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Abstract: Our focus of this paper is on global Mittag-Leffler synchronization (GMLS) of the Caputo-
type Inertial Cohen-Grossberg Neural Networks (ICGNNs) with discrete and distributed delays. This
model takes into account the inertial term as well as the two types of delays, which greatly reduces the
conservatism with respect to the model. A change of variables transforms the 2β order inertial frame
into β order ordinary frame in order to deal with the effect of the inertial term. In the following
steps, two novel types of delay controllers are designed for the purpose of reaching the GMLS.
In conjunction with the novel controllers, utilizing differential mean-value theorem and inequality
techniques, several criteria are derived to determine the GMLS of ICGNNs within the framework
of Caputo-type derivative and calculus properties. At length, the feasibility of the results is further
demonstrated by two simulation examples.
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1. Introduction

Fractional calculus, as a prominent branch of mathematics, traces back to the 17th century [1]. It
has been extensively used in environmental mechanics, engineering applications, automatic control and
signal processing [2–5]. In contrast to integer order integrals, fractional order integrals can additionally
describe procedures of all kinds with memory and hereditary properties. It was first developed in
the 1940s to model neural computation, which is the foundation of Neural Networks (NNs) models. In
the last few years, NNs have received significant attention from several scholars, and rich results are
available in the reports [6–10].
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In 1986, as can be noticed, Babcock and Westervelt brought inductance into a class of circuit
models, resulting in inertial NNs (INNs). As a particular class of NNs, INNs take the form of
second-order differential systems. The inclusion of the inertial term gives rise to some complicated
behavior, such as instabilities and chaos. Therefore, INNs have caught sufficient attention of numerous
researchers to yield some fascinating results. It is not difficult to see from these studies that the
treatment of the inertial term is in general a method of order reduction or direct analysis. [8] discussed
the problem of stabilization of INNs, which used analysis approach. [9] considered the inertial
system by the method of non-separation. Based on integer order INNs, various synchronization and
stability problems were widely discussed [9–14]. Compared to integer-order NNs, fractional-order
NNs (FONNs) have the property of infinite storage and have the superior ability to describe dynamic
behavior. As a result, a growing number of scholars have introduced inertial terms into fractional
systems to form FOINNs, with a plethora of intriguing results [15–18]. In actual applications, INNs
are widely used in engineering, such as secure communication [19], image encryption [20], etc.

It may be noted that the CGNNs were raised by Cohen and Grossberg as a generalization of
the network models. This class of exceptional NNs model has attracted considerable attention
in the areas of associative memory, classification, solving optimization problems and pattern
recognition [21–24]. Recently, a large amount of results for CGNNs have been reported. In [25],
the problem of synchronization of complex-valued CGNNs is addressed by constructing appropriate
controllers. In [26], proposed the model of delayed fuzzy CGNNs with discontinuous activations
and uncertain term. Due to the particularity of INNs and CGNNs, some scholars add inertial term
to CGNNs to form a kind of inertial CGNNs (ICGNNs) and the dynamic behavior analysis of this
class of NNs has received wide attention [8, 27–29]. For example, [8] proposed the condition of
judging the stability by the direct approach of ICGNNs with generalized delays. [27] gained several
new criteria to verify the ICGNNs with proportional delays. [28] established the criterion of fixed-
time synchronization for ICGNNs by constructing a controller with two exponential terms. To better
describe the dynamic behavior of some neurons, [30] proposed the delayed of FOICGNNs. As a
matter of fact, some results of FOCGNNs have been reported [31–34], where the models do not take
into account the inertia term. Furthermore, there are some systems of FOINNs that are not combined
with CGNNs [15–18]. It should be pointed out that model is based on the Riemann-Liouville type
FOICGNNs in [30]. Thus, we found that there is relatively little research on FOICGNNs in the
Caputo sense. It is noteworthy that various types of synchronization have been extensively discussed,
including but not limited to anti-synchronization [12], fixed-time synchronization [7, 11, 19, 26, 28],
finite time synchronization [25, 35, 36], quasi projective synchronization [25], global asymptotic
synchronization (GAS) [16, 27] and GMLS [17, 18]. Currently, various effective control strategies
have been applied to solve the synchronization problem, such as impulsive control [37], predefined-
time control [12], linear control [25, 29], pinning control [13, 38] and sliding mode control [14].
Therefore, the problem of GMLS for Caputo-type FOICGNNs with discrete and distributed delays
is not yet considered.

Motivated by the front statement, our main goal of this paper is to study the GMLS of Caputo-type
delayed ICGNNs. The following innovations are listed:

(1) The model being considered is constructed on the basis of Caputo-type ICGNNs that have both
discrete and distributed delays. The model takes into account two distinct time delays, thus making it
more comprehensive and more practical than the models of ICGNNs [28, 29].
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(2) The inertial system is converted into two ordinary fractional systems by variable substitution.
The difficulties caused by delays are overcome using two novel control strategies. Different from [30],
the novel controllers are designed to achieve the GMLS of Caputo-type ICGNNs, which reduces the
control cost and improves the control precision to a certain extent.

(3) Compared with the matrix inequalities approach [32], the novel conditions of GMLS are
derived by the algebraic inequality technique, which can avoid the complex calculation and facilitate
the verification.

(4) The derived conditions are characterized by the form of algebraic inequalities, which are easy
to put into effect in reality. The validity of theoretical results is confirmed via simulation results.

2. Preliminaries

Subsequently, the basic concepts, lemmas and the Caputo-type delayed ICGNNs model
are described.

Definition 1. [1] For a function u(·), its fractional integral with order β is

t0I−β

t u(t) =
1

Γ(β )

∫ t

t0
(t− s)β−1u(s)ds,β > 0.

Definition 2. [39] For u(·) ∈ Cn([0,+∞],R), its Caputo derivative of the β -order is

c
t0Dβ

t u(t) =
1

Γ(n−β )

∫ t

t0

u(n)(s)
(t− s)β−n+1 ds, t > t0.

Lemma 1. [40] If φ(t) is differentiable and φ(t) ∈ C[t0,+∞), then

c
t0Dβ

t (φ
2(t)) 6 2φ(t)c

t0Dβ

t φ(t), 0 < β < 1.

Lemma 2. [41] If ε > 0, σ1,σ2 ∈ R, then

σ1σ2 6
ε

2
σ

2
1 +

1
2ε

σ
2
2 .

