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Abstract
Mass spectrometry imaging (MSI) is a technique that maps the spatial distribu-

tion of an analyte directly onto a tissue section. This allows representing specific

molecule distributions directly from a tissue section. MSI is becoming a valu-

able technology for histopathology since rich chemical information is recorded in

a single experimental run. Three main ionization methods have been developed

for MSI: MALDI, SIMS and DESI. In this work, MALDI (matrix assisted laser

desorption/ionization) is used due to its advantages compared to other ionizations

techniques. MALDI provides a high spatial resolution with good ionization char-

acteristics of low-weight compounds. In MALDI, a laser scans the sample surface

and promotes the ionization of each pixel in the image. MALDI is an established

technique for the acquisition of the high mass range of the MS spectrum. However,

it is still not widely adopted for metabolomics studies. The MALDI acquisition of

low molecular weight compounds is a challenging task mainly due to the MS signal

interferences introduced by the organic matrices compounds used to promote the

ionization. We have developed an alternative laser desorption/ionization (LDI)

method to improve the MSI detection of metabolites. Our LDI method consists in

coating the tissue with a gold nano-layer. This nano-layer is deposited by means of

the sputtering technique which is a very robust and repetitive process. In contrast

to classic MALDI, no solvent is used to deposit the gold nano-layer since sputtering

is a dry deposition procedure. This overcomes the problem of compound lateral

diffusion of sprayed MALDI matrices enabling the MSI acquisition at ultra-high

lateral resolution. The sputtered gold nano-layer also provides a reliable method

for obtaining low mass range MSI datasets because very few background MS signals

are generated from the sputtered layer. Moreover, the MS peaks corresponding

to gold clusters appear homogeneously distributed throughout the MS spectrum

at every image pixel. This enables an accurate mass calibration by using the gold

MS peaks as mass references.

The following step after the MSI acquisition is the data processing. MSI gener-

ates a large quantity of complex spectral data. Translating the MSI raw data into

relevant chemical information is still a challenging task because of such factors

as the experimental variation and the huge size of the MSI data. This requires

implementing computationally efficient routines to process the raw MSI data. To

address this, we developed two software packages for the R platform: rMSI and

v
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rMSIproc. These software packages establish a novel and flexible platform for MSI

data analysis, completely free and open-source.

The rMSI package is focused on providing an efficient way to manage MSI data

together with a graphical user interface (GUI) integrated in R environment. MS

data is loaded in rMSI custom format optimized to minimize the memory footprint

yet maintaining a fast spectra access. The data format is designed to place all the

data in the hard disk drive following a matrix-like structure. Then, only the data

chunks needed at each time are automatically loaded in the computer memory.

This allows an appropriate management of larger than memory MSI datasets. The

rMSI GUI is designed for simple and effective data exploration and visualization.

Moreover, rMSI is designed to be integrated in the R environment through a library

of functions that can be used to share MS data across other R packages.

The rMSI package provided us with a solution to manage and visualize MSI

large datasets. However, it is necessary to assign MS peaks to chemical enti-

ties in order to extract relevant biological information from the MSI experiment.

This analyte annotation process is intrinsically linked to the mass accuracy of

the data. Mass accuracy and analyte identification are determined by such fac-

tors as the experimental set up and the data processing workflow. We present an

MSI data processing workflow that uses a label-free approach to compensate for

mass shifts. The algorithms developed were designed to perform efficiently even

for large datasets generated from an FTICR mass spectrometer. We assessed the

overall mass accuracy in the range m/z 400 to 1200 using silver and gold sputtered

nanolayers. With our novel processing workflow we were able to obtain mass errors

as low as 5 ppm using a TOF instrument. This mass accuracy enhanced workflow

is implemented in the rMSIproc package. Besides, rMSIproc also includes a com-

plete pre-processing pipeline able to produce a reduced peak matrix from an MSI

experiment performed with TOF or FTICR spectrometers. The generated peak

matrix is a data reduced but accurate representation of the whole MSI dataset.

Moreover, the peak matrix is also small enough to fit in computer memory. Thus,

this enables the use of previously developed statistical analysis algorithms to be

easily applied to MSI datasets. rMSIproc takes advantage of rMSI data model to

work with files larger than the computer memory capacity. Most of the rMSIproc

internal routines are implemented in C++ using a multi-threading strategy. This

allows to take profit from modern multi-core processors thus provides a better

processing performance to the open-source MSI data analysis.
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We believe the developed experimental workflow together with the developed

software packages will have a positive impact on MSI for spatial metabolomics ap-

plications. In our opinion, this work will contribute to a future better understand-

ing of modern molecular histopathology from the point of view of metabolomics.
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Chapter 1

Introduction
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1.1 Histopathology

Histopathology is the science that studies the manifestations of disease in a tissue

by means of microscopy. The word histopathology is derived from a combination

of three Greek words: “histos”, “pathos” and “logos” which refers to a tissue, disease

or suffering and the study in this context respectively. The medical specialist who

studies the tissue section to elaborate a diagnosis based on microscopic detailed

observations is called histopathologist. Histopathology is mainly used as a tool for

medical diagnosis where it typically involves the examination of a biopsy. After

the sample has been surgically removed from the patient, various steps must be

accomplished to obtain the histological images [1]. Histology refers to the study

of tissue through microscopy but not the disease itself. Hence, histology is an

important aspect of histopathology that comprises the necessary steps to prepare

a specimen slice sample to put under the microscope. The knowledge of the

morphology of a tissue section is also studied by histology.

Five stages are mainly used to prepare samples for histology: fixing, processing,

embedding, sectioning and staining [1]. In the fixing stage, samples of biological

tissues are treated using chemicals or snap frozen in a cryoprotective embedding

medium. This stage ensures the preservation of the cells and prevents them from

the postmortem decay. When snap frozen fixation is used, all further steps are

omitted and the frozen sample is directly sliced using a cryostat. If chemical

fixation is used the next step is the processing. Tissue processing is done to

remove water from the sample and replacing such water with a medium that

solidifies. This provides the sample with a robust structure that allows slicing the

tissue in very thin sections. After tissues have been fixed and dehydrated, they

have to be embedded in a very hard solid block to allow the optimal sectioning. In

the embedding stage, several tissue samples are mounted together in a mold. Then

a liquid embedding material, which is then hardened, is used to create the solid

block. It is necessary to section the tissue in very thin slices to clearly observe the

microstructure of cells in a microscope. In case of using an optical microscope,

slices are cut with a thickness of ca. 10 μm and placed onto a glass slide. The

final stage before placing the sample under the microscope is the staining. Here,

an appropriate histology staining substance is used to enhance the observation of

microstructures. A biological tissue has very little variation in color when it is

observed using a microscope. Thus, several staining compounds exist to increase

the contrast of the targeted microstructures. The most commonly used stain is a
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combination of hematoxylin and eosin (H&E). Hematoxylin is used to stain the

cell nucleus in blue, while eosin stains the cell cytoplasm and extracellular tissue

in pink.

Although histopathology is used for medical diagnosis in a standardized basis,

it is not a completely reliable science yet. In some cases, it is a challenge to obtain

a thin tissue section that is representative of the complete tissue sample. In other

situations, the used staining strategy may not be able to properly highlight the

relevant tissue features. Nevertheless, the main challenge relies on the difficulty

of interpreting histological images. The diagnosis through this technique is some-

times subjective. In some cases, different histopathologists may elaborate different

conclusions with the same image [2, 3].

In the last years, various strategies have been developed to overcome the classical

problems of histopathology. Histochemistry and immunohistochemistry are two

techniques used to improve the staining of specific aspects of the tissue. This

allows a better expression of tissue characteristics known to be relevant for a given

disease. Histochemistry is based on using specific chemical compounds designed

to react with target substances to be observed in a tissue [4]. In the other hand,

immunohistochemistry employs antibodies to stain particular proteins, lipids and

carbohydrates [5]. The addition of histochemistry and immunohistochemistry in a

histopathological workflow improves the reliability of the diagnosis. However, the

specificity of these two techniques requires selecting and optimizing the appropriate

chemicals and antibodies used in each possible scenario. More recently, mass

spectrometry imaging has emerged as a completely different and valuable technique

to complement histopathology in a novel manner [2].

1.2 Mass spectrometry imaging

Mass spectrometry imaging (MSI) is a modern technique that can take histopathol-

ogy one step further. MSI is able to obtain rich chemical information directly from

a tissue section retaining the spatial localization of the recorded data [6]. MSI is a

broad term that involves various instrumental platforms to reach the goal of acquir-

ing mass spectrometry (MS) data spatially correlated with the sample morphology.

Every MSI capable instrument must contain three main parts: a spectrometer, an

ionization source and a system capable to focus each spectrometer acquisition to

a pixel in a defined raster.

4
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The most commonly used spectrometer are the time of flight (TOF) detectors

and its variations based on using an ionic mirror known as reflectron to increase

its accuracy [7]. TOF based detectors have demonstrated to be a very reliable

platform for MSI since they provide a good balance between mass accuracy and

acquisition speed. In a TOF detector, an electric field is used to accelerate the

ions in a flying tube. Ions acquire different acceleration speeds according to their

mass to charge ratio (m/z ) (see Fig. 1.1A). Then, a detector placed at the end of

the flying tube senses each ion impact recording its arrival time. This principle of

operation allows TOF detectors to acquire a single spectrum in far less than one

second, which enables such platform to acquire a large MSI dataset in a few hours.

TOF instruments are able to provide a mass resolutions in the range of 15.000 [6]

which is a high value given the time needed to complete an acquisition. Never-

theless, in some situations the mass resolution provided by a TOF detector may

not be enough to properly resolve all the required chemical species. In such cases,

detectors based on ionic traps, like the Fourier transform ion cyclotron resonance

(FTICR) were introduced to increase mass resolution [8]. FTICR detectors are

based on the cyclotron frequency of the ions in a fixed magnetic field. The ions

enter the ICR cell, where they are trapped due to the effect of an applied electric

field. Then, ions are accelerated to its cyclotron frequency using an oscillating

electric field orthogonal to the magnetic field. These ions induce an image current

on a pair of electrodes as the packets of ions pass close to them. The electronically

measured signal is called free induction decay (FID) and is representative of the

specific ions in the ICR cell. Finally, a Fourier transform is applied to the FID

signal together with a calibration function to obtain the mass spectrum. This

principle of operation is schematized in Fig. 1.1B.

FTICR instruments are able to increase by a factor of ten the mass resolving

power of a TOF instrument [6]. But, this enhanced mass resolution is obtained

at the expense of a much higher acquisition time and a large increment of the

size of the data generated. This increase of the acquisition time is related to the

principle of operation of the FTICR, where the mass resolution is related to the

length of the time window of the FID used to calculate the Fourier transform. As

example, to obtain a resolving power of 100.000 a time windows of ca. 1 second

must be configured. The increment in the amount of data generated is also related

to the high resolving power. A higher number of sample points must be recorded

to properly reproduce the narrower peaks displayed in the high resolution spectra.

5
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These two factors result in a practical limitation of high mass resolution applied

to MSI. Due to that, lateral resolution is generally adjusted to lower values for

high mass resolution acquisitions. Therefore, to two mainly used detectors, TOF

and FTICR are complementary. With TOF systems it is possible to obtain MS

images with a high lateral resolution but a limited mass resolution and vice versa

for FTICR instruments.

Figure 1.1: Principle of operation schematic of a TOF detector (A) and a FTICR detector (B).

The ionization source is a crucial part of every mass spectrometer since it pro-

vides the molecules with the electrical charge necessary to be detected. In MSI,

the ionization source stage has also the function of extracting the molecules from

the tissue section. Three techniques are mainly employed to achieve the ion-

ization in MSI: matrix assisted laser desorption ionization (MALDI), secondary

ion mass spectrometry (SIMS) and desorption electrospray ionization (DESI) [9].

In MALDI, an organic matrix is deposited over the tissue section to promote the

ionization process. Then a laser is shot at each defined raster position till the com-

plete sample is acquired. The laser is the responsible of transmitting the ionization
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energy to the sample, thus the ionization process is known as laser desorption ion-

ization (LDI) [9]. MALDI is currently the most common ionization method used

in MSI since the laser focus can be precisely adjusted to provide a high spatial

resolution. Recently, alternative materials have been studied as a replacement

of the organic matrix in order to improve the ionization characteristics for some

specific application. Many of these organic matrix alternatives are focused on the

ionization of the lowest mass range (<1500 Da). Organic matrices are known to

generate abundant mass peaks in this area that can interfere with the biological

sample signals. Some of these techniques are based on porous silicon surfaces [10].

Other strategies are based on the controlled deposition of metal or metal oxides

nanolayers [11, 12, 13]. Nevertheless, the goal of these matrix-free methods is

to promote an efficient LDI process for low weight compounds minimizing any

possible interference.

SIMS uses high energy primary ions as Ar+ , Ga+ or In+, to strike the sample

surface. When the molecular beam hits the sample surface, a collision cascade

transfers the energy of primary ions to the molecules over the surface. Besides,

SIMS can perform MSI acquisitions directly on the tissue section without any

sample preparation [9, 14]. The mass range of this technique is limited to >1000 Da

because extensive fragmentation occurs since the energy of the primary ions must

be relatively high. Nevertheless, it is possible to extend the analyzed mass range

using MALDI organic matrices [9]. These primary ions can be precisely focused

to a defined raster, which allows the acquisition of ultra-high lateral resolution

MSI datasets. Therefore, SIMS is capable of achieving a lateral resolution higher

than MALDI. Lateral resolutions in the submicron range are possible with SIMS

[6, 14].

DESI is carried out by spraying solvent charged droplets directly onto the tissue

section. The impact of the charged droplets with the sample is capable to trigger

the desorption process of the analytes [9, 14]. In contraposition to other ionization

techniques, DESI operates at ambient pressure and no organic matrix or ionization

material is needed. This simplifies the sample preparation allowing the use of DESI

in vivo. Nevertheless, DESI cannot achieve the high lateral resolutions which

MALDI and SIMS are capable of, since the focalization of the laser or primary ion

beams cannot be matched with a solvent sprayer [9, 14].

Independently of the used ionization technique, the achievable lateral resolu-

tion of any MSI experiment is far less than the resolution obtained by classical

7
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histology through microscopy. This means that MSI cannot replace current his-

tological techniques. MSI just provides an alternative strategy to obtain detailed

chemical information from the tissue. Besides, the task of a hystopatologist is still

necessary in MSI since all morphological structures in the tissue need an expert

interpretation.

1.3 Spatial Metabolomics

Metabolomics is the field in the “omics” sciences that studies the interaction of

small molecules in biological matrices. These small molecules (< 1500 Da) are

known a “metabolites” and are the intermediates and products of the metabolism.

Metabolites are involved in a diversity of cellular functions, including cell energet-

ics, inflammation, signaling, as well as building blocks of structural biopolymers

such as proteins and DNA [15]. Aspects as disease, nutrition or environmental

factors are able to influence the endogenous metabolites. Every living organism is

capable of altering its metabolism in order to compensate for such influence. The

study of these metabolites changes may provide a comprehensive understanding

of the phenotype of a biological system.

The metabolome is considered to be in the lowest layer of the “omics cascade”

[16]. In the upper layers, genomics, transcriptomics and proteomics are responsible

of a global or holistic study of genes and proteins. These layers are subject to

epigenetic regulation and post-translational modifications [16]. However, it is not

possible to obtain a complete understanding of a biological system using just the

upper layers because the phenotype information is always relevant. Metabolites

serve as substrates and products of enzymatic reactions, and are influenced by gene

and environmental factors, providing a bridge between genotype and phenotype

[17]. Therefore, metabolomics is the lacking part of the big picture that will allow

a comprehensive understanding of a biological system.

The two mainly used analytical platforms in metabolomics are mass spectrom-

etry (MS) and nuclear magnetic resonance spectroscopy (NMR). The character-

istics of these two techniques are often combined to increase the number of de-

tected metabolites. MS is commonly coupled to a gas or liquid chromatography

to provide a better compound separation before the ions reach the spectrometer

detector. MS is a high sensitive technique that is suitable for the detection of

hundreds of metabolites. In the other hand, NMR is a quantitative, repetitive,

8
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reproducible and very robust technique but is not capable of detecting metabolites

at low concentrations.

Two different approaches are used in metabolomics studies: targeted and untar-

geted. In targeted metabolomics, a hypothesis is established in the experimental

design. Here, a small number of metabolites are measured and quantified [18]. The

targeted approach simplifies the workflow since a minimal effort and resources are

required to profile these specific metabolites. On the contrary, the untargeted

methods are aimed to simultaneously measure as many metabolites as possible

from the biological samples without bias [16]. This metabolomics approach is

used for hypothesis generation and biomarker discoveries. Here, two or more sam-

ple groups (i.e. healthy vs. diseases) are compared to obtain the metabolites that

are relevant to distinguish between the experimental conditions.

Metabolomics and histopathology are able to study a tissue in great detail.

However, the traditional metabolomics analytical platforms are not able to provide

chemical information correlated with tissue morphology. The concept of spatial

metabolomics is related to obtaining metabolomics information spatially correlated

with the tissue morphological structures. Various experimental technologies are

suitable to perform spatial metabolomics acquisition. Infrared (IR) spectroscopy

and RAMAN spectroscopy are two well-known techniques that are able to obtain

very high lateral resolution images of molecular signatures. However, in both cases

the low spectral resolution makes it almost impossible to obtain enough chemical

information to conduct a metabolomics study. In contrast, MSI technologies pro-

vide a suitable platform for the full development of spatial metabolomics. MSI

is able to obtain rich metabolic information directly from a tissue section with

high lateral resolution. As described above, three main ionization techniques ex-

ist for MSI: MALDI, SIMS and DESI. However, this work is focused on MALDI

instruments because it is the available MSI platform in our laboratory and it

is able to acquire low mass range spectra with a good balance between lateral

resolution and fragmentation ratio. The experimental workflow to conduct a spa-

tial metabolomics experiment using MALDI instruments starts with the sample

preparation procedure. First, the tissue is cut into thin sections (ca. 10 μm) using

a cryostat. Then, the tissue sections are mounted over a conductive indium-tin

oxide-coated (ITO) glass slide and dried in a desiccator for a few minutes. When

ready, the sample is coated with an organic matrix or some other material to pro-

mote the LDI process. Only after these steps is when the sample is placed in the

9
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MALDI spectrometer to acquire the MS spectra directly over the tissue surface

inside a defined raster. Lastly, the recorded spectral data is processed using man-

ual ion images exploration or advanced statistical analysis tools. This workflow

is explained with more detail in chapter 2 and summarized in Fig. 2.1. A stan-

dardized workflow to obtain metabolomics MS images is currently not available

because there are still many experimental difficulties to be addressed. This opens

up a new field of study consisting in the improvement of MSI technologies to make

them suitable for direct metabolomics analysis of tissue sections.

1.4 Thesis motivation and objectives

The work presented in this thesis is the result of the research carried out in the

Signal Processing for Omics Sciences (SIPOMICS) group. SIPOMICS is a research

group located in the Department of Electronic, Electrical and Automation Engi-

neering (DEEEA) at the Rovira i Virgili University (URV), and the Metabolomics

Platform (www.metabolomicsplatform.com). The Metabolomics Platform is part

of the Pere Virgili Health Research Institute (IISPV) and CIBER of Diabetes and

Metabolic Diseases (CIBERDEM).

This thesis is the first one carried out at the SIPOMICS group in the field

of mass spectrometry imaging. The main goal was to provide the knowledge to

allow the Metabolomics Platform to perform metabolomics studies directly onto

tissue sections. Since our research group is focused in metabolomics, the first

challenge to address consists in improving the MS imaging acquisition of the lower

m/z range. Therefore, it is necessary to develop and optimize an experimental

workflow capable of acquiring metabolomics MSI data. Once the spectral data has

been acquired the next step is to perform the data analysis to extract biologically

relevant information. However, the generated data from the MSI experiments

tends to be larger than most computers memory. Hence, it can be considered big

data. This hinders the data analysis because most of the available software tools

will not be able to process such amount of information. Therefore, advanced data

analysis strategies must be developed to process the obtained MSI information.

In view of the foregoing, the objectives of this thesis are:

1. Develop and optimize an experimental workflow to acquire metabolomics MS

images with high lateral resolution and low background signal interferences.

This, will be based on gold nano-layers deposited by sputtering.
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2. Develop and implement a complete MSI pre-processing workflow able to

compensate for experimental variability, enhance mass accuracy and reduce

the size of the data retaining the relevant information.

3. Create a software package that includes the developed pre-processing al-

gorithms that is computationally efficient in memory footprint and multi-

threading processing.

The first objective of obtaining MSI data to perform metabolomics studies is

related to the capability of acquiring the lower m/z range with a high reliabil-

ity. This work is focused on the optimization of the LDI process of low weight

molecules because a MALDI instrument is used. When a mass range below m/z

1000 is acquired, an abundant number of peaks from the organic matrix material

are detected in classical MALDI. The matrix clusters peaks difficult the process of

metabolite identification and the further data analysis [19]. Moreover, the use of a

sprayer system to deposit the organic matrix over the tissue section is prone to pro-

voke compound diffusion since matrix is mixed with an organic solvent [20]. This

effect reduces the lateral resolution of the recorded MS images. Matrix sublima-

tion methods have been proposed as an alternative deposition procedure to avoid

the compound lateral diffusion. However, this strategy is not able to reduce the

number of detected matrix cluster peaks. Recently, metal layers deposited using a

sputtering system have been introduced as an alternative to organic matrices [12,

13]. Previous expertise already existed in the nanotechnology and nanomaterial

fields in the research group were this thesis has been executed. This allowed a fast

adoption of the sputtering technology as a suitable alternative to organic matrices

for MSI application. The combination of metal nanoparticles with the sputtering

deposition provided a reliable methodology for the acquisition of metabolomics

MSI data. The MS spectra recorded using such sputter deposited layers display

very few and controlled background signals plus the availability to acquire ultra-

high lateral resolution MS images.

The second objective of this thesis is related with the data analysis of the huge

data produced in every MSI experiment. A single MSI acquisition can easily

produce various gigabytes (GB) of raw data because thousands of pixels are usu-

ally obtained and each pixel contains a complete MS spectrum with thousands of

sampling points. Moreover, a complete experiment usually involves various tissue

samples that must be compared. Dealing with such amount of data hinders the

process of extracting relevant biological information. Most of MSI experiments
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are based on a targeted approach where a software tool is used to reconstruct the

images of the ions that are being studied. In some cases, data is explored manually

to locate the ions that are significant between each case of study. However, this

tedious procedure is not able to develop the full potential of MSI. In the other

hand, untargeted data analysis strategies can be used to select statistically signif-

icant ions between regions of interest in an automated way. Nevertheless, in most

MSI experiments it is not possible to apply the untargeted approach due to the

size of the raw data and the difficulty to select the relevant ions in a tissue image,

where the ions concentrations varies pixel-to-pixel. The second objective of this

thesis is to develop and implement a data reduction strategy to reduce the size of

the data preserving the relevant information. Besides the size of the MSI data, the

experimental variation must be considered as a factor that hampers the data anal-

ysis. The experimental variation is reflected in the data in a manner that makes

the comparison of various m/z features across various samples a challenging task.

The developed data reduction strategy must provide a MS spectra pre-processing

workflow able to reduce this experimental variability. Such variability is displayed

in the data as pixel-to-pixel intensity variations and mass misalignment. Inten-

sity normalization routines have been implemented to improve the first type of

variability. The mass misalignment problem is complex to address since many

experimental factors are involved in mass accuracy degradation. Nevertheless, a

novel automated spectral mass alignment algorithm is presented in this thesis.

The developed spectral alignment strategy allowed us to calibrate the complete

MSI dataset with high confidence. Moreover, the metal cluster peaks of our sput-

tered layer used to promote the LDI process have been identified and used as mass

calibration references throughout the complete m/z range [12, 13].

