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ABSTRACT 

 

 

The sequential use of alternative treatments for chronic conditions represents a complex 

intervention; previous treatment, evolving disease, and patient characteristics affect both the 

choice and effectiveness of subsequent treatments. This thesis develops a new framework 

for conducting quantitative evidence synthesis of the effectiveness of sequential treatment 

options within a health technology assessment (HTA) or similar process. It covers methods 

for developing summary estimates of clinical effectiveness or the clinical inputs for the cost-

effectiveness assessment, and can encompass any disease condition. The framework was 

developed through in-depth evaluation of current approaches using integrated literature 

reviews. 

 

Key challenges of developing summary effect estimates of interventions conditional on 

previous treatments were first identified using a HTA of sciatica treatments. Network meta-

analyses allowed comparison of multiple treatments, but the limitations of the evidence base, 

and poor reporting of previous treatments precluded the evaluation of treatment sequences. 

 

A review of NICE guidance identified the type of challenges faced by policy makers and 

showed that treatment sequencing is pertinent for a wide range of clinical conditions. It also 

indicated that treatment sequencing was often considered as part of the economic 

evaluation only, and not the clinical evaluation. 

 

A comprehensive review of quantitative evidence synthesis methods considered: 

i. Meta-analytic methods for assessing the clinical effectiveness of treatment 

sequences 

ii. Simplifying assumptions made by decision analytic modelling studies in the absence 

of an adequate evidence base to inform treatment effect estimates conditional on 

positioning in the sequence 

iii. Decision analytic modelling approaches used to evaluate the effectiveness of 

treatment sequences 

 

The findings of the review demonstrated that estimating the effectiveness of a sequence of 

treatments is not straightforward or trivial, and is severely hampered by the limitations of the 

evidence base. There is no single best way to evaluate treatment sequences, however some 

approaches could be re-used or adapted, sharing ideas across different disease conditions. 

Each has advantages and disadvantages, and is influenced by the evidence available, 
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extent of treatment sequences, and complexity in the decision problem. Due to the scarcity 

of data, modelling studies applied simplifying assumptions to data on discrete treatments. A 

coding scheme for all possible assumptions was developed, providing a unique resource to 

aid the critique of existing models. 

 

The thesis illuminates a significant gap in the methods development. It also demonstrates 

important limitations in the primary studies, which tends to focus on the evaluation of single 

treatments with poor reporting of any previous or subsequent treatments. The increasing use 

of network meta-analysis in HTA demonstrates the acknowledgment that clinical and policy 

decision making needs to account for the multiple treatments available for many chronic 

conditions. However, the sequential use of these treatments has yet to be accounted for 

within the clinical evaluation, with most meta-analysis being conducted of single treatments 

that may or may not be stratified by line of therapy. The economic modelling exposes the 

need to consider treatment sequences, but this is often based on the simplifying assumption 

of treatment independence. The use of simplifying assumptions leads to uncertainty and 

potential bias in estimating the effectiveness and cost effectiveness of treatments, and can 

lead to the wrong decision.  

 

In summary, there has been no co-ordinated approach to the important issue of evaluating 

the effectiveness and cost-effectiveness of treatment sequencing. This is a major shortfall at 

a time when the cohort of people with complex chronic conditions, requiring sequential 

treatments, is increasing. The findings of the thesis will help policy makers and researchers 

gain traction in answering questions about the effectiveness of different treatment 

sequences. 
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CHAPTER 1: AIMS AND BACKGROUND FOR THE THESIS 

 

 

1.1 INTRODUCTION AND CHAPTER OVERVIEW 

Good evidence of what treatment works, for which patient, under what circumstances is vital for policy 

and practice decision-making. An evaluation of the added value of new treatments is crucial for cost-

constrained healthcare systems, such as the UK National Health Service (NHS). This thesis will 

contribute to the development of methods to achieve this. It describes the development of a 

framework for informing the use of quantitative evidence synthesis methods within the context of a 

health technology assessment, systematic review or decision analysis, in order to estimate the 

effectiveness of treatment sequences for decision-making. 

 

Treatment sequences relate to the order in which interventions are administered within the treatment 

or care pathway for a specific condition. Systematic review and evidence synthesis is a specific 

methodology that encompasses searching for, appraising and synthesising findings of primary studies 

using transparent and objective processes in order to minimise bias and reduce chance findings 

(random effects).1 This method has rapidly become a cornerstone of the evidence-based practice and 

policy movement.2 Decision analysis is a quantitative approach used for assessing the relative value, 

in terms of both benefit and risk, with or without costs, of different decision options.3 Decision 

analyses can be used to decide how to manage an individual patient, formulate policy 

recommendations about groups of similar patients or, in the form of decision aids, help individuals 

make decisions about therapies.4  

 

This chapter describes the nature of ‘sequential treatments’; and why they are important when 

evaluating the effectiveness of interventions for clinical and policy decision-making. It describes the 

limitations of the evidence base for evaluating the effectiveness of treatment sequences and how this 

impacts healthcare decision-making. It introduces meta-analysis and decision analytic modelling as 

important quantitative evidence synthesis methods to support evidence-based clinical and policy 

decision-making. It also outlines some of the challenges faced by healthcare decision-making 

organisations, such as the National Institute for Health and Care Excellence (NICE) in the UK, 

regarding the introduction of new treatments within a current treatment pathway, or identifying the 

optimum sequence of treatments to use in practice. It provides a summary of the research problem 

and outlines the overall aims and objectives of the thesis. It sums up the structure of the thesis and 

ends with an outline of my relevant research experience and the proposed novel contribution of the 

thesis. 
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1.2 TREATMENT SEQUENCING  

1.2.1  Treatment sequencing and implications for healthcare decision-making 

The availability of multiple interventions for the same condition or indication is increasingly common;5 

when the current treatment is no longer effective or the condition progresses, further treatments are 

available. The same is true in the case of adverse effects, intolerance to specific treatments, or where 

interventions are contraindicated. Treatments that are only partially effective can be progressively 

intensified or enhanced by increasing the dose, or adding new treatments to produce combination 

therapies. Hence, for many conditions, in order to find and maintain an effective treatment regimen, a 

sequence of treatments is likely to be used. This is especially true in the treatment of chronic 

diseases, such as heart disease, cancer, depression, and diabetes, which are ‘slow in progression, 

long in duration, and devoid of spontaneous resolution’.6 However, despite the availability of multiple 

treatments, effective and safe control of disease activity is not always easy to achieve and there is 

usually no standard therapeutic approach.7 8 Furthermore, patients suffering from chronic diseases 

often have multiple conditions or co-morbidities which are likely to affect treatment choice. 

 

As the number of therapeutic options increases, treatment decisions become increasingly complex. 

Clinical decisions on when to use an intervention in the course of a patient’s illness or care pathway 

are dependent on a number of interrelated treatment, patient, and disease characteristics including 

prior treatment history and response to previous treatments. The disease process for many conditions 

tends to wax and wane, with intermittent acute or exacerbated stages accompanied by an overall 

gradual progression. Treatments that are effective early on in the disease process might not be 

effective later. There may be intervals where a more intensive treatment with potential adverse effects 

is required to combat more serious symptoms or reduce the risk of relapse or recurrence. At other 

times a less intensive, and less burdensome, treatment is sufficient. The sequencing of treatments is 

also important for some infectious diseases where treatment resistance can become an issue, for 

example human immunodeficiency virus (HIV). This results in the need for repeated clinical decisions 

on when to change treatment, or treatment intensity, and to what type. For example, if a new 

treatment results in symptom-reduction, but not elimination:9 

i. Should a new treatment be used at the risk of losing the benefit already achieved? 

ii. Should the current treatment dose be increased, or another treatment added at the risk of 

increasing side effects? 

iii. Should the condition just be monitored, with the hope of a gradual improvement? 

 

In clinical practice, treatment sequences tend to be established in a ‘trial and error’ fashion until a 

response is observed9 or using the ‘play-the-winner-drop-the-loser’ algorithm.10 This allows treatment 

sequences to be tailored to individual patients. However, decisions on which treatment to use first, or 

the optimum sequence, may not be straightforward. This is explored further in Section 1.2.2. 

Treatment-sequencing choices may be dependent on the overall aim of the treatment, for example, 

whether it is intended to provide benefit beyond the treatment period (e.g. in rheumatoid arthritis) or 

only whilst the treatment is being used (e.g. neuropathic pain). They may also be influenced by the 



19 
 

type of treatment being considered, for example some treatments, such as antiviral therapy, may be 

associated with drug resistance or poor adherence. 

 

In some circumstances, upfront treatment-sequencing decisions on the overall management 

approach may be required. Examples include the following: 

i. Whether to use a step-up approach, starting with less effective treatments that may be 

associated with fewer adverse effects and possibly cheaper, and then incrementally 

adding more potent agents or increasing the dose as required 

ii. Whether to use a step-down approach, starting with the most effective treatment, which 

may be more expensive and carry a greater risk of serious adverse effects, and then 

gradually ‘climbing down the therapeutic ladder’ 

For progressive conditions such as rheumatoid arthritis, the second option might modify the course of 

the disease sufficiently to mean that, over a lifetime, the resulting quality of life outcomes are better 

than those obtained with the first option. This is explored in more detail in the Appendix Volume I 

(Section C3). 

 

Treatment-sequencing decisions should be based on the best available evidence of effectiveness. 

However, developing the evidence base to inform such decisions is not straightforward. Research 

conducted to inform clinical effectiveness tends to concentrate on the evaluation of discrete 

treatments used at a single point in the treatment pathway, rather than a sequence of treatments. This 

does not account for the complexities and dynamic nature of factors that are likely to impact the 

choice and effectiveness of each treatment used within a sequence, which can also affect the 

optimum ordering of these treatments, when considering the effectiveness of the whole sequence. 

Furthermore, research evidence is used to inform clinical practice in general, and therefore targets the 

majority of the patient population rather than informing decision-making for the individual. The 

importance of individual factors is likely to be heightened when it comes to decision-making around 

treatment sequences. The tension between individually based decision-making and policy decisions 

in the context of treatment sequences is discussed in Section 1.7 (Personalised medicine). The 

thesis, however, focuses on developing the evidence base to inform decision-making on treatment 

sequencing for the majority. 

 

1.2.2  Factors that influence the effectiveness of individual treatments when used as part of a 

sequence  

The effectiveness of specific interventions is affected by the order in which they are used within a 

treatment sequence, with the performance of individual treatments being conditional, or dependant, 

on the previous treatments used.11-14 The effectiveness of a specific treatment, when considered in 

isolation, may not provide a good indication for its use as the first treatment within a planned 

sequence, where some treatments can have an impact or delayed effect on future treatments.15 16 
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A number of factors are likely to impact the effectiveness of individual treatments used as subsequent 

treatments. The treatment effect may, for example, be dependent on changes in pathophysiology over 

time, the disease condition left by the previous treatments, the residual effect left by previous 

treatment, immunogenicity, and drug kinetics.13 The reason for treatment discontinuation is also likely 

to have differential effects on the effectiveness of subsequent treatments. For example, when a 

treatment is discontinued due to inadequate response or loss of responsiveness over time, the 

effectiveness of the next treatment is likely to be reduced. However, changing treatment due to 

intolerance or adverse effects may not have an impact the subsequent treatment’s effect.17 18 The 

adverse event profiles of initial treatments can also have a differential impact on patients’ willingness 

or ability to adhere subsequent treatments.19 

 

Treatments for chronic conditions tend to become less effective over time, as a patient progresses 

through their disease journey. For example in rheumatoid arthritis, a progressive disease, a second 

tumour necrosis factor alpha (TNF)-inhibitor, which is an important class of biological agents, has 

been shown to more effective in patients who have not previously received a TNF-inhibitor than those 

who have.12 20 21 Similarly, the use of conventional disease modifying anti-rheumatic drugs (DMARDs), 

which are generally tried before biological therapy, have also been shown to be more effective when 

only non-steroidal anti-inflammatory drugs (NSAIDs) have previously been used and less effective 

following another DMARD.11 However, it is not axiomatic that treatment effect declines with 

successive treatments. Dimopoulous et al. found second-line antibiotics for treating acute 

exacerbations of chronic bronchitis to be more effective, but not less safe, than first-line.22 It was 

concluded that, given the increasing resistance to older antimicrobial agents within this patient 

population, treatment with selected second or third generation antibiotics may be preferable. 

However, the available data did not allow for stratified analysis according to the presence of risk 

factors for poor outcomes. Early research findings show that the presence of antidrug antibodies to 

the first TNF-inhibitor for rheumatoid arthritis is associated with a better clinical response to a 

second.23 Exposure to some biologically targeted therapies in oncology can also sensitise the tumour 

to subsequent treatments.24 Overall, it is therefore not trivial or intuitive to optimise a treatment 

sequence from the start.15 

 

The theoretical case for starting with a suboptimal treatment, rather than the most effective treatment, 

because it may lay down a better foundation or enhance the effect of subsequent treatments is 

illustrated in an example presented by Murphy et al. shown here in Figure 1.1.9 It considers two 

treatments, A and B, that differ in terms of immediate response, favouring A. When these are used 

within a sequence, where the initial treatment is augmented with treatment C when a patient does not 

respond, then the long-term response during the entire period for the sequence starting with treatment 

B may exceed the effect of A followed by A augmented by C. The sequence beginning with A has an 

overall remission rate of four months of 58% (16 + 42%) whereas the sequence beginning with B has 

an overall remission rate of 65% (25 + 40%). This means that treatment A is best if as a standalone 

treatment, but treatment B is the best initial treatment as part of a sequence. This is due to the better 
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synergistic effect of B and C for non-responders to treatment B and the greater likelihood of those 

who had an initial partial response progressing to remission whilst remaining on treatment B. This 

issue is also referred to as delayed effect.16 For example, consider addiction management for alcohol 

dependency, which can be viewed as a chronic relapsing condition.25 A clinician may prescribe either 

an opiate antagonist (naltrexone) or cognitive-behavioural therapy (CBT) as the initial treatment. 

Patients who could then go on to receive telephone monitoring or telephone monitoring plus 

counselling to prevent relapse. The subsequent telephone counselling may be more effective for CBT 

responders, who have already experienced a ‘talking therapy’ and are better prepared to take 

advantage of counselling, than for responders to naltrexone who have no such experience.16 Thus, 

even if CBT and naltrexone result in the same proportion of responders, or if CBT appears less 

effective than naltrexone, CBT may be the best initial treatment when considered as part of a 

sequence.16 This example is also used in Appendix Volume I Section B2. 

 

Figure 1.1: Example of a comparison of two treatment sequences  

 

Taken from: Murphy, S.A., Oslin, D.W., Rush, A.J., Zhu, J. (2007) Methodological challenges in constructing effective 

treatment sequences for chronic psychiatric disorders. Neuropsychopharmacology, 32, 257–262. 

 

Three reasons are proposed why studies focusing on a single point in the treatment pathway provide 

poor evidence on treatment sequences:15 16 25 26 

1. Delayed therapeutic effects or sequential treatment interaction  

i)  Positive synergies: 

Treatment A may not appear best initially but may have enhanced long-term effectiveness 

when followed by a particular maintenance treatment.  

ii)  Negative synergies: 
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Treatment A may produce a higher proportion of responders but also result in burdensome 

side effects that may reduce the willingness of non-responders adhere to subsequent 

treatments. 

2. Prescriptive (diagnostic) effect 

Treatment A may produce fewer responders than treatment B initially, but treatment A may 

elicit symptoms that allow better matching of the subsequent treatment to the patient and 

thus achieve improved response to the sequence of treatments. 

3. Cohort (selection) effect 

Participants who enrol and are adherent in a clinical trial of a single stage treatment may be 

quite different from subjects in a trial of treatment sequences where alternative, subsequent 

treatment options are available.15 16 25 26 Conversely, in a sequential study, the decision to 

end first-line treatments may be influenced by the knowledge there is a second-line 

treatment readily available.19 

 

 

1.3 THE POTENTIAL LIMITATIONS OF THE EVIDENCE BASE FOR EVALUATING 

TREATMENT SEQUENCES 

1.3.1  Randomised controlled trials for informing treatment sequences 

The randomised controlled trial (RCT), when properly designed and implemented, is widely 

considered the “gold standard” for assessing the efficacy or effectiveness of healthcare interventions. 

The underpinning reasons for this contention is discussed in more detail in the Appendix Volume I 

(Section A).  

 

Conventional RCTs tend to evaluate single treatments. They rarely provide long-term data on disease 

trajectories, or address questions about whether, or when specific treatments should be used 

sequentially.9 The challenge is that, even when RCTs of treatment sequences are available, they are 

unlikely to be sufficient to inform decision-making. The number of available treatments continues to 

increase in most cases, and consequently the number of unique sequences will increase 

geometrically.27 28 It is therefore both impractical and prohibitively costly to evaluate all conceivable 

treatment sequences in RCTs. The number of possible sequencing scenarios used in clinical practice 

is likely to outnumber the volume of trials conducted. Individual genetic makeup or biologic 

characteristics will increasingly determine the suitability of new treatments.29 This means that 

personalised medicine will evolve; I re-visit this in Section 1.7.  

 

Rather than RCTs of whole treatment pathways (sequences) it is more usual to have RCTs 

comparing individual interventions used at specific points in the treatment pathway, for example 

second- or third-line treatments, for informing treatment sequencing decision-making. However, 

although these RCTs potentially include participants who are at the same point in the treatment 

pathway, the specific prior treatments received by participants are likely to differ. Furthermore, as 

discussed in Section 1.2, the effect of the overall sequence cannot be accurately estimated by 
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evaluating a single treatment episode, and choosing the best initial treatment on the basis of an RCT 

of first-line treatments is suboptimal.9 I re-visit the implications of relying on RCTs for treatments used 

at a specific point in the pathway within the evidence synthesis in Section 1.5. Of note here is that 

when interventions are no longer effective or cause adverse effects, patients generally cross over to 

the alternative treatment, revert to current clinical practice, or drop out. A number of methodological 

studies provide advice on how best to adjust for the cross-ever effect when analysing the data from 

RCTs of single treatments (also discussed in Appendix Volume I, Section A4),30 but these methods do 

not consider the clinical effectiveness of treatment sequences, or deal with secondary research. This 

also means that where RCTs with long-term follow up do exist, they may be subject to the same 

confounding and biases as observational studies due to non-adherence and loss to follow-up. This is 

discussed further in Section 1.3.3 and the Appendix Volume I (Section A4). 

 

1.3.2  Randomised controlled trials to inform the introduction of new technologies 

A common question faced by policy makers and reimbursement agencies is the optimal positioning of 

a new technology within the current treatment pathway. The nature and availability of the evidence 

base to inform such decisions is often very limited and tends to be an artefact of the clinical trial 

design and licencing process.31 In most cases, a new treatment is only tested and licensed for a 

single point in a treatment pathway, so there is little evidence for how well they might perform at a 

different point in the sequence even though they might do well, or even better than a current 

treatment.  

 

The clinical trials of new treatments conducted for licencing purposes frequently limit inclusion to 

patients who are intolerant to, or who have failed to respond to the ‘first-in-class’ drug, or all available 

active treatments, and are therefore receiving best supportive care. This type of trial design is 

accepted by regulators, who grant a licence on this basis. The role of the regulatory authorities, such 

as The European Medicines Agency (EMA) and the U.S. Food and Drug Administration (FDA) is to 

assess the efficacy, safety, and quality of the drug.32 They allow companies to sell their products, and 

ideally want to grant approval to as many new and safe drugs as possible in order to increase the 

availability of treatments on the market. The new drug may actually be as good as the first-in-class 

drug, but manufacturers generally consider it too much of a risk to make this comparison. This 

discrepancy between what is accepted by the regulatory authorities for licencing purposes, and what 

is needed by policy decision makers (e.g. NICE) and health technology assessment agencies leads to 

important gaps in the evidence base, especially for informing the optimum sequencing or positioning 

of new treatments. It can also lead to the available drug sequences being dictated by when and how 

individual drugs were introduced into the market rather than their optimum positioning based on 

effectiveness. For example, the introduction of a new drug for advanced cancer, compared in a phase 

III trial to best supportive care in participants who had failed to respond to initial chemotherapy 

treatment. Other second-line treatment may be available for treating the same cancer. The policy 

decision question about placing the new drug in established therapy then becomes one about 

whether it should be second-line or reserved for third-line. The evidence base for answering this 
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question would have been limited, but the question of first-line use, and optimal overall sequence 

would not have even been considered. Some treatments however, do get studied and licenced at 

more than one point. For example, both targeted therapies, crizotinib and ceritinib, for anaplastic 

lymphoma kinase (ALK)-positive Non-small cell lung cancer (NSCLC) were first studied, licensed, and 

NICE approved for second-line treatment and then subsequently studied, licensed, and NICE 

approved as first-line-treatment. 

 

The access to many new targeted therapies for conditions such as cancer are determined by gene 

expression and receptor status. These drugs are usually very expensive, especially when including 

the cost of testing. These agents act at the molecular level, which means that the limitations of the 

clinical trials to inform decision-making is further complicated by the fact that some genetic mutations, 

which predict treatment response, are not identified until the analyses of the pivotal trial or in some 

cases after their introduction into practice.37 This means that the evidence to inform clinical practice is 

further limited to subgroup analyses, which is no longer protected by randomisation, and subject to 

the limitation of interpreting subgroup data. A summary of the recent developments in trial design for 

evaluating these new targeted therapies is provided in the Appendix Volume I (Section B). 

 

1.3.3  Non-randomised data as evidence for treatment sequences 

Non-randomised studies are an alternative source of evidence to inform treatment sequencing 

decisions. Examples include observational studies based on patient registries or non-controlled long-

term phase IV follow-up studies. Non-randomised studies are likely to be more readily available and 

provide timelier data than prospective RCTs.38 39 Real-world observational studies are also more likely 

to reflect treatment sequences used in clinical practice and include patients generally excluded from 

RCTs. However, treatment-effect estimates derived from non-randomised studies are at greater risk 

of bias and confounding than those taken from RCTs.40 The generic advantages and disadvantages 

of non-randomised studies is discussed in more detail in the Appendix Volume I (Section A).  

 

Real-world data from sources such as disease-specific registries could provide crucial information on 

treatment sequencing. The sequential use of TNF-inhibitors for inflammatory arthritis provides a 

useful example. In the absence of RCTs evaluating the use of a second-line TNF-inhibitor for 

inflammatory arthritis, a number of observational studies were based on patient registry data. at a 

time when only first generation TNF-inhibitors were available, Hyrich et al. (2007)41 reported that 

designing a randomised experiment for patients to receive a second TNF-inhibitor on the basis of 

inefficacy or toxicity would present considerable practical and ethical difficulties. More recently, the 

first RCT (EXXELERATE study) to directly compare two different TNF-inhibitors for the treatment of 

rheumatoid arthritis, published in 2016, allowed non-responders to switch to the alternative TNF-

inhibitor.42 However, the RCT compared the use of a second generation TNF-inhibitor (certolizumab 

pegol) with a first generation TNF-inhibitor (adalimumab). Whilst not without their limitations, non-

randomised studies may therefore, be the best data obtainable.17  
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With the increasing popularity of analysing real-world observational data (also referred to as big data) 

and the use of linked databases, the availability of this type of data is likely to improve.43 44 The validity 

and quality of routinely-collected data is key here. Furthermore, selection bias or confounding caused 

by an imbalance in prognostic factors between intervention and control groups, is a concern even in 

rigorously conducted observational studies.43 45 I come back to this in Chapter 9 (Section 9.4.6), and 

to specific limitations of using data from non-randomised studies to inform treatment sequencing 

effects in Chapter 5. 

 

 

1.4 SYSTEMATIC REVIEW AND QUANTITATIVE EVIDENCE SYNTHESIS 

Evidence synthesis is the process of bringing together the results of individual research studies in 

order to better map the knowledge base.46 It is based on the principle that science is cumulative.47 

The term is used for any method used to combine the results of studies including quantitative,48 

qualitative,2 49 and narrative methods.50 This thesis focuses on the use of quantitative evidence 

synthesis, and includes both meta-analysis methods and decision analytic modelling.  

 

1.4.1  Meta-analysis 

1.4.1.1  Meta-analysis for informing decision making 

Meta-analysis, when conducted as part of a systematic literature review, is an essential part of 

evidence-based medicine, and refers to a collection of statistical methods and techniques used to 

synthesise the results from several independent studies, generally with the aim of producing a single 

estimate of treatment effect, or explore variation in their findings.48 It enhances the precision, or 

statistical power, of the summary estimates of treatment effects, and the assessment of inconsistency 

of effects between studies enables a better understanding of moderator variables, boundary 

conditions, and generalisability.5 Meta-analysis aims to resolve uncertainty in the decision process, 

which relates to what conclusions to draw from a body of research studies on the same topic.4 

 

Conventional pairwise meta-analysis estimates the effects between two alternative treatments using a 

single outcome measure. However, effective policy making needs to be underpinned by a broader 

and more complex evidence base, which is likely to require a more sophisticated form of evidence 

synthesis. Clinical and policy decision-making needs to consider all available interventions for a 

particular condition, including multiple compounds from the same pharmacological class, and 

compounds from different classes used for the same indication.51 They also need to incorporate a 

diverse evidence base due to, among other things, the lack of primary data from head-to-head trials 

for a number of comparators, information for relevant subpopulations, and representation of real-world 

factors such as variable adherence.52 53 The assessment of the evidence base is therefore likely to 

require the following: 

i. Simultaneous comparison of multiple treatment options 

ii. Include heterogeneous studies with differing baseline risks 

iii. Include evidence from multiple sources of variable quality 
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iv. Include long-term effects, where only RCTs of efficiency with short-term follow-up are 

available 

v. Incorporate outcome data reported in various ways by different studies  

 

Recent developments in meta-analysis include the use of multi-parameter methods which capture 

further complexities in the evidence base by facilitating the utilisation and integration of diverse 

sources of evidence.54 55 Multi-parameter evidence synthesis is a generalization of meta-analysis in 

which several parameters are estimated jointly.54 55 Network meta-analysis, which is increasingly used 

within health technology assessment, is an important class of multi-parameter synthesis models.56 57 

Further methods to enhance and complement conventional meta-analysis are continually being 

developed,58 59 for example methods that allow for the inclusion of multiple endpoints or observations 

over time,60-63 bias modelling in order to synthesise data from different study designs,38 64-66 statistical 

methods for combining individual patient data and aggregate data in the same meta-analysis,67-71 and 

methods that can allow the relaxation of the main assumption of similarity (transitivity) within a 

network meta-analysis.72 73 A number of these methods are grounded in Bayesian statistical theory, 

and implemented using Markov chain Monte Carlo (MCMC) simulation methods. An example of a 

network meta-analysis conducted within the Bayesian Framework is presented in Chapter 2. This 

includes a more detailed description of these methods. 

 

The decision framework for treatment sequencing is more complex than the decision framework for a 

single treatment. The evidence base for sequencing is likely to be seriously limited in many instances. 

The recent developments in meta-analytical methods that allow the inclusion of broad and diverse 

evidence required to inform decision-making will be especially important. The findings of a review of 

meta-analytic methods for evaluating treatment sequences is presented in Chapter 5. 

 

1.4.1.2  Meta-analysis of individual patient data 

Meta-analytic methods that utilise individual patient data may be particularly useful for developing 

treatment sequencing effects. Meta-analysis is usually based on aggregate data obtained from study 

publications. In a meta-analysis of individual participant data, the synthesis is based on the original 

participant data from the relevant studies. This relies on extensive collaboration between researchers, 

as the trial groups must share their data with the reviewers. There has been some progress on wider 

access to individual patient-level data, however there is a long way to go before this is routinely 

available for most studies.74-77 There is growing recognition of the imperative for data-sharing.78 Many 

funders now require that data arising from their grants is shared.79 However, important impediments 

to data-sharing include concerns that patient confidentiality and consent may be breached,80 a lack of 

trust between researchers and the community they share,78 and the fact that providing access to the 

data requires considerable time and effort.78 Where individual patient-level data is not available for all 

trials, there is a need to incorporate both aggregate and individual patient data within the same meta-

analysis.67 I come back to the use of individual patient data in meta-analysis in Chapter 5, Section 

5.9.8. 
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Systematic reviews and meta-analyses aim to provide the best estimate of the true ‘average’ 

population effect, and do not apply to the individual, even when the meta-analysis is based on 

individual patient data. This clearly limits their application to individual decision-making. 

 

1.4.2  Decision analytic modelling 

Decision analytic modelling provides an alternative framework for the synthesis of the broad and 

complex evidence base required to support decision-making. It is especially useful where the 

evidence base is limited. However, unlike meta-analysis, which is used to obtain the best estimate of 

the true treatment effect in a particular population, decision analytic modelling is used to obtain a 

better informed and rational decision in the face of uncertain or incomplete information.81 A more 

detailed description of decision analytic modelling is provided in Chapters 6 and 7. 

 

1.4.2.1  Decision modelling for health economic evaluation 

Decision analytic models are often used as part of an economic evaluation to simultaneously compare 

the expected consequences of pursuing different strategies, or sequences of clinical decisions, and 

quantify the extent of the uncertainty involved.82 Statistical evidence synthesis techniques and 

decision analytic models provide an ideal mechanism to structure the decision problem, combine all 

available data, and characterise the various sources of uncertainty associated with the decision 

problem.83 The usefulness and validity of the results obtained from the economic model is dependent 

on the suitability of the model structure, the quality of the data inputs, and the methods used to derive 

these.83 84 The evidence base informing the model parameters is generally derived from multiple 

sources, including clinical trials, observational studies, administrative databases, expert opinion, and 

secondary analysis (such as meta-analysis).83 84 The data used to inform the clinical effectiveness 

parameters should be based on a systematic review and meta-analysis where feasible.83-85 However, 

the model parameters can also be derived almost exclusively from a single RCT.83  

 

The requirements of decision analytic modelling have placed some important demands on meta-

analytic methods, which include:86 

i. The need to estimate the effectiveness of interventions despite the absence of head-to-head 

RCTs. This includes the use of network meta-analysis 

ii. The need to obtain probabilities of clinical events for models over a standardised follow-up 

period, despite the available research studies reporting data for various follow-up periods 

iii. The need for estimates of treatment effectiveness for a common endpoint, despite available 

research studies reporting data for various outcome measures 

iv. The need to assess heterogeneity in measures between different types of patients  

I re-visit these issues in Chapter 2. 

 

Further developments for evaluating the evidence to inform decision-making include the use of 

comprehensive decision modelling, which incorporates both evidence synthesis and economic 

decision modelling in the same coherent framework.87-89 This enables all the evidence, uncertainties 
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and correlations to be captured in the economic analysis.82 It has the advantage of facilitating a fuller 

expression of the uncertainty in the evidence base,90 and can make use of the posterior distributions 

of the relevant parameters directly, making it ideal for implementing probabilistic decision analytic 

modelling. This approach is currently based on the use of Markov cohort modelling technique, and 

implemented within the Bayesian framework. I return to this in Chapter 7, Section 7.4.9. 

 

1.4.2.2  Whole disease modelling 

Economic models tend to be static, focusing on a single decision-point within the treatment pathway, 

for example the comparison of second-line treatments, and then mapping the long-term outcomes. 

Models can also be used to incorporate the projected impact of future treatments.91 Restricting the 

scope of the economic analysis to a single decision-point means that other adoption decisions 

elsewhere in the disease pathway, and their knock-on impacts, are often treated as independent of 

the decision problem under consideration.92 The issue regarding the use of static models may be a 

particular concern in treatments of communicable diseases where drug resistance is problematic. 

Here treatment sequencing sometimes means reserving the most efficacious treatment as a last-line 

of therapy, but the use of inappropriate sequences could lead to selection pressure and increase drug 

resistance. 

 

Recent developments in healthcare modelling include whole disease pathways or system models.92-94 

This includes the ‘whole disease model’ based on an individual patient-level simulation modelling 

technique, the application of which was first demonstrated in colorectal cancer.92 93 The model 

incorporates the whole disease pathway from pre-diagnosis to end stage disease, and includes all the 

diagnostics, treatment and follow-up interventions.92 93 Another example is the Archimedes model, 

which incorporates the whole system including not only the individual patients but also other important 

aspects of the healthcare system.95 96 The Archimedes model has been developed to evaluate 

diabetes care, cardiovascular disease, and cancer, and includes its use for the evaluation of 

prevention and screening, not just treatment.95 96 I come back to this in Chapter 7 (Section 7.4.8). A 

project funded by the Medical Research Council, on behalf of the NICE, investigated the feasibility of 

using whole disease modelling for informing clinical guidelines, using atrial fibrillation and prostate 

cancer as case studies.94 The project was able to demonstrate feasibility, with successful 

development of models representing the complicated guideline pathway and disease process being 

completed. However, barriers to routine adoption included the extensive time and resource required 

to implement, and the need for specialist expertise in discrete event simulation. The models included 

treatment sequences, but the available data to inform these were limited, necessitating the need to 

make simplifying assumptions regarding treatment-sequencing effects. The funding of this project 

showed that there was recognition and desire for modelling exercises to more robustly account for 

both the ‘upstream’ and ‘downstream’ impact of treatments. The work done as part of this thesis 

would fit in with this goal. However, this type of whole-pathway modelling approach has not 

subsequently been adopted within the health technology funding decision process or health economic 

evaluations in general.97 98 There is also a lack of general agreement between key health technologies 
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assessment stakeholders, e.g. funding bodies and industry, on the need for disease-specific models 

and a framework to develop and use such models.98 Finally, a substantial investment in time and 

resources is required at the onset.98 A compromise might be to consider whole treatment pathways, 

rather than the whole disease. This could address the limitations of focusing on a single decision-

point. 

 

 

1.5 THE CHALLENGE OF APPLYING META-ANALYSIS OF THE BEST AVAILABLE 

EVIDENCE TO INFORM TREATMENT SEQUENCING 

1.5.1  Meta-analysis of treatment sequencing as a complex intervention 

A recent project for developing practical tools and guidance for systematic reviews of complex 

interventions developed the following definition:99 

All complex interventions have two common characteristics; they have multiple components 

(intervention complexity) and complicated/multiple causal pathways, feedback loops, synergies, 

and/or mediators and moderators of effect (pathway complexity). In addition, they may also have 

one or more of the following three additional characteristics; target multiple participants, groups, 

or organizational levels (population complexity); require multifaceted adoption, uptake, or 

integration strategies (implementation complexity); or work in a dynamic multidimensional 

environment (contextual complexity).  

This definition was developed by consolidating prior definitions including, among others, the one 

produced by the Medical Research Council.100  It shows that, in most instances, treatment sequencing 

represents a multicomponent complex intervention, a quantitative evidence synthesis of which is 

unlikely to be straightforward.99  

 

Treatment sequencing represents a complex intervention because, as discussed in Section 1.2, 

treatment history and patient characteristics can have an effect on both the choice and the 

effectiveness of subsequent treatments. The subsequent evidence synthesis, developed to inform 

treatment sequencing decisions, also becomes complicated as it needs to account for both treatment 

history and the potential effect of subsequent treatment. The complexity of treatment sequencing is 

compounded by the fact that treatment history can represent many factors including the following: 

i. Carry-over effect of prior treatments 

ii. Type and level of response to previous treatment 

iii. Duration of treatment response 

iv. Time on treatment 

v. Intolerance or toxicity 

vi. The development of drug resistance 

vii. The burden of preceding treatments that can impact subsequent adherence 

The choice of which treatment to use next can involve drug escalation, using an add-on therapy, 

trying a completely new treatment, or re-using of a previously effective treatment. Adding further to 

the complexity of the decision, some new treatments are only available for a subset of patients who 
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are intolerant or have failed to respond to a specific treatment, generally representing current practice. 

Furthermore, some biological or targeted therapies are only licenced for a specific biomarker-defined 

sub-group of patients, which I come back to in Section 1.7. Time and disease-trajectory are also 

important factors that can influence the effectiveness of treatment, the impact of which can be both 

dependent and independent of previous treatments. I come back to this point in Chapter 5, Section 

5.5.  

 

1.5.2  Applying meta-analysis of discrete treatments to inform treatment sequences 

Where RCTs or comparative studies of whole sequences are available, summary effect estimates of 

each sequence can be developed using established meta-analytic methods, however, this may not be 

as straightforward as a meta-analysis of single, or discrete treatments, due to the complexity and 

dynamic nature of the intervention. In reality though, the available RCT evidence for informing 

treatment sequences is likely to be limited to studies of discrete treatments, used at single points in 

the treatment pathway. However, in conceiving treatment sequences as a series of discrete 

treatments and applying the RCT evidence to each treatment, implicit assumptions are likely to be 

made about the impact of treatment sequencing effects, as illustrated in the example provided in Box 

1 and Figure 1.2. Meta-analyses of single treatments are also likely to provide poor evidence on 

sequencing effects, and generally fail to consider the long-term impact of multiple treatment 

sequences. This is illustrated in Figures 1.3 to 1.5. These examples (presented in Box 1 and Figures 

1.2-1.5), however, represent a considerable simplification of the treatment sequencing issues, and are 

only aimed at providing an introduction and illustration of the potential limitations. This is explored in 

more depth in the review of methods presented in Chapters 3-7, which provides real examples and 

evaluates what is actually done in practice.  

 

BOX 1: Example illustrating the potential implicit assumptions made regarding sequencing 

effects when applying effect estimates taken from studies of single treatments 

 

Consider the hypothetical sequences of two drug treatments A and B, both of which are associated 

with a response rate of 50%, but A is considered to be less toxic, or more expensive, that B. The 

estimates for clinical effectiveness may be derived from a published RCT or meta-analysis but 

more importantly, for the purpose of this example, they are based on the evaluation of discrete 

treatments. In this circumstance, the decision may be to reserve drug B as second-line because 

both sequences (A,B and B,A) are considered to have the same overall response rate of 75%, but 

patients would be exposed to more harm when using a sequence starting with B (Scenario 1 in 

Figure 1.2). In absolute terms drug A is half as effective as B, but in relative terms their 

effectiveness is the same but used in different contexts. The underlying assumption here is that the 

treatment response (50%) for both drugs is the same irrespective of positioning in the sequence 

(Scenario 1 in Figure 1.2). The generic estimate of 50% response rate may not be representative of 

treatment B when used in patients who have failed to respond to drug A, and may therefore have a 

more treatment resistant and aggressive disease. Another approach would be to use an estimate of 



31 
 

the treatment effect for the first treatment derived from clinical trials of patients who were treatment 

naïve, and the second drug from trials that include patients with refractory disease, or receiving 

second-line-treatment. Drug A might be more effective than B in the second-line setting (Scenario 2 

in Figure 1.2). This may render the overall response rate for the sequence A,B to be 65% and B,A 

to be 70%. However, this does not take into account that the effect of a treatment may differ 

according to the specific previous treatment used, for example the presence of antidrug antibodies 

to treatment A may be associated with a better response to treatment B when used after A (as 

discussed in Section 1.2.2). 
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Figure 1.2: An illustration of two treatment sequences, (A,B) and (B,A), where the overall 

response rate was the same for both in scenario 1, and in scenario 2 favoured the B,A 

sequence due to the differential response rates in second-line treatments 

 

Adapted from a figure presented in: Kidwell, K. M. (2014). SMART designs in cancer research: past, present and future. 

Clinical Trials, 11(4), 445–456. 

 

A meta-analysis of first-line treatments (Figure 1.3) may fail to provide good evidence for the optimal 

initial treatment as it cannot account for the prospective impact of subsequent treatments (as 

discussed in Section 1.2.2). The long-term outcomes of first-line treatments can also be confounded 
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by the differential use of subsequent treatments. The meta-analysis may also fail to provide a good 

summary estimates of the same treatments used at a later point in a sequence as it will not account 

for the potential impact of treatment history and its influence on the choice of treatment and 

adherence, nor does it allow for the consequence of time or disease trajectory.17  

 

Figure 1.3: Illustration of the type of evidence included in a meta-analysis of first-line 

treatments X, Y and Z 

 
 

A meta-analysis of treatments used at a specific line (Figure 1.4), for example third-line, or in patients 

who are refractory to treatment, may potentially be problematic as it is unlikely to include RCTs with 

patients who received the same prior treatments. It is also unlikely to take into account the reason for 

discontinuing a previous treatment, which can lead to a differential effect of current treatment (as 

discussed in Section 1.2.2).  
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1st-line 

Disease trajectory 

Long-term outcomes, such as overall survival, for patients in studies of X, Y and Z are likely to be 

confound by subsequent treatments. The likely impact of treatments X, Y, and Z on the 

effectiveness of subsequent specific treatments, e.g due to acquired resistance or synergistic 

effect, will not be accounted for; but will be of relevance when choosing the optimal first treatment in 

a sequence. 

(A, B, C represent treatments used as 2nd- and 3rd-line, respectively.) 
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Figure 1.4: Illustration of the type of evidence included in a meta-analysis of third-line 

treatments X, Y and Z  

 
 

A meta-analysis that includes RCTs of any treatment line (Figure 1.5), in other words, ignoring point 

of use within the treatment pathway, is likely to have considerable heterogeneity of patient 

characteristics. An example of this is the conventional pair-wise meta-analysis and network meta-

analysis of sciatica treatments presented in Chapter 2. In addition to prior treatment, important patient 

characteristics that might act as effect modifiers include duration of symptoms, disease progression, 

severity, and type. In particular, consolidating evidence from various reviews investigating different 

points along the treatment pathway is not the ideal way of informing decision problems that involve an 

on-going risk that changes over time.  
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Disease trajectory 

Patients in studies of X, Y and Z are unlikely to have received the same 1st- and 2nd- line 

treatments. Previous treatments, which are generally poorly reported and vary among included 

participants, can be important effect modifiers. 

(A, B, C, D represent variation in treatments used as 1st-line and 2nd-line) 
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Figure 1.5: Illustration of the type of evidence included in a meta-analysis comparing 

treatments X, Y, and Z where line of treatment is not considered 

 
 

 

1.6 HEALTH TECHNOLOGY ASSESSMENT AND CLINICAL GUIDELINES 

This thesis informs the evaluation of treatment sequences within a health technology assessment 

(HTA) or similar process, including comparative effectiveness research, technology appraisal, and 

evidence-based guideline development. 

 

Health Technology Assessment is defined as ‘a multidisciplinary process that summarises information 

about the medical, social, economic, and ethical issues related to the use of a health technology in a 

systematic, transparent, unbiased, robust manner’.101 Health technology assessment most commonly 

comprises a systematic review of the literature to identify evidence relevant to the policy decision, a 

statistical synthesis of the resulting evidence, and a cost-effectiveness analysis that puts together 

evidence of efficacy, utility (e.g. health-related quality of life and side-effects), and costs to determine 

the treatment or intervention that brings the greatest expected net benefit to society within budgetary 

constraints.60 Most cost-effectiveness analyses are based on economic decision models.90 Similar 

processes are also used for the development of evidence-based guidelines (EBGs) and comparative 

effectiveness research (CER).102  

 

Health technology assessment provides the formal process through which policy and clinical 

decisions are made regarding the introduction and diffusion of health technologies, including drugs, 

medical devices or clinical/surgical procedures.103 It typically involves the assessment of clinical and 

cost-effectiveness of a treatment at a specific point in a treatment pathway. In the UK there are three 

key national policy-making health technology assessment ‘customers’: NICE, the Scottish Medicines 

X 
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B 

A 
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Any point in pathway  

 

 

A 

B 

 

 

 

Disease trajectory 

Clinical heterogeneity between studies in terms of patient characteristics (e.g. severity, and 

duration of symptoms) is likely to be present due to changes in pathophysiology over time and 

previous treatments. Some treatments may be reserved for more severe conditions. 

(A, B, represent the variation in previous and subsequent treatments used) 
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Consortium, and the All Wales Medicines Strategy Group (AWMSG). Health technology assessment 

is also an integral part of national decision-making processes in many other countries,102 and used by 

organisations such as the Institute for Quality and Efficacy in Healthcare in Germany, the Canadian 

Agency for Drugs and technologies in Health (CADTH), the Swedish Council for Health Technology 

Assessment (SBU) and most large payers in the United States (e.g. WellPoint and UnitedHealth 

Group).102 Health Technology Assessment plays an increasingly important role in the process of 

allocating future healthcare resources, especially in the context of innovative, high cost, interventions 

such as biological therapies.104  

 

Clinical guidelines advise on how healthcare professionals should care for people with specific 

conditions. A number of organisations publish evidence-based clinical practice guidelines in the UK, 

including NICE, Scottish Intercollegiate Guidelines Network (SIGN) and various professional bodies.  

 

Comparative effectiveness research, conceived in the United States, was designed to inform 

healthcare decisions by providing evidence on the effectiveness, benefits, and harms of different 

treatment options. Evidence is generated in two ways, reviewing existing research, or conducting a 

new pragmatic clinical trial. The comparative effectiveness research review is a unique type of 

‘effectiveness review’ or systematic review that depicts how the relative benefits and harms of a range 

of clinical options compared in the context of real-world healthcare decisions.105 106 They adhere to the 

same rigorous criteria which all systematic reviews must follow, but aim to answer more than the 

narrow question of whether a single therapy is safe and effective. In the absence of head-to-head 

trials, comparative effectiveness research reviews may use indirect comparisons following explicit 

methodological criteria. The comparative effectiveness research review compares the ‘trade-offs’ of 

multiple alternatives, each of which may vary with the underlying population and setting. 

 

Quantitative evidence synthesis is an essential part of health technology assessments, comparative 

effectiveness reviews, and for developing clinical guidelines. A framework outlining the key issues and 

recommendations for performing quantitative evidence synthesis of the effectiveness of sequential 

treatment options is likely to be very useful for all stakeholders involved in any of these processes to 

inform policy and clinical decision-making both nationally and internationally. The process 

implemented by NICE is used as an exemplar to ensure that the thesis can achieve this. This is 

discussed in more detail in Chapter 4. 