Lemma 3. [42] For V (t) ∈ C[0,+∞), if satisfies c
0Dβ

t V (t) 6−ΛV (t), then

V (t) 6V (0)Eβ (−Λtβ ),

where β ∈ (0,1) and Λ ∈ R.

The Caputo-type delayed FOICGNNs is investigated as follows:

c
0D2β

t rκ(t) =− δ̂κ
c
0Dβ

t rκ(t)−ακ(rκ(t)){hκ(rκ(t))−
n

∑
h̄=1

dκ h̄ψh̄(rh̄(t))

−
n

∑
h̄=1

bκ h̄ψh̄(rh̄(t− τ1))−
n

∑
h̄=1

cκ h̄

∫ t

t−τ2

ψh̄(rh̄(s))ds− Iκ(t)}, (2.1)
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where ακ(rκ(t)) is the amplification function; hκ(rκ(t)) means well behaved function; rκ(t) stands for
the state of the k th neuron, ψh̄(rh̄(t)) refers to the activation function, τ1 denotes the constant time
delay, τ2 is the distributed delay; dκ h̄,bκ h̄ and cκ h̄ are connection weights, Iκ(t) represents the external
input and 0 < |Iκ(t)| 6 Iκ .

Considering the following variable transform:

wκ(t) = c
0Dβ

t rκ(t)+πκrκ(t), (2.2)

then, the system (2.1) is expressed as:

c
0Dβ

t rκ(t) =−πκrκ(t)+wκ(t),

c
0Dβ

t wκ(t) =−πκ(πκ − δ̂κ)rκ(t)− (δ̂κ −πκ)wκ(t)−ακ(rκ(t))[hκ(rκ(t))−
n

∑
h̄=1

dκ h̄ψh̄(rh̄(t)) (2.3)

−
n

∑
h̄=1

bκ h̄ψh̄(rh̄(t− τ1))−
n

∑
h̄=1

cκ h̄

∫ t

t−τ2

ψh̄(rh̄(s))ds− Iκ(t)].

Analogously, the response system of the system (2.3) can be depicted as:

c
0Dβ

t yκ(t) =−πκyκ(t)+ vκ(t)+Pκ(t),

c
0Dβ

t vκ(t) =−πκ(πκ − δ̂κ)yκ(t)− (δ̂κ −πκ)vκ(t)−ακ(yκ(t))[hκ(yκ(t))−
n

∑
h̄=1

dκ h̄ψh̄(yh̄(t)) (2.4)

−
n

∑
h̄=1

bκ h̄ψh̄(yh̄(t− τ1))−
n

∑
h̄=1

cκ h̄

∫ t

t−τ2

ψh̄(yh̄(s))ds− Iκ(t)]+Qκ(t).

We set the initial-value of systems (2.3) and (2.4) as:

rκ(0) = r∗κ(0),wκ(t) = w∗κ(0);yκ(0) = y∗κ(0),vκ(0) = v∗κ(0).

Let ẽκ(t) = yκ(t)− rκ(t), z̃κ(t) = vκ(t)−wκ(t), the above error systems are given by:

c
0Dβ

t ẽκ(t) =−πκ ẽκ(t)+ z̃κ(t)+Pκ(t),
c
0Dβ

t z̃κ(t) =Qκ(t)−πκ(πκ − δ̂κ)ẽκ(t)− (δ̂κ −πκ)z̃κ(t)− [ακ(yκ(t))hκ(yκ(t))

−ακ(rκ(t))hκ(rκ(t))]+ακ(yκ(t))[
n

∑
h̄=1

dκ h̄(ψh̄(yh̄(t))−ψh̄(rh̄(t)))

+
n

∑
h̄=1

bκ h̄(ψh̄(yh̄(t− τ1))−ψh̄(rh̄(t− τ1)))] (2.5)

+ακ(rκ(t))
n

∑
h̄=1

cκ h̄[
∫ t

t−τ2

ψh̄(yh̄(s))ds−
∫ t

t−τ2

ψh̄(rh̄(s))ds]

+ [ακ(yκ(t))−ακ(rκ(t))][
n

∑
h̄=1

dκ h̄ψh̄(rh̄(t))+
n

∑
h̄=1

bκ h̄ψh̄(rh̄(t− τ1))

+
n

∑
h̄=1

cκ h̄

∫ t

t−τ2

ψh̄(yh̄(s))ds+ Iκ(t)].
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Assumption 1. The function of α(·) satisfies:

0 6 α 6 ακ(rκ(t)) 6 ᾱ < ∞,

|ακ(y)−ακ(r)| 6 ακ |y− r|,

where y,r ∈ R and ακ > 0.

Assumption 2. If exists ϖκ > 0, the functions α(·) and h(·) satisfy:

ακ(r)hκ(r)−ακ(y)hκ(y)
r− y

> ϖκ ,

where r , y,r,y ∈ R.

Assumption 3. ∀y,r ∈ R, if the activation function ψh̄(·) satisfies:

|ψh̄(y)−ψh̄(r)| 6Ψh̄|y− r|,

where Ψh̄ > 0.

Assumption 4. For ψh̄(·), the constant Mh̄ > 0 exist such that

|ψh̄(·)| 6Mh̄.

Definition 3. The systems (2.3) and (2.4) can reach GMLS under the controllers Pκ(t) and Qκ(t), if
there exists one constant ` > 0, such that

‖ ẽ(t) ‖2 +‖ z̃(t) ‖2 6
{
`(‖ ẽ(0) ‖2

2 + ‖ z̃(0) ‖2
2)Eβ (−Λtβ )

} 1
2
,0 < β < 1.

3. Main results

The controllers of system (2.5) are designed:Pκ(t) =
−η̆κ ẽ2

κ(t)−µκ ẽ2
κ(t− τ1)−2z̃κ(t)

n
∑

h̄=1
ᾱ|cκ h̄|Mh̄τ2

ẽκ(t)
,µκ = ᾱ|bh̄κ |Ψκ

ε1

2
;

Qκ(t) =−ρ̆κ z̃κ(t).

(3.1)

where ẽκ(t) , 0.