The third objective consists in the development of a set of two software packages

for the R platform (www.r-project.org). The packages include a complete MSI data

visualization and pre-processing workflow. These tools provide all the facilities to

handle MSI data larger than the computer’s RAM memory in a user friendly

manner. The raw data management approach is based on keeping all the MS

information in the computer’s hard disk drive and only loading small chunks of

data to memory each time it is needed. Following this procedure, a complete pre-

processing pipeline is executed to construct a peak matrix that discards the noise

and retains only the informative parts of each MSI dataset. The resulting peak

matrix is a robust and reduced representation of the MSI data that can be easily
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fitted into computer’s memory. This enables the possibility of using all available

algorithms for untargeted analysis to be used in MSI.

R language is the chosen programing platform to develop the software pack-

ages produced in this thesis. This decision was made because R is a completely

open-source solution that is very popular in bioinformatics sciences. Moreover,

many R packages have been released to address different statistical problems. R

environment has demonstrated to be a reliable platform for MS data analysis and

metabolomics. However, R language does not allow a finer control over memory

nor multithreading execution. For this reason, the most computationally intense

routines were written in C++ which is a well-known programming language to

provide a complete control over memory and parallel (multithreated) execution.

All the developed software is released under the terms of the general public license

(GPL), an open-source license to facilitate the distribution and the adoption of

the developed software in the MSI community.

1.5 Organization of the document

This thesis is divided in seven chapters which consist in this general introduc-

tion, the work that was published or submitted as scientific articles and a final

discussion. The chapters have been ordered according to the goals of the thesis.

First, the experimental aspects are described, and only then the data processing

approach, techniques and their functionality is presented.

Chapter 1 contains the general introduction to MSI, its histological background,

and the organization of this document. Chapter 2 follows the introduction and

continues elaborating a bit more on the state of the art of the signal processing

and the bioinformatics tools for MSI. In this second chapter, the MSI experiment

is reviewed to then explain the commonly used processing strategies and which

problems are addressed in each processing stage. Chapter 2 also includes a review

of the software tools previously available to the work done in this thesis. Actually,

chapter 2 is an already published review article in the journal Mass Spectrometry

Reviews. Chapter 3 contains a submitted article which describes the experimental

workflow we have designed to acquire metabolomics MSI data. Here, a novel

procedure used to optimize a sputtered gold nano-layer for MSI is described. A

nano-layer characterization and an application example using a mouse brain tissue

are provided as well.
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The second and the third objectives of this thesis are elaborated in chapters 4,

5 and 6 were the developed software is explained. Chapter 4 contains a published

article in the Bioinformatics journal which presents the first R package developed

during this thesis: rMSI. The rMSI package was the first MSI tool able to manage

MSI datasets larger than computer’s memory in an R session. rMSI also includes

a graphical user interface which enables the data exploration in a user-friendly

manner. Chapter 5 contains a submitted article that describes the strategies de-

veloped to improve the mass measurement accuracy in both, the spectral data and

the processed peak matrix. Here, a novel spectral algorithm and fast peak detec-

tion methodology are presented. Moreover, a sputtered silver-gold nano-layer is

introduced as a reliable approach to study mass measurement accuracy through-

out the mass range m/z 400 to 1200. Chapter 6 contains a submitted article which

presents the second developed R package in this thesis: rMSIproc. This package

is the complement of the previously released rMSI package and is designed to take

advantage of the rMSI data management strategy. The combination of these two

packages have demonstrated to be a reliable platform for MSI data processing in

R. FTICR acquired datasets with data sizes up to 200 GB have been tested and

successfully processed using this approach.

Lastly, chapter 7 contains a final discussion which includes a general conclusion

and the future work perspectives to continue improving MSI for metabolomics and

the associated data analysis with an open-source philosophy.
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Chapter 2

Signal pre-processing, multivariate analysis and software tools for

MA(LDI)-TOF mass spectrometry imaging for biological applications
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2.1 Abstract

Mass spectrometry imaging (MSI) is a label-free analytical technique capable of

molecularly characterizing biological samples, including tissues and cell lines. The

constant development of analytical instrumentation and strategies over the pre-

vious decade makes MSI a key tool in clinical research. Nevertheless, most MSI

studies are limited to targeted analysis or the mere visualization of a few molecular

species (proteins, peptides, metabolites, or lipids) in a region of interest without

fully exploiting the possibilities inherent in the MSI technique, such as tissue clas-

sification and segmentation or the identification of relevant biomarkers from an

untargeted approach. MSI data processing is challenging due to several factors.

The large volume of mass spectra involved in a MSI experiment makes choosing

the correct computational strategies critical. Furthermore, pixel to pixel variation

inherent in the technique makes choosing the correct pre-processing steps critical.

The primary aim of this review was to provide an overview of the data-processing

steps and tools that can be applied to an MSI experiment, from pre-processing the

raw data to the more advanced strategies for image visualization and segmentation.

This review is particularly aimed at researchers performing MSI experiments and

who are interested in incorporating new data-processing features, improving their

computational strategy, and/or desire access to data-processing tools currently

available.

2.2 Introduction

In recent years, mass spectrometry imaging (MSI), also called imaging mass spec-

trometry (IMS), has become a key analytical technique in proteomics, lipidomics,

metabolomics [1] and related research fields, such as drug discovery and toxicol-

ogy [2, 3]. MSI provides molecule-specific images that enable correlation of the

spatial occurrence of target molecules and their abundance by direct analysis of

biological samples without labeling or staining. To date, hundreds of biological

and clinical MSI applications can be found in the literature detailing tissue-based

disease classification, discovery of phenotypic intra-tumor heterogeneity, therapy-

response prediction and prognosis, and drug development in the fields of oncology,

pathology, diagnostics, and surgery [4, 5, 6].

Among analytical strategies used for MSI, matrix-assisted laser desorption/ionization

mass spectrometry (MALDI-TOF) [7, 8] is the most commonly used technique due
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to its simplicity, soft ionization, fast analysis, high throughput, and the versatil-

ity and selectivity ensured by a wide range of successfully used organic matrices.

Furthermore, the recent developments in MALDI-TOF instrumentation allow for

high-throughput acquisition of high-resolution MS images, revealing MSI as a po-

tential tool for diagnostics and clinical applications.

Nevertheless, MSI applications are sometimes limited by the complexity of data

processing due, among other factors, to the large amount of raw data generated,

peak misalignment during image acquisition, or adduct formation and/or molecule

fragmentation produced by the desorption/ionization processes. Therefore, the

aim of this review was to provide an overview of the data processing steps necessary

for MS data treatment and visualization of MS images in proteomics, lipidomics,

or metabolomics, as well as the processing tools and software currently available.

This review consists of seven sections that include an introduction, a brief de-

scription of the MSI workflow, data pre-processing steps, multivariate analysis,

data handling strategies and considerations, currently available software packages,

and concluding remarks. In 2012, two reviews concerning the data processing of

MALDI-based MSI were published and mainly focused on proteomics applications

[9, 10]. More recently, another review was published focusing on strategies for data

mining and visualization of 3D images [11]. Our review extends the information

provided in these previous works by both collecting and reporting on the most

updated bibliography in this field and specifically addressing aspects not reviewed

previously, such as data formats and other computational considerations, as well

as the currently available software tools and the specific problems derived from

the use of matrix-free methods currently employed in metabolomics applications.

Although, this review focuses on the data processing challenges of MALDI-MS

and matrix-free LDI-MS in proteomics, lipidomics, and metabolomics applications,

the computational and statistical strategies discussed here can generally be applied

to other MSI approaches. We hope with this review to encourage researchers cur-

rently performing MSI experiments to incorporate new data processing features to

either improve their computational strategies or broaden their knowledge regard-

ing the data processing tools currently available.
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2.3 MSI workflow

A typical MSI workflow has three main steps: sample preparation, MS acquisition,

and data processing and visualization. As an example, Fig. 2.1 shows a typical

MALDI-MS experimental workflow. In this section, we review the first two steps of

the workflow and their influence on the subsequent data processing step. Further

information regarding MALDI-MS experiments and their basis can be found in

recent reviews [1, 8].

Sample handling and preparation is key to optimizing sensitivity and spatial

resolution [12, 8], and parameters, such as tissue-section thickness (generally 3–20

μm), must be optimized for the analytical platform selected for data acquisition.

Biological tissues are usually snap frozen and stored at −80°C immediately after

collection. MSI measurement of tissues fixed in paraffin- or alcohol-embedding

media is not straightforward, because the molecules of the fixing material inter-

fere and can cause contamination and ion suppression [13, 12, 8]. However, it

was recently demonstrated that it is possible to perform MSI experiments from

formalin-fixed and paraffin-embedded clinical tissue samples [14].

In MALDI-MS-based MSI, an organic matrix is deposited over the tissue to

assist in ionization. Standard matrix-deposition techniques consisting of depo-

sition by the spraying of organic matrices (i.e., α-cyano-4-hydroxycinnamic acid,

2,5-dihydroxybenzoic acid, etc.) could lead to metabolite delocalization (com-

promising the spatial resolution) and the formation of heterogeneities that cause

unexpected variations in signal intensities and background noise. These affect

biological interpretation of the results and determine the application of specific

data-processing algorithms. Matrix effects resulting from ionization of the matrix

compounds are also common in MALDI-MS experiments and interfere and sup-

press MS signals in the m/z region <1000 Da, which is the common m/z region

in metabolomics experiments. Nevertheless, several strategies were recently de-

veloped to minimize analyte delocalization and improve sensitivity and imaging

spatial resolution [15, 16] and overcome interference from matrix peaks [17, 18].

Matrix-free LDI-MS platforms, such as surface-assisted laser/desorption ionization

(SALDI) [18, 19, 20] or nanostructure-initiator mass spectrometry (NIMS) [21],

have recently emerged as valuable alternatives, especially for the analysis of low-

molecular-weight metabolites, offering minimal analyte delocalization and fewer

background peaks <1000 Da. Furthermore, the recent application of metal and

metal oxide nanoparticles and nanolayers to MSI (frequently called nano-PALDI-
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MSI) is opening up a wide range of possible approaches in this field. The main

advantages of this technique are the few interfering peaks in the low m/z area of the

metal nanolayers, the high homogeneity of the surfaces, and high spatial resolution

(down to 5 μm and only limited by the diameter of the laser) [22]. The main draw-

back is the possible formation of metal and metal oxide adducts of the metabolites

with the different isotopic forms of the metals, which can make metabolite iden-

tification more difficult. Nevertheless, the characteristic metal peaks and clusters

can be used for internal mass calibration throughout the various m/z regions of

the obtained spectrum [22].

Following sample preparation, an ultraviolet (UV) or infrared (IR) laser is used

in MA(LDI)-MS to desorb and ionize the molecules. The mechanisms involved

in desorption/ionization are still not fully understood and depend upon the LDI

approach [1, 19, 23, 24, 25]. The spatial resolution of the MS image is determined

by the matrix-crystal size, the possible lateral compound diffusion occurring along

the matrix-deposition process, and the laser-beam diameter of a specific instrument

(normally between 10 μm and 250 μm [8]). One strategy to reach spatial resolutions

below the beam diameter involves use of an oversampling method [8]. Although at

low spatial resolutions smaller tissue regions can be molecularly characterized, the

acquisition time increases and the quality of the MSI worsens due to the abundance

of lower MS peaks in the acquired spectra. Furthermore, lower resolutions generate

higher volumes of data and, therefore, the need of sophisticated computational

strategies. As an example of acquisition time, a laser operating at 2 KHz can

perform a simple pixel measurement within 1 s, enabling acquisition of a 1 cm

× 1 cm tissue sample over 1 h at a lateral resolution of 100 μm. The increase

of the lateral resolution by a factor of two causes a 4-fold increase in acquisition

time. Nevertheless, it is worth mentioning that recent developments in MALDI

instruments could significantly decrease acquisition time. The recently released

Bruker RapifleX MALDI Tissuetyper spectrometer (Bruker Daltonics, Billerica,

MA, USA) is capable of acquiring 50 pixels/s, resulting in <2-min data acquisition

for a 1 cm × 1 cm MS image. Therefore, the spatial resolution of each experiment

must be fixed as a compromise between the abovementioned factors.

The MS platform most suitable for each application depends upon the sensi-

tivity required, dynamic range (the range of analyte concentration that can be

detected), mass accuracy, and resolving power. Time of flight (TOF) analyzers

are the most commonly used detectors, especially in MALDI applications for pro-
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teomics [8]. The most common type of detector is the axial TOF spectrometer,

which provides a mass-accuracy error between 10 ppm and 20 ppm due to the ini-

tial velocity/drift of the generated ions. The addition of an ion reflector together

with delayed ion extraction helps to compensate for this effect, which can result

from non-flat-sample morphology. Using this configuration, mass accuracies of 5

ppm to 10 ppm can be achieved. Modern MALDI spectrometers are equipped

with an orthogonal reflector capable of deflecting the ions perpendicular to the

original direction of motion, thereby eliminating the high initial axial-velocity dis-

tribution of the plume. Mass errors <10 ppm are common with this configuration.

If higher mass resolution is needed, Fourier transform orbitrap (FT-orbitrap) and

Fourier transform ion cyclotron resonance (FT-ICR) mass spectrometers are avail-

able, with mass errors <1 ppm at m/z 300 [26], which makes it easier to identify

compounds by their exact mass. Tandem mass spectrometry (MS/MS), a feature

commonly found in MS detectors, also increases selectivity and improves identi-

fication power. MS-acquisition ranges differ depending on the MSI application,

from masses <1000 Da for metabolomics to thousands of Da for proteomics.

Figure 2.1: A typical MALDI-MS experiment workflow. In the sample-preparation stage, tissue is
sectioned, fixed on indium tin oxide glass slides, and coated with matrix. MS spectra are then acquired
using a MALDI instrument. Raw spectra are preprocessed, single-ion images are visualized, and a
segmented image is displayed.
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2.4 Image pre-processing

The pre-processing stage is fundamental for any MSI experiment, because the

quality of the MS images depends largely upon the appropriateness of the previ-

ous pre-processing operations. The experimental variability in mass spectrometry

derives from sample-preparation procedures and MAL(LDI)-MS acquisition. This

variability is reflected in the raw data by introducing chemical noise, variations in

the intensity and exact mass of each MS peak. In the case of large samples or high-

resolution images, the overall MS spectra intensities can drift during acquisition

due to instrumental reasons, such as the deposition of debris on the MS-ionization

source [9]. As reference for the magnitude of this drift, we can observe ~30% in-

tensity reduction during the acquisition of a MS image of >8000 pixels acquired

at 500 shots per pixel using a commercial MALDI-TOF spectrometer.

The purpose of pre-processing is to improve image reconstruction by reducing

the unwanted effects introduced by experimental variation and sample prepara-

tion. A carefully designed pre-processing workflow also helps the peak-picking

procedure, the process of converting a mass spectrum into a list of relevant fea-

tures for further data analysis and biological interpretation, making the statistical

analysis more robust and reliable. In a typical MSI-pre-processing pipeline, the

common algorithms are as follows: baseline correction, noise reduction, spectral

alignment, normalization, peak picking, binning, and removal of matrix peaks. The

order of the pre-processing steps is not a fixed sequence and should be adapted to

accommodate the requirements of each application. Fig. 2.2 illustrates each of the

pre-processing steps described below using simulated data. Some of these steps

may be omitted or computed in a different order, depending on the experiment.

Table 2.1 in the appendix summarizes the pre-processing methods used to date for

MSI. Notably, most data-processing methods are focused on single pixel/spectrum

processing and, therefore, can be also used in other MS applications.

2.4.1 Baseline correction

In MS, the baseline is the smooth curve offsetting the actual compound peaks

throughout the spectrum. This signal is clearly identifiable and interferes in the

base of the MS peaks, especially on those with low intensity. The effect of baseline

can be observed by comparing the RAW spectra in Fig. 2.2A with the baseline-

corrected spectra in Fig. 2.2B. Several baseline-correction algorithms can be used
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Figure 2.2: Representation of MSI-pre-processing steps (figures created with simulated data). A) RAW
MS spectra before processing. B) MS spectra after baseline correction. The baseline was estimated
and then subtracted using the Top-Hat method. C) Spectral binning used to reduce the number of
data points. This use of binning is generally performed as one of the first pre-processing steps to take
advantage of data reduction. Here each data point is mapped to nearest mass bin represented as a bar in
the graphic. D) Noise reduction using a Savitzky–Golay smoothing routine. The spectral random noise
is drastically reduced and the peaks shape is retained. E) Mass alignment and calibration that allow
correction of possible mass drifts. Here, some peaks were identified as reference compounds and used to
calculate m/z shifts and minimize the drift. F) Intensity normalization applied to reduce variability. All
spectra are mapped to a similar intensity scale using TIC normalization. G) Peak picking that reduces
each spectrum to a list of MS peaks. Each peak list is represented here as a color line pointing to the
original peak location. Each detected peak retains information of: m/z, intensity and signal to noise ratio
(SNR). H) Peak binning applied immediately after peak picking. Binning is used after peak peaking to
eliminate slight mass shifts between the same detected compounds throughout all spectra. I) Matrix-peak
removal. Peaks known as matrix peaks are removed from the binned peak list.

to correct this effect. One of the most common algorithms is Top-Hat [27], which

applies a moving minimum (called an erosion filter) and subsequently a moving

maximum (called a dilation filter) to the intensity values. Another generic method

consists of fitting the baseline with a monotonic decay function and subtracting

it from the spectra. Källback et al. [28] compared three methods for baseline

estimation based on sliding windows [simple moving first quartile (SMQ1), sim-

ple moving average (SMA), and simple moving median (SMM)], concluding that

SMQ1 provided a better baseline correction with minimal peak deformation. An-

other approach based on peak detection was introduced for baseline correction

in the LIMPIC software package [29]. In this package, MS peaks obtained from

sample acquisition are detected and removed from the spectrum. The resulting

function is an approximation of the baseline profile. In this method, the peak-

detection threshold must be adjusted to obtain accurate baseline estimations. An-

other strategy for baseline correction consists of standardizing the intensity of

each spectrum in a defined mass range using statistical methods. This complex

27

UNIVERSITAT ROVIRA I VIRGILI 
DEVELOPMENT OF A COMPLETE ADVANCED COMPUTATIONAL WORKFLOW FOR HIGH-RESOLUTION LDI-MS METABOLOMICS IMAGING DATA PROCESSING AND VISUALIZATION 
Pere Ràfols Soler 
 



and powerful method provides an estimated baseline minimally affected by higher

peaks [30].

Baseline correction is generally performed prior to any other pre-processing step,

because most pre-processing stages take advantage of baseline-corrected spectra;

however, this could be generally avoided in metabolomics studies, because the

baseline curve is very low (<1000 Da). A visual inspection of the corrected spec-

trum to find the flattest resulting baseline is recommended for choosing the correct

baseline-compensation procedure. Therefore, the selection of a specific method de-

pends upon the characteristics of the acquired spectra [31].

2.4.2 Noise reduction

Noise is mixed into the spectra due to the random experimental variability as-

sociated with many factors, including biological noise, matrix or surface inhomo-

geneity, electronic fluctuations, or ionization effects. Fig. 2.2D shows that the

application of a noise-reduction algorithm attenuates the small random variations

In the spectra, thereby increasing spectra quality. The application of a noise-

reduction step is always recommended, because noise can interfere in most of the

subsequent data-analysis steps and, therefore, must generally be performed as

soon as possible in the pre-processing chain. The most common noise-reduction

technique is smoothing that removes the random variations in intensity from the

spectra without significant alteration of the actual signal peaks. There are nu-

merous smoothing algorithms, each of which has their own adjustable parameters.

Common smoothing techniques include moving-average windowing and low-pass

filtering. As previously stated, these methods are also useful for baseline estima-

tion, but are used for noise reduction with a different parameterization that does

not completely smooth signal peaks. A more sophisticated smoothing method is

the Savitzky-Golay polynomial approach, which preserves data shape [32]. An-

other completely different noise-reduction technique is based on a hard thresh-

old adjusted at a noise-level estimation [30]. This method is useful when spec-

trum shape must be maintained for high-intensity peaks, with possible loss of

low-intensity signals under the threshold.

A more robust alternative to smoothing is the application of de-noising methods

using neighboring pixels instead of simply processing isolated spectra (as is done

in common smoothing algorithms). These strategies may be especially useful to

reduce noise in MS images reconstructed from spectra with low-intensity peaks.
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Based on the assumption that peak intensity should not largely change in a local

domain, vector-valued median filtering and Markov random fields are also valid

strategies for noise reduction [33].

Spectra-smoothing methods are generally efficient to de-noise the signal for most

applications. Single-spectrum-smoothing algorithms require less computational

cost than approaches using information from neighbor pixels. Consequently, simple

smoothing techniques are often preferred, except for some specific applications as

mentioned.

2.4.3 Spectral alignment and mass calibration

Tissue-surface irregularities (or sample topography) in conjunction with spectrom-

eter drift originate through small dilatations/contractions of the flight tube in the

case of TOF detectors, with slight variations in high-voltage power sources pro-

ducing small and random mass shifts in the spectra [31, 34]. Pixel-to-pixel mass

shifts can degrade the reconstructed image and reduce the performance of sub-

sequent data-analysis methods; consequently, direct data analysis can easily lead

to erroneous peak detection due to mass variations at all raster positions. To

overcome these problems, a spectral-alignment algorithm is typically used in the

pre-processing pipeline. The spectral alignment consists of equalizing the mass

axis of each raster spot to obtain an internal coherency when peaks are com-

pared pixel to pixel. Fig. 2.2E illustrates spectra following an alignment stage.

Alignment algorithms work by comparing the peak distribution of an unaligned

spectrum, known as the test spectrum t(x), with a reference spectrum, r(x), that

contains the correct m/z information. The algorithm is designed to find the warp-

ing function, w(x), that minimizes the mass error of known peaks in t(x) after

applying the mass-axis transformation t(x+w(x)). The reference spectrum, r(x),

can be built using two main approaches: using actual m/z values from known

compounds (calibration) or calculated from the MS image itself (label-free).

Calibration involves the use of known peaks homogeneously distributed over the

tissue surface or using well-known endogenous molecules. To obtain an accurate

mass calibration, various known peaks must be selected as references covering the

m/z range of interest, because spectra misalignment often varies in a nonlinear

way. For example, in low-weight-compound studies using matrix-free approaches,

substrate background peaks can also be used to align the masses. This strategy

is accurate in the case of MSI using metal nanolayers, such as silver nanolayers,
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where metal peaks are distributed throughout the spectrum [22, 35].

Figure 2.3: Example of two alignment approaches using simulated data. A) Raw spectra without
alignment. B) Spectra aligned with a label-free technique. Here, all spectra share the same mass axis,
but the peak masses are inaccurate. C) Spectra aligned to internal standards (calibration). Reference-
compound peaks and its theoretical mass are represented as dashed lines.

Label or reference-free alignment strategies are based on the use of cross-correlations

between pixels to align biologically similar spectra. Label-free methods are based

on algorithms designed to detect repeated peaks throughout the dataset and use

this information to minimize the mass shifts. All spectra can be aligned to a

reference spectrum calculated as the average of various spectra or the spectrum

with the highest correlation coefficient of all the spectra in the dataset [36]. It is

also possible to align spectra without using any reference spectrum [34]. These

strategies are useful in cases where it is difficult to correctly detect the calibration

compounds at every raster position or where no reference compounds are used [37].

Label-free alignment can also be performed prior to mass calibration, enabling the

same calibration function to be applied to all pixels independently, regardless of

whether the calibrated compounds are found in a given pixel. This alignment

method is represented in Fig. 2.3, where raw spectra (Fig. 2.3A) are aligned
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to the same mass axis, but the masses are still not calibrated to their references

(Fig. 2.3B). In Fig. 2.3C, a mass calibration method is applied to previously

label-free-aligned spectra.

2.4.4 Normalization

Normalization is defined as the process of transforming the spectral intensity of

every pixel to a common intensity scale [31]. Normalization is a crucial step in over-

coming pixel-to-pixel intensity variability due to substrate inhomogeneity and/or

experimental drifts during acquisition. Fig. 2.2f shows the changes in relative

intensities of the different spectra when normalizing by the total ion count (TIC).