 

 

1.7 PERSONALISED MEDICINE 

‘Personalised’ or ‘individualised’ medicine’ is about targeting healthcare at patients who will benefit 

the most, using risk scores, patient characteristics, or other methods of stratification.97 It is a growing 

area of research, especially for the use of individualised genomic, or biologic characteristics, also 

known as biomarkers.107 However, the terms ‘stratified’ or ‘precision medicine’ are considered to be 

more accurate by some, as the objective of this approach is to identify demographic- or biomarker-
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defined subgroups and therefore still remains a population and not an individualised approach.29 107 

Many clinicians would argue that they have always practiced individualised or personalised medicine, 

whilst this new field of biomarker-based personalised medicine is driven by new diagnostics and 

therapeutics.29  

 

Personalised medicine is about the right patient receiving the right treatment at the right time. It is 

particularly prominent in oncology, where a growing proportion of new drugs target specific molecular 

mechanisms and only provide therapeutic benefit to a subset of patients defined by the presence of 

the altered target biomarker in the tumour.108 The exclusion of patients without these mutations makes 

it possible to minimise exposure to costly and potentially toxic therapies that are unlikely to help 

them.29 Research is also trying to identify biomarkers for predicting treatment responsiveness to 

biological agents for rheumatoid arthritis in order to identify patients most likely to benefit from each 

class or type of biological agent.109 In response to personalised medicine, new clinical trial designs 

have been developed and implemented, particularly in oncology.108 These adaptive trial designs are 

discussed in more detail in the Appendix Volume I (Section B). 

 

The use of targeted drugs may introduce the need for individual level decision-making, as they allow 

treatments to be tailored for a specific patient. However, current research methods used for 

developing evidence to inform policy decision-making are based on the ‘average’ patient. The focus of 

NICE, which provides evidence-based recommendations to the UK National Health Service, is also in 

making policy decisions for the majority rather than the individual patient. This thesis therefore 

concentrates on investigating the best way to develop ‘average’ effect estimates to inform decision-

making as a starting point. The expanding range of targeted and biological therapies available means 

that further work is likely to be needed for establishing the best way to inform individual patient-level 

clinical decision-making, for which this thesis will provide good preliminary work. 

 

Single person trials, also known as N-of-1 trials, are increasingly recognised as potentially useful for 

informing personalised treatment decisions for patients with chronic conditions.110 N-of-1 trial is a 

special case of a cross-over trial in which the same patient is repeatedly randomised to receive either 

the experimental treatment or its control.111 Because patients in cross-over trials and N-of-1 trials 

have received both control and intervention, these designs have the added advantage over 

conventional parallel trials of being able to provide information on patient preferences. An N-of-1 trial, 

which mimics usual clinical practice in its ability to allow flexible dosing and follow-up,112 also provides 

data on the effectiveness of an intervention for ‘this patient’ rather than an average population, 

although the findings of multiple N-of-1 trials can be pooled to inform the latter.113 The main limitation 

of using these designs to inform sequential treatment is that potential carry-over effects, where the 

effect of one treatment persists into subsequent treatment periods, are minimised as much as 

possible. In clinical practice, once a treatment is discontinued, subsequent treatments are generally 

initiated without delay and, paradoxically, carry-over effect is the main disadvantage of these designs 

for evaluating effectiveness of individual treatments. When estimating the treatment effects from cross 
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over trials, attempts are also made to limit the period effect. However, knowing the effect of the time 

period (or duration of the condition) in which the treatment was administered would also be useful for 

assessing sequential treatment options. I re-visit to the use of N-of-1 trials in Chapter 5, Section 5.9.7. 

 

 

1.8 SUMMARY OF THE PROBLEM RELATING TO SEQUENTIAL TREATMENTS 

Evidence-based decisions on the optimum sequence of treatments, or optimal positioning of individual 

treatments within a treatment pathway, are needed to inform both clinical practice and policy. A 

number of interventions are available to treat many chronic diseases, which are likely to be used 

within a sequence of treatments. However, estimating the effectiveness of a sequence of treatment 

options is not straightforward. The evidence required to inform clinical and policy decision-making is 

likely to include studies with different designs, estimating different quantities related to the decision 

problem in question. Recent developments in meta-analytic techniques include multi-parameter 

evidence synthesis methods, such as network meta-analyses. These have been developed to 

encompass the broad evidence base needed to inform decision-making and to overcome some of the 

limitations of conventional pairwise meta-analyses. These methods may be useful for evaluating 

treatment sequences, however, their implementation may be hampered by gaps in the evidence base. 

Varying evidential requirements of regulatory authorities for the introduction on new medicines, and 

those of policy makers and clinicians for informing practice, have also introduced important gaps in 

the evidence base. An alternative approach is to use decision analytic modelling, which also utilises 

analytic judgements and assumptions. However, the extent and impact of the assumptions required to 

overcome the limitations of the evidence base on the uncertainly in the decision-making would likely 

be an important factor.  

 

 

1.9 AIMS AND OBJECTIVES OF THE THESIS 

The aim of the thesis is to develop a framework for conducting quantitative evidence synthesis of the 

effectiveness of sequential treatment options, within the context of a health technology assessment, 

for informing clinical and policy decision-making. It will be underpinned by a comprehensive review 

exploring and comparing current methods for estimating the treatment effects of an intervention 

conditional on the previous treatments administered. The added value of using complex evidence 

synthesis methods over more simplistic approaches will be investigated. The framework will consider 

the decision problem from the perspective of the policy maker. It will take into account that variation in 

disease characteristics could influence the solutions or methods needed in terms of the evidence 

synthesis. 

 

Specific objectives are to: 

i. Identify the challenges of evaluating the clinical effectiveness of treatment sequences within 

the context of a health technology assessment using a case study that includes network 

meta-analyses and pair-wise meta-analyses of sciatica treatments 
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ii. Identify clinical scenarios where treatment sequencing was an important consideration for 

policy or clinical decision-making, using NICE as an exemplar policy maker 

iii. Identify and review different meta-analytic methods developed to assess the clinical 

effectiveness of treatment sequences 

iv. Identify the type of simplifying assumptions relating to treatment sequencing effects made by 

decision analytic modelling studies in the absence of an adequate evidence base 

v. Identify and review decision analytic modelling approaches used to evaluate the effectiveness 

of treatment sequences 

vi. Develop an initial framework outlining the key issues and recommendations for undertaking 

quantitative evidence synthesis of the effectiveness of sequential treatment options, which 

can be further refined and tested and as part of a future research project 

 

 

1.10 STRUCTURE OF THESIS AND SUMMARY OF CONTRIBUTION  

1.10.1  Structure of the thesis 

Chapter 2 represents the start of my exploration of the evaluation of treatment sequences. It is based 

on a health technology assessment of sciatica treatments, which identified some key challenges of 

conducting quantitative evidence synthesis to inform treatment sequences. This includes both 

network and pair-wise meta-analyses, which I conducted. 

 

Chapter 3 introduces and presents the methods for the methodology review I conducted to identify 

previous quantitative evidence synthesis methods developed to inform treatment sequences. This 

represents the first comprehensive review of methods to investigate the evaluation of treatment 

sequencing for any disease condition, and incorporates both meta-analytic techniques and decision 

analytic modelling.  

 

Chapter 4 explores the challenges faced by policy makers and health technology assessment 

agencies for evaluating treatment sequences. It uses NICE as the exemplar policy maker, and 

identifies the range of clinical conditions where treatments sequencing is likely to be an important 

consideration within NICE’s technology appraisal and clinical guideline process. Preliminary work 

identified rheumatoid arthritis as a clinical condition for which treatment sequencing was particularly 

pertinent for NICE and is used as an exemplar in the thesis and the review of methods.  

 

The findings of the review of methods are presented in Chapters 5, 6, and 7: divided into two parts 

covering meta-analytic techniques and decision modelling approaches separately, with the former 

presented in Chapter 5, and the latter in Chapters 6-7. In the absence of data on treatment 

sequencing effects, the decision analytic model conducted as part of the health technology 

assessment of sciatica treatments was based on the application of simplifying assumptions to effect 

estimates of single treatments (derived the network meta-analyses) in order to represent treatment 

sequencing effects. The type and range of assumptions used in other decision analytic models in 
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practice, to represent treatment sequencing effects, are presented in Chapter 6. This culminated in 

the development of a proposed new coding scheme of all assumptions possible for moving the 

science forward in this area. The review also showed that a wide range of different decision analytic 

modelling approaches have been used to model treatment sequences, which are summarised in 

Chapter 7, including an assessment of their advantages and disadvantages for achieving this.  

 

The lessons learnt and the challenges identified from the various stages of the thesis are used to 

develop a novel framework that provides guidance for commissioners, producers, and users of health 

technology assessment, or similar process, on the evaluation of treatment sequences to inform policy 

and clinical decision-making. This is presented in Chapter 8.  

 

The discussion and conclusions are presented in Chapter 9. 

 

The Appendix for the thesis is presented as two separate volumes, which serve different purposes. 

Volume I provides supplementary information to the main text, for example the description of three 

clinical conditions (rheumatoid arthritis, advanced cancer, and epilepsy) for which treatment 

sequencing was important as identified in Chapter 4. Volume II provides supplementary results and 

the data extraction tables that relate to each included review. 

 

1.10.2  Summary of contribution 

The network meta-analyses presented in Chapter 2 were originally performed as part a health 

technology assessment commissioned by the National Institute for Health Research (NIHR) Health 

Technology Assessment programme (project number: 06/79/01).7 The health technology assessment, 

which included both clinical and economic evaluation, was based on a systematic review, meta-

analyses, and a decision analytic model. The network meta-analyses and the economic model were 

subsequently published as separate articles in The Spine Journal,114 and Pain,115 respectively. The 

health technology assessment was conducted by a team of researchers and health economists. My 

role involved conducting all the pairwise and network meta-analyses under the supervision of one of 

my PhD supervisors, Professor Alex Sutton. I was involved in developing the search strategies, as 

well as selecting, summarising and critically appraising the included studies. I also prepared the 

methodology for the proposal of the initial project, developed the quality appraisal checklist, and wrote 

a statistical analysis plan. I was the lead author of both the health technology assessment 

monograph7 and the subsequent published article on the network meta-analyses.114 The findings 

presented in the journal publication represent the re-analysis of the data using a revised treatment 

categorisation, based on peer review comments. I undertook all the analyses for this publication, 

which included both network meta-analyses and accompanying conventional pair-wise meta-analysis, 

which were used to evaluate the robustness of the former. 
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1.10.3  My research experience and novel contribution of the thesis 

My main research interest is evidence synthesis to inform clinical and policy decision-making. I have 

extensive systematic review experience covering a wide range of therapeutic indications and 

interventions, funded by the National Institute for Health Research Health Technology Assessment 

(NIHR HTA) programme, Cancer Research UK, Department of Health (England) and the Welsh 

Government. I have also conducted evidence reviews to underpin NICE Cancer guidelines. I have 

conducted evidence synthesis of both qualitative and quantitative data, with most meta-analyses 

being performed using frequentist statistics. The sciatica project represents my first network meta-

analysis using Bayesian statistics. I believe that network meta-analysis, as well as other multi-

parameter meta-analyses, epitomize an important step-forward in quantitative evidence synthesis 

methods for informing policy decision-making, as it allows multiple treatments to be compared 

simultaneously, and summary effect estimates to be developed for the comparison of treatments 

which have not been directly compared. However, working on my thesis has made me realise that it is 

too simplistic to consider the multitude of treatments now available for most chronic conditions as 

discrete treatments, or individual treatment lines. We now need to consider how to account for 

positioning in the treatment sequence, including reasons for discontinuing previous treatments, and 

the disease trajectory. This is not straightforward, and requires a more informative evidence base 

than is currently available. Three important trends that are likely to impact the available evidence base 

include: a) the drug marketing process, which can influence the type of RCTs available; b) access to 

individual patient data for researchers; and c) the availability of linked or big-data sets. 

 

The original aim of my PhD was to develop quantitative evidence synthesis methods to evaluate the 

clinical effectiveness of sequential treatments from a meta-analytical and reviewer perspective only. 

However, as the project evolved it became clear that the evidence base is limited in most cases, 

necessitating the use of treatment sequencing assumptions and theoretical modelling. As a result, I 

became interested in developing my methodological knowledge of economic decision analytic 

modelling. This enabled me to explore the evaluation of treatment sequences from the viewpoint of 

the complementary disciplines of health economics and clinical effectiveness. The thesis provides a 

unique resource to inform the overall policy decision-making process, and for developing future 

guidance to inform the practice and methods for synthesising quantitative evidence on treatment 

sequencing options within health technology assessment or similar procedures. This is presented as 

a framework in Chapter 8, which lists all the key issues identified as part of the research project and 

their associated recommendations for practice. I am not a statistician or a modeller, and the thesis, 

therefore, does not include developing a new method for producing a summary effect estimate that is 

conditional on positioning in a treatment sequence. It does however, provide an important background 

and summary of the overall research position and challenges, which would be essential to inform 

such novel developments.  

 

Prior to working on systematic reviews, I worked as both a State Registered Chiropodist and a Clinical 

Audit and Effectiveness Facilitator within the UK National Health Service. My progression from 
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experienced reviewer to studying for a PhD in health economics, complemented by my early career 

working in the NHS and my MSc in Information Science, provides me with a full spectrum of skills and 

expertise needed for conducting health technology assessment. This thesis considers the problem of 

how best to evaluate treatment sequences to inform policy decision-making from this broad 

perspective.  

 

1.10.4  Dissemination 

I presented earlier findings of the methodology review at the Cochrane Colloquium, the network meta-

analyses of sciatica treatments in a published paper, and more recently the review of decision 

modelling studies at the ISPOR 20th Annual European Congress. 

 

Lewis R, Wilkinson C, Sutton AJ, Woolacott N, Hughes DA, Ruiz F, Williams NH, Philips CJ. Methods 

for the assessment of the effectiveness of treatment sequences for clinical and economic decision-

making. 21st Cochrane Colloquium. Quebec, 19-23 September 2013 (Oral presentation) 

 

Lewis R, Williams NH, Sutton AJ, Burton K, Ud Din N, Matar HE, Hendry M, Phillips CJ, Nafees S, 

Fitzsimmons D, Rickard I, Wilkinson C. Comparative clinical effectiveness of management strategies 

for sciatica: systematic review and network meta-analyses. The Spine Journal 2015 Jun 1;15(6):1461-

77 

 

Lewis RA, Hughes DA, Wilkinson C. PRM98: Decision analytic modelling methods for the assessing 

the effectiveness of treatment sequences for clinical and economic decision-making: a methodological 

review. ISPOR 20th Annual European Congress. Glasgow, 4-8 November 2017 (Poster presentation) 
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CHAPTER 2: A SYSTEMATIC REVIEW AND NETWORK META-ANALYSES OF THE CLINICAL 

EFFECTIVENESS OF DIFFERENT MANAGEMENT STRATEGIES FOR SCIATICA – AN EXAMPLE 

OF A HEALTH TECHNOLOGY ASSESSMENT 

 

 

2.1 CHAPTER OVERVIEW 

My interest in treatment sequencing started whilst developing an understanding to the limitations of a 

health technology assessment (HTA) of the clinical and cost-effectiveness of sciatica treatments. 

Sciatica is a condition where a number of different treatments are available, the majority of which 

have not been directly compared within primary studies. The commissioning brief for this project 

therefore commended the use of indirect treatment comparisons. This chapter presents the findings of 

network meta-analyses of the clinical effectiveness of treatments for sciatica, which I originally 

conducted for this health technology assessment. It includes a description and illustration of this 

relatively new statistical technique, and demonstrates the advantages of using network meta-analysis 

over a series of pairwise meta-analyses when multiple interventions are available for the same 

condition. As part of the clinical evaluation we were interested in assessing the effect of previous 

treatment as a potential effect modifier, but were unable to evaluate this in any depth due to the 

paucity of data. The clinical management of sciatica is generally based on a stepped-care approach, 

starting with non-invasive treatments such as advice and analgesia, followed by conservative or more 

invasive interventions if the symptoms do not resolve. The economic evaluation therefore investigated 

the cost-effectiveness of whole sequences. This raised an important question regarding whether the 

clinical evaluation should have also aimed to evaluate the clinical effectiveness of whole treatment 

sequences, or to develop treatment effect estimates of individual treatments conditional on positioning 

in the pathway. This in turn interested me in how best to evaluate the clinical effectiveness of 

treatment sequences, and how other health technology assessments had tackled this issue. It made 

me question the appropriateness of focusing on single treatments and essentially assuming that 

treatment effectiveness is independent of positioning in the pathway. This chapter includes a brief 

reflection of the potential impact of using this approach on clinical heterogeneity within the meta-

analyses. The chapter ends with a rumination on the advantages and disadvantages of using a 

Bayesian random-effects model and its potential use for evaluating treatment sequences. It also 

introduces some recent methodological developments in meta-analytic techniques that may be used 

in existing health technology assessments to tackle some of the issues regarding treatment 

sequencing. 

 

 

2.2 BACKGROUND TO THE HEALTH TECHNOLOGY ASSESSMENT 

The network meta-analyses presented here represent an example of a health technology assessment 

where the latest methodological development in meta-analytic techniques was used. Despite the 

innovative method, it had not been feasible to develop treatment sequencing effects. My original 

intention was to explore the impact of previous treatments, or disease duration, which can be 

considered a proxy for the number of previous treatments used, as potential effect modifiers using 
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meta-regression. The poor reporting of both the previous treatments used, and chronicity of the 

disease within most included studies, precluded this. 

 

These network meta-analyses were first conceived as part of a health technology assessment funded 

by the National Institute for Health Research (NIHR) HTA programme (project number: 06/79/01) and 

published as one of their monographs.7 The monograph included an evaluation of both the clinical 

and cost-effectiveness of all the treatment strategies for sciatica. The funding body had no role in 

design and conduct of the study; data collection; management, analyses, and interpretation of the 

data; preparation of the manuscript; or the decision to submit the article for publication. The views and 

opinions expressed therein are those of the authors and do not necessarily reflect those of the HTA 

program, NIHR, NHS, or the Department of Health. 

 

The clinical evaluation included a systematic review with an initial assessment of the findings for each 

individual treatment. This was based on a combination of a narrative synthesis and a series of ‘head 

to head’ pairwise meta-analysis for three relevant patient-based outcome measures. This also used 

three different follow-up periods, to represent short, medium, and long-term outcome. The analyses 

conducted for this initial evaluation are discussed in a little more detail in the Appendix Volume II: 

Appendix A1-2). The review also included the simultaneous comparison of all treatments, based on 

both direct and indirect comparisons, using network meta-analyses for all three outcome measures at 

a single time-point. I was a co-lead for the clinical assessment and undertook all the meta-analyses 

for this project.  

 

The economic evaluation included a review of current cost-effectiveness studies and the development 

of a de novo decision analytic model to estimate the cost per quality adjusted life-year gained for each 

treatment strategy. Although the economic model considered treatment sequences, the clinical 

evaluation was not able to achieve this, due primarily to the limitations of the evidence base.  

 

The network meta-analyses conducted for the clinical evaluation were subsequently published in The 

Spine Journal,114 and the decision analytic model undertaken as part of the economic evaluation in 

Pain.115 

 

This chapter summarises the findings published in The Spine Journal, the target audience for which is 

primarily surgeons. The article reported updated network meta-analyses, which I conducted in 

response to peer review comments. This included a slightly different treatment categorisation to that 

reported in the original health technology assessment. It also focused on two outcome measures 

(global effect or pain intensity) at a single composite time-point; the third outcome measure included 

in the original health technology assessment was a composite of condition-specific outcome 

measures. The published article is presented here as it appears in the journal, which included an 

explanation of network meta-analysis and Bayesian analyses, as requested by the peer reviewers.114 

It also represents work undertaken by a team of researchers.  
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2.3 INTRODUCTION TO THE CLINICAL EVALUATION OF SCIATICA TREATMENTS 

Sciatica is the term used for the syndrome characterised by radicular leg pain, with or without sensory 

deficits, radiating along the distribution of the sciatic nerve.116-118 In about 90% of cases, it is caused 

by an intervertebral disc herniation resulting in nerve root irritation.119-121 It is a common reason for 

seeking medical advice,122 123 and has considerable economic consequence in terms of healthcare 

resources and lost productivity. 122 The diagnosis and management of sciatica varies considerably 

within and between countries,119 which may reflect treatment availability, clinician preference and 

socio-economic variables rather than evidence-based practice. 

 

Previous systematic reviews, including meta-analyses, have evaluated the effectiveness of various 

individual treatment approaches for sciatica, including conservative treatments,124-127 epidural steroid 

injections,124 126 128 129 and surgical procedures.130 However, numerous treatments have not been 

directly compared. Furthermore, in order to choose the optimal treatment, it would be more helpful if 

all candidate treatments could be compared in the same analysis, as opposed to using a series of 

simple but inefficient standard pairwise meta-analyses comparing only two treatments at a time. It has 

been acknowledged that there is difficulty in interpreting the findings of multiple comparisons with low 

power, due to the small number of participants or events, which are inclined to result in statistically 

insignificant findings.7 131  

 

A network meta-analysis,132 by contrast, enables the simultaneous comparison of more than two 

treatment approaches, whilst combining data derived from both direct within-study comparisons 

between two treatment strategies (e.g A vs B) and comparisons constructed from two studies that 

have one treatment in common (e.g. A vs B, B vs C).131 This type of analysis can only be applied to 

connected networks of randomised controlled trials (RCTs),133 but preserves the within trial 

randomised comparison of each study133 and allows information on treatment strategies to be 

“borrowed” from other studies within the network, thereby increasing the total sample size.134 135 

Network meta-analysis conducted using Bayesian methods136-138 also allows the treatment strategies 

to be ranked in terms of clinical effectiveness with an estimate of the probability that each strategy is 

‘best’.139 

 

The primary aims of the health technology assessment were to simultaneously compare the clinical 

effectiveness of different treatment strategies for sciatica using network meta-analyses, in order to 

identify the best treatment and to provide estimates for all possible pairwise comparisons, based on 

both direct and indirect evidence. The secondary aims were to demonstrate the feasibility of using 

network meta-analyses as a rational basis for clinical decision-making when a number of treatment 

options are available and where a series of conventional systematic reviews have failed to help with 

real-world treatment decisions.  
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2.4 METHODS 

2.4.1  Review methods 

A full account of the study methods and literature search are presented in the health technology 

assessment monograph (which also includes the protocol).7 The review was conducted in line with the 

principles of good practice1 140 and presented according to the Preferred Reporting Items for 

Systematic Reviews and Meta-Analyses (PRISMA) guidelines.141 

 

2.4.2  Search strategy 

Included studies were identified via an extensive literature search described in full, including the 

search strategy, in the health technology assessment monograph.7 The search incorporated 28 

electronic databases and trial registries including MEDLINE, EMBASE, and AMED. Databases were 

searched from inception until December 2009 without language restriction. The reference lists of 

previous systematic reviews and included studies were also scanned for further references. 

 

2.4.3  Study selection and data extraction 

This review included any comparative study (experimental or observational) with adults who had 

sciatica diagnosed clinically, or where clinical imaging confirmed lumbar disc prolapse consistent with 

the clinical findings. The essential clinical criterion was radicular leg pain worse than back pain. 7 

Studies of sciatica caused by conditions other than a prolapsed intervertebral disc were included if it 

was documented that radicular leg pain was worse than back pain. If imaging was used, it had to 

demonstrate evidence of nerve root compromise. Studies that included participants with non-specific 

low back pain were only included if the findings for patients with sciatica were reported separately. 

Any type of intervention to treat sciatica was considered. These were categorised, for the purpose of 

the present analyses, into one of 21 categories (See Table 2.1). Interventions that included a 

combination of more than one treatment strategy (or mixed treatments) were excluded from the 

network meta-analyses due to uncertainty regarding the extent of interaction between the combined 

interventions. The same applied to post-surgical interventions due to surgery being included as a 

separate treatment category. Studies comparing interventions that were grouped under the same 

treatment strategy were also excluded. Three further studies evaluating experimental interventions for 

sciatica (common peroneal nerve block, protolytic enzyme, and colchicine) were excluded from the 

analyses as these interventions did not fit the treatment categorisation. The analyses presented were 

also limited to studies that reported data on overall response or pain intensity. 

 

Table 2.1: Treatment categorisation 

Treatment strategya 
Treatment 

strategy Codea 
Type of treatment 

Inactive control A Placebo or sham treatment in any type or format: tablet, injection, 

epidural etc.  

No treatment 

Conventional care B Conservative therapy 

Conventional care 

Non-surgical treatments 

General practitioner care 

Disc surgery C Discectomy 
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Treatment strategya 
Treatment 

strategy Codea 
Type of treatment 

Micro-discectomy 

Laminectomy 

Hemilaminectomy 

Surgical decompression 

Epidural injections (includes 

spinal nerve block) 

 

D Lumbar epidural injection  

Transforminal epidural injection  

Intraforaminal injection  

Interlaminar epidural injection  

Caudal epidural injection  

Periradicular injection  

Spinal nerve root block  

Chemonucleolysis E Chymopapain 

Collagenase 

Ozone 

Non-opioids  

 

F Conventional pain or anti-inflammatory medication used as oral, 

intravenous or intramuscular: 

Steroids 

Non-steroidal anti-inflammatory drugs (NSAIDs) 

Paracetamol 

Intra-operative interventions G Barrier membranes:  

- Antiadhesion barrier 

- Fat graft 

Intra-operative steroid +/- local anaesthetic 

Traction  H Mechanical traction 

Antigravitational traction 

Auto-traction 

Manual traction 

Manipulation  I Chiropractic 

Osteopathic 

Acupuncture J  

Exercise therapy   K Exercise therapy 

Isometric exercises 

Mobilising and strengthening exercises 

Passive physical therapy   L Ultrasound 

Transcutaneous electrical nerve stimulation (TENS) 

Infra-red heat 

Physical therapy programme (hot pack, continuous ultrasound, 

and diadynamic currents)  

Conservative physiotherapy  

Biological agents M Cytokine modulating treatments targeting tumour necrosis factor 

alpha: 

- Entanercept 

- Infliximab 

- Autologous Conditioned Serum 

Bed rest N  

Opioids O Oral, intravenous or intramuscular opioids  

Education/Advice  P Advice to keep active 

Advised to continue activities of daily living  

Percutaneous discectomy Q Automated percutaneous discectomy 

Percutaneous automated nucleotomy  

Nucleoplasty 

Lasar discectomy 

Neuropathic painmodulators R Pharmaceutical treatment used for neuropathic pain: 

Anti-epileptic medication  

Tricyclic antidepressants 

Intra-discal injections S  

Spinal cord stimulation  T  

Radiofrequency treatment U  
a Interventions are summarised using these codes for displaying the results of the network-meta-analyses 
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Two reviewers screened studies for inclusion independently. Data were extracted by one reviewer 

and checked by a second using the original paper, whilst quality assessment was done by two 

reviewers independently. Any disagreements were resolved by discussion. The quality of both trials 

and observational studies was assessed using the same checklist, which was based on one used by 

the Back Review Group of the Cochrane Collaboration for RCTs142 and another recommended by the 

Guidelines for Systematic Reviews in Health Promotion and Public Health Taskforce,143 which was 

developed by the Effective Public Health Practice Project, Canada.144 The criteria covered external 

validity, selection bias and confounding, detection bias, performance bias, and attrition bias. Studies 

were coded as strong, moderate or weak for each domain, estimating the risk of bias. 

 

2.4.4  Outcome measures 

Overall response or global effect was analysed as a binary outcome (treatment success vs failure) 

and synthesised using odds ratios (ORs). Where studies reported overall response in terms of both 

overall improvement and improvement in leg pain, the data on overall improvement were used. For 

studies that reported both physician and patient perceived global effect, the data for patients’ 

perceived effects were used.  

 

Pain intensity (on a scale of 0-100) was analysed as a continuous outcome measure using weighted 

mean difference (WMD). We included only pain assessment from one location from each study using 

the preference hierarchy of leg pain then overall pain. Where feasible, missing data were estimated 

from the published data, using standard methods, such as standard deviations derived from standard 

errors.145 Where mean values were unavailable but the medians reported, these were used instead. If 

standard deviations for baseline values were available these were substituted for missing standard 

deviations. For studies that did not report sufficient data to derive the standard deviations, they were 

imputed using the weighted mean,146 which was calculated separately for each intervention category.  

 

2.4.5  Statistical analysis 

The network meta-analyses were based on a single time-point, using the findings from individual 

studies closest to six months follow up. Sensitivity analyses were conducted to assess the impact of 

excluding non-randomised studies (observational studies and non-RCTs). 

 

The network meta-analyses were conducted using a hierarchical random-effects model132 within the 

Bayesian framework. Bayesian methods are based on the idea that unknown quantities, such as 

population means or proportions, have probability distributions.137 One starts with a distribution that is 

based on prior knowledge or subjective belief about the population and then update this using data 

from your included studies. However, using non-informative priors (such as, a normal distribution with 

a large variance) means that the results are based predominantly on the data from the included 

studies, and as such will mirror those obtained using frequentist or classical meta-analysis methods. 

Bayesian methods are implemented using model-based simulations, which means that they can be 



49 
 

used to perform complex analyses that incorporate multiple data sources and allow for various 

parameter uncertainties within a single coherent model, which is why we chose to use these methods.  

 

The network meta-analyses were conducted using WinBUGS 1.4.3 software (MRC Biostatistics Unit, 

Cambridge, UK),147 which uses Markov chain Monte Carlo simulation methods to run thousands of 

simulated iterations based on the data and description of the proposed distributions for relevant 

parameters. The iterative simulations are generally started at multiple points, in order to ensure the 

samples are drawn from the whole sampling frame. The first 50,000 iterations (or burn-in) were 

discarded, and the results based on a further sample of at least 100,000 simulations, ensuring that 

the multiple simulation strings have converged and distributions were informed by later simulations. 

Numerical methods such as the Brooks-Gelman-Rubin statistic147 and the inspection of the auto-

correlation and history plots, which are routine assessments made when using Markov chain Monte 

Carlo methods, were used to check that convergence had occurred. The model fit was checked by 

the global goodness of fit statistic, residual deviance. If the model is an adequate fit, it is expected that 

the residual deviance should be roughly equal to the number of data points.133 Non-informative priors 

were used for normal distributions for means, and uniform distributions for standard deviations. The 

treatment strategy ‘inactive control’ was used as the reference treatment. This included interventions 

that represent the non (active) treatment of sciatica, such as no treatment, sham treatment, or 

placebo (two studies used active placebo). The WinBUGS codes (or models) that we used are 

presented in the Appendix Volume II (Appendix A3). The robustness of the network meta-analyses 

were also evaluated by comparing the findings (where head to head studies were available) with 

those of standard ‘direct’ pairwise meta-analyses7 conducted using a random-effects model148 based 

on frequentist methods136-138 in Stata 10 (Stata Corp LP, College Station, TX, USA).  

 

The assumptions of a random-effects network meta-analysis are that (1) the treatment effects are 

additive (i.e. the relative effect of treatment A vs C can be estimated from the effect of A vs B and B 

vs C);133 149 150 (2) study-specific treatment effects are drawn from a common distribution 

(exchangeable);56 133 and (3) this common distribution or heterogeneity is constant between the 

different comparisons. 56 133 The heterogeneity between studies, defined as the variability of the 

results across studies within each treatment comparison over and above chance,151 was evaluated by 

examining the findings of standard pairwise meta-analyses using visual inspection of the forest plots, 

using the Chi2 statistic to test for statistical heterogeneity, and the I2 statistic to quantify this.152 153   

 

 

2.5 RESULTS 

2.5.1  Included studies 

As seen in Figure 2.1, 122 studies were included in the revised network meta-analyses (one 

publication included two studies), 86 were RCTs and four quasi-RCTs (Q-RCTs). The network meta-

analysis of global effect included 95 studies (68 RCTs/Q-RCTs) and pain intensity 53 studies (46 

RCTs/Q-RCTs). A list of included studies is presented in the Appendix Volume II (Appendix A4). This 
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also includes a summary of the quality assessment of included studies. A description of the 

interventions, populations, study design, and outcome data for the included studies are available in 

the extensive supplementary data accompanying the published paper114 and on request.  

 

Eleven (9%) studies had a strong overall quality rating and eight (7%) had a strong overall external 

validity rating; five (4%) of which had a strong rating for both. Only 26 (21%) studies used both 

adequate randomisation and adequate or partially adequate (using sealed envelopes, n=16) 

allocation concealment. 

 

The proportion of studies that limited inclusion to patients with acute sciatica (duration of symptoms 

<3 months) was much higher in conservative treatments, such as traction (71%), bed rest (80%), and 

non-opioid medication (53%), than more invasive treatments (such as disc surgery 8%, 

chemonucleolysis 3%, and epidural 5%). However, most studies did not report the duration of 

sciatica, or included patients with acute and chronic sciatica. The presence of disc herniation was also 

confirmed by imaging in a high proportion of studies evaluating invasive treatments such as 

percutaneous discectomy (100%), disc surgery (86%) and chemonucleolysis (84%). Previous 

treatment was poorly reported in many studies, but the proportion of studies that reported patients 

who had received previous treatment was higher for invasive treatments such as disc surgery (70%), 

percutaneous discectomy (100%), and chemonucleolysis (88%), than for conservative treatments 

such as non-opioids (20%), traction (29%), and acupuncture (33%). The mean pain score (where 

reported), at baseline for each treatment strategy were fairly similar (ranging from 59 to 69) with the 

exception of biological agents (78). 
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Figure 2.1: Flow diagram showing the number of references identified, publications retrieved 

for assessment, and studies included in the review  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
*The current study represents further refinements of initial network meta-analyses conducted as part of a broader Health 
Technology Assessment (HTA) review evaluating the clinical and cost effectiveness of sciatica treatments;7 the original review 
included a narrative synthesis, conventional pairwise analyses, network meta-analyses, a review of economic evaluations and 
an economic evaluation. 
Five studies reported data on back specific functional status (an outcome considered as part of the initial network meta-
analyses), but did not report useable data for global effect or pain intensity. 
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Figure 2.2 shows the network of treatment comparisons for the network meta-analysis of global effect 

and Figure 2.3 shows the same for the analysis of pain intensity.  

 

 

Figure 2.3:  Network of treatment strategies for sciatica for comparative studies reporting 

global effect 

 
Note: Each treatment strategy is a node in the network. The links between the nodes are arms in head-to-head (direct) 
comparisons in eligible studies. The numbers along the link lines indicate the number of studies or pairs of study arms for that 
link in the network, with the observed I2 statistic (based on the data from the pairwise meta-analyses) is presented in brackets. 
Links that do not have any randomised or quasi- randomised controlled trial evidence are indicated in green. 
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Figure 2.3: Network of treatment strategies for sciatica for comparative studies reporting pain 

intensity 

Note: Each treatment strategy is a node in the network. The links between the nodes are arms in head-to-head (direct) 
comparisons in eligible studies. The numbers along the link lines indicate the number of studies or pairs of study arms for that 
link in the network, with the observed I2 statistic (based on the data from the pairwise meta-analyses) is presented in brackets. 
Links that do not have any randomised or Quasi- controlled trial evidence are indicated in green. 

 

Summary effect estimates for the comparison of each intervention strategy with inactive control are 

presented in Figures 2.4 and 2.5. The corresponding confidence intervals provide an indication of the 

uncertainty surrounding the effect sizes, which needs to be taken into account when interpreting the 

data (especially the probability of being best). The probabilities for each treatment strategy being best 

(or most effective) are presented in Appendix Volume II (Appendix A5). The network meta-analyses 

also provide a full set of comparisons for all treatment strategies, the findings of which are presented 

in Tables 2.2 and 2.3. The summary effect sizes derived from the network meta-analyses can be 

directly compared with the summaries of pairwise meta-analyses (derived using Stata 10), which are 

presented in the same matrices (top right-hand corner); statistically significant findings are indicated 

by shading. The results of sensitivity analyses restricted to RCTs and Q-RCTs are presented in the 

Appendix Volume II (Appendix A5-6).  
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Figure 2.4: Plot of the odds ratios of global effects for different treatment strategies compared 

with inactive control from the network meta-analysis  

 

Note: The data has been spun around so that effect estimates that favour the intervention are shown on the right hand side. 
This means that the an odds ratios <1 represents a decrease in the number of patients not showing overall improvement in 
favour of the intervention 
Abbreviations: CI confidence interval 
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Figure 2.5: Plot of the weighted mean difference for pain intensity for different treatment 

strategies compared with inactive control from the network meta-analysis 

 

Note: A weighted mean difference > 0 represents a reduction in pain intensity in favour of the intervention 
Abbreviations: CI confidence interval 
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effect estimates (OR >10), but these were not statistically significant: chemonucleolysis (E), traction 

(H), exercise therapy (K), passive physical therapy (such as ultrasound and transcutaneous electrical 

nerve stimulation) (L), bed rest (N), opioid medication (O), percutaneous discectomy (Q), intra-discal 

injections (S), and radio frequency treatment (U), all of which were associated with very wide 

confidence intervals. This reflects the limited evidence available for biological agents, which included 

a small placebo controlled RCT (n=24) that reported a large effect estimate in favour of biological 

agents (OR 10.0; 95% CI: 0.65, 166.67). See Appendix Volume II: Appendix A5, Table A5.1. 

 

The results of the sensitivity analyses excluding non-randomised studies showed broad agreement 

with the main analyses. For global effect, the most notable discrepancies occurred with biological 

agents compared with chemonucleolysis, conventional care, and exercise therapy. A more detailed 

narrative of the differences between the analyses with and without the non-randomised studies is 

presented in the Appendix Volume II (Appendix A6).  

 

2.5.3  Pain intensity 

In terms of pain intensity, the only treatment comparisons with inactive control that were statistically 

significant were epidural injections (D) and biological agents (M). Biological agents, which had the 

highest probability of being best (0.33), were also found to be statistically significantly better at 

reducing pain than non-opioids (F), bed rest (N), opioids (O) and radio frequency treatment (U); these 

findings were all associated with wide credible intervals. When considering the magnitude of effect, 

bed rest (N), education/advice alone (P), percutaneous discectomy (Q), and radiofrequency treatment 

(U) tended to fare worse when compared with most treatment strategies, with findings showing a non-

statistically significant difference of more than 25 points. Acupuncture (J), had the second highest 

probability of being best (0.19) and resulted in reductions of pain intensity of more than 25 points 

compared with bed rest, opioids, education/advice alone, percutaneous discectomy and radio 

frequency treatment, none of which were statistically significant and all had wide credible intervals. 

 

For pain intensity the most notable discrepancies between the network meta-analysis with and without 

non randomised studies only occurred with biological agents (vs inactive control, conventional care, 

disc surgery, non-opioids, intraoperative interventions, acupuncture, exercise therapy, opioids, and 

neuropathic pain modulators). Biological agents no longer had the highest probability of being best 

(0.03; see Appendix Volume II: Appendix A5, Table A5.4). These discrepancies are likely to be due to 

the small number of included studies with a limited number of participants evaluating biological agents 

(2 RCTs n=131; 1 non-randomised controlled trial n=72; and 1 historical cohort study n=10). 
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Table 2.2:  Results (odds ratios, with 95% confidence intervals/credible intervals) of the network meta-analysis for global effect 

A   
N=9, 2.58 
(1.3, 5.3) 

N=5, 2.56 
(1.6, 4.1) 

N=7, 1.68 
(1.1, 2.5) 

 
N=2, 1.11 

(0.6, 2) 
N=1, 4.72 
(1.9, 11.4) 

  
N=1, 4.27 
(1.5, 12.4) 

N=1, 10 
(0.7,166.7

) 
 

N=1, 1.37 
(0.5,3.8) 

  
N=2, 2.01 
(0.8, 5.2) 

  
N=1, 0.57 
(0.2, 1.7) 

0.82 
(0.4, 1.6) 

B 
N=7, 2.7 
(1.7, 4.3) 

N=3, 5.46 
(0.8, 38.5) 

   
N=1, 1.53 
(0.6, 4.2) 

  
N=1, 1.46 

(0.7, 2) 
          

2.46 
(1.3, 4.5) 

3.0 
(1.9, 4.9) 

C  
N=14, 0.5 
(0.4, 0.7) 

N=1, 6.71 
(0.8, 58.8) 

N=7, 1.49 
(1, 2.2) 

   
N=1, 0.77 
(0.18, 3.2) 

     
N=5, 0.67 
(0.4, 1.3) 

  
N=1, 1.13 
(0.4, 3.6) 

 

3.48 
(2.1,5.8) 

4.26 
(2.1, 8.8) 

1.42 
(0.7, 2.9) 

D  
N=1, 0.45 
(0.2, 1.4) 

     
N=1, 0.2 
(0.1, 0.6) 

 
N=1, 0.22 
(0.1, 0.9) 

       

1.57 
(0.9, 2.8) 

1.92 
(1.1, 3.4) 

0.64 
(0.5, 0.9) 

0.45 
(0.2, 0.9) 

E  
N=4, 2.03 
(0.8, 5.4) 

         
N=5, 0.65 
(0.4, 1.1) 

 
N=4, 0.46 

(0.2, 1) 
  

2.18 
(1.3, 3.8) 

2.66 
(1.2, 6.2) 

0.89 
(0.4, 1.9) 

0.63 
(0.3, 1.2) 

1.39 
(0.7, 3.0) 

F    
N=1, 3.27 
(0.8, 13.9) 

    
N=1, 0.18 
(0.1, 0.7) 

      

3.64 
(1.7, 7.8) 

4.5 
(2.2, 9.0) 

1.48 
(0.9, 2.5) 

1.05 
(0.4, 2.4) 

2.32 
(1.4, 4.0) 

1.67 
(0.7, 4.1) 

G               

1.28 
(0.6, 2.7) 

1.56 
(0.7, 3.7) 

0.52 
(0.2, 1.2) 

0.37 
(0.2, 0.8) 

0.8 
(0.3, 1.9) 

0.59 
(0.2, 1.5) 

0.35 
(0.1, 0.9) 

H   
N=1, 0.87 
(0.3, 2.7) 

N=1, 0.93 
(0.5, 1.9) 

 
N=1, 1 

(0.1, 7.1) 
       

4.88 
(1.1, 23) 

5.96 
(1.1, 32.2) 

1.98 
(0.4, 10.5) 

1.4 
(0.3, 7.0) 

3.1 
(0.6, 16.3) 

2.24 
(0.4, 11.4) 

1.34 
(0.2, 7.5) 

3.83 
(0.7, 21.4) 

I             

7.92 
(1.1, 67) 

9.72 
(1.2, 89.2) 

3.22 
(0.4, 29.2) 

2.27 
(0.3, 19.9) 

5.0 
(0.7, 45.5) 

3.62 
(0.5, 28.4) 

2.18 
(0.3, 20.7) 

6.21 
(0.8, 59.0) 

1.63 
(0.1, 22.3) 

J            

1.09 
(0.4, 3) 

1.34 
(0.5, 3.4) 

0.44 
(0.2, 1.2) 

0.31 
(0.1, 0.9) 

0.7 
(0.3, 1.9) 

0.5 
(0.2, 1.5) 

0.30 
(0.1, 0.9) 

0.86 
(0.3, 2.4) 

0.22 
(0.04, 1.4) 

0.14 
(0.01, 1.2) 

K   
N=1, 2.2 
(0.6, 7.6) 

       

1.49 
(0.6, 3.9) 

1.82 
(0.6, 5.5) 

0.61 
(0.2, 1.8) 

0.43 
(0.2, 1.1) 

0.95 
(0.3, 2.8) 

0.68 
(0.2, 2) 

0.41 
(0.1, 1.3) 

1.17 
(0.4, 3.2) 

0.3 
(0.05, 1.8) 

0.19 
(0.02, 1.7) 

1.37 
(0.4, 5.0) 

L          

16.83 
(0.8, 947) 

20.75 
(0.9, 

1213) 

6.89 
(0.3, 400) 

4.8 
(0.2, 278) 

10.77 
(0.5, 625) 

7.71 
(0.3, 449) 

4.65 
(0.2, 277) 

13.3 
(0.5, 792) 

3.48 
(0.1, 252) 

2.15 
(0.1, 185) 

15.63 
(0.6, 977) 

11.41 
(0.4, 699) 

M         

1.35 
(0.4, 4.7) 

1.65 
(0.5, 6.0) 

0.55 
(0.2, 2) 

0.39 
(0.1, 1.3) 

0.86 
(0.2, 3.2) 

0.62 
(0.2, 2.4) 

0.37 
(0.1, 1.5) 

1.06 
(0.3, 3.8) 

0.28 
(0.04, 2.0) 

0.17 
(0.01, 1.7) 

1.24 
(0.4, 4.3) 

0.9 
(0.2, 4.0) 

0.08 
(0.0, 2.3) 

N  
N=2, 1.31 
(0.8, 2.3) 

     

1.15 
(0.4, 3.4) 

1.41 
(0.4, 5.1) 

0.47 
(0.1, 1.6) 

0.33 
(0.1, 1.1) 

0.73 
(0.2, 2.5) 

0.53 
(0.2, 1.6) 

0.32 
(0.1, 1.2) 

0.9 
(0.2, 3.4) 

0.24 
(0.04, 1.5) 

0.14 
(0.01, 1.3) 

1.05 
(0.2, 4.7) 

0.77 
(0.2, 3.3) 

0.07 
(0.0, 1.8) 

