933 research outputs found

    A Review on Data Fusion of Multidimensional Medical and Biomedical Data

    Get PDF
    Data fusion aims to provide a more accurate description of a sample than any one source of data alone. At the same time, data fusion minimizes the uncertainty of the results by combining data from multiple sources. Both aim to improve the characterization of samples and might improve clinical diagnosis and prognosis. In this paper, we present an overview of the advances achieved over the last decades in data fusion approaches in the context of the medical and biomedical fields. We collected approaches for interpreting multiple sources of data in different combinations: image to image, image to biomarker, spectra to image, spectra to spectra, spectra to biomarker, and others. We found that the most prevalent combination is the image-to-image fusion and that most data fusion approaches were applied together with deep learning or machine learning methods

    Normalization in MALDI-TOF imaging datasets of proteins: practical considerations

    Get PDF
    Normalization is critically important for the proper interpretation of matrix-assisted laser desorption/ionization (MALDI) imaging datasets. The effects of the commonly used normalization techniques based on total ion count (TIC) or vector norm normalization are significant, and they are frequently beneficial. In certain cases, however, these normalization algorithms may produce misleading results and possibly lead to wrong conclusions, e.g. regarding to potential biomarker distributions. This is typical for tissues in which signals of prominent abundance are present in confined areas, such as insulin in the pancreas or β-amyloid peptides in the brain. In this work, we investigated whether normalization can be improved if dominant signals are excluded from the calculation. Because manual interaction with the data (e.g., defining the abundant signals) is not desired for routine analysis, we investigated two alternatives: normalization on the spectra noise level or on the median of signal intensities in the spectrum. Normalization on the median and the noise level was found to be significantly more robust against artifact generation compared to normalization on the TIC. Therefore, we propose to include these normalization methods in the standard “toolbox” of MALDI imaging for reliable results under conditions of automation

    Signal and image processing methods for imaging mass spectrometry data

    Get PDF
    Imaging mass spectrometry (IMS) has evolved as an analytical tool for many biomedical applications. This thesis focuses on algorithms for the analysis of IMS data produced by matrix assisted laser desorption/ionization (MALDI) time-of-flight (TOF) mass spectrometer. IMS provides mass spectra acquired at a grid of spatial points that can be represented as hyperspectral data or a so-called datacube. Analysis of this large and complex data requires efficient computational methods for matrix factorization and for spatial segmentation. In this thesis, state of the art processing methods are reviewed, compared and improved versions are proposed. Mathematical models for peak shapes are reviewed and evaluated. A simulation model for MALDI-TOF is studied, expanded and developed into a simulator for 2D or 3D MALDI-TOF-IMS data. The simulation approach paves way to statistical evaluation of algorithms for analysis of IMS data by providing a gold standard dataset. [...

    Development of a complete advanced computational workflow for high-resolution LDI-MS metabolomics imaging data processing and visualization

    Get PDF
    La imatge per espectrometria de masses (MSI) mapeja la distribució espacial de les molècules en una mostra. Això permet extreure informació Metabolòmica espacialment corralada d'una secció de teixit. MSI no s'usa àmpliament en la metabolòmica espacial a causa de diverses limitacions relacionades amb les matrius MALDI, incloent la generació d'ions que interfereixen en el rang de masses més baix i la difusió lateral dels compostos. Hem desenvolupat un flux de treball que millora l'adquisició de metabòlits en un instrument MALDI utilitzant un "sputtering" per dipositar una nano-capa d'Au directament sobre el teixit. Això minimitza la interferència dels senyals del "background" alhora que permet resolucions espacials molt altes. S'ha desenvolupat un paquet R per a la visualització d'imatges i processament de les dades MSI, tot això mitjançant una implementació optimitzada per a la gestió de la memòria i la programació concurrent. A més, el programari desenvolupat inclou també un algoritme per a l'alineament de masses que millora la precisió de massa.La imagen por espectrometría de masas (MSI) mapea la distribución espacial de las moléculas en una muestra. Esto permite extraer información metabolòmica espacialmente corralada de una sección de tejido. MSI no se usa ampliamente en la metabolòmica espacial debido a varias limitaciones relacionadas con las matrices MALDI, incluyendo la generación de iones que interfieren en el rango de masas más bajo y la difusión lateral de los compuestos. Hemos desarrollado un flujo de trabajo que mejora la adquisición de metabolitos en un instrumento MALDI utilizando un “sputtering” para depositar una nano-capa de Au directamente sobre el tejido. Esto minimiza la interferencia de las señales del “background” a la vez que permite resoluciones espaciales muy altas. Se ha desarrollado un paquete R para la visualización de imágenes y procesado de los datos MSI, todo ello mediante una implementación optimizada para la gestión de la memoria y la programación concurrente. Además, el software desarrollado incluye también un algoritmo para el alineamiento de masas que mejora la precisión de masa.Mass spectrometry imaging (MSI) maps the spatial distributions of molecules in a sample. This allows extracting spatially-correlated metabolomics information from tissue sections. MSI is not widely used in spatial metabolomics due to several limitations related with MALDI matrices, including the generation of interfering ions and in the low mass range and the lateral compound delocalization. We developed a workflow to improve the acquisition of metabolites using a MALDI instrument. We sputter an Au nano-layer directly onto the tissue section enabling the acquisition of metabolites with minimal interference of background signals and ultra-high spatial resolution. We developed an R package for image visualization and MSI data processing, which is optimized to manage datasets larger than computer’s memory using a mutli-threaded implementation. Moreover, our software includes a label-free mass alignment algorithm for mass accuracy enhancement

    Computational Methods on Study of Differentially Expressed Proteins in Maize Proteomes Associated with Resistance to Aflatoxin Accumulation

    Get PDF
    Plant breeders have focused on improving maize resistance to Aspergillus flavus infection and aflatoxin accumulation by breeding with genotypes having the desirable traits. Various maize inbred lines have been developed for the breeding of resistance. Identification of differentially expressed proteins among such maize inbred lines will facilitate the development of gene markers and expedite the breeding process. Computational biology and proteomics approaches on the investigation of differentially expressed proteins were explored in this research. The major research objectives included 1) application of computational methods in homology and comparative modeling to study 3D protein structures and identify single nucleotide polymorphisms (SNPs) involved in changes of protein structures and functions, which can in turn increase the efficiency of the development of DNA markers; 2) investigation of methods on total protein profiling including purification, separation, visualization, and computational analysis at the proteome level. Special research goals were set on the development of open source computational methods using Matlab image processing tools to quantify and compare protein expression levels visualized by 2D protein electrophoresis gel techniques

    Updates in metabolomics tools and resources: 2014-2015

    Get PDF
    Data processing and interpretation represent the most challenging and time-consuming steps in high-throughput metabolomic experiments, regardless of the analytical platforms (MS or NMR spectroscopy based) used for data acquisition. Improved machinery in metabolomics generates increasingly complex datasets that create the need for more and better processing and analysis software and in silico approaches to understand the resulting data. However, a comprehensive source of information describing the utility of the most recently developed and released metabolomics resources—in the form of tools, software, and databases—is currently lacking. Thus, here we provide an overview of freely-available, and open-source, tools, algorithms, and frameworks to make both upcoming and established metabolomics researchers aware of the recent developments in an attempt to advance and facilitate data processing workflows in their metabolomics research. The major topics include tools and researches for data processing, data annotation, and data visualization in MS and NMR-based metabolomics. Most in this review described tools are dedicated to untargeted metabolomics workflows; however, some more specialist tools are described as well. All tools and resources described including their analytical and computational platform dependencies are summarized in an overview Table
    corecore