Despite using an appropriate normalization approach, artifacts can still be intro-

duced. Therefore, normalization might alter pixel relative-intensity distributions

in an undesired way. The most common and simplest method is normalization by

TIC, which assumes that an overall variation in the spectral intensity is associated

with the matrix distribution throughout the sample. However, this assumption is

not always true, because the concentrations of the tissue-detected compounds vary

according to the biological composition of every pixel. Therefore, in tissues with

clearly differentiated areas, such as brain samples, TIC normalization tends to

equalize the intensities of the biological regions, which leads to inaccurate image

reconstruction [38, 39]. A useful alternative could be to scale the intensities in

accordance with the TIC computed using the selected peaks after peak picking

or using a set of peaks relevant to the study [38]. In general, TIC normalization

should be preferred for untargeted analysis due to its implementation simplicity

and wide availability. However, in situations where tissue holes or “hot spots” are

present [9], TIC normalization can introduce side effects for further data analy-

sis, subsequently requiring exploration of other normalization strategies. Another

normalization method consists of replacing each peak intensity based on the signal-

to-noise ratio (SNR) estimated around a window [39]. This strategy assumes that

the analyte concentration is proportional to the SNR of the peak and not only

standardizes the intensity axis, but also compensates for the baseline noise. Nev-

ertheless, SNR does not take into account that the ionization efficiency is not

homogeneous throughout the tissue slice.

Advanced normalization algorithms based on statistical data analysis can im-

prove the results of untargeted data analysis. Normalization based on statistics

aims to compensate for the effect of experimental variance and minimize the influ-
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ence of biological information on the intensity scaling factor. Here, the rationale is

that the spatial distribution of variations in intensity associated with experimental

variance tends to be uncorrelated with biological-sample morphology. The most

simple statistical-normalization factor is probably the median of the intensities of

the peaks of interest [38]. This method calculates the normalization factor using

the selected peaks as input to compute the median. More complex normalization

approaches include histogram matching or probabilistic quotient normalization

(PQN), where spectra are scaled by a coefficient associated with the distance of

the median spectrum from each TIC spectrum. These methods are reportedly

more robust due to their compensation for acquisition artifacts and presentation

of better noise separation when multivariate methods are used [38]. As a success-

ful example of the application of statistics on normalization, Veselkov et al. [40]

introduced variance-stabilizing normalization (VSN), a logarithmic normalization

method that decreases much of the variance in high-intensity peaks and allows for

hyperspectral profiling of lipid signatures in colorectal cancer tissues.

Another side effect from normalization is the change in intensity of each ion,

which might exert a strong impact on reconstructed images, because different

normalization strategies can produce very different results and alter final image-

intensity distribution. Fig. 2.4 shows the effects of various normalization algo-

rithms on image reconstruction of three different ions. This MS image was acquired

using a sputtered-gold nanolayer over the tissue to promote ionization, but does

not provide any MS signal in the absence of tissue. Fig. 2.4A shows the images

associated with the data without any processing (RAW data). Fig. 2.4B shows

the effect of TIC normalization calculated as the sum of all intensities of each

RAW spectrum. In Fig. 2.4C, maximum-intensity normalization is used. Here,

the peak with the maximum-intensity value was used as the normalization factor,

and the most intense peak was assumed to be representative of the rest of the

spectrum intensities. Fig. 2.4D introduces a TIC-based normalization approach

designed to compensate for ionization-source degradation during MS acquisition.

Here, the produced images were very similar to the RAW version (Fig. 2.4A), but

exhibited a flat overall intensity variation across the entire image. Each normal-

ization strategy presented in Fig 2.4 produced different spatial distributions of the

ions, thereby confirming the relevance of selecting the appropriate normalization

strategy depending on experimental design.

When target-compound concentration requires quantification, normalization is
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performed relative to the peak intensity of a reference molecule deposited homo-

geneously over the sample. Usually an isotope-labeled compound is deposited on

tissue, and normalization is performed by dividing each spectrum by the labeled-

standard peak intensity [9]. Additionally, the tissue-extinction coefficient (TEC)

factor was introduced as a quotient of the intensity of a standard deposited with the

matrix either on or off of the tissue [41]. This coefficient evaluates the signals lost

due to ionization effects for a given molecule and can be used as a normalization

factor. Accurate quantification results were reported using TEC normalization

without using isotope-labeled compounds.

Figure 2.4: Comparison of the intensity maps for three ions (m/z 202, 844, and 849) from a sagittal
mouse brain section using various normalization approaches. The MS image has been acquired using
sputtered-gold nanoparticles to promote ionization and analyzed in a MALDI TOF/TOF UltrafleXtreme
instrument from Bruker Daltonics in a mass range from m/z 80 to 1000 using a raster size of 80 μm. A)
Raw data without performing any normalization. B) TIC normalization was computed as the sum of
all intensities in each spectrum. Pixels acquired outside of the tissue are removed from the normalized
image. Such pixels are detected, because they have a very low TIC (< the mean TIC minus one standard
deviation). C) Maximum normalization was calculated by dividing each spectrum by the intensity of its
maximum peak. Here, pixels acquired outside of the tissue are discarded using the same criterion as that
used for TIC normalization. D) AcqTIC is used to compensate for MALDI instrument ionization-source
degradation during acquisition. AcqTIC was calculated as TIC smoothed by the TIC of neighboring
pixels using a sliding window.

2.4.5 Peak picking and peak selection

Peak picking allows for the detection of peaks in a mass spectrum and provides

information about peak m/z, intensity, and quality. This process reduces a mass
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spectrum to a list of characteristics where only peak information is retained. Fig.

2.2G illustrates the peak-picking process, which involves retaining only peaks po-

sitions instead of the entire spectrum. The simplest approach for a peak-detection

algorithm consists of locating the zero crossings in the first derivative of the spec-

trum. However, this will result in significant mass errors due to factors that include

limitations of spectrometer resolution and noise in the data. More accurate peak

m/z values can be obtained using the peak shape to predict the actual m/z instead

of using only the most intense MS peak. Various methods were proposed to accu-

rately determine the peak shape. Källback et al. [28] detected the approximate

peak locations using the zero crossing of the spectrum first derivative. A cubic

interpolation was also applied around each peak area to determine the peak mass

more accurately. Alexandrov et al. [42] used a sequence of different algorithms.

First, they modeled each mass spectrum as a sequence of Dirac delta peaks con-

volved with a Gaussian kernel, followed by using the orthogonal matching-pursuit

(OMP) algorithm [43] to de-convolve the peaks. They then applied the maximum-

likelihood method consisting of fitting the spectrum contained in a sliding window

to a Gaussian shape [34].

The result of peak picking is an array-like data structure summarizing all of

the relevant features of the entire MS image. In this data array, each peak can

be considered as a variable and each pixel as an observation to perform further

processing.

2.4.6 Binning

Binning describes the process of reducing the number of points in the spectrum by

mapping neighbor m/z values into the same mass bin. Binning can be performed

in two different ways. In one case, binning is performed prior to peak picking,

and the mass bin size should be defined according the desired mass error. Using

this method, the data size can be dramatically reduced in order to successfully

execute demanding data-analysis algorithms. This binning approach is illustrated

in Fig. 2.2C, where the number of points on the spectra has been reduced. Fonville

et al. [38] used binning to test different normalization techniques under principal

components analysis (PCA). The drawback of this method is that some close peaks

derived from different compounds can be merged together, resulting in degradation

of the results from further data analysis.

A second type of binning is performed after peak picking. Here, the m/z of
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each peak is slightly adjusted to report exactly the same m/z for each detected

compound in all pixels (Fig. 2.2H). To achieve this, each peak mass is compared

with its neighbors through all pixels in a defined tolerance. The most represen-

tative mass is then used for all of the peaks expected to derive from the same

compound. This technique was successfully used to enhance mass resolution in

MALDI experiments [34]. However, the main drawback of this binning technique

is that spectra must be well aligned in order to enable selection of a tight bin

tolerance, resulting in the requirement for complex implementation processes.

2.4.7 Matrix-peak removal

In MALDI-MSI or LDI-MS spectra, the organic matrix, metal ions, or surface

compounds ionize with the molecules of the biological sample. Here, we discuss

the different strategies used to eliminate these matrix peaks. Such non-informative

peaks do not appear in all MSI applications, because these matrix signals are

commonly more intense in the low m/z range, and, therefore, this step is not

always required. In MSI applications where unwanted signals are strong, matrix-

peak removal may be beneficial, especially in the case of untargeted data analysis

and metabolomics studies where matrix signals have the most impact on low-mass

ranges.

Determining which peaks correspond to a matrix or have a biological origin can

be challenging. Some methods were developed for robust and automatic selection.

Fonville et al. [38] described two approaches for obtaining background-related

peaks. First, the signal acquired outside of the tissue (containing only matrix

peaks) is correlated using the signal acquired on the tissue (containing the matrix

plus biological peaks). These correlation factors are then used to retain uncor-

related variables that are defined as biologically relevant. Second, the variance

explained (VE) is used to determine which peaks constitute background signals,

because matrix-related signals should be homogeneously distributed over the entire

surface, leading to lower VE values. In another study, [37] identified background

peaks using multivariate analysis tools to manually draw regions of interest (ROIs)

inside and outside of tissue regions. In this respect, algorithms, such as PCA, can

determine which masses are associated with the tissue. Once matrix-related peaks

have been determined, they can be removed by deleting their corresponding vari-

ables in the peak list. To illustrate this, Fig. 2.2I shows removal of one of the

spectral peaks due to its origination for the matrix.
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2.5 Multivariate analysis of images

The most common and direct strategy in MSI consists of spatial visualization

of one ion or a small group of ions, each of which is assigned to a color code.

This strategy is especially useful for targeted analysis, with most commercial and

open-source programs including many functions for plotting images of the ions

of interest. However, this simple visualization strategy does not exploit the full

potential of MSI, such as biomarker discovery and identification, image cluster-

ing (or segmentation), histology driven image reconstruction, tissue classification,

and 3D-image reconstruction. To achieve all these objectives, multivariate meth-

ods that consider the full MS spectrum of each pixel as an intrinsic multivariate

problem are introduced here.

We have divided the discussion here into three sections. The first section cor-

responds to the multivariate analysis of images and it is also divided in to three

different approaches: supervised, using histological or microscopy images as a

reference; unsupervised, which does not require previous information about the

samples; and unsupervised strategies with further expert evaluation that combine

the information given by the histological images with unsupervised algorithms.

The second section focuses on 3D-image-reconstruction strategies, and the final

section describes the different uses of PCA, which is the most used multivariate

algorithm in MSI.

The up-to-date bibliography discussed here is also reviewed in the appendix Ta-

bles 2.2, 2.3 and 2.4. Notably, few papers attempt to identify the key ions involved

in cluster differentiation. Although this is an essential task in biomarker discovery

in proteomics, lipidomics, and metabolomics applications, the problems associated

with the generation of adduct ions, possible fragmentation of the molecular ions,

poor mass resolution of the TOF detectors (the most commonly used), and low

sensitivity of the MS/MS working mode makes this task difficult. To overcome

this, a common strategy is to identify the metabolites detected in the MSI exper-

iment by performing high-performance liquid chromatography MS analysis using

the same tissue sample [44].
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2.5.1 MS Image multivariate processing

Supervised strategies

Many studies have described MSI techniques involving hematoxylin and eosin

(H&E) staining or immunohistochemistry images [45]. These strategies are used

for tissue recognition and classification and for biomarker discovery. Many dif-

ferent algorithms, including random forest, support vector machines (SVM) [46],

PCA-discriminant analysis [47], recursive maximum-margin criterion (RMMC),

or artificial neural networks (ANN) [48], have been used to compare MSI and

histological images.

McCombie et al. [37] used compression algorithms (PCA, hierarchical cluster-

ing, k-means, and iterative self-organizing data analysis technique) in combina-

tion with a DA algorithm to maximize the spectral differences between two ROIs

in a brain section from an Alzheimer’s disease rat model. Results showed that

the multivariate methods were capable of extracting complex information from a

tissue section and that it was much easier to identify contrasting regions in an

image taken from a complete rat head. Genetic algorithms and SVMs were used

by [48] to differentiate prostatic tissues with and without cancer. Additionally,

an SVM was able to identify four distinctively overexpressed peaks, with overall

cross-validation, sensitivity, and specificity >85%.

[49] presented a new methodology for analyzing MSI datasets. The (Pearson)

correlation coefficient was calculated between images acquired in an experiment

with rat brain tissues to determine the correlation between ions. As a result,

an interesting correlation-map matrix was obtained that described distribution

similarities between 28 biomolecular ions. One important problem encountered in

this study was that the method was highly sensitive to background noise.

The output of random forest algorithms was used as a class-probability estimate

for classifying human breast cancer in mice models [33]. Using this approach, var-

ious regions (separate necrotic tissue, viable tumor, gelatin, tumor interface, and

glass/hole) were differentiated within and between samples with high sensitivity

rates (~90%) and positive predictive values (~85%).

ANN and SVM algorithms were used to differentiate HR2+ and HR2– regions

in breast cancer tissues [50]. The area under the curve calculated by receiver

operating characteristic analysis exhibited high sensitivity (83%) and specificity

(92%), and an overall accuracy of 89%. Furthermore, they discovered specific
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changes in protein/peptide expression (ion m/z 8404, identified as cysteine-rich

intestinal protein 1) that were strongly correlated with HER2 overexpression.

Recently, Veselkov et al. [40] reported interesting advances in MSI, including

automated algorithms for co-registration of histology and molecular images to aid

correlation of histological and biochemical features. In the same study, partial

least squares-discriminant analysis (PLS-DA) was used to extract tissue-specific

molecular patterns and maximize the variance between regions and minimize vari-

ance within regions. This enabled characterization of lipid signatures in tissue

regions surrounding colorectal cancer tissue. Fig. 2.5 shows the regions selected

from H&E-stained high-resolution optical images used to guide a segmentation

process in a desorption electrospray ionization (DESI)-MSI image. This strategy

is also widely used to compare case/control samples. For example, it was used to

compare brain samples from an Alzheimer’s disease mouse model from those of

controls [51]. In this study, ROIs from equivalent histological regions in both sam-

ples were selected, and PCA combining the pixels of the ROIs was used to identify

the metabolites differentially expressed between both samples as a consequence of

disease progression.

Recently, Caprioli and collaborators [52] established a new paradigm consisting

of the fusion of histological and MS images. They calculated a correlation function,

q, between microscopy and MS-image patterns in an attempt to create new images

that combined the high-spectral resolution of microscopy with the high molecular-

specificity of MSI.

Unsupervised Strategies

Unsupervised strategies were introduced in MS-image processing to disclose new

molecular and morphological information independently from classical histology.

These unsupervised strategies do not require prior information for clustering and

are capable of revealing several molecular fingerprints, making it ideal for analyz-

ing heterogeneous tissues and discovering biomarkers. Clinical research requires

independent methods for tissue evaluation beyond classical histology. In this sense,

the number of clinical studies attempting to correlate MS images with biological

and clinical variables increases annually, highlighting the need for clinically vali-

dated “molecular histology”. Clustering techniques, such as PCA, self-organizing

maps (SOMs) [51], probabilistic latent semantic analysis (pLSA), and k-means,

can be used in this respect.
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Figure 2.5: Image co-registration, feature co-selection, and multivariate analysis. A) Automatic image
transformation for accurate co-registration of biochemical and histological features. B) High-resolution
optical image of an H&E tissue section with regions of tumor (red boxes), muscle (green boxes), and
healthy mucosa (blue boxes) selected. Shown is aligned DESI-MSI image with automated co-selection of
pixels corresponding to defined regions of interest. C) Discriminatory analysis using the RMMC method
with leave region-out cross-validation for enhanced separation of tissue classes based on biochemistry
[taken from [40] and reprinted with permission of the National Academy of Sciences].

The segmentation of an image is the only technique that allows for visualiza-

tion of regions with similar molecular compositions that is essential for image

comparison and tissue characterization and recognition. One intrinsic problem in

unsupervised clustering comprises the difficulty in the determination of the opti-

mum number of clusters, the setting of parameters values for pixel clustering, and

validation of the results [9].

Cho et al. [53] used PCA to compare the lipid, peptide, and protein profiles

of various biological matrices, including MS images of tissue sections. They used

PCA loadings to select the ions differentiating biological regions in a tissue sample.

However, an important drawback of PCA is the negative and positive distributions

of the scores, making it difficult to interpret the results when applied to MSI.

To overcome this limitation, classical techniques, such as the discrete wavelet

transform (DWT) [54] algorithm for data compression and de-noising, was used

to solve information-technology problems based on its generating reduced sets of

wavelet coefficients. DWT was used for the MSI analysis of sagittal sections of

mouse brain [55]. In this study, the results of DWT application were proven to be
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more compact than those obtained using PCA. Another advantage of using DWT

is that it also retains mass-spectral information by means of the inverse DWT.

Another useful approach is pLSA, a statistical technique that allows for a low-

dimensional representation of the observed variables in terms of their affinity to

certain hidden variables. pLSA has been used to analyze MALDI-TOF images

[56] and provide better physical interpretations relative to those provided by PCA,

independent component analysis (ICA), and non-negative PARAFAC [57], because

the decomposed components can be directly interpreted as peak-intensity lists.

A SOM is a type of ANN that is trained using unsupervised learning to produce

a low-dimensional map (typically 2D) as a discretized representation of the input

space of the training samples. SOMs use a neighborhood function to preserve the

topological properties of the input space and are very attractive in MSI analysis.

Franceschi et al. [58] used SOMs to illustrate the spatial distribution of ions

associated with the regions generated for a dataset of apple slices, retaining the

key ions for further analysis and metabolite identification.

PCA-symbolic discriminant analysis based on hierarchical analysis was used by

[59] in a study of prostate cancer and was suitable for identifying and localizing

specific markers in human prostatic tissues.

Non-negative matrix factorization analysis (NMFA) was used to resolve glial

and neuronal cell-enriched brain regions [44]. Based on potassium adducts from

a set of 18 selected lipids, NMFA provided six components representing spectral

patterns associated with brain morphology. A method for hyperspectral visual-

ization was recently proposed [60], consisting of a RGB color-coding based on the

spectral characteristics of every pixel. The application of this strategy to various

data-reduction models [PCA, SOM, and t-distributed stochastic neighbor embed-

ding (a neural-network-based manifold-learning technique)] revealed its capabil-

ity for unsupervised creation of images exhibiting good correspondence between

molecular and anatomical information.

Unsupervised strategies with further expert evaluation

Unsupervised strategies with further expert evaluation strategies assess the re-

sults of unsupervised clustering by comparing them with histological images, even

though these images do not take part in the clustering process. [61] used hierarchi-

cal analysis coupled with PCA to identify several gastric cancer and non-neoplastic

mucosa tissues. Using this semi-supervised approach, classifications were based on
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pathological information about healthy and cancerous regions, thus opening av-

enues for the discovery of new cancer biomarkers.

Jones et al. [62] used various statistical methods (PCA, ICA, NMFA, pLSA, k-

means clustering, and hierarchical clustering) to automatically determine clusters

in datasets of intermediate-grade myxofibrosarcoma [62]. Results showed that

the MS images generated by the different methods exhibited similar distributions,

confirming the ability to discover different nodules in identical histology tumor

sections and suggesting its usefulness as a “molecular histology” technology.

In the field of multivariate approaches to clustering of MS images, it is worth

mentioning the work of T. Alexandrov’s research group. They used high-dimensional

discriminant clustering to analyze and interpret a larynx carcinoma section and

compared the automatic spatial-segmentation image obtained by MALDI-TOF

with H&E-stained microscopic images [42]. The molecular image enabled explo-

ration of tumor heterogeneity and pharmaceutical metabolism. The same research

group also proposed novel strategies for spatial segmentation that incorporated

spatial relationships between pixels into cluster regions, enabling pixels to be clus-

tered together with their neighbors [63]. Additionally, they evaluated the seg-

mentation method in a rat brain section and a neuroendocrine tumor section and

identified various tumor regions by discovering the anatomical structure and iden-

tifying functionally similar regions. In 2011, they created an algorithm to increase

the spatial resolution of the segmentation map by resizing the map by splitting

the pixels [64].

The algorithm for MSI analysis by semi-supervised segmentation (AMASS)

method was created to match pathological and segmented MS images [65] in order

to determine correspondences between the two images in a semi-supervised way.

The AMASS method has helped distinguish between anatomical regions in slices

of rat brain and enabled the discovery of peptide masses that are differentially

expressed between segmented regions. Recently, the same group published a new

segmentation method where m/z images are clustered on the basis of spectral

similarity in the pixels [66], enabling pixels exhibiting common ion patterns in

the spectra to be clustered together. Fig. 2.6 shows a rat brain segmented in 10

regions (Fig. 2.6C), a spectrum with the ions associated with every segment (Fig.

2.6B), and the spatial pattern of every segment (Fig. 2.6A).
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Figure 2.6: Results of the analysis of a MALDI imaging mass spectrometry dataset of a rat brain coronal
section, following the proposed approach based on clustering m/z images into 10 clusters according to
their spatial similarity. A) Cluster-averaged images represent detected spatial patterns. B) Dataset-
averaged spectrum with assignments of m/z values to the clusters. C) Visualization of m/z images in
the space of their two first principal components; one dot represents an m/z image, and dots are colored
according to their cluster assignments. D) Intracluster variances, where the numbers on the top of the
bars represent cluster sizes. E) Optical image of the section with anatomical annotation provided. Plots
A-B show the variety of the spatial patterns among m/z images and help understand how each m/z image
looks. Plots C and D help evaluate clustering results [taken from [66] and reprinted with permission from
ACS Publications].

2.5.2 3D-image reconstruction

3D-image reconstruction is performed using combinations of images obtained from

consecutive tissue slices. One of the main analytical challenges of 3D-image recon-

struction is that the extended period required to acquire all tissue sections needed

for constructing a full 3D image makes tissue degradation a critical issue. The

challenges, approaches, and future research directions associated with 3D images

obtained by serial sectioning and MALDI-MS have been extensively reviewed [67].

In 3D-image segmentation and reconstruction, the lack of efficient computational

algorithms for data reduction, processing, and visualization of large 3D datasets

constitutes a bottleneck. Xiong et al. [68] developed many algorithms for 3D

MSI, including data reduction, 2D data alignment, 3D visualization, and statistical

analysis for clustering. The morphological features of brain-tissue sections were

revealed using a self-organizing feature map ANN on MS images obtained by DESI-

MS. Of particular interest was the ability of this method to directly compare 3D

images acquired by MALDI-MS and magnetic resonance imaging (MRI), making

it possible to match information from morphological and molecular datasets.
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A new data-processing pipeline for analyzing and interpreting 3D MALDI-

MS images was proposed by Trede et al. [69], which was based on the edge-

preserving, de-noising methods developed for 2D-image segmentation, that im-

plements a hierarchical-clustering method called bisecting k-means. The recon-

structed 3D images consisted of 33 serial sections of mouse kidney at 3.5 μm

thickness acquired at a resolution of 50 μm. More than half a million spectra were

acquired, representing >50 GB of data. The computational pipeline showed the

anatomical structure of the kidney following correct alignment of the 2D sections,

as well as molecular-mass co-localization at major anatomical regions. The same

group used the PAXgene tissue container [70] and paraffin embedding to preserve

tissues, with results similar to those obtained on frozen samples. The same publi-

cation compared the MRI images of a mouse kidney with 3D MS images, enabling

reconstruction of the anatomical structure.

2.5.3 On the uses of PCA in MSI

PCA is likely the most often used algorithm in multivariate analysis and MSI appli-

cations. There are four primary uses of PCA in MSI analysis: exploratory analysis,

data compression, clustering-performance assessment in unsupervised strategies,

and biomarker identification. These four uses are illustrated in real examples in

Fig. 2.7.