0.85 
(0.2, 4.5) 

O   
N=2, 0.78 
(0.4, 1.7) 

   

1.75 
(0.3, 9.0) 

2.14 
(0.4, 11.3) 

0.71 
(0.1, 3.8) 

0.50 
(0.1, 2.5) 

1.12 
(0.2, 6.0) 

0.80 
(0.1, 4.4) 

0.48 
(0.1, 2.7) 

1.37 
(0.3, 7.2) 

0.36 
(0.04, 3.4) 

0.22 
(0.02, 2.8) 

1.6 
(0.3, 8.3) 

1.17 
(0.2, 7.1) 

0.1 
(0.0, 3.5) 

1.30 
(0.5, 3.7) 

1.52 
(0.2, 10.8) 

P      

1.23 
(0.6, 2.6) 

1.50 
(0.7, 3.0) 

0.5 
(0.3, 0.8) 

0.35 
(0.2, 0.8) 

0.78 
(0.5, 1.3) 

0.56 
(0.2, 1.4) 

0.34 
(0.2, 0.7) 

0.96 
(0.4, 2.5) 

0.25 
(0.04, 1.4) 

0.15 
(0.02, 1.2) 

1.13 
(0.4, 3.3) 

0.82 
(0.3, 2.6) 

0.07 
(0.0, 1.7) 

0.91 
(0.2, 3.6) 

1.07 
(0.3, 4) 

0.70 
(0.1, 3.9) 

Q     

1.41 
(0.5, 4.0) 

1.72 
(0.5, 6.0) 

0.57 
(0.17, 1.9) 

0.4 
(0.1, 1.3) 

0.89 
(0.3, 3.0) 

0.65 
(0.2, 2) 

0.39 
(0.1, 1.4) 

1.1 
(0.3, 4.1) 

0.29 
(0.04, 1.8) 

0.18 
(0.02, 1.6) 

1.29 
(0.3, 5.6) 

0.94 
(0.2, 3.8) 

0.08 
(0.0, 2.2) 

1.04 
(0.2, 5.4) 

1.23 
(0.4, 3.6) 

0.8 
(0.1, 5.6) 

1.15 
(0.3, 4.2) 

R    

0.7 
(0.3, 1.9) 

0.85 
(0.3, 2.3) 

0.28 
(0.1, 0.7) 

0.2 
(0.1, 0.6) 

0.44 
(0.2, 1) 

0.32 
(0.1, 0.97) 

0.19 
(0.1, 0.5) 

0.54 
(0.2, 1.8) 

0.14 
(0.02, 0.9 

0.09 
(0.01, 0.8) 

0.64 
(0.2, 2.3) 

0.47 
(0.1, 1.8) 

0.04 
(0.0, 1.1) 

0.51 
(0.1, 2.4) 

0.6 
(0.1, 2.7) 

0.4 
(0.1, 2.6) 

0.57 
(0.2, 1.5) 

0.50 
(0.1, 2.1) 

S   

2.79 
(0.4, 17.2) 

3.41 
(0.6, 20.3) 

1.13 
(0.2, 6.3) 

0.80 
(0.1, 5.1) 

1.80 
(0.3, 10.2) 

1.30 
(0.2, 8.4) 

0.77 
(0.1, 4.6) 

2.18 
(0.3, 14.8) 

0.57 
(0.1, 6.06) 

0.35 
(0.02, 5.1) 

2.56 
(0.4, 18.5 

1.87 
(0.2, 14.1) 

0.16 
(0.0, 6.0) 

2.07 
(0.2, 17.52) 

2.42 
(0.3, 20.3) 

1.6 
(0.1, 18) 

2.27 
(0.4, 13.8) 

2.0 
(0.2, 16.3) 

4.0 
(0.6, 28) 

T  

0.56 
(0.1, 2.9) 

0.68 
(0.1, 4.1) 

0.23 
(0.04, 1.3) 

0.16 
(0.03, 0.9) 

0.35 
(0.1, 2.1) 

0.25 
(0.04, 1.5) 

0.15 
(0.02, 0.96) 

0.43 
(0.1, 2.7) 

0.11 
(0.00, 1.1) 

0.07 
(0.01, 0.9) 

0.51 
(0.1, 3.6) 

0.37 
(0.1, 2.5) 

0.03 
(0.0, 1.1) 

0.41 
(0.05, 3.4) 

0.48 
(0.1, 3.5) 

0.32 
(0.03, 3.3) 

0.45 
(0.1, 2.8) 

0.40 
(0.1, 2.9) 

0.80 
(0.1, 5.7) 

0.20  
(0.02, 2.3) 

U 

Note: Lower triangle includes the findings of the network meta-analysis (posterior median odds ratios ORs plus 95% credible intervals) conducted in the Bayesian statistical package WinBUGS; upper triangle 
includes the findings of the direct standard pairwise meta-analyses (OR plus confidence intervals) conducted using STATA 
Statistically significant findings have been shaded (significance assessment made on data rounded to decimal places) 
OR > 1.0 favours intervention compared with control. 
Treatments: A Inactive control; B Conventional care; C Disc surgery; D Epidural injections; E Chemonucleolysis; F Non-opioids; G Intra-operative interventions; H Traction; I Manipulation; J Acupuncture; K 
Exercise therapy; L Passive physical therapy; M Biological agents; N Bed rest; O Opioids; P Education/Advice; Q Percutaneous discectomy; R Neuropathic pain modulators; S intra-discal injections; T Spinal cord 
simulations; U Radiofrequency treatment. Abbreviations: N number of studies included in conventional pairwise meta-analysis.   
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Table 2.3:  Results (weighted mean difference, with 95% confidence intervals/credible intervals) of the network meta-analysis for pain intensity 

A   
N=7, -8.11 

(-19, 3) 
N=1, -5.40 
(-24, 13) 

N=4, -6.26 
(-15, 3) 

 
N= 1, 3.36 
(-15, 21) 

 
N=1, -25.00 

(-42, -8) 
 

N=1, -7.00 
(-14, -0.4) 

N=2, -9.91 
(-43, 23) 

    
N=1, -26.66 

(-38, -15) 
N=1,13.00 

(2, 24) 

-2.44 
(-18, 13) 

B 
N=2, -7.0 

(-12, -2) 
N=2, -5.32 

(-12, 1) 
      

N=1, -2.00 
(-12, 8) 

      
  

-9.54 
(-25, 6) 

-7.13 
(-21, 6) 

C  
N=3, 2.36 

(-8, 13) 
N=1, 1.60 

(-8, 11) 
N=8,-5.17 

(-12, 2) 
   

N=1, 9.00 
(-4, 22) 

      
  

-11.4 
(-19, -4) 

-8.96 
(-23, 6) 

-1.89 
(-17, 14) 

D  
N=2,18.01 

(6, 30) 
   

N=1, 4.00 
(-6, 14) 

 
N=1, 35.00 

(-25, 95) 
N=1, -9.3  
(-23, 4.9) 

    
  

-6.62 
(-25, 11) 

-4.17 
(-22, 14) 

3.02 
(-10, 16) 

4.85 
(-13, 23) 

E    
N=1, -0.63 

(-15, 14) 
       

N=1, 18.00 
(8, 28) 

  

-2.54 
(-12, 6) 

-0.10 
(-16, 16) 

7.02 
(-9, 23) 

8.86 
(-1, 19) 

4.04 
(-15, 22) 

F       
N=1, -40.50 

(-58, -23) 
 

N=1, 22.50 
(10, 35) 

  
  

-14.64 
(-33, 3) 

-12.21 
(-29, 4) 

-5.12 
(-14, 4) 

-3.27 
(-21, 15) 

-8.11 
(-24, 8) 

-12.09 
(-30, 6) 

G           
  

-1.81 
(-22, 18) 

0.68 
(-24, 26) 

7.79 
(-17, 33) 

9.61 
(-11, 31) 

4.79 
(-22, 32) 

0.69 
(-21, 23) 

12.89 
(-14, 40) 

H    
N=2, 3.19 

(-13, 19) 
 

N=1, 19.00 
(8, 30) 

   
  

-7.24 
(-39, 25) 

-4.77 
(-37, 27) 

2.4 
(-27, 32) 

4.19 
(-28, 36) 

-0.63 
(-27, 26) 

-4.7 
(-37, 27) 

7.48 
(-23, 38) 

-5.42 
(-43, 32) 

I         
  

-14.82 
(-34, 4) 

-12.35 
(-36, 11) 

-5.21 
(-29, 18) 

-3.42 
(-22, 15) 

-8.25 
(-34, 17) 

-12.28 
(-33, 8) 

-0.13 
(-26, 25) 

-13.02 
(-41, 14) 

-7.58 
(-44, 29) 

J        
  

-2.62 
(-25, 20) 

-0.19 
(-19, 19) 

6.95 
(-12, 26) 

8.79 
(-13, 31) 

3.95 
(-19, 27) 

-0.07 
(-23, 23) 

12.07 
(-9, 33) 

-0.75 
(-31, 29) 

4.58 
(-30, 39) 

12.19 
(-16, 41) 

K       
  

-0.46 
(-18, 18) 

1.98 
(-21, 26) 

9.14 
(-15, 34) 

10.96 
(-8, 31) 

6.15 
(-19, 32) 

2.10 
(-18, 23) 

14.26 
(-11, 40) 

1.4 
(-14, 18) 

6.81 
(-30, 44) 

14.45 
(-12, 41) 

2.16 
(-26, 31) 

L      
  

-19.51 
(-33, -6) 

-17.03 
(-37, 2) 

-9.96 
(-30, 10) 

-8.10 
(-22, 6) 

-12.95 
(-35, 9) 

-16.99 
(-32, -3) 

-4.85 
(-27, 17) 

-17.72 
(-42, 6) 

-12.3 
(-46, 22) 

-4.71 
(-27, 18) 

-16.93 
(-43, 8) 

-19.09 
(-42, 3) 

M  
 
 

  
  

17.13 
(-14, 49) 

19.62 
(-15, 55) 

26.7 
(-8, 62) 

28.56 
(-3, 61) 

23.65 
(-12, 60) 

19.65 
(-13, 53) 

31.84 
(-4, 68) 

19.02 
(-6, 43) 

24.38 
(-20, 69) 

32.01 
(-4, 69) 

19.77 
(-18, 58) 

17.62 
(-12, 47) 

36.68 
(3, 71) 

N  
N=2, -1.09 

(-7, 5) 
 

  

4.92 
(-16, 25) 

7.41 
(-18, 32) 

14.51 
(-10, 40) 

16.32 
(-5, 38) 

11.47 
(-15, 38) 

7.44 
(-13, 27) 

19.61 
(-7, 46) 

6.74 
(-22, 35) 

12.15 
(-25, 49) 

19.75 
(-8, 47) 

7.58 
(-22, 37) 

5.42 
(-23, 32) 

24.45 
(0.78, 48) 

-12.19 
(-50, 25) 

O   
N=2, -8.23 

(-18, 2) 
 

16.22 
(-19, 52) 

18.71 
(-20, 57) 

25.83 
(-13, 65) 

27.61 
(-8, 64) 

22.8 
(-17, 63) 

18.77 
(-17, 56) 

30.99 
(-9, 71) 

18.11 
(-12, 48) 

23.39 
(-24, 71) 

31.07 
(-9, 71) 

18.9 
(-23, 61) 

16.69 
(-17, 50) 

35.76 
(-2, 74) 

-0.90 
(-18, 16) 

11.27 
(-29, 53) 

P  
  

11.6 
(-19, 42) 

13.97 
(-16, 44) 

21.14 
(-7, 49) 

22.94 
(-8, 53) 

18.14 
(-6, 42) 

14.14 
(-17, 45) 

26.2 
(-3, 55) 

13.38 
(-23, 49) 

18.8 
(-17, 55) 

26.36 
(-9, 62) 

14.17 
(-19, 47) 

11.96 
(-24, 47) 

31.04 
(-2, 64) 

-5.46 
(-49, 37) 

6.55 
(-29 43) 

-4.62 
(-52, 41) 

Q 
  

-11.6 
(-32, 8) 

-9.13 
(-34, 16) 

-2.07 
(-27, 23) 

-0.21 
(-21, 21) 

-5.07 
(-31, 21) 

-9.01 
(-30, 12) 

3.06 
(-23, 30) 

-9.82 
(-38, 18) 

-4.37 
(-42, 33) 

3.21 
(-24, 31) 

-8.99 
(-39, 21) 

-11.13 
(-39, 16) 

7.93 
(-16, 32) 

-28.78 
(-66, 8) 

-16.52 
(-33, 0.26) 

-27.81 
(-69, 12) 

-23.11 
(-59 13) 

R  

12.98 
(-12, 38) 

15.36 
(-14, 45) 

22.53 
(-7, 52) 

24.38 
(-2, 51) 

19.52 
(-11, 50) 

15.52 
(-11, 42) 

27.64 
(-3, 58) 

14.84 
(-17, 46) 

20.19 
(-20, 61) 

27.76 
(-3, 59) 

15.55 
(-18, 49) 

13.42 
(-18, 44) 

32.48 
(5, 61) 

-4.16 
(-44, 35) 

8.01 
(-24, 40) 

-3.28 
(-46, 40) 

1.4 
(-38, 41) 

24.55 
(-7, 57) 

U 

Note: Lower triangle includes the findings of the network meta-analysis (posterior median weighted mean differences WMDs plus 95% credible intervals) conducted in the Bayesian statistical package 
WinBUGS; upper triangle includes the findings of the direct standard pairwise meta-analyses (WMD plus confidence intervals) conducted using STATA 
Statistically significant findings have been shaded (significance assessment made on data rounded to decimal places) 
WMD > 0 (representing reduction in pain) favours intervention compared with control 
Treatments: A Inactive control; B Conventional care; C Disc surgery; D Epidural injections; E Chemonucleolysis; F Non-opioids; G Intra-operative interventions; H Traction; I Manipulation; J Acupuncture; K 
Exercise therapy; L Passive physical therapy; M Biological agents; N Bed rest; O Opioids; P Education/Advice; Q Percutaneous discectomy; R Neuropathic pain modulators; U Radiofrequency treatment;  
Abbreviations: N number of studies included in conventional pairwise meta-analysis.  
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2.5.4  Between study heterogeneity, model fit and comparison with standard pairwise meta-

analyses 

Based on the Gelman-Rubin statistic, convergence occurred at around 6 to 8000 iterations for both 

outcome measures (global effect, pain intensity). The auto-correlation and history plots also showed 

good convergence. The goodness of fit of the models to the data, measured by the residual deviance, 

was found to be good for both outcomes (Appendix Volume II: Appendix A7). 

 

The results of the evaluation of between-study heterogeneity showed a moderate to high level7 of 

statistical heterogeneity for many of the pairwise comparisons, as well as across all studies as a 

whole. The heterogeneity was greater for the analysis of pain intensity than global effect, with an I2 

statistic of less than 75% (i.e. moderate or less) for all but one pairwise comparison (epidural 

injections vs conventional care). The observed values for I2 are presented in Figure 2.3. 

Heterogeneity did not improve when non-randomised studies were removed. 

 

The comparison of the results from the network meta-analyses with that of the conventional pairwise 

meta-analyses showed broad agreement with slightly more discrepancies for the analyses of pain 

intensity. These discrepancies were greatest for comparisons that had very little direct evidence, such 

as biological agents. 

 

 

2.6 DISCUSSION 

This was the first systematic review that included all treatments for sciatica in the same analysis using 

a network meta-analysis method that includes indirect comparisons. The advantages of such 

analyses are that they can simultaneously compare more than two treatments in the same coherent 

analysis; provide relative effect estimates for all treatment comparisons, even those that have not 

been directly compared in head to head trials; enable the estimation of the probability that each 

treatment is best; and reduce the uncertainty in the treatment effect estimates. 

 

2.6.1  Summary of results 

In terms of overall response or global effect, there was a statistically significant improvement following 

disc surgery, epidural injections, non-opioid medication, intra-operative interventions, manipulation, 

and acupuncture when compared with inactive control or conventional care. Epidural injections, disc 

surgery, and intra-operative interventions were also statistically significantly better than percutaneous 

discectomy, chemonucleolysis, intra-discal injections, and radiofrequency treatment; with epidural 

injections, and intra-operative interventions also statistically significantly better than both traction, and 

exercise therapy. While biological agents and acupuncture had the highest probability of being best 

and had the largest effect estimates when compared with inactive control, these findings were 

associated with very wide credible intervals, reflecting the lack of information on these effect 

estimates.  

 



60 
 

In terms of pain intensity, there was a statistically significant reduction in pain following epidural 

injections and biological agents compared with inactive control, but there was no significant difference 

between disc surgery and inactive control. Biological agents had the highest probability of being best, 

and were also statistically significantly better than non-opioid medication, opioid medication, bed rest, 

and radio frequency treatment. However, when the analysis was restricted to RCTs, biological agents 

no longer had the highest probability of being best and were not found to be statistically better than 

any other treatments. When considering the magnitude of effect, bed rest, education/advice alone, 

percutaneous discectomy, and radiofrequency treatment were considerably inferior when compared 

with most treatment strategies, but these findings were not statistically significant and were 

associated with wide credible intervals.  

 

Overall, the results of the sensitivity analyses excluding non-randomised studies showed broad 

agreement with the main analyses, with the findings generally becoming non-statistically significant 

due to broader credible intervals for the analyses restricted to RCTs and Q-RCTs. The most notable 

discrepancies occurred with treatment strategies that were associated with a small number of 

included studies, such as those reporting treatment with biological agents. 

 

2.6.2  Findings of previous reviews  

Previous reviews of non-surgical treatments have either found no evidence of effectiveness,124 125 

conflicting evidence,126 127 or have reached different conclusions concerning the effectiveness of 

epidural steroid injections.124 126 128 129 154 155 A Cochrane systematic review of surgical interventions did 

not combine the results of four RCTs comparing discectomy with non-surgical treatment due to 

heterogeneity, and concluded that the results showed a temporary benefit of disc surgery at one year 

follow-up.130 In that review the effectiveness of discectomy was justified by using informal indirect 

comparison of chemonucleolysis with placebo, and chemonucleolysis with disc surgery; 

chemonucleolysis was more effective than placebo and discectomy more effective than 

chemonucleolysis, therefore disc surgery was superior to placebo. Using the network meta-analyses, 

it was possible to make a more robust statement on disc surgery compared with placebo: disc surgery 

was statistically significantly better than placebo in terms of global effect but not for pain intensity. 

 

2.6.3  Strengths and weaknesses 

One of the main strengths of the network meta-analyses is the wide range of treatment strategies 

used to treat sciatica that were not only considered in the same review, but compared simultaneously 

in the same analysis. Another strength is that they were based on a systematic and comprehensive 

search of the literature up (until December 2009) that covered any therapeutic intervention for 

sciatica. However, it is acknowledged that these searches are not current, and as such, more recent 

relevant data are likely to have been excluded. 

 

The RCT is widely regarded as the design of choice when assessing the effectiveness of healthcare 

interventions156 and we acknowledge the controversy over the inclusion of non-randomised evidence. 
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Non-randomised studies were included in the search because some treatment approaches may not 

have been evaluated by RCTs, and also to increase the precision of the findings for interventions 

evaluated by a limited number of studies. Observational studies can have better external validity than 

RCTs38 39 and provide more generalisable findings. However, observational studies are likely to be 

affected by selection bias and confounding, and may therefore yield estimates of association that 

deviate from the true underlying relationship beyond the play of chance.157 As it happens, most of the 

RCTs did not report the method of generating the randomisation sequence or allocation concealment, 

which means that selection bias or confounding might still be present. Excluding the non-randomised 

studies in a sensitivity analysis did not affect the structure of the network, as the overall findings of 

both series of network meta-analyses were similar, although less precise for the analyses of RCTs.  

 

Network meta-analysis methods enabled us to go beyond the pairwise comparisons reported in 

previous systematic reviews. They allowed us to simultaneously compare all the available treatment 

strategies for sciatica and provided estimates of relative treatment effects for all conceivable 

comparisons, even those where there was no direct evidence available. However, the small number 

of relevant studies for some comparisons, statistical heterogeneity (within pairwise comparisons), and 

potential inconsistency (between different pairwise comparisons) within the networks means that the 

encouraging results for interventions, such as biological agents should be interpreted with caution.  

 

In order to answer the question of which is the optimum treatment for sciatica and provide 

generalisable findings, we were interested in the average treatment effect of each treatment approach 

(to represent the diversity used in clinical practice). We therefore pooled clinically heterogeneous 

studies. A random-effects model was used to pool the data, which is based on the assumption that 

different studies assessed different, yet related, treatment effects. However, included studies also 

varied in study design and risk of bias (methodological diversity). There was considerable (I2 ≥75%)152 

statistically significant between study heterogeneity present for a number of comparisons within the 

pairwise meta-analyses, especially in the analyses of pain intensity, and it was not possible to 

ascertain how much was due to clinical or methodological diversity. This needs to be taken into 

consideration in future work. 

 

The network meta-analyses were based on a single time-point, outcome data closest to six months, 

which may be considered as a limitation of the analyses. The HTA monograph7 included an 

assessment of each treatment strategy at short (≤ 6 weeks), medium (> 6weeks to ≤ 6 months) and 

long (>6 months) term follow-up, but this evaluation was based on multiple pairwise analyses, with 

each analysis needing to be interpreted independently. Further research is needed to incorporate 

multiple time-points within the network meta-analyses in order to incorporate data at different follow 

up periods.  

 

For the pain intensity outcome, where the standard deviations were missing (and could not be 

estimated from the published data) these were imputed using the weighted mean standard 
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deviation146 158 for each treatment strategy (11 studies). This is based on the assumption that the 

variance is similar between studies and the data are not skewed.1 The median was also used to 

represent the mean for two studies. We considered that it was better to use these methods in order to 

incorporate more of the evidence base, as ignoring the findings of these studies may induce bias in 

the summary effect estimate.158 Furukawa, et al.146 have previously shown that it is safe to borrow 

standard deviations from other studies.   

 

There were insufficient studies to explore the presence of publication or reporting bias for most 

treatment comparisons. However, a funnel plot of studies comparing surgery and chemonucleolysis 

showed no evidence of publication bias (see Appendix Volume II: Appendix A2).7 The benefit (or 

effectiveness) of different treatment strategies for sciatica should be considered along with potential 

harms. Although the present paper does not report adverse effects, they are reported elsewhere. 7 

 

The network meta-analyses relied on the key assumption that the relative treatment effect of one 

treatment versus another is the same across the entire set of studies.56 132 The use of random-effects 

models meant that it was assumed that the common distribution of effects was the same across all 

sets of studies. A further assumption made in the analyses was that the relative efficacy of different 

treatments is the same at different stages in the care pathway. Pragmatically, sciatica is often treated 

with a stepped-care approach starting with conservative treatments, such as non-opioid medication, 

progressing as necessary to more invasive treatments such as epidural injections or surgery. This 

means that the population of patients treated with conservative treatments was likely to differ from 

those treated with invasive treatments, resulting in confounding and inconsistency within the network. 

Although descriptive characteristics were generally poorly reported by included studies, there was a 

trend for studies evaluating invasive treatments to report a history of previous treatments and include 

patients with a diagnosis confirmed by imaging, and for studies of conservative treatments to limit 

inclusion to patients with acute sciatica. Due to the breadth of the review and the novel and 

speculative use of network meta-analysis methods, we were unable to incorporate stepped-care 

approaches in the network meta-analyses. The optimum sequence of treatment modalities and what 

sequence is best for which patients is therefore not yet known and awaits further analysis. 

 

 

2.7 CONCLUSIONS 

The use of network meta-analyses provided new information on the relative effectiveness of 

treatments for sciatica. This can help clinicians and patients in shared decision-making, as well as 

providing data for healthcare policy development. The findings provide support for the effectiveness of 

some common therapies for sciatica such as non-opioid medication, epidural injections and disc 

surgery. They also suggest that less frequently used treatments such as manipulation and 

acupuncture, and experimental treatments such as cytokine modulating biological agents, may be 

considered. The findings of this review do not support the effectiveness of opioid medication, either 

for pain intensity or global effect. Furthermore, there is no support for the effectiveness of numerous 



63 
 

other interventions such as bed rest, exercise therapy, percutaneous discectomy or traction. The lack 

of support for education/advice should not be taken to imply that patients should not be given 

information or advice; rather it is not an effective treatment if delivered alone. 

 

Further research is needed to confirm or refute these findings where we found limited evidence, and 

to explore the impact of heterogeneity and the range of clinical questions most suited for the use of 

network meta-analyses. There is also scope to develop more sophisticated methods, such as building 

on the confidence profile method,39 bias-adjusted results,159 or Bayesian statistics,38 to incorporate 

information relating to differences in study design or internal and external validity in the network meta-

analyses, as well as data on multiple follow-up periods.  

 

The issue of how best to estimate the effectiveness of treatment approaches according to their order 

within a sequential treatment pathway remains an important challenge. It is also likely to need new 

network meta-analytic methods to achieve this. 

 

 

2.8 IMPLICATIONS OF THE NETWORK META-ANALYSIS OF SCIATICA TREATMENTS FOR 

METHODS DEVELOPMENT IN EVALUATING TREATMENT SEQUENCES 

2.8.1  Implications of the findings in terms of assessing heterogeneity to inform the need to 

consider treatment sequencing  

The review demonstrated that ignoring treatment sequencing is likely to lead to important clinical 

heterogeneity, as illustrated in Chapter 1, Section 1.5.2. Meta-analysis is based on the fundamental 

assumption that treatment effects from multiple studies are similar enough to pool the data. The 

assessment of heterogeneity is therefore, an important part of meta-analysis. Heterogeneity is caused 

by patient and study characteristics acting as treatment effect modifiers and, although it does not 

cause bias in a pairwise-meta-analysis, it can mask important differences and render the pooled 

estimate meaningless.160 For example, two clinical trials comparing treatment A with B (AB), may be 

pooled in a conventional pair-wise meta-analysis, where one trial includes participants with late stage 

disease and the other includes patients with early stage disease. If there is a treatment interaction 

with disease stage, then the pooled relative treatment effect will exhibit heterogeneity and be difficult 

to interpret. If two trials included a different comparator, for example AB and BC, and included in an 

indirect treatment comparison, then the derived AC estimate is also likely to be uninterpretable due to 

the heterogeneity, referred to here as inconsistency. Heterogeneity across different pair-wise 

contrasts within a network meta-analysis can cause confounding bias.160 161 This occurs when a 

covariate has an impact on the treatment effect (i.e. it’s an effect modifier) and is also associated with 

the type of treatment comparison.160 For example treatment B may be a common treatment for early 

stage disease whilst treatment C may be generally reserved for treating late stage disease, and the 

clinical trials might be designed to reflect this. The validity of network meta-analysis is based on the 

underlying assumption that there is no imbalance in the distribution of effect modifiers across different 

types of direct treatment comparisons.160  
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The presence and extent of the heterogeneity in both pair-wise and network meta-analysis of sciatica 

treatments provides an indication of the potential for previous treatments to be an important effect 

modifier. It is also possible that the relative efficacy of different treatments may vary at different stages 

of the care pathway. The validity of combining studies of single treatments used at different points in 

the treatment pathway is called into question. 

 

Potential sources of heterogeneity within network meta-analysis can be explored using meta-

regression or subgroup analysis. I intended to explore the impact of previous treatments using meta-

regression analysis. However, the paucity of the data precluded the use of any meaningful subgroup 

analysis or meta-regression.  

 

The limitation of the evidence base is illustrated in more detail in the Appendix Volume II (Appendix 

A2), including examples of pairwise meta-analyses and a funnel plot included in the health technology 

assessment of sciatica treatments. Sciatica resolves spontaneously in many cases, but when it 

becomes a more chronic condition the likelihood of improvement diminishes with both time and the 

failure of each successive treatment. The effectiveness of individual treatments may, therefore, 

depend as much on how early they are utilised after the onset of sciatica, as on the number of prior 

unsuccessful treatments used. It is also recognised that up to 30% of patients have sciatica that does 

not respond to treatment.119 Any future evaluation of treatment sequencing would need to consider 

not only the number and type of previous treatments, but also the timing of treatments and disease 

duration. Future evaluations would also need to take into account the fact that successive treatments 

are unlikely to have a 100% success rate due to enrichment with refractory patients. I revisit this in 

Chapter 6-7 whilst evaluating the methods used to account for these issues within the economic 

evaluation of sciatica treatments (Fitzsimmons, 2014).115  

 

These issues are likely to be generalisable to other chronic conditions. The assumption of transitivity, 

i.e. the patient and study characteristics that act as effect modifiers are similarly distributed within and 

across pair-wise comparisons,160 162 may also be implausible where some treatments in clinical 

practice are available for certain patient populations only. For example, a new treatment may initially 

only be licenced for those who fail to respond or are intolerant to the current conventional treatment.   

 

2.8.2  Implications relating to the meta-analytical methods used 

Network meta-analysis can be performed either under a Bayesian or frequentist framework, and 

several models have been proposed under both.163 The method used for evaluating sciatica 

treatments, which included a random-effects Bayesian hierarchical linear model, provides some 

useful information on the advantages and disadvantages of this particular approach. Potential insights 

for future methodological developments for evaluating treatment sequences were also illuminated.  

 

Network meta-analysis, multivariate meta-analysis and meta-regression represent active areas of 

multi-parameter meta-analytical research.164 These methods could provide the basis for a novel 
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method for developing summary effect estimates that are conditional on positioning in a treatment 

sequence. What may be important here is how treatment sequences are conceived or evaluated. This 

could include: 

i. Investigating the clinical effectiveness of whole sequences  

ii. Estimating the effect of individual treatments conditional on positioning in the pathway 

iii. The evaluation of previous treatment as an important effect modifier 

The extension of current meta-analytic approaches may not be able to account for more than one 

specific immediate prior treatment, unless the sequence of previous treatments can be represented 

as a single estimate, which could lead to the need to make strong simplifying assumptions. 

 

The analyses of sciatica treatments were performed using the free software, WinBUGS, for which 

various model programme codes and worked examples are available.165 These are based on a 

generic model structure developed for both random and fixed-effects syntheses, using linear 

regression, which can be easily adapted for various data types by changing only the likelihood and 

link function. Other Bayesian software programmes are also available, and frequentist models 

developed using generalised lineal mixed models can be implemented using commercial 

programmes.  

 

The advantage of the Bayesian approach is that it provides a flexible statistical framework to account 

for the complex data structure of multi-arm trials, and is also straightforward to extend to shared 

parameter models where studies report outcomes in different formats but from a common underlying 

model.165 Both were useful in the sciatica review, where the assessment of global effect included a 

multi-arm trial, and the assessment of pain required a model for combining both study- (contrast) and 

arm-level data (Appendix Volume II: Appendix A3: winBUGS codes). The disadvantage of the 

Bayesian approach is that statistical knowledge is needed in order to: choose the appropriate codes, 

adjust to account for the type of data available; put prior distributions on all the parameters of the 

model; decide which nodes to monitor; and know how to interpret the output. Appropriate disparate 

initial values must be chosen to start the Markov chain Monte Carlo simulation. At the end, 

convergence, model fit, and consistency must be checked (Appendix Volume II: Appendix A7). 

However, ongoing work is being done on developing computer software that will automate the 

process of performing network meta-analysis in both the Bayesian and frequentist framework, so that 

users can perform the analysis with minimal programming and computational effort.163 

 

The random-effects meta-analysis model was used as it allows for the heterogeneity, or unexplained 

variation, in the effect estimates among studies. The assumptions underpinning the fixed-effects 

model would not be plausible for investigating the diverse treatments used for sciatica. A fixed-effects 

meta-analysis model estimates a single effect that is assumed to be common to every study, whilst a 

random-effects model estimates the mean distribution of effects166 with a standard deviation that 

represents the unexplained between-study heterogeneity (tau). However, the random-effects model 

has the following limitations: 
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i. The weights are more evenly distributed in a random-effects model, and as the heterogeneity 

increases, less weight is given to larger studies, which potentially provide more precise 

estimates of the true effect (i.e. small and larger studies are given almost equal weight).  

ii. A random-effects model requires an estimate of the between-study variance, which may be 

imprecise or problematic when the data is sparse. Where the number of studies is low the 

estimated between-study variance, when using the frequentist framework, has poor precision 

and is likely to be biased,166 whilst in a Bayesian analysis with limited data, using a non-

informative prior distribution for the between-study standard deviation will give implausible 

posterior distributions.167 We used wide uniform prior distribution for tau. An alternative 

approach would have been to use an informative prior distribution based on data from outside 

the current set of studies, or expert opinion. 

iii. The findings of the analysis can be difficult to interpret and generalise when there is extensive 

heterogeneity, especially as the resultant credible or confidence intervals do not generally 

account for the full extent of the heterogeneity in the variance estimates, above the specified 

nominal level. 

 

A number of methods have been developed to overcome the limitations of random-effects models, 

including IVhet method (inverse variance heterogeneity model),168 the approach developed by Henmi 

& Copas,169 and the generalised weighting regression.170 These need to be taken into account when 

evaluating treatment sequencing where excessive heterogeneity and sparse data is likely to be an 

issue. However, the current need to tackle these issues may mean that there is little enthusiasm for 

further developing a novel method to account for positioning in the treatment sequence. 

 

It is also important to consider that the confidence interval from a random-effects model does not 

reflect the true extent of the variability between studies, which is provided by a predictive interval. The 

confidence interval from a random-effects model provides an estimate of the precision of the mean 

estimate (i.e. it represents only the error in estimating the mean, which is dependent on the number of 

studies), whilst the prediction interval describes the distribution of the true effect size (and is based on 

both the error and true variance).171 The routine reporting of prediction intervals is now strongly 

recommended to help interpret the findings for decision-making, as they reflect the variation in 

treatment effects over different settings and include what effect is to be expected in future patients.172 

However, the resultant width of prediction intervals will increase with heterogeneity and the pooling of 

fewer studies,173 which are likely to make the overall findings difficult to interpret. When substantial 

heterogeneity is present, further investigation of clinical heterogeneity using meta-regression and 

subgroup analyses are likely to be required.  

 

The network meta-analysis was based on the hierarchical modelling approach, which is an extension 

of meta-regression methods and could potentially be extended to account for treatment sequencing. 

In hierarchical methods, the information in the meta-analysis stems from different levels, for example 

studies at the higher level, and participants at the lower level. It is important to note that the 
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hierarchical modelling approach preserves the clustering of patients within each study, and that a 

modelling framework which breaks the original randomisation or treatment comparison within each 

study is inappropriate.164 I elaborate on this in the Appendix Volume I (Section A), and return to this 

point in Chapter 5 (Section 5.9.9.2). In terms of future development, the concept of hierarchical 

modelling could potentially be extended to account for positioning in the treatment sequence, or 

previous treatments used as another level. These methods have already been extended to 

incorporate both aggregate and individual participant level data within the same meta-analysis, and to 

include data from different study designs.164 174 175 

 

The conventional pair-wise meta-analysis is univariate, in that it only considers the one-dimensional 

treatment effect parameter. Multivariate meta-analysis, on the other hand, enables the inclusion of 

multiple outcome measures, for example progression-free survival and overall survival in studies of 

cancer treatments, whilst at the same time allowing for their correlation.176 These methods could also 

potentially be used to incorporate multiple treatment lines. The network meta-analysis of sciatica 

treatments could have been extended to include multivariate analysis, allowing the inclusion of a 

broader evidence base; for example, including data from multiple follow-up periods, and not just the 

data reported for the duration closest to 6 months, which may have improved the precision of our 

findings. However, the potential challenge of any future developments of multivariate meta-analysis is 

obtaining and estimating within- and between-study correlations. Within-study correlation refers to the 

association between two parameter estimates in the same study, whilst between-study correlation 

indicates the strength of association between true parameter values across studies and is caused by 

differences across studies in patient and study characteristics modifying the true values in a related 

way.164 

 

 

2.9 THE NEXT STEP 

Network meta-analysis is becoming an important tool for informing clinical and policy decisions. The 

rapid growth and popularity of the method is fuelled by the increased availability of multiple treatments 

for many clinical conditions.177-179 However, where multiple technologies are available, treatment 

sequencing is also likely to be an important consideration with patients moving on to the next 

available option when they do not experience resolution on their current therapy. Evidence is 

therefore needed to inform the optimal ordering of these interventions in practice. 

 

The next step is to identify what quantitative evidence synthesis methods other researchers have 

used for assessing the effectiveness of treatment sequences, and what challenges they faced in 

implementing them. The review of sciatica treatments highlighted that any quantitative evidence 

synthesis methods for evaluating treatment sequencing are likely to need to take into account: 

i. the number and type of previous treatments, 

ii. the timing of treatments and disease duration, and  

iii. the proportion of patients with refractory disease. 
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The potential meta-analytic methods used are also likely to depend on how treatment sequences are 

conceived or evaluated, for example the comparison of whole sequences to develop a summary 

effect estimate for a treatment conditional on its positioning in a sequence, or to account for previous 

treatment as an effect modifier (or the cause of heterogeneity). 
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CHAPTER 3: A REVIEW OF QUANTITATIVE SYNTHESIS METHODS FOR ASSESSING THE 

EFFECTS OF TREATMENT SEQUENCES 

 

 

3.1 CHAPTER OVERVIEW 

A review of the existing methodology is warranted to inform future practice and research in evidence 

synthesis in the context of treatment sequencing. This chapter presents the methods used in that 

review including their context, justification and a detailed description. The results of this review are 

presented in later chapters.  

 

3.2 INTRODUCTION 

Methods for evidence synthesis that produce the least biased estimates of treatment sequencing 

effects are required to inform clinical and policy decision making. A comprehensive review of 

quantitative evidence synthesis methods used to date, as reported in the literature, was conducted. 

These were mainly based on studies evaluating single treatments and incorporated diverse study 

designs.  

 

The best study design for providing robust estimates of clinical effectiveness of an intervention is the 

randomised controlled trial (RCT). The reason for this is explored in more detail in the Appendix, 

Volume I (Section A). However, as discussed in Chapters 1, RCTs tend to focus on single treatments 

and non-randomised studies may be used as an alternative source of data for sequencing effects. A 

summary of the advantages and limitations of non-randomised studies, plus a brief overview of the 

methods used for assessing the risk of bias within individual studies included in the evidence 

synthesis, and the credibility of the overall body of evidence are provided in Appendix Volume I 

(Section A). Randomised controlled trials of treatment sequences may be available for some clinical 

scenarios. Clinical trial designs for evaluating treatment sequences are discussed in the Appendix 

Volume I (Section B), which includes a summary of an innovative RCT design for evaluating dynamic 

treatment sequences. 

 

 

3.3 AIM AND OBJECTIVES 

The overall aim of the review of methods was to identify and appraise quantitative evidence synthesis 

methods used to estimate the treatment effect of whole sequences, or single interventions conditional 

on position in a treatment sequence.  

 

Specific objectives were to identify, summarise, and appraise: 

i. Studies describing theoretical or proposed novel quantitative evidence synthesis methods to 

assess the effects of a treatment sequence as a whole, or single treatments used within the 

context of a treatment sequence 
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ii. Systematic reviews or economic evaluations that implement such methods, or illustrate their 

application 

 

The main aim was not to identify every study that used each approach, but to identify the breadth of 

approaches developed for evaluating treatment sequencing.  

 

The review of methods was conducted with the intention of developing a framework for undertaking 

quantitative evidence synthesis of the effectiveness of sequential treatment options within the context 

of a health technology assessment or similar process, as outlined in Section 1.6. Health technology 

assessment and the clinical guideline process generally incorporates a clinical and economic 

evaluation. The review of methods considered both clinical and economic evaluations, however the 

focus of the thesis and the proposed framework is on clinical effectiveness, and does not consider the 

impact of treatment sequencing on costs. 

 

Meta-analysis and decision analytic modelling were reviewed as two distinct categories of quantitative 

evidence synthesis methods. The findings of the review of meta-analytic approaches is presented in 

Chapter 5 and decision analytic modelling approaches in Chapters 6 and 7. Economic evaluations 

that implemented decision analytic models of treatment sequences were initially assessed to identify 

meta-analytic methods used to develop the model parameter estimates of clinical effectiveness. 

Preliminary findings showed that in the presence of limited or absent data regarding treatment 

sequencing effects, many modelling studies made simplifying assumptions about the sequencing 

effects. The analytic judgements or assumptions made by included modelling studies regarding 

sequencing effects were subsequently reviewed as a separate methodological approach in Chapter 6. 

The findings of the review of modelling approaches used to evaluate treatment sequences are 

presented in Chapter 7. An introduction to decision analytic modelling and decision uncertainty is 

provided in Chapter 6, and an overview of modelling approaches used in health economics in Chapter 

7. 

 

 

3.4 METHODS 

A systematic pragmatic review of the literature relevant to quantitative synthesis methods used for 

evaluating treatment sequencing was conducted. 

 

3.4.1 Literature search 

In Cochrane or conventional systematic reviews of the clinical effectiveness of pharmacological 

interventions, the majority of relevant intervention studies can be identified by searching MEDLINE, 

Embase and Cochrane Controlled Trials Registry (CCTR).180-182 

 

A conventional systematic search was considered insufficient for the current review, given the scarcity 

of appropriate indexing terms for methodological research57 156 183 and the need for prior knowledge of 
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the terms used by the current methodological literature. Structured electronic database searches have 

been shown to miss important evidence for systematic reviews of more complex and heterogeneous 

evidence.2 184 Informal approaches and ‘snowball’ techniques are more likely to produce a greater 

yield of relevant studies.2 Furthermore, whilst conventional systematic review searches aim to be as 

extensive, or sensitive, as possible in order to identify all the relevant studies and reduce the risk of 

bias, they are usually bound by a narrowly defined research question in order to make the review 

manageable. However, the more narrow and tightly focused a research question is, the less likely it is 

to allow an inclusive and iterative approach to the identification and incorporation to evidence.2 

Reviews that address a broader question, covering multiple and disparate sources are not affected by 

biases in the same way as effectiveness reviews.2 183 184 The aim of such reviews are to identify the 

breadth of information or evidence that is relevant to the review, and as such the extent of the 

searches are concerned more with saturation than sensitivity. Searches are deemed to be complete 

when further efforts to identify information would not add to the analysis.2 A similar approach was 

adopted for the current review, with a more pragmatic and iterative process being used, based on 

‘snowballing’ and the use of ‘proximal cue’ or ‘information scent searching’ as outlined by Kaltenthaler 

et al.:183 

“Following trails of potentially relevant sources can provide an alternative approach to searches 

that cast the net wide using broad keyword strategies. One form of this technique, sometimes 

referred to as ‘snowballing’, is used in systematic review searching, whereby trails of cited 

references are followed prospectively and retrospectively from a single or a series of index 

sources. However, it is also possible to use any information from the source documents as the 

starting point of an information trail. As such, a starting point might take the form of an idea or 

concept, an author or a set of keywords. The starting point or points act as ‘proximal cues’ 

which can be followed to further, similar, potentially relevant information. In the field of 

information seeking behaviour this is referred to as following ‘information scents.”  

 

3.4.2 Sources searched 

A number of different approaches were used to identify relevant methodological studies. Initial ‘hand’ 

searches included the following sources: internet search engines; websites of specific organisations 

including NICE; electronic journals; agendas of on-line proceedings for conferences or meetings; 

previously known references of relevant or interesting studies; known author searches; and the use of 

electronic tracking to forward-track citations. Finally, reference database searches were conducted.  

 

The search process started with key papers identified during an initial scoping search for the project, 

as well as Internet searches and investigators’ or supervisors’ personal collections. The key words, 

references and author details from these papers were then used to identify further studies using 

information scent searching techniques.  

 

Following these initial searches, a search strategy was developed and used to search the following 

electronic databases: 
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 MEDLINE  

 Embase  

 Cochrane Library  

o Cochrane Database of Systematic Reviews  

o Cochrane Methodology Register 

o Database of Abstracts of Reviews of Effects (DARE) 

o Health Technology Assessment (HTA) Database 

o National Health Service Economic Evaluation Database (NHS EED) 

 

The search strategy was designed to be specific rather than sensitive, with published filters used for 

meta-analysis, economic evaluations, and evidence based decision making process that utilise 

quantitative evidence synthesis.  

 

The following search strategy was used for MEDLINE and adapted for the remaining databases 

1. Meta-analysis as topic/  

2. Meta-analysis/ 

3. meta-analysis.pt 

4. (meta-analys* or metaanalys*).sh 

5. (meta-analys* or metaanalys*).ti,ab 

6. (meta-regression).ti,ab. 

7. systematic review.ti,ab. 

8. Cochrane.ti,ab. 

 

9. health care costs/ 

10. cost-benefit analysis/ 

11. Cost benefit analys*.ti,ab 

12. ((cost effectiveness or cost utility or cost consequence*) adj2 analys*).ti,ab. 

13. Economic evaluation.ti,ab. 

14. sensitivity analys*.ti,ab 

 

15. Health technology assessment.ti,ab. 

16. Guideline.pt 

17. Practice guideline.pt 

18. Clinical guideline*.ti,ab. 

19. NICE guid*.ti,ab. 

20. Comparative effectiveness research.ti,ab. 

 

21. OR/ 1-20 
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22. (Sequen* adj2 (treatment* or therap* or drug* or medication* or regimen* or intervention* or 

biologic*)).ti,ab 

21 and 22 

 

The searches were conducted without language restriction, however, articles not published in the 

English language were only considered on a case by case basis, due to the time and financial 

constraints of translation. This meant that it was possible to quantify potentially relevant foreign 

language studies, and then include any that appeared to be highly relevant. The electronic database 

searches were dated from inception to August 2013. 

