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Abstract  Imaging mass spectrometry (IMS) is an in-

novative and powerful measurement technology of analyti-

cal chemistry which, given a thin sample, is able to reveal its 

spatial chemical composition in the full molecular range. 

IMS produces a hyperspectral image, where for each pixel a 

high-dimensional mass spectrum is measured. A typical data 

set contains 108109 values. 

Analysis and interpretation of this huge amount of data 

is a mathematically, statistically and computationally chal-

lenging job. In this extended abstract we present some 

methods handling with processing IMS data sets. 
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1.  INTRODUCTION 

 

Mass spectrometry is a method of analytical chem-

istry to determine the elemental composition of a 

chemical sample. This task is accomplished through 

the experimental measurement of the masses of mole-

cules of the sample to be examined.  

Given a thin sample (usually a tissue slice), imag-

ing mass spectrometry (IMS) measures high-

dimensional mass spectra at its spatial points, provid-

ing a hyperspectral image with a mass spectrum 

measured at each pixel, see Figure 1. Each mass spec-

trum dimension represents the abundance of mole-

cules with this molecular mass (so-called m/z value). 

Hence it is a natural viewpoint to represent an IMS 

data set as a hyperspectral image with thousands of 

channels, as done in other areas of science where 

multi-channel images are used, e.g. in astronomical 

hyperspectral imaging, in earth remote sensing, and in 

life sciences and bio-medicine (i.e. confocal Raman 

microscopy, near-infrared imaging), see Figure 2. 

Currently, IMS is one of the few biochemical 

technologies able to establish the spatial biochemical 

composition of the sample in the full molecular range. 

Since 1970s, secondary ion mass spectrometry (SIMS) 

was the main IMS technique for surface analysis [1], 

although being unable to measure large molecules. 

With the advent of Matrix-assisted laser desorption 

ionization (MALDI) imaging mass spectrometry [2,3], 

the measurement of peptides and proteins became 

possible, which opened a door to the variety of biolog-

ical and biomedical problems, in particular to detect 

and discover new biomarkers with a major focus in 

cancer research [4,5]. 

Fig. 1. An IMS dataset is a data cube. Spectra (A) are measured at spatial points of a sample (B) with spatial coordinates 

(x,y). Given a mass (channel), one obtains an intensity image; examples for the channels m/z 4966 and m/z  6717 are 

shown in (C–D). 
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Fig. 2. Representation of an IMS data set as a hyperspectral 

image reduced to some relevant channels (m/z values). 

 

Currently, the development of computational 

methods for IMS is lagging behind the technological 

progress [6]. The following computational problems 

are of interest in IMS data processing:  

1. Preprocessing as e.g. normalization of data or 

noise reduction 

2. Data compression in terms of peak picking or 

scale-space transformations as e.g. the discrete 

wavelet transform 

3. Data representation using multivariate statistics as 

e.g. principal component analysis (PCA) and its 

variants 

4. Spatial segmentation of an IMS dataset by means 

of spectra clustering 

5. Supervised classification of IMS datasets based on 

training examples 

6. Postprocessing as e.g. super-resolution and image 

registration 

In the following, these problems are discussed in 

more detail. 

 

 

2.  PREPROCESSING 

 

The IMS data set can be considered as a collection 

of spectra that have been measured independently. 

Hence normalization of spectra is an important task of 

image preprocessing. The most popular method is the 

so-called total ion count method, which normalizes 

every spectrum separately so that the intensity scales 

are identical. In [7], more advanced ways than spec-

trum-wise normalization are discussed, in particular 

normalization taking noise quantities of the spectra 

into account. 

The presence of noise in IMS can be easily seen by 

visual inspection of m/z-images corresponding to 

some selected channels, see Figure 1. Since the noise 

in IMS is strong, another important preprocessing step 

is denoising. A fact to incorporate is that the noise 

variance changes both within an image and between 

different images. In [8], it has been shown that the 

noise variance at a spatial point linearly depends on 

the mean intensity around this point. This indicates 

that the noise is Poisson distributed. To treat that, in 

[8] a method for edge-preserving image denoising has 

been introduced that adjusts the level of denoising to 

the local noise level and to the local scale of the fea-

tures to be resolved. 

 

3.  DATA COMPRESSION 

 

The IMS data typically consists of thousands of 

different channels (103104) which have to be evaluat-

ed statistically. To process the huge amount of data 

one could constrain the channels to the most relevant 

without losing significant information. In IMS, this 

process is called peak picking. Naturally, for pro-

cessing huge IMS data sets we need an efficient peak 

picking method. At the same time, peak picking 

should be robust to strong noise, preventing the use of 

too simple local maxima or signal-to-noise ratio 

methods, which produce too many false positives. In 

[9], a peak picking method based on the orthogonal 

matching pursuit (OMP) is proposed and in [8] this 

method is applied to real-life mass spectrometry data. 

The main idea is to model each spectrum as a sum of 

Gaussian-shaped functions. 