1. Exploratory analysis. Exploratory analysis of MS images constitutes the

most frequent use of PCA. PCA can be used for the assessment of ionization-

source drift as shown in Fig. 2.7A. Another application of PCA could be

the detection of outlier pixels denoting possible hot-spots or holes in a tissue

section.

2. Data compression. The high dimensionality of the pixel spectra results

in files with large dimensionality in MSI experiments. A direct method for

data compression consists of transformation of the original variables into the

principal components of the PCA. In general, most of the variance can be

retained in five principal components. Fig. 2.7B depicts a RGB brain MSI

image considering the three principal components. The main problem associ-

ated with this data-compression approach is that the information concerning

individual MS ions is lost.
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3. PCA for clustering-performance assessment in unsupervised strate-

gies. The validation of unsupervised-clustering results is difficult due to the

lack of alternative methods for their comparison. The representation of the

pixels in a PCA, labeled according to the cluster to which they belong, of-

fers an estimation of clustering-algorithm efficacy. Generally, the higher the

pixel separation between clusters, the better the performance of the clus-

tering process. Fig. 2.7C shows an example of PCA used to validate an

in-house-developed clustering method.

4. Biomarker identification. In targeted strategies that use references of

histological (or microscopy) images, it is common to compare pixels between

different regions of interest (i.e., healthy and tumorous regions). The analysis

of the PCA loading is a powerful technique enabling identification of the most

influential ions in the pixel separation (Fig. 2.7D).

2.6 Data handling strategies and considerations

Because MSI data consists of a large collection of mass spectra corresponding

to the spatial location of each pixel of the tissue acquired, the amount of data

produced in this kind of experiment tends to be very large, and, therefore, the

computational strategies required to handle data processing are complex. In this

section, we have divided these strategies into three sections: data formatting,

processing requirements, and data-reduction strategies, including peak-picking,

feature-selection, and data-compression strategies.

2.6.1 Data formatting

As previously mentioned, for a single imaging experiment, a MALDI-MS instru-

ment generates a large amount of raw data. In most cases, the format used to

store the acquired data is determined by the instrument manufacturer and is only

compatible with a few supported software tools generally provided by the same

manufacturer. Such proprietary formats usually force the end user to adopt the

data-processing workflow defined by the software producer, limiting flexibility in

the data-analysis process. Fortunately, the main MSI open-data format imzML

[71], has started to become a standard used throughout all software platforms,

with almost every manufacturer currently offering some level of compatibility.
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Figure 2.7: Several uses of PCA in MSI experiments. PCA is computed using data from the same
experiment shown in Fig. 2.4. PCA was calculated from a peak list generated using alignment, calibration,
peak picking, and peak binning as pre-processing steps. A) PCA as a tool for exploratory MSI analysis.
Comparison of PCA performed before (left) and after (right) spectra normalization. We used AcqTIC
(described in Fig. 2.4D) to compensate for ionization-source degradation. In both cases, PC1 versus
PC2 is plotted, coloring each data point according to its order during acquisition. In PCA with no
normalization, PC1 is affected by intensity degradation during acquisition. In PCA after normalization,
data points do not follow the acquisition pattern compensating for intensity degradation effects. B) PCA
as a compression tool. An RGB image is built using PC1, PC2, and PC3 to encode red, green, and blue
colors, respectively. This RGB image shows how PCA is able to compress almost all of the information
using only three components, facilitating tissue-region localization. C) PCA used for image-segmentation
evaluation. In the clustered image (upper), the four larger clusters determined by an in-house image-
segmentation method are shown. Pixels are colored according their cluster. The PCA plot shows an
excellent separation between the pixels of different clusters, confirming the good performance of the
image-segmentation technique. D) PCA for biomarker-compound discovery. Two loadings contributing
to group separation are selected for illustration (ions m/z 868 and m/z 849) of the PCA plot. The
corresponding ion-intensity maps reveal a high degree of complementarity between the intensity of both
ions, indicating its influence in the identification of different morphological areas in brain tissue.

Public-domain data formats, such as plain-text files (ASCII), mzML [72], or

Analyze7.5 (included in the BioMap software), can be used to exchange MSI data.

However, these formats have not been developed specifically for MSI and, there-
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fore, present some limitations. In the case of plain text files (ASCII), the MS image

is converted into a collection of text files where each file contains a spectrum asso-

ciated with a raster spot. This strategy is very straightforward, but requires much

more hard-drive space as compared to that required for binary data formats, and

spectra take longer to parse. Additionally, the portability of MSI experiments to

ASCII files is not efficient, because this format does not support storage of meta-

data (i.e., the type of experiment) and other significant information, such as pixel

coordinates associated with each spectrum. The mzML [72] format improves the

situation by adding binary data formatting and enabling the storage of standard-

ized metadata. However, mzML was not created for MSI, and some important

information, such as raster positions, are not supported. Finally, the Analyze7.5

format was initially designed to store medical 3D images, but is also an export

option in some MSI-software packages. Analyze7.5 stores 2D information with

the raster positions, and 3D fields are populated with mass spectra. Analyze7.5

is optimal for storing MSI data in a compact way, but it presents limitations in

metadata storage, because it was not designed for MS applications. Moreover,

mass spectra intensities are often encoded in 16-bit integers when exporting to

Analyze7.5 in some software tools, reducing the accuracy of the original intensity

axis encoded in 32-bit integers by the instrument detector.

To overcome these limitations, an open standard has been developed under

the name imzML [71], which aims to become the global MSI reference-exchange

format. The openness refers to the data-formatting specification used, which is

fully detailed and available in open-access format that enable everyone to access

and implement imzML support. Recently, imzML began being incorporated as a

data-export option in many proprietary software packages, with some developers

creating third-party tools to facilitate data conversion to imzML. An example of

this effort to promote imzML is the “imzMLConverter” tool, which converts files

from mzML format to imzML [73].

2.6.2 Processing requirements

Data acquired from an imaging experiment represents a collection of spectra, the

size of which depends upon the scanned area, spatial resolution, and mass-spectra

range and resolution. Each spectrum consists of a vector of intensities generally

encoded in 32-bit integer numbers, and the number of data points in each spec-

trum depends upon the resolution of the spectrometer. Furthermore, the raw data
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size is proportional to the number of pixels in the image multiplied by the number

of points in each spectrum. As an example of TOF-acquired data, an MS image

at 100 pixels × 100 pixels with 50,000 points per spectrum consumes ~1.86 GB

(100 × 100 pixels × 50,000 points × 4 bytes) when it is fully loaded in computer

memory. Because pixels are arranged in a bi-dimensional space, an increase in

image size is expressed as a scan-area expansion leading to a dramatic amount

of memory usage. For instance, doubling the image size in X and Y dimensions

as in the previous example produces ~7.45 GB of data. This memory require-

ment indicates the physical limitations of computer memory, making it difficult

to efficiently handle such volumes of data. In addition to memory requirements,

processing time and CPU use must also be taken into consideration. The large

amounts of data produced by MSI experiments require heavy processing resources,

especially when complex multivariate statistical algorithms are used.

Most mathematical and statistical software packages use a load-and-process ap-

proach where all data is first loaded into random access memory (RAM) and

then processed with the desired algorithms. Although this approach makes it

easy to handle the data, it requires large quantities of RAM. Moreover, most of

these packages are based on interpreted languages that work in a mono-task ap-

proach. Due to these processing requirements, an interesting approach may be to

adopt parallel-processing approaches to benefit from modern multicore-processor

systems. However, many statistical libraries have not been designed to support

multithreading; therefore, parallelization is often not an out-of-the-box solution.

A possible strategy to overcome this could be splitting the data into fragments

and processing each one in a different instance of the mono-task program. This

approach was demonstrated as being effective when a processing platform with

many processors is available [74]. Nevertheless, some packages are available for

parallel processing, including those of R and MATLAB. These packages make the

multithreaded implementation of algorithms more straightforward. Processing

infrastructures that use graphics processing units have been tested with multi-

threaded algorithms, resulting in reduced computation times [75]. However, this

reduction occurs at the expense of flexibility and simplicity.

2.6.3 Data-reduction strategies

Due to the high computational resources required for processing large MS-image

datasets, data-reduction techniques play an important role. The goal of data re-
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duction is to extract relevant information from the dataset, while minimizing both

the memory footprint and information loss. A common approach involves peak

picking, which stores only spectral peaks in a reduced memory space. Following

peak picking, a feature-selection routine selects the most informative peaks, which

helps to reduce the data requiring further processing. However, peak picking is the

final step in the pre-processing chain; therefore, pre-processing actions performed

prior to this one will not benefit from this first-stage data reduction. Another

strategy involves peak binning after peak picking [31]. Once the mass resolution

of every peak is determined, all peaks under the mass tolerance are grouped into

the same bin. This represents an important reduction in the number of variables.

Each spectrum of an MS image contains peaks and a large collection of ze-

ros and noise; therefore, MSI data can be considered as very sparse. Leendert

A. Klerk’s research group took advantage of this to develop a method to handle

MSI data more efficiently using Harwell–Boeing-formatted matrices [76], where the

data matrix was stored in a minimal-memory layout that discarded empty values.

However, storing sparse matrices does not degrade the information, because data

is retained, and null data points are prevented from being stored. In this scenario,

the memory footprint is reduced further by associating each peak to a mass bin

in the TOF domain. This method is useful for reducing memory requirements

and computation time, although most of the algorithms found in commonly used

libraries are not designed to handle sparse matrices. Consequently, the main draw-

back of these data structures is that alternative algorithm implementations must

be written.

Methods of data compression based on raw-data transformations make the al-

gorithms currently used for MSI experiments more efficient (in terms of compu-

tational resources). Using these methods, the spectral data is transformed by

reducing dimensionality, but keeping the fundamental information. Processing is

then executed in this transformed space. The results must be transformed back

to the original space if understandable information is to be obtained. Using this

workflow, Van de Plas et al. [55] demonstrated that performing a DWT for each

spectrum effectively reduced the computational requirements when only larger

wavelet coefficients were retained. Furthermore, when a PCA was computed in

this reduced DWT-transformed space instead of using spectral data directly, the

results were much more accurate than those acquired in a native data space due

to the inherent dimensionality reduction achieved by DWT.
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Other strategies rely on dimensionality reduction algorithms, such as PCA [77].

These algorithms transform the original variables (i.e., ions) into new ones using

linear combinations of the original ions to maximize the variance using as few

variables as possible. Here, data reduction is accomplished by removing less-

significant variables from the dataset. An associated problem is that the new

variables are not directly associated with a particular molecule, making biomarker

discovery difficult.

Due to the complexity of processing data for a full MS image, manual segmen-

tation is often chosen. In this case, some ROIs are drawn following the manually

discovered patterns in an image. Spectra are then extracted from these images and

used as input for data processing. Despite the simplicity and reduced processing

time associated with this workflow, results are only obtained for some parts of the

image, rendering the rest of the dataset meaningless. However, this approach may

be useful for rapidly profiling well-known regions [28, 41].

2.7 MSI software packages

Recently, various software tools were developed to explore the data produced by

MSI instruments and obtain biological tissue information. MALDI-MS equipment

usually comes with dedicated software used to control acquisition and perform

common imaging tasks. However, in some cases, the software supplied by the

manufacturer might not fulfill all of the processing requirements. In such cases,

functionality can be increased by including extra software packages in the process-

ing chain. These packages can be obtained from the instrument manufacturer or

third-party providers. In this section, we classified the available software packages

according to their licensing agreements and features: commercial, freeware, and

open source. Commercial tools are private software packages generally developed

by companies and can only be used if a license is purchased. Freeware tools are also

private, but are under a licensing agreement that allows their use free of charge

in some situations. In contrast, an open-source tool provides access to the source

code and is very often free of charge.

Below, we discuss the more common software tools that can work with MSI

datasets. Each software-licensing group is introduced, describing its weakness and

strengths. We hope that this discussion helps decide whether a given tool will

be useful for a specific application. The main differences between these tools are

49

UNIVERSITAT ROVIRA I VIRGILI 
DEVELOPMENT OF A COMPLETE ADVANCED COMPUTATIONAL WORKFLOW FOR HIGH-RESOLUTION LDI-MS METABOLOMICS IMAGING DATA PROCESSING AND VISUALIZATION 
Pere Ràfols Soler 
 



summarized in the appendix tables 2.5, 2.6 and 2.7, including input/output data

format, build-in processing, and supported platforms.

2.7.1 Commercial software tools

Usually, commercial software tools come with the MSI instrument and provide the

necessary functions to control acquisition and visualization of raw data. Despite its

cost, commercial software tools are often the most user-friendly solution, enabling

anyone without in-depth knowledge of MSI data to visualize the results.

FlexImaging

FlexImaging is the software portion of Bruker’s imaging platform. FlexImaging

provides a graphical front-end for user-friendly control of data acquisition and

visualization. Images of various ions can be represented within a defined tolerance

and combined with an optical image of the sample.

FlexImaging delegates the processing of the raw spectra to FlexAnalysis. By do-

ing so, Bruker takes advantage of a long list of well-known algorithms implemented

in FlexAnalysis, including baseline correction, normalization, and calibration. For

statistical analysis, FlexImaging is designed to easily interface with Bruker Clin-

ProTools, which can perform multivariate calculations, such as PCA, SVM, or

hierarchical clustering, as well as univariate statistical tests. The results gener-

ated with ClinProTools can be plotted using FlexImaging. These results can then

be mapped over the image to view the spatial distribution of the processed data.

FlexImaging performs all computations using its own proprietary data format and

allows the export of data using open formats, including ASCII, Analyze7.5, and

imzML (since v4.1).

SCiLS Lab

SCiLS lab is designed for use with the Bruker platform and is part of Bruker’s

MALDI Molecular Imager solution. SCiLS imports data from FlexImaging in

Bruker’s native imaging format and can export results to an Excel spreadsheet

and also back to FlexImaging. Because SCiLS is able to exchange data only with

Bruker’s platforms, its use is limited and should be considered as an extension of

the Bruker imaging platform.
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SCiLS Lab is a full-featured integrated solution for straightforwardly visualiz-

ing and statistically analyzing MALDI MSI data in order to make it more readily

interpretable. It is able to perform common pre-processing steps, as well as uni-

variate and multivariate statistical analyses. Additionally, it can spatially cluster

biologically different tissue regions using supervised or unsupervised approaches.

For supervised clustering, the algorithm learns patterns from user-defined tissue

regions to obtain a segmentation map.

MALDIVision

MALDIVision is a platform-independent tool that is particularly strong in data

visualization. In order to be compatible with most MSI instruments in the market,

it uses standard file formats (Analyze7.5 and imzML) to import data. Multiple

images can be overlaid and mapped to different colors to enable comparison of

spatial distributions of selected ions or combined with optical images to perform

histological validation. The images can also be displayed at an intensity normalized

to that of a standard compound assumed to be homogenously distributed in tissue.

This software can calculate such typical statistical parameters as mean, median,

or standard deviation from user-defined areas, and can also perform more advanced

tasks, including the production of histograms and cumulative-probability graphs,

to visualize ion-intensity distribution. Many features provided by MALDIVision

are also available in some freeware and open-source tools, making MALDIVision

an effective solution for simple MS-data exploration.

TissueView

TissueView is an MSI tool from Sciex (Framingham, MA, USA). The program

can handle imaging data directly from instruments made by the same manufac-

turer or from Analyze7.5 files. The tool focuses on image visualization and can

represent a single mass-ion bin by mapping the intensity onto a color scale. Ad-

ditionally, up to three ions can be co-localized with each intensity being coded

in a RGB-color channel and can also import optical images that can be over-

laid with MS images. For data-processing purposes, TissueView can calculate the

average spectrum and provide the ion distribution in a particular tissue region.

However, for more advanced data analysis, spectra can be interfaced with Sciex

MakerView to perform statistics with tools, such as PCA. The software can also
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load the data in Sciex Data Explorer to identify the proteins using a Mascot server

(http://www.matrixscience.com/server.html).

ImageQuest

ImageQuest is the MSI-visualization tool used by Thermo Fisher Scientific (Waltham,

MA, USA) MALDI instruments and reads data in the raw data format used by

the manufacturer. This program provides various image-reconstruction alterna-

tives for representing spatially mapped ion intensity. To aid navigation, the opti-

cal image used during acquisition is also displayed, but not overlaid, with the MS

image.

To rapidly identify which raster positions contain relevant information, Image-

Quest introduces a plot window named “chromatogram”, where the overall inten-

sity of each pixel is represented versus each scan. Clicking on a chromatogram

peak prompts ImageQuest to show where each scan is located on the 2D image,

as well as its spectrum. The visualization can also be animated to find unknown

peaks. In this mode, ImageQuest will scroll automatically through the defined

mass range, enabling the user to observe how the image evolves for each selected

mass.

High-definition imaging (HDI)

HDI is the integrated MSI software solution by Waters Corporation (Milford, MA,

USA). It is designed to interface with Waters mass spectrometry instruments in a

unified way, from data acquisition to processing and visualization, and is capable

of exporting to standard formats, such as imzML and ASCII. Various images from

different ions can be represented simultaneously, and images can be reconstructed

from a given mass range, a peak selected from an automatically generated list, or

a combination of three overlaid images mapped onto an RGB-color space.

In addition to image visualization, HDI also focuses on discovering meaningful

information behind the data. In this regard, the typical pre-processing algorithms

are included, as well as a set of statistical tools, such as PCA, PLS-DA, S-plots,

and hierarchical clustering.
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Quantinetix

Quantinetix is suited for specific molecule quantification in MALDI MSI experi-

ments. It was designed to support a wide range of formats, enabling its integration

into almost any instrument workflow. The data formats supported range from

standard imzML and Anaylze7.5 to native proprietary formats, such as those used

by Bruker, Sciex, Thermo Fisher Scientific, and Waters Corporation.

To accurately quantify a compound, three normalization techniques enable users

to choose which one best fits their needs. These algorithms include on-tissue

dilution, isotopic labeling, and Ion suppression. MS images can be overlaid with

optical images and are generated from single-ion intensity distributions or with

multiple ions assigned to various colors. In addition to the image representation,

the tool also provides plot windows showing information about the quantification

and normalization algorithms.

2.7.2 Freeware software tools

Freeware software tools have been widely used as a zero-cost solution for data visu-

alization, providing a frontend for exchanging MSI data through various collabora-

tors. However, freeware tools are limited in MS-data processing, and, consequently

in some situations, they are not a viable alternatives to commercial tools.

msiQuant

msiQuant [28, 78] is a tool for assisting the labeled normalization and quantitation

of drugs and neuropeptides directly in tissue sections. It includes a data-processing

chain carefully designed to minimize peak alterations. The baseline correction

is implemented with its novel sorted mass spectrum transform algorithm, and,

depending on the features of the sample, the normalization approach can be chosen

from four algorithms. The software is designed to work within user-defined ROIs

and discard meaningless data, thereby saving computer resources.

In terms of data-importing facilities, it can load images from the original Bruker

file format and imzML. This software should be considered as an alternative to

Quantinetix and is a low-cost solution; however, it also introduces some novel

algorithms than can improve quantification in some cases.
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BioMap

BioMap provides a visualization platform that supports image modalities, such

as optical, positron emission tomography, computed tomography, near-infrared

fluorescence, and MSI. This makes it possible to combine images generated from

several experimental techniques; however, because BioMap is not a MALDI-MS-

specific software package, it lacks typical MS-processing algorithms. It can be

extended by adding modules written in interactive data language (IDL) and capa-

ble of analyzing specific data. Because BioMap is a general imaging solution that

does not specifically target MSI, the file format used for data storage is Analyze7.5.

Despite the frequent use of BioMap in MSI analysis, it also results in frequent

memory errors during the processing of large MS datasets. This suggests that all

processing is performed in RAM, making this a sub-optimal solution for use with

current high-resolution MS images. Moreover, its execution in an IDL environment

could complicate the installation procedure for the average user.

Datacube Explorer

Datacube Explorer [79] is an MSI-visualization tool that also includes the capabil-

ity to perform clustering on images using Kohonen map algorithms. Despite the

possibility of the Kohonen map-segmentation feature not being useful for many

users, this package is compatible for the future integration of other algorithms.

It is also capable of reconstructing 2D images by selecting a particular ion, al-

though 3D reconstruction is also possible when a dataset contains a collection of

consecutive tissue slices.

Datacube Explorer supports standard open formats (ImzMl and Analyze7.5),

but also includes its own format optimized for better handling of large datasets.

Datacube Explorer is an optimal low-cost alternative for simple exploration of MS

data.

Mirion

Mirion [80] is an image-exploration tool that supports importing data from pro-

prietary formats (XCalibur; Thermo Fisher Scientific) and the imzML format.

Images can be generated from manual ion selection or automatically using an

embedded algorithm based on the selection of the most repetitive peak. This au-

tomatic feature uses a mass histogram generated from the full dataset to select

54

UNIVERSITAT ROVIRA I VIRGILI 
DEVELOPMENT OF A COMPLETE ADVANCED COMPUTATIONAL WORKFLOW FOR HIGH-RESOLUTION LDI-MS METABOLOMICS IMAGING DATA PROCESSING AND VISUALIZATION 
Pere Ràfols Soler 
 



the more dominant peaks. Mirion also enables ion images to be combined with

optical images, forming a multilayer image that can be represented using different

color channels.

Currently, Mirion is limited to run under 32 bits thus its memory is limited at 2

GB. Such limitations prevent exploration of many MS images acquired by modern

instruments with high mass and/or spatial resolution. In such situations, Mirion

offers the possibility of loading only a part of the data in order to explore it.

OpenMSI

OpenMSI [81] is a web platform that provides an application program interface

plus an interface to retrieve and explore MSI data. Their website can be used

to upload MSI data and explore it anywhere using a computer connected to the

internet and without the requirement of specific software tools. Uploading MSI

data to a web server overcomes storage problems derived from performing many

acquisitions. Moreover, sharing data using a web browser through their OpenMSI

interface drastically simplifies manual MS-data exploration in a large research

groups. However, OpenMSI currently lacks the processing tools required for MSI-

data analysis.

OpenMSI provides a file format based on the HDF5 format that is highly op-

timized for efficient storage and access of MSI information. Data is stored in

chunks to improve input/output performance, with these chunks compressed into

the lossless GZIP format to reduce network bandwidth required for file transfer

and provide for efficient storage. Furthermore, to enable rapid access of individual

spectra, data is replicated to overcome linearized binary format limitations. De-

spite data replication, the final stored data size is still compressed to reduce raw

data size.

2.7.3 Open-source software tools

Open-source software tools are a great option for low-budget MSI-data analysis.

Due the fact that anyone can read and modify the code of open-source software,

advanced users can adapt them to their specific requirements, enabling anyone with

a programing background to expand an open-source software tool to satisfy their

processing pipeline. Most open-source tools used for MSI analysis execute under

platforms, such as MATLAB or R, making some knowledge of these environments

necessary. Because many users are unfamiliar with programing, some freeware
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tools may be a better choice in situations where raw data needs to be visualized.

However, the experienced user will likely discover the most flexible and powerful

solutions using open-source tools.

MSiReader

MSiReader [82] is a tool developed in MATLAB and provides a full-featured graph-

ical user interface for the loading and visualization of MSI data from various file

formats, including mzXML, imzml, Analyze7.5, and ASCII. Data can be repre-

sented in a user-friendly way by selecting a representative ion and a mass tolerance.

It also has processing capabilities supporting baseline correction, normalization to

a specific peak or by TIC, peak picking, and background subtraction. Features can

also be automatically extracted by selecting the most abundant peaks in a selected

ROI. Despite its processing tools, MSiReader also enables individual spectra to be

exported and custom processing algorithms to be integrated into the MATLAB

environment. Despite MSiReader being open source, it has been implemented into

the MATLAB platform, which is neither open nor free.