Theorem 1. The systems (2.3) and (2.4) can realize GMLS, when Λ > 0,Λ = min{Λ1,Λ2}

Λ1 =πκ + η̆κ − [1+ϖκ + |π2
κ −πκ δ̂κ |+

n

∑
h̄=1

(ακMh̄(|dκ h̄|+ |bκ h̄|+ |cκ h̄|τ2)+ ᾱ|dh̄κ |Ψκ)

+ακ Iκ ]
ε1

2
;

Λ2 =ρ̆κ −πκ + δ̂κ − [1+ |π2
κ −πκ δ̂κ |+ϖκ +

n

∑
h̄=1

(ακMh̄(|dκ h̄|+ |bκ h̄|+ |cκ h̄|τ2)+ ᾱ|dκ h̄|Ψh̄

+ ᾱ|bκ h̄|Ψh̄)+ακ Iκ ]
1

2ε1
.
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Proof. Constructing V (·) as:

V (t) =
1
2

n

∑
κ=1

[ẽ2
κ(t)+ z̃2

κ(t)]. (3.2)

Based on Lemma 1, one has:

c
0Dβ

t V (t) 6
n

∑
κ=1

ẽκ(t)c
0Dβ

t ẽκ(t)+
n

∑
κ=1

z̃κ(t)c
0Dβ

t z̃κ(t). (3.3)

Substituting (2.5) into (3.3), we have

c
0Dβ

t V (t) 6
n

∑
κ=1

ẽκ(t)[−πκ ẽκ(t)+ z̃κ(t)+Pκ(t)]+
n

∑
κ=1

z̃κ(t){−πκ(πκ − δ̂κ)ẽκ(t)

− (δ̂κ −πκ)z̃κ(t)− [ακ(yκ(t))hκ(yκ(t))−ακ(rκ(t))hκ(rκ(t))]

+ακ(yκ(t))[
n

∑
h̄=1

dκ h̄(ψh̄(yh̄(t))−ψh̄(rh̄(t)))+
n

∑
h̄=1

bκ h̄(ψh̄(yh̄(t− τ1))

−ψh̄(rh̄(t− τ1)))]+ακ(rκ(t))
n

∑
h̄=1

cκ h̄

∫ t

t−τ2

ψh̄(yh̄(s))ds

−ακ(rκ(t))
n

∑
h̄=1

cκ h̄

∫ t

t−τ2

ψh̄(rh̄(s))ds+[ακ(yκ(t))−ακ(rκ(t))][
n

∑
h̄=1

dκ h̄ψh̄(rh̄(t))

+
n

∑
h̄=1

bκ h̄ψh̄(rh̄(t− τ1))+
n

∑
h̄=1

cκ h̄

∫ t

t−τ2

ψh̄(yh̄(s))ds+ Iκ(t)]+Qκ(t)}

=
n

∑
κ=1
−πκ ẽ2

κ(t)+
n

∑
κ=1

ẽκ(t)z̃κ(t)+
n

∑
κ=1

ẽκ(t)Pκ(t)+
n

∑
κ=1

(−π
2
κ +πκ δ̂κ)ẽκ(t)z̃κ(t)

+
n

∑
κ=1

(πκ − δ̂κ)z̃2
κ(t)−

n

∑
κ=1

z̃κ(t)[ακ(yκ(t))hκ(yκ(t))−ακ(rκ(t))hκ(rκ(t))]

+
n

∑
κ=1

z̃κ(t)ακ(yκ(t))[
n

∑
h̄=1

dκ h̄(ψh̄(yh̄(t))−ψh̄(rh̄(t)))]

+
n

∑
κ=1

z̃κ(t)ακ(yκ(t))[
n

∑
h̄=1

bκ h̄(ψh̄(yh̄(t− τ1))−ψh̄(rh̄(t− τ1)))]

+
n

∑
κ=1

z̃κ(t)ακ(rκ(t))[
n

∑
h̄=1

cκ h̄

∫ t

t−τ2

ψh̄(yh̄(s))ds−
n

∑
h̄=1

cκ h̄

∫ t

t−τ2

ψh̄(rh̄(s))ds]

+
n

∑
κ=1

z̃κ(t){[ακ(yκ(t))−ακ(rκ(t))][
n

∑
h̄=1

dκ h̄ψh̄(rh̄(t))+
n

∑
h̄=1

bκ h̄ψh̄(rh̄(t− τ1))

+
n

∑
h̄=1

cκ h̄

∫ t

t−τ2

ψh̄(yh̄(s))ds+ Iκ(t)]+Qκ(t)}. (3.4)

From Assumptions 1 and 2, it gives

c
0Dβ

t V (t) 6
n

∑
κ=1
−πκ ẽ2

κ(t)+
n

∑
κ=1

ẽκ(t)z̃κ(t)+
n

∑
i=1

ẽκ(t)Pκ(t)+
n

∑
i=1

(−π
2
κ +πκ δ̂κ)ẽκ(t)z̃κ(t)
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+
n

∑
κ=1

(πκ − δ̂κ)z̃2
κ(t)+

n

∑
κ=1

z̃κ(t)ᾱ
n

∑
h̄=1

dκ h̄[(ψh̄(yh̄(t))−ψh̄(rh̄(t)))]

+
n

∑
κ=1

z̃κ(t)ᾱ
n

∑
h̄=1

bκ h̄[(ψh̄(yh̄(t− τ1))−ψh̄(rh̄(t− τ1)))]−
n

∑
κ=1

z̃κ(t)ϖκ ẽκ(t)

+
n

∑
κ=1

z̃κ(t)
n

∑
h̄=1

cκ h̄ᾱ[
∫ t

t−τ2

ψh̄(yh̄(s))ds−
∫ t

t−τ2

ψh̄(rh̄(s))ds]

+
n

∑
κ=1

z̃κ(t){ακ ẽκ(t)[
n

∑
h̄=1

dκ h̄ψh̄(rh̄(t))+
n

∑
h̄=1

bκ h̄ψh̄(rh̄(t− τ1))

+
n

∑
h̄=1

cκ h̄

∫ t

t−τ2

ψh̄(yh̄(s))ds+ Iκ(t)]}+
n

∑
κ=1

z̃κ(t)Qκ(t). (3.5)

By Assumptions 3 and 4, one obtains

c
0Dβ

t V (t) 6
n

∑
κ=1
−πκ ẽ2

κ(t)+
n

∑
κ=1

ẽκ(t)z̃κ(t)+
n

∑
κ=1

[−η̆κ ẽ2
κ(t)−µκ ẽ2

κ(t− τ1)−2z̃κ(t)
n

∑
h̄=1

ᾱ|cκ h̄|Mh̄τ2]

+
n

∑
κ=1

(−π
2
κ +πκ δ̂κ)ẽκ(t)z̃κ(t)+

n

∑
κ=1

(πκ − δ̂κ)z̃2
κ(t)−

n

∑
κ=1

ϖκ z̃κ(t)ẽκ(t)