 

The use of existing literature reviews to identify further relevant studies 

A number of systematic reviews of economic evaluations investigating treatment sequences were 

identified during the searches, one of which evaluated the use of biological agents for psoriasis,185 

and three investigated biological agents in rheumatology.28 186 187 Five other reviews of economic 

evaluations investigating methods or modelling techniques used to investigate biological agents for 

rheumatoid arthritis were also identified.188-193 These reviews were used to identify any further relevant 

studies for the current review. 

 

3.4.3 Assessing study relevance 

Tightly defined inclusion criteria were not used to assess the relevance of identified studies, as there 

was no “right” or “wrong” evidence as such, just an interpretation of what was relevant to the scope of 

the methodological problem.183 

 

The review included studies that either applied or developed quantitative evidence synthesis 

methodology to evaluate the clinical effectiveness of treatment sequencing as part of secondary 

research. Primary studies evaluating treatment sequences were excluded.  

 

The review included any type of meta-analytic technique incorporating, but not limited to, pair-wise 

meta-analysis, meta-regression, and network meta-analysis. Studies that used qualitative or narrative 

evidence synthesis methodology were excluded. Studies, or reviews, that limited inclusion to RCTs of 

treatment sequences were thought to be unlikely to provide any ‘new’ method of synthesising the 

evidence and were therefore not reviewed in great depth. This is despite the synthesis of treatment 

sequencing RCTs being considered the ideal situation, as discussed in the Appendix, Volume I 

(Section A). It was also considered that there would be no or insufficient relevant sequencing RCTs 

available for most clinical scenarios.  

 

Decision analytic modelling techniques developed to evaluate treatment sequencing, whether 

conducted as part of an economic evaluation or not, were also considered relevant and included in 

the methodology review. Modelling studies aiming to evaluate the effectiveness of single treatments, 

but incorporated the impact of further downstream treatments were only included if they specifically 
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modelled sequencing effects, or the individual effect of each subsequent treatment or treatment-line. 

Decision analytic modelling studies published in abstract form were not considered for inclusion, 

unless they represented a novel modelling approach, which was not covered by any of the studies 

published in full. Economic evaluations based on a single RCT were excluded. 

 

The review focused on treatment switching based on a clinical assessment of either lack of effect or 

adverse reaction (whilst acknowledging these will have a differential effect on the efficacy of the 

subsequent treatment). Studies evaluating the effectiveness of planned sequential administration of 

combined therapy, where the addition of treatment is not administered based on clinical assessment, 

were excluded. The sequential administration of combination therapy is a different type of decision 

framework as the sequencing is generally fixed; switching is not dependent on the treatment being 

ineffective, not tolerated or following adverse effects; neither previous treatment effect, nor the 

passing of time and its differential effect on risk are relevant. Furthermore, reviewing the evidence for 

combination therapies is less challenging, as they are generally based on sequencing trials. Where 

sequencing is considered an important factor in the administration of combination therapy, it is 

generally feasible and straightforward to compare fixed sequences as part of a RCT and conventional 

meta-analytic techniques can be used to pool the data from multiple trials, for example the 

administration of triple therapy for H-pylori infection.194 However, relevant papers that were retrieved 

in full were scanned to ensure that they did not report methods that could potentially be used to inform 

future novel evidence synthesis methods for treatment sequencing. 

 

Studies identified via the initial searches that appeared to meet the inclusion criteria were listed in a 

table. The titles of relevant references identified via the subsequent reference database searches 

were then cross referenced with these, and any new studies retrieved in full. Iterative searches were 

continued throughout the review, and cross referenced with the list of included studies until no new 

methods were identified. This is analogous to reaching the point of ‘saturation’ in qualitative research.  

 

3.4.4 Study classification and data extraction 

Studies were categorised according to whether they investigated clinical- or cost-effectiveness. All 

included economic evaluations were based on decision analytic modelling.  

 

The type of data extracted for all included studies, where available, included: 

i. Underlying ‘methodological’ problem or clinical question 

ii. Clinical condition (population) and intervention of interest 

iii. Treatment sequences that were evaluated 

iv. Summary of the method used to evaluate treatment sequencing 

v. Key assumptions used, and whether they were assessed 

vi. Type of outcome measure used 

vii. Type of evidence available or data required 
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The characteristics of included studies were described and contrasted using summary tables and 

matrices, and the findings synthesised narratively. A list of key methodological approaches was 

developed for each section, relating to meta-analytic techniques, simplifying assumptions, and 

modelling approaches. These are discussed in detail in separate chapters (5, 6 and 7). Each 

approach was summarised and key findings from the evidence tables discussed. These were 

subsequently used for developing a framework for the consideration of quantitative synthesis in the 

context of evaluating treatment sequencing as part of a health technology assessment, systematic 

review, or guideline development process (Chapter 8). 

 

 

3.5 QUANTITY OF LITERATURE INCLUDED IN THE REVIEW 

The reference database searches, after de-duplication, identified 756 references, of which 94 were 

retrieved in full. Sixty-two studies met the inclusion criteria, but 23 were published as abstracts only 

(Figure 3.1). The first author of the only two abstracts that were considered highly relevant were 

contacted by e-mail to check if the study had since been published in full. One replied, stating that a 

full report was unavailable,195 and the methods were still theoretical. This study (Briggs, 2014)195 is 

discussed further in the review of modelling approaches (Chapter 7, Section 7.3.4). The study 

presented in the second abstract196, was subsequently included in the review (Heeg, 2015) as a full 

publication (PhD thesis)197 was later identified via the on-going internet searches. Two studies were 

unobtainable, and two were presented in Italian but did not appear to contribute sufficient original 

content to warrant translation, and were therefore not included. Thirty-six studies published in full 

were included after collating multiple publications, and a further 52 relevant studies were identified by 

hand. The fact that only 41% of the 88 included studies were identified by the electronic databases 

confirms the limitations of relying on a conventional search strategy for undertaking a review of 

methods. However, some studies identified by hand, were published after the end date of the 

electronic database searches (ie. August 2013). This is discussed further under Section 8.3. 

 

Twenty two studies were included in the evaluation of meta-analytic approaches used for evaluating 

treatment sequences.12 17 20 21 198-215 However, some of these studies were considered relevant in fairly 

broad terms, such as providing examples of how the limited evidence base precluded the evaluation 

of treatment sequencing, or representing the use of stratified analysis by line of therapy, which could 

potentially provide a building block for future methods development. These approaches were initially 

not considered pertinent to the review but, because of the dearth of relevant methods identified, a 

post-hoc decision was made to include these studies as examples of simplifying methods. This 

provided a more comprehensive list of the approaches actually used for evaluating treatment 

sequencing in general, rather than limited to novel methods for developing sequence-specific 

summary effect estimates. 

 

Seventy studies were included in the review of decision analytic models.17 18 115 199 204 207 216-279 Four 

studies (NICE CG131; Rodgers, 2011; Connock, 2006; Hind, 2008) were included in both the 
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evaluation of meta-analytic techniques and modelling approaches.17 199 204 207 All were commissioned 

by NICE, and are introduced in Chapter 4, which explores the challenges faced by NICE and health 

technology assessment agencies in terms of the evidence base for evaluating treatment sequences. 

 

Four modelling studies included in the review of modelling approaches were not included in the 

review of simplifying assumptions. These include two (NICE CG131; Hind, 2008: NICE TA79)204 207 

that obtained data on clinical effectiveness from sequencing trials, and two (McEwan, 2010, and 

Launois, 2008),249 255 that did not evaluate the clinical effectiveness of treatment sequences, but were 

included as they provided examples of specific modelling techniques. One was a budget impact study 

(Launois, 2008) and the other (McEwan, 2010) evaluated the impact of treatment strategies on health 

related quality of life improvements associated with different hypoglycaemia profiles, rather than 

efficacy variables. This last study is closely linked to the study by Erhadt et al.,237 which was included 

in the review of assumptions. 

 

Forty-seven (54%) included studies investigating the use of disease-modifying antirheumatic drugs 

(DMARDs), including biological agents, for the treatment of inflammatory arthritis including 

rheumatoid arthritis, psoriatic arthritis, and ankylosing spondylitis. Thirteen (15%) were related to 

oncology. The remainder addressed epilepsy (5%), psoriasis (5%), depression (3%), glaucoma (2%), 

schizophrenia (2%), type 2 diabetes mellitus (2%), human immunodeficiency virus (HIV) (2%), 

neuropathic pain, postherpetic neuralgia, sciatica, fibromyalgia, chronic Hepatitis B infection, Crohn’s 

disease, onychomycosis, and spasticity. Most studies, including all of the rheumatology studies, 

involved sequences of drug treatments, but some also considered other interventions, for example 

surgery for sciatica.  

 

The range and type of disease conditions where treatment sequencing is likely to be an important 

issue is explored in more detail in Chapter 4. A summary of the clinical context and potential 

limitations of the available evidence base is provided for three of the most commonly evaluated 

clinical conditions, inflammatory arthritis, advanced or metastatic cancer, and epilepsy, in the 

Appendix Volume I (Section C). I also re-visit these in Chapter 4 (Section 4.4.4) as a number of NICE 

technology appraisals or clinical guidelines for these three indications were included in the review of 

methods. Many of the rheumatology and cancer studies evaluated biological therapies. Definitions 

and brief descriptions of biological therapies are also provided the appendix (Section C2), as a 

potential class effect of these drugs appears to be an important consideration for treatment 

sequencing. The optimal outcome measure for evaluating sequencing for cancer treatments is also 

explored in Appendix Volume I (Section C4.2). 

 

.  



77 
 

Figure 3.1: Flow diagram showing the number of references identified, publications 

retrieved for assessment, and studies included in the methodology review  
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3.6 CHAPTER SUMMARY AND NEXT STAGE 

This chapter outlines the methods used to undertake a review of quantitative evidence synthesis 

methods used for evaluating treatment sequences. The review is divided into three parts: a summary 

of the meta-analytic techniques used to develop summary effect estimates of treatment sequences, or 

effect estimates that are conditional on previous treatment used; the range of simplifying assumptions 

used as alternatives to conditional effect estimates to inform decision making within modelling studies; 

and the actual decision analytic approaches used for modelling treatment sequences. The findings of 

each are presented in the following Chapters 5, 6, and 7, respectively. The next chapter summarises 

the findings of a review of NICE guidance, which was informed in part by the review of methods. 
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CHAPTER 4: CLINICAL AND ECONOMIC DECISION-MAKING REGARDING TREATMENT 

SEQUENCING WITHIN THE NATIONAL INSTITUTE FOR HEALTH AND CARE EXCELLENCE’S 

HEALTH TECHNOLOGY APPRAISAL AND CLINICAL GUIDELINE PROCESS  

 

 

4.1 CHAPTER OVERVIEW 

This thesis aims to develop a framework for utilising quantitative evidence synthesis methods to 

estimate the effectiveness of treatment sequences for decision-making. In the UK for the National 

Health Service (NHS), the National Institute for Health and Care Excellence (NICE) is a key decision-

maker. NICE base their recommendations on a review of clinical and economic evidence. The 

National Institute for Health Research (NIHR) commissions Technology Assessment Review (TAR) 

teams to provide independent research input to inform NICE appraisals. NICE also produces 

methodological guidelines based on existing methods. The methodology research programme is 

supported by the Medical Research Council (MRC) and NIHR. The process of developing NICE 

guidance was used as an exemplar to ensure that the framework would be of direct relevance to 

practice, and the use of evidence synthesis to inform decision making. 

 

The health technology appraisal and clinical guidelines processes used by NICE to inform policy 

decision-making and clinical practice in the NHS in England and Wales are described here. A review 

of NICE guidance documents was also conducted to identify clinical areas where treatment 

sequencing was likely to be a pertinent issue, and identify some of the challenges associated with the 

assessment of treatment sequences for decision-making. 

 

 

4.2 SUMMARY OF THE NICE PROCESS AND HOW IT SERVES THE UK NHS 

In the UK, NICE is the body charged with assessing the clinical effectiveness and cost effectiveness 

of health technologies, and making national recommendations about the introduction of new and 

established interventions in England and Wales. The Institute’s objectives are to ensure that new 

investment yields maximum health benefit, reduces unwarranted variation in medical practice, and 

encourages rapid diffusion of high value new technologies.280  

 

The Institute develops recommendations that guide decisions in health, public health and social care. 

Their guidance takes a number of forms, which include clinical guidelines, technology appraisals 

guidance, interventional procedures guidance, medical technologies guidance, diagnostics guidance, 

highly specialised technologies guidance, and medical technologies evaluation programme. The 

thesis will focus on the following two: 

i. Technology appraisals guidance, which assess the clinical and cost effectiveness of 

health technologies, such as new pharmaceutical and biopharmaceutical products, but 

also includes procedures, devices and diagnostic agents. This ensures that all NHS 
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patients have equitable access to the most clinically and cost-effective treatments 

available. 

ii. Guidelines, which make evidence-based recommendations on a wide range of topics, 

from preventing and managing specific conditions to planning broader services and 

interventions to improve the health of communities.  

 

NICE technology appraisals comprise a clinical evaluation and a cost-effectiveness evaluation. At the 

time of this review, NICE used two appraisal processes: the multiple technology appraisal (MTA) 

process that incorporates the comparison of all relevant treatments in the decision framework, and the 

single technology appraisal (STA) process that is based on an economic evaluation of a single 

technology conducted by the manufacturer. In the STA process, the evidence submitted by the 

manufacturer is reviewed by an independent Technology Assessment Review team commissioned by 

NIHR. This review incorporates the critique, amendment and extension of the manufacturer model. 

Due to the pressure of providing timely guidance to the NHS at the time of launch, NICE introduced a 

single technology appraisal process in 2005 in order to “fast track” appraisals of single technologies 

for single indications.281 The drive to develop timely technology appraisals is not unique to the UK or 

NICE; other health technology assessment agencies and regulators face the same challenge. In the 

United States there has been an expansion in the use of the comparative effectiveness research 

process (summarised in Chapter 1, Section 1.6), which is similar to the multiple technology appraisal 

process. The expansion of, and government research funding for, comparative effectiveness research 

has also led to federal agencies such as the Agency for Healthcare Research and Quality (AHRQ) 

and the National Institute of Health (NIH) to re-organise themselves to conduct and disseminate 

comparative effectiveness research. However, the time available to develop the health technology 

assessment is still limited. 

 

The NICE clinical guideline development process includes an initial scoping process, used to decide 

which topics will be covered, which may not necessarily include the whole pathway. Similar to the 

technology appraisal process, questions of cost-effectiveness are addressed using an initial review of 

published economic evaluations. If no study is identified that is rated ‘directly applicable’ and with 

‘minor limitations’, then a de novo economic evaluation is conducted. When only minimal evidence is 

available, recommendations are based on the Guideline Development Group’s experience and 

opinion of what constitutes good practice.282 

 

 

4.3 NICE METHODOLOGICAL GUIDANCE ON EVALUATING TREATMENT SEQUENCING 

NICE regularly reviews its processes and methodology, and in 2013 published an update of its Guide 

to the Methods of Technology Appraisal.283 The Decision Support Unit (DSU), a collaboration between 

a number of universities, is commissioned by NICE to provide a research and training resource to 

support the Institute's Technology Appraisal Programme (http://nicedsu.org.uk/). The DSU has 

developed a number of briefing papers and reports, which contributed to the 2013 update of the NICE 
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methods guide. This included a briefing document on reviewing sequential treatments and 

downstream costs.284 The updated methods guide highlighted the fact that some technology 

appraisals may need to consider the comparison of treatment sequences. However, neither the 

updated methods guide, nor the DSU’s briefing document provided guidance on evaluating the clinical 

effectiveness or modelling treatment sequences. This is despite the briefing document highlighting the 

following key questions: 

i. Under what circumstances is it acceptable to model only individual lines of therapy, rather 

than treatment sequences? 

ii. How can the methods guide ensure that modelling of treatment sequences is undertaken 

consistently across appraisals?  

iii. Should explicit guidance on aspects of modelling treatment sequences be given? 

a. When and how should sequences be identified? Which should be modelled?  

b. What effectiveness estimates and model parameters can be reasonably used when a 

treatment is included in different places in different sequences?  

c. What level of primary and sensitivity analyses should be reasonably expected?  

 

 

4.4 A REVIEW OF NICE GUIDANCE DOCUMENTS THAT RECORDED TREATMENT 

SEQUENCING AS A PERTINENT ISSUE 

4.4.1 Objectives 

A review of NICE guidance documents was undertaken to identify: 

i. Challenges or problems associated with the assessment of treatment sequences for decision-

making 

ii. Clinical areas where treatment sequencing was likely to be a pertinent issue 

 

4.4.2 Searches 

The review was primarily based on a specific search of the NICE website, however it was also 

informed by the searches undertaken for the broader review of methods presented in Chapter 3.  

 

The NICE website was searched using the terms ‘sequential(ly)’, ‘sequences’ and ‘sequencing’ in 

November 2013. The results were scanned to identify NICE guidance or guidelines where treatment 

sequencing was likely to be a pertinent issue. Diagnostic guidance and diagnostic testing sequences 

were not considered. NICE guidance or guidelines that related to treatment administration, for 

example concurrent versus sequential combination therapy, were also excluded. The reason for this 

is explained in more detail in Chapter 3, Section 3.4.3. 

 

The searches undertaken for the review of methods included the Health Technology Assessment 

(HTA) Database, which is part of the Cochrane Library. The technology assessment reports for all 

multiple technology appraisals conducted on behalf of NICE are published as a HTA journal 

publication, and subsequently listed on the HTA Database. The reference details for NICE technology 
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appraisals included in the review of methods are, where possible, based on the HTA journal 

publication.  

 

4.4.3 Overall findings 

NICE guidance documents highlighted the relevance and some of the challenges associated with the 

assessment of treatment sequences for decision-making. Some NICE guidance was identified, using 

the website search, because of the lack of possibility of the consideration of treatment sequencing. 

This included reference to a lack of data, inadequate evaluation within the decision models submitted 

by industry, or the omission of treatment sequencing from the original scope. The main factors 

relating to treatment sequencing which allowed the NICE guidance documents to be identified by the 

website’s search engine are listed in Table 4.1. Illustrative examples of technology appraisals or 

clinical guidelines are provided. These are described in more detail in Appendix Volume II (Appendix 

B).  

 

The technology appraisals and clinical guidelines where treatment sequencing was identified as a 

potential issue within the decision-making framework or review question are listed in Table 4.2. These 

are grouped according to the clinical condition, and presented under the headers of inflammatory 

arthritis, cancer, mental health disorders, hepatitis, and other. The NICE website search did not 

identify all the NICE technology appraisals included in the review of methods (Chapters 5-7); those 

that were not identified are listed separately in Table 4.3. This highlights the challenge of identifying 

relevant methodological studies evaluating treatment sequences when any clinical condition is 

considered.  

 

Table 4.1: Reasons why NICE guidance were identified by the NICE website search 

Reasons why NICE guidance was identified by NICE 

website search 

Related technology appraisals and clinical guidelines* 

Treatment sequences were highlighted as an important 

consideration in the introduction of the guidance document.  

 Treatment of chronic hepatitis B (CG165). 

The committee discussed the cost-effectiveness analysis of 

the various treatment sequences.  

 Drug treatment of chronic hepatitis B (TA165). 

 Chemotherapy for advanced colorectal cancer (TA93). 

The final recommendations considered treatment sequencing.   Chemotherapy for advanced breast cancer (CG81) or 
colorectal cancer (CG131). 

 Antipsychotic drugs for schizophrenia (CG82). 

The committee could not make any recommendations on 

treatment sequencing due to lack of data.  

 Sequential TNF-inhibitors for psoriatic arthritis (TA199) 
or psoriasis (TA180). 

 Sequential endocrine/hormone therapy for advanced or 
metastatic breast cancer (TA239 and CG81). 

The manufacturer’s model did not consider treatment 

sequencing due to lack of data.  

 Febuxostat for hyperuricaemia associated with gout 
(TA164). 

 Dronedarone for atrial fibrillation (TA197). 

The committee could not make any recommendations on 

sequential treatment strategies as it had not been specified in 

the scope for the appraisal, and therefore not consider in 

manufacturer’s model.  

 Telaprevir for hepatitis C (TA252). 

The evidence review group criticised the manufacturer’s model 

for not incorporating treatment sequencing, or conducted 

further exploratory analysis incorporating treatment 

sequences.  

 Retigabine for epilepsy (TA232). 

 Apixaban to prevent stroke and systemic embolism in 
patients with atrial fibrillation (TA275). 

 Eltrombopag for thrombocytopenic purpura (TA293). 

The manufacturer’s model included treatment sequencing.   Golimumab (TA225) or tocilizumab (TA247) for 
rheumatoid arthritis. 
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Reasons why NICE guidance was identified by NICE 

website search 

Related technology appraisals and clinical guidelines* 

 Drug treatment for attention deficit hyperactivity 
disorder (TA98), aripiprazole for bipolar disorder 
(TA292). 

 Telbivudine (TA154) or tenofovir disoproxil fumarate 
(TA173) for hepatitis B. 

The committee considered the treatment sequences included 

in the manufacturer’s model were unsuitable, or that the model 

did not consider the full range of relevant sequences.  

 Entecavir for Hepatitis B (TA153). 
 

The manufacturer’s submitted a revised economic model with 

changes made to treatment sequences.  

 Aripiprazole for schizophrenia (TA213). 

The recommendations for research included treatment 

sequencing.  

 Sequential TNF-inhibitors for ankylosing spondylitis 
(TA143). 

 Psychological interventions for common mental 
disorders (CG123), interventions for low back pain 
(CG88). 

 Treatment modalities for peritoneal dialysis (CG125). 

There was an acknowledgement that ongoing trials existed 

investigating the optimum sequence of treatment.  

 Treatment of advanced renal cell carcinoma (TA169 
and TA178). 

The committee deliberated that overall survival may not be a 

suitable endpoint for the evaluation of first-line treatment for 

advanced or metastatic cancer due to the use of sequential 

treatments used in clinical practice.  

 TA219 (renal cell carcinoma), TA119 (chronic 
lymphocytic leukaemia), TA242 (colorectal cancer). 

The committee noted the need for the full sequence of 

treatments to be recorded for all patients in all clinical trials as 

part of the recommendations for future research.  

 TA93 chemotherapy treatments for advanced colorectal 
cancer. 

* A full list and description of these are provided in the Appendix Volume II (Appendix B) 
Abbreviations: CG clinical guideline; TA technology assessment; TNF Tumour necrosis factor alpha 

 

Table 4.2: Technology appraisals and clinical guidelines identified during a search of the NICE 

website (ordered by condition and earliest year of publication) 

The shading in last column indicates studies that were included in the methodology review of meta-

analysis and modelling approaches 

Clinical condition and treatment considered in the NCE guidance (technology appraisal or clinical 
guideline reference number)* 

Publication date 
of NICE 
guidance 

Author, year of 
associated HTA 
publication** 

INFLAMMATORY ARTHRITIS   

Ankylosing spondylitis - adalimumab, etanercept and infliximab (TA143) May 2008 McLeod, 2007 

Ankylosing spondylitis - golimumab (TA233) August 2011  

Psoriatic arthritis - etanercept, infliximab and adalimumab (TA199) August 2010 Rodgers, 2011 
(modelling) 

Rheumatoid arthritis - adalimumab, etanercept, infliximab, rituximab and abatacept (after the failure of a TNF 
inhibitor) (TA195) (Updates TA126 and TA141 and partially TA36) 

August 2010 Malottki, 2011 
(modelling) 

Rheumatoid arthritis (after the failure of previous anti-rheumatic drugs) - golimumab (TA225) June 2011  

Rheumatoid arthritis - tocilizumab (rapid review TA198) (TA247) February 2012  

Rheumatoid arthritis - abatacept (2nd line) (rapid review of TA234) (TA280) 
[WITHDRAWN; replaced by TA375] 

April 2013  

Rheumatoid arthritis (not previously treated with DMARDs or after conventional DMARDs only have failed) - 
Adalimumab, etanercept, infliximab, certolizumab pegol, golimumab, tocilizumab and abatacept (TA375; 
previously ID537, 2013. (Updates of TA130, TA186, TA224, TA234, TA225, and TA247) 

January 2016*** Stevenson, 
2016*** 
 

CANCER   

Breast cancer (advanced) (CG81) February 2009 (modelling) 

Breast cancer - bevacizumab (in combination with a taxane) (TA214) February 2011  

Breast cancer (metastatic) - fulvestrant (TA239) December 2011  

Colorectal cancer (advanced) - irinotecan, oxaliplatin and raltitrexed (TA93) (replaced by CG131) August 2005 Hind, 2008 

Colorectal cancer (metastatic) - bevacizumab and cetuximab (TA118) (partially updated by TA242)  January 2007 Tappendern, 
2007 

Colorectal cancer (CG131) November 2011 (modelling and 
meta-analysis) 

Leukaemia (chronic lymphocytic) - fludarabine (TA119) February 2007  

Leukaemia (chronic myeloid, first-line) - dasatinib, nilotinib and standard-dose imatinib (TA251) 
[WITHDRAWAN] 

April 2012 Pavey, 2012 

Multiple myeloma - lenalidomide (TA171) June 2009  

Ovarian cancer (advanced) - paclitaxel, pegylated liposomal doxorubicin hydrochloride and topotecan (TA91) 
[WITHDRAWN] 

May 2005 Main, 2006 

Renal cell carcinoma - sunitinib (TA169) March 2009  

Renal cell carcinoma (advanced and/or metastatic) - bevacizumab (first-line), sorafenib (first- and second-line), 
sunitinib (second-line) and temsirolimus (first-line) (TA178) 

August 2009 Thompson Coon, 
2010 
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Clinical condition and treatment considered in the NCE guidance (technology appraisal or clinical 
guideline reference number)* 

Publication date 
of NICE 
guidance 

Author, year of 
associated HTA 
publication** 

Renal cell carcinoma (advanced, second-line treatment - everolimus (TA219) April 2011  

MENTAL HEALTH DISORDERS   

Antisocial personality disorder (CG77) January 2009  

Attention deficit hyperactivity disorder (ADHD) - methylphenidate, atomoxetine and dexamfetamine (review of 
TA13) (TA98) 

March 2006  

Bipolar disorder (adolescents) - aripiprazole (TA292) July 2013  

Common mental health disorders (CG123) May 2011  

Depression in children and young people (CG28) September 2005  

Depression in adults (update) (CG90) October 2009  

Obsessive compulsive disorder (OCD) and body dysmorphic disorder (BDD) (CG31) November 2005  

Psychosis with coexisting substance misuse (CG120) March 2011  

Schizophrenia (update) (CG82) March 2009  

Schizophrenia - aripiprazole (TA213) January 2011  

HEPATATIS   

Hepatitis B (chronic) - adefovir dipivoxil and pegylated interferon alfa-2a (TA96)  
[partially updated by CG165] 

February 2006 Shepherd, 2006 
(modelling) 

Hepatitis B - entecavir (TA153) August 2008  

Hepatitis B - telbivudine (TA154) August 2008  

Hepatitis B - tenofovir disoproxil fumarate (TA173) July 2009  

Hepatitis C (genotype 1) - telaprevir (TA252) April 2012  

Hepatitis B (chronic) (CG165) June 2013  

OTHER   

Atrial fibrillation - dronedarone (TA197) August 2010  

Chronic kidney disease [CKD] (stage 4 or 5): management of hyperphosphataemia (CG157)  March 2013  

Cystic fibrosis (pseudomonas lung infection) - colistimethate sodium and tobramycin (TA276) March 2013 Tappendern, 
2013 

Epilepsy (partial onset seizures) - Retigabine as adjunctive treatment (TA232)  July 2011  

Epilepsies: diagnosis and management (CG137) [id. In website search but no sequencing related terms or 
references identified in guidance document when retrieved in full] 

January 2012 (modelling) 

Gout (Hyperuricaemia) - febuxostat (TA164) December 2008  

Gout (tophaceous, severe debilitating, chronic) - pegloticase (TA291) June 2013  

Low back pain - Early management of persistent non-specific low back pain (CG88) 
[WITHDRAWN – updated and replaced by NG59] 

May 2009  

Neuropathic pain in adults: pharmacological management in non-specialist settings (CG96) 
[WITHDRAWN – updated and replaced by CG173] 

March 2010  

Neuropathic pain - pharmacological management (CG173) November 2013  

Osteoporotic fractures - denosumab (TA204) October 2010  

Peritoneal dialysis (CG125) July 2011  

Psoriasis - ustekinumab (TA180) September 2009  

Psoriasis (CG153) October 2012 Sawyer, 2013 
(modelling) 

Stroke and systemic embolism (prevention, non-valvular atrial fibrillation) - apixaban (TA275) February 2013  

Thrombocytopenic purpura - eltrombopag (TA205)  
[WITHDRAWN replaced by TA293] 

October 2010  

Thrombocytopenic purpura - eltrombopag (TA293) July 2013  

Thrombocytopenic purpura - romiplostim (TA221) April 2011  

Type 2 diabetes: newer agents (Short CG87) 
[REPLACED by NG28] 

May 2009  

Type 2 diabetes - Dapagliflozin combination therapy (TA288) June 2013  

Type 2 diabetes in adults: management (NG28)  
[REPLACES CG87] 

December 2015  

Urinary incontinence in women: management (CG171)  September 2013  

*Multiple technology appraisals are reported here using the same format as single technology appraisals on the NICE website, 

using the condition first then treatment. 

**The information in the parenthesis indicates whether the study was included in the review of meta-analytic methods (Chapter 

5) or modelling approaches (Chapters 6-7). 

Id identified 

*** This review of modelling studies was available as a proposal when the methodology review for the thesis was conducted in 

2013  

Abbreviations: CG clinical guideline; DMARD disease modifying anti-rheumatic drugs; TA technology assessment 
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Table 4.3: Technology appraisals included in the methodology review that were not identified 

during the NICE website search (ordered by condition and earliest year of publication) 

Shading used in last column to indicate studies that were included in the methodology review of meta-

analysis and modelling approaches 

Clinical condition and treatment (technology appraisal or clinical guideline reference number)* Publication date Author, year of  
HTA reference 
used in methods 
review* 

RHEUMATOLOGY   

Rheumatoid arthritis and juvenile poly-articular idiopathic arthritis - etanercept and infliximab (after failure of 
previous conventional DMARDs) (TA36) 
[WITHDRAWN Replaced by TA130 and TA195] 

March 2002 Jobanputra, 2002 
(modelling)  

As above (TA36)  Barton, 2004 
(modelling) 

Rheumatoid arthritis – anakinra  (TA72) 
[WITHDRAWN Replaced by CG79] 

November 2003 Clark, 2004 
(modelling) 

Rheumatoid arthritis - adalimumab, etanercept and infliximab  (TA130) 
[Updates TA36. WITHDRAWN updated and replaced by TA375] 

October 2007 Chen, 2006 
(modelling) 

OTHER   

Epilepsy in adults  - newer drugs (TA76) 
[WITHDRAWN replaced by CG137] 

March 2004 Wilby, 2005 
(modelling) 

Epilepsy in children - newer drugs (TA79) 
[WITHDRAWN replaced by CG137] 

April 2004 Connock, 2006 
(modelling) 

Psoriasis (severe) in adults  - etanercept and efalizumab (TA103) 
[WITHDRAWN replaced by CG175] 

July 2006 Woolacott, 2006 
(modelling) 

Crohn's disease: management (CG152) October 2012 (modelling) 

Depressive illness: electroconvulsive therapy (TA59).  
The NICE TA covered electroconvulsive therapy (ECT) for treating depressive illness, schizophrenia, catatonia 
and mania, but treatment sequencing was only considered for major depressive disorder (MDD)  

April 2003 Greenhalgh, 2005 
(modelling) 

*The information in the parenthesis indicates whether the study was included in the review of meta-analytic methods (Chapter 
5) or modelling approaches (Chapters 6-7). 
Abbreviations: CG clinical guideline; DMARD disease modifying anti-rheumatic drugs; TA technology assessment 

 

4.4.4 Clinical conditions for which treatment sequencing was an important consideration for 

NICE decision-making 

The findings from the NICE website search showed a breadth of clinical conditions and decision-

making contexts where treatment sequencing was considered relevant within the NICE process. The 

clinical conditions most frequently covered by NICE technology appraisals and clinical guidelines 

identified during the website search (Table 4.2) or included in the methodology review (Table 4.3), 

were rheumatoid arthritis (8 TAs/CGs), hepatitis B (8 TAs/CGs), epilepsy (4 TAs/CGs), renal cell 

cancer (3 TAs/CGs), breast cancer (3 TAs/CGs), colorectal cancer (3 TAs/CGs), type 2 diabetes 

mellitus (3 TAs/CGs), and psoriasis (3 TAs/CGs). Several technology appraisals and clinical 

guidelines identified also covered mental health disorders, such as schizophrenia, bipolar disorder, 

and depression.  

 

The importance of treatment sequencing within the decision framework may differ according to both 

overall treatment goal and clinical context. Treatment sequencing was identified as an important issue 

for treatments which aimed to: 

i. Retard the disease process, with potential benefit extending beyond the treatment period, such 

as biological agents for inflammatory arthritis 

ii. Prolong life, such as systemic therapies for advanced cancer. This was identified as particularly 

relevant in that the overall survival benefit from first line treatment could be confounded by 

subsequent treatments (Table 4.1) 
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iii. Alleviate symptoms, or where the benefits may be restricted to the treatment period only, for 

example, treatments for epilepsy, neuropathic pain, or low back pain 

 

These three scenarios, and the corresponding clinical context, are explored in more detail in the 

Appendix Volume I (Section C). Three clinical indications that were identified as particularly relevant 

to NICE decision-making include: 

i. The introduction and sequential use of biological agents for retarding disease progression in 

inflammatory arthritis, which is illustrated in more detail using a rheumatoid arthritis case 

study 

ii. The introduction of novel biological (targeted) therapies for prolonging life in advanced or 

metastatic cancer, which is illustrated in more detail here using renal cell carcinoma as a case 

study 

iii. The optimal sequencing of new antiepileptic drugs 

 

4.4.5 The evaluation of treatments sequences within clinical guidelines 

NICE decisions or recommendations on treatment sequencing were often based on the deliberations 

of the guideline development groups, for example the clinical guideline for neuropathic pain (CG96), 

type 2 diabetes mellitus (CG88), and psoriasis (CG153). They were often informed by a narrative 

synthesis of the evidence of clinical effectiveness, or ordered according to the cost effectiveness of 

individual treatments. However, the clinical guidelines for breast cancer (CG81), colorectal cancer 

(CG131), and epilepsy (CG137) included treatment sequencing within the de novo model conducted 

as part of the economic evaluation, and all three are therefore included in the broader review of 

methods presented in Chapters 5-7. Due to the limitations of the evidence base, treatment 

sequencing effect estimates were based on the use of simplifying assumptions (CG131) and the 

expert clinical opinion of the guideline development group (CG81). The simplifying assumptions used 

are reviewed in more depth in Chapter 6. In the epilepsy clinical guideline (CG137), a reduction factor 

was applied to the treatment effect estimates, which was informed by an anchoring study. This is 

reviewed in more detail in Chapter 5, Section 5.6.2. A summary of some of the issues pertaining to 

the limitations in the evidence base for treatment sequences in advance or metastatic cancer and 

epilepsy is provided in the Appendix Volume I (Sections C4 and C5).  

 

4.4.6 The evaluation of treatments sequences within the technology appraisals guidance 

Treatment sequencing within the technology appraisals was generally evaluated as part of the 

economic evaluation and analysed using decision analytic modelling, but not considered as part of the 

clinical evaluation. However, one technology appraisal of chemotherapies for advanced colorectal 

cancer (TA93) evaluated the clinical evidence of both treatment sequences and individual lines of 

treatment. For the economic evaluation they limited inclusion to sequencing trials and identified only 

two relevant randomised controlled trials (RCTs). This is reviewed in more detail in Chapter 5, Section 

5.3. The NICE committee’s deliberations included making indirect treatment comparisons between 

treatment sequences used in one of these trials and those ‘currently recommended by NICE’. A 
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second technology appraisal of biological agents for psoriatic arthritis (TA199; Rodgers, 2011) 

included an economic evaluation of sequential TNF-inhibitors as part of their sensitivity analyses. This 

was informed by a supplementary review of observational studies to inform the effectiveness of 

treatment sequences, which is reviewed in more detail in Chapter 5, Section 5.6.2. The remaining 

technology appraisals that investigated sequencing as part of the economic evaluation were mainly 

based on the application of simplifying assumptions, which are reviewed in depth in Chapter 6. These 

related to the use of biological agents for rheumatoid arthritis (TA36; TA72; TA195; TA130), antiviral 

drugs for chronic hepatitis B (TA96), biological agents for psoriasis (TA103), antiepileptic drugs 

(TA76, TA79), and the use of electroconvulsive therapy for treating a major depressive disorder 

(TA59).  

 

 

4.5 THE OMISSION OF NICE SINGLE TECHNOLOGY APPRAISALS AS A POTENTIAL 

LIMITATION OF THE REVIEW OF MODELLING STUDIES 

The literature search for the review of methods presented in Chapter 3 did not include an extensive 

search of NICE single technology assessments, and therefore did not include unpublished 

manufacture submission models. However, a review by Zhen et al. (2017) addressed this potential 

limitation.104 The authors conducted a review of economic models capturing treatment sequences 

published by NICE. Technology appraisals published as of 24 October 2014 (search date) were 

identified via the NICE website. The review included economic models that were developed by the 

manufacturer or by the assessment group. The authors evaluated the key features of the decision 

problem that necessitate modelling treatment sequences and the methodology and data 

requirements. 

 

The review identified 40 treatment sequencing models in the following disease areas: oncology (13), 

autoimmune (7), cardiovascular (6), neurology/mental health (4), infectious disease (2), diabetes (2), 

and other (6).104 The most common rationale for modelling treatment sequences was to reflect either 

clinical practice or clinical trial design. In other cases it was used to assess where in a treatment 

sequence a new treatment should be placed, to evaluate the addition of more efficacious treatment 

options to a current treatment sequence, or because of disease-specific rationale. Examples of 

disease-specific rationale included the need to reflect the treatment algorithm required by disease 

progression and aging in diabetes, and the need to track patient-resistance to treatment and 

treatment history in infections.  

 

The review conducted Zheng et al. did not identify any modelling approaches or simplifying 

assumptions not identified in the review of modelling studies presented in Chapters 6 and 7.104 I revisit 

the comparison of the findings of the two reviews in Chapter 6 (Section 6.7.2) and Chapter 9 (Section 

9.3). The disease areas and range of rationale for evaluating treatment sequences identified by 

Zheng et al. were also comparable to that of the modelling studies summarised in Chapters 6-7.104 
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4.6 CHAPTER SUMMARY AND WHAT NEXT 

The findings of the review of NICE guidance showed that treatment sequencing was often identified 

as a potential issue in the deliberation of NICE decisions, but not always considered as part of the 

evidence review. They also showed that when treatment sequences were evaluated as part of the 

NICE clinical guideline or technology appraisal process, they were usually only considered within the 

economic evaluation. No guidance was provided on methods for evaluating treatment sequences. 

Decisions on treatment sequencing were frequently made based on the deliberations of the NICE 

Committee and a very limited evidence base. A more objective assessment of the evidence and the 

uncertainty in both the sequencing specific effect estimates and decision-making are required. The 

review of the methods used to synthesise the data on clinical effectiveness of treatment sequences 

can inform this process, the findings of which are presented in the next Chapter. 

 

The review of NICE guidance identified some of the challenges faced by NICE when considering 

treatment sequences. It highlighted the need to consider whether treatment sequencing is an 

importance issue from the outset, i.e. during the scoping stage for NICE guidance. The review 

identified examples the Committee’s inability to make decisions due to the economic models not 

considering the relevant sequences.  

 

Another challenge is that the number and order of sequences used in clinical practice continually 

changes with the introduction of new treatments, for example in advanced cancer. The lack of data on 

treatment sequences was often a stumbling block, and the evidence for new treatments was 

frequently limited to the licencing trial. The review also highlighted that overall survival is not a 

suitable endpoint for evaluating first line treatments for advanced or metastatic cancer.  

 

The review was based on the NICE guidance and not an in-depth evaluation of the evidence review 

group reports. This was in line with the purpose of identifying clinical scenarios where treatment 

sequencing was a potential issue, as well as issues that may need to be considered in the framework 

presented in Chapter 8. The review was also used to identify technology appraisals and clinical 

guidelines for inclusion in the review of methods, the findings of which are presented over the next 

three chapters. 
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CHAPTER 5: META-ANALYTIC METHODS USED FOR EVALUATING TREATMENT SEQUENCES 

 

 

5.1 CHAPTER OVERVIEW 

This chapter presents the findings of the review of meta-analytic techniques used to evaluate 

treatment sequences. The term ‘meta-analytic technique’ is used here in its broadest sense, and 

incorporates conventional pair-wise meta-analysis, meta-regression, and network meta-analysis. 

Each method employed for evaluating the clinical effectiveness of treatment sequences, or single 

treatments conditional on their positioning in the pathway, is summarised along with an assessment of 

its strengths and applicability for future practice. Due to the dearth of methods identified, a broad remit 

was iteratively applied for identifying relevant approaches, including simplistic approaches such as 

stratifying the analysis according to treatment history and restricting inclusion to comparative studies 

of treatment sequences. The implications and limitations of each approach is discussed, and the 

challenges of using observational studies to inform treatment-sequencing effects is summarised. The 

discussion section explores methodological development in this field, which can potentially contribute 

to the framework for the conduct of meta-analytic methodology to evaluate treatment sequences 

presented in Chapter 8. The chapter ends with a summary of the implications for future practice and 

methodological development.  

 

 

5.2 OVERALL FINDINGS 

The literature searches and the methods used to identify and review the relevant meta-analytic 

studies are described in Chapter 3.  

 

The studies discussed in this section are listed in Tables 5.1 and 5.2, which summarises their overall 

aim and the methodological approach to which they contribute, respectively. Of the 22 included meta-

analytic studies, 11 specifically aimed to evaluate the clinical effectiveness of treatment sequences.12 

17 20 199-201 203 207 209 214 215 The remaining studies are included as they contribute to developing a 

broader list of approaches used for evaluating the effect of previous treatment or positioning in the 

treatment pathway.21 198 202 204-206 208 210-213 A summary of their aim and why they were selected for 

inclusion is provided in Table 5.1. These studies represent examples, rather than provide an 

exhaustive list of studies that used each particular approach.  

 

The breadth of meta-analytic approaches considered relevant to treatment sequencing was expanded 

due to the scarcity of methods identified to include the following approaches that could potentially 

answer the following questions, which are relevant for informing decision making: 

i. Do treatment-sequencing effects need to be considered? 

ii. Does the number of prior treatments influence treatment effects?  

iii. Does the class of prior treatments influence treatment effects? 

iv. Does the reason for discontinuing prior treatments influence treatment effects? 
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v. Is it feasible to limiting inclusion to sequencing studies? 

vi. Is it feasible to develop a conditional effect estimate, considering the available evidence? 

 

The 22 included studies identified five main approaches used to assess treatment-sequencing effects:  

i. Restricting inclusion to comparative studies evaluating treatment sequences.  

ii. Subgroup analyses to assess whether treatment effects varied according to the treatment 

patients had previously received. This includes stratifying meta-analyses according to line of 

treatment, an approach that does not provide a means of developing summary effects that 

allows for treatment sequencing, but is frequently used to inform clinical practice where 

treatments are being used as part of a sequence. 

iii. Meta-regression to estimate the contributing effect of, or adjust for, the number and type of 

previous treatments. 

iv. Applying a modifying factor to individual treatment effects in order to represent their use at a 

different point in the treatment pathway. 

v. Ranking individual treatments according to their absolute effect estimates in order to inform 

the effects of whole sequences. This is an example of a naïve method, which assumes no 

sequencing effect. 

 

These approaches, were all implemented within the framework of meta-analytic techniques, including 

conventional pairwise meta-analyses, and network meta-analyses, covering indirect treatment 

comparisons or multiple treatment comparisons. The use of network meta-analysis, as noted in 

Chapter 2, is becoming increasingly popular. None of the included studies incorporated further 

adaptations of network meta-analysis methods in order to specifically accommodate or evaluate 

treatment sequencing. No novel evidence synthesis or meta-analytic techniques were identified. None 

were directly aimed at developing a conditional summary estimate of effect. No meta-analysis of 

sequential multiple assignment randomised trials (SMART) or N-of-1 randomised controlled trials 

(RCTs) for investigating treatment sequences were identified. 

 

Most included studies investigated treatment sequencing for either inflammatory arthritis (mainly 

biological agents for rheumatoid arthritis) or advanced cancers. Each of the approaches identified by 

the review is expanded upon in the following sections. 
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Table 5.1: Primary aim of the included studies evaluating meta-analytic approaches for evaluating treatment sequences 

(Studies ordered according to whether they aimed to evaluate treatment sequencing, and then alphabetical)  

Author, year 
 

Study aim 
included 
treatment 

sequencing 

Aim of the study Notes or reason why study included Approach to which 
they contribute 

NICE CG131 
(2011) 
 

YES  
(economic 
evaluation) 

To assess the effectiveness and cost-effectiveness of chemotherapy 
sequences for advanced colorectal cancer. 
 

The economic evaluation included analysis of chemotherapy 
sequences, which required treatment-sequencing effect 
estimates. It was also acknowledged that overall survival of 
first-line treatments are confounded by subsequent treatments. 

Stratified analysis; 
Sequencing studies 

Connock, 2006 
(NICE TA79) 

YES  
(economic 
evaluation) 

To examine the clinical effectiveness and cost-effectiveness of newer 
antiepileptic drugs (AEDs) for epilepsy in children. For the newly, or 
recently, diagnosed population, the key question for the newer drugs is 
how soon they should be tried. 