OmniSpect

OmniSpect [83] performs computationally intensive functions on a remote server,

with the functions divided into data-converting tools and multivariate-analysis

algorithms for MSI datasets. Similar to MSiReader, OmniSpect makes intensive

use of the MATLAB environment to perform calculations; therefore, its code is

open-source, but the runtime execution requires a proprietary backend. This tool

can import data from most common imaging formats, including NetCDF, mzXML,

imzML, and Analyze7.5, and convert it into a MATLAB representation, after

which the user can select up to three ions to represent each image. Moreover,

OmniSpect can perform multivariate analysis using the NMFA algorithm to detect

similarities in spatial-ion distributions. OmniSpect provides a web interface to

represent information and facilitate control, with such remote-processing features

very useful when various users require analysis of MSI data. However, enabling

a server to utilize MATLAB in a web interface may be more complicated than

running a simple standalone program on a personal computer. Given this potential

limitation, each user must consider whether remote processing will be beneficial

in each situation.
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Cardinal

Cardinal [84] is a software package for the R environment that enables data

import using two standard formats: imzML and Analyze7.5. This toolset is

built based on the R language and is distributed using the Bioconductor web-

site (https://www.bioconductor.org/). It does not provide a unified graphical

user interface to manipulate visualizations; however, many functions are available

to enable direct execution in an R session or use in an R script file. Such func-

tions include MSI-data-loading routines, pre-processing tools, segmentation and

classification algorithms, and image visualization. Despite lack of a user-friendly

command interface, the package provides adequate documentation. Moreover,

the availability to create script files and mix Cardinal code with other R pack-

ages provides a powerful platform for MSI-data processing. Comparing Cardinal

with MATLAB-based solutions, the open-source nature of the program and the

language used to create it makes Cardinal the most cost-efficient solution. Fur-

thermore, integration in a growing R environment with plenty of free packages

containing multiple algorithm implementations makes Cardinal a suitable choice

for advanced users.

2.8 Final conclusion

In the previous decade, MSI became a key technique used for molecular analysis

of biological tissues due to its ability to locate ions in space (drugs, metabolites

peptides, or proteins). Greater sophistication in sample preparation and improve-

ments in MALDI-MS instruments have resulted in acquisition of high-quality MS

images with resolutions ranging from 2 to 200 μm, making this technique useful

for clinical diagnosis. The processing of MSI data remains challenging, with re-

searchers confronted with alterations in the distribution of peak intensities caused

by possible inhomogeneity in the organic matrix distribution between pixels (in the

case of MALDI applications) or tissue inhomogeneity, effects of ion suppression, or

reductions in ionization efficiency throughout extended imaging experiments. In

such complex scenarios, the use of bioinformatics strategies for MSI analysis are

mandatory, with the main conclusions from this review as follows:

• The relevance of pre-processing steps. Pre-processing stages compensate for

variations and noise in raw data. Currently, there are a wide variety of avail-

able pre-processing algorithms whose suitability depends upon the purpose of
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each MSI experiment. Peak alignment across all pixels is a crucial step nec-

essary for well-resolved spectral images. When internal calibration signals

are not available, peak-alignment strategies are based on cross-correlation

of image pixels. If internal-calibration peaks are available (as in the case

of matrix-free LDI), they can be used both for peak alignment and mass

calibration. An accurate mass-calibration operation is essential for com-

pound identification. Another critical pre-processing step is intensity spectra

normalization. The TIC algorithm is effective at compensating for matrix

inhomogeneity, but can lead to distorted images when there are different bio-

logical areas present in tissue. If an internal-calibration signal is available, it

can be used for intensity calibration. Statistical algorithms can provide ac-

curate results, but they are more difficult to implement and have additional

computational requirements.

• Fusion of images in supervised-classification algorithms. We reported nu-

merous studies using classical microscopy images as referenced for training

multivariate models for the segmentation and classification of molecular im-

ages. The simultaneous interpretation of the two kinds of images, with the

former providing high spatial resolution and pathological interpretation and

the latter molecular information, could lead to a new generation of “fused

imaging” strategies or techniques.

• Molecular images for clinical diagnosis. The ability to rapidly acquire and

characterize MS images of tissues (i.e., <1 h) could enable a myriad of new

applications for clinical diagnosis. The automation of matrix-deposition

techniques, together with the increase in the frequent use of UV-pulsed

lasers in MALDI-MS instruments, opens up many possibilities, including

tumor recognition in clinical practices. However, different tissue samples

have been compared with limited success, and real-time multivariate algo-

rithms for tissue-image segmentation and classification need to be developed

in the future.

• Computational strategies. Researchers developing bioinformatics tools for

MSI analysis need to design and implement smart and powerful computa-

tional strategies due to the high-dimensionality of MSI-datasets, especially

when images are taken at high spatial resolution. Currently, almost any

high-level programing platforms and languages, such as R, MATLAB, and

58

UNIVERSITAT ROVIRA I VIRGILI 
DEVELOPMENT OF A COMPLETE ADVANCED COMPUTATIONAL WORKFLOW FOR HIGH-RESOLUTION LDI-MS METABOLOMICS IMAGING DATA PROCESSING AND VISUALIZATION 
Pere Ràfols Soler 
 



Phyton, include libraries supporting parallel programming. Such resources

would be beneficial at reducing the computation time necessary for MSI

analyses. Moreover, data processing should be optimized to enable a smaller

memory footprint. Compiled programming languages, including C, C++,

C#, or Java, enable memory to be controlled more carefully as compared

with interpreted platforms, such as R, Phyton, or MATLAB. However, in-

terpreted languages usually provide larger algorithm libraries and higher

abstraction layers. Data-reduction algorithms (i.e., binning, peak picking,

sparse- matrix storing, etc.) are also desirable based on their reductions of

computational load.

• Software tools. Many software packages suitable for MSI processing and vi-

sualization are currently available. In general, proprietary software tools are

user-friendly and provide adequate features; however, open-source tools en-

able scalability and flexibility, with some providing unique processing meth-

ods. The primary bottleneck is the lack of compatibility between different

software packages, which complicates the exchange of data. Nevertheless,

several LDI-instrument software tools currently include imzML-exporting

features as an attempt to overcome this lack of compatibility.
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2.9 Appendix

Table 2.1: Pre-processing methods summary.

68

UNIVERSITAT ROVIRA I VIRGILI 
DEVELOPMENT OF A COMPLETE ADVANCED COMPUTATIONAL WORKFLOW FOR HIGH-RESOLUTION LDI-MS METABOLOMICS IMAGING DATA PROCESSING AND VISUALIZATION 
Pere Ràfols Soler 
 



Table 2.2: Overview of the literature about supervised multivariate analysis applied to MSI.
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Table 2.3: Overview of the literature about unsupervised multivariate analysis applied to MSI.
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Table 2.4: Overview of the literature about unsupervised with further expert evaluation multi-
variate analysis applied to MSI.
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Table 2.5: Summary of commercial software tools for MS imaging.
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Table 2.6: Summary of freeware software tools for MS imaging.

Table 2.7: Summary of open-source software tools for MS imaging.
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Chapter 3

Assessing the potentiality of sputtered gold nanolayers in mass

spectrometry imaging for metabolomics applications
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3.1 Abstract

Mass spectrometry imaging (MSI) is a molecular imaging technique that maps

the distribution of molecules in biological tissues with high spatial resolution.

The most widely used MSI modality is matrix-assisted laser desorption/ionization

(MALDI), but some organic matrices used in classical MALDI may impact the

quality of the molecular images due to limited lateral resolution and strong back-

ground noise in the low mass range, hindering its use in metabolomics. Here we

present a matrix-free LDI technique based on the deposition by sputtering of gold

nanolayers on tissue sections. This gold coating method is quick, fully automated

and repetitive and allows growing highly controlled nanolayers, necessary for high

quality and high resolution MS image acquisition. The performance of the de-

veloped method has been tested on the acquisition of MS images of brain. The

obtained spectra showed a high number of MS peaks on the low mass region (m/z

below 1000 Da) with few background peaks, demonstrating the viability of the

sputtered gold nanolayers of promoting the desorption/ionization of a wide range

of metabolites. These results, together with the reliable MS spectrum calibra-

tion using gold peaks, make the developed method a valuable alternative for MSI

applications.

3.2 Introduction

Classic histopathological analysis, in which the visual inspection of stained tissue

sections is used for the identification of specific morphological regions and minute

structures in the tissue, is one of the essential tools in medical diagnosis. Al-

though often successful, in ambiguous cases the pathologist is not always capable

of determining the correct diagnosis using histopathological methods alone. Com-

plementary techniques that elucidate the chemical composition of those tissues

aid the pathologist in these cases. In the recent years, mass spectrometry imaging

(MSI) has emerged as a useful tool for the untargeted, and spatially correlated

molecular analysis of clinical tissues, providing chemical information directly from

the tissue [1, 2].

The most widely used ionization technique in MSI is matrix-assisted laser des-

orption/ionization (MALDI) [3], where an organic matrix is applied on a sam-

ple surface to promote the desorption/ionization of the analytes (e.g. proteins,

lipids and metabolites). Classical MALDI-matrix application techniques may in-
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troduce artefacts like compound diffusion, deteriorating the lateral resolution of

the image [4], and/or inhomogeneities during deposition over the tissue and/or co-

crystallization leading to increased differences in pixel-to-pixel ion intensities [5]. It

is also known that some highly volatile organic matrices like 2,6-dihydroxyacetophenone

(DHA) and dithranol evaporate during their time in the high vacuum ion source of

the mass spectrometer, resulting in measurement artefacts over long data acquisi-

tion times [6]. To overcome some of these problems, matrix sublimation has been

introduced for matrix deposition allowing higher spatial resolution analyses, as it

is a solvent-free matrix deposition method and therefore results in smaller sized

matrix crystals and less lateral diffusion of analytes [7]. Nevertheless, one of the

main drawbacks of MALDI is that the organic matrices introduce a considerable

number of MS signals in the low m/z range of the spectrum (< 1000 Da). These

signals interfere severely with the MS peaks of endogenous low weight compounds,

complicating the application of MSI to metabolomics studies [5].

Matrix-free LDI-MS techniques have emerged as valuable alternatives for the

analysis of low molecular weight metabolites. Commonly used matrix-free tech-

niques are surface-assisted laser desorption/ionization (SALDI), in which ioniza-

tion is supported by the surface of the target plate [5, 8, 9, 10, 11, 12], and

nanostructure-initiator mass spectrometry (NIMS) [13], which uses molecules of

an initiator compound trapped in nanostructured surfaces promoting the ioniza-

tion of the metabolites. Moreover, metal (Au, Ag, Pt, etc.) and metal oxide

(WO3, TiO2, Fe3O4, ZnO, etc.) nanoparticles and nanolayers, frequently called

nanoparticle-assisted LDI (nano-PALDI) have also been used for the LDI-MS anal-

ysis of biomolecules [5]. In this context, gold nanoparticles are likely the ideal

substrate because they present high stability, can be easily functionalized [14,

15], are able to absorb the UV light emitted by the laser and effectively transfer

this absorbed energy to the metabolites promoting its absorption and providing a

source of ionization. Several studies have used gold nanoparticles for the analysis

of biofluids by LDI-MS, and for MSI applications achieving an effective ioniza-

tion of low mass range metabolites with very low background signal [16, 17, 18,

19, 20, 21, 22]. In these studies, gold nanoparticles were deposited on the tis-

sues by mixing them with organic matrices or solvents. This “wet” deposition of

gold does not prevent the potential lateral diffusion of the metabolites and the

inhomogeneous distribution of the gold nanoparticles. To overcome this, sputter

deposition, which is a solvent-free and reproducible deposition technique, would

78

UNIVERSITAT ROVIRA I VIRGILI 
DEVELOPMENT OF A COMPLETE ADVANCED COMPUTATIONAL WORKFLOW FOR HIGH-RESOLUTION LDI-MS METABOLOMICS IMAGING DATA PROCESSING AND VISUALIZATION 
Pere Ràfols Soler 
 



allow the deposition of high purity, homogeneous metal or metal oxide nanolay-

ers onto biological tissues whilst avoiding molecular delocalization associated with

solvent-based application methods. In a previous publication by Dufresne et al.

sputter deposition of silver was used prior to the MSI of olefins from tissue sec-

tions [23]. This study demonstrated the viability of sputter depositions for MSI

metabolomics applications, with high spatial resolution (down to 5 μm). More

recently, a sodium deposition followed by a sputtered gold layer has been intro-

duced as a powerful method for the analysis of triacylglycerols [24]. Furthermore,

the characteristic gold and silver peaks and clusters can be used for internal mass

calibration along the different m/z regions of the obtained spectrum [23, 24, 25].

Figure 3.1: Experimental workflow of the developed gold nanolayer-assisted LDI-MSI method. A)
Sample preparation, including sectioning of 10μm-thick sections, tissue mounting on indium-tin oxide-
coated (ITO) glass slides and the tissue coating with gold nanoparticles by sputtering. B) Summary of
LDI-MSI acquisition, spectral pre-processing, image reconstruction and visualization.

Hence, in this study we present the application of gold nanolayers deposited

by sputtering directly onto the tissue section to obtain metabolomic MS images

of animal tissues by LDI-MS. In comparison with silver, gold has only one stable

isotope, thus reducing the number of peaks and facilitating the detection of trace

compounds. Gold ionizes polar and heavier metabolites more effectively [26], and

provides highly stable nanolayers. The experimental workflow used in this study

is summarized in Fig. 3.1 and includes the cryosectioning of the tissues into thin

sections (10 μm), the mounting of these tissue sections on conductive indium-tin

oxide-coated (ITO) glass slides and the coating of the sections with gold nanoparti-
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cles using sputter deposition. After the spatially correlated LDI-MS acquisition of

a spectrum at each pixel, spectra were processed and the images of the molecular

distributions reconstructed and visualized. In this study, we report the optimiza-

tion of the sputter deposition conditions, based on the ionization efficiency of the

gold nanolayers by using mice liver sections and the optical and morphological

characterization of the deposited gold nanolayers. Finally, the viability of the op-

timized gold nanolayers was checked by the acquisition of metabolomics MSI data

from mouse brain tissue.

3.3 Materials and Methods

3.3.1 Materials

Indium tin oxide (ITO)-coated glass slides were obtained from Bruker Daltonics

(Bremen, Germany). The gold-target (purity grade > 99.995%) used for sput-

tering was obtained from Kurt J. Lesker Company (Hastings, England). The

reagents and solvents for staining were hematoxylin and HPLC grade xylene sup-

plied by Sigma-Aldrich (Steinheim, Germany) and ethanol (96% purity, supplied

by Scharlau, Sentmenat, Spain).

3.3.2 Sample preparation

The liver tissues used for gold-sputtering optimization and the brain tissues used

for the example of MSI metabolites assignation were obtained from C57BL/6 mice

of 6 months old. These tissues were provided by Professor Martins-Green’s re-

search group at the Cell Biology Department of the University of California River-

side. The tissues were snap frozen at -80°C after collection and stored and shipped

at this temperature until analysis. Animal experimental protocols were approved

by the University of California, Riverside, Institutional Animal Care and Use

Committee (IACUC).

The brain tissues used for the high-lateral resolution MSI analysis were obtained

from three month-old, male, C57BL/6J mice. These tissues were obtained from

Leiden University Medical Center where all the high lateral resolution experiment

was carried out. The brains were excised, flash-frozen on dry-ice and stored at

-80°C until analysis. All experiments were approved by the Animal Experiment

Ethics Committee of Leiden University Medical Center.
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For MSI acquisition, the tissues were sectioned at -20°C into 10 μm thick sections

using a Leica CM-1950 cryostat (Leica Biosystems Nussloch GmbH) located at the

Centre for Omics Sciences (COS) of the University Rovira i Virgili and mounted

on ITO coated slides by directly placing the glass slide at ambient temperature

onto the section. To remove residual humidity, samples where dried in a vacuum

desiccator for 15 minutes after tissue mounting.

3.3.3 Gold sputter coating

Gold nanolayers were deposited onto the 10 μm tissue sections using a sputtering

system ATC Orion 8-HV (AJA International, N. Scituate, MA, USA). An argon

atmosphere with a pressure of 30 mTorr was used to create the plasma in the gun.

The working distance of the plate was set to 35 mm. The deposition times were

determined from the deposition rate, which is directly proportional to the layer

thickness. Since deposition times used in this study were very short, the substrate

temperature remained cold during the deposition, thereby avoiding degradation of

the tissue metabolites. The final optimized sputtering conditions for MSI were at

ambient temperature, using RF mode at 60 W for 35 s.

3.3.4 Sample characterization

Reflectance measurements of the gold-coated tissues were carried out with a Lambda-

950 spectrophotometer, equipped with deuterium and tungsten lamps (Perkin-

Elmer, Waltham, MA, USA) scanning in the 250 to 800 nm wavelength range.

Morphology of the gold layer was characterized by transmission electronic mi-

croscopy (TEM) using a JEOL 1011 microscope (Jeol, Peabody, MA, USA). A

TEM grid was used to deposit a gold layer using the optimized conditions de-

scribed above.

3.3.5 LDI-MS acquisition

MSI data used for the Au-layer optimization and characterization were acquired us-

ing a MALDI TOF/TOF UltrafleXtreme instrument with SmartBeam II Nd:YAG/355

nm laser from Bruker Daltonics, also at the COS facilities. Acquisitions were car-

ried out using the medium and large laser spot size settings, operated at 2 kHz at

an attenuated power of 60 %, collecting a total of 500 shots per pixel.
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High spatial resolution MSI data were recorded using a MALDI TOF/TOF

rapifleX with SmartBeam 3D II Nd:YAG/355 nm laser from Bruker Daltonics,

located at Leiden University Medical Center (LUMC). The laser was operated at

10 kHz collecting 200 shots per pixel .

Raster sizes from 10 to 1000 μm were used during the optimization. The TOF

mass spectrometer was operated in positive ion, reflectron mode, with a digiti-

zation rate of 1.25 GHz, m/z range 70 to 1200 Da, with a manually optimized

extraction delay. The spectrometer was calibrated prior to MSI data acquisition

using [Au]+ peaks as reference masses. Following the LDI-MSI experiment, the

sections were stained with hematoxylin.

3.3.6 Spectra pre-processing and image visualization

MSI data was acquired using the Flex-software suite (v3.0 Bruker Daltonics).

Each MSI dataset was exported to the XMASS data format using instrument

manufacturer software packages (FlexImaging and Compass export) and a custom

script. The data stored in XMASS was converted to a custom format based on

segmented matrices storage highly optimized for processing large MSI datasets in

R language [27]. Mass spectra were aligned using a novel unlabeled method de-

veloped to handle our custom data format efficiently and which is included in our

rMSIproc package (http://github.com/prafols/rMSIproc). After alignment, the

whole dataset shared the same mass axis and, therefore mass calibration was ap-

plied to the whole dataset by only calibrating the mean spectrum. Following this

method, masses were calibrated using gold peaks as reference: 196.9666, 393.9331,

590.8997, 787.8662 and 984.8328 Da. Moreover, m/z 96.9223 and 112.8962 associ-

ated with [KNaCl]+ and [K2Cl]+ were also used as mass reference peaks to better

calibrate the low-mass range ions [26]. In order to show the actual performance

of the gold layer, no normalization was performed. MSI datasets were explored

manually to select a set of peaks localized on different morphological structures.

This exploration stage was accomplished using our dedicated graphical user inter-

face included in the rMSI R package, specially developed to rapidly explore MSI

data [27]. MSI image reconstruction and visualization was also performed with

the same in-house software package.
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3.3.7 Metabolite identifiaction

MS peaks were obtained using an in-house peak picking algorithm included in the

rMSIproc R package with S/N>5. The obtained list of MS peaks was matched

with HMDB [28] data base within a tolerance of 20 ppm and the possible ion

adducts: H, Na, K and NH4. In order to obtain a list of possible metabolites, the

obtained search results were filtered using the biological information of molecules

provided by the HMDB. We have also used the information provided by the HMDB

to highlight the putative identified metabolites that have previously been reported

in brain tissues.

3.4 Gold nanolayer optimization and characterization

3.4.1 Sputter coating optimzation for LDI

The sputtered deposition of gold nanoparticles has been optimized to achieve the

highest LDI-MS signal intensities at the lowest laser fluencies. The gold nanolayer

deposited on the tissue must provide enough gold nanoparticles to promote the

desorption/ionization of the metabolites, but also thin enough to enable the laser

to reach the tissue-gold interface. Moreover, the deposited gold nanolayer must

ensure the correct identification of the gold MS peaks to enable in-situ mass cali-

bration using these peaks.

To optimize the layer thickness we have used liver sections from C57/BL mice.

We have selected a liver tissue from a healthy mouse for the optimization steps

because it usually presents high biological homogeneity at the spatial resolution

used for MSI analysis, facilitating the comparison of the performance of the differ-

ent gold layers in a real sample. To further ensure the comparability of the tests,

the various gold layers were deposited over consecutive liver sections. Moreover,

each acquisition was performed on identical regions of tissue, which were selected

by optical inspection of the liver sections. Then, a wide random walk of 1000 μm

per pixel was used in order to obtain an averaged spectrum of each laser shot.

As a starting point we tested three different Au nanolayers designed to cover a

broad range of Au thicknesses. Once an approximate optimal layer was obtained,

the next step was to fine-tune the sputter coating time to fine-tune the Au thick-

ness. Two modes can be selected for gold sputtering: direct current (DC), which is

the fastest method, and radio frequency (RF), which provides higher control over
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the deposited gold layers. Since the desired Au nanolayer must be a thin layer

according to previous studies [23, 24], we performed all Au depositions operating

the sputtering system in RF mode to better control the tissue coating process.

The first three deposition times tested as first thickness exploration were 25, 100

and 300 s at 60 W and ambient temperature.

The laser attenuation reported in FlexImaging was adjusted for each one of the

three sputtered layers. Note: this laser attenuation setting is part of the user inter-

face, designed to give the average user fine control over the laser powers commonly

used in MALDI experiments (0% corresponds to the laser power offset, and 100%

to the laser power offset + laser power range, both of which can be found in the

instrument specific settings). The laser fluence varies approximately linearly with

the attenuation throughout this range. Here we report the laser attenuation value

to compare the laser fluence used for each sputtered layer. This laser attenuation

parameter was adjusted in order to achieve the highest MS peak intensities in the

m/z 700 – 900 range for each gold layer. Based on their molecular masses, the

metabolites that can be found in this mass range are likely to correspond to phos-

phatidylcholines and triacylglycerides, compounds of high biological relevance, but

easily fragmented. Therefore, during the laser fluence adjustment we monitored

the intensity of m/z 184, which corresponds to the head group fragment of the

phosphatidylcholines. We selected the best performing laser power fluence for each

Au layer to obtain a good tradeoff between peak intensity and molecular fragmen-

tation. The optimal laser powers were found to be 60, 70 and 75% for the 25, 100

and 300 s sputter coating times respectively. The thicker layers required higher

laser power, suggesting that the ionization efficiency is lower for thicker layers and

were more prone to suffer fragmentation due to higher laser power.

Fig. 3.2 shows the average spectra of the liver sections obtained for each gold

layer. In agreement with the results described above, the 25 s gold layer provided

the highest number of MS peaks with higher intensity in all the areas of the

selected mass range, including the 700-900 Da range (see Fig. 3.2 B, D and F).

These results confirm the better performance of the thinner gold nanolayer.

We designed a second Au nanolayer optimization set up considering as starting

point the 25 s Au layer, considered optimal in the previous experiment. We applied

various sputtered Au layers using deposition times ranging from 15 to 45 s in steps

of 5 s onto consecutive sections of liver tissues. The laser power was kept at 60

% for all the layers since all of them must be compared in the same conditions.
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Figure 3.2: Average spectra of mouse liver sections obtained with each of the three tested gold layers.
A) 25 s Au coating time at a laser power of 60%, C) 100 s Au coating time at laser power of 70 %, E)
300 s Au coating time at laser power of 75 %, B, D and F figures plot the m/z spectrum between 700
and 900 Da to illustrate the performance of the tested gold layers in a specific area of the spectrum.

Moreover, we also acquired a tissue section with no Au coating as reference of

ionization without Au (0 s). In each case we acquired a complete MSI dataset

containing approximately 300 pixels with a pixel size of 100x100 μm.