+
n

∑
κ=1

n

∑
h̄=1

ᾱdκ h̄Ψh̄|eh̄(t)|z̃κ(t)+
n

∑
κ=1

n

∑
h̄=1

ᾱbκ h̄Ψh̄|eh̄(t− τ1)|z̃κ(t)

+2
n

∑
κ=1

z̃κ(t)
n

∑
h̄=1

ᾱ|cκ h̄|Mh̄τ2 +
n

∑
κ=1

z̃κ(t)ẽκ(t)[
n

∑
h̄=1

ακ |dκ h̄|Mh̄ +
n

∑
κ=1

ακ |bκ h̄|Mh̄

+
n

∑
h̄=1

ακ |cκ h̄|Mh̄τ2 +ακ Iκ(t)]−
n

∑
κ=1

ρ̆κ z̃2
κ(t). (3.6)

From Lemma 2, one has

ẽκ(t)z̃κ(t) 6
ε1

2
ẽ2

κ(t)+
1

2ε1
z̃2

κ(t), (3.7)

ẽκ(t)ẽκ(t− τ1) 6
ε1

2
ẽ2

κ(t)+
1

2ε1
ẽ2

κ(t− τ1), (3.8)

ẽh̄(t)z̃κ(t) 6
ε1

2
ẽ2

h̄(t)+
1

2ε1
z̃2

κ(t), (3.9)

ẽh̄(t− τ1)z̃κ(t) 6
ε1

2
ẽ2

h̄(t− τ1)+
1

2ε1
z̃2

κ(t). (3.10)

Substituting (3.7)–(3.10) into (3.6), then

c
0Dβ

t V (t) 6
n

∑
κ=1
−πκ ẽ2

κ(t)+
n

∑
κ=1

[
ε1

2
ẽ2

κ(t)+
1

2ε1
z̃2

κ(t)]+
n

∑
κ=1

[−η̆κ ẽ2
κ(t)−µκ ẽ2

κ(t− τ1)]
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+
n

∑
κ=1
|π2

κ −πκ δ̂κ |[
ε1

2
ẽ2

κ(t)+
1

2ε1
z̃2

κ(t)]+
n

∑
κ=1

(πκ − δ̂κ)z̃2
κ(t)

+
n

∑
κ=1

ϖκ [
ε1

2
ẽ2

κ(t)+
1

2ε1
z̃2

κ(t)]+
n

∑
κ=1

n

∑
h̄=1

ᾱ|dκ h̄|Ψh̄[
ε1

2
ẽ2

h̄(t)+
1

2ε1
z̃2

κ(t)]

+
n

∑
κ=1

n

∑
h̄=1

ᾱ|bκ h̄|Ψh̄[
ε1

2
ẽ2

h̄(t− τ1)+
1

2ε1
z̃2

κ(t)]

+
n

∑
κ=1

[
ε1

2
ẽ2

κ(t)+
1

2ε1
z̃2

κ(t)][
n

∑
h̄=1

ακ |dκ h̄|Mh̄ +
n

∑
h̄=1

ακ |bκ h̄|Mh̄

+
n

∑
h̄=1

ακ |cκ h̄|Mh̄τ2 +ακ Iκ(t)]−
n

∑
κ=1

ρ̆κ z̃2
κ(t)

6
n

∑
κ=1

ẽ2
κ(t){−πκ − η̆κ +[1+ϖκ + |π2

κ −πκ δ̂κ |

+
n

∑
h̄=1

(ακMh̄(|dκ h̄|+ |bκ h̄|+ |cκ h̄|τ2)+ ᾱ|dh̄κ |Ψκ)+ακ Iκ ]
ε1

2
}

+
n

∑
κ=1

z̃2
κ(t){−ρ̆κ +(πκ − δ̂κ)+ [1+ |π2

κ −πκ δ̂κ |+ϖκ

+
n

∑
h̄=1

(ακ |dκ h̄|Mh̄ +ακ |bκ h̄|Mh̄ +ακ |cκ h̄|Mh̄τ2 + ᾱ|dκ h̄|Ψh̄

+ ᾱ|bκ h̄|Ψh̄)+ακ Iκ ]
1

2ε1
}+

n

∑
κ=1

n

∑
h̄=1

ẽ2
κ(t− τ1)(ᾱ|bh̄κ |Ψκ

ε1

2
−µκ)

=−
n

∑
κ=1

ẽ2
κ(t){πκ + η̆κ − [1+ϖκ + |π2

κ −πκ δ̂κ |+
n

∑
h̄=1

(ακMh̄(|dκ h̄|

+ |bκ h̄|+ |cκ h̄|τ2)+ ᾱ|dh̄κ |Ψκ)+ακ Iκ ]
ε1

2
}−

n

∑
κ=1

z̃2
κ(t){ρ̆κ −πκ

+ δ̂κ − [1+ |π2
κ −πκ δ̂κ |+ϖκ +

n

∑
h̄=1

(ακMh̄(|dκ h̄|+ |bκ h̄|+ |cκ h̄|τ2)

+ ᾱ|dκ h̄|Ψh̄ + ᾱ|bκ h̄|Ψh̄)+ακ Iκ ]
1

2ε1
} 6−ΛV (t). (3.11)

Because of the condition Λ = min{Λ1,Λ2}> 0, where,

Λ1 =πκ + η̆κ − [1+ϖκ + |π2
κ −πκ δ̂κ |+

n

∑
h̄=1

(ακMh̄(|dκ h̄|+ |bκ h̄|+ |cκ h̄|τ2)

+ ᾱ|dh̄κ |Ψκ)+ακ Iκ ]
ε1

2
;

Λ2 =ρ̆κ −πκ + δ̂κ − [1+ |π2
κ −πκ δ̂κ |+ϖκ +

n

∑
h̄=1

(ακMh̄(|dκ h̄|+ |bκ h̄|+ |cκ h̄|τ2)

+ ᾱ|dκ h̄|Ψh̄ + ᾱ|bκ h̄|Ψh̄)+ακ Iκ ]
1

2ε1
.
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From Lemma 3, one can get

V (t) 6V (0)Eβ (−Λtβ ). (3.12)

Therefore,

‖ ẽ(t) ‖2 +‖ z̃(t) ‖2 6 [2
n

∑
κ=1

ẽ2
κ(t)+2

n

∑
κ=1

z̃2
κ(t)]