Economic model included treatment sequencing, which 
required treatment-sequencing effect estimates. 

Modifying factor 

Cooper, 2011 YES To systematically review studies of the management of treatment-
refractory depression in older people, covering pharmacological, 
physical, and psychological interventions.  

The searches specifically included treatment sequencing; 
‘sequential treatment or trial’ used as a search term. 

Stratified analysis; 
Sequencing studies 

Heng, 2014 YES To systematically summarise and interpret the published real-world 
evidence comparing sequential treatment for metastatic renal cell 
carcinoma. 

Set out to evaluate clinical effectiveness of treatment 
sequences. 

Sequencing studies 

Lloyd, 2011 YES To evaluate the effectiveness of TNF-inhibitors, for the treatment of 
RA, when used sequentially 

Set out to evaluate clinical effectiveness of treatment 
sequences. 

Meta-regression; 
Subgroup analysis 

Rendas-Baum, 
2011 

YES 
 

To evaluate the relationship between the clinical response to biologics 
and the number of previous treatments with TNF-inhibitors for the 
treatment of RA.  

Included patients who had failed at least one TNF-inhibitor. Subgroup analysis 

Rodgers, 2011 
(NICE TA199) 

YES  
(economic 
evaluation) 

To determine the clinical effectiveness, safety and cost-effectiveness 
of TNF-inhibitors in the treatment of active and progressive PsA.  

Economic evaluation included investigating the cost 
effectiveness of using sequential TNFs as part of a sensitivity 
analysis. The model required treatment-sequencing effect 
estimates. 

Modifying factor 

Ruhe, 2006 YES To systematically review the evidence for switching pharmacotherapy 
after a first SSRI for major depressive disorder. 

Set out to evaluate clinical effectiveness of treatment 
sequences. 

Stratified analysis; 
Sequencing studies 

Stenner, 2012 YES To evaluate the optimal sequence for the tyrosine kinase inhibitors 
sorafenib and sunitinib in metastatic renal cell carcinoma. 

Highlights the potential contrasting methods and findings of 
reviews that limit inclusion to sequencing studies. 

Sequencing studies 

Suarez-Almazor, 
2007 
(CADTH) 

YES  To review the evidence on the TNF-inhibitors, INF and ETA, regarding 
the timing of therapeutic introduction, dose escalation, and switching.  
 

One of the research questions included: Do patients with RA 
who fail treatment with one TNF agent respond to therapy with 
a different one? 
Timing of therapeutic introduction included an evaluation of 
potential differences in clinical effectiveness according to 
timing of therapy (as initial therapy or after failure with other 
drug therapies) and disease duration. 

Subgroup analysis; 
Stratified analysis 

Finnerup, 2005 YES To develop up-to-date calculation of NNT and NNH in neuropathic pain 
as the basis of a proposal for an evidence-based treatment algorithm.  

Conducted an updated review of placebo-controlled RCTs to 
support an evidence-based algorithm (sequence of treatments) 
to treat neuropathic pain conditions. Evaluation based on naive 
assumptions regarding treatment-sequencing effects. 

Ranking absolute 
effects 

Grothey, 2004 PARTIAL To evaluate the importance of the availability of all 3 active cytotoxic 
agents, FU-LV, irinotecan, and oxaliplatin, on overall survival (OS) in 

Data on the percentage of patients receiving 2nd-line therapy 
and the percentage of patients receiving all 3 agents were 
correlated with the reported median OS, using a weighted 

Meta-regression 
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Author, year 
 

Study aim 
included 
treatment 

sequencing 

Aim of the study Notes or reason why study included Approach to which 
they contribute 

advanced CRC. FU-LV plus irinotecan or oxaliplatin were the standard 
1st-line therapies.  

analysis. The analysis did not address the question of the best 
treatment sequence, i.e. whether the irinotecan or oxaliplatin-
based protocol should be used first. 

Hind, 2008 
(NICE TA93) 

PARTIAL To evaluate the cost-effectiveness of irinotecan, oxaliplatin and 
raltitrexed as fist-line treatments in the management of advanced 
colorectal cancer.  
 

Each line of therapy was evaluated separately in the clinical 
evaluations, with the caveat that in trials of 1st-line treatment 
over half of participants, in all but 2 included trials, received 
unplanned 2nd-line treatment. Existing economic models were 
considered weak due to the use of unplanned 2nd-line 
therapies, and were either limited to using progression-free 
survival (PFS) as a surrogate outcome, or subject to 
confounding. An improved model was therefore implemented 
by the authors using data from the 2 trials that planned 
treatment sequences. The model was used to compare the 7 
chemotherapy sequences included in these 2 trials. 

Sequencing studies 
Stratified analysis 

Anderson, 2000 NO To identify factors predicting response to second-line treatment, with 
conventional DMARDs or devices, in rheumatoid arthritis based on use 
of individual patient data.  

Evaluating treatments used at a single point in the treatment 
pathway, but the factors they considered included both 
previous DMARD use and disease duration. 

Meta-regression 

Christensen, 
2015 

NO To determine if variations in trial eligibility criteria and patient baseline 
characteristics could be considered effect modifiers of the treatment 
response when testing targeted therapies (biological agents and 
targeted synthetic DMARDs for RA. 

Evaluating treatments used at a single point in the treatment 
pathway, but the factors they considered included both 
previous DMARD use and disease duration. 

Meta-regression and 
subgroup analysis 

Kanters, 2014 NO To explore which clinical factors and patient characteristics are 
associated with the magnitude of comparative efficacy between 
biologics vs MTX in RA patients with inadequate response to MTX. 

Evaluating treatments used at a single point in the treatment 
pathway, but demonstrates the challenges of including 
previous treatments as a covariate in meta-regression due the 
poor reporting of primary studies. 

Meta-regression 

Mandema, 2011 
 

NO To compare the dose-response relationship for the efficiency of 
biologics for the treatment of RA. Two of the objectives included: Are 
TNF-inhibitors different in patients with an inadequate response to 
MTX compared to those who are MTX-naïve; Are TNF-inhibitors more 
efficacious than MTX in MTX-naive patients. 

Evaluating treatments used at a single point in the treatment 
pathway, but provides an example of evaluating effect of 
previous treatment in a dose-response meta-regression 
analyses. 

Meta-regression; 
Stratified analysis 

Nixon, 2007 NO To compare the efficacy of four biological agents, three of which were 
TNF-inhibitors for the treatment of RA. 
 

Provides an example of using meta-regression to account for 
disease duration in network-meta-analysis. Also represents the 
first study to combine the techniques of mixed treatment 
comparisons and meta-regression to adjust or study level 
covariables. 

Meta-regression; 
Subgroup analysis 

Salliot, 2011 
 

NO To compare efficacy of biologics for the treatment of RA in 2 clinical 
situations: i) active disease despite MTX; ii) after inadequate response 
to TNF-inhibitor. 

Evaluating treatments used at a single point in the treatment 
pathway, but provides an example of evaluating effect of 
previous treatment in subgroup analysis. 

Subgroup analysis; 
Stratified analysis 

Schmitz, 2012 
 

NO To compare efficacy of TNF-inhibitors for the treatment of RA in 
patients with inadequate response to MTX. 

Evaluating treatments used at a single point in the treatment 
pathway, but provides an example of the challenges of 
including previous treatments as a covariate in meta-
regression due the poor reporting of primary studies. (Builds 
on methods used by Nixon, 2007.) 

Meta-regression 
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Author, year 
 

Study aim 
included 
treatment 

sequencing 

Aim of the study Notes or reason why study included Approach to which 
they contribute 

Schoels, 2012 
 

NO To compare efficacy and safety of biologics, for the treatment of RA, 
after inadequate response to TNF-inhibitors. 

Provided an example of the limitations of examining 
differences in treatment effects according to the number of 
previous biologics used. 

Subgroup analysis 

Singh, 2009 
 

NO 
 

To compare efficacy and safety of biologics for the treatment of RA. Included planned subgroup analyses for: TNF failure vs none; 
and biologic failure vs conventional DMARD failure vs none. 

Subgroup analysis 

Abbreviations: CADTH Canadian Agency for Drugs and Technologies in Health; DMARD disease-modifying antirheumatic drug; CG clinical guidelines; CRC colorectal cancer; ETA etanercept; 

EULAR European League Against Rheumatism; FU-LV fluorouracil-leucovorin; HTA health technology assessment; INF infliximab; MTX methotrexate; NNH numbers needed to harm; NNT numbers 

needed to treat; PsA psoriatic arthritis; RA rheumatoid arthritis; TNF-inhibitors tumour necrosis factor-alpha inhibitors; SSRI Selective Serotonin Reuptake Inhibitor; vs versus 

 

Table 5.2: Overview of the meta-analytic approaches used by included studies 

(Studies are ordered according to the methodological approach used) 

Study 
 

Condition Decision point Study aim 
included 
sequential 
treatments 

Sequencing 
studies 

stratified 
analysis 

(single point 
in pathway) 

Subgroup 
analyses 

Meta-
regression 

Modifying 
factor 

Ranking 
absolute 
effects 

Available evidence base* 

Heng, 2014 Metastatic 
renal cell 
carcinoma 

2nd line targeted therapies  YES X      Observational studies 
(sequencing studies) 

Stenner, 2012 Metastatic 
renal cell 
carcinoma 

Sequential targeted 
therapy (2 lines) 

YES X      Observational studies 
(sequencing studies) 

Hind, 2008 Advanced 
colorectal 
cancer 

1st and 2nd-line 
chemotherapies 

PARTIAL X X     RCTs 

NICE CG131 Advanced 
colorectal 
cancer 

1st and 2nd-line 
chemotherapies 

YES X X     1st-line: RCTs; 2nd-line 
prospective sequencing trials 
(n=3, 2 were included as 
quasi-sequencing)*** 

Ruhe, 2006 Depression 2nd-line treatments (after 
nonresponse to SSRI) 

YES X X     RCTs (one sequencing) and 
observational studies; only 
RCTs pooled due to 
heterogeneity 

Cooper, 2011 Depression 2nd and subsequent-line 
treatments 

YES X X     RCTs and uncontrolled open-
label trials (one non-RCT 
sequencing study); pooled 
breaking randomisation. 

Lloyd, 2011 Rheumatoid 
arthritis  

Sequential TNF-inhibitors 
(1st-line vs 2nd/3rd-line TNF-

inhibitors) 

YES   X X   Observational studies 
(uncontrolled and sequencing 
studies) 

Rendas-Baum, 
2011 

Rheumatoid 
arthritis  

1st, 2nd or subsequent-line 
biologics  

YES   X    RCTs and observational 
studies; pooled breaking 
randomisation 
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Study 
 

Condition Decision point Study aim 
included 
sequential 
treatments 

Sequencing 
studies 

stratified 
analysis 

(single point 
in pathway) 

Subgroup 
analyses 

Meta-
regression 

Modifying 
factor 

Ranking 
absolute 
effects 

Available evidence base* 

Suarez-Almazor, 
2007 

Rheumatoid 
arthritis  

1st and 2nd-line TNF-
inhibitors 

YES  X X    1st-line: RCTs; 2nd-line: 
observational studies only (not 
pooled) 

Schoels, 2012 Rheumatoid 
arthritis  

2nd-line ‘new’ biologic 
(after multiple TNF-

inhibitors) 

NO   X    RCTs 

Singh, 2009 Rheumatoid 
arthritis  

1st and 2nd line biologics NO   X    RCTs 

Salliot, 2011 Rheumatoid 
arthritis  

1st and 2nd biologics NO  X X    RCTs 

Nixon, 2007 Rheumatoid 
arthritis  

1st-line biological agents 
(in early and late stage 

disease) 

NO    X   RCTs  

Schmitz, 2012 Rheumatoid 
arthritis  

1st-line TNF-inhibitors NO    X   RCTs 

Christensen, 
2015 

Rheumatoid 
arthritis  

1st and subsequent-line 
biologics 

NO    X   RCT 

Kanters, 2014 Rheumatoid 
arthritis  

1st-line biologics NO    X   RCTs 

Anderson, 2000 Rheumatoid 
arthritis  

2nd-line conventional 
DMARDs  

NO    X   RCTs (individual patient-level 
data) 

Mandema, 2011 Rheumatoid 
arthritis  

1st-line TNF-inhibitors NO  X  X   RCTs 

Grothey, 2004 Advanced 
colorectal 
cancer 

1st and 2nd-line therapies PARTIAL    X   RCTs (one sequencing)** 

Rodgers, 2011 Psoriatic 
arthritis 

2nd line TNF-inhibitors YES     X  Observational studies 

Connock, 2006 Epilepsy 1st and subsequent ‘new’ 
antiepileptic drugs 

YES     X  RCTs 

Finnerup, 2005 Neuropathic 
pain 

Treatment algorithms PARTIAL      X RCTs 

Abbreviations: CG clinical guidelines; DMARD disease-modifying antirheumatic drug; MTX methotrexate; RCTs Randomised controlled trials; TNF-inhibitors tumour necrosis factor-alpha inhibitors; 

vs versus 

*Unless otherwise stated, RCTs relate to the evaluation of individual treatments; ‘placebo RCTs’ included a placebo control, whilst ‘RCTs’ included either an active or placebo control. 

**Included published RCTs that reported the number of patients receiving second-line therapies made by the authors of the trials 

***Quasi-sequencing trials: RCTs of 1st-line treatment with subsequent treatment predefined in protocol, or high proportion of patients went on to receive the same 2nd line treatment. 
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5.3 RESTRICTING INCLUSION TO TREATMENT SEQUENCING STUDIES 

5.3.1  Number of studies 

Six studies tried to identify sequencing studies, to evaluate the evidence on whole treatment 

pathways.200 203 204 207 209 214 This would enable the primary studies to be pooled using standard meta-

analytical techniques. However, very few RCTs or prospective sequencing trials were available; those 

that existed were generally confined to a limited number of treatment lines, and few addressed the 

review questions completely. Five studies (NICE CG131207; Ruhe, 2006209; Cooper, 2011200; Hind, 

2008204) limited inclusion to RCTs, whilst two (Heng, 2014;203 Stenner, 2012214) included observational 

studies. 

 

5.3.2  Limiting inclusion to studies of predefined sequences 

The following section provides examples of reviews that limited inclusion to studies of predefined or 

fully formed sequences to develop summary effect estimates of treatment sequences. The reviews 

illustrate how limiting the inclusion to sequencing studies can curtail the ability of the meta-analysis to 

adequately inform clinical decision-making.  

 

Two studies that evaluated chemotherapy sequences for advanced colorectal cancer limited inclusion 

to sequencing studies when reviewing the evidence to inform the economic evaluation. One was a 

technology appraisal (NICE TA93)204 and the other was a clinical guideline (NICE CG131),207 both of 

which are listed in Chapter 4, Table 4.2. The technology appraisal (Hind, 2008; TA93) included 

stratified analysis by line of therapy for the clinical evaluation. For the economic evaluation, the 

authors considered the findings of existing economic models to be weak because of the use of 

unplanned second-line therapies in their trial data, which meant that survival benefit could not be 

uniquely attributed to the allocated therapy. The data used to inform the clinical-effectiveness 

parameters of their own de novo economic model were therefore based solely on sequencing RCTs. 

The study (Hind, 2008) identified two relevant trials, FOCUS trial285 and GERCOR trial,286 which are 

described in the Appendix Volume I, Section B1. The review only considered treatment sequences for 

which RCTs were available, with inclusion subsequently limited to the seven chemotherapy 

sequences evaluated in these two trials. Both trials included two lines of therapy, but the FOCUS trial 

also included subsequent salvage chemotherapy. The NICE Clinical Guideline (NICE CG131) for 

colorectal cancer, in contrast, included the evaluation of 10 predefined chemotherapy sequences of 

up to three lines of treatment.207 This was underpinned by a systematic review of clinical effectiveness 

based on separate network meta-analyses for each line of treatment. Preliminary analyses confirmed 

that the overall survival for second-line treatment was dependent on first-line treatment. The authors 

noted that the potential influence of first-line treatments on survival had not been adequately 

addressed in studies of second-line treatment, which provided limited data on prior treatments. The 

RCTs of first-line treatments also provided limited data on subsequent treatment, with the majority of 

participants going on to receive a mix of second-line treatments. When the second-line treatments 

were reported, medians or hazard ratios for overall survival were not reported separately for each line 

of treatment. Data on second-line treatment for the economic model were therefore only taken from 
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prospectively sequenced studies. However, only two RCTs (GREGOR,286 CAIRO287) that evaluated 

the specific sequences of interest were identified. One further RCT comparing first-line treatments 

was included as a quasi-sequencing trial. The study protocol pre-specified that patients progressing 

on first-line treatment should only receive irinotecan second-line, of which more than 75% in both 

arms did. Unlike the analysis of first-line treatment, which included 23 RCTs, the limited number of 

available studies for second-line treatment did not form a complete network, so treatments had to be 

grouped by mode of action, allowing the comparison of three treatment sequences. This necessitated 

using the assumption that treatment effects, informed by the clinical guideline development group, 

were the same within each mode of action. In order to implement the analysis, assumptions were also 

made regarding the data from the quasi-sequencing studies. Data on median progression-free 

survival were not available for this study, but the median duration of second-line treatment was 

reported to be the same in both arms. It was assumed that mean duration of treatment was highly 

correlated with progression-free survival, and therefore the hazard ratio for progression-free survival 

for the second-line treatment was imputed as 1, with a standard error of 0.14, based on relationship 

between the study sample size and standard errors for all other log hazard ratios from the first and 

second-line treatment studies. This review highlights how better reporting of previous and subsequent 

treatments by RCTs of single treatments, or the availability of individual patient data (Section 1.4.1.2), 

would greatly enhance the ability to undertake evidence synthesis to evaluate the effects of treatment 

sequences. It also identified the challenge of maintaining a closed network of trials when evaluating 

treatment sequences. 

 

In a comparative effectiveness review investigating the use of second-line targeted therapies for 

metastatic renal cell carcinoma, Heng et al., included observational studies.203 They noted that the 

data from the available RCTs were insufficient for informing the optimal sequencing of targeted 

therapies (specific VEGF TKI or mTORi or their combination; see footnote1), and that up to three lines 

of treatment were often used in practice. The review included only observational studies that met the 

following three criteria indicative of better quality:  

i. a retrospective cohort design that imposed inclusion criteria only up to initiation of second-line 

treatment, and then followed all included patients as long as possible for outcomes;  

ii. adjustment for patient characteristics; and  

iii. the use of data from multiple centres.  

Most of the observational studies reported only class level treatment groups and most patients 

received a VEGF TKI in the first-line setting, so the review focused on class effect, investigating 

sequential treatments with VEGF TKI followed by mTORi versus VEGF TKI followed by VEGF TKI. 

Many studies did not adequately represent third-line treatment. They identified 12 retrospective 

observational studies with 2,686 patients. Seven studies were based on medical records or chart 

reviews, and one on a national register. Ultimately, only four studies were included in the meta-

analysis for the outcome overall survival and three studies for progression-free survival, due to clinical 

heterogeneity. Unexplained statistical heterogeneity remained in all meta-analyses other than one 

limited to better quality studies for overall survival. The high level of heterogeneity precluded the 
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authors’ ability to draw a single comparative conclusion, despite the review potentially including a 

large evidence base.1 

 

The review by Heng et al. identified three studies that departed from the preferred retrospective 

cohort design by requiring patients to receive a third-line therapy after the initiation of second-line 

treatment.203 This resulted in the exclusion of a large proportion of second-line patients who did not 

receive third-line treatment due to loss to follow up, continuation of second treatment at the time of the 

chart review, death during second-line treatment, or other reasons, resulting in immortal time bias for 

the effects of second-line treatment. Immortal time refers to an interval in the observation or follow-up 

period of a cohort during which the outcome under study could not have occurred.288 Although the 

authors did not include third-line treatment, they did acknowledge the need to investigate this. They 

recommended that an appropriate retrospective cohort design for comparing third-line treatment 

outcomes would follow patients after initiation of third-line treatment, and would adjust for patient 

characteristics available at the time initiation, including treatments received in the first and second-

line. In other words, this approach would provide the summary effect of treatments used as third line, 

which are adjusted for the previous treatments used. However, this is still dependent on the primary 

study not only implementing this, but also having access to the data on previous treatments used.   

 

An alternative review and pooled analysis of treatment sequences for metastatic renal cell carcinoma 

is provided by Stenner et al., which focused on a narrower decision problem. They evaluated the 

optimum sequencing of two VEGF TKIs, sorafenib followed by sunitinib versus sunitinib followed by 

sorafenib.214 This review was also based on observational studies, and included 11 retrospective case 

series and two prospective cohort studies with a total of 853 patients. The review does not provide 

anything new in terms of evidence synthesis methodology but does highlight the contrary methods 

and findings provided by these two reviews. This makes it challenging for decision makers to interpret 

the evidence and shows the need for guidance on reviewing observational studies of treatment 

sequencing. No quality assessment of included studies was conducted in this review. The data on 

progression-free survival were pooled for each sequence using weighted linear regression, with data 

for both sequences taken from each study but considered separately. The importance of maintaining 

the individual treatment comparison within each study is discussed in the Appendix Volume I (Section 

A) and Section 5.9.9.2. Separate analyses were conducted for progression-free survival on first-line 

treatment, on second-line treatment, and in total. Regression analysis was used to examine the 

impact of age, gender and study design. Sensitivity analyses were conducted, producing pooled 

                                                      
1 Clinical guidelines recommend initial treatment with a vascular endothelial growth factor tyrosine kinase 
inhibitors (VEGF TKI) for most patients, with the current standard of care generally including subsequent VEGF 
TKI or mammalian target of rapamycin inhibitors (mTORi). Seven targeted therapies were available as second-
line treatment, four of which were VEGF TKI. The data from the RCTs were considered insufficient as only three 
were available in the second-line setting: one comparing an mTORi with placebo; one comparing a VEGF TKI 
with an mTORi; and one comparing two VEGF TKIs. The RCT comparing a VEGF TKI with an mTORi did not 
report data on subsequent treatments that were off-protocol, which might have influenced the results. The 
authors also noted that a different mTORi is used by the majority of patients in practice. 
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estimates without studies that i) included patients who had previously received prior chemotherapy or 

anti-angiogenic compounds, ii) studies where the reason for treatment discontinuation was not clear, 

and iii) studies where discontinuation due to toxicity or intolerance were part of the definition of 

progression.  

 

The review by Stenner et al. also highlighted potential limitations of using progression-free survival for 

evaluating treatment sequences, and showed that it is important to report how this endpoint is defined 

and used.214 The optimum endpoint for evaluating sequencing of cancer treatments is discussed in 

the Appendix Volume I (Section C4.2). The results showed that combined progression-free survival 

was longer for the sorafenib-sunitinib sequence than the same therapies used in reverse, but this gain 

was primarily due to the progression-free survival on second-line treatment. There was no significant 

difference between the two sequences for progression-free survival on first-line treatment, but 

progression-free survival on second-line treatment was significantly longer for sunitinib than sorafenib. 

The authors noted that some included studies found the sorafenib-sunitinib sequence superior to 

sunitinib-sorafenib in terms of progression-free survival, whist others, including the largest study 

(n=260) found no difference. They proposed that this discrepancy may be explained by the definition 

of combined progression-free survival used.214 The authors calculated the sum of the progression-free 

survival period for each treatment line without considering the treatment-free interval. This combined 

endpoint is referred to as ‘duration of disease control’ by Chibaudel et al.289 and illustrated in Figure 

C2 in the Appendix Volume I, Section C4.2. The combined endpoint that incorporates both the 

progression-free period on each treatment and the interval between relapse and start of the next 

treatment is referred to as ‘time to failure of strategy’, also illustrated in Figure C2 (Appendix Volume 

I).289. The largest study in the review by Stenner et al. defined overall progression-free survival from 

the start of the first VEGF TKIs to progression on the second, including the treatment-free interval. 

When the progression-free intervals were analysed separately, without considering the treatment-free 

period, a different result with sunitinib achieving a longer interval in second-line compared with 

sorafenib was found.214 Stenner et al. also noted that the impact of treatment-free interval on 

progression-free survival may be explained by a more pronounced carry-over effect after cessation of 

sunitinib compared to sorafenib. Patients who received first-line sorafenib may also be more willing or 

fit to receive second-line treatment due to less adverse effects of the drug.214 The quality and speed of 

progression and number of sites involved may have also influenced the clinician’s decision to start the 

second therapy.214 The authors decided to omit the interval and only compare active treatment times 

of sequential treatments as the duration of the pause could not be adequately addressed in the 

pooled analysis. 

 

The review by Stenner et al. was accompanied by a retrospective analysis of patients with metastatic 

renal cell carcinoma who were treated with either the sorafenib-sunitinib sequence or sunitinib-

sorafenib at five Swiss centres.214 This study highlighted the potential limitation of using observational 

studies for comparing older versus newer drugs. The authors noted that the individual treatment 

decision regarding the treatment sequence was driven by the registration status of the two drugs. 
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Patients were initially treated with sorafenib, the first drug registered for use in metastatic renal cell 

carcinoma, and when sunitinib became available all subsequent patients were treated with it. This 

could potentially lead to channelling bias, a form of confounding that occurs when a drug is 

preferentially prescribed to patients with different baseline characteristics.290 I return to this when 

reflecting on the issues of using real-world data from Lloyd et al in the section on meta-regression 

(Section 5.5.2) 

 

5.3.3  The inclusion of adaptive treatment sequencing trials 

The following section illustrates the challenge of reviewing treatment sequences, even when an RCT 

using the innovative clinical trial design for adaptive treatments, such as SMART, is available. The 

SMART design is summarised in the Appendix Volume I, Section B2. The studies summarised below 

showed that the availability of SMART on its own was insufficient to inform clinical practice as it did 

not cover all the relevant treatments and excluded important subgroups such as elderly patients. 

However, the SMART design still provides better data than RCTs of individual treatments that are 

vague about the previous treatments used. The studies also highlight the complexity of the decision 

problem, and illustrate how limitations of the primary data reduced the feasibility of conducting a 

meaningful quantitative synthesis to inform treatment sequences.  

 

One of the examples of the use of the SMART design given in the Appendix Volume I, Section B2 

was the STAR*D trial, conducted to determine the effectiveness of treatments for people with major 

depression who have not responded to initial treatment with an antidepressant.291 292  

 

The systematic review conducted by Ruhe et al. of the evidence for switching antidepressants in 

major depressive disorder included the STAR*D trial.209 The authors noted that several national 

guidelines recommended selective serotonin reuptake inhibitors (SSRIs) as first-line treatment for 

major depressive disorder. In the case of nonresponse, the guidelines recommended three major 

strategies, which included dose escalation, switching to another antidepressant, and augmenting the 

antidepressant with another a drug that by itself is not an antidepressant. The review investigated 

whether the available evidence justified distinct recommendations for next-step strategies after 

nonresponse to a first SSRI. The review included studies of pharmacological switching strategies for 

adults with major depressive disorder nonresponsive to SSRIs. Randomised, non-randomised, and 

uncontrolled studies were eligible, provided at least 50% of the participants had either used an SSRI 

in the current depressive episode or, in the case of treatment resistant depression, had well 

documented prior use of an SSRI. Studies describing switching from tricyclic antidepressants to 

SSRIs were excluded. Included studies were grouped by class of antidepressant, and where possible, 

risk differences and numbers needed to treat for benefit or harm were calculated for each study. The 

review included 21 controlled and 20 uncontrolled studies. Inadequate response or intolerance to an 

SSRI was only determined prospectively in seven studies, and several failed to treat non-responders 

promptly after stopping the unsuccessful drug. There was marked clinical and methodological 

heterogeneity between included studies, and therefore only three RCTs, including the STAR*D study, 
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were pooled in a meta-analysis, comparing switching to venlafaxine, a novel dual-acting agent, versus 

a second SSRI. The authors concluded that the available evidence for switching strategies did not 

justify distinct recommendations, and only allowed general recommendations. They also noted that 

the findings carried the risk of ecological fallacy, with lower remission rates due to the inclusion of 

patients who were more chronically depressed, from lower socioeconomic status, and suffered from 

comorbidities. Ecological bias, also referred to as aggregate bias, relates to the failure of aggregate-

level associations to properly reflect individual-level associations.293 It was unclear how many 

participants had received more than one prior antidepressant, or prior dose escalation. 

 

An alternative review of treatments for refractory depression in older people, which also considered 

treatment sequences, shows the inability of the STAR*D study, due to its limited inclusion criteria, to 

provide evidence to inform clinical decision making.200 The authors specifically noted that the STAR*D 

study did not provide suitable evidence for a population of older people. The optimum sequencing for 

older people was likely to differ due to higher rates of physical and cognitive comorbidities, differing 

social circumstances, greater likelihood of polypharmacy, and age-related pharmacodynamics and 

pharmacokinetic changes. The review included 14 studies, three of which were RCTs and ten 

uncontrolled open-label trials. The review included ‘sequential treatment or trial’ as search terms, but 

only identified two studies of treatment sequences, both were small open-label trials. One provided 

the highest response rate out of all included studies, and the other did not report non-completers and 

non-responders separately for the subsequent treatments and therefore only data for the first 

treatment could be used. In summary, the review failed to evaluate treatment sequences for refractory 

depression in older people due to the limitation of included studies. 

 

5.3.4  Lessons about studying treatment sequences that have emerged from restricting 

inclusion to sequencing studies 

The ideal scenario to inform evidence-based treatment algorithms would be to undertake meta-

analyses of sequencing RCTs but, even before conducting the review of methods, it was clear that it 

is not feasible to undertake RCTs of all conceivable sequences. The findings also demonstrated that, 

when using the endpoint progression-free survival to evaluate whole sequences based on data from 

individual treatment lines, it is important to report how it is defined and utilised within the synthesis. It 

is essential to note whether the sum of the progression-free period for each treatment line also 

incorporates the interval between relapse and start of the next treatment or not. I re-visit this in 

Chapter 7, Sections 7.3.2 and 7.3.4. 

 

In summary, relying solely on treatment sequencing studies, either clinical trials or observational 

studies, is unlikely to provide sufficient evidence to inform clinical decision making. This means that in 

order to make the most of the available evidence base, there is a need to use data from comparative 

studies of single treatments. However, the summary effect of treatments would need to be adjusted 

for the previous treatment used. The next sections explore methods that could be used to achieve 

this.  
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5.3.5  Lessons learned about the use of observational data 

The review findings showed that observational studies based on registry data may be able to provide 

data on the effectiveness of whole sequences or a specific line of treatment, which is adjusted for 

patient characteristics at the time of initiating the treatment, including the treatments received in 

previous lines. However, the use of such studies in a meta-analysis needs to include adjustment for 

any potential bias. 

 

A number of limitations of using observational data for evaluating treatment sequences were 

identified. These are in addition to the usual concerns about using observational studies to inform 

treatment effects, which are discussed in more detail in the Appendix Volume I (Section A). The 

additional limitations relating to treatment sequencing include the following:203 

i. The potential for immortal time bias affecting the assessment of, for example, second-line 

treatment in retrospective studies that include patients receiving third-line treatment, as this 

will exclude patients who do not reach third-line, are continuing second-line treatment, lost to 

follow up, or other reasons; 

ii. The comparison between drug classes may be confounded by differences in the type of 

patients treated with each class;  

iii. The potential for missing or inaccurate data obtained from real-world practice; and  

iv. Having to pool across treatments at class level as most studies do not report drug level data 

when there is evidence that individual drug effects can vary within class. 

v. The choice of treatment may be driven by the registration status of the individual drugs, which 

in turn could also influence the clinician’s decision to switch treatments rather than adjust the 

current treatment.214 

 

 

5.4 SUBGROUP AND STRATIFIED ANALYSES 

5.4.1  Number of studies 

Subgroup analysis is generally used to determine whether the treatment effect is modified by a value 

of another variable.294 Three studies were identified that used subgroup analysis to investigate 

treatment-sequencing effects, all of which included patients with rheumatoid arthritis.12 20 215 Three 

studies, comparing the efficacy of biologics used at a single point in the treatment pathway, are 

included here as further examples.210 212 213 These did not specifically aim to evaluate treatment 

sequencing as such, but did explore the effect of previous treatments using subgroup analysis. This 

type of subgroup analysis is common in company submission to recent NICE technology appraisals, 

as it is required by the manufacturers submission template.283 295 A summary of the included studies is 

presented in Table 5.3 and Appendix Volume II (Appendix C). 

 

There are two ways of applying subgroup analysis within meta-analysis. 

i) The subgroups are defined by splitting all studies into two or more groups (e.g. 

randomised vs non randomised study design) 
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ii) The subgroups are defined by taking partial data from studies, which means the same 

study can appear in both subgroups (e.g. male only and female only analysis) 

The former does not require any more data than the overall analysis and is referred to here as 

stratified analysis, whilst the latter requires additional data on specific covariates. The method used by 

included studies is provided in Table 5.3. Dividing the all studies into groups can also be done using a 

categorical covariate in meta-regression,296 which is summarised in the next section (Section 5.5).  

 

The correct way to analyse subgroups is by using a statistical test of subgroup treatment-effect 

interaction.297 When comparing two estimates of the same quantity from separate analyses, it is not 

enough to note that the intervention was statistically significant in one group and not in another.298 

Significant benefit, or harm, is likely to be absent in small subgroups or populations that are 

underrepresented in RCTs, which could lead to the mistaken finding that an intervention is ineffective 

in a subgroup. Only one included study (Lloyd, 2010) used statistical tests for interaction, which also 

examined the statistical significance of various covariates using regression analysis.20 

 

5.4.2  Subgroup and stratified analysis  

The use of subgroup analysis can be interpreted as evaluating treatment sequences in a piecemeal 

fashion. Two studies examined differences in treatment effects according to the number of previous 

biologics used,12 212 and four studies stratified analysis according to the type of treatments previously 

failed.20 210 213 215 Of note, the distinction between ‘used’ and ‘failed’ was not always clear and may in 

fact be the same thing. 

 

Systematic reviews frequently include separate meta-analyses for interventions used in different 

treatment lines as illustrated, for example, in the study by Salliot et al. which undertook separate 

meta-analyses for first- and second-line biological agents.210 The studies that did this, or conducted a 

meta-analysis of treatments used at a single point in the pathway (e.g. first-line) are referred to in 

Tables 5.1, 5.2 and 5.3 as having used stratified analysis. This is generally done to limit clinical 

heterogeneity. Another approach used is to ‘lump’ all treatment lines in a single meta-analysis, and 

then use subgroup analysis to explore heterogeneity. An example of this is provided by an overview 

of Cochrane reviews of all biological agents for rheumatoid arthritis by Singh et al.213 Both Salliot et al. 

and Singh et al. defined subgroups by splitting all included studies to two or more groups. Two 

included studies used subgroup analysis to investigate the influence of disease duration,213 215 which 

was accounted for in the accompanying meta-regression analyses in one study (Lloyd, 2010).20 Two 

studies used subgroup analyses to explore the influence of the reasons for switching treatment. 12 20 

and two studies provide examples of where this was precluded due to poor reporting by primary 

studies.210 212  

 

5.4.2.1  Poor reporting of primary studies limiting the analysis 

Three studies (Lloyd, 200920; Schoels, 2012;212 Rendas-Baum, 201112) encountered problems with 

poor reporting of the data by primary studies, which limited the extent and level of analyses that could 
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be implemented. However, these studies also failed to report their findings on sequencing effects in 

detail.  

 

Poor reporting of primary studies limiting the analysis of specific previous treatments and 

reason for switching 

The first study (Lloyd, 2009) explored differences in treatment effects by using subgroups based on 

the type of TNF-inhibitor switched to and from, and the reason for switching from one biologic to 

another.20 They noted that of 20 included studies, three did not specify the biologic agent used, and 

one did not specify the agent that was switched to. Eleven studies did not differentiate between 

primary (lack of response) and secondary (loss of response) inefficiency, and only three studies 

reported on all four relevant outcome measures. However, Lloyd et al. themselves did not report their 

actual results, only a narrative stating that the subgroups had no significant effect on pooled 

estimates.  

 

Poor reporting of primary studies limiting analysis of the exact number of previous treatments  

A second study (Rendas-Baum, 2011) examined the relationship between the clinical response to any 

biological agent and the number of previous TNF-inhibitors received. Pooled weighted averages of 

treatment effects, based on sample size, were calculated for each number of up to four previous 

biologics used. However, weighted averages were also estimated for a ‘2+’ category, because a 

number of studies did not report results disaggregated by number of previous biological agents and 

only gave results for the biologic under evaluation in patients with inadequate response to at least one 

previous biological agent. Efficacy was evaluated for four subgroups, including type of biological 

agent and reason for discontinuing previous biologic treatment. However, the authors themselves only 

presented their results as bar graphs, for visual comparison of trends. No statistical tests of interaction 

were conducted, nor were estimates of the variance of the pooled treatment effects provided.  

 

Limited availability of primary studies precluded analysis of the number of previous 

treatments used 

The third study (Schoels, 2012) also examined differences in treatment effects according to the 

number of previous biologics used, and highlights the limitation of this approach for investigating new 

treatments.212 They compared the efficacy of ‘new’ biological agents in patients with an inadequate 

response to previous TNF-inhibitors. They also compared the efficacy for each biological agent after 

only one previous TNF-inhibitor with outcomes after multiple TNF-inhibitor drug failures. Although this 

method can potentially provide useful information on the impact of sequential TNF-inhibitors or the 

number of previous treatments, the review was limited by the lack of available studies. As is often the 

case for the evaluation of new treatments, only one RCT for each new drug was available. Again, due 

to the lack of significant findings, only limited results were reported, which were presented only 

narratively, noting that efficacy rates did not differ with a history of one or multiple previous TNF-

inhibitor failures. Stratified analyses were also presented for the indirect comparison of golimumab 

versus tocilizumab according to the number of previous TNF-inhibitors at baseline, 1, 2, or 3, for three 
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separate response outcomes. Subgroup numbers were small, and the proportion of participants who 

discontinued previous biologic agents due to inadequate response varied considerably between the 

two new biologic agents.  

 

5.4.2.2  Different approaches used for incorporating observational studies, which were 

included to account for the limited primary studies 

The evaluation of sequential TNF-inhibitors required the use of observational studies due to the lack 

of RCTs evaluating a second or subsequent line TNF-inhibitor. The included studies used different 

approaches for incorporating observational studies, and none tried to account for potential bias in the 

observational studies. Suraez-Almazor et al., who only compared two TNF-inhibitors, investigated 

differences in efficacy according to the timing of starting treatment, and subsequent switching 

between agents.215 The review included both RCTs and observational studies. However, only 

observational studies were identified for the TNF-inhibitors used as second-line treatment, or 

switching between agents. No meta-analyses were conducted due to clinical heterogeneity. Rendeas-

Baum et al., on the other hand, included both observational studies and RCTs in their meta-analysis 

by using unadjusted data from the treatment arms from the biologic RCTs, thus breaking 

randomisation (as discussed in the Appendix Volume I, Section A).12 Lloyd et al., conducted both 

meta-analysis and meta-regression using observational studies only, and is also included in Section 

5.5.20 

 

5.4.2.3  Poor reporting or primary studies problematic when conducting stratified meta-

analysis  

Poor reporting of prior treatments by primary studies was still a problem even for systematic reviews 

that investigated treatment sequences in a piecemeal fashion, or by ‘splitting’ studies according to line 

of therapy. Salliot, et al. compared the clinical efficacy of biological therapies within two separate 

analyses according to the study patient populations, representing first or subsequent use of biological 

agents.210 Only non TNF-inhibitors were evaluated in RCTs of patients with an inadequate response 

to a previous biological agent. Despite stratifying the analyses, there was still clinical heterogeneity in 

the analysis of biological agents used as subsequent treatment, which was thought to be due to 

variation in the number of previous biological agents and reasons for treatment failure. The authors 

noted that poor reporting of primary studies, and inability to ascertain precise numbers for these 

variables were limitations for their analyses.  

 

5.4.2.4  Limitations of using subgroup analysis for evaluating treatment sequencing  

The Cochrane overview (Schoels, 2012) which ‘lumped’ different lines of therapy in the same 

analysis, demonstrates why doing a series of subgroup analyses may not be helpful for evaluating 

treatment sequencing, and highlights the problem of subgroup analyses having limited power.213 The 

main analysis included studies of patients receiving biological agents as their first, second, or 

subsequent line biological therapy. A series of planned subgroup analyses then evaluated the effect 

of several factors including the type of previous treatments failed, classified as none, conventional 
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DMARDs, or biological agents. They also investigated whether the previous failed treatment was a 

TNF-inhibitor or not, whether the current treatment was a TNF-inhibitor or not, and whether disease 

duration was classified as early, established or late. Biological agents were evaluated as single 

agents as well as by class for the TNF-inhibitors, but only differences in the class effect were 

examined in the subgroup analysis. The results were presented in terms of relative risk of treatment 

response plus 95% confidence interval for each individual subgroup, with no statistical test for 

interaction. As only one variable was considered at a time, the resulting number of individual 

subgroups analysed made it difficult to interpret the overall findings. As noted by the authors, the 

analyses were also susceptible to type II error due to the small number of studies within the 

subgroups. A type II error is a false negative, or a failure to reject a false null hypothesis, due to 

inadequate power.299 300 A number of reviews evaluated multiple outcome measures as well as 

numerous subgroups, which increases the likelihood of type I error.299 300 A type I error is a false 

positive, or rejecting a correct null hypothesis (i.e., falsely inferring the existence of something that is 

not there), due to multiple comparisons resulting in chance findings. For example Rendas-Baum et 

al., evaluated efficacy using several different response measures over four subgroups.12 They also 

had a limited number of studies within each subgroup. Many included studies failed to report the 

actual data for subgroup analyses that did not show statistically significant results. 

 

The study by Suraez-Almazor et al., which used subgroup analyses to investigate the optimum timing 

of introducing TNF-inhibitors, demonstrates how not to interpret the findings of subgroup analysis and 

the importance of using a statistical test for interaction.215 Subgroup analyses frequently have limited 

power, and a small number of events or studies included in one of the two subgroups could make the 

estimates and p values appear very different by chance, or result in wide confidence intervals. 

Suraez-Almazor et al. meta-analysed RCTs of TNF-inhibitors used as first-line treatment, and used 

subgroup analysis to assess differences in effects according to whether the patients had previously 

received methotrexate or not, and whether they had early disease duration, of less than two years, or 

longer. The results for the subgroups were compared using informal indirect analyses, with statistical 

significance established by examining the point estimates of the treatment effect and whether the 

95% confidence intervals overlapped, rather than the correct approach using a test of interaction for 

the statistical comparison between two estimates of the same quantity from separate analyses.298 The 

statistical test should target the question at hand, and it is not sufficient to compare the p-values or 

confidence intervals from separate analyses.298 

 

A methodology review was conducted by Thorlund et al. to identify issues that can explain the 

discrepancies in the findings of network meta-analysis of biological agents for rheumatoid arthritis.301 

The methodological items that were assessed included objectives, eligibility criteria, databases 

searched, completeness of trial inclusion, bias risk assessment, effect measures, statistical methods 

and additional analysis. The comparison of statistical analysis included, among other items, the 

methods employed for dealing with DMARD-naïve and DMARD-experienced patients. The review 

identified 13 published network meta-analyses, which were shown to have major discrepancies. Six 
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studies included DMARD-naïve patients, patients with inadequate response to TNF-inhibitors (TNF-

IR), or both, in addition to patients with inadequate response to previous conventional DMARD 

(DMARD-IR). Of these, two produced stratified analyses by patient groups, one developed an 

interaction analysis including the group term in the regression model, and three inappropriately 

lumped data across groups without controlling or separating (two studies lumped DMARD-naïve and 

DMARD–IR, and one lumped DMARD-IR and TNF-IR).301 Three of the six studies were also included 

in the current review: Nixon, 2007208 that lumped studies; Mandema, 2011206 and Salliot, 2011,210 

which used stratified analysis; and Singh, 2009,213 which performed an interaction analysis. 

 

5.4.3  Lessons about studying treatment sequences that have emerged from studies using 

subgroup or stratified analysis 

The review has identified that, whilst subgroup analysis can be used to answer the question of 

whether the efficacy of an individual treatment is different in patients with an inadequate response to a 

specific previous treatment compared to those who had never used it, this approach can be limited by 

the poor reporting of previous treatment and a potential small number of studies. Similarly, subgroup 

analysis would benefit from having access to individual patient-level data. Overall, the findings of the 

reviewed subgroup analyses were generally poorly reported and statistical tests of interaction were 

rarely conducted. The review identified the following drawbacks of using subgroup analysis as a way 

of exploring sequences: 

i. Subgroup analysis does not enable treatment sequencing to be evaluated in great depth, or 

provide conditional or adjusted effect estimates.  

ii. Subgroup analysis can only test for an interaction (whether it is zero) between the treatment 

effect and a single covariate representing treatment history, and cannot estimate the extent of 

this interaction. 

iii. Subgroup analysis is based on categorical data, and included studies used a simplified, 

dichotomised or categorised summary of previous treatments, for example number of 

treatments failed or a pre-specified treatment graded as yes/no. Although a more elaborate 

remodelling of discrete variables could have been adopted, for example using coding dummy 

variables for first-line, second-line, and third-line treatment etc.  

iv. Subgroup analysis can produce misleading results due to confounding and aggregation 

biases (ecological fallacy).  

v. Subgroup analysis investigate only one factor at a time, and cannot account for the 

simultaneous influence of other important factors. They are unable to demonstrate the 

independent effect of previous treatments. 

vi. With subgroup analysis as the number of outcomes and covariates being evaluated 

increases, the likelihood of a type I error, or producing the wrong results due to chance, 

increases.  

vii. Non-significant results of subgroup analysis are likely to be common due to lack of power 

(type II error), especially when previous treatments are poorly reported, or the evidence base 

is limited.  
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viii. Subgroup analysis are frequently hampered by poor reporting of previous treatments, which 

also means that the influence of important factors such as reasons for switching treatments 

cannot be evaluated. 

ix. It is difficult to interpret the findings of a series of multiple subgroup analyses. 