After LDI-MS acquisition, the MS data obtained with each of the tested gold

layers were compared to determine the optimal gold coating time. As specified

in the materials and methods section, spectra were acquired in reflectron positive

mode and processed using in-house developed R packages rMSI and rMSIproc.

We retained the first 250 most intense pixels of each tissue section for the data

analysis. This discards regions of the tissue with holes or bad MS performance

and provides the same number of sampling points for each sputtered layer. In

order to provide an objective comparison criterion between different sputtering

conditions, we have calculated two parameters from each gold layer: the total

ion count (TIC) defined as the summing up intensities of all MS peaks; and the

fragmentation ratio calculated by dividing the intensity of the head group fragment

of the phosphatidylcholines (m/z 184.07) by the sum of intensities of the MS peaks

found in the 500 to 1000 m/z range. For the estimation of these three parameters,

we have only considered the peaks of the analyzed liver section with a signal to
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noise ratio (S/N) over 5, excluding the MS peaks of the gold clusters (m/z 196.97,

393.93, 590.90, 787.87 and 984.83). Fig. 3.3 shows the results of comparison of

the gold deposition times tested. As can be seen in Fig. 3.3A, the highest TIC

was obtained with the 35 s gold layer. Moreover, the lowest fragmentation ratio

value was also obtained for the 35 s. Fig. 3.3C confirms that the 35 s coating time

provides the optimal Au layer since higher peaks were detected with same laser

conditions in the 500 to 1000 m/z range.

Figure 3.3: Comparison of various Au coating times MSI performance using 250 pixels of each MS image.
A) TIC vs. Au coating time at a laser power of 60%. Au cluster peaks were removed to avoid biasing the
experiment since Au MS intensity increases with the sputter coating time. B) Fragmentation ratio of each
Au layer was calculated dividing the intensity of to the head group fragment of the phosphatidylcholines
(m/z 184) peak by the sum of all peak intensities in the 500 to 1000 m/z. C) Plot of average spectra
from all Au layers with the same coloring as boxplots A and B.

Acquisitions in negative ionization mode could enhance the MS signal of some

metabolites and, therefore, we have also explored the performance of the sputtered

gold layers in this ionization mode. As an example, Fig. 3.7 in the appendix shows

the average MS spectrum obtained with a 35 s gold layer of a consecutive section

of the liver used for the tests in positive mode, with the same laser conditions.

A total of 298 MS peaks, 33 of them in m/z 700 – 900 range, were detected

in negative mode with an S/N>5 and TIC 2.63x105. Gold peaks were clearly
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identified in the negative spectrum also enabling the internal calibration process

also for this ionization mode. These results demonstrate the suitability of gold

sputtered layers to acquire MS images in negative ionization mode, opening a

wide range of possibilities for specific applications like the analysis of low-weight

acids [29] or fatty acids [30]. Nevertheless, in this study we have focused on positive

ionization mode as the deposition was optimized for use in this mode.

The results above demonstrate that the best LDI-MS performance was obtained

with the 35 s gold layer. This short gold deposition deposited enough gold particles

to ensure the desorption/ionization of the metabolites, but also allowed the laser to

easily reach the tissue surface. Moreover, the Au cluster peaks were detected with

enough intensity to provide for a reliable mass calibration. Longer gold coating

times may prevent the proper desorption/ionization of the underlying metabolites

because of the dissipation of more laser energy into the thicker gold layer before

reaching the tissue surface.

3.4.2 Au nanolayer characterization

The morphology of the RF-deposited gold layer was characterized by Transmission

Electronic Microscopy (TEM). Fig. 3.4A shows the TEM image of the optimized

gold nanolayer deposited over a TEM grid at a magnification of 400,000. TEM

images could only be taken by coating a TEM grid and could present a different

morphology compared to the gold layer sputtered over a biological tissue. Never-

theless, TEM images could be used as reference. As can be seen in Fig. 3.4A, the

gold nanolayer (represented by the dark grey and black areas) is discontinuous.

This gold nanolayer forms irregular nanoislands, surrounded by free spaces with

a dimension between 5 and 10 nm. A pixel integration over the TEM images

showed that the gold particles covered approximately the 65% of the sputtered

surface. The sputtered layer over a biological tissue might adapt to the roughness

and morphology of the different tissue surfaces, and might be more discontinuous.

Although there was a discontinuity of the deposited gold at the nanoscale level, the

layer is homogeneous at the LDI-MSI acquisition scale (μm-scale) and therefore,

it does not affect the reproducibility of the MSI analysis.

As commented above, one of the most important features of the surfaces devel-

oped for LDI-MS applications is the ability to absorb the maximum energy at the

wavelength of the instrument laser beam (355 nm for this study). To characterize

the performance of the optimized gold nanolayer, we have measured the absorp-
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Figure 3.4: A) TEM image at magnification of 400,000 of the optimized gold nanolayer, sputtered in
RF mode at 60 W and ambient temperature for 35 s. The gold nanolayer is represented by the dark grey
and black areas. B) Reflectance spectrum of the sample system formed by a ITO-coated glass slide, a
10 μm mice brain section and the optimized gold layer. The vertical dashed blue line corresponds to the
Nd:YAG laser wavelength (355 nm) used for the LDI-MS acquisitions.

tion spectrum of an optimized gold coated, 10 μm tick mouse brain tissue section

mounted on a ITO-covered glass slide. This absorption spectrum was measured

using a Vis-UV spectrometer with a light incidence angle of 30° in order to mimic

as much as possible the acquisition conditions of the laser configuration in the Ul-

trafleXtreme MALDI-TOF instrument [31]. Under the acquisition conditions, the

light reflection of the sample system was ca. ~2.5 % at 355 nm, which indicates

that the tissue-Au-layer system absorbs most of the laser energy achieving high

optical efficiency. Fig. 3.4B shows the obtained reflectance spectrum.

3.5 Results: MSI of animal tissues with gold-sputtered

layers

The viability of the optimized gold nanolayers for metabolomics MSI applications

by LDI-MS was checked by acquiring MSI data of different animal organ tissue

sections. The deposition of the optimized gold layer in RF mode, under highly

controlled conditions, allowed the acquisition of MSI data using a lower attenuation

laser power (60%). C57/BL mouse brain was also used to test the spatial resolution

of the method. Fig. 3.8 in the appendix shows results of LDI-MSI analyses

acquired at a spatial resolution of 10 and 20 μm. As an example, one ion was

manually selected to show the highly detailed morphological structure in the corpus

callosum. In these images we were able to reproducibly reveal small brain tissue

structures, demonstrating the capabilities of the sputtered gold layer for high
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spatial resolution LDI-MSI.

In this study, C57/BL mouse brain tissue was acquired with raster sizes of 80 μm,

a resolution previously reported to be sufficient to reveal the tissue structures in

these organs [23]. Moreover, we verified that with this pixel size the laser shots did

not overlap and thus detection sensitivity was not compromised. Fig. 3.5 shows the

MSI visualizations of three selected ions (m/z 845.46, m/z 849.64 and m/z 213.04,

Fig. 3.5A, B and C, respectively) obtained from a sagittal section of a mouse brain.

These figures represent the relative abundance of the selected ions in the color scale

showed in each figure, where red represents the areas with maximum ion signals

and dark blue the minimum ion signals. As can be seen, the selected ions present

different region selectivity in the mouse brain. Fig. 3.5D plots the combined image

of these three ions using the RGB color scheme (m/z 845.45 in red, m/z 849.64

in green and m/z 213.04 in blue). In this figure, different brain regions can be

clearly distinguished and labeled. The reliability of the developed MSI method was

confirmed by comparing the brain morphology obtained with the MSI images with

the same brain slice stained with Hematoxilyn (Fig. 3.5E), stained shortly after

the MSI acquisition (note the gold layer is porous, which allows the hematoxylin to

stain the underlying tissue). In contrast to matrix assisted LDI, the tissue staining

can be done without performing any washing step. The ions at m/z 845.46 and

849.64 were putatively identified as the potassium adducts of two lipids commonly

found in brain tissues (see Table 1 for further details).

Fig. 3.6 shows the average MS spectrum from the gold coated mouse brain tissue

section. The gold peaks used for the calibration of this spectrum are also indicated.

As can be seen, the gold nanolayers are able to promote the desorption/ionization

of different metabolites throughout a wide mass range. A total of 356 peaks were

detected with a S/N>5, with a TIC of 2.63x105.

The detected peaks were putatively assigned on the basis of mass accuracy, by

matching the experimental mass with the Human Metabolome Data Base (HMDB)

[28] database. Thirty endogenous metabolites have been putatively assigned with

an identity in the brain section, listed in Table 1, with a mass error below 15

ppm for most metabolites. The list of putative assignments includes amino acids,

carbohydrates and other small metabolites and several kinds of lipids, such as fatty

acyls, glycerolipids, glycerophospholipids, sphingolipids and sterol lipids. In bold

we have marked the metabolites previously reported in brain by the HMDB to give

more confidence to the assignments. To check the accuracy of the identifications
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Figure 3.5: Sagittal section of a mouse brain acquired with the optimized sputtered gold layer at a
raster size of 80 μm. Figures A, B and C plots the relative abundance of three ions found to reproduce
the brain morphology (845.46 Da, 849.64 and 213.04, respectively). D) shows the combined RGB color
encoded representation of the three ions that plots different brain areas of the sagittal section. Some of
the identified brain regions are labeled. E Optical image of a consecutive brain section slice stained with
a Hematoxilyn.

Figure 3.6: Average MS spectrum of a mice brain section. The MS peaks of gold used for the spectra
mass calibration are also indicated.

we studied the spatial distribution of the ions identified as cholesterol. Cholesterol

was detected as sodium and potassium adducts (m/z 409.33 and m/z 425.31,

respectively). As seen in Fig. 3.9 at the appendix, the spatial distribution of

cholesterol ions is similar, thus corroborating that both ions come from the same

metabolite. These coherent distributions of cholesterol reinforce the suitability of

the gold-induced ionization for MSI.
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Table 3.1: Putative identification of metabolites in the brain tissue section including the chemical name,
ion formula, the experimental m/z obtained in our experiment (a), the m/z calculated from the database
(b), and the mass error of the identification in ppm.

The optimized gold-induced ionization system presents several advantages re-

garding other MSI sample preparation techniques. On the one side, sputtering

allows the deposition of high purity gold nanoparticles (>99.995%) avoiding con-

tamination of the sample and, therefore, the presence of interfering peaks in the

MS spectra. Furthermore, since gold only presents one stable isotope there is no

additional dilution of the ion current (as occurs with silver assisted LDI), less

mass spectral congestion and the mass spectral peaks can be assigned identities

more easily. Furthermore during the MSI data acquisition the mass calibration of
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the instrument can drift; the presence of gold cluster ions in each pixel facilitates

the alignment and calibration between pixels, thus potentiating a more reliable

identification of the metabolites. In this study we have achieved a mass accuracy

below 15 ppm for most compounds using gold clusters for internal calibration.

Furthermore, compared with the wet deposition of gold layers or organic matri-

ces, the sputtering deposition process used here is known as a fast and highly

reproducible technique. The total time needed for the gold layer deposition over

a tissue section is around 5 min including sample mounting, pumping the vacuum

chamber and deposition. A recent study suggested gold as possible universal ma-

terial for LDI-MS analysis and imaging [26] because of the high detectability and

high mass determination accuracy achieved with this material. The detection of

MS peaks in a wide m/z range obtained in brain also confirms the potentialities

of the application of this new MSI methodology in clinical diagnostics. The rapid

and reproducible dry deposition of gold optimized here would promote the use of

gold for MSI applications, without the metabolite delocalization inherent to wet

deposition methodologies.

3.6 Conclusions

In this study we present the development of an alternative method for the acqui-

sition of MSI data based on the sputter deposition of gold nanolayers over thin

tissue slices. Gold is a highly stable material and neither degradation nor oxi-

dation occurs after sample preparation or during the LDI-MS acquisition. The

presented sample preparation method is fast, fully automated and reproducible.

Furthermore, this dry deposition method avoids the delocalization of metabolites

in biological tissues improving the spatial resolution (down to 10 μm, and only

limited by the laser configuration) of the obtained MS images.

The capacity of gold to acquire a wide range of metabolites has been demon-

strated through the acquirement of MS images of brain tissue. The mass spectra

obtained from the analyzed tissues are very rich in the m/z range under 1000 Da.

Background MS peaks from gold nanoparticles are just five single signals homoge-

nously distributed across the spectra. These signals have a minimal interference

on metabolites detection and can also be used for a reliable spectrum alignment

and mass calibration between pixels. Moreover, we have been able to putatively

identify thirty endogen metabolites in brain demonstrating the reliability of the
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acquired spectra. Therefore, the gold-assisted sputtering MSI method presented

here could open up new possibilities for a reliable use of MSI in clinical diagnostics.
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3.7 Appendix

Figure 3.7: Average spectrum of a mouse liver section acquired in reflectron negative mode using the 35
s sputter coated gold layer. A) The full MS spectrum until m/z 1000 and B) Zoom of the MS spectrum
between m/z 700 and 900.

Figure 3.8: Mouse brain tissue section acquired high spatial resolution using a Bruker MALDI-
TOF/TOF rapifleX instrument. A) Complete brain coronal section acquired at 20 μm. B) A small
part of corpus callosum and striatum acquired at 10 μm using the same tissue section.

98

UNIVERSITAT ROVIRA I VIRGILI 
DEVELOPMENT OF A COMPLETE ADVANCED COMPUTATIONAL WORKFLOW FOR HIGH-RESOLUTION LDI-MS METABOLOMICS IMAGING DATA PROCESSING AND VISUALIZATION 
Pere Ràfols Soler 
 



Figure 3.9: MS images of ions m/z 409.33 and 425.31 of mouse brain tissue section. These ions presents
two highly correlated images that have been putatively assigned as cholesterol ([C27H46O+Na]+ and
[C27H46O+K]+ respectively).
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Chapter 4

rMSI: an R package for MS imaging data han-dling and visualization
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4.1 Abstract

R platform provides some packages that are useful to process mass spectrometry

imaging (MSI) data; however, none of them provide an easy to use graphical user

interface (GUI). Here, we intro-duce rMSI, an R package for MSI data analysis

focused on providing an efficient way to manage MSI data together with a GUI

integrated in R environment. MS data is loaded in rMSI custom format optimized

to minimize the memory footprint yet maintaining a fast spectra access. The

rMSI GUI is designed for simple and effective data exploration and visualization.

Moreover, rMSI is designed to be integrated in the R environment through a

library of functions that can be used to share MS data across others R packages.

The release of rMSI for R environment establishes a novel and flexible platform

for MSI data analysis, completely free and open-source.

4.2 Introduction

Mass spectrometry imaging (MSI) is an emerging technique capable of mapping

the spatial distribution of molecules in biological tissues with high spatial resolu-

tion. The MSI instrument scans the sample in a defined raster acquiring a MS

spectrum for each pixel [1]. The MSI experiment produces large datasets that

require specific software tools to be processed. Proprietary software packages,

generally associated to each specific mass spectrometer, are available to analyze

MSI data. However, they are either expensive or exclusive to each vendor and

their closed-source model makes impossible to modify the code to explore all MSI

possibilities. A few MSI software tools have been released under an open source

license allowing a wide availability and easy code modification. MSiReader [2] is

an open-source toolbox for Matlab platform that provides a full-featured graphical

user interface (GUI) for MSI data exploration. MSiReader is also freely available

as a standalone program which does not require a Matlab license. However, the

main drawback of MSiReader is the lack of a memory optimized data handling

model. Recently, SpectralAnalysis [3] has been released as another Matlab tool

that provides an efficient data handling model for MSI data. However, both of

these Matlab tools require a commercial software license to develop and modify its

source code. On the other hand, R platform is becoming a largely used solution

for the development of bioinformatics tools in a completely open-source model.

To date, Cardinal [4] is the only available MSI specific tool developed for the R
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environment. Cardinal provides many pre-processing algorithms and image seg-

mentation routines. Cardinal is able to handle large datasets by pre-processing

MS data directly from disk, however no GUI for fast and easy exploration of the

data is provided. Here, we present rMSI, an R package focused on integrating

MSI exploration in an R-based environment through a GUI that allows a rapid,

responsive and easy visualization and comparison of MS images. The integration

of rMSI in R establishes a flexible and reliable platform for MSI data analysis.

4.3 The graphical user interface (GUI)

A user-friendly graphical interface is included in rMSI to facilitate fast MSI data

exploration. A screenshot of rMSI main GUI is displayed in Figure 4.1. The

GUI is divided in four areas: “spectra list” (Fig. 4.1A), “MS image” (Fig. 4.1B),

“intensity scales” (Fig. 4.1C), and “spectra visualization” (Fig. 4.1D). MS images

are displayed together with their color codification represented in “intensity scales”.

The spectra visualization window shows the average spectrum of the whole MS

image by default, but the spectra from different pixels can be also overlaid. Ion

images can be reconstructed by selecting a m/z range in the spectra view area or

entering m/z and tolerance values using the keyboard. Up to three ions can be

plotted simultaneously, encoding each ion image in a color channel of an RGB color

system. The GUI also allows drawing a rectangular region of interest (ROI) over

the MS image (Fig. 4.1E) to perform actions to a selected set of pixels. Moreover,

rMSI provides a special mode for comparing two MS images simultaneously, for

example in a disease versus control study. This feature displays two MS images

laid out side by side with a common spectra view (Fig. 4.2 in the appendix). In

this mode, selected ions are automatically rendered in both MS images areas at

once.

4.4 MS data handling strategy

MS images use a large amount of memory since they contain a large collection of

spectra. The memory needed could range from hundreds of megabytes to several

tens of gigabytes, depending on the m/z resolution and the total number of ac-

quired pixels. Such amount of spectra may be difficult to handle in the computer’s

memory (RAM), especially if more than one image has to be loaded at once, e.g.
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Figure 4.1: Screenshot of rMSI’s main GUI displaying a MS image from a mouse brain sagittal section.
Spectra were acquired using a Bruker MALDI-TOF/TOF UltrafleXtreme in a mass range of m/z 80 to
m/z 1000 and a spatial resolution of 80 μm. A) Spectra list area displays a collection of selected pixels.
B) MS Image area displays the ion image in a single channel or triple channel. C) Intensity scale area
displays the color intensity mapping for each selected ion. D) Spectra viewer allows selecting an ion on
the spectrum. E) Region of Interest (ROI) user selected ROI is displayed as a red rectangle.

to compare tissues from a case-control study. To overcome this, rMSI provides a

data format designed to combine RAM memory with the available hard disk drive

(HDD) free space. First, the mass spectrum from each pixel is uniquely identified

with an ID number allowing a fast and controlled data access. Then, MS data is

split into different blocks that are stored uncompressed in the HDD applying nei-

ther m/z binning nor any data reduction strategy. Each data block is stored in an

R matrix where each mass spectrum is located in a row. These matrices are stored

in HDD files sorting data by columns; hence intensities of a set of neighbor m/z

channels can be obtained in a single disk reading operation. This design allows

a fast ion image reconstruction. To improve the spectra loading time, each data

matrix is limited to 50 MB in size. This allows loading a whole matrix to RAM

for fast row access during spectral processing. The rMSI GUI takes advantage of

this data model by only loading the part of the image that is being represented.

This low memory footprint design allows exploring various high resolution (spatial

and spectral) MS images simultaneously in a standard laptop computer.

Data access performance has been tested for various datasets on a laptop with

an Intel Core2Duo 2 GHz processor, 4 GB of RAM and a 5400 rpm disk. Despite
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of the bottleneck that represents accessing data from the HDD, rMSI provided ion

image reconstruction times ranging from 2 to 8 seconds depending on the data size

(see appendix Table 4.1 and Fig. 4.3). The best performance was obtained for

a 3.7 GB dataset and the worst performance was obtained for a 31.5 GB dataset

containing almost 106 m/z channels synthetically created to simulate a large image

acquired with a MS high resolving power spectrometer.

In addition to its own format, rMSI allows importing data from the open stan-

dard imzML [5] and Bruker’s XMASS. Once the data is loaded in rMSI, the gener-

ated files are organized to be reusable in future R sessions allowing an immediate

loading time for next R sessions.

4.5 Conclusion

The developed R package presented here fulfills the requirement of a user-friendly

interface integrated in the popular and open-source R environment. The developed

data format allows a fast and snappy MSI data exploration of high-resolution

images in standard computers. The usage of rMSI integrated in R environment

provides a flexible and powerful platform for MSI data handling and analysis.
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4.6 Appendix

Figure 4.2: Screenshot of rMSI’s main GUI used to explore two MS images from a mouse brain sagittal
section in dual mode. Here, two MS images are laid out side by side to compare case vs. control tissues.
Spectra were acquired using a Bruker MALDI-TOF/TOF UltrafleXtreme in a mass range of m/z 80
to m/z 1000 and a spatial resolution of 80 μm. A) Spectra list area displays a collection of manually
selected pixels with their ID’s. B) MS image 1 area displays the ion intensity distribution of the first MS
image in a single channel. C) Image 1 intensity scale window displays the color intensity mapping for
the selected ion. A rainbow color scale is used here because only one ion is selected. D) Spectra viewer
allows selecting an ion on the spectrum to render its image in (B) and (F) areas. E) Region of interest
(ROI) user selected ROI is displayed as a red rectangle. F) MS image 2 area displays three selected ion
intensities distributions of the second MS image in triple channel mode. Here an RGB color encoding is
used to represent the three ions in a single image. G) Image 2 intensity scale window displays the color
intensity mapping for the selected ions. Here, each ion intensity is represented by a red, green or blue
color.

Table 4.1: Results of rMSI performance tests using an outdated laptop computer featuring an Intel
Core2Duo 2 GHz processor, 4 GB of RAM and standard 5400 rpm hard disk drive. Six MSI datasets with
different number of pixels and m/z channels were tested to measure the rMSI data format’s scalability.
All data was acquired using a Bruker MALDI-TOF/TOF UltrafleXtreme spectrometer with various raster
size settings and sampling rates. *Datasets 5, 4 and 6 are synthetic datasets created to simulate rMSI
behavior for high mass resolution datasets (FT-ICR). Synthetic datasets (*) were created by extending
the m/z axes of real datasets.
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Figure 4.3: Plot of spectra access time using data from table 4.1. Here, data size is calculated as the
multiplication of number of pixels by the number of mass channels (all spectra intensities are encoded in
32 bits integers). The corresponding dataset is displayed for each data point as an overlaid number in red
color. A) Ion image reconstruction time vs. data size displays the relationship between the data size and
the time used to display an ion image. B) Image unpacking time vs. data size displays the relationship
between the data size and the time used to unpack data from rMSI’s compressed format. As can be seen,
the data access time scales pretty linearly independently if the data size increments are due to number
of pixels or number of m/z channels.
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Chapter 5

Novel automated workflow for spectral alignment and mass

calibration in MS imaging using a sputtered Ag nanolayer
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5.1 Abstract

Mass spectrometry imaging (MSI) is a technique that can map analyte spatial

distribution directly onto a tissue section. This enables the spatial correlation of

molecular entities with a tissue morphology to be investigated. Analyte annotation

in MSI is intrinsically linked to the mass accuracy of the data. Mass accuracy and

analyte identification are determined by such factors as the experimental set up

and the data processing workflow. We present an MSI data processing workflow

that uses a label-free approach to compensate for mass shifts. The algorithms

developed were designed to perform efficiently even for large datasets generated

from an FTICR mass spectrometer. We assessed the overall mass accuracy in the

range m/z 400 to 1200 using silver and gold sputtered nanolayers. With our novel

processing workflow we were able to obtain mass errors as low as 5 ppm using a

TOF instrument.

