i63

{wi2}, min
16i63

{w̄i2}
}

= 1.5.

The states trajectories are depicted in Fig. 4.

Remark 5. Our results on finite-time stabilization are derived based on the Lyapunov
direct method and feedback controller, which are more concise and easy to verify than
those obtained in the existing papers by using linear matrix inequality [24,32], the matrix
measure method and Halany inequality techniques [12].

5 Conclusion

In this paper, the finite-time stabilization of fractional-order inertial neural networks with
time delays has been investigated. Based on a novel nonlinear feedback controller, finite-
time stability theory and some inequality, we established a new criterion of finite-time
stabilization of. The validity of the proposed controllers and the effectiveness of the

Nonlinear Anal. Model. Control, 27(1):1–18, 2022
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obtained results have been illustrated by some numerical examples. To the best of our
knowledge, this is the first paper to study the finite-time stabilization for FOINNs with
time-varying delays and give the value of the setting time. The future work mainly in-
cludes the following aspects:

1. How to analyze the finite-time stabilization of more complex fractional-order neu-
ral network model with stochastic perturbation and various time delays such as
time-varying delays, infinite distributed delays and neutral-type delays.

2. How to derive the fixed-time stabilization conditions of fractional-order neural
network model.

3. How to deal with the problem of finite-time stabilization via different types of
controllers.
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