 

Some of the limitations of subgroup analysis can be overcome by using meta-regression, which 

represent extensions of subgroup analysis that allow the effect of continuous or categorical variables. 

For example, meta-regression also allows the extent of the interaction to be investigated, not just the 

statistical significance, as well as the evaluation of more than one factor at a time. The next section 

explores the use of meta-regression. 
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Table 5.3: Summary of included rheumatoid arthritis studies using subgroup-analysis 

Study 
 

Decision point – 
treatments of interest 

Patient population - 
treatment history 

Outcome measures Covariates related to sequencing included in 
analysis [no. of studies if 10 or below] 

Available evidence 
base* 

Results 

Lloyd, 2011 1st-line or 2nd/3rd-line TNF 
inhibitors 
(Sequential TNF-inhibitors) 

TNF-naive vs TNF-IR Achieving ACR50 and 
EULAR response 
Mean improvement in 
DAS-28 and HAQ 
scores 

Subgroup analysis: 

 Type of TNF switched from and to [ADA, 
ETA, INF] 

 Reason for switching (intolerance, primary 
inefficacy; secondary inefficacy; either 
inefficacy [most studies did not differentiate 
between primary and secondary]) 

 
Meta-regression (included 3 covariates): 

 Mean no. of previous cDMARDs [n=10] 

 Disease duration 

 Duration of TNF 

Observational studies 
(uncontrolled and 
sequencing studies) 

Subgroup analysis: 
No significant difference identified (no results presented) 
 

Rendas-Baum, 
2011 

1st, 2nd or subsequent-line 
biologics  

TNF-IR Achieving ACR 
(20/50/70), EULAR 
(good/moderate) and 
DAS-28 (≥3.2/≤2.6) 
response criteria (7 
outcomes) 

Data analysis based on individual patients with 
efficacy (‘clinical response’ rate) estimated for 
groups of patients according to no. of previous 
TNFs received (1, 2, 2+, 3, or 4). Pooled weighted 
averages, based on sample size (of each group), 
were developed for each outcome measure (n=7).   
 
Estimates also evaluated for the subgroups: 

 Type of biologic (TNF vs other) 

 Reason for switching to 2nd TNF (intolerance, 
lack of efficacy, loss of efficacy) 

 Type of study (RCT vs observational) 

 duration of follow-up 
 
Evaluation of reason for discontinuation: 
Response to a 2nd TNF stratified by reason for 
discontinuing 1st TNF 

RCTs and 
observational studies; 
analysis based on 
individual patient data 
breaking 
randomisation  

No formal statistical inference was undertaken. 
There was a trend of lower efficacy rates with increased 
number of previous TNF-inhibitors used. The magnitude of 
the decline may depend on the type of biologic used. Patients 
who discontinued treatment due to adverse effects were more 
likely to achieve a response to a 2nd TNF than patients who 
discontinued due to efficacy-related reasons. (The available 
data precluded comparison of patients who switched to a 2nd 
biologic that was not within the TNF class) 

Suarez-Almazor, 
2007 

1st- and 2nd-line TNF-
inhibitors (switching 
between INF and ETA) 
 

1st-line TNF: 
cDMARD[MTX]-naive or 
cDMARD[MTX]-IR. 
and 2nd-line TNF: 
TNF[INF/ETA]-IR 

Achieving ACR50 and 
ACR70 response 

Stratified MA conducted for 1st- and 2nd- line TNF 
inhibitors 
 
Subgroup analysis for 1st-line TNF inhibitors, with 
RCTs categorised according to: 

 Type of previous treatment failed (patient 
population: MTX-naïve [n=2] vs MTX-IR [n=1-2]) 

 Disease duration (early [n=2-3] vs 
established/late stage [n=1]) 

Multiple MAs conducted over different outcomes 
using fixed effect and random effects models 
 
narrative synthesis for 2nd-line TNF-inhibitors (due to 
heterogeneity) 

1st-line: RCTs; 
2nd-line (switching 
between INF and 
ETA): observational 
studies only (not 
pooled) 

Statistical significance established by comparing the overlap 
between 95% confidence intervals for individual treatment 
effects. 
There was statistically significant differences favouring TNF-
inhibitors (plus MTX vs MTX alone) in patients with longer 
disease duration or patients who had failed MTX. 
RCTs often compared INF or ETA to MTX in patients who had 
already failed MTX. When the trials included a true MTX 
control group of naïve patients, the results showed less 
benefit with INF or ETA (compared to MTX) than in RCTs that 
included patients who had failed MTX. 
2nd-line TNF-inhibitors: 
All but one study reported that most patients who failed one 
TNF-inhibitor can respond to another one after switching. 
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Schoels, 2012 2nd or subsequent-line 
biologics (‘new’ biologic 
after multiple TNF-
inhibitors) 

TNF-IR Achieving ACR20, 
ACR50 and ACR70 
response 

Subgroup analysis only conducted for 2/4 included 
biologics (within an indirect treatment comparison 
MA of TOC vs GOL): 

 No. of previous TNFs (1 vs multiple previous 
TNFs) [n=2] 

 No. of previous TNFs (1, 2, or 3 previous TNFs 
[n=2] 

(Only 1 RCT available for each biologic; analysis 
based on partial data from trials) 

Placebo RCTs (‘new 
biologics’) 

Efficacy after one vs multiple TNF-inhibitors did not differ 
significantly. Response rates for GOL and TOC did not differ 
significantly when assessing separately those who had failed 
2 or 3 previous TNFs, but failure of 3 TNFs occurred in few 
patients and confidence intervals were wide.  
 
Only 2/4 RCTs reported the proportion switching treatment 
due to inefficacy, ranging from 58% (GOL) to 95% (TOC). 

Singh, 2009 1st, 2nd, or subsequent-line 
biologics 
 

cDMARD-naïve, 
cDMARD-IR, TNF-naïve, 
or TNF-IR 

Achieving ACR50 
response 

Overview of Cochrane reviews. Individual drugs 
compared with placebo, and then as a single group 
(biologics vs placebo); ITC between biologics also 
conducted. Planed subgroup analyses conducted 
for ‘biologics’ (as a single group) vs placebo. 
Analyses performed using a generalised linear 
mixed model (accounting for heterogeneity between 
the drugs due to study and that due to study x drug 
interaction). 
 
Subgroup analysis (7 in total) with RCTs 
categorised according to: 

 Type of previous treatment failed (none vs 
cDMARDs vs biologics) [n=27, but only 2 for 
‘none’] 

 Failed previous TNF (yes vs no) [n=27, but only 
5 for ‘yes’] 

 Biologic = TNF (yes vs no) 

 Disease duration (early vs establishes vs late 
stage) [n=27, but only 5 for ‘early’] 

Placebo RCTs Biologics were similarly effective regardless of stages of 
disease, type of drug previously failed, whether previous TNF 
treatment had failed, or whether the biology used was a NTF 
or ‘other’. Limited number of studies for some subgroups 
increased susceptible to type II error. There was 
heterogeneity in placebo group (due to concomitant 
cDMARDs/MTX in some studies). 

Salliot, 2011 1st and subsequent-line 
biologics 

1st-line biologic: cDMARD 
[MTX]-IR; subsequent 
biologic (only non-TNFs): 
TNF-IR  
 

Achieving ACR50 
response 

Stratified MA for 1st and ‘subsequent’ biologic 
 
No subgroup-analysis considered for 1st-line 
biologics (comparing TNFs as a group vs non-TNFs 
as a group and individual agents) 
 
Planned subgroup analysis precluded for 
subsequent-line biologics (only included non-TNFs) 
due to limited number of studies [n=5] and poor 
reporting: 

 No. of previous TNFs 

 Reason for switching [n=2] 

 Duration of prior TNF-inhibitor 

Placebo RCTs Significant clinical heterogeneity in MA of subsequent 
biologic, reported as being likely due to the number of 
previous biologics and reasons for treatment failure. Limited 
number of studies precluded a-priori planed subgroup 
analysis. 

Abbreviations: ADA adalimumab; ARC American College of Rheumatology score; cDMARD conventional disease modifying antirheumatic drug; DAS disease activity score; EULAR European League 

Against Rheumatism classification; ETA etanercept; GOL golimumab; HAQ Health assessment questionnaire score; INF infliximab; IR inadequate response; MA meta-analysis; MTX methotrexate; no. 

number; RCT randomised controlled trial; TNFs tumour necrosis factor-inhibitors; TOC tocilizumab. 
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5.5 THE USE OF META-REGRESSION  

5.5.1  Number of studies  

Meta-regression is generally used to explore heterogeneity in meta-analysis and to explain the 

difference between intervention effects in a collection of studies.296 Summary effect sizes (e.g risk 

ratio) that are adjusted for study-level covariates are produced by regressing the effect size from each 

study onto the covariate of interest within each study.208 The regression coefficient obtained from the 

meta-regression describes how the treatment effect (dependent variable) changes between 

subgroups of studies, in the case of a categorical explanatory variable, or with one-unit increase in a 

continuous explanatory variable. 

 

The review included eight studies on meta-regression relevant to treatment sequencing.20 21 198 202 205 

206 208 211 However, only one of these specifically aimed at evaluating treatment-sequencing effects, 

which included the study by Lloyd et al., that evaluated the sequential use of biological agents for 

rheumatoid arthritis.20 Five further studies exemplify the use meta-regression techniques to explore 

the effect of prior treatments or disease duration. These studies build on the findings of study by Lloyd 

et al., and also focus on the evidence syntheses of biological agents for rheumatoid arthritis.21 205 206 

208 211 One additional study, by Grothey et al., demonstrates the use of meta-regression to investigate 

the influence of subsequent treatments on overall survival for advanced cancer, with a partial aim 

concerned with evaluating treatment sequencing: it used linear regression to correlate the percentage 

of patients receiving second-line therapy with the percentage of patients who had received three 

active chemotherapies for advanced colorectal cancer.202 The methods used in the included studies 

are summarised in Table 5.4.  

 

5.5.2  Meta-regression used for evaluating treatment sequences 

An overview of the clinical scenario, and the available evidence base, is provided in the Appendix 

Volume I (Section C3).  

 

The study by Lloyd et al. was a systematic review and meta-analysis of the effectiveness of 

sequential TNF-inhibitors to ascertain whether a second or a third TNF-inhibitor is still effective.20 The 

only relevant studies identified were observational, and mostly uncontrolled. Conventional pair-wise 

meta-analyses were used to estimate the treatment effect of TNF-inhibitors used as a class. These 

were initially based on single-arm data with univariate meta-regression used to try to explain the 

heterogeneity using study level demographic covariates, including disease duration, previous 

conventional DMARDs, and duration of biologic treatments. Subgroup analyses and meta-regression 

were then used to determine if there were differences in outcomes according to the type and 

sequence of TNF-inhibitors received, or reasons for switching. Separate meta-analyses were 

conducted for developing comparative effects of sequential TNF-inhibitors compared with first-line 

use. These were based on four studies that compared outcomes for patients receiving TNF-inhibitors 

as second or third-line treatment with other patients taking their first TNF-inhibitor, which may or may 

not include the group that subsequently switched. The results of the meta-regression analyses were 
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not presented for demographic variables that were not found to be statistically significant. Disease 

duration was the only covariate that was found to have a significant effect, on only one outcome 

measure, change from baseline response in disease activity score (DAS-28). The results showed that 

there was an extra reduction in the DAS-28 score, representing a worsening of the condition, of -0.16 

(95% confidence interval: -0.24 to -0.07) per additional year. However, disease duration is likely to be 

correlated with the number of previous treatments used, as the likelihood of failing prior treatments 

will increase with increasing disease duration. The meta-regression was based on univariate analysis, 

so the potential effect of other covariates was not accounted for.20 However, there is a need to try to 

disentangle whether long standing disease per se is associated with a poor response to treatment, or 

whether prior failure on previous treatments predicts response to subsequent treatment.302 This may 

provide justification for including previous treatment as a covariate in multivariate meta-regression 

analyses, even when it is not found to be statistically significant in univariate analyses. The results of 

the single arm meta-analyses (based on patient change from baseline) showed that there was 

considerable heterogeneity for all four outcome measures used.20 This heterogeneity was not 

explained by either the meta-regressions or subgroup analyses. The results of the comparative meta-

analyses showed superior responses in patients receiving TNF-inhibitors for the first time compared 

to subsequent use.20 Based on their findings, the authors concluded that sequential use of TNF-

inhibitors was likely to have a beneficial effect, but the probability of achieving response, and the 

magnitude of that response, is lower with subsequent use of biologics than first-line use.20 They were 

unable to make any conclusions about the specific TNF-inhibitor used or reasons for discontinuing 

prior TNF-inhibitors, due to the limitation of the available evidence.  

 

5.5.2.1  Reflections on the use of real-world data 

The study by Lloyd et al. highlights some of the challenges and limitations of using observational data, 

such as that obtained from registry studies.20 The study used observational studies as no relevant 

RCTs were identified. However, the extent of the bias in the observational studies was not estimated 

or taken into account in the analyses, which is equivalent to assuming that it does not influence 

treatment-sequencing effects. The results represent the comparison of TNF-inhibitors used during an 

earlier versus a later part of the treatment pathway, ignoring the likely effect of disease trajectory, 

changes in pathophysiology and pharmacokinetics with time, as well as other confounding factors. It 

also did not account for the potentially increasing proportion of patients who do not respond to any 

TNF-inhibitor (discussed in the Appendix Volume I, Section C3).303-305 The authors did, however, 

acknowledge the likelihood of selection bias being present in the available comparative data (4 

studies), which was based on cohorts where the patients were receiving biologic treatment for the first 

time, and that of patients who fail biological agents and therefore have a worse prognosis and are 

likely to show limited responses to all treatments.20 Another potential source of bias in the 

observational data, is a phenomenon known as regression to the mean. This is because patients tend 

to be treated with a subsequent TNF-inhibitor at the height of their disease activity, where there is a 

greater than 50-50 likelihood that the disease activity will start improving after the intervention purely 

by chance.302 306 307 In a narrative review conducted by Rubbert-Roth et al., which included the same 
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observational studies as Lloyd et al., the authors concluded that the decline in efficacy after switching 

to a second TNF-inhibitor was likely due to both a class effect and a channelling bias, favouring 

patients with more severe disease.303 These same issues are likely to arise in other chronic 

conditions, where new treatments are being introduced. The review also highlights the limitation of the 

research question comparing first-line versus subsequent use TNF-inhibitors to inform treatment-

sequencing effects, as the ‘true’ population treatment effect will be different in the two settings or 

patient populations, with the latter equating to a more severe and chronic disease condition. In other 

words, an estimate of the ‘absolute sequencing effect’ cannot be obtained in the same way as that of 

an individual treatment would be obtained (as discussed previously in Chapter 1, Sections 1.3 and 

1.5). 

 

5.5.3  Meta-regression used to account for the number of previous treatments or disease 

duration 

The studies summarised in this next section provide examples of the challenges of including previous 

treatments as a covariate in meta-regression, primarily due the poor reporting of primary studies.20 21 

205 206 208 211 There are also examples of methodological approaches that may provide useful 

groundwork for developing a novel method for evaluating treatment sequences in the future, including 

the combined use of network meta-analysis and meta-regression and model based meta-analysis.  

 

The comparative effectiveness of biological agents for rheumatoid arthritis is sometimes assessed 

using meta-analyses that pool across studies, representing their use at different points in the 

treatment pathway with meta-regressions used to explore between the study heterogeneity. The 

inclusion of covariates, such as the number of previous treatments, in the final meta-regression is 

generally dependent on significant findings in prior univariate analysis.20 205 The results of non-

significant preliminary analysis are rarely presented, and the lack of statistical significance may be 

due to limited power.20 211 Insufficient power to detect an association is one of the main challenges for 

using meta-regression. Poor reporting of previous treatments is likely to contribute to this, as is the 

need to limit inclusion to studies reporting a specific type of outcome data. For example, the primary 

analysis in the study by Lloyd et al. was based on change from baseline in the Health assessment 

Questionnaire (HAQ) score, with studies that reported proportion of patients achieving a clinically 

meaningful improvement in HAQ score, or dichotomous outcomes, being excluded.20  

 

The first study to combine the use of meta-regression with network meta-analysis in order to develop 

models that allow for the simultaneous comparison of multiple competing treatments while adjusting 

for study level covariates was conducted by Nixon et al. The study compared the efficacy of four 

biological agents, three of which were TNF-inhibitors, used in early or late stage disease.208 The 

review included biological agents used as monotherapy or combination therapy with methotrexate, 

and studies that included patients who had not previously received any DMARDs and those who had 

had an inadequate response to these drugs were lumped together. There was significant 

heterogeneity across baseline characteristics of included studies, for example, the mean number of 
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previous DMARDs ranged from 0 to 4. Four RCTs included patients who had not previously tried 

methotrexate, the results of which showed consistently lower odds of response than those where 

patients had previously used methotrexate. In order to avoid problems with insufficient power, only 

two study-level covariates were incorporated in the meta-regression, a measure of the baseline 

disability using HAQ, and disease duration. Efficacy was measured using the log odds ratio of 

achieving the American College of Rheumatology (ACR) 50 responder status at six months. The 

modelling was done gradually, increasing the complexity over a series of four models, outlined below. 

Models 1 and 3 were network meta-analyses; 2 and 4 were meta-regression models, which 

augmented models 1 and 3, respectively. A random-effects meta-regression model was fitted that 

adjusted the log odds ratio for the two study-level prognostic factors. A different random effect 

distribution on the log odds ratios was allowed for each different treatment. The odds ratio was found 

as a function of the prognostic factors for each treatment.  

 

Model 1 was a network meta-analysis with univariate random effects. The model assumed 

exchangeability between treatment arms (both within a study and between studies), and that the 

effect of methotrexate was the same in each study.  

 

Model 2 was a network meta-analysis with bivariate random effects. The model assumed 

exchangeability between treatment arms (both within a study and between studies), and that the 

effect of methotrexate was the same in each study. Here the study level characteristics, average 

baseline disease duration and average baseline HAQ, were included as treatment-disease duration 

and treatment-HAQ interaction effects to assess how they affect the effect estimate. 

 

Model 3 was a network meta-analysis with bivariate random effects, including meta-regression 

coefficients. Here methotrexate was treated in a similar way to a biologic, and allowed to be 

exchangeable between studies. 

 

Model 4 included adding different random effects for TNF-inhibitors and anakinra. The average 

baseline disease duration and average baseline HAQ of patients were included as meta-regression 

co-variables in the same way as model 2, and with the same random effects structure as model 3. 

The results showed that disease duration increased the odds ratio advantage of biologics by a factor 

of 1.13 per year. 

 

The methods presented by Nixon et al., were based on a binary outcome measure of achieving 

treatment response.208 Schmitz et al, further extended these methods of combining the use of network 

meta-analysis with multivariate meta-regressions, in order to incorporate continuous outcome 

measures for disease severity.211 308 This is important as it can increase the power to detect statistical 

significance. Schmitz et al. compared the results of network meta-analyses of the same RCTs using 

binary versus continuous outcome data.211 308 Two popular response measures for rheumatoid 

arthritis were either translated from a binary to a continuous scale, or the other way around. The 
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former included the binary ACR response criterion, and the latter the HAQ score. The results of the 

analyses based on both binary and continuous response measures were compared in terms of power 

to detect differences between treatments. The findings showed that information is lost when 

continuous variables are dichotomised into a binary outcome measure, which results in a loss of 

power to detect differences between treatments in a network meta-analysis.308 

 

The study by Schmitz et al. compared the efficacy of first-line TNF-inhibitors in patients with an 

inadequate response to methotrexate, i.e. all patients had established or late stage disease.308 There 

was heterogeneity between included studies, in particular in relation to severity of the disease at 

baseline, and dose of methotrexate. The statistical models were therefore extended to meta-

regression to evaluate the effects of the number of previous DMARDs, disease duration, and disease 

severity, but as the findings were not statistically significant these covariates were not included in the 

final analyses. No details were reported of the regression analysis, and the number of participants 

and events for each grouping was not stated. Despite the inclusion of a sufficient number of studies 

for evaluating treatment efficacy, this may not have been the case for previous treatments as they 

were not always reported in the primary studies. Sixteen placebo-controlled trials were included in the 

review, with the number of previous DMARDs ranging from one to three in ten trials, but ‘not 

assessed’ for the remaining studies. A more recent systematic review by Kanters et al., which aimed 

to explore which clinical features and characteristics are associated with the magnitude of 

comparative efficacy between biologics and methotrexate, in patients with inadequate response to 

methotrexate, also experienced a similar problem.205 Univariate meta-regression analyses were 

performed only for covariates that were reported in at least 10 studies. As only eight of the 22 

included studies reported the number of previous DMARDs failed, this was not included in the 

analysis.  

 

Evidence corroborating the presence of a correlation between disease duration and number of 

previous treatments used was identified in a more recent meta-epidemiological study of all trials 

evaluating a targeted therapy (biological or the newer targeted synthetic DMARDs) approved by 

regulatory authorities for treating rheumatoid arthritis.198 The study (Christensen, 2015) investigated 

whether variations in trial eligibility criteria and baseline characteristics modify treatment effects using 

both subgroup analysis and meta-regression.198 The study was limited to trials investigating the use of 

targeted therapies as add-on therapy. Included studies were pooled using conventional pairwise 

meta-analysis to investigate the level of heterogeneity, and effect modifiers were then identified in 

meta-regression analyses. The included studies were also stratified according to the DMARD history 

of included patients, and grouped into one of the following categories:  

i. DMARD-naïve (patients were either conventional synthetic DMARD naïve or had not 

exhausted the treatment potential of at least one conventional DMARD)  

ii. DMARD-inadequate responders (where patients had exhausted at least one conventional 

DMARD option and had inadequate response) 
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iii. Targeted therapy-inadequate responders (patients had experienced an inadequate response 

to at least one previous targeted therapy) 

Stratified meta-analysis according to DMARD history resulted in a reduction in the overall between-

study heterogeneity, and there was a statistically significant interaction between the groupings. The 

overall findings showed that treatment history and baseline disease duration modified the added 

effect of the targeted therapies. The added benefit of targeted therapies was lower in studies that 

included patients who were DMARD-naïve. The authors concluded that researchers conducting meta-

analyses assessing the efficacy of targeted therapies for rheumatoid arthritis should include the 

patients’ treatment history as a covariate in order to improve the precision of estimates. They also 

recommended that future trials should report adequately on the number of previously failed 

conventional DMARDs and biological agents for each patient, as well as the trial definition of 

treatment failure for each class of drugs. However, they also noted that their findings may be 

influenced by ecological fallacy, and therefore recommend that the findings should be confirmed using 

individual patient data. 

 

The study by Christensen et al. also demonstrates the practical limitations of using meta-regression. 

Sixty-two trials were included in the analysis, but only 13 reported data on DMARD history and 

disease duration (Table5.4).198 

 

The study presented by Mandema, et al., demonstrates a model-based meta-analysis, which could 

potentially be further developed to allow for treatment sequencing.206 Model-based meta-analysis 

techniques allow for controlling and measuring variability in treatment response that comes from 

differences in dose, time under treatment, and baseline characteristics. Mandema, et al., used a 

dose-response meta-regression analysis to enable the inclusion of data from varying dosages and 

outcome measures. This represented an alternative to previous methods such as lumping different 

doses together, ignoring differences in efficacy, or using information from only one particular dose.206 

The main analyses combined data from studies that differed according to patients’ population 

characteristics, line of therapy, and treatment histories. The analyses included 11 treatment arms 

comprising placebo, methotrexate, five TNF-inhibitors, and four ‘newer’ biologics using a different 

mode of action. The data were pooled across different patient populations, including those who were 

methotrexate-naïve, those with an inadequate response to methotrexate, and those who had an 

inadequate response to previous TNF-inhibitors. The potential heterogeneity in treatment effects was 

addressed by including placebo response, study design, and patient characteristics as parameters in 

the dose-response analyses, with a random-effects model used to account for the remaining 

unexplained between study heterogeneity. Study specific model parameters included background 

treatment and failed prior treatments for the study population. These were grouped as conventional 

DMARD other than methotrexate, conventional DMARD including methotrexate, and TNF-inhibitors. 

Treatment-arm specific covariates relating to patient characteristics included, among others, disease 

duration. The authors reported that there was no significant impact of differences in background 

treatment, disease duration, or other covariates included in the regression analysis, but did not report 
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the actual data for these findings. Regression analyses were also used to characterise the interaction 

coefficient for TNF-inhibitor and methotrexate initial combination therapy, which was -0.32 (-0.37 to -

0.27), showing that the effect of initial combination was less than the sum of the effects of each 

component. The study also included stratified meta-analyses according to whether the trial population 

included patients with an inadequate response to prior methotrexate, or were methotrexate naïve. The 

analyses of TNF-inhibitors in the methotrexate naïve population showed that combination therapy with 

methotrexate provided a significant increase in the response rate as compared with methotrexate 

monotherapy. 

 

The review conducted by Anderson et al., demonstrates how individual patient-level data were used 

to inform the regression analysis.21 Individual patient data meta-analyses have much higher power if 

patient-level covariates are of interest.309 310 The use of individual patient data can also address to 

some extent the potential problem of ecological fallacy (referred to in Section 5.3.3). In terms of 

treatment-sequencing effects, ecological fallacy would be to assume that every patient within a 

subgroup has received the same previous treatments. The use of individual patient data, i.e the actual 

‘raw’ data for all the patients included in the primary study, would overcome this limitation, but is 

unlikely to be available for all relevant studies. The Anderson review aimed to identify which patient or 

disease activity factors predict response to second-line treatment with drugs or devices for 

rheumatoid arthritis.21 All but one included RCT investigated the use of conventional DMARDs (mainly 

methotrexate). The review did not consider biological agents. Only RCTs for which individual patient 

data were available on baseline and outcome variables were included. Despite this, the authors used 

a crude estimate of previous conventional DMARDs used, which was classified as either yes or no. 

The authors were able to undertake multivariate logistic regression analysis, which showed that prior 

DMARD use was associated with a lower rate of treatment response. This effect was independent of 

disease duration or other factors. However, the study did not consider response to individual 

treatments, and the findings relate any active treatment compared to placebo. Treatment was 

controlled for in the analyses with an indicator variable for each non-placebo treatment, whilst the 

‘study’ was not included as an effect because some active treatments were studied in only one RCT.  

 

5.5.4  Meta-regression used for evaluating the influence of subsequent treatments on overall 

survival 

A non-systematic review, by Grothey et al., investigated the impact of subsequent active salvage 

treatments on median overall survival for studies of first-line treatment, using regression analysis. The 

authors noted that the median overall survival from RCTs of chemotherapy regimens used as first-line 

treatment for advanced colorectal cancer showed substantial variation.202 The large number of 

participants enrolled, and the short time frame over which they were conducted meant that this 

heterogeneity was unlikely to be due to patient selection or factors unrelated to the actual treatment 

strategies used.202 It was considered that this could be due to the impact of subsequent salvage 

treatments, but treatment sequences were only investigated in one RCT, the GERCOR trial, which 

was included in some of the reviews discussed in Section 5.3.2. Grothey et al., therefore investigated 
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the influence on the reported median overall survival of the availability of all three active cytotoxic 

agents, fluorouracil-leucovorin, irinotecan, and oxaliplatin, in the course of the treatment. They 

included seven recently-published phase III RCTs in advanced colorectal cancer, which reported the 

number of patients receiving second-line therapies.202 Only treatment arms containing an irinotecan- 

or oxaliplatin-based combination therapy as first-line treatment were included, from which they 

recorded the percentage of patients who received any subsequent treatment and the percentage of 

patients who were treated with all three cytotoxic agents during the course of their disease. The order 

in which these drugs were used was not specified, and patients could have been exposed to any 

agent as either first or second-line treatment. The analysis did not distinguish between whether the 

missing active drug was used as second or third-line treatment. Data on patient median overall 

survival from each trial was also recorded. The goal of the analysis was to correlate both the 

percentage of patients receiving second-line therapy and the percentage of patients receiving all three 

agents with the reported median overall survival. For the analysis, the Spearman rank correlation test 

was supplemented by simple linear regression. As a sensitivity analysis, weighted linear regression 

was used with weights proportional to the trial’s sample size. The reported median overall survival 

was significantly correlated with the percentage of patients receiving all three drugs in the course of 

their disease (p=0.0008), but not the percentage of patients who received any second-line therapy. 

Studies in which a high percentage of patients had access to all three active cytotoxic drugs in the 

course of their disease showed the longest overall survival. 

 

This represented a simple analysis that assumed homogenous trial populations. The authors 

recognised this as a potential bias in their analysis. Specifically, that patients who live longer have a 

greater opportunity to receive all three drugs, and that patients with poorer performance status, and, 

thus, shorter life expectancy might have been excluded from irinotecan- or oxaliplatin-based second-

line treatments. A high percentage of patients in the included studies, ranging from 52 to 81%, lived 

long enough to have received second-line treatment of any kind. However, at the time the studies 

were conducted, not all drugs were available to all patients enrolled in the studies. A similar issue was 

also identified in Section 5.3.2 relating to channelling bias and illustrated using the study conducted 

by Stenner et al. The authors concluded that the findings showed that any second-line treatment does 

not impact survival but using all three drugs during the course of the disease does, suggesting that 

specific second-line treatment impacts survival.  

 

The analysis did not address the question of which is the best sequence of treatment options, and 

whether an irinotecan or oxaliplatin based regimen should be used first. The findings however, did 

show that there is a need to take subsequent treatments into account when analysing overall survival 

for first-line treatments in advance colorectal cancer. This is also likely to have an important impact on 

economic evaluations which often use data on overall survival. I return to this as part of the review of 

modelling studies in Chapter 7 (Sections 7.3.2, 7.3.3, and 7.3.4), it is discussed further in the 

Appendix Volume I, Section C4.2, and the issue of switching treatments within an RCT of individual 

treatments in Section A4. The findings also provide useful information for decision-making and 
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potential future research. The authors concluded that for maximum survival benefit, patients who 

received, for example, first-line oxaliplatin-based monotherapy should receive irinotecan-based 

combination therapy, where the effective salvage therapy might compensate for the less active first-

line therapy. 

 

5.5.5  Lessons about studying treatment sequences that have emerged from studies using 

meta-regression 

Meta-regression has not been used extensively in the evaluation of treatment sequences. However, it 

has been used to explore whether the number of previous treatments or disease duration (which was 

discussed in Chapter 2 as a potential surrogate for previous treatments) has an impact on treatment 

effect. It has also been used to investigate the impact of subsequent treatments on overall survival. 

Disease duration and the number of previous treatments were identified as potentially important effect 

modifiers, but they are also correlated, and the effect of either one may have been confounded by the 

other. This may provide a justification for including both covariates in future meta-regression to obtain 

the effect of each one controlling for the other, e.g. the number of previous treatments adjusted for 

disease duration. There is also a need to ascertain whether long-standing disease per se is predictive 

of treatment response, or whether prior failure on previous treatments predicts response to 

subsequent treatment. This was also identified as an important issue in Chapter 2, and the health 

technology assessment of sciatica treatments. However, the main challenges of using this approach 

are the poor reporting of previous treatment, the susceptibility to type II error due to a small number of 

studies, and the potential for ecological fallacy. The combined use of RCT data and observational 

studies, and the availability of individual patient-level data may help to overcome some of these 

limitations, as would methods that incorporate different outcome measures.  
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Table 5.4: Summary of included rheumatoid arthritis studies using regression methods 

Study 
 

Decision point – 
treatments of interest 

Patient population - 
treatment history 

Outcome measures Covariates related to sequencing included in 
analysis [no of studies if 10 or below] 

Available evidence 
base* 

Results 

Lloyd, 2011 1st-line or 2nd/3rd-line TNF 
inhibitors for RA 
(Sequential TNF-inhibitors) 

TNF-naive vs TNF-IR Achieving ACR50 and 
EULAR response 
Mean improvement in 
DAS-28 and HAQ 
scores 

Meta-regression (included 3 covariates): 

 Mean no. of previous cDMARDs [n=10] 

 Disease duration 

 Duration of TNF 
 

Subgroup analysis: 

 Type of TNF switched from and to (ADA, ETA, 
INF) 

 Reason for switching (intolerance, primary 
inefficacy; secondary inefficacy; either inefficacy 
[most studies did not differentiate between 
primary and secondary]) 

Observational studies 
(uncontrolled and 
sequencing studies) 

Meta-regression: 
Disease duration was the only covariate that was found to 
have a significant effect. There was an extra reduction in the 
DAS-28 score, representing a worsening of the condition, of -
0.16 (95% confidence interval: -0.24 to -0.07) per additional 
year. 
 
Subgroup analysis: 
No significant difference identified (no results presented) 

Nixon, 2007 1st-line biological agents for 
RA 
(in early and late stage 
disease) 

DMARD-naïve, or 
cDMARD-IR 

Achieving ACR50 
response 

Meta-regression (included 2 covariates): 

 Disease duration 
 

Placebo or MTX 
controlled RCTs  

For every additional year of disease the expected OR of an 
ACR50 event with biologics was 1.13 times longer. Absolute 
effectiveness of biologics did not improve with longer mean 
disease duration.  

Schmitz, 2012 1st-line TNF-inhibitors for 
RA 

cDMARD[MTX]-IR Achieving ACR20, 
ACR50, and ACR70 
response 
Mean improvement in 
HAQ score  

Meta-regression (included 3 covariates): 

 No. of previous cDMARDs [n=9] (no further 
details) 

 Disease duration 
 

Placebo RCTs Results were not statistically significant, therefore covariates 
not included in final NMA. 
 

Kanters, 2014 1st-line biologics for RA 
(in late stage disease) 

cDMARD[MTX]-IR  
(excluded patients who 
were MTX-naive, or had 
IR to biologics) 

Achieving ACR20 and 
ACR50 response 

Meta-regression (10 covariates analysed using 
univariate analysis): 

 Disease duration 
Precluded due to lack of studies: 

 No. of previous cDMARDs [n=8] 

Placebo RCTs The relative increase in the OR of an ACR50 response was 
1.6 (95% CI: 1.06 to 1.27) per 1-year increment  
Disease duration was not associated with magnitude of 
ACR20 response. 

Christensen, 
2015 

targeted therapies 
(biological agents and 
targeted synthetic 
DMARDs) used as add-on 
therapy for RA 

DMARD-naïve; 
cDMARD-IR; or targeted 
therapy-IR 

Achieving ACR20 
(primary outcome); 
DAS28-remission 

Meta-regression (9 covariates relating to trial 
eligibility criteria): 

 DMARD history [n=62; 49 in ‘not reported’ group] 

 Maximum disease duration at inclusion 

(early/established (>2yrs)/not reported) [n=62; 49 

in ‘not reported’ group] 

 

Placebo or MTX 
controlled RCTs 

The added benefit of targeted therapies was lower in trials 
including "DMARD-naïve" patients compared with trials 
including "cDMARD-IR" (ratio of ORs for ACR20 response = 
0.45, 95% CI 0.31 to 0.66) and trials including "targeted 
therapy-IR" (0.50, 95% CI 0.29 to 0.87). Longer mean disease 
duration was associated with a higher likelihood of responding 
to treatment (β = 1.05, 95% CI 1.00 to 1.11 OR’s per year; p = 
0.03). Analyses conducted using DAS28-remission as the 
outcome supported the above-mentioned findings. 

Anderson, 2000* 2nd-line conventional 
DMARDs for RA 

cDMARD-IR or 
cDMARD-naive 

Achieving ACR20 
response 

Regression analysis (included 8 covariates): 

 Previous cDMARD use (yes/no) 

 Disease duration (divided into 5 categories) 
Analysis based on individual patient-level data**; 
only factors that were significant in univariate 
analysis included). 

RCTs of MTX (vs 
placebo or alternative 
cDMARD) 

Prior cDMARD use was associated with a lower rate of 
response (Adj OR for yes = 0.62, p=0.008). 
Disease duration had a strong effect on likelihood of patient 
response (Adj OR per year = 0.98, p=0.028). 

Mandema, 2011 1st-line TNF-inhibitors for 
RA 

cDMARD[MTX]-naïve, 
cDMARD[MTX]-IR, 
and/or TNF-IR 

Achieving ACR20, 
ACR50 and ACR70 
response 

Meta-regression (included 7 covariates): 

 Failed prior treatment (for study population) 

 Disease duration (for each treatment-arm) 

Placebo or MTX 
controlled RCTs 

Differences in failed prior treatments and disease duration did 
not have a significant impact on treatment effect (actual 
results not presented). 
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Stratified MA also conducted for patient population 
with IR to previous MTX and MTX –naïve. 

Grothey, 2004 1st, 2nd-, and 3rd-line 
chemotherapy treatment 
(CTX) for advanced 
colorectal cancer 
 
The impact of treatments 
subsequent to 1st-line for 
advanced colorectal cancer 

IR to previous CTX. 
Data from RCTs of 1st- 
irinotecan or oxaliplatin 
based CTX.  

Median overall survival Weighted linear regression (with weights 
proportional to the trial’s sample size) based on arm 
level proportions. 
 
Regression analysis: 

 %age of patients receiving all three active agents 
(FU-LV, irinotecan, or oxaliplatin) during the 
course of their disease 

 %age of patients receiving any (i.e. not 
necessarily irinotecan- or oxaliplatin-based) 
second-line treatment 

10 treatment arms 
from 7 RCTs of 1st-line 
CTX 

The median OS was significantly correlated with the %age of 
patients who received all three drugs in the course of their 
disease (p=0.0008; Spearman rank correlation test) but not 
with the %age of patients who received any 2nd-line therapy, 
therapy (p=0.19; Spearman rank correlation test)  

Abbreviations: ADA adalimumab; Adj adjusted; ARC American College of Rheumatology score; cDMARD conventional disease modifying antirheumatic drug; CI confidence interval; CTX chemotherapy; 

DAS disease activity score; ETA etanercept; EULAR European League Against Rheumatism classification; HAQ Health assessment questionnaire score; IR inadequate response; INF infliximab; MA meta-

analysis; MTX methotrexate; NMA Network meta-analysis; OR odds ratio; OS overall survival; RA rheumatoid arthritis; RCT randomised controlled trial; TNFs tumour necrosis factor-inhibitors; %age 

percentage. 
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5.6 USING A MODIFYING FACTOR TO ADJUST THE EFFECT OF SINGLE TREATMENTS 

5.6.1  Number of studies 

Two studies developed a reduction, or multiplication, factor which, could then be applied to the 

treatment effects obtained from RCTs of first-line use to represent their use later in the treatment 

pathway. Both studies used this approach when faced with a limited evidence base to develop 

sequencing effect estimates to inform the parameters of their economic model. The studies were 

undertaken as part of the NICE technology appraisal process, and were introduced in Chapter 4 

(Section 4.4).17 199 Treatment sequencing was not considered within the clinical evaluation of either 

technology appraisal. One study included an appraisal of three TNF-inhibitors for psoriatic arthritis 

(NICE TA199),17 and the second evaluated the use of newer anti-epileptic drugs for the treatment of 

epilepsy in children (NICE TA79).199 Both studies were included in the review of modelling studies, the 

findings of which are presented in the next two chapters. 

 

Seven further studies included in the review of modelling studies also applied a reduction factor to 

individual treatment effects to represent their use at a later point in the treatment pathway, but did not 

report the methods used for developing the reduction factor.18 229 234 244 261 264 272 These studies 

reported using estimates based on the available evidence, the choice of which was frequently not 

justified and it was unclear how the reduction or multiplication factor was actually developed. They are 

described in more detail in the review of modelling studies presented in Chapters 6-7, but the 

approach used to develop and implement the reduction factors are summarised briefly here. The 

application of the assumption that treatment effect is reduced when used at a later point in the 

pathway, in order to implement the decision analytic model is reviewed in more detail in Chapter 6. 

Most of these studies evaluated treatment sequences for inflammatory arthritis,229 234 261 264 272 whilst 

one study included antiviral therapy for HIV,244 and another antiepileptic drugs (NICE CG137).18  

 

5.6.2  Methods used to develop a reduction factor 

5.6.2.1  Based on the comparison of the same drug class used as first-line and subsequent 

treatment from observational studies 

The economic impact of a second-line TNF-inhibitor was explored in sensitivity analysis, as part of the 

technology appraisal presented by Rodgers et al. (NICE TA199)17 As there were no RCT data 

available beyond first-line use, the treatment effect of the second TNF-inhibitor was obtained by 

reducing or increasing the treatment effect of the first-line inhibitor by a set amount, depending on 

whether the initial biologic was discontinued due to inefficacy or adverse effects. The treatment 

effects of TNF-inhibitors were based on placebo controlled trials of single treatments, and the 

multiplication factors on an observational study of data from the British Society of Rheumatology 

Register (BSRBR) of biological agents used for rheumatoid arthritis (introduced in the Appendix 

Volume I, Section C3). The economic model considered two subgroups: patients who discontinued 

their first biological agent due to adverse effects, and patients who discontinued due to lack of 

efficacy. No distinction was made between those who had an initial lack of response and those who 

had secondary loss of treatment efficacy. A supplementary literature review of patient registry studies 
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was conducted to find the response or withdrawal rates from TNF-inhibitors for patients with psoriatic 

arthritis or rheumatoid arthritis. However, only one study that reported the appropriate data was 

identified, which included patients with rheumatoid arthritis. The study distinguished between 

outcomes for the patients who started a second TNF-inhibitor after adverse events from the first, and 

patients who started a second course of TNF-inhibitors following lack of efficacy of the first TNF-

inhibitor. The hazard ratio for withdrawal from second-line treatment due to inefficacy, compared with 

the discontinuation rate for first-line treatment due to inefficacy was 2.7 (95% confidence interval: 2.1 

to 3.4). The findings were not statistically significant for those who discontinued their first-line 

treatment due to adverse effects. The hazard ratio for withdrawal from the second biologic due to 

adverse events, compared to withdrawing from the first course due to adverse effects was 2.3 (95% 

confidence interval: 1.9 to 2.9). The findings were not statistically significant for those who 

discontinued their first-line treatment due to inefficacy. For the economic model, the treatment effect 

of the second TNF-inhibitor was assumed to be equal to that of the first TNF-inhibitor multiplied by the 

relative risk of failing second-line treatment comparted to first-line treatment. The hazard ratios for 

failing the second TNF-inhibitor compared to the first was assumed the same for all three biological 

agents, due to the lack of data. For initial treatment response, it was assumed that if the first TNF-

inhibitor was discontinued due to inefficacy, the odds of achieving an initial response with the second 

biologic would be reduced by a factor of 2.7, and unchanged if it was discontinued due to an adverse 

event. For treatment withdrawal after the first three months, it was assumed that if the first biologic 

agent was discontinued due to inefficacy, the risk of withdrawal due to inefficacy increased 2.7-fold, 

and unchanged if it was discontinued due to an adverse event. It was also assumed that if the first 

biologic was discontinued due to adverse events, the risk of withdrawal of the second biologic due to 

adverse events would be increased by an average of 2.3, and the odds of withdrawal due to inefficacy 

unchanged.  

 

5.6.2.2  Based on the comparison of the same drug used as first-line and last resort from RCTs 

The economic evaluation of the technology appraisal presented by Connock et al. (NICE TA79)199 

included the comparison of pre-defined sequences of up to four treatment lines, that contained either 

only older antiepileptic drugs, or a combination of both ‘older’ and ‘newer’ antiepileptic drugs. The 

newer antiepileptic drugs were generally licensed, and evaluated in placebo-controlled trials as add-

on therapies for patients with more or less refractory epilepsy, but one drug was available as both 

initial monotherapy and add-on therapy. For the economic model, the proportion of patients achieving 

seizure freedom with each line of therapy were reduced by a factor of 0.4. This was based on the data 

available for the one new antiepileptic drug for which there was an RCT of its use at two different time 

points, first-line monotherapy and later as an add-on therapy. The RCT data of antiepileptic drugs 

used as add-on therapy were assumed to be representative of fourth-line therapy, and were also used 

as ‘anchor points’. The proportion discontinuing due to adverse effects or lack of efficacy was kept 

constant, based on the same trial data. No sensitivity analyses were conducted to assess the impact 

of the reduction factor. A de novo economic evaluation of drug sequences for epilepsy was also 

conducted for NICE clinical guideline number 137.18 It included the comparison of antiepileptic drugs 
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used for both newly diagnosed, and refractory epilepsy, analysed separately. The model included 

fixed sequences of three treatments: first-line monotherapy, second-line monotherapy, and third-line 

adjuvant therapy. Patients failing first-line due to inadequate seizure control were assumed to be 75% 

(risk ratio 0.25) less likely to achieve remission with second-line monotherapy. This was informed by 

an observational study, and the figure was varied in one-way sensitivity analyses. For patients who 

failed first-line treatment due to intolerable side effects it was assumed that response to the second-

line monotherapy was independent of response to first-line antiepileptic drug. The observational study 

showed that the probability of achieving seizure freedom with a second monotherapy, after failure of 

the first due to lack of efficacy, was much lower than that of treatment naïve patients (11% vs 47%; 

risk ratio 0.24), whilst the probability of response after failure due to intolerable adverse effects was 

similar (45% vs 47%).311 The probabilities of treatment failure for each antiepileptic drug were derived 

from a published network meta-analysis of monotherapies, based on RCTs included in eight 

Cochrane systematic reviews and the SAND I trial.312 Trial participants included children or adults with 

a new diagnosis of epilepsy, or relapsed following antiepileptic withdrawal, or who had failed on other 

therapies. The network meta-analyses were performed using individual patient data from each trial, 

which allowed the standardisation of outcome definition and enabled the assessment of the outcome 

for patients with either partial or generalized onset seizures. The analyses were conducted using a 

Cox proportional hazards model stratified by trial, and adjusted for treatment and the known 

prognostic factors, epilepsy type and number of seizures before randomisation. They did not, 

however, consider treatment sequencing. 