1
2

= [4(
1
2

n

∑
κ=1

ẽ2
κ(t)+

1
2

n

∑
κ=1

z̃2
κ(t))]

1
2

6 [4(V (0)Eβ (−Λtβ )]
1
2

=
{

2[‖ ẽ(0) ‖2
2 + ‖ z̃(0) ‖2

2]Eβ (−Λtβ )
} 1

2
. (3.13)

By Definition 3, the systems (2.3) and (2.4) can realize the GMLS. �
In order to realize the automatic adjustment of control gains, the controller of system (2.5) are

designed as follows:Pκ(t) =
−η̆κ ẽ2

κ(t)−µκ ẽ2
κ(t− τ1)−2z̃κ(t)ᾱ

n
∑

h̄=1
|cκ h̄|Mh̄τ2

ẽκ(t)
,µκ =

ε1

2
ᾱ|bh̄κ |Ψκ ;

Qκ(t) =−ϑκ(t)z̃κ(t), Dβ

t ϑκ(t) = ρκ z̃2
κ(t),

(3.14)

where ẽκ(t) , 0.

Theorem 2. If ϑ ∗κ satisfies Λ > 0 , when Λ = min{Λ1,Λ2},

Λ1 =−
ε1

2
[1+ |−πκ(πκ − δ̂κ)|+ϖκ + ᾱ|dh̄κ |Ψκ +

n

∑
h̄=1

ακMh̄(|dκ h̄|+ |bκ h̄|

+ |cκ h̄|τ2)+ακ Iκ ]+πκ + η̆κ ,

Λ2 =−
1

2ε1
[1+ |−πκ(πκ − δ̂κ)|+ϖκ + ᾱ(|dκ h̄|+ |bκ h̄|)Ψh̄ +

n

∑
h̄=1

ακMh̄(|dκ h̄|

+ |bκ h̄|+ |cκ h̄|τ2)+ακ Iκ ]−πκ + δ̂κ +ϑ
∗
κ ,

the systems (2.3) and (2.4) can realize GMLS.

Proof. Designing V (·) is

V (t) =
1
2

n

∑
κ=1

ẽ2
κ(t)+

1
2

n

∑
κ=1

z̃2
κ(t)+

n

∑
κ=1

1
2ρκ

[ϑκ(t)−ϑ
∗
κ ]

2. (3.15)

By utilizing Lemma 1, the Caputo type derivative of (3.13) can be obtained,

c
0Dβ

t V (t) 6
n

∑
κ=1

ẽκ(t)c
0Dβ

t ẽκ(t)+
n

∑
κ=1

z̃κ(t)c
0Dβ

t z̃κ(t)+
n

∑
κ=1

[ϑκ(t)−ϑ
∗
κ ]z̃

2
κ(t). (3.16)

Substituting (2.5) into (3.16) yields

AIMS Mathematics Volume 8, Issue 12, 29239–29259.



29248

c
0Dβ

t V (t) 6
n

∑
κ=1

ẽκ(t)[−πκ ẽκ(t)+ z̃κ(t)+Pκ(t)]+
n

∑
κ=1

z̃κ(t){−πκ(πκ − δ̂κ)ẽκ(t)

− (δ̂κ −πκ)z̃κ(t)− [ακ(yκ(t))hκ(yκ(t))−ακ(rκ(t))hκ(rκ(t))]

+ακ(yκ(t))[
n

∑
h̄=1

dκ h̄(ψh̄(yh̄(t))−ψh̄(rh̄(t)))+
n

∑
h̄=1

bκ h̄(ψh̄(yh̄(t− τ1))

−ψh̄(rh̄(t− τ1)))]

+ακ(rκ(t))
n

∑
h̄=1

cκ h̄

∫ t

t−τ2

ψh̄(yh̄(s))ds−ακ(rκ(t))
n

∑
h̄=1

cκ h̄

∫ t

t−τ2

ψh̄(rh̄(s))ds

+[ακ(yκ(t))−ακ(rκ(t))][
n

∑
h̄=1

dκ h̄ψh̄(rh̄(t))+
n

∑
h̄=1

bκ h̄ψh̄(rh̄(t− τ1))

+
n

∑
h̄=1

cκ h̄

∫ t

t−τ2

ψh̄(yh̄(s))ds+ Iκ(t)]+Qκ(t)}+
n

∑
κ=1

[ϑκ(t)−ϑ
∗
κ ]z̃

2
κ(t). (3.17)

From Assumptions 1 and 2, one has

c
0Dβ

t V (t) 6−
n

∑
κ=1

πκ ẽ2
κ(t)+

n

∑
κ=1

ẽκ(t)z̃κ(t)+
n

∑
κ=1

[−η̆κ ẽ2
κ(t)−µκ ẽ2

κ(t− τ1)−2z̃κ(t)ᾱ
n

∑
h̄=1

cκ h̄Mh̄τ2]

+
n

∑
κ=1

[−πκ(πκ − δ̂κ)]z̃κ(t)ẽκ(t)−
n

∑
κ=1

(δ̂κ −πκ)z̃2
κ(t)−

n

∑
κ=1

ϖκ ẽκ(t)z̃κ(t)

+
n

∑
κ=1

ᾱ z̃κ(t)[
n

∑
h̄=1

dκ h̄(ψh̄(yh̄(t))−ψh̄(rh̄(t)))+
n

∑
h̄=1

bκ h̄(ψh̄(yh̄(t− τ1))

−ψh̄(rh̄(t− τ1)))]+
n

∑
κ=1

ᾱ

n

∑
h̄=1

cκ h̄z̃κ(t)[
∫ t

t−τ2

ψh̄(yh̄(s))ds−
∫ t

t−τ2

ψh̄(rh̄(s))ds]

+
n

∑
κ=1

ακ ẽκ(t)z̃κ(t)[
n

∑
h̄=1

dκ h̄ψh̄(rh̄(t))+
n

∑
h̄=1

bκ h̄ψh̄(rh̄(t− τ1))

+
n

∑
h̄=1

cκ h̄

∫ t

t−τ2

ψh̄(yh̄(s))ds+ Iκ ]−
n

∑
κ=1

ϑκ(t)z̃2
κ(t)+

n

∑
κ=1

ϑκ(t)z̃2
κ(t)−

n

∑
κ=1

ϑ
∗
κ z̃2

κ(t). (3.18)