5.2 Introduction

Classical histology visually inspects stained tissue sections and identifies specific

regions, and is an essential tool in medical diagnosis. However, histology is not

capable of determining the chemical composition of tissue regions and must be

complemented with other techniques if molecules are to be characterized. This

requires additional sample preparation steps and analysis. In recent years, mass

spectrometry imaging (MSI) has emerged as a straightforward alternative to this

end [1, 2]. MSI, also called molecular histology, consists of acquiring molecular im-

ages from biological tissue sections and extracts the chemical information directly

from the tissue.

The most widely used ionization technique in MSI applications is Matrix As-

sisted Laser Desorption Ionization (MALDI) [3, 1]. It applies an organic matrix

to thin tissue sections to promote the desorption/ionization of proteins, lipids and

other metabolites. Nevertheless, one of the main drawbacks of MALDI is that the

organic matrices introduce a considerable number of MS signals in the low m/z

range of the spectrum (below 1000 Da). These signals severely interfere with the

MS peaks arising from endogenous low molecular weight compounds, which makes

their application to metabolomic studies a challenge [4].

Matrix-free LDI-MS techniques have emerged in recent years as valuable alter-

natives for the analysis of metabolites. Metal sputter coating has been introduced
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as an efficient deposition method suitable for MSI using gold and silver nanolay-

ers [5, 6]. Sputtering is a dry deposition technique, which deposits highly pure

and homogeneous metal or metal oxide nanolayers on biological tissues. Further-

more, the characteristic peaks from metal clusters can be used for internal mass

calibration throughout the m/z regions of the spectrum obtained [5, 7].

MS spectral peaks obtained on tissue sections display some degree of mass mis-

alignment between pixels because of several experimental factors. In the case of

time of flight (TOF) mass analyzers, tissue-surface irregularities (or sample topog-

raphy) in conjunction with spec-trometer drift due to small dilatations/contractions

of the flight tube, or slight variations in the high-voltage power supply commonly

trigger mass drifts [8, 9]. Due to this mass shift, a wider mass tolerance may be

necessary if ion images are to be properly displayed. Therefore, in peak crowded

regions of the spectrum different compounds may be mixed when images are recon-

structed. This experimental variability hampers molecular identification because

various peaks originating from different compounds may be detected within the

same m/z window. To improve ion image reconstruction, several alignment and re-

calibration strategies have been proposed to improve feature selection and molecule

annotation. Classical methods for improving measurement mass accuracy (MMA)

are related to mass calibration. Two main strategies are generally used: external

calibration and internal calibration. External calibration methods consist of deter-

mining a calibration function using standard compounds placed side by side with

the tissue section. Then, the same calibration function is applied to the whole

dataset. This methodology is useful for calibrating the instrument before starting

the MSI measurement, but it cannot compensate for mass shifts introduced dur-

ing acquisition. The internal calibration approach uses known molecules present in

every pixel of the tissue section as mass references. These reference molecules can

be known endogenous tissue compounds, standard compounds sprayed with the

organic matrix, or peaks of the matrix itself. Although there is no justification in

the papers, a mass accuracy better than 20 ppm was reported using silver cluster

peaks as references for internal mass calibration [5]. More recently, a 10 ppm mass

accuracy was achieved using gold cluster peaks as calibration references [6]. Nev-

ertheless, the mass accuracy has not been validated throughout the analyzed mass

range. MS peaks associated with cationic gold nanoparticles has also been used

to calculate the mass accuracy [10], although the error has not been quantified.

The main drawback of the internal calibration method is that not all the reference
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molecules can be properly detected in all the pixels of the MS image. This means

that the MMA cannot be ensured for every peak list in a dataset. An alternative

method is to align all MS spectra in the same mass axis so an overall recalibration

function can be applied to the whole dataset. This methodology can be referred to

as label-free alignment because no reference compound is required for all the data

to be aligned. This alignment strategy calibrates a complete dataset as accurately

as a single spectrum calibrated using internal reference peaks. Furthermore, with

a proper alignment, molecules can be putatively identified directly from the peak

lists of the whole dataset. It has been demonstrated that it is possible to suc-

cessfully align spectra acquired with Fourier Transform Ion Cyclotron Resonance

(FTICR) spectrometers using ion abundance [11] or ambient peaks [12]. FTICR

detectors are very robust to mass drifts because the mass shift is only related to

the charge in the ICR cell. Therefore, if ion intensities are used to predict the

mass error of each spectrum there is a considerable improvement in MMA. In or-

der to compensate for mass shifts in data generated with a TOF instrument other

algorithms must be used because, in this case, the mass shift is not related to peak

intensity. Moreover, spectra generated by TOF instruments display far more vari-

ability than spectra recorded with FTICR. Tracy et al. [9] introduced a method

to align TOF data in the time domain instead of the m/z domain. This method

states that corrections in the time domain provide better accuracy than in the m/z

domain since most TOF variations are linear in the time domain. More recently,

a novel approach that models the mass shifts using sorting algorithms has been

introduced [13]. These alignment studies have tested for MMA validation using

some compounds found to be present throughout the tissue section. Nevertheless,

the mass error across the full m/z range has not been reported since not enough

reference compounds have been confidently identified.

Herein we present a novel and complete MSI pre-processing workflow which

can align and recalibrate large MSI datasets automatically. Unlike most previ-

ous alignment methods, the alignment algorithm developed is designed to work

directly in the MS spectra domain rather than use peak-lists, which means that

the peak shape is taken into account for the alignment. This is an advantage over

other strategies because the resulting spectra can be accessed afterwards and used

for interactive ion image reconstruction. The algorithm presented uses a spectral

cross-correlation approach to obtain a mass axis warping method that can compen-

sate for non-linear mass shifts. All the processing is designed to make intense use
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of the Fast Fourier Transform (FFT) which reduces the use of computer resources

even for large datasets. The workflow presented here has been tested on TOF

and FTICR MS data. We also introduce an experimental methodology based on

sputtered metal-nanolayer deposition that is used to assess mass error throughout

the spectrum. We used an Ag and Au bilayer deposited directly onto the tissue

section to promote LDI ionization and provide enough reference peaks to study the

MMA. The peaks of the Ag, Au and AgAu clusters are easily identified due to the

theoretical isotopic pattern of Ag. These peaks are detected throughout the mass

range from m/z 400 to 1200. The peaks are used to provide a reliable methodology

for studying the mass accuracy for a given instrumental platform and processing

workflow. Using a reflector TOF instrument and our pre-processing workflow we

demonstrate that we can obtain a peak matrix of the whole dataset with mass

errors as low as 5 ppm in a mass range from m/z 600 to 1200 when Ag peaks

are used as references for calibration. The pre-processing methodology presented

here considerably improves the MMA of the complete peak matrix, which contains

all the relevant peak information from an MSI experiment using an Ag sputtered

layer or any other set of reference peaks properly distributed across the m/z range.

5.3 Materials and methods

5.3.1 Materials

Indium tin oxide (ITO) coated glass slides were obtained from Bruker Daltonics

(Bremen, Germany). The gold and silver targets used for sputtering coating were

obtained from Kurt J. Lesker Company (Hastings, England) with a purity grade

higher than 99.995%.

5.3.2 Sample preparation

Liver was obtained from C57BL/6 mice, snap frozen at -80°C after collection

and stored and shipped at this temperature until analysis. Dr M. Teresa Colom-

ina, professor of Psychobiology at the Research Center for Behavioral Assessment

(CRAMC) of the Universitat Rovira i Virgili provided the animal tissues. The

tissues were sectioned at -20°C in slices 10 μm thick using a Leica CM-1950 cryo-

stat (Leica Biosystems Nussloch GmbH) located at the Centre for Omic Sciences

(COS) of the Universitat Rovira i Virgili and mounted on ITO coated slides by
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directly placing the glass slide at ambient temperature onto the section. To re-

move residual humidity, samples were dried in a desiccator under vacuum for 15

minutes after tissue mounting.

5.3.3 Sputter coating

Silver and gold nanolayers were deposited over the 10 μm tissue sections using an

ATC Orion 8-HV (AJA International, N. Scituate, MA, USA) sputtering system.

An argon atmosphere with a pressure of 30 mTor was used to create the plasma

in the gun. The working distance of the plate was set to 35 mm. The silver layer

was deposited in DC mode at 100 W for 10 s. The gold layer was deposited in RF

mode at 60 W for 35 s. These deposition modes were selected so that the liver

tissue could be coated with both metals faster and without pumping the sputter

chamber vacuum various times to replace the target. Since the deposition times

used in this study were very short, the substrate temperature did not increase

during the deposition.

5.3.4 LDI-MS acquisition

MS tissues images were acquired using a MALDI TOF/TOF UltrafleXtreme in-

strument with SmartBeam II Nd:YAG/355 nm laser from Bruker Daltonics, also

at the COS facilities. Acquisitions were carried out using a large laser spot, oper-

ated at 2 kHz at an attenuated power of 50 %, collecting a total of 500 shots per

pixel with a raster size of 100 μm. MS spectra were acquired in positive reflection

mode, at 2.5 GHz in a mass range between m/z 400 to 1200, with a manually

optimized extraction delay. The spectrometer was calibrated prior to tissue image

acquisitions using Ag+ peaks as reference masses.

5.4 Processing workflow

MS images were acquired using FlexImaging 3.0 software from Bruker. Each image

was exported to XMASS data format using instrument manufacturer software

packages (FlexImaging and Compass export). The raw data was loaded using the

rMSI package written in-house [14]. This package provides a data storage format

based on segmented matrices and optimized for processing large MSI datasets in

R language. Then a pre-processing workflow consisting of smoothing, alignment,

recalibration and peak detection was applied.
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5.4.1 Smoothing

The first step in the processing chain is a smoothing stage using the well-known

Savitzky-Golay algorithm [15] which has the important property of retaining the

exact position of mass peaks. The smoothing stage improves the performance of

the following processing methods because it reduces noise. Therefore, the align-

ment routine becomes more robust since the random noise reduction provides a

better correlation between spectra. Peak detection is also improved because it

becomes less sensitive to noise peaks.

5.4.2 Label-free alignment

The spectra of an MS image present some degree of mass miss-alignment between

pixels for several experimental reasons. The goal of a label-free alignment algo-

rithm is to project all the spectra onto the same mass axis without using any

reference peaks. Here, we describe an alignment method based on spectral corre-

lations that can compensate for the experimental mass drifts.

The first step of the algorithm is to select a single spectrum as an internal

reference. The simplest approach is to use the average spectrum of all pixels as a

reference. However, for long acquisitions the average spectrum may exhibit very

wide peaks or even double peaks as a consequence of instrumental mass drift.

To avoid this, we use the spectrum of a single selected pixel in the MS image

as reference. The algorithm calculates the correlations of each spectrum to the

average spectrum. Then, the pixel with the highest correlation is selected as the

reference. Since this reference spectrum is automatically chosen and no standard

compounds are required, this methodology is considered label-free.

The alignment algorithm presented here is based on the cross-correlation theo-

rem through the Fast Fourier transform (FFT). However, the method presented

not only compensates for an offset in the m/z axis; it also performs non-linear cor-

rections. This is done by calculating two correlation coefficients for each spectrum.

The alignment algorithm is summarized in Fig 5.1.

Each spectrum in the dataset is split into two parts, the bottom part that

includes the lower m/z channels and the top part for the higher m/z channels.

Each part is calculated by windowing the spectrum using a Hanning function which

allows a smooth transition in the central part (Fig. 5.1A). Using a Hanning instead

of rectangular functions provides more accurate correlations because the spectrum
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Figure 5.1: Spectra alignment algorithm flow chart. A) A Hanning window is applied to each part of
the spectrum to emphasize only the lowest or highest region in the cross-correlations calculation. B)
Each part of the windowed spectrum is Fourier transformed and multiplied by the FFT of the windowed
spectrum selected to be used as the internal reference. C) The time shifts (lagl and lagh) for each part of
each spectrum are obtained by locating the peak in the cross-correlation function. The lags are mapped
to the Sh offset and k coefficient in order to be applied to the spectrum. D) Each original spectrum is
time shifted and time warped according to its Sh and k values.

is not abruptly cut at the middle. After applying the Hanning window, the FFT

of each part of the spectrum is calculated. To improve the FFT performance, zero

padding is used to obtain a power of two lengths of all vectors. These steps are done

in first place using the selected reference spectrum. Then, the resulting frequency

transformations are conjugated and kept in memory of the computer. Once the

reference transformations have been calculated, the same procedure is applied for

each spectrum except for the complex conjugate operation (Fig. 5.1B). Then, each

part of the spectrum is multiplied by the complex conjugate of reference in the

frequency domain. The result of this operation is a function that corresponds to

the Fourier transform of the cross-correlation of each spectrum with the reference.

See equation 5.1 where r corresponds to each one of the half parts of the reference

spectrum and xk corresponds to the half-spectrum of a given pixel k.

F {r ⋆ xk} = (F {r}∗) · F {xk} (5.1)

The time shift that maximizes the correlation between each part of the spec-

trum (bottom and top) is obtained by locating the maxima at the inverse Fourier
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transform of each cross-correlation value F {r ⋆ xk} (see Fig. 5.1C). Two time

shifts are obtained for each pixel, one for the bottom part of the spectrum (lagl)

and the other for the top part of the spectrum (lagh). However, these time shifts

cannot be applied directly to the spectrum because this would involve breaking

the m/z axis at its center. Instead, these two time shifts are transformed to two

equivalent parameters: time shift offset Sh and time scaling coefficient K. The

time shift represented by Sh consists of a shift that will be applied to the whole

spectrum. The shift parameter aims to compensate for measurement drifts be-

cause the flight distance varies with tissue roughness. The time scaling, K will

take values smaller than one if the spectrum must be contracted and values higher

than one if the spectrum must be expanded. Thus, the peak widths will narrow

when the spectrum is compressed and the peaks will widen when it is expanded.

The K parameter is designed to compensate for TOF drifts introduced by flying

tube thermal contraction/expansion and accelerating voltage variation.

To obtain the scaling constant K and the time shift offset Sh a linear transfor-

mation is applied. The aligned spectrum must display the times shifts (lagl) and

(lagh) at the bottom and top, respectively. Therefore, the K and Sh values are

calculated using equations 5.2 and 5.3 for each pixel in the dataset. This process

will obtain the line equation that maps the original mass axis to the warped mass

axis with proper shifts applied (Fig. 5.1C). Here, two new variables are intro-

duced: Rl and Rh which represent the m/z positions where the (lagl) and (lagh)

will be applied to the mass axis. Generally, Rl and Rh are set at the minimum and

maximum m/z values of the spectrum, respectively. However, these parameters

can be tuned to compensate for the effect of some really intense peaks that may

influence the cross-correlation procedure excessively.

K =
Rh + lagh −Rl − lagl

Rh −Rl

(5.2)

Sh =
Rh · lagl −Rl · lagh

Rh −Rl

(5.3)

Then the time shift Sh and time scaling K are applied to all spectra by means

of the FFT properties. First, the spectra are scaled using FFT downsampling or

oversampling methods depending on whether the scaling parameter is greater or

less than one. Downsampling is achieved by removing samples from the center

section of the frequency domain. On the other hand, the oversampling adds zeros
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to the center section of the frequency domain. The algorithm calculates how many

sample points must be added or removed to properly approximate the K parame-

ter. Thus, applying signal interpolation before the whole alignment methodology

is useful if this step requires extra accuracy. After the scaling stage, the time shift

Sh is applied in the frequency domain by means of the Fourier transform time shift

property:

F (xk (t− Sh)) = Xk (ω) · e
−jωSh (5.4)

Here, the frequency domain spectrum is multiplied by the complex exponen-

tial time shift coefficient to obtain the shifted Fourier transform of the spectrum

(Fig. 5.1D). Finally, the inverse FFT transform is applied to retrieve the aligned

spectrum.

5.4.3 Mass recalibration

After the label-free alignment stage, all the spectra share a common m/z axis.

Thus, the whole dataset can be recalibrated using the same reference. Here, the

average spectrum is recalculated using the aligned spectra to avoid double peaks

and wider peak issues. Then, the average spectrum is used to calculate the mass

calibration function using reference masses. Each reference peak position is located

in the average spectrum and recorded together with its theoretical mass. A loess

smoother is used to predict the calibrated m/z axis. In this study, we used the

Ag peaks from the AgAu layer as internal reference [5, 6, 10]. However, standard

compound or matrix peaks can be used for this purpose as well. Refer to Table

5.1 in the appendix for the complete list of peaks used for calibration.

5.4.4 Peak detection

After the alignment and recalibration stage, peaks can be detected with reduced

mass error. However, the number of data points used to represent a peak is not

accurate enough if the peak is represented directly by a data point. Previous

work has been done to improve peak detection mass accuracy using algorithms

that model each peak in the spectrum as a mathematical function. Algorithms

such as OMP [16] or centroid Gaussian fitting [9] can detect peak mass positions

with high accuracy although processing time increases. On the other hand, it

has also been demonstrated that good mass accuracy can be achieved using peak
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centroid cubic interpolation [17] which requires far less computation time. Here we

present a fast and simple peak picking algorithm based on FFT interpolation. In

the first stage, all the peaks in a spectrum are detected according to the classical

mathematical definition: in a peak, the first curve derivative is zero and the second

derivative is negative. However, this produces a long list of peak candidates, most

of which actually come from noise. In order to decide which peak candidate is an

actual peak we use a noise estimation model based on FFT filtering. Here, the

whole spectrum is converted to the frequency domain and low-pass filtered using

a decaying exponential function. The inverse Fourier transform of this signal

provides a computationally fast estimation of the noise floor and the baseline.

Then, the intensity of each peak candidate is compared to the corresponding value

of the noise estimation. The peak candidates that are less intense than the desired

signal to noise threshold are discarded. The next step consists of calculating each

peak mass accurately. A modified Hanning window with three center samples set

to one are applied for each detected peak. Then each peak is interpolated to higher

resolution using FFT. The position of the maximum of the interpolated peak in

the window is used to calculate the peak mass. The Hanning window assures no

ringing effect in the peak interpolation stage which allows better mass prediction.

This method enables fast peak detection with improved mass accuracy which is

suitable for large datasets.

When all spectra have been converted to a list of peaks the next step is to

merge everything into a single matrix to represent the whole dataset. Each matrix

row corresponds to each pixel in the MS image and the columns contain the peak

intensity. A vector with the same length as the number of columns is recorded

to keep the m/z value of each peak. This matrix makes it possible to make a

statistical analysis of the data as long as columns are treated as variables and rows

as observations. The process of converting all the peaks list to a single matrix is

known as peak binning. Here two filters are defined: binning tolerance and peak

filtering. The first parameter is used to merge peaks from different pixels into a

single peak matrix column when the mass difference is below the defined tolerance

in ppm. The tolerance filter is related to the spectrometer resolving power and

must be small enough to prevent peaks of different masses from merging and

large enough to prevent peaks from the same molecule splitting into multiple peak

matrix columns. The peaks that are not detected in any spectrum are written

as zeros in the corresponding peak matrix cell. When all the peaks across the
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dataset have been placed in the right location of the peak matrix, the m/z vector

is calculated as the centroids of peak masses. Then, the second filter is applied to

remove peak matrix columns that contain too few peaks. At this point the peaks

in each column are counted and if there are not more than the threshold specified

in % of total number of pixels the whole column is removed from the peak matrix.

This filter ensures that less frequent peaks from noise will not bias any further

statistical analysis.

5.5 Results and discussion

In order to validate the method described for full MSI dataset pre-processing,

we developed a novel test methodology based on sputtered metal layer deposition.

Instead of using standard compounds to test the performance of the alignment and

calibration algorithms we deposited a bilayer of silver and gold nanoparticles on a

section of mouse liver tissue. This bimetal layer provides many peaks distributed

across the mass spectrum that can be easily identified and used to validate the

mass calibration methodology. Since the metal bilayer contains silver and gold, the

mass spectrum displays peaks from gold, silver and clusters of both metals. Table

5.1 in the appendix shows the complete list of all peaks detected from the sputtered

layer. Here, the tissue section is only used to provide an efficient ionization surface

because the metal layer directly on the ITO glass slide does not ionize properly.

After MS image acquisition we performed the processing steps described above.

To test the accuracy of the alignment algorithm, a peak picking was conducted

on the whole data set before and after the alignment stage. Here, the peak list of

each spectrum is stored before and after alignment without a binning step. Thus,

the detected peak mass of the same molecule in each spectrum shows a slight

variation. This mass variation depends on factors like mass miss-alignment and

peak resolution. Therefore, the aim of the alignment algorithm is to reduce the

detected mass difference of the same molecule across the whole data set which

allows the binning step to be executed at lower tolerance. The reduction in mass

variation is also shown for larger acquisition images (more than 10000 pixels) in

the appendix (Fig. 5.4). Here, we observed that the alignment algorithm can

compensate for the TOF drift. An R script was created to calculate the mass

drift of each peak list for each theoretical silver and gold peak. This information

was used to construct plots of the detected mass for a given compound before
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and after alignment (Fig. 5.2). As can be seen, after the alignment stage the

detected mass displays far less variation (Fig. 5.2A). Histograms of detected mass

distribution were also calculated (Fig. 5.2B). Refer also to Fig. 5.5 in the appendix

which contains all the histograms of AgAu reference peaks. Here, we observe that

the detected masses present a narrower distribution after the alignment stage

(Fig. 5.2C). These plots are also useful for selecting an appropriate value for peak

binning tolerance.

Figure 5.2: Label-free alignment evaluation using Ag, Au and AgAu peaks. A) Comparison of mass
drift variation across the whole mass range before and after spectra alignment. B) Histograms of the
detected peak mass distribution for several reference peaks: Ag4, Ag7, Ag5Au2 and Ag7Au2 (more
histogram plots are provided in the appendix). C) comparison of standard deviation before and after the
alignment routine.

After the alignment stage, the spectra were recalibrated using the average spec-

trum and the most intense peak of each silver cluster (see Table 5.1 in the appendix

for further reference on masses used for calibration). Silver peaks were selected

for mass calibration since they were more intense and distributed throughout the

mass range. Moreover, silver peaks will also be present if an experiment is per-

formed with just the silver layer. Then, the peak matrix of the whole dataset was

obtained using the peak-picking and peak-binning procedure described above. The

peak masses from the sputtered layer were identified in the final peak matrix us-

ing the theoretical silver/gold spectrum. Moreover, the isotopic distribution of the

silver cluster was taken into account to provide a more robust identification. For

each metal peak identified, the difference with the theoretical mass was calculated

and is presented in Fig. 5.3 and Table 5.1 in the appendix. Using the mass errors

obtained for each metal peak an error function can be predicted for the complete
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mass range by applying loess smoothing to calculate errors throughout the m/z

range. Fig. 5.3 shows the mass error obtained using Ag peaks as the calibration

reference. Here we obtained errors as low as 5 ppm in the m/z range 400 to 1200

using TOF data in reflectron mode. Peaks with an error above 10 ppm are labeled

in Fig. 5.3. These peaks present a higher mass error because they overlap with

some endogenous compounds from the liver tissue, which distorts the peak shape.

Fig. 5.6 is provided in the appendix to show the spectra of all the selected peaks

in which this overlapping phenomenon can be seen.

Figure 5.3: Mass measurement accuracy (MMA) prediction using Ag, Au and AgAu clusters as reference
peaks. Peak masses were obtained after all processing steps (smoothing, alignment, recalibration, peak-
picking and peak-binning). Then, peak masses corresponding to the AgAu sputtered layer were identified
in the final binned peak matrix.

The pre-processing methodology discussed can take an MSI dataset and gener-

ate a mass-aligned and mass-calibrated version together with a peak matrix that

summarizes all the peak information. A novel approach based on an AgAu sput-

tered layer was taken to provide a reliable validation of the MMA and demonstrate

that mass errors as low as 5 ppm can be achieved for the complete peak matrix.

This makes it possible to putatively identify molecules directly from the peak

matrix instead of selecting specific spectra from the dataset. Unlike other TOF

alignment strategies [9, 13], our alignment algorithm gives a new MS image that

contains complete spectra instead of a peak list. This allows manual exploration

and ion image reconstruction of the aligned dataset using the same MSI visual-

ization software as can be used for raw data visualization. All of the processing
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is done automatically and all the user needs to do is select the reference peaks

to be used for mass calibration just after the alignment stage. This increases the

throughput of MSI data since statistical analysis can be performed and molecules

putatively identified directly from the peak matrix generated, which is an accurate

low size representation of the original dataset.