 

5.6.2.3  Based on selected published data sources 

Five rheumatology studies applied different reduction factors derived from various sources of 

evidence. One modelling study (Diamantpoulus, 2012), due to the lack of evidence about the efficacy 

of a second TNF-inhibitor in rheumatoid arthritis, reduced the treatment effect of adalimumab, used as 

a TNF-inhibitor in the sequence, by 30%.234 They cited NICE Technology appraisal 130 (Chen, 

2006)227 as the source, but provided no further explanation. Another study (Clark, 2004; NICE TA72) 

that also included treatment sequences containing sequential TNF-inhibitors, explored the potential 

sequencing effect of a second TNF-inhibitor as part of their sensitivity analysis.229 A HAQ score of 0.5 

was used for both TNF-inhibitors in the base-case analysis, and in the sensitivity analysis this was 

changed to 0.625 for the first TNF-inhibitor, etanercept, and 0.25 for the second, infliximab. The 0.625 

estimate was based on a previous published model by the same research group (Jobanputra, 2002; 

TA36).245 Another modelling study (Russell, 2009), which also included the use of a third TNF-

inhibitor, used a 10% reduction in effectiveness after each switch.261 The assumption that switching 

TNF-inhibitors is associated with lower efficacy was reported to have been based on clinical experts 

and published observational studies of patient registries, but no further details were given. One 

modelling study (Tran-Duy, 2011), which evaluated treatments strategies incorporating a second 

TNF-inhibitor for ankylosing spondylitis, used a reduction factor of 0.65, applied to the mean decrease 

from baseline in the disease activity score.272 The reduction factor was based on data obtained from a 

registry study, but it was not stated how it was developed. One further modelling study (Schadlich, 
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2005) of treatment sequences based on conventional DMARDs for rheumatoid arthritis reduced the 

estimates of clinical effectiveness by 25% for four DMARDs, when they were used as second or 

subsequent-line treatments.264 This was based on an observational study that showed there was a 

50% reduction in clinical effectiveness between first-line and second-line DMARD, but the difference 

between second and subsequent lines was not statistically significant. I re-visit the use of a reduction 

factor to RCTs of first-line TNF-inhibitors in Chapter 6, Section 6.6.2.2.  

 

One modelling study, which investigated the cost-effectiveness of antiretroviral therapy strategies for 

singledose nevirapine exposed HIV women, used a multiplication factor to reduce the efficacy data 

used to inform the first-line treatment in order to represent its use as a second-line treatment.244 The 

study included two treatment sequences, starting with either a nevirapine based treatment strategy 

followed by a lopinavir-ritonavir based strategy, or vice versa. Both strategies were triple therapies, 

which included two nucleoside reverse transcriptase inhibitors (NRTIs) that differed between 

regimens but their efficacy were assumed to be equal. Treatment effects for the nevirapine based 

strategy was taken from an uncontrolled follow-up study (of a previous RCT of intrapartum nevirapine 

vs placebo), and the treatment effects for the lopinavir-ritonavir was derived from an RCT of initial 

treatment for HIV. The efficacy of the treatments used as second-line were estimated to be 90% of 

their efficacy as an initial therapy, because of nucleoside reverse transcriptase inhibitor resistance 

resulting from first-line treatment failure. This multiplication factor was reported to have been based 

on the findings of a previous economic model developed by the authors to evaluate the cost-

effectiveness of genotype resistance testing in treatment naïve patients. However, it was not stated 

how the multiplication factor was developed.  

 

5.6.3  Lessons about studying treatment sequences that have emerged from studies using a 

modifying factor 

Treatment sequences are generally represented within a decision model as a series of individual 

treatments, each requiring a summary treatment effect conditional on their positioning in the treatment 

pathway. The use of data from studies of single treatments to parametrise such models necessitates 

adjusting the individual effect estimates conditional on positioning in the sequence. This approach is 

one way of doing this. However, more research is needed to identify the best method of estimating 

and testing the modifying factors. The included studies showed that treatment switching due to lack or 

insufficient effect appeared to have a greater impact of the efficacy of subsequent treatments than 

discontinuing treatment due to intolerance or adverse effects. 

 

The evidence available for developing the modifying factors is likely to be limited. In most cases, they 

were informed by a single observational study and, as such, the data on which they are based are 

likely to have been affected by some of the limitations listed in Sections 5.4 and those discussed in 

the Appendix Volume I (Section C). One study (Connock, 2006) used data from RCTs evaluating the 

same treatment used as first-line and fourth-line, but the data to inform the modifying factor would 

have been observational in nature. One of the potential limitations of using RCT data, as opposed to 
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patient registry data, highlighted by this study is that it may not be possible to differentiate between 

the impact of discontinuing previous treatment due to lack of efficacy or adverse effects. Furthermore, 

the RCT of fourth-line treatment in this study did not just account for the immediate prior treatment, 

and as such this type of data may not have been so useful here or easy to interpret. The included 

studies also assumed that the effect of various treatments from the same class (e.g. TNF-inhibitors, 

new antiepileptic dugs) are the same. 

 

 

5.7 RANKING TREATMENTS ACCORDING TO THEIR ABSOLUTE EFFECT ESTIMATES 

5.7.1  Number of studies and description of approach 

This approach represents a fairly simplistic method, based on identifying the optimum sequence by 

ranking individual treatments according to their effectiveness, which is generally based on the 

evidence of their use at a single point in the treatment pathway, or worse, data pooled across different 

treatment lines. In essence, this method ignores any potential sequencing effects, and is based on the 

assumption of treatment independence. An example of this approach is provided by Finnerup et al., 

who ranked treatments according to their absolute effect estimates in order to develop the optimum 

evidence-based algorithm for the treatment of neuropathic pain.201  

 

Finnerup et al., noted that the choice of treatment for neuropathic pain was generally based on the 

following six criteria, which would need to be considered when developing an evidence-based 

treatment algorithm: consistent outcomes from RCTs; high degree of pain relief, superior to existing 

treatment; persistent pain relief; limited side effects; effect on quality of life; and low cost. They limited 

inclusion to double-blind placebo-controlled randomised trials of single treatments, and identified 105 

relevant studies, 59 of which were small crossover studies. The data were pooled for each treatment 

using numbers needed to treat and numbers needed to harm, which are the reciprocal of the absolute 

risk difference. Numbers needed to harm were based on dropouts due to adverse effects. Treatment 

algorithms were then obtained by first ranking studies according to the numbers needed to treat and 

then taking into account potential side effects. The authors listed some of the limitations to their study, 

which included having to dichotomise the outcome data, and the methodological complexity of pooling 

data from both small crossover and large parallel group trials. The findings from this review (Finnerup, 

2005)201 were subsequently used as the source of clinical effectiveness data for an economic model 

of sequential medication strategies for postherpetic neuralgia reported by Smith et al, which was 

based on a Markov Cohort modelling approach making the simplifying assumption of treatment 

independence.268 

 

An important cause of treatment non-independence is the progressive change in responsiveness of 

the disease to therapies as the disease progresses. However, this deviation may not be relevant for 

treatment sequences for neuropathic pain, as the objective of the treatment is to reduce the symptom 

of pain, rather than alter the underlying cause; when the treatment is stopped the pain is expected to 

return. Another potential deviation from treatment independence is that patients who are responsive 
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to one treatment are likely to respond to others, and likewise those that are non-responsive to one 

treatment are less likely to respond to other treatments.216 The included studies did not report 

previous treatments, but it was noted that some trials of gabapentin and pregabalin excluded patients 

who failed to respond to previous treatments with gabapentin. In other words, patients who failed one 

treatment were likely to be less responsive to the next treatment. A third potential deviation occurs if 

there is a subset of patients that are resistant to all treatments.  

 

5.7.2  Lessons about studying treatment sequences that have emerged from studies that rank 

treatments according to absolute effects 

This represents a naïve approach for developing evidence-based treatment algorithms, and is only 

suitable if treatment effectiveness is not dependent on positioning in the sequence or disease 

duration. Providing evidence to show that this is in fact the case may not be straightforward. 

 

 

5.8 A CASE STUDY FROM THE GetReal PROJECT: USING REAL-WORLD DATA TO LINK 

FIRST AND SECOND-LINE TREATMENTS INCLUDED IN SAME NETWORK META-ANALYSIS  

The GetReal project (http://www.imi-getreal.eu/) represents a recent programme of work about 

incorporating real-life data into drug development. The three year project was funded by the 

Innovative Medicines Initiative (IMI), an EU public/private consortium consisting of pharmaceutical 

companies, academia, Health Technology Assessment agencies and regulators (e.g., NICE, EMA 

and ZIN), patient organisations and Small and Medium Enterprises (SMEs). The project was launched 

in 2013 and was only identified when the review of methods was completed.  

 

Work package one of the GetReal project included two case studies in different disease areas, which 

were conducted to explore how real-world data, from patient registries, can be used to help 

demonstrate the relative effectiveness of new medicines. One of these case studies, in rheumatoid 

arthritis, is directly relevant to the review of methods as it also considered the evaluation of treatment 

sequences. This represents a meta-analytic approach not covered by the included studies, where 

individual treatment lines, in this case first and second-line, were included in the same network meta-

analysis as separate treatment nodes and, in order to achieve this, real-world data was used to link 

first and second-line use of the same treatments. The methods used can be viewed, in some respect, 

as building on those presented by Nixon et al.208 and included in Section 5.5.3 under meta-regression. 

The case study also contributes to developing methods to address having an incomplete network, 

which was identified in Section 5.3.2, relating to the inclusion of predefined sequences. 

 

The relevant case study evaluated methods to incorporate real-world data in the evidence synthesis 

of second-line biologics in rheumatoid arthritis. Data from two national patient registries were used to 

supplement randomised evidence to address two key issues: 

i. How to connect disconnected networks of evidence in order to conduct network meta-

analyses? 
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ii. How to optimise an evidence base using first-line evidence to inform second-line 

effectiveness estimates? 

 

The two national patient registries included the Swiss Clinical Quality Management in Rheumatic 

Diseases (SCQM) database, and British Society for Rheumatology Biologics Register (BSRBR) 

database, both of which were introduced in the Appendix Volume I (Section C3.3).  The authors had 

access to individual patient data (IPD) from the two registries and for five RCTs, two of which 

investigated second-line treatment.  

 

The base case analysis included two Bayesian network meta-analyses, which were performed using 

only the aggregate results from RCTs for Disease Activity Score 28 (DAS-28) remission at six months 

for first-line and second-line biologics, respectively. Several additional analyses were then undertaken 

using the registry data extracted from the two registries, adding RCT individual patient data, and 

combining the first and second-line networks. The results of the base case network meta-analysis for 

second-line biologics was used as a reference against which all other analyses and results were 

compared. Analyses 1-4 related to developing the best method to connect disconnected networks, 

whilst analyses 5-6 were regarding the use of first-line data to inform the second-line treatment, and 

are therefore summarised below.  

 

Analysis 5 was a univariate network meta-analysis using data from the two registries to bridge the 

evidence gaps between the first and second-line networks. ‘Real-world evidence’ from the BSRBR 

register was used to incorporate relative effect estimates for first-line versus second-line treatments, 

which allowed the two networks of evidence to be connected and for the treatment comparisons, for 

example, for drug A in first-line versus drug A in second-line to be obtained. The bridging was 

performed by using the BSRBR as one large study, but the registry data could have also been split 

into multiple pairwise comparisons (i.e. studies) to be used as small multiple bridges. 

 

Analysis 6 represents an alternative approach proposed for utilising the real-world data, which was to 

use multivariate analysis to model separate outcomes simultaneously, using the correlation to borrow 

information across multiple outcomes or time points. Here, the treatment effect in first-line was 

modelled as outcome one and the treatment effects in second-line as the second outcome. The 

correlation referred to the between-treatment (lines of therapy) correlation, and not between or within 

study. 

 

Analysis 6a was based on a bivariate network meta-analysis, where the two treatment lines were 

assumed to be correlated, and a correlation estimate was used as a prior distribution. The data from 

both registries were used to obtain a correlation estimate between treatment effects, in the first and 

second-line of treatment, by splitting the registry data into first and second-line response and a 

pairwise meta-analysis performed whilst monitoring the correlation. The network of evidence was 

based on data from RCTs of fist-line and RCTs of second-line treatment. 
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In Analysis 6b the data from both registries were used as part of the network by splitting into multiple 

pairwise studies), providing treatment effect estimates in the first and second-line of therapy. This 

allowed for modelling between-studies correlation between the lines of therapy. The network of 

evidence was based on registry data for first and second-line treatment, rather than the RCTs. 

 

Analysis 6c used data from the registries, reporting treatment effect estimates on both lines, which 

allow the assumption of exchangeability on the average level to be relaxed. 

 

The univariate analysis included the registry data as data, whereas the bivariate network meta-

analysis used the registry data to inform the prior distribution for the correlation parameter between 

first and second-line of therapies. The bivariate network meta-analysis did not directly compare first 

versus second-line treatment but provided estimates for all treatments in first and second-line, by 

using the correlation between them to predict estimates in second-line (or first-line) where these 

estimates did not exist previously. However, the authors noted that the results from both the 

univariate and bivariate network meta-analyses may be more difficult to interpret in a decision making 

context for a new treatment in a specific line of therapy. 

 

The interpretation of the overall findings was limited by a large amount of uncertainty in the results for 

analysis 5 and 6, as reflected in very wide credible intervals. There was also large variation in the 

point estimates, in some instances, suggesting inconsistencies within the evidence base and across 

networks. This may have been influenced by the choice of outcome, as only a small number of 

patients will achieve full remission with second-line treatment, leading to a low event rate. The 

methods proposed were quite complex, and obtaining the necessary individual patient data from the 

patient registries was not straightforward and very time consuming. There was a lot of programming 

involved in obtaining the necessary data, and missing information restricted the datasets from both 

registries. 

 

The wider GetReal project included the production of a series of literature reviews of methods 

covering network meta-analysis,59 combining randomised and non-randomised evidence in network 

meta-analysis,313 meta-analysis of individual participant data,175 and mathematical modelling.314 

These have been incorporated in the framework, which is presented in Chapter 8. 

 

 

5.9 DISCUSSION 

5.9.1  Summary of the findings for the review of meta-analytic techniques 

The review of meta-analytic techniques used in the context of treatment sequencing identified that 

there are two key approaches for synthesising the data on treatment sequences: one where the 

‘treatments’ included in the meta-analysis represent whole sequences; and one where individual 

treatments effects are conditional on their positioning in the sequence. When pooling data on 

individual treatments used early in the sequence, the use of subsequent treatments is likely to impact 
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long-term outcomes. When synthesising treatments used later in the treatment pathway, previous 

treatments are likely to represent an important effect modifier. An in-depth evaluation of between-

study heterogeneity when pooling data from studies of treatments used at any point in the treatment 

pathway may provide useful information about the importance and the need to consider sequencing 

effects. In terms of the clinical evaluation within a health technology assessment, included studies 

generally approached the issue of sequencing by limiting the complexity of the problem, and adopting 

a well-defined or narrow review question, evaluating isolated points in the treatment pathway. 

 

The review of methods for analysing the effectiveness of treatment sequences identified that, to date, 

most studies use standard quantitative evidence synthesis methods. This included restricting inclusion 

to comparative studies of complete sequences, and the use of regression analysis and investigation 

of subgroups to account for previous treatments used. In certain indications where treatment 

effectiveness is not impacted by previous treatments, it might be acceptable to select the order of 

individual treatments within a sequence based on the best absolute effects of individual treatments, 

but this is a naive approach and should be adopted cautiously and with reservations. No novel 

evidence synthesis or meta-analytic techniques were identified that were developed for evaluating 

treatment sequences, or developing summary treatment effect estimates conditional on the effect of 

previous treatments. This is likely to be due to the poor reporting of prior and subsequent treatments 

by primary studies, as it is difficult to gauge the extent of their impact on the current treatment effect 

or overall outcomes measure without such information.  

 

5.9.2  Relying on sequencing trials 

The review findings showed that relying solely on treatment sequencing studies, either clinical trials or 

observational studies, is unlikely to provide sufficient evidence to inform clinical decision making. The 

included studies that undertook meta-analysis of complete treatment sequences generally had to limit 

inclusion to two treatment lines for which prospective treatment sequencing studies were available. 

This was especially the case for studies of advanced cancer. Establishing a connected evidence 

network for complete sequences, as required for implementing network meta-analysis, can also be 

problematic. For example, in the NICE CG131 study, chemotherapy treatments for advanced 

colorectal cancer had to be grouped by mode of action in order to develop a closed network of three 

treatment sequences.207 The potential limitations of grouping interventions, such as class effect bias 

and aggregate data collection are discussed in Section 5.9.9. Even when pragmatic, gold standard 

adaptive treatment sequencing RCTs, such as the STAR*D trial in refractory depression,291 292 were 

available these did not always match the review question. However, as discussed in the Appendix 

Volume I, Section B2 it is acknowledged that the SMART design does not represent a confirmatory 

trial.  
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5.9.3  The use of subgroup and stratified analysis 

A number of included studies explored the influence of previous treatments using subgroup analysis. 

Some stratified analysis according to the type of previous treatments used, whilst others examined 

the number of previous treatments used in different subgroups. Four studies used subgroup analysis 

to explore the implications of different reasons for switching treatments, but the poor reporting by 

primary studies precluded doing this in much depth. Presenting the findings relating to treatment 

sequencing as separate subgroups, especially when presented graphically, provided some useful 

information on potential trends. It is also easier and simpler to implement than meta-regression. 

However, on the whole, the use of subgroup analysis for evaluating treatment sequencing was fairly 

limited, primarily because it only provided a means of comparing two subgroups at a time, with or 

without one covariate. This means that for each subgroup the information over all other covariates are 

pooled, and each analysis is therefore confounded by other variables.315 Subgroup analysis can also 

only test for the presence of an interaction and cannot estimate the extent of it. Only one study used 

appropriate statistical tests of interaction to compare subgroups, but there was frequently insufficient 

data available to conduct such analyses. When a series of subgroup analyses were implemented in 

order to examine a number of different variables, it was difficult to interpret the overall findings, 

especially when low power (type I error) produced insignificant findings. The evaluation of numerous 

variables, resulting in a number of statistical tests, can also lead to type II error or false positive 

results. The findings of the subgroup analyses were themselves also generally poorly reported by 

included studies, with most studies only noting that the results were not statistically significant, or 

merely noting that prior treatments did not influence treatment effects.  

 

5.9.4  The use of meta-regression 

Meta-regression analysis appears to be the most promising method of developing summary effect 

estimates that account for previous treatments, or sequence positioning. However, meta-regression 

was used predominantly for investigating whether the number of previous treatments was an 

important effect modifier, or to identify the source of statistical heterogeneity, rather than investigate 

the clinical effectiveness of treatment sequences as such. Meta-regression is generally used to 

evaluate the interaction between one or more study level covariates and treatment effect. Meta-

regressions can be used to develop adjusted effect estimates according to previous treatments. None 

of the included studies used meta-regression to develop coefficients representing previous 

treatments. However, meta-regression was used to evaluate the impact of disease duration, which 

could be considered as a surrogate estimate for previous treatment, with extended disease indicating 

an increasing number of treatments tried. Disease duration was shown to be an important effect 

modifier for rheumatoid arthritis, and appeared to be better reported in primary studies than previous 

treatments. Some studies that pooled data across treatments used for both early and late stage 

disease used meta-regression to incorporate an interaction term for disease duration. The resultant 

regression coefficient provides a summary estimate of the amount by which the treatment effect 

changed on average per additional year of disease. Meta-regression was also used to characterise 
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the interaction coefficient for combination therapy, representing adding of a biological agent to 

methotrexate in rheumatoid arthritis.  

 

The review showed that the implementation of meta-regression as a method of developing sequence-

specific effect estimates, requires adequately reported data on the covariates from primary studies. 

However, the studies using meta-regression themselves also failed to report their results in full, with 

no data provided on covariates that were not statistically significant. For meta-regression to be useful 

in informing decision making or cost-effectiveness analyses of treatment sequencing, findings need to 

be reported in full, irrespective of statistical significance, especially when non-significance is likely to 

be due to lack of power. 

 

5.9.5  The limitations and challenges of using meta-regression to inform treatment sequences 

The relationship described in both meta-regression and subgroup analyses are observational in 

nature,296 as discussed in the Appendix, Volume I (Section A). Even when the reviews are restricted 

to RCTs, the study of effect-modifiers are inherently observational as it is not possible to randomise 

patients to one covariate value or another.316 As such, they inherit all the difficulties of interpretation 

and inference that are attached to non-randomised studies, including confounding, correlation 

between covariates, and the inability to infer causality from association.296 316 Both meta-regression 

and subgroup analyses also suffer from aggregation or ecological bias, where inferences about the 

nature of individuals are deduced from inference for the group to which those individuals belong.296 317  

 

An important challenge of using these methods is the need to represent previous treatment as a 

single covariate. Included studies relied on a simplified, either dichotomised or categorised, summary 

of previous treatments, for example the number of previous treatments failed, or a pre-specified 

treatment graded as yes/no.  

 

A practical limitation of using meta-regression is the availability of data from the primary studies, and 

having a sufficient number of studies and statistical power to detect a difference.296 Meta-regression 

requires the estimated treatment effect, its variance, and covariate values for each included study. 

Any analysis that is based on a subset of relevant studies, because these data are not available for all 

studies, will be flawed.296 If the number of relevant studies is also low then the observed impact of 

patient characteristics will be questionable.296 309 

 

The number of covariates which can feasibly be considered within a meta-regression is limited, 

especially if only a small number of studies are included in the review.208 296 Only those considered to 

be important covariates are therefore included, frequently chosen based on statistical significance in 

prior univariate analysis.20 205 The potential effect of previous treatment was often not included in the 

main analysis as it was not found to be a statistically significant covariate in preliminary analyses 

(Section 5.5.3).20 211  However, this assumes that there was sufficient power to detect statistical 

significance. Previous treatments were frequently poorly reported in primary studies, which probably 
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contributed to this non-selection for inclusion in the main analyses. For some clinical scenarios, 

including rheumatoid arthritis, there may be justification for including prior treatments as a clinically 

important covariate, irrespective of statistical significance.198 The number of previous treatments is 

closely related to disease duration, which was generally included in meta-regression studies of 

rheumatoid arthritis, and may be acting here as a confounding factor. The inclusion of both covariates 

in the analysis means that it is possible to obtain the effect of each one controlling for the other.  

 

The availability of individual level patient data would overcome a number of these limitations.175 296 316 

The use of individual patient data is discussed further in Section 5.9.9. 

 

5.9.6  The use of absolute treatment effects to identify optimal sequence 

Another approach used was to develop absolute treatment effects for each individual treatment, and 

then use these to rank the treatments in order to identify the optimum sequence. This represents a 

naïve method that ignores the possible sequencing effects, the potential carry-over effect from 

patients who are resistant to any treatment, and the likely influence of changes over time or disease 

trajectory. This approach is therefore not recommended unless there is good evidence to show that 

clinical effectiveness is not affected by position in the treatment sequence.  

 

5.9.7  The use of N-of-1 RCT 

The N-of-1 trial is first described in Chapter 1 (Section 1.7) as a methodologically rigorous design (i.e. 

use of randomisation, blinding, formal outcome assessment) to determine the effect of the treatment 

in an individual patient.318 It is also discussed in the Appendix Volume I (Section A4) as a trial design 

that reflects clinical practice.  

 

No meta-analyses of N-of-1 RCTs for investigating treatment sequences were identified. This type of 

trial design is increasingly being recognised as a potentially useful data source for informing the use 

of complex interventions319 and for personalised medicine.320 The last decade has seen a great 

increase in the analysis and meta-analysis of single-case-designs. This motivated a special issue of 

the Journal of School Psychology that included five articles providing an overview of current work on 

the topic, including standardised mean difference statistics, multilevel models, Bayesian statistics, and 

generalised additive models.321 A group at the University of Alberta has also partnered with the 

Journal of Clinical Epidemiology to published a series of dedicated papers on the methodological 

issues related to the trial design and reporting of N-of-1 studies, as well as their synthesis.322 This 

included an example of a systematic review and meta-analysis of N-of-1 trials, and a meta-analysis 

that combined data from both RCTs and N-of-1 trials.  

 

The usefulness of N-of-1 trials for informing treatment sequencing, however, is yet to be recognised. 

Important limitations of this trial design for this purpose include their limited usefulness to disease 

conditions that are amenable to this type of study, and the use of a wash-out period between 

treatments. They are generally conducted in chronic and mostly stable conditions, where the optimal 
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treatment would provide a rapid effect that disappears quickly with treatment withdrawal,112 for 

example the treatment of neuropathic pain. It is important that the disease or process persists long 

enough for the investigator to expose the patients to each experimental treatment and measure 

responses, which are generally based on short terms outcomes.323 The limitations of this type of 

study, because they are designed to minimise any potential carry-over effects as much as possible, 

and attempts are also made to limit the period effect, are discussed in Chapter 1, Section 1.7. Three 

important limitations that have been identified with N-of-1 trials include incomplete reporting, marked 

variability in quality, and unacceptability high rates of prospective protocol registration.318 

 

5.9.8  The use of individual-patient data 

The availability of RCTs reporting individual patient data, including full treatment histories, would 

greatly enhance the usefulness of meta-regression as a method of developing sequence-specific 

effect estimates. The use of individual patient data on the covariates provides a number of 

advantages, in that it provides an increase in power, improves the ability to investigate interaction and 

subgroup effects, overcomes issues regarding correlation, and reduces bias.175 Meta-regression with 

individual patient data is capable of estimating effect modification with far greater precision, because 

of the much greater spread of covariate values.316 It would also potentially enable the implementation 

of a separate interaction term for each treatment.175 The use of individual patient characteristics, 

rather than summary characteristics of patients reported in the publications, will also prevent 

misleading inferences being made due to ecological fallacy.324 325 However limitations of using 

individual patient data include the challenge of obtaining access to the data, the fact that they require 

substantially more effort and statistical expertise to undertake, and are still susceptible to missing data 

on important covariates such as previous treatment.175  

 

The included meta-regression study by Anderson et al., which aimed to identify which patient or 

disease activity factors predict response to second-line treatment for rheumatoid arthritis, limited 

inclusion to RCTs for which individual patient data were available on baseline and outcome 

variables.21 Despite having data on individual characteristics, the authors used a crude estimate of 

whether previous conventional DMARDs were used, classified as either yes or no, and the overall 

findings were based on the comparison of any ‘active treatment’ versus ‘placebo’. Treatment was 

controlled for in the analyses using an indicator variable for each non-placebo treatment, whilst ‘study’ 

was not included as an effect because some active treatments were studied in only one RCT. The 

regression analysis showed that prior DMARD use was associated with a lower rate of treatment 

response, independently of disease duration and other factors. One further study (Rendas-Baum, 

2011), which aimed to examine the relationship between clinical response to biological agents and the 

number of previous TNF-inhibitors received, used subgroup analysis based on individual patient data. 

The study included both RCTs and observational studies, but only data from the biological treatment 

arm of the RCTs were used in the analysis. 
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The use of meta-regression based on individual patient data for evaluating treatment sequences is 

dependent on the availability of sufficient individual level data on previous treatments. The likely 

scenario however, as discussed in Chapter 1, Section 1.4.1, is that even if IPD is available for some 

studies, it is unlikely to be so for all relevant studies.326 Individual patient data meta-analysis is prone 

to bias when individual patient data are only sought for a specific subset of studies.175 326 The 

evidence synthesis therefore needs to be based on both individual and aggregate level data. Any 

future work on developing methods for evaluating treatment sequences must address some of the 

challenges in pooling data based on individual patient and aggregate level data.67 175 309 Better 

reporting of previous treatment is also still needed in RCTs of single treatments for which IPD is 

available.  

 

A further issue relating to IPD meta-analysis is whether or not to combine data from both RCTs and 

non-randomised studies. There is an ongoing debate in the literature regarding the validity of this 

approach, and under what conditions is it likely to be advocated.175 To improve the validity of meta-

analyses of IPD incorporating evidence from non-randomised studies and RCTs, the following 

suggestions have been made:  

i. Critically appraise the risk of bias in the available studies, and carefully decide whether 

inclusion is appropriate 

ii. Routinely account for confounding factors within the studies 

iii. Explore potential sources of between-study heterogeneity and compare the results between 

randomised and non-randomised studies175  

All three suggestions are also relevant for the inclusion of both randomised and non-randomised 

studies in meta-analyses of aggregate data. However, as shown in the review of sciatica treatments 

presented in Chapter 2 (and discussed in the Appendix Volume I, Section A), RCTs can also be poor 

quality, at which point data from a well conducted observational study may be more informative. 

Furthermore, obtaining and using IPD from observational studies or directly from patient registries is 

not straightforward and very time consuming, as identified by the case study from the GetReal project 

presented in Section 5.8.6.  

 

5.9.9  The use of data from non-randomised studies  

The review of methods showed that the evaluation of treatment sequences is likely to require the use 

of non-randomised studies, which include both real-world observational studies and non-randomised 

trials (also discussed in Chapter 1, Section 1.3.3). Non-randomised studies may be required as a 

complement to the available RCTs, or as the single source of evidence. However, as discussed in the 

Appendix Volume I (Section A), treatment effect estimates derived from non-randomised studies are 

at a greater risk of bias than those taken from RCTs. Non-randomised studies should therefore be 

used in conjunction with appropriate methods to account for this within the evidence synthesis. 
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5.9.9.1  Potential bias in non-randomised studies 

A number of included studies relied on the use of real-world observational studies, and as such, some 

specific limitations and biases inherent within this type of study design for evaluating treatment 

sequences were identified. These include the following: 

i. Selection (allocation) bias resulting in systematic differences in prognostic factors between 

individuals in the treatment (e.g. first-line treatment) and control group (e.g. second or 

subsequent treatment). For example, Lloyd et al. included observational studies that 

compared the efficacy of TNF-inhibitors among cohort of patients receiving their first TNF-

inhibitor with a cohort receiving a second or subsequent TNF-inhibitor, in order to examine the 

presence of sequencing class effect. However, patients who fail on biological agents have 

worse prognoses than those receiving biologic treatment for the first time, and are likely to 

show limited responses to all treatments, not just a second TNF-inhibitor.290 Herman et al. 

recommend that when the treatment strategies under investigation are sustained over time, 

adjustment for both baseline and post-baseline prognostic factors is necessary, to ensure the 

comparability (exchangeability) of treatment groups.327 

ii. Channelling bias favouring patients with more severe disease. New treatments create 

expectations of improved effectiveness and tolerability, which means that early, post-

marketing users may not be representative of the eventual user population. For example, the 

first patients with rheumatoid arthritis to use a new immunomodulation drug are likely to be 

those who experienced little or no benefit from existing drugs and may therefore respond to 

the new drug in a way that the average patient would not.328 

iii. Regression to the mean. This phenomenon occurs because patients tend to be treated with a 

second or subsequent treatment, for example a biological agent after the failure of 

conventional DMARDs, at the height of their disease activity, where there is a greater than 

50-50 likelihood that the disease activity will start improving after the intervention purely by 

chance. 

iv. Confounding by disease duration. In some conditions, such as sciatica and rheumatoid 

arthritis, the longer the disease duration, the less likely that patients will respond to 

treatments, irrespective of the treatments used. 

v. Enrichment of successive treatment use with refractory patients. A small proportion of 

patients have refractory disease that will not respond to any treatment. For example, epilepsy 

is resistant to drug therapy in a third of patients,329 and about 30% of patients with rheumatoid 

arthritis do not respond to TNF-inhibitors.303 The population receiving second-line or 

subsequent treatments are therefore more likely to be enriched with patients who are 

refractory to any, or a specific type of treatment. This is also related to a class effect. Patients 

who fail initial treatment due to a tolerability or safety issues are likely to also have the same 

problem with an alternative drug from the same class, which means the risk for developing an 

adverse event with, for example a second TNF inhibitor increases twofold in patients who 

switched due to an adverse event.303  
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vi. Immortal time bias, which was found to be particularly relevant for cancer treatments. Heng et 

al., who compared the effectiveness of second-line treatments for metastatic renal cell 

carcinoma using real-world observational studies, chose to exclude retrospective cohort 

studies that required patients to receive a third-line therapy after the initiation of second-line 

treatment, as the study design would result in the exclusion of a large proportion of second-

line patients who would not reach third-line treatment due to loss to follow-up, continuation of 

second treatment at the time of the chart review, death during second-line treatment, or other 

reasons, resulting in immortal time bias for the effects of second-line treatment.203 Studies 

that limit inclusion to patients who have completed a sequence will also overlook patients who 

are continuing the initial treatment, or lost to follow-up after first-line treatment due to lack of 

efficacy, clinical deterioration, or drug acceptability issues.330  

vii. Class effect bias, which is the possibility that the comparison between drug classes may be 

confounded by differences in the type of patients treated with each class.203 

viii. Aggregate data collection. Many real-world observational studies do not report individual 

treatment or drug-level data, which means that any subsequent evidence synthesis has to be 

based on pooled data across treatments at class level, even when there is evidence that 

individual drug effects can vary within a class.203 

ix. The potential for missing or inaccurate data obtained from real-world practice. Patient 

registers and administrative databases are rarely set up for evaluating treatment sequencing, 

and do not generally involve the same level of rigour in recording events as in research 

studies.203 331 

 

5.9.9.2  Methods for adjusting for potential bias in non-randomised studies within evidence 

synthesis 

The use of data from non-randomised studies means that methods to adjust for selection bias and 

time-varying confounding factors that were identified as part of the review of methods are required. An 

overview of different approaches used for bias adjustment for both internal and external biases is 

presented in the NICE Decision Support Unit (DSU) Technical Support Document (TSD3), entitled 

‘Heterogeneity: subgroups, meta-regression, bias and bias-adjustment’.316 These include the following 

methods for using within pair-wise or network meta-analyses:  

i. Meta-regression 

ii. External priors to adjust for bias associated with markers of lower study quality 

iii. Network synthesis to estimate and adjust for quality-related bias internally 

iv. Expert elicitation for priors for bias 

 

A more recent review by Efthimiou et al., of the methodological developments and empirical studies in 

network meta-analysis also includes a summary of the latest methods for adjusting for study 

limitations and possible sources of bias.59 This review, which was undertaken as part of the wider Get 

Real project (Section 5.8) did not identify any new approaches. 
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One of the included studies (Schmitz, 2012), which used meta-regression to examine the influence of 

previous treatments (Section 5.5.3), went on to explore the feasibility of extending their Bayesian 

network meta-analysis to include observational studies, due to the lack of RCTs directly comparing 

TNF-inhibitors.211 The methods are summarised here rather than in the results section as they do not 

relate to the evaluation of treatment sequences. They represent methods that are likely to be of value 

for the future evaluation of treatment sequencing and the need to incorporate a broader evidence 

base, and therefore relevant to the Framework presented in Chapter 8. Schmitz et al. differentiated 

between the effect of non-systematic and systematic bias, with the former requiring adjustment for 

over precision and the latter adjustment for overestimating or under estimating treatment effects. They 

compared three different approaches previously used for incorporating both RCTs and observational 

studies in the same network meta-analyses: 

i. Naive pooling across all study types, disregarding differences in study design. 

ii. Summarising the observational evidence to inform prior distribution in the network meta-

analytic model. Here the observational information was down-weighted by inflating the 

variance parameter, and over or underestimation of the treatment effect adjusted by shifting 

the mean of the prior information. 

iii. Using a three level hierarchical modelling approach. Here overestimation was adjusted using 

an additive factor to the mean, and over precision by using a multiplicative factor to the 

variance. 

 

In order to implement these approaches the authors assumed a 30% over precision, based on 

previous research. However, the research was inconsistent about overestimation of treatment effects 

in observational studies, and the actual size of the bias was difficult to estimate. Sensitivity analyses 

were therefore used to vary this estimate, with the results based on values ranging from 0.7 to 0.1 

 

Naive pooling was the simplest method, but made the strong assumption of no difference between 

study designs and did not allow for bias adjustment or any additional uncertainty to be taken into 

account.211 Using the observational evidence to inform prior distributions allowed the adjustment for 

potential bias because of over precision or overestimation, but between study design heterogeneity 

was not taken into account, and it was not possible to extend the model to include more than two 

different study designs. The hierarchical modelling approach was able to account for the uncertainty 

arising from combining information from different study designs by random effects. The hierarchy 

levels also allowed the authors to quantify the impact evidence from different designs had on the 

results whilst adjusting for potential bias.  

 

Schmitz et al. also included an uncontrolled trial in their network meta-analysis.211 332 Methods for 

synthesising data on single arm trials are still under-developed.333 The indirect treatment comparison 

should always be implemented using adjusted methods that preserve the randomisation or within-

study comparison, as unadjusted methods do not provide reliable estimates.150 (This was first referred 

to in Chapter 2, Section 2.8.2; see also Appendix Volume I, Section A) As such, Ades et al. strongly 
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recommend that single arm studies, whether based on RCTs or observational studies, should not be 

included in network meta-analyses.334 To overcome the challenge of including an uncontrolled open-

label extension study in their network meta-analyses, Schmitz et al. used a matching approach, where 

baseline characteristics were compared across all the available studies to identify a suitable matching 

control.332 However, this method does not control for unobserved variables, and the study was 

therefore excluded in sensitivity analyses. 

 

5.9.10  Recent methodological developments in meta-analysis 

Methodological development in meta-analytic approaches for informed decision-making have been 

quite prolific in the last two decades,58 59 164 and may be relevant for developing novel methods for 

evaluating treatment sequences. Section 2.8.2 reports on how ongoing methodological development 

in network meta-analysis (including hierarchical modelling approach), multivariate meta-analysis, and 

meta-regression could potentially provide the bases for developing novel methods for evaluating 

treatment sequences.  

 

5.9.10.1  Multivariate network meta-analysis 

The recent developments in network meta-analysis include incorporating multiple correlated outcome 

measures.59 The case study from the GetReal project (work package 1) presented in Section 5.8 

demonstrates the use of this approach to develop treatment effect estimates in the first and second-

line by modelling first-line treatment as outcome one and treatment effects in second-line as the 

second outcome.  

 

5.9.10.2  Model based meta-analysis 

Another method to add to this list of meta-analytic approaches that could potentially provide the bases 

for developing novel methods for evaluating treatment sequences is longitudinal model based meta-

analysis presented under meta-regression in Section 5.5.2 (and used by Mandema, 2011).206 

Longitudinal model based meta-analysis capture two important components: magnitude of the 

treatment effect, which may be related to the dose in a linear or non-linear way, and it’s time 

course.335 

 

5.9.10.3  Meta-analysis of complex interventions and the use of component-based meta-

analysis 

Treatment sequencing, as noted in Chapter 1 (Section 1.5.1) can be conceived as a multicomponent 

complex intervention.99 Meta-analytical methods developed for overcoming the challenges of 

evaluating complex interventions may also be useful for assessing treatment sequences.  

 

The use of component-based network meta-analysis is becoming increasingly common for 

synthesising complex interventions in the presence of inevitable heterogeneity, where the 

interventions are disaggregated and individual components become the intervention nodes in the 

network.336 An example of this approach is provided by Welton et al,61 which included the use of a 
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meta-regression-based extension to network meta-analysis in a Bayesian Framework.336 The 

complexity of the analysis was increased gradually over three models:  

i. An additive main effects model which assumed that the effect of each component adds (i.e., 

no synergistic or antagonistic effects) 

ii. A two way interaction model (allowing pairs of components to have either a bigger or smaller 

effect than would be expected from the sum of their effects alone) 

iii. A full interaction model for interventions described as having >2 components (e.g., cognitive + 

behavioural + support) 

 

However, these methods do not account for the time-course of a treatment sequence, or take into 

account that the choice and application of each treatment or ‘component’ is dependent on the 

effect/impact of the previous one. Component network meta-analysis has also been used for 

evaluating the diagnostic accuracy of a sequence of two tests, the Ddimer test and the Wells Score, 

to diagnose deep vein thrombosis.337 The meta-analytic framework was able to allow for the fact that 

multiple diagnostic tests, when used in combination, may not be independent of one another.337 I 

return to this in Chapter 9 (Section 9.4.2). 

 

A recent review of the challenges of conducting systematic reviews of complex multicomponent 

healthcare interventions, and approaches to address them, was conducted by the US Agency for 

Healthcare Research and Quality (AHRQ).338 The findings of this review, along with another related 

project, which assessed the theoretical foundations of complexity in systematic reviews of 

interventions,339 was subsequently used as part of the process for developing the latest guidance and 

tools for conducting reviews of complex interventions.99 The guidance, which is based on a Delphi 

process and an expert consensus workshop, is presented as a series of papers published in 2017, 

one of which provides an overview of advanced analytic methods.319 This paper presented methods to 

address a range of research questions; those assessing clinical effectiveness of the interventions 

included: network meta-analysis and single-case designs for overall effectiveness; multivariate meta-

analysis and weighted least-squares estimates for average effect sizes for examining multiple 

outcomes; and meta-regression and finite mixture modelling (also known as latent class modelling) for 

the assessment of heterogeneity.319 

 

Another recent project funded by the European Commission, called ‘Integrated assessments of 

complex health technologies’ (INTEGRATE-HTA) also resulted in the production of a series of 

guidance for conducing health technology assessment of complex interventions. I discuss this project 

in more detail, along the usefulness of one of the guidance for evaluation treatment sequencing in 

Chapter 7, Section 7.4.6.1. 
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5.10 CHAPTER SUMMARY AND NEXT STEP 

5.10.1  Chapter summary 

The current chapter summarises the findings of the review of meta-analytic techniques. The main 

finding was the dearth of methods identified. The findings also showed that reviewing the evidence on 

treatment sequencing is not straightforward and is severely hampered by the limitation of the 

evidence base. No novel methods were developed, and the review outlines all the ‘standard methods’ 

that have been applied to evaluate treatment sequencing.  

 

The evidence used to inform treatment-sequencing effects was broadly considered in two ways: 

i. In a piecemeal fashion usually based on stratified meta-analysis 

ii. Using research evaluating whole sequences 

The former was generally based on RCTs of single treatments. The latter was mainly based on RCTs 

comparing fixed sequences of up to two treatment lines or observational studies of predefined 

sequences. Where the evidence is considered in a piecemeal fashion, it is important to develop 

summary effect estimates that allow for the previous treatments used. 

 

5.10.2  The next step  

The review of quantitative evidence synthesis methods identified a number of studies that used 

decision-analytic modelling to evaluate treatment sequences, most of which were undertaken as part 

of an economic evaluation. Treatment sequences within decision-analytic models are frequently 

characterised as a series of individual treatments, each requiring a summary treatment effect estimate 

that is conditional on positioning in the treatment pathway. However, as shown in the current chapter, 

the evidence base to inform such estimates is limited. This seriously hampers the ability to implement 

meta-analytic techniques to develop such estimates. Consequently, modellers had to resort to making 

simplifying assumptions as substitutes. The next step is to review the range and type of simplifying 

assumptions used for representing treatment-sequencing effects. The next chapter also explores the 

type of data selected to inform treatment effects. Key issues identified in the current chapter are used 

to develop the draft framework. 
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CHAPTER 6: REVIEW OF SIMPLIFYING ASSUMPTIONS APPLIED TO EFFECT-ESTIMATE IN 

MODELLING STUDIES FOR EVALUATING TREATMENT SEQUENCES  

 

 

6.1 CHAPTER OVERVIEW 

In this chapter the simplifying assumptions applied to effect-estimates in modelling studies for 

evaluating treatment sequences are reviewed. Ideally, in decision modelling, simplifying assumptions 

are used only when they are required to complement the limited data. The type and level of evidence 

available, as well as the decision problem being investigated, will in turn impact the extent and type of 

assumptions required.  

 

The chapter starts with a brief introduction to decision analytical modelling and the potential impact of 

analytic judgements or assumptions on decision uncertainty. An overview of the type of decision 

problems relating to treatment sequences that decision models and economic evaluations may 

investigate is also provided. The specific aims and objectives of the review are provided in Section 

6.3. A description of categorisation schemes developed for grouping the decision problems 

investigated, and the simplifying assumptions made, is also provided. The findings of the review of 

simplifying assumptions are presented in Section 6.5. This covers any clinical condition. The variation 

in methods and type of data sources selected to inform the treatment effects across modelling studies 

evaluating a similar decision problem are explored in Section 6.6. This is based on studies that 

investigated the sequential use of TNF-inhibitors for rheumatoid arthritis.  