According to Assumptions 3 and 4, we get

c
0Dβ

t V (t) 6−
n

∑
κ=1

πκ ẽ2
κ(t)+

n

∑
κ=1

ẽκ(t)z̃κ(t)+
n

∑
κ=1

[−η̆κ ẽ2
κ(t)−µκ ẽ2

κ(t− τ1)

−2
n

∑
κ=1

z̃κ(t)ᾱ
n

∑
h̄=1
|cκ h̄|Mh̄τ2]+

n

∑
κ=1

[−πκ(πκ − δ̂κ)]z̃κ(t)ẽκ(t)−
n

∑
κ=1

(δ̂κ −πκ)z̃2
κ(t)

−
n

∑
κ=1

ϖκ ẽκ(t)z̃κ(t)+
n

∑
κ=1

ᾱ z̃κ(t)[
n

∑
h̄=1

dκ h̄Ψh̄|ẽh̄(t)|+
n

∑
h̄=1

bκ h̄Ψh̄|ẽh̄(t− τ1)|]

+2
n

∑
κ=1

ᾱ z̃κ(t)
n

∑
h̄=1
|cκ h̄|Mh̄τ2 +

n

∑
κ=1

ακ ẽκ(t)z̃κ(t)[
n

∑
h̄=1
|dκ h̄|Mh̄ +

n

∑
h̄=1
|bκ h̄|Mh̄

+
n

∑
h̄=1
|cκ h̄|Mh̄τ2 + Iκ ]−

n

∑
κ=1

ϑ
∗
κ z̃2

κ(t). (3.19)
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From (3.7)–(3.10), then we get

c
0Dβ

t V (t) 6−
n

∑
κ=1

πκ ẽ2
κ(t)+

n

∑
κ=1

[
ε1

2
ẽ2

κ(t)+
1

2ε1
z̃2

κ(t)]+
n

∑
κ=1

[−η̆κ ẽ2
κ(t)−µκ ẽ2

κ(t− τ1)]

+
n

∑
κ=1
|−πκ(πκ − δ̂κ)|[

ε1

2
ẽ2

κ(t)+
1

2ε1
z̃2

κ(t)]−
n

∑
κ=1

(δ̂κ −πκ)z̃2
κ(t)

+
n

∑
κ=1

ϖκ [
ε1

2
ẽ2

κ(t)+
1

2ε1
z̃2

κ(t)]+
n

∑
κ=1

n

∑
h̄=1

ᾱ|dκ h̄|Ψh̄[
ε1

2
ẽ2

h̄(t)+
1

2ε1
z̃2

κ(t)]

+
n

∑
κ=1

n

∑
h̄=1

ᾱ|bκ h̄|Ψh̄[
ε1

2
ẽ2

h̄(t− τ1)+
1

2ε1
z̃2

κ(t)]+
n

∑
κ=1

ακ [
n

∑
h̄=1
|dκ h̄|Mh̄

+
n

∑
h̄=1
|bκ h̄|Mh̄ +

n

∑
h̄=1
|cκ h̄|Mh̄τ2 + Iκ ][

ε1

2
ẽ2

κ(t)+
1

2ε1
z̃2

κ(t)]−
n

∑
κ=1

ϑ
∗
κ z̃2

κ(t)

6−
n

∑
κ=1

πκ ẽ2
κ(t)+

n

∑
κ=1

[
ε1

2
ẽ2

κ(t)+
1

2ε1
z̃2

κ(t)]+
n

∑
κ=1

[−η̆κ ẽ2
κ(t)−µκ ẽ2

κ(t− τ1)]

+
n

∑
κ=1
|−πκ(πκ − δ̂κ)|[

ε1

2
ẽ2

κ(t)+
1

2ε1
z̃2

κ(t)]−
n

∑
κ=1

(δ̂κ −πκ)z̃2
κ(t)+

n

∑
κ=1

ϖκ [
ε1

2
ẽ2

κ(t)

+
1

2ε1
z̃2

κ(t)]+
n

∑
κ=1

n

∑
h̄=1

ᾱ|dh̄κ |Ψκ

ε1

2
ẽ2

κ(t)+
n

∑
κ=1

n

∑
h̄=1

ᾱ|dκ h̄|Ψh̄
1

2ε1
z̃2

κ(t)

+
n

∑
κ=1

n

∑
h̄=1

ᾱ|bh̄κ |Ψκ

ε1

2
ẽ2

κ(t− τ1)+
n

∑
κ=1

ακ [
ε1

2
ẽ2

κ(t)+
1

2ε1
z̃2

κ(t)][
n

∑
h̄=1
|dκ h̄|Mh̄

+
n

∑
h̄=1
|bκ h̄|Mh̄ +

n

∑
h̄=1
|cκ h̄|Mh̄τ2 + Iκ ]+

n

∑
κ=1

n

∑
h̄=1

ᾱ|bκ h̄|Ψh̄
1

2ε1
z̃2

κ(t)−
n

∑
κ=1

ϑ
∗
κ z̃2

κ(t)

6
n

∑
κ=1

{
ε1

2
[1+ |−πκ(πκ − δ̂κ)|+ϖκ + ᾱ|dh̄κ |Ψκ +ακ(

n

∑
h̄=1
|dκ h̄|Mh̄ +

n

∑
h̄=1
|bκ h̄|Mh̄

+
n

∑
h̄=1
|cκ h̄|Mh̄τ2 + Iκ)]−πκ − η̆κ

}
ẽ2

κ(t)

+
n

∑
κ=1

{ 1
2ε1

[1+ |−πκ(πκ − δ̂κ)|+ϖκ + ᾱ(|dκ h̄|+ |bκ h̄|)Ψh̄ +ακ(
n

∑
h̄=1
|dκ h̄|Mh̄

+
n

∑
h̄=1
|bκ h̄|Mh̄ +

n

∑
h̄=1
|cκ h̄|Mh̄τ2 + Iκ)]+πκ − δ̂κ −ϑ

∗
κ

}
z̃2

κ(t)

+
n

∑
κ=1

(
ε1

2
ᾱ|bh̄κ |Ψκ −µκ)ẽ2

κ(t− τ1)

6−
n

∑
κ=1

ẽ2
κ(t)

{
− ε1

2
[1+ |−πκ(πκ − δ̂κ)|+ϖκ + ᾱ|dh̄κ |Ψκ

+
n

∑
h̄=1

ακMh̄(|dκ h̄|+ |bκ h̄|+ |cκ h̄|τ2)+ακ Iκ ]+πκ + η̆κ

}
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−
n

∑
κ=1

z̃2
κ(t)