Alternative methods for reducing the amount of 

data for a later feature selection and classification are 

scale space methods as e.g. the discrete wavelet trans-

form [10]. For the wavelet transform the idea is to use 

wavelet for which its scaling function closely matches 

the peak pattern of spectra, as e.g. the bi-orthogonal 

bior3.7 wavelet in [11]. 

 

4.  DATA REPRESENTATION 

 

Data mining of IMS data sets is currently a very 

time-consuming endeavor as it is mostly done manual-

ly and an IMS data set consists of thousands of chan-

nels for a single sample. Currently, complete mining 

of such data requires the user to click through each 

image and look for distributions that may correlate to 

the morphology of the sample analyzed. Unsupervised 

processing methods, which do not rely on labeling of 

data set elements, allow for automated extraction of 

data from a data set.  

Principal component analysis (PCA) [12] and its 

variants [13,14] are typical unsupervised multivariate 

methods where data is statistically represented in 

fewer dimensions. The idea is to decompose the IMS 

data into its underlying trends and thus transform the 

data set into a small set of images showing main spa-

tial features, as shown in Figure 3. The results of mul-

tivariate methods can be visualized as is or can be 

used in combination with other techniques (e.g. classi-

fication of PCA coordinates). 
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Fig. 3. The first six PCA abundance maps of an IMS data 

set. 

 

 

 

5.  SPATIAL SEGMENTATION 

 

Another unsupervised method is spatial segmenta-

tion of a data set by clustering of spectra [15]. The 

results of clustering can be displayed as a spatial seg-

mentation map (an integer-valued image, usually 

shown using pseudo-color), coloring identically points 

grouped into one cluster.  

The main drawback of using straightforward clus-

tering of mass spectra is that it is negatively affected 

by the pixel-to-pixel variability. Taking into account 

the spatial relations between spectra improves the 

segmentation maps considerably by suppressing the 

noise and pixel-to-pixel variability [8], see Figure 4. 

Most of the sophisticated clustering methods are com-

putationally intensive due to slow high dimensional 

clustering. Use of simpler methods reduces the com-

putation time but worsen the segmentation maps due 

to strong noise in data. In [16], an approach for seg-

mentation of hyperspectral data has been proposed, 

that gets efficient due to a projection to fewer dimen-

sions at the same time considering a spectrum together 

with its neighbors. 

 

 

6.  SUPERVISED CLASSIFICATION 

 

Supervised methods are used for classification of 

spectra into several groups (i.e. ‘abnormal’ versus 

‘healthy’ tissue) [11]. Typically, a region within a 

single sample is manually designated as having one 

histological state (i.e. tumor tissue) while the remain-

der of the sample is classified as another histological 

state (i.e. healthy tissue). Classification methods are 

e.g. being developed for biomarker detection since 

once the classification is performed and evaluated to 

be successful, one can find discriminative masses [5]. 

 

7.  POSTPROCESSING 

 

An important issue for any IMS technology is its 

relatively low spatial or lateral resolution (i.e. a large 

size of a pixel) as compared with microscopy. The 

state of the art resolution is around 20 microns for 

MALDI-imaging [17] versus maximum 0.25 microns 

for optical microscopy. So, when comparing an IMS 

data set or its segmentation map with a microscopy 

image, a significant difference in spatial resolution 

complicates the visual interpretation. In [18], a com-

putational approach is proposed to improve the spatial 

resolution of a segmentation map of an IMS data set. 

In Figure 5, the a super-resolution image of a synthetic 

segmentation map is displayed. 

Other imaging problems occur when extending the 

2D IMS technique to three spatial dimensions with 

consecutive sections of tissue. Here one has to align a 

stack of hyperspectral images to each other. Methods 

for image registration of grey-scale images are availa-

ble [19], but–to the best of our knowledge–not yet 

developed for 3D hyperspectral IMS data. 

From a technical perspective, visualizing this 3D 

information is highly complex. From a medical per-

spective however, it still does not provide enough 

information for diagnosis. To draw conclusions from 

the data, it must first be correlated with 3D anatomical 

information (such as data obtained via magnetic reso-

nance imaging). However, superimposing these two 

data sets originating from entirely different imaging 

modalities is complicated by the issue of image co-

registration [20] and standard pipelines are not estab-

lished, yet. 

 

Fig. 4. Example of unsupervised spatial segmentation, from [16]. (A) Optical image. (B) Schematic representation based on 

the rat brain atlas. (C) Segmentation map with 10 clusters. 
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Fig. 5. Example of a super-resolution segmentation map co-

registered with a microcopy image. Top: original segmenta-

tion map with 10 clusters. Bottom: its super-resolution 

version (magnification factor 10). 

 

8.  CONCLUSION 

 

 Data from imaging mass spectrometry can be rep-

resented as a hyperspectral image with thousands of 

channels. Since manual data mining of IMS data sets 

is very time-consuming, the development of computa-

tional methods is necessary. Mathematics offers a 

huge collection of methods from image processing, 

statistics and machine learning that can be used for 

simplifying and automating the analysis of IMS data. 

 Other areas of science where hyperspectral images 

incur use similar methods for related problems. Here, 

an interdisciplinary exchange of experiences can in-

spire each other and avoid gratuitous parallel devel-

opments. 
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