5.6 Conclusion

We have presented a complete MS image pre-processing pipeline that can pro-

vide a data-reduced representation of MS data with high accuracy. We demon-

strated that the label-free alignment algorithm developed can reduce the mass

miss-alignment in the spectra by calculating cross-correlations to an internal ref-

erence. This method has shown to provide accurate results when data is highly

correlated which is the case of most MS imaging applications, since all the spec-

tra within a tissue section share a lot of common features. We also increased

the correlations between spectra by using a homogeneously distributed sputtered

nano-layer of metal which is also used as an ionization matrix. The resulting

aligned spectra share a common mass axis which allows a full MS image mass

recalibration simply by calibrating the average spectrum. The peaks of the metal

nanolayer were successfully used as internal mass references for calibration.

A sputtered silver-gold nano-layer was used as a novel methodology to validate

the complete workflow. The peak matrix mass errors were verified using theoretical

metal peak masses of the Ag and Au clusters. Furthermore, the MS data processing

pipeline described uses an accurate data reduction strategy in which the peak

matrix can represent the whole MS image with an MMA as low as 5 ppm in the

m/z 400 to 1200 range. This enables further statistical analysis of MS peaks to

be performed more accurately and efficiently.
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5.7 Appendix

Figure 5.4: Mass shift observed at four endogenous peaks ( m/z 615.37, m/z 643.40, m/z 827.55 and
m/z 898.56) of a liver section before (blue) and after (red) the alignment routine. This data set contains
more than 10000 pixels that are plotted here sorted according the MSI acquisition order (time). It can be
seen how the mass drift introduced by a large acquisition time is compensated by the alignment algorithm.
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Figure 5.5: Mass shift histograms before (blue) and after (red) the alignment routine at Ag, Au and
AgAu reference peaks.
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Figure 5.6: Spectra plots focused on reference peaks of 20 randomly selected calibrated pixels. Peaks
Au3, Ag2Au2, Ag2Au3, Ag1Au4 and Au5 present a larger mass error because the reference peaks are
overlapped with some endogenous compounds.
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Table 5.1: List of AgAu sputtered layer detected peaks used for MMA validation. a peak theoretical
mass, b peak detected mass, * Peaks used as references for m/z calibration.
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Chapter 6

rMSIproc: an R package that efficiently implements a complete

pre-processing workflow for mass spectrometry imaging
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6.1 Abstract

Mass spectrometry imaging (MSI) is a molecular histology technique that can re-

veal biochemical information directly from a tissue section. However, it generates

a large quantity of complex spectral data. Translating the MSI raw data into

relevant biochemical information is still a challenging task due to factors such as

experimental variation and the huge size of MSI data. This requires implement-

ing computationally efficient routines to process the raw MSI data. We present

rMSIproc, an open-source R package that implements a full data pre-processing

workflow for MSI experiments performed using TOF or FT-ICR spectrometers.

The package provides an original strategy for spectral mass alignment and mass

recalibration, with enhanced peak matrix mass measurement accuracy. rMSIproc

is designed to work with files larger than the computer memory capacity and the

algorithms are implemented using a multi-threading strategy.

6.2 Introduction

Mass spectrometry imaging (MSI) is an emerging technique capable of mapping

the spatial distributions of molecular ions in biological tissues [1]. The size and

complexity of MSI data requires specialized software to extract relevant informa-

tion. Several software packages have been released to address these demands,

which have been recently reviewed describing the most challenging processes in

MSI data analysis [2]. More recently, a new release of MSiReader has been pub-

lished [3]. MSiReader is a Matlab written package that is gaining popularity, as

it features intuitive graphical tools, and is freely available online. MSiReader is

predominantly used for the visualization of MSI data; however it only includes

a few algorithms for MS spectral processing. The major limitation of MSIreader

is that the full dataset is loaded into computer memory, which impedes process-

ing a dataset larger than the available memory. SpectralAnalysis [4] is another

software package written in Matlab that overcomes the memory limitations and

provides common pre-processing algorithms: smoothing of mass spectra, baseline

correction, intensity normalization, and peak detection. In comparison to these

Matlab-based software solutions, the R platform is a truly open alternative that

allows a straightforward modification and combination of different tools. Indeed,

the last version of the R-based Cardinal package [5] has improved the data model

in order to handle larger-than-memory datasets through the ‘matter’ package [6].
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Nevertheless, Cardinal does not provide a graphical user interface (GUI) to ex-

plore the MSI data. None of these software tools have exploited the full potential

of multicore processors by writing multithread-ready code.

Here we present rMSIproc, an open-source MSI data pre-processing package

developed in R, to complement the previously released rMSI package [7]. The

rMSI package was designed to allow an efficient access to large MSI datasets com-

bined with a data visualization GUI. rMSIproc takes advantage of the rMSI data

handling strategy and adds a full data pre-processing workflow designed to ex-

tract relevant mass-to-charge (m/z ) features from large datasets. The entire data

processing is implemented using a multi-thread approach that takes advantage of

modern multicore processors.

6.3 rMSIproc features

The main goal of the rMSIproc package is to produce a peak matrix that is a re-

duced and robust representation of the complete MSI dataset, being small enough

to fit within the computer’s memory. Therefore, this format enables all the avail-

able R statistical analysis packages to be used for MSI data analysis. rMSIproc can

also record and store the mass spectra pre-processing results in an rMSI formatted

file. This allows the rMSI visualization tools to use the pre-processed data to en-

hance ion image reconstruction. The pre-processing package includes algorithms to

perform the following: Savitzky-Golay smoothing [8], spectral alignment, m/z re-

calibration, intensity normalization, peak detection and peak binning. A diagram

of the pre-processing workflow is provided in the appendix Fig. 6.1. The mass

spectra alignment tool uses a novel algorithm that can compensate for instrument-

induced mass shifts in a fully automated way without using any known molecule

as internal reference. The peak detection method is optimized for a fast mass

peak centroid prediction. Both the alignment- and the peak detection algorithms

rely on the fast Fourier transform (FFT) to calculate interpolations and cross-

correlations efficiently. After the peak detection, a binning tolerance is used to

merge all peaks from all spectra in a binned peak matrix. The peak matrix stores

each spectrum in a row and retains the different m/z species in the columns. The

peak matrix follows the standard R language conventions, so it can be directly

used for statistical data analysis, as each row is understood to be an observation

and each column as a variable. All the pre-processing parameters are integrated
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in a GUI for easy operation (Fig. 6.2 in the appendix). However, the user can still

integrate rMSIproc in any R script by calling the required functions of rMSIproc

as a standard R package.

6.4 Implementation details

rMSIproc uses rMSI to efficiently handle MSI data. Therefore, the same data for-

mats as rMSI are supported. This includes the open-standard format imzML [9] in

both ‘continuous’ and ‘processed’ modes. Data is loaded using rMSI functions and

then pre-processed by accessing rMSI objects directly from inside the rMSIproc

methods. The internals of rMSIproc are mainly implemented in C++ to provide

efficient memory management and highly optimized multi-threading execution.

However, all the user-relevant methods are exposed as R functions following the

classical structure of an R package.

6.5 Results

Several MSI datasets up to 200 gigabytes in size have been successfully processed

using rMSIproc, including mass spectra smoothing and alignment, m/z calibra-

tion, normalization of mass spectra intensities, peak detection and binning. In all

cases, we obtained a balanced CPU load distributed across all processing cores

on a machine with four available CPUs. The memory consumption was managed

by exclusively loading the data chunk being processed at each given time. The

performance of rMSIproc is reported in the appendix Table 6.1. rMSIproc can also

merge and process various datasets simultaneously, producing a single m/z matrix

from all the aligned mass spectra. The alignment algorithm has proven to com-

pensate for mass shifts in both TOF and FTICR datasets. After the alignment,

all mass spectra share a common mass axis and can be re-calibrated together. Our

alignment routine can properly resolve isobaric m/z species in ultra-high mass res-

olution MALDI-FTICR datasets that are otherwise impossible to detect accurately

(an example is provided in the appendix Fig. 6.3).
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6.6 Conclusions

rMSIproc is a valuable tool for pre-processing MSI files containing both high mass

and high spatial resolution MSI datasets in R environment. It features two novel

algorithms for mass spectral alignment and fast peak-detection. The combination

of rMSI and rMSIproc provides a full MSI data visualization and pre-processing

platform that uses modern computer architectures in a novel and open-source

manner.
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6.7 Appendix

Figure 6.1: rMSIproc processing workflow schematic.
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Figure 6.2: Screenshot of the rMSIproc’s GUI used to easily configure the pre-processing settings. All
processing parameters are available through the GUI for user-friendly interaction. The GUI is launched
by issuing the command rMSIproc::ProcessWizard() on an R console.

Figure 6.3: Example of the performance of the spectral alignment algorithm on a dataset acquired using
an FTICR spectrometer. This plot was constructed by randomly selecting fifty pixels in the dataset.
Then, a small mass range with three different ion species is represented. The spectrum corresponding
to each pixel is plotted using a randomly chosen color. It can be easily observed the performance of the
alignment algorithm by comparing the spectra of these fifty pixels before (A) and after (B) the alignment
stage. After the alignment algorithm (B), the three peaks can be properly resolved in this mass range.
Without alignment (A) theses three peaks will appear mixed if a single peak matrix is constructed from
the whole dataset.
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Table 6.1: Processing performance of rMSIproc using an AMD Opteron four-core computer at 3 GHz.
We processed two MSI datasets of different sizes and recorded the time required in each case. The
complete rMSIproc workflow includes mass spectra smoothing and alignment, m/z calibration, intensity
normalization, peak picking and peak binning. The number of CPUs used was controlled by setting the
maximum number of threads parameter of rMSIproc.
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Chapter 7

Final discussion
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The work carried out in this thesis can be clearly separated in two parts. Firstly,

the experimental workflow set up for sample preparation and LDI-MS image ac-

quisition. Secondly, the signal processing and bioinformatics part. This work

is focused in developing a reliable and simple workflow to obtain high quality

metabolomics images. We believe that these goals have been successfully accom-

plished since a gold sputtering deposition workflow has been optimized and is used

routinely in our lab. The optimized gold deposition methodology allowed us to

acquire the metabolomics imaging datasets which have been used to develop the

pre-processing steps and the bioinformatics tools for MSI. At this point, we are

able to accomplish the necessary processing steps to transform the complex MSI

raw data into a simplified peak matrix. Therefore, the objective of developing

a MSI processing platform capable of working with high-dimensionality data has

been accomplished. This will facilitate the task of making sense from the MSI

data in future applications.

7.1 Research on new methods for spatial metabolomics

The work conducted in this thesis is focused on the development of LDI technolo-

gies to obtain spatial metabolomics information. The other two MSI ionization

techniques: SIMS and DESI, have not been explored here. The reasons why we

focused in LDI are two-fold: Firstly, we had the opportunity to easily use a modern

MALDI instrument (Bruker ultraFleXterme) installed in our lab plus the exper-

tise of our lab technicians in classic MALDI experiments. Secondly, the MALDI

spectrometer is nowadays the most used platform for MSI. Generally speaking,

SIMS instruments are mostly limited in terms of mass accuracy at high spatial

resolution and MS/MS capability. In case of DESI, it has great potential for mea-

surements under ambient conditions, but has poor spatial resolution compared to

MALDI and SIMS [1].

MALDI based MSI has been successfully applied in peptidomics proteomics.

However, the adoption of MSI is still not a generalized technique for metabolomics

studies due to the challenge of obtaining high quality low molecular weight spa-

tially resolved spectral data. The main drawback of traditional MALDI imaging

technique is related to the organic matrix MS peaks interfering with the low mass

range. In this work, it has been demonstrated the reliability of a sputtered gold

nano-layer to promote the ionization of low molecular weight compounds. Besides,
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the use of sputtered metals like gold and silver has been reported by Dufresne et

al. in MSI applications [2, 3]. This opens up the door to explore the benefits of

depositing other metals using sputtering technique. In our opinion, it is preferred

to test metals with only one stable isotope, because metals tend to form clusters

during the LDI process. These metal clusters are detected as MS peaks that follow

the isotopic pattern of the material. Therefore, these MS peaks might interfere

severely with the peaks of the endogenous compounds.

There are other techniques with the potential of outperforming organic matri-

ces for spatial metabolomics. Nanostructure-initiator mass spectrometry (NIMS)

was introduced as a novel alternative for MSI, in where a silicon porous structure

is used to trap the molecules of the initiator material to promote the ionization

of metabolites [4]. However, it is necessary to cut the tissue in very thin sec-

tions (ca. 5 μm) to allow the laser to reach the active surface. This hampers

the adoption of NIMS for MSI because it is difficult in practice to prepare these

thin tissue sections and placing them onto the substrate. Moreover, it has been

demonstrated that with this sample configuration the LASER system included in

MALDI spectrometers like UltrafleXtream are not able to ionize the tissue surface

compounds. More recently it has been demonstrated that it is possible to obtain

metabolomics images by imprinting the tissue over a surface. For example, a gold

substrate has been used to obtain low molecular weight images of a fingerprint

[5]. This suggests that a nano-structured surface would be able to promote an

efficient LDI process for imprinted tissues. Moreover, the surface could be func-

tionalized to improve the detection of specific spices. For example, a thin metal

layer could be deposited over the surface using sputtering in order to optimize the

ionization of some compounds. The development of such nanostructured surfaces

has established an emerging research field for spatial metabolomics.

On the other hand, spatial metabolomics datasets can also be acquired using

organic matrices. However, to perform an accurate data analysis, the MS peaks

belonging to the organic matrix must be discarded from the tissue endogenous MS

peaks. This is a difficult task since the low mass region is very crowded with matrix

signals and the detection of these interfering signals may need some advanced

processing techniques [6, 7]. Even with the appropriate processing strategies to

filter matrix signals, the interference of the strong matrix peaks below m/z 700

is so strong that hampers the detection of many metabolites [8]. Therefore, in

our opinion, the final solution to spatial metabolomics will likely be provided by
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advanced nano-material technologies in contraposition to organic matrices.

7.2 The challenges of MSI data processing

MSI instrumental platforms have evolved rapidly in last year allowing the acqui-

sition of MSI datasets with higher resolutions, both lateral and mass, with less

time. Nevertheless, the development of software tools for MSI has not been able

to follow this trend. Many new features have been added to MSI software’s and

many new packages have been created, but the challenge of obtaining a reliable

MSI data processing platform to extract biologically relevant information rapidly

is still a work in progress. Currently, the most advanced proprietary software

package for MSI is probably SCiLS (http://scils.de) which provides a powerful

graphical user interface (GUI) with many data analysis and visualization tools.

However its closed-source development model obstructs the full comprehension of

how data is being processed and its adaptation to specific needs. In addition,

the high license cost hinders its usage in the research area. In contraposition,

open-source developed software provides a grade of flexibility that facilitates the

implementation of custom MSI processing strategies. Moreover, the open-source

software is usually free of cost so it can be easily adopted by every research group

with independence of the budget. In the last years, the MSI community interest in

a fully open solution has led to the open data format: imzML [9]. This open for-

mat has enabled the data exchange between different instrumental platforms and

software tools which is crucial for the progress of MSI in particular, and science in

general. Currently, the major MSI instrument manufacturers provide the option

to export the data to imzML format. This empowers the open-source alternatives

to fully develop their potential to take MSI technologies further.

Once MSI data has been converted to imzML format, the next step is to pro-

cess the spectral information with the purpose of carrying out a statistical data

analysis or just representing some ion images. The big size of MSI data demands

specific software tools to manage the spectral information efficiently. The common

approach in R programming consists in loading all the dataset in computer’s RAM

memory. However, this workflow is not viable for MSI. In this work, the package

rMSI has been developed to overcome the “larger than memory” data limitation

of the R platform. This allowed us to continue developing more advanced tools

to process and visualize MSI data inside the R environment without having to
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worry about memory constrains. In fact, rMSI was the first released package that

overcomes such memory limitations for MSI in R. Recently, the well-known MSI

focused R package Cardinal [10, 11] has followed our trend and evolved to provide

support for larger than memory MSI datasets.

Besides the MSI data processing strategies and algorithms it is also important

that an MSI software package provides a good usability. This is often understood

as providing an easy user interaction through a polished GUI. Therefore, rMSI

comes with a GUI designed to explore MSI data interactively. The developed GUI

is able to construct ion images loading only the essential necessary part of MS data

in computer’s memory. Thanks to this low memory footprint, a dual view mode

is possible and has been implemented. This visualization mode allows loading two

MSI datasets side by side sharing the spectra viewer. This enables the fast manual

comparison of two tissues in, for example, a healthy versus diseased tissue. The

GUI contains many features also available in other MSI software packages but the

novelty resides in the fact that the GUI is completely integrated in R. Thus, all

the MSI data is shared with the running R session. This allows the execution of

some R scripts over the currently loaded data and the immediate visualizations of

the results through the GUI.

The first stage of MSI data processing is known as pre-processing and is based on

reducing the experimental variability by processing each spectrum in the dataset.

The common MS pre-processing workflow includes algorithms like spectral smooth-

ing, baseline correction, intensity normalization and peak detection [12]. In our

opinion, the peak detection step is a very simple and robust approach to reduce

the data dimensionality without losing valuable information. We consider that

the first stage of MSI data processing has been completely resolved in this work.

The developed package rMSIproc provides all the necessary routines to convert a

huge amount of raw MS data into a reduced peak matrix preserving the relevant

information. The generated peak matrix is small enough to fit in the computer’s

memory and this enables the easy and efficient use of third parties developed al-

gorithms for MSI applications. This will foster the research of MSI data analysis

methods since the developed approach overcomes the memory usage concerns.

Moreover, rMSIproc arranges the output data in a matrix-like object which is the

common data structure for most statistical analysis methods.

We believe that this approach is the most efficient because it allows an accurate

and reduced representation of the complete MSI dataset. Nevertheless, it is im-
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portant to highlight the importance of the developed mass alignment algorithm.

Without an alignment stage it is not possible to reduce the peak binning tolerance

enough to properly separate MS peaks that are slightly overlapping in pixel to

pixel spectrum. The benefits of our alignment strategy have been also observed

in FTICR data, where some isobaric spices were properly resolved in the resulting

peak matrix.

The current version of rMSIproc produces a peak matrix where all peaks with a

signal to noise ratio (SNR) over a user defined threshold are retained. This means

that all peaks corresponding to isotopes or adducts of the molecules are kept.

This introduces redundant information in the peak matrix that may hamper the

subsequent statistical analysis. The annotation of those peaks according to its

possible common origin would be a valuable feature to add to rMSIproc. The MSI

spatial information can be used to calculate image correlations between peaks

that match the mass rules to be annotated as the same molecule [13]. This will

provide a more robust annotating algorithm especially in the case of FTICR data

where all isotopic distributions are resolved. The future perspective of rMSIproc

development is to implement such annotation strategies but without modifying

the peak matrix. The goal is to add a secondary data structure together with

the peak matrix that provides all peak annotations. Besides, some R functions

should be written allowing the creation of a new peak matrix using the original

peak matrix and the desired annotations. The new peak matrix could be the input

data for the subsequent statistical analysis algorithms.

Currently, the outputs of rMSIproc are the processed spectral data and the

peak matrix, both in a custom data format designed to be efficient inside an R

session. However, this custom data format hinders the integration of rMSIproc

with other non-R based software tools. In order to facilitate the data exchange

with third party tools it is necessary to implement imzML format exportation

in future version of rMSIproc. The goal is to be able to write the MSI spectral

data in a continuous imzML file and the peak matrix in the processed imzML

format. This will enable other software tools to take advantage of the processing

algorithms available in rMSIproc.

One of the biggest strengths of rMSIproc is related to its processing paralleliza-

tion design. To the date and to our knowledge, rMSIproc is the only open-source

MSI software package implemented using a multithreading approach. Moreover,

the parallelization has been implemented using a structured C++ class style where
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all multithreading synchronization mechanisms have been encapsulated inside an

abstraction layer. This allows an easy addition of new algorithms to rMSIproc

without having to concern anymore for the multithreaded implementations. This

strategy enables rMSIproc to take advantage of modern multicore CPU’s to dras-

tically reduce the processing time required to generate the final peak matrix and

the corrected MS spectra.

With rMSIproc we can process huge MSI datasets in a routinely basis. This

allows us to obtain the peak matrix of an MSI experiment rapidly in order to per-

form the statistical analysis of the data. Therefore, the work to be developed in

the future will be focused on the research of unsupervised segmentation algorithms

for MSI. This should enable our research group to make untargeted metabolomics

studies directly in the tissue sections and to differentiate tissue morphologies ac-

cording to metabolomics criteria.

7.3 The future of histopathology and MSI

Spatial metabolomics is still an emerging field from both sides: the experimental

workflows and the bioinformatics approaches. But the advances on this discipline

will certainly integrate in histopathology to better understand chemical processes

inside the tissues. MSI is a potentially extraordinary tool for pathological analysis

and the investigation of disease mechanisms because, it provides the ability to

image multiple molecules simultaneously with high sensitivity [1]. The MSI capa-

bility of determining the spatial localization of molecules has revolutionized our

approach to diseases by allowing us to directly examine the pathological process.

However, there is a tradeoff between spatial resolution and sensitivity making im-

possible for MSI to achieve a similar lateral resolution to the classical histology.

This means that MSI will probably never be able to replace classic histology. In

the future, it is more likely to have mass spectrometrists working together with

histopathologists to provide an accurate diagnostic. The images generated using

two different technologies like optical microscope and MSI should be interpreted

together in order to obtain the fine-grained texture of microscopy combined with

the rich chemical specificity of MSI. Image fusion is a concept that further explores

the ability to combine images from different techniques through bioinformatics

tools. It has been demonstrated that using image fusion approaches it is possible

to predict ion distributions with a finer detail by combining MSI data with an
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optical microscope image of the same tissue [14]. These strategies will improve

the integration of MSI in pathological workflows since better spatially resolved

chemical spices will simplify the tissue morphology interpretation.

MSI technologies are the link between spatial metabolomics and histopathology.

MSI must provide confident molecular assignments in order to establish a solid re-

lationship between both worlds. The efficacy of on-tissue molecular identifications

is strongly related with the instrumental mass resolution and mass accuracy. In-

dependently of the used spectrometer, it is possible to enhance the mass accuracy

through the clever application of spectral pre-processing strategies. In this the-

sis, we developed a label-free alignment routine that allows minimizing the mass

shift between pixel-to-pixel spectra. After the alignment stage all spectra shares

a common mass axis so we can then re-calibrate the complete dataset. We have

also successfully used the metal clusters peaks from a sputtered layer as internal

mass references to increase the mass accuracy. Using a bilayer of silver and gold,

we have proved that it is possible to achieve a mass accuracy down to 5 ppm with

a TOF detector after applying the processing workflow developed. Nevertheless,

this high mass accuracy is not viable in practice because the complexity of real

tissue samples produce many overlapping peaks originated from different endoge-

nous compounds. A spectrometer with higher mass resolution like FTICR must

be used to address this problem. A higher mass resolution will allow selecting a

smaller bin size for ion image reconstruction. Hence, molecular signatures could be

assigned to spatial ion distributions more confidently [15]. In contrast, the extra

time needed to acquire a high lateral resolution FTICR MSI dataset and the huge

amount of data generated may hampers the practical application of ultra-high

mass resolution to spatial metabolomics. In conclusion, the future of molecular

histopathology is probably a multimodal approach where traditional histological

stains, high lateral resolution TOF-MSI and high mass resolution FTICR-MSI will

be combined to completely understand the diseases represented by the biochemical

structures in the tissue.
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Software source code

The source code of the software developed during this thesis can be found freely

available and under the terms of general public license (GPL) agreement at:

https://github.com/prafols/rMSI

https://github.com/prafols/rMSIproc
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