9,348 research outputs found

    Addressing Challenges of Economic Evaluation in Precision Medicine Using Dynamic Simulation Modeling

    Get PDF
    Objectives: The objective of this article is to describe the unique challenges and present potential solutions and approaches for economic evaluations of precision medicine (PM) interventions using simulation modeling methods. Methods: Given the large and growing number of PM interventions and applications, methods are needed for economic evaluation of PM that can handle the complexity of cascading decisions and patient-specific heterogeneity reflected in the myriad testing and treatment pathways. Traditional approaches (eg, Markov models) have limitations, and other modeling techniques may be required to overcome these challenges. Dynamic simulation models, such as discrete event simulation and agent-based models, are used to design and develop mathematical representations of complex systems and intervention scenarios to evaluate the consequence of interventions over time from a systems perspective. Results: Some of the methodological challenges of modeling PM can be addressed using dynamic simulation models. For example, issues regarding companion diagnostics, combining and sequencing of tests, and diagnostic performance of tests can be addressed by capturing patient-specific pathways in the context of care delivery. Issues regarding patient heterogeneity can be addressed by using patient-level simulation models. Conclusion: The economic evaluation of PM interventions poses unique methodological challenges that might require new solutions. Simulation models are well suited for economic evaluation in PM because they enable patient-level analyses and can capture the dynamics of interventions in complex systems specific to the context of healthcare service delivery.</p

    A Generic Model for Follicular Lymphoma: Predicting Cost, Life Expectancy, and Quality-Adjusted-Life-Year Using UK Population–Based Observational Data

    Get PDF
    Objectives To use real-world data to develop a flexible generic decision model to predict cost, life expectancy, and quality-adjusted life-years (QALYs) for follicular lymphoma (FL) in the general patient population. Methods All patients newly diagnosed with FL in the UK’s population-based Haematological Malignancy Research Network (www.hmrn.org) between 2004 and 2011 were followed until 2015 (N = 740). Treatment pathways, QALYs, and costs were incorporated into a discrete event simulation to reflect patient heterogeneity, including age and disease management. Two scenario analyses, based on the latest National Institute for Health and Clinical Excellence (NICE) guidelines (rituximab induction therapy for newly diagnosed asymptomatic patients and rituximab maintenance therapy for patients between treatments), were conducted and their economic impacts were compared to current practice. Results Incidence-based analysis revealed expected average lifetime costs ranging from Β£6,165 [US7,709]toΒ£63,864[US7,709] to Β£63,864 [US79,862] per patient, and average life expectancy from 75 days to 17.56 years. Prevalence-based analysis estimated average annual treatment costs of Β£60–65 million [US75βˆ’80million],accountingforapproximately1075-80 million], accounting for approximately 10% of the United Kingdom’s annual National Health Service budget for hematological cancers as a whole. Assuming that treatment effects reported in trials are applicable to all patient groups, scenario analyses for two recent NICE guidelines demonstrated potential annual cost savings for the United Kingdom that ranged with uptake frequency from Β£0.6 million to Β£11 million [US0.75-2.75 million]. Conclusions Costs, survival, and QALYs associated with FL vary markedly with patient characteristics and disease management. Allowing the production of more realistic outcomes across the patient population as a whole, our model addresses this heterogeneity and is a useful tool with which to evaluate new technologies/treatments to support healthcare decision makers

    Modeling good research practices - overview: a report of the ISPOR-SMDM modeling good research practices task force - 1.

    Get PDF
    Modelsβ€”mathematical frameworks that facilitate estimation of the consequences of health care decisionsβ€”have become essential tools for health technology assessment. Evolution of the methods since the first ISPOR modeling task force reported in 2003 has led to a new task force, jointly convened with the Society for Medical Decision Making, and this series of seven papers presents the updated recommendations for best practices in conceptualizing models; implementing state–transition approaches, discrete event simulations, or dynamic transmission models; dealing with uncertainty; and validating and reporting models transparently. This overview introduces the work of the task force, provides all the recommendations, and discusses some quandaries that require further elucidation. The audience for these papers includes those who build models, stakeholders who utilize their results, and, indeed, anyone concerned with the use of models to support decision making

    Simulation Modeling to Optimize Personalized Oncology

    Get PDF

    Quantitative evidence synthesis methods for the assessment of the effectiveness of treatment sequences for clinical and economic decision-making: a review and taxonomy of simplifying assumptions

    Get PDF
    Sequential use of alternative treatments for chronic conditions represents a complex intervention pathway; previous treatment and patient characteristics affect both the choice and effectiveness of subsequent treatments. This paper critically explores the methods for quantitative evidence synthesis of the effectiveness of sequential treatment options within a health technology assessment (HTA) or similar process. It covers methods for developing summary estimates of clinical effectiveness or the clinical inputs for the cost-effectiveness assessment and can encompass any disease condition. A comprehensive review of current approaches is presented, which considers meta-analytic methods for assessing the clinical effectiveness of treatment sequences and decision-analytic modelling approaches used to evaluate the effectiveness of treatment sequences. Estimating the effectiveness of a sequence of treatments is not straightforward or trivial and is severely hampered by the limitations of the evidence base. Randomised controlled trials (RCTs) of sequences were often absent or very limited. In the absence of sufficient RCTs of whole sequences, there is no single best way to evaluate treatment sequences; however, some approaches could be re-used or adapted, sharing ideas across different disease conditions. Each has advantages and disadvantages, and is influenced by the evidence available, extent of treatment sequences (number of treatment lines or permutations), and complexity of the decision problem. Due to the scarcity of data, modelling studies applied simplifying assumptions to data on discrete treatments. A taxonomy for all possible assumptions was developed, providing a unique resource to aid the critique of existing decision-analytic models