{
− 1

2ε1
[1+ |−πκ(πκ − δ̂κ)|+ϖκ + ᾱ(|dκ h̄|+ |bκ h̄|)Ψh̄

+
n

∑
h̄=1

ακMh̄(|dκ h̄|+ |bκ h̄|+ |cκ h̄|τ2)+ακ Iκ ]−πκ + δ̂κ +ϑ
∗
κ

}
6−ΛV (t). (3.20)

Based on the condition Λ = min{Λ1,Λ2}> 0, there,

Λ1 =−
ε1

2
[1+ |−πκ(πκ − δ̂κ)|+ϖκ + ᾱ|dh̄κ |Ψκ +

n

∑
h̄=1

ακMh̄(|dκ h̄|+ |bκ h̄|

+ |cκ h̄|τ2)+ακ Iκ ]+πκ + η̆κ ;

Λ2 =−
1

2ε1
[1+ |−πκ(πκ − δ̂κ)|+ϖκ + ᾱ(|dκ h̄|+ |bκ h̄|)Ψh̄ +

n

∑
h̄=1

ακMh̄(|dκ h̄|

+ |bκ h̄|+ |cκ h̄|τ2)+ακ Iκ ]−πκ + δ̂κ +ϑ
∗
κ .

From Lemma 3, then

V (t) 6V (0)Eβ (−Λtβ ). (3.21)

Therefore,

‖ ẽ(t) ‖2 +‖ z̃(t) ‖2 6 [2
n

∑
κ=1

ẽ2
κ(t)+2

n

∑
κ=1

z̃2
κ(t)]

1
2

= [4(
1
2

n

∑
κ=1

ẽ2
κ(t)+

1
2

n

∑
κ=1

z̃2
κ(t))]

1
2

6 [4(V (0)Eβ (−Λtβ )]
1
2

=
{

2[‖ e(0) ‖2
2 + ‖ z(0) ‖2

2 +
n

∑
κ=1

1
ρκ

[ϑκ(0)−ϑ
∗
κ ]

2]Eβ (−Λtβ )
} 1

2
. (3.22)

Note that,

‖ ẽ(0) ‖2
2 + ‖ z̃(0) ‖2

2 +
n

∑
κ=1

1
ρκ

[ϑκ(0)−ϑ
∗
κ ]

2 6 H(‖ ẽ(0) ‖2
2 + ‖ z̃(0) ‖2

2), (3.23)

where H is a positive constant.
Thus,

‖ ẽ(t) ‖2 +‖ z̃(t) ‖2 6
{

2H(‖ ẽ(0) ‖2
2 + ‖ z̃(0) ‖2

2)Eβ (−Λtβ )
} 1

2
. (3.24)

From Definition 3, the systems (2.3) and (2.4) can realize GMLS. �

Remark 1. Different with the GAS [37], quasi projective synchronization [25], finite-time
synchronization [26,35,36], Mean-square synchronization [38], fixed-time synchronization [7,26,28],
exponential synchronization [29], pinning synchronization [43] and adaptive quantitative exponential
synchronization [44]. The GMLS of ICGNNs is discussed in the article.
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Remark 2. Note that the attack resistant control [44], sliding mode control [14, 45], pinning
control [13,38] and intermittent control [46] are inconvenient and undesirable in practical applications.
Two novel feedback controllers are designed to achieve GMLS in this article, which is more convenient.
Different with the linear control and adaptive control, in this paper, two control inputs Pκ(t) and Qκ(t)
are incorporated into the the model of response systems. It can be seen that the selection of the novel
feedback controller with time delays is more efficient and extensive.

Remark 3. Compared with the models of integer order ICGNNs considered in some literature [8,
24, 27–29], we study the FOICGNNs. Different with the dynamic properties exhibited by integer-
order ICGNNs, FOICGNNs possess infinite memory characteristics and offer a more accurate
depiction of neuronal dynamics. Consequently, they are particularly well-suited for application in
realistic domains. Different from the model [30], the model of this article is based on the derivative
of Caputo’ sense. In other researches, various types of time delays have been considered such as
proportional delay [27,31], discrete delay [30,47], time-varying delay [13,33] and leakage delay [47].
However, the system of this article are considered both discrete and distributed delays. For these
reasons, the proposed model of the nervous system is less conservative.

Remark 4. Different from some approaches such as event-triggered approach [28], matrix inequalities
approach [33] and contraction mapping principle [32], several efficient guidelines are derived to
implement the GMLS of Caputo FOICGNNs through the method of variable substitution and inequality
technique. The resulting criterion is formulated in the form of an algebraic inequality, which greatly
reduces the computational complexity and is easier to prove and implement in practical applications.

Remark 5. In [37], the GAS of fractional-order dynamic systems was realized within the framework
of event-based delayed impulsive control. However, in this paper, the GMLS of Caputo-type delayed
ICGNNs is considered. As a matter of fact, the GMLS is simplified to the GAS. Thus, the GMLS
of this paper can apply to the GAS. In [43], pinning synchronization of integer-order NNs was
achieved. Instead, the model of fractional-order is discussed in this paper, which can overcome
the disadvantage that the integer order model does not agree well with the experimental results. In
addition, the fractional-order model is more clear and concise in describing complex physical and
mechanical problems.

4. Illustrative examples

Some simulations are provided to check the availability of the results in this part.

Example 1. Considering two-dimensional FOICGNNs with discrete and distributed delays:

c
0D2β

t rκ(t) =− δ̂κ
c
0Dβ

t rκ(t)−ακ(rκ(t)){hκ(rκ(t))−
2

∑
h̄=1

dκ h̄ψh̄(rh̄(t))

−
2

∑
h̄=1

bκ h̄ψh̄(rh̄(t− τ1))−
2

∑
h̄=1

cκ h̄

∫ t

t−τ2

ψh̄(rh̄(s))ds− Iκ(t)}, (4.1)

where κ = 1,2, and 0 < β < 1, let: β = 0.95 ,α1(r1) = 0.9+ 0.2
1+r12 , α2(r2) = 0.9+ 0.2

1+r22 , Iκ(t) = sint,

ψh̄(·) = cos(·), h1(r1) = 0.2r1 − 0.2
1+r12 , h2(r2) = 0.2r2 − 0.2

1+r22 . By calculating α = 0.9, α = 1.1,
α1 = α2 = 0.2, ϖ1 = ϖ2 = 0.18.
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Then, choose π1 = 2.9, π2 = 2.9, δ̂1 = 4.6, δ̂2 = 4.6 d11 = 0.23, d12 = −1.5, d21 = −0.64,
d22 = 0.3, b11 = 0.12, b12 = −0.1, b21 = −0.2, b22 = 0.16 , c11 = 0.15, c12 = −0.3, c21 = 0.2,
c22 =−0.15, τ1 = τ2 = 1. ε1 = 1. The Lipchitz constants Ψ1 = Ψ2 = 0.5, ψh̄(·) = cos(·). I1 = I2 = 1.

The parameters of the controllers, we choose: η̆1 = 8.6, η̆2 = 9.1, ρ̆1 = 9.0, ρ̆2 = 8.7, µ1 = 0.088,
µ2 = 0.0715, 2ᾱ(c11 + c12) = 0.99, 2ᾱ(c21 + c22) = 0.77. The initial values are given as r1(0) =
2.9, r2(0) = −1.5, w1(0) = 5.7, w2(0) = 1.5, y1(0) = 0.4, y2(0) = 2.3, v1(0) = −1.9, v2(0) = −0.1.
Therefore,

Λ1 =πκ + η̆κ − [1+ϖκ + |π2
κ −πκ δ̂κ |+

2

∑
h̄=1

(ακMh̄(|dκ h̄|+ |bκ h̄|+ |cκ h̄|τ2)

+ ᾱ|dh̄κ |Ψκ)+ακ Iκ ]
ε1

2
;

Λ2 =ρ̆κ −πκ + δ̂κ − [1+ |π2
κ −πκ δ̂κ |+ϖκ +

2

∑
h̄=1

(ακMh̄(|dκ h̄|+ |bκ h̄|+ cκ h̄|τ2)

+ ᾱ|dκ h̄|Ψh̄ + ᾱ|bκ h̄|Ψh̄)+ακ Iκ ]
1

2ε1
,

when κ = 1, Λ1 = 7.86575, Λ2 = 6.76875; κ = 2, Λ1 = 8.185, Λ2 = 6.7225; then Λ = min{Λ1,Λ2}=
6.7225 > 0. Thus, the systems (2.3) and (2.4) can realize the GMLS. The figures of each state variable
of the systems (2.3) and (2.4) are given in Figure 1. As is shown in the picture, the curves for the
state of the system are eventually coeval. The error curves of systems (2.3) and (2.4) are portrayed in
Figure 2.

Figure 1. The state curves of systems (2.3) and (2.4).
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Figure 2. Evolution of synchronization error of systems (2.3) and (2.4).

Example 2. Considering two-dimensional models (2.3) and (2.4): Where κ = 1,2, and 0 < β < 1,
let: β = 0.9 ,α1(r1) = 0.3+ 0.6

1+r12 , α2(r2) = 0.3+ 0.6
1+r22 , Iκ(t) = sint, ψh̄(·) = cos(·), I1 = I2 = 1,

h1(r1) = cos(r1)− 0.4
1+r12 , h2(r2) = cos(r2)− 0.4

1+r22 . By calculating α = 0.3, α = 0.9, α1 = α2 = 0.6,
ϖ1 = ϖ2 = 0.3.

The relevant parameters are selected as π1 = 3.4, π2 = 3.4, δ̂1 = 3.9, δ̂2 = 3.9 d11 = 0.3, d12 =
−1.4, d21 = 0.03, d22 = 1.0, b11 = 0.12, b12 = −0.1, b21 = −0.18, b22 = 0.13 , c11 = −0.45,
c12 =−0.14, c21 = 0.2, c22 = 0.4, τ1 = 1, τ2 = 1. The Lipchitz constants Ψ1 = Ψ2 = 0.5. Taking the
initial values as: r1(0) = 2.9, r2(0) = −3.5, w1(0) = 2.5, w2(0) = −1.9, y1(0) = −0.8, y2(0) = 2.4,
v1(0) =−1.9, v2(0) = 1.5.

Under the controller (3.14), select ρ1 = 1, ρ2 = 1.5, ϑ1(0) = 1.2, ϑ2(0) = 1.8, ϑ ∗1 = 7, ϑ ∗2 = 5,
η̆1 = 7.0, η̆2 = 7.4, µ1 = 0.0675, µ2 = 0.05175, 2ᾱ(c11 + c12) = 1.062, 2ᾱ(c21 + c22) = 1.08,
Therefore,

Λ1 =−
ε1

2
[1+ |−πκ(πκ − δ̂κ)|+ϖκ + ᾱ|dh̄κ |Ψκ +

2

∑
h̄=1

ακMh̄(|dκ h̄|+ |bκ h̄|

+ |cκ h̄|τ2)+ακ Iκ ]+πκ + η̆κ ;

Λ2 =−
1

2ε1
[1+ |−πκ(πκ − δ̂κ)|+ϖκ + ᾱ(|dκ h̄|+ |bκ h̄|)Ψh̄ +

2

∑
h̄=1

ακMh̄(|dκ h̄|

+ |bκ h̄|+ |cκ h̄|τ2)+ακ Iκ ]−πκ + δ̂κ +ϑ
∗
κ ,

when κ = 1, Λ1 = 7.76375, Λ2 = 4.515; κ = 2, Λ1 = 7.878, Λ2 = 2.8165; then Λ = min{Λ1,Λ2} =
6.7225 > 0.

Therefore, the simulations confirm the validity of proposed Theorem 2, the systems (2.3) and (2.4)
can reach GMLS. The curves of control gains are provided in Figure 5. In Figure 3 represents the state
trajectories of the systems (2.3) and (2.4). The synchronization error of systems (2.3) and (2.4) are
exhibited in Figure 4.
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Figure 3. Trajectories state of systems (2.3) and (2.4).

Figure 4. Synchronization error of systems (2.3) and (2.4).
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Figure 5. Evolution of adaptive gains ϑ1(t) and ϑ2(t).

5. Conclusions

The GMLS analysis of delayed FOICGNNs is presented in this article. By means of variable
substitution and Caputo-type derivative property, the 2β order inertial system is converted into two
general systems with β order. Some criteria are formulated by the use of the differential mean-value
theorem and fractional differential inequality techniques, the GMLS of FOICGNNs is implemented by
designing the novel controllers. Ultimately, two numerical simulations are furnished to demonstrate
the feasibility of the results. In our future works, we will further investigate event-triggered control on
finite-time Mittag-Leffler synchronization of FOICGNNs with time-varying delays.
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