    Averting HIV Infections in New York City: A Modeling Approach Estimating the Future Impact of Additional Behavioral and Biomedical HIV Prevention Strategies

    Get PDF
    Background:New York City (NYC) remains an epicenter of the HIV epidemic in the United States. Given the variety of evidence-based HIV prevention strategies available and the significant resources required to implement each of them, comparative studies are needed to identify how to maximize the number of HIV cases prevented most economically.Methods:A new model of HIV disease transmission was developed integrating information from a previously validated micro-simulation HIV disease progression model. Specification and parameterization of the model and its inputs, including the intervention portfolio, intervention effects and costs were conducted through a collaborative process between the academic modeling team and the NYC Department of Health and Mental Hygiene. The model projects the impact of different prevention strategies, or portfolios of prevention strategies, on the HIV epidemic in NYC.Results:Ten unique interventions were able to provide a prevention benefit at an annual program cost of less than 360,000,thethresholdforconsiderationasacostβˆ’savingintervention(becauseofoffsetsbyfutureHIVtreatmentcostsaverted).Anoptimizedportfolioofthesespecificinterventionscouldresultinuptoa34360,000, the threshold for consideration as a cost-saving intervention (because of offsets by future HIV treatment costs averted). An optimized portfolio of these specific interventions could result in up to a 34% reduction in new HIV infections over the next 20 years. The cost-per-infection averted of the portfolio was estimated to be 106,378; the total cost was in excess of 2billion(overthe20yearperiod,orapproximately2 billion (over the 20 year period, or approximately 100 million per year, on average). The cost-savings of prevented infections was estimated at more than 5billion(orapproximately5 billion (or approximately 250 million per year, on average).Conclusions:Optimal implementation of a portfolio of evidence-based interventions can have a substantial, favorable impact on the ongoing HIV epidemic in NYC and provide future cost-saving despite significant initial costs. Β© 2013 Kessler et al

    Cost-Effectiveness of Adolescent Pertussis Vaccination for The Netherlands: Using an Individual-Based Dynamic Model

    Get PDF
    BACKGROUND: Despite widespread immunization programs, a clear increase in pertussis incidence is apparent in many developed countries during the last decades. Consequently, additional immunization strategies are considered to reduce the burden of disease. The aim of this study is to design an individual-based stochastic dynamic framework to model pertussis transmission in the population in order to predict the epidemiologic and economic consequences of the implementation of universal booster vaccination programs. Using this framework, we estimate the cost-effectiveness of universal adolescent pertussis booster vaccination at the age of 12 years in the Netherlands. METHODS/PRINCIPAL FINDINGS: We designed a discrete event simulation (DES) model to predict the epidemiological and economic consequences of implementing universal adolescent booster vaccination. We used national age-specific notification data over the period 1996-2000--corrected for underreporting--to calibrate the model assuming a steady state situation. Subsequently, booster vaccination was introduced. Input parameters of the model were derived from literature, national data sources (e.g. costing data, incidence and hospitalization data) and expert opinions. As there is no consensus on the duration of immunity acquired by natural infection, we considered two scenarios for this duration of protection (i.e. 8 and 15 years). In both scenarios, total pertussis incidence decreased as a result of adolescent vaccination. From a societal perspective, the cost-effectiveness was estimated at €4418/QALY (range: 3205-6364 € per QALY) and €6371/QALY (range: 4139-9549 € per QALY) for the 8- and 15-year protection scenarios, respectively. Sensitivity analyses revealed that the outcomes are most sensitive to the quality of life weights used for pertussis disease. CONCLUSIONS/SIGNIFICANCE: To our knowledge we designed the first individual-based dynamic framework to model pertussis transmission in the population. This study indicates that adolescent pertussis vaccination is likely to be a cost-effective intervention for The Netherlands. The model is suited to investigate further pertussis booster vaccination strategies

    Resource Modelling: The Missing Piece of the HTA Jigsaw?

    Get PDF
    Within health technology assessment (HTA), cost-effectiveness analysis and budget impact analyses have been broadly accepted as important components of decision making. However, whilst they address efficiency and affordability, the issue of implementation and feasibility has been largely ignored. HTA commonly takes place within a deliberative framework that captures issues of implementation and feasibility in a qualitative manner. We argue that only through a formal quantitative assessment of resource constraints can these issues be fully addressed. This paper argues the need for resource modelling to be considered explicitly in HTA. First, economic evaluation and budget impact models are described along with their limitations in evaluating feasibility. Next, resource modelling is defined and its usefulness is described along with examples of resource modelling from the literature. Then, the important issues that need to be considered when undertaking resource modelling are described before setting out recommendations for the use of resource modelling in HTA
    • …
    corecore