 

 

6.2 INTRODUCTION 

6.2.1  Decision-analytic modelling and decision uncertainty 

Decision-analytic modelling provides a means of making a decision about which treatment sequence 

to use despite a limited evidence base. Modelling can provide powerful tools to assess and compare 

the overall clinical and economic value of different treatment strategies when experimental studies are 

too complex, long, or expensive to carry out.340 Meta-analyses are conducted in order to make 

inference about the true treatment effect in a particular population. They may lead to the conclusion 

that there is insufficient evidence of an effect.341 A decision analysis, on the other hand, starts with the 

premise that a decision must be made. A decision-analytic model makes full use of the best available 

data and, where the evidence is absent, analytic judgements and assumptions are used.90 The impact 

of the resulting uncertainty is tested using sensitivity analysis.342 343 Uncertainty around the true values 

of model input parameters, which exists even when based on the best available evidence, can be 

accounted for using probabilistic sensitivity analysis. This is discussed in more detail in the Appendix 

Volume I (Section E3.6). Ultimately though, the findings of the model are only reliable if its design or 

structure is consistent with medical practice, its underlying assumptions are valid, and the data 

sources are robust and used appropriately. If incorrect assumptions or structures are used then the 

model results will be flawed and the decision may be incorrect.344 Any data sources or assumptions 
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used to inform sequencing effects therefore need to be valid and robust. Appropriate summary 

estimates of the decision uncertainty are also needed.345 

 

6.2.2  Methods for handling structural uncertainty 

The use of simplifying assumptions to represent sequencing effects may result in structural 

uncertainty, which relates to the conceptual and mathematical representation of a decision problem 

within a model.346 Structural uncertainty is less well described than parameter uncertainty,347 which is 

summarised in the Appendix Volume I (Section E3.6). It is commonly recommended that structural 

uncertainties are explored informally using scenario analyses, presenting the results under different 

model structures.347 Structural uncertainty clearly matters when different credible scenarios produce 

different results that suggest different decisions.348 However, this does not indicate which is the most 

credible scenario, and there are no established methods to formally assess the plausibility of 

alternative models.347 Proposed alternative approaches for characterising structural uncertainty 

include: model averaging, i.e. calculating the sum of the outcomes of a set of plausible models, 

weighted by some measure of their adequacy or credibility;348 349 and discrepancy modelling, which 

involves making judgements about the discrepancy between the model output and the ‘true’ target 

value.349 However, these methods require data to inform the model parameters for alterative 

assumptions. Where explicit assumptions cannot be assessed against data, Jackson and others, in 

their framework for addressing structural uncertainty,347 propose the use of expert elicitation.348 

However, Jackson et al. go on to state that where sufficiently robust expert beliefs cannot be 

obtained, for example when extrapolating short-term evidence into the future, uncertainty must be 

addressed by presenting the results under different scenarios. This will show the main assumptions 

driving the results, and how the results change under different assumptions. Quantitative measures of 

model adequacy, such as the model weights can be used to help decision makers interpret a table of 

scenarios.347 

 

6.2.3  The use of simplifying assumptions in decision-analytic models of treatment sequences 

Decision-analytic models are generally implemented by first applying a summary treatment effect to 

the baseline patient population. This initial treatment effect, which needs to be based on the best 

available evidence, is generally informed by RCTs with short-term follow-up.350 This is then 

extrapolated using the model, supplemented by further evidence sources, in order to estimate the 

continued treatment effect and long-term impact.  

 

The use of decision-analytic modelling to compare predefined sequences is usually based on the 

application of a summary treatment effect to each individual treatment in the sequence. The review 

explores the methods or assumptions used to inform the initial summary effect of each individual 

treatment used in the sequence being modelled. This includes individual treatments used early on in 

the treatment pathway or later stages. Where meta-analytic methods were used to produce these 

summary effect-estimate or sequencing effects, these are presented in Chapter 5. The current 

chapter focuses on the assumptions made regarding these effect-estimates conditional on their 
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positioning or the previous treatments used. The different modelling techniques used, are presented 

in Chapter 7.  

 

6.2.4  Decision problem relating to treatment sequencing 

The first stage of developing any decision-analytic model is to specify the question or decision 

problem.351 The decision which a model aims to inform will then determine the appropriate model 

structure and complexity.352  

 

A number of different types of decision problems relating to treatment sequencing may be 

investigated using a decision-analytic model. The decision-analytic model may be used to evaluate 

different sequencing approaches used over the course of the disease. For example, the decision 

problem may be about whether to use a ‘step-up’ versus ‘step-down’ drug regimen, starting with either 

the least toxic or the most effective drug first, or it could be about investigating whether a different 

class of drug is required upon treatment failure. Alternatively, it may relate to the best overall 

sequencing approach. A common problem faced by policy makers is the identification of the optimum 

positioning of a new treatment within the existing treatment pathway. Reimbursement and health 

technology assessment bodies, such as NICE, may be interested in the actual added value of a new 

treatment, and whether its addition to the current pathway is cost-effective, whilst taking into account 

the downstream costs of subsequent treatments. The decision problem could relate to a simple 

comparison of multiple new treatments, and their use within the current treatment pathway. I re-visit 

the range of decision problems relating to treatment sequences in Section 6.4.2, which describes a 

coding scheme developed to summarise the decision problem investigated by included studies. 

 

Models that consider decision problems relating to the best overall sequencing encompass yet 

another layer of complexity. Examples include: which specific drug to use first, the duration of time 

over which to trial an intervention, whether to increase the dose before trying another treatment, and 

issues relating to individualising treatment. Albert et al. argue that, in these circumstances it’s the 

philosophy of the approach, rather than the specific algorithms, that is really being debated. This is 

because the complexity and ambiguity of the situation is such that specific algorithms are not 

possible; there are too many options and variables to construct specific algorithms216 (Chapter 1, 

Section 1.5.1). Furthermore, decisions on treatment sequencing made in clinical practice are adaptive 

in nature (as outlined in Chapter 1, Section 1.2.1). These are based on both the accruing data on the 

current individual circumstance over time and the embedded knowledge from previous cases. The 

practicality of conducting decision analysis means that decisions have to be made from the outset on 

which drug should be included in the algorithm and at which point, whether to treat all treatments in 

the sequences as a ‘class effect’, and how many treatments to allow for within a given sequence.  

 

6.2.5  Accounting for treatments administered before and after the decision point of interest 

All treatments for chronic conditions are in fact part of a treatment sequence. It could, therefore, be 

argued that all decision-analytic models are involved with ‘treatment sequences’. For some decision 
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problems the previous and subsequent treatments may be ignored or greatly simplified in the model, 

but why and how this is done should be clearly justified.  

 

A decision-analytic model represents a simplified reality, and usually considers only what is pertinent 

or relevant to the decision problem. This means that any variation between the treatment strategies 

being compared that does not impact the decision problem, or its cost-effectiveness, is generally 

ignored. The evaluation of treatment sequences acknowledges that treatment effects are likely to be 

influenced by the choice of both prior and subsequent treatments used.  

 

Decision-analytic models that start at the point of diagnoses are more likely to reflect the complete 

treatment sequences used in chronic conditions (Chapter 1, Section 1.4.2.2). However, where 

treatments are modelled from an earlier point in the disease process, the likelihood that there is no 

matching evidence increases, and more assumptions are required. Modelling studies that only 

consider the impact of subsequent treatments are generally based on the assumption that the 

sequences being compared are starting from a level playing field. The potential impact of this is not 

generally considered within the sensitivity analysis, as it is not part of the cost-effectiveness 

estimates. The included modelling studies of biological agents for rheumatoid arthritis, the most 

common disease condition investigated, used a range of starting points in the treatment pathway, 

even when considering the same decision problem. The type of data selected to inform the effects of 

treatments administered before the decision point of interest is explored further in the Appendix 

Volume I (Section D). 

 

The review focuses on decision-analytic modelling studies that aim to evaluate treatment sequences. 

However, economic models often focus on the comparison of singe treatments, and tend incorporate 

treatment sequences to account for the impact of the downstream costs of subsequent treatments 

beyond this decision point. The downstream effects of subsequent treatments are also modelled in 

order to reflect clinical practice for chronic conditions. The effects of subsequent treatments, 

administered after the decision point of interest, are often handled in different ways. For example in 

the economic model developed as part of the NICE appraisal comparing the effectiveness of TNF-

inhibitors for rheumatoid arthritis (NICE TA130; Chen, 2006, which was introduced in Chapter 4, 

Section 4.4),227 the initial treatment response to each conventional disease-modifying anti-rheumatic 

drug (DMARD) used after the TNF-inhibitor was explicitly modelled. In another technology appraisal 

comparing effectiveness of TNF-inhibitors for psoriatic arthritis (NICE TA199; Rodgers, 2011, Section 

4.4),17 the economic model assumed that patients experienced a steady long-term deterioration after 

the failure of the TNF-inhibitor, and the fluctuations caused by response to subsequent conventional 

DMARDs, which were considered to be administered as part of palliative care, were ignored. This is 

explored furtherer in in the Appendix Volume I (Section D). 

 

In oncology, there is a need to account for the clinical effect of downstream chemotherapy treatments 

for advanced cancer, as they have an impact on overall survival. (This issue was introduced in 
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Chapter 4, Section 4.4, and is discussed in more detail in the Appendix Volume I, Section C4). This is 

also handled in different ways. For example, in the NICE technology appraisal evaluating targeted 

therapies for advanced colorectal cancer (NICE TA93), Hind et al. limited inclusion to sequencing 

trials of up to two lines of treatment (discussed in Chapter 5, Section 5.3.2).204 In the NICE clinical 

guideline evaluating chemotherapy sequences for advanced breast cancer (NICE CG81), the overall 

survival was estimated as part of the modelling process, based on the sum of two separate pooled 

estimates of progression free survival for first and second line treatment, and a fixed arbitrary 

estimate for survival in progressive disease.257  

 

6.2.6  Potential evidence gap and displacement effect 

The available evidence to inform treatment-sequencing effects impacts the type of assumptions 

required. A frequent problem when evaluating the introduction of a new treatment to an established 

sequence is that specific evidence gaps sometimes appear regarding current treatments. These 

develop over time as a result of the process by which new drugs are introduced into the market, and 

the indication for which they are licenced. This was first introduced in Chapter 1, Section 1.3.2, and 

illustrated in the clinical case studies discussed in the Appendix Volume I (Section C). These 

evidence gaps are likely to remain, as future research concentrates on the evaluation of the 

subsequent new treatments. This in turn leads to a common dilemma in terms of the limited evidence 

base to inform the ‘displacement effect’. When adding a new treatment to an established sequence, 

the treatment being displaced lower down the sequence will not only represent the subsequent 

treatment in the sequence with the new treatment, but also the comparator, in the same sequence 

without the new drug. The variation in the type of data used to address such an evidence gap is 

explored in more detail in Section 6.6, using sequential TNF-inhibitors in rheumatoid arthritis as an 

example. 

 

 

6.3 AIM AND OBJECTIVES OF THE REVIEW OF SIMPLIFYING ASSUMPTIONS USED IN 

DECISION-ANALYTIC MODELLING STUDIES 

The overall aim of this part of the review of decision-analytic modelling studies was to investigate the 

simplifying assumptions made regarding the treatment-sequencing effects, or the response to each 

treatment used in the sequence. 

 

The specific objectives of this review were to identify and review: 

i. what analytic judgements or assumptions were used in the presence of limited, or absent data 

regarding treatment response conditional on positioning in the treatment pathway and 

ii. the extent of the variation in the choice and source of the accompanying efficacy data in the 

presence of limited, or the absence of data regarding treatment-sequencing effects for a 

similar decision problem. 
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The second objective, evaluating the consistency in the methods used to select data to inform 

treatment-sequencing effects, was addressed in more detail using modelling studies that investigated 

the use of treatment sequences for rheumatoid arthritis. However, the findings are also considered 

relevant to other disease conditions. The purpose here was to guide future methods, and not to 

identify and review the latest evidence on the effectiveness of treatments for rheumatoid arthritis.  

 

Most modelling studies included the costs of palliative or best supportive care. The actual treatments 

used in palliative care were sometimes named in order to estimate these costs. However, only the 

sequencing effects of active treatments were considered here. The review focuses on treatment 

sequences, and the term ‘treatment’ is used for monotherapy, combination therapy or a category of 

treatments.  

 

 

6.4 METHODS FOR THE REVIEW OF SIMPLIFYING ASSUMPTIONS USED IN DECISION-

ANALYTIC MODELLING STUDIES 

6.4.1  Identifying relevant studies 

The literature searches and the methods used to identify and review the relevant modelling studies 

are described in Chapter 3.  

 

6.4.2  Coding the decision problem and simplifying assumptions 

Included decision-analytic modelling studies were coded according to their underlying purpose, or 

decision problem, in relation to treatment sequencing. The decision problem categories are illustrated 

in Figure 6.1. 

 

Studies were first assessed to determine whether they aimed to identify the ‘optimum sequence’ out 

of all conceivable treatment sequences, or to compare predefined sequences, thus selecting a 

manageable number of sequences for comparison in advance. Studies investigating predefined 

sequences were then coded according to the type of decision problem they related to, using the 

following categories: 

i. Disease approach, e.g. the comparison of step up vs step down treatment regimens  

ii. Single point, e.g. comparison of two treatments used as the same line of therapy 

iii. Different points, e.g. the same treatment used at different points in a treatment pathway 

iv. Adding, e.g. adding a new treatment to the start or the end of an established or current 

treatment pathway 

v. Predefined sequences, for studies that aimed to compare specified whole sequences 

 

Decision problems were coded as adding if they included the comparison of the same sequence with 

and without the addition of a specified treatment. The different points coding was reserved for the 

comparison of a specific treatment used at different locations, but did not include the comparison of a 

sequence without this treatment. Some studies included multiple decision problems, and therefore 

had more than one decision code.  
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Figure 6.1: Illustration of treatment sequences according to decision problem 

 

‘Optimum sequences’ 

Identifying the best sequence out of all conceivable sequences. 

 

‘Disease approach’ 

 A - B - C - D  

 A - B - C - D  

or 

 X - Y - A - B 

 A - B - X - Y 

Comparison of ‘step-up’ vs ‘step-down’ approaches, or comparing the use of new drugs first or 

starting with older, established drugs. 

 

‘single point’ 

 A - B - C - D  

 A - B - X - D 

Comparison or decision point = C vs X. Treatment C is replaced by X in the second sequence 

 

‘different points’ 

 X - B - C - D  

 A - X - C - D  

 A - B - X - D 

 A - B - C - X  

Comparison of X used at different points in the sequence 

 

‘Adding’ a new treatment to an established sequence 

 A - B - C - D - E  

 A - B - X - C – D - E 

Comparison or decision point = C vs X. Treatment C is displaced by X in the second sequence  

 

‘Predefined sequences’  

 A - B - C  

 X - Y - Z  

Comparison of specified whole sequences  

 

 

The simplifying assumptions used to represent sequencing effects were coded using the scheme 

developed as part of the review process and presented within the results in Section 6.5.3 and Figure 

6.2. The codes were developed in an iterative process as part of the data extraction presented in the 

Appendix Volume II. (Appendix D). For each study a summary of the assumptions relating to the 

sequencing effect-estimate were initially extracted as a narrative, and then given a descriptor. The 

same descriptor was then used for the next study that used a similar assumption. The assumptions 

that were coded relate to those used to inform the initial treatment effect of individual treatments 

conditional to their positioning in the modelled sequences. Included studies that investigated a 

decision problem relating to adding a new drug were also assessed according to whether they 

ignored the displacement effect, by using the same treatment effect for the comparator, irrespective of 



148 
 

which sequence it related to. This is included here as it is an approach that assumes there are no 

sequencing effects at play. 

 

 

6.5 RESULTS OF THE REVIEW OF SIMPLIFYING ASSUMPTIONS 

6.5.1  Simplifying assumptions coding scheme 

The new coding scheme developed as part of the review process is presented in Figure 6.2. 

Individual codes are described in more detail using the findings of the review of modelling studies 

presented in section 6.4.3. The coding scheme includes 12 codes grouped under six headers that 

relate the following: 

i. Treatment sequencing considered to have no or limited impact 

ii. The effect of some treatments is the same as an alternative, substitute treatment 

iii. The effect of treatment is thought to decreases with subsequent use 

iv. A treatment used for relapse is considered to have the same effect as its initial use 

v. Displacement effect is not accounted for 

vi. The use of alternative data sources to inform treatment sequence effects 

 

The application of the coding system to the wider group of included studies highlighted some 

challenges. These were primarily due to the differential application of multiple simplifying assumptions 

(within the same study) across different treatments, different points in the sequences, and when 

conducting scenario analysis. The information provided on the simplifying assumptions used was 

frequently limited, and those applied to the treatments used subsequent to the decision-point of 

interest were especially poorly reported. In some instances, the simplifying assumptions reported by 

the authors did not account for all the compromises made due to the limited evidence base, especially 

for treatments used later in the sequences being modelled. One code (RDD) relating to the potential 

reduction of treatment effect due to disease duration, turned out to be particularity difficult to apply. 

This was not surprising because, as discussed in relation to the use of meta-regression (Section 5.5), 

it is difficult to disentangle whether long standing disease per se is associated with poor response to 

treatment, or whether prior failure of previous treatments predicts response to subsequent 

treatments.302 Due to the iterative process of developing the coding system, this code was initially 

conceived from one study (Fitzsimmons, 2014), which used sensitivity analysis to account for the fact 

that treatment effect can diminish with time alone, as well as the number of previous treatments.115 

However, studies that were subsequently data-extracted did not distinguish between these two 

issues, making it difficult to apply this particular code. 

 

The coding system also represents an important contribution to the framework presented in Chapter 

8. It can potentially be used as an aid to considering treatment sequences as part of the decision 

problem; to inform the choice of approach to use within a health technology assessment by clarifying 

what has actually been done previously; and to highlight whether modellers have used the same or 

different approaches within technology appraisals of a similar decision problem. 
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Figure 6.2: Coding scheme used for coding simplifying assumptions relating to treatment-

sequencing effects used by included studies 

Each study may include more than one code. 

 

CODE  SIMPLIFYING ASSUMPTION 

Treatment independence 

IP  Treatment effect is independent of positioning in treatment sequence. 

NPT Treatment effect is dependent on the number of previous treatments used, but independent 

of the type of treatments used. 

Substitution with another treatment effect 

GE Treatment effect is the same as an alternative treatment from the same class, or a generic 

class effect - irrespective of positioning in the sequence (generic effect). 

PGE Treatment effect is the same as an alternative treatment from the same class, or a generic 

class effect - matching the same position in the sequence (positional generic effect). 

ST Treatment effect is the same as an alternative (substitute) treatment from a different class 

of treatments, used at the same point in the sequence (substitute treatment). 

Reduction of treatment effect 

RF Treatment effect is reduced, in line with a multiplier or reduction factor, when used at a 

later point in the sequence. (Here the specific reduction or multiplication factor used to develop the 

diminishing effect, is informed by the available evidence that is also relevant to the treatment of 

interest.) 

TD Treatment effect decrements by the same pre-set amount with each successive treatment 

(decrementing effect). (Here the same generic proportional reduction, used to represent the 

diminishing effects, is applied at each point in the sequence irrespective of the treatment used. The 

proportion is not necessarily based on a specific evidence base.) 

RDD Treatment effect is reduced with disease duration, and treatments are not as effective 

when they are used in late disease. 

Impact of time since previous treatment  

LR Treatment effect is not affected by previous treatments if patients have been in long term 

remission, and thus can re-use the same treatment(s)/class of treatment(s) as that which achieved 

the prior remission. 

Displacement effect ignored 

DI A single treatment effect does not differ when it is displaced (i.e. its position in the 

sequence is changed) by the addition of a new prior treatment (displacement ignored) 

The use of uncontrolled/observational studies without bias adjustment 

UOBS Uncontrolled trials or observational studies provide an un-biased estimate of treatment 

(sequencing) effects. 

EXC Expert consensus provides an un-biased estimate of treatment-sequencing effects 
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6.5.2  Description of included studies  

Sixty six studies were included in the review assessing the range of simplifying assumptions used in 

decision-analytic models to account for sequencing effects.17 18 115 197 199 216-242 244-248 250-254 256-279 These 

are listed in Tables 6.1 and 6.2, which outline the modelling approaches used, the decision problems 

of interest, the length of treatment sequences, and the type of simplifying assumptions used. A large 

proportion of the modelling studies investigated treatment sequences for rheumatologic conditions 

(Table 6.1). These represent a single body of research evaluating sequential DMARDs for a group of 

arthritic conditions with common features (described in more detail in the appendix Volume I, Section 

C3), and are therefore listed separately from those of non-rheumatologic conditions (Table 6.2). A 

more detailed summary of each included study, including the patient population of interest, the 

treatment sequences evaluated, the available evidence base, and the simplifying assumptions made, 

is presented in the Appendix Volume II. (Appendix D).  

 

Six studies, all of which evaluated treatments for non-progressive chronic conditions, aimed to identify 

the optimum sequence of treatments from all conceivable sequences. Four studies (Anis, 2011; 

Sawyer, 2013; Sizto, 2009; Woolacott, 2006) evaluated psoriasis,217 263 267 278 one included 

onychomychosis (fungal infection of the toenail; Frankum, 2005),239 and one study (Smith, 2007) was 

of postherpetic neuralgia (a nerve pain that persists after a shingles rash has cleared).268 The 

modelling approaches used, which are described in more detail in Chapter 7, were only feasible by 

assuming that treatment effects were independent of position in the sequence (which I come back to 

in Section 6.5.3.1). Treatments were ranked according to the outcome for individual treatments, in 

order to identify the optimum sequence. 

 

The remaining studies, which included all the rheumatology studies, compared a set number of pre-

specified sequences in order to evaluate:* 

i. Adding a new drug to a sequence (n=28)  

ii. Comparing different treatment approaches by incrementally increasing or decreasing the 

number of treatments used prior to a fixed sequence (n=10) 

iii. Comparing different drugs used at the same point within a sequence, or replacing one of the 

drugs in the sequence with a new treatment (n=20) 

iv. Using the same drug at different points within the same sequence (n=10) 

v. Simply comparing different predefined sequences (n=16) 

(*Some studies included multiple decision problems as described in Section 6.4.2) 

 

The need for simplifying assumptions regarding sequencing effects is dependent on the extent or 

limitation of the available evidence base. This in turn is influenced by the length and variability of the 

sequences evaluated, and whether reasons for discontinuation were considered. If, for example, the 

decision problem related to the comparison of a sequence of only two lines of therapy, or if there are 

matching trials for each line of therapy with subsequent treatments predefined in the protocol, then 

suitable sequencing trials may exist. However, when considering multiple interventions over a lifetime 
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horizon for chronic conditions, there is a greater potential for imperfect evidence, and a need for 

simplifying assumptions. Most (63%) of the rheumatology studies included a lifetime horizon, and the 

number of treatment lines within included sequences ranged from two to 12 (Table 6.2).  

 

Table 6.1: Summary and coding of rheumatology studies 

(Studies ordered alphabetically by author) 

Author, year 
Country 

Condition Modelling approach 

(Time horizon) 

Sequencing decision 
problem 

Lines of 
treatment  

Simplifying 
assumption 
code 

Albert, 2000 
US 

RA Markov cohort 
(not stated) 

Disease approach 
 

3 IP 
EXC  

Bansback 2005 
Sweden 

RA Individual sampling 
(lifetime) 

Adding  
Single point (1st-line) 
(Simple sequence) 

1 or 2 NPT  
IP 
UOBS 
GE 
DI 

Barton 2004 
UK  
(NICE TA36) 

RA Individual sampling 
(lifetime) 

Adding (3rd or last drug) 
Different points 

9 or 10 NPT  
PGE  
IP  
GE  
DI 

Beresniak, 2011 
Spain 

RA Decision Tree 
(2 years) 

Single point (2nd and 
3rd) 
Predefined sequences 

3 NPT  
PGE  
UOBS 

Beresniak, 2013 
Germany 

RA Decision Tree 
(2 years) 

Single point (2nd and 3rd) 
Predefined sequences 
 

3 NPT  
PGE  
UOBS  

Brennan, 2004 
UK 
(a submission 
for NICE TA36) 

RA Individual sampling 
(lifetime) 

Adding (start) 
 

3 to 4 NPT  
DI 
IP  
GE 
UOBS 

Brennan, 2007 
UK  
(a submission 
for NICE TA36) 

RA Individual sampling 
(lifetime) 

Single point (2nd TNF) 
(Simple sequence) 

2 NPT  
GE  
IP 
PGE  
UOBS  

Chen, 2006 
UK  
(NICE TA130) 

RA Individual sampling 
(lifetime) 

Adding (1-3) 
Different points (1st, 3rd, 
last) 

10 to 11 (or 
13) 

IP  
RDD 
DI 
GE  

Cimmino 2011 
Italy 

RA Decision Tree 
(2 years) 

Single point (2nd and 3rd) 
Predefined sequences 
 

3 NPT  
PGE  
UOBS  

Clark, 2004 
UK 
(NICE TA72) 

RA Individual sampling 
(lifetime) 

Adding (1st, 3rd, or last; 
after 1-2 TNFs)  
Different points 

9, 10, or 11 IP  
RF 
RDD 
DI 

Coyle, 2006 
Canada 

RA Markov cohort 
(5 years) 
 

Adding (4th and 5th or 2nd 
and 3rd, depending on 
toxicity) 
Different points 

4 to 5 or 2 to 
3 (based on 
toxicity) 

IP  
DI 

Davies, 2009 
US 

RA  Individual sampling 
(lifetime) 

Single point (1st drug)  
Adding (1-2 TNFs) 
Disease approach 

4, 5 or 6 NPT  
IP  
GE  
UOBS  
DI  

Diamantpoulus, 
2012 
Italy 

RA Individual sampling  
(lifetime) 

Adding (start) 
Single point (1st line) 
 

4 or 5 NPT  
RF  
GE  
IP  
DI 

Diamantpoulus, 
2014 
UK 

RA Individual sampling  
(lifetime) 

Adding (1st or 2nd-line)  
Single point (1st line) 
 

3 or 4, and 6 
or 7 

IP 
NPT  
GE  
DI 

Finckh, 2009 
US 

RA Individual sampling 
(lifetime) 

Disease approach 4 or 7 GE 
IP 
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Author, year 
Country 

Condition Modelling approach 

(Time horizon) 

Sequencing decision 
problem 

Lines of 
treatment  

Simplifying 
assumption 
code 

Hallinen, 2010 
Finland 

RA Individual sampling 
(lifetime) 

Adding (1st, 2nd or 3rd -
line) 
Disease approach 

4, 5, or 6 IP  
DI 

Jobanputra, 
2002  
UK 
(NICE TA36)  

RA Individual sampling 
(lifetime) 

Adding (3rd or last drug) 
Different points 

9 to 10 NPT  
PGE  
IP  
GE  
DI 

Kielhorn, 2008 
UK  
 

RA Individual sampling  
(lifetime) 

Adding (1st-line) 
 

3, 4, 5, or 6 IP  
GE  
DI 

Kobelt, 2011 
Sweden 

RA  Individual sampling  
(10 years) 

Single point (start) 
Disease approach  

1 to 2  PGE 
UOBS  
 

Lindgren, 2009 
Sweden 
 

RA Individual sampling 
(lifetime)i 
 

Adding (1st-line) 3 PGE  
IP 
DI 
UOBS 

Maetzel, 2002 
Canada  
 

RA Markov cohort  
(5 years) 

Adding (2nd or 4th drug, 
depending on toxicity) 
 

3 to 4, or  
5 to 6 
(based on 
toxicity) 

IP 
DI 

Malottki, 2011 
UK 
(NICE TA195) 

RA Individual sampling 
(lifetime) 

Adding (start) 4 to 5 UOBS  
PGE  
NPT  
RDD  
DI 

Merkesdal, 2010 
Germany 

RA Individual sampling 
(lifetime) 

Adding (start) 4 to 5 IP  
DI 

Puolakka, 2012 
Finland 

RA Decision Tree 
(2 years) 

Single point (2nd-line) 
Predefined sequences 
 

3 IP 
NPT  
PGE  
UOBS  

Rodgers, 2011 
UK 
(NICE TA199) 

PsA Markov cohort  
(lifetime) 
 

Adding (2nd TNF) 
(Simple sequence) 

2 RF  
UOBS 

Russell, 2009 
Canada  
 

RA Decision Tree 
(2 years) 

Single point (1st and 2nd) 
Predefined sequences 
 

3 NPT  
ST  
PGE  
RF  
DI 

Saraux, 2010 
France 

RA Decision Tree 
(2 years) 

Single point (2nd and 3rd) 
Predefined sequences 
 

3 NPT  
PGE  
UOBS  

Schadlich, 2005 
Germany 

RA Partitioned survival 
(3 years) 

Adding (1st and 2nd) 
Different points 

1or 2, 
4 or 5, and 
5 or 6 

IP  
RF  
DI 

Schipper, 2011 
Netherlands 

RA (early) Markov cohort  
(5 years) 

Disease approach  
Different points 

5 IP  
PGE  
UOBS 

Tanno, 2006 
Japan  

RA Markov cohort  
(lifetime) 

Adding (start) 3 or 4 NPT  
GE  
UOBS  
DI 

Tran-Duy, 2011 
Netherlands 

AkS Individual sampling 
(lifetime) 

Adding (3rd and 4th line) 5 or 7 NPT  
RF  
PGE  
GE  
IP  
DI 

Tran-Duy, 2014 
Netherlands 

RA Individual sampling  
(lifetime) 

Adding (3rd and 
subsequent) 
Disease approach 

8 or 12 NPT  
DI 
PGE 

Wailoo, 2006 
US 

RA Individual sampling  
(lifetime) 

Single point (1st-line) 
Predefined sequences 
(with 2nd and 3rd TNF-
inhibitor) 

2 or 3 IP 

Welsing, 2005 
Netherlands  
 

RA Markov cohort  
(5 years) 

Adding (start: 1-2 drugs) 
Disease approach 

1, 2 or 3 IP 
TD  
DI 

Wu, 2012 RA Markov cohort  Adding (start: 1-2 drugs)  4, 5, or 6 NPT  
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Author, year 
Country 

Condition Modelling approach 

(Time horizon) 

Sequencing decision 
problem 

Lines of 
treatment  

Simplifying 
assumption 
code 

China (lifetime)  IP  
GE  
UOBS  
DI 

Simplifying assumption code: GE treatments from the same class or category produce identical (generic) treatment 
effects, and that these are independent of positioning in the treatment sequence; DI the is no treatment displacement effect; 
EXC expert consensus provides unbiased estimates of treatment sequencing; IP treatment effect is independent of 
positioning in sequence; LR treatment effects were not affected by previous treatments when patients had been in long term 
remission; NPT treatment effect was dependent on the number of previous treatments used, but independent of the type of 
treatments used; PGE treatments from the same class or category produce identical (generic) treatment effects, when used 
at the same position in the treatment sequence; RF treatment effect is reduced in line with a reduction factor; RDD there is a 
reduction in efficacy with increased disease duration; ST treatment effect is the same as a substitute treatment from a 
different class but used at the same position in the sequence; TD Treatment effect decrements by the same pre-set amount 
with each successive treatment; UOBS observational studies or uncontrolled trials provided an un-biased estimate of 
treatment effects. 

 

Table 6.2: Summary and coding of non-rheumatology studies  

(studies are ordered alphabetically by condition and then author) 

Author, year 
Country 

Condition Modelling approach 

(Time horizon) 

Sequencing decision 
problem 

Lines of 
treatment  

Simplifying 
assumption 
code 

Cameron, 2008 
UK 

Cancer 
(aBC) 

Markov cohort  
(10 years; lifetime) 

Adding (2nd or 3rd drug) 
 

4 to 5 NPT  
IP  
DI  

Dranitsaris, 2011 
Malaysia 

Cancer 
(mCRC) 

Decision tree 
(lifetime) 

Adding (2nd drug) 
(Simple sequence) 

2 NPT  
DI 

Heeg, 2015 
Netherlands 

Cancer  
(multiple 
myeloma) 

Markov cohort 
(lifetime) 

Predefined sequences 4 NPT 

Lee, 2013 
South Korea 

Cancer  
(Ovarian cancer) 

Markov cohort  
(10 years; lifetime) 

Single point (2nd -line = 
model starting point) 

5 NPT 
IP  

Lux, 2009 
Germany 

Cancer 
(aBC) 

Markov cohort  
(10 years; lifetime) 

Adding (2nd-line) 4 to 5 NPT 
DI  
EXC  

NICE CG81 
(2009) 

Cancer (aBC) Decision tree 
(lifetime) 

Predefined sequences Up to 3 NPT  
IP 
TD 
UOBS 

Soini, 2012 

Finland 

Cancer 

(Follicular non-

Hodgkin 

lymphoma FL) 

Markov cohort  

(lifetime)  

Predefined sequences 2 (+/- 

maintenance 

therapy) 

PGE  

LR 

 

Wong, 2009 
US  

Cancer 
(mCRC) 

Markov cohort  
(lifetime) 

Predefined sequences Up to 3 NPT  
IP  

Shepherd, 2006 
UK 
(NICE TA96) 

Chronic Hep B 
infection 

Markov cohort  
(lifetime) 

Predefined sequences up to 3 IP 

NICE CG152 
(2012) 

Crohn’s disease Decision tree / Markov 
Cohort 
(2 years) 

Predefined sequences Up to 4 IP 
TD 
NPT 

Greenhalgh, 2005 
UK 
(NICE TA59) 

Major 
depressive 
disorder (MDD) 

Decision tree 
(1 year) 

Different points 3 IP 
NPT 

Erhadt, 2012 
Germany 

Type 2 diabetes 
mellitus 

Individual sampling 
(lifetime) 

Single point (2nd line) 
(Simple sequence) 

3 IP  

Connock, 2006 
UK  
(NICE TA79) 

Epilepsy (in 
children) 

Individual sampling 
(15 years) 

Adding 
Different points 

Up to 4 RF 
DI  

Knoester, 2007 
Netherlands 

Epilepsy  Decision Tree 
(1 year) 

Predefined sequences 
(Simple sequence) 

Up to 2 PGE  

NICE CG137 
(2012) 

Epilepsy  
(in children and 
adults) 

Markov cohort 
(15 years) 

Single point (1st and 3rd-
line) 

Up to 3  RF 
IP 

Wilby, 2005 
UK 
(NICE TA76) 

Epilepsy Semi-Markov cohort 
(15 years) 

Single point (1st and 3rd-
line) 

Up to 3  IP 

Beard, 2011 
US 

Fibromyalgia Markov cohort  
(2 years) 

Adding  
Different points 

5 to 6 IP  
DI 
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Author, year 
Country 

Condition Modelling approach 

(Time horizon) 

Sequencing decision 
problem 

Lines of 
treatment  

Simplifying 
assumption 
code 

Denis, 2008 
France 

Glaucoma  Individual sampling  
(5 years) 

Predefined sequences 
(Simple sequence, 
estimating probability of 
starting 3rd-line 
treatment) 

2 IP 

Orme, 2012 
UK 

Glaucoma  Markov cohort 
(10 years) 

Single point (1st-line) 3 IP  
GE 

Holmes, 2006 
South Africa 

HIV 
 

Individual sampling 
(lifetime) 

Predefined sequence Up to 2 RF  
GE  
UOBS  

Tebas, 2001 
US 

HIV Markov cohort  
(10 years) 

Disease approach Up to 3 EXC  

Frankum, 2005 
US 

Onychomycosis Decision Tree 
(1-3 years) 

Optimum sequence 3 IP  
UOBS 
LR  

Smith, 2007 

US 

Postherpetic 

neuralgia (PHN) 

Markov cohort  

(lifetime) 

Optimum sequence 4 to 5 IP 

Anis, 2011 
US 

Psoriasis Markov cohort 
(10-16 weeks) 

Optimum sequence Up to 6 IP 

Sawyer, 2013 
UK 
(NICE CG153) 

Psoriasis Markov cohort  
(1 year) 

Optimum sequence Up to 3 IP 

Sizto, 2009 
Canada 

Psoriasis Markov cohort 
(Unknown) 

Optimum sequence 6 IP 

Woolacott 2006 
UK 
(NICE TA103) 

Psoriasis Markov cohort  
(10 years) 

Optimum sequence 3 and 7 IP 

Davies, 2008 
UK 

Schizophrenia Markov cohort 
(10 years) 

Predefined sequences 3 IP  
NPT 

Heeg, 2008 
Netherlands 

Schizophrenia Individual sampling  
(5 years) 

Single point (1st-line) Up to 4 IP 

Fitzsimmons, 2014 
UK  

Sciatica Decision Tree  
(1 year) 

Disease approach Up to 3 IP 
TD 
RDD 

Bensmail, 2009 
France 

Spasticity Decision tree 
(2 years) 

Single point (1st-line) 3 to 4 IP 
UOBS  
EXC  

Simplifying assumption code: GE treatments from the same class or category produce identical (generic) treatment effects, 
and that these are independent of positioning in the treatment sequence; DI the is no treatment displacement effect; EXC 
expert consensus provides unbiased estimates of treatment sequencing; IP treatment effect is independent of positioning in 
sequence; LR treatment effects were not affected by previous treatments when patients had been in long term remission; NPT 
treatment effect was dependent on the number of previous treatments used, but independent of the type of treatments used; 
PGE treatments from the same class or category produce identical (generic) treatment effects, when used at the same 
position in the treatment sequence; RF treatment effect is reduced in line with a reduction factor; RDD there is a reduction in 
efficacy with increased disease duration; ST treatment effect is the same as a substitute treatment from a different class but 
used at the same position in the sequence; TD Treatment effect decrements by the same pre-set amount with each 
successive treatment; UOBS observational studies or uncontrolled trials provided an un-biased estimate of treatment effects. 

 

6.5.3  Summary of the simplifying assumptions used 

The overall frequency with which each simplifying assumption was used is summarised in Table 6.3. 

Most studies had multiple codes assigned, where different assumptions were used for different 

treatments, treatments used at varying positions in the sequence, and different assumptions used in 

sensitivity analyses. The challenge of applying the coding system to these studies is highlighted in the 

examples provided in the text below. 

 

Table 6.3:  Summary of the frequency of use of the simplifying assumptions 

Simplifying assumption used Total (n=66) 
Rheumatology 

studies (n=35) 

Non-rheumatology 

studies (n=31) 

Treatment independence 
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Simplifying assumption used Total (n=66) 
Rheumatology 

studies (n=35) 

Non-rheumatology 

studies (n=31) 

Independent of positioning (IP) 48 (72%) 25 (71%) 23 (74%) 

Dependent on number of previous 

treatments used (NPT) 
29 (44%) 19 (54%) 10 (32%) 

NPT used in conjunction with IP  11/19 6/8 

Substitution with another treatment effect 

Generic effect (GE) 16 (24%) 14 (40%) 2 (6%) 

Positional generic effect (PGE) 17 (26%) 15 (43%) 2 (6%) 

Substitute treatment (ST) 1 (2%) 1 (3%) - 

Reduction of treatment effect 

Reduction factor (RF) 9 (14%) 6 (17%) 3 (10%) 

Decrementing effect (TD) 4 (6%) 1 (3%) 3 (10%) 

Reduced with disease duration (RDD) 4 (6%) 3 (9%) 1 (3%) 

Impact of time since previous treatment  

Long term remission (LR) 2 (3%) - 2 (6%) 

Displacement effect ignored 

Displacement ignored (DI) 28 (42%) 23 (66%) 5 (16%) 

The use of uncontrolled/observational studies without bias adjustment 

Uncontrolled trials or observational 

studies (UOBS) 
20 (30%) 16 (35%) 4 (13%) 

Expert consensus (EXC) 4 (6%) 1 (3%) 3 (10%) 

 

6.5.3.1  Treatment independence 

The most common simplifying assumption used by included modelling studies was that treatment 

effect was independent of positioning in the treatment sequence (coded as IP), essentially allowing 

treatment sequencing issues to be ignored. Forty-eight (72%) studies assumed that the effects of 

either all or some of the treatments were independent of treatment sequence. This included all six 

studies that aimed to identify the optimum sequence of treatments from all conceivable treatments, as 

opposed to comparing pre-defined sequences. The included studies highlighted the variation in the 

application of this common assumption and the data selected to supplement its use in practice. 

 

Pivotal clinical trials or observational studies were frequently available for single treatments used at 

the specific decision-point of interest within the treatment sequence, generally the first treatment 

being modelled. This enabled the modellers to use evidence matching the line of therapy and the 

number of previous treatments, but not the specific sequence or specific previous treatments used. All 

but one of the included oncology studies used this simplifying assumption (coded as NPT). This was 

generally applied in conjunction with an assumption of treatment independence (using codes NPT and 

IP) for treatments used later in the sequence. Rheumatology studies also tended to use both 

assumptions in conjunction.  
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An alternative approach to assuming treatment independence for treatments used after the decision 

point was to use data matching each line of therapy or patient population (coded as NPT only). 

However, this was still hampered by the limited evidence base. An example of this is provided by a 

study (Heeg, 2015) which aimed to develop an analytic framework for comparing overall survival of 

different treatment sequences for multiple myeloma. The model required data for three treatment lines 

(Chapter 7, Section 7.3.3.3). The study obtained treatment-specific response rates (complete, partial, 

or non-response) for first-line treatments from a network meta-analysis of newly diagnosed patients. 

The response rates for subsequent treatment lines were obtained from a network meta-analysis of 

trials recruiting patients with relapsed or refractory disease.197 Only treatments for which RCTs were 

available were considered in the model, so a number of treatments used in clinical practice could not 

be included. Only three RCTs, investigating three treatments, were available for relapsed/refractory 

disease, which were considered as representing third-line treatment. There were no RCTs of second-

line treatment, and therefore the response rates for these were based on the results of the network 

meta-analysis used for third-line (for relapsed/refractory disease) combined with subgroup analysis 

on the treatment effect of second-line patients versus later-line patients, reported in the three RCTs. 

Treatment-switching in the model was assumed to be dependent on type of response and line of 

treatment, but independent of the specific treatment used. Data on duration of response, assumed to 

be the same across the different treatments, was taken from the bortezomib treatment arm in three 

clinical trials selected to match the relevant patient population.  

 

Another study (Greenhalgh, 2005) evaluating the optimum positioning of electroconvulsive therapy 

(ECT), as first-, second-, or third-line treatment for major depressive disorder assumed that first and 

second-line treatments would have the same success rate (coded as IP); patients receiving third-line 

treatment were assumed to be treatment-resistant, and evidence sources matching this patient 

population were used (representing NPT).240 However, third-line treatment here could be interpreted 

as comparable to ‘best supportive care’ in other modelling studies, which would not have been coded. 

This highlights the challenge of coding the included studies based on the assumptions used at 

different parts of a sequence. A further example of the differential use of simplifying assumptions is 

provided by a study that reported using separate meta-analyses by line of therapy, but in fact also 

used the assumption of treatment independence, the NICE clinical guidelines study (NICE CG152), 

which evaluated treatment sequences for Crohn’s disease.258 They obtained data on treatment effects 

for individual treatment regimens from two separate network meta-analyses, one of monotherapies 

used as first-line treatment and another of combination therapies used as second-line treatment. The 

study compared nine pre-defined sequences of up to four treatment lines, some of which included the 

monotherapy glucocorticosteroid as both second- and third-line treatment, and two combination 

therapies as third- and fourth-line treatment. The treatment sequences also included a generic 

biologic treatment used as second-, third- and fourth-line treatment. The same effect estimate was 

used for each treatment irrespective of their positioning, or specific previous treatments used.258 
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An important part of using simplifying assumptions in decision-analytic modelling relates to assessing 

their impact in sensitivity analyses (Section 6.2.1). Five studies evaluated the impact of using the 

assumption of treatment independence using sensitivity scenario analysis. Alternative data, to inform 

the sequencing effects, were based on the assumption that treatment effect was reduced in line with a 

reduction factor (coded as RF) in two studies,229 264 and the assumption that treatment effects 

decreased by the same set amount with each successive treatment (coded as TD) in three studies.115 

257 258 However, one study only applied the alternative assumption coded as TD to one treatment, 

glycocorticosteroid following budesonide failure, in the study of treatments for Crohn’s disease (NICE 

CG152).258 One further study used expert consensus (coded as EXC) to provide an estimate of 

sequencing effects.216 These alternative assumptions are described in more detail in the 

corresponding sections below. 

 

6.5.3.2  Substitution with another treatment effect 

Another frequently-used simplifying assumption was that treatment effects were the same as an 

alternative, substitute treatment, generally taken from the same class or category of treatments. This 

incorporated the assumption that the treatment effect was equivalent to an alternative treatment used 

at a relevant position in the sequence (coded as coded as PGE) or was independent of positioning in 

the sequence (coded as GE). Seventeen (26%) studies used a substitute treatment effect matching 

the relevant positioning in the sequence (coded as PGE) and sixteen studies (24%) used a substitute 

treatment effect that was independent of positioning in the sequence (coded and GE). Most studies 

used a substitute treatment effect from another single named treatment. However, three studies of 

rheumatoid arthritis (Schipper, 2011;265 Diamantopoulos, 2012;234 Diamantopoulos, 2014235) applied a 

generic effect for TNF-inhibitors as a substitute treatment effect for a specific TNF-inhibitor, for 

example etanercept, and one study (Brennan, 2004)224 used a generic effect for conventional 

DMARDs as a substitute effect for gold. The numbers also include six further rheumatology studies 

(Brennan, 2007;225 Finckh, 2009;238 Kobelt, 2011248; Lindgren, 2009;251 Tran-Duy, 2011;272 Tran-Duy, 

2014273) that modelled treatments within a sequence as a class (non-TNF-inhibitor biological agents, 

TNF-inhibitors, conventional DMARDs, or NSAIDs) rather than individual treatments. The treatment 

sequences modelled by eight studies (Brennan, 2007; Diamantopoulos, 2012; Diamantopoulos, 2014; 

Finckh, 2009; Kobelt, 2011; Lindgren, 2009; Schipper, 2011; Tran-Duy, 2014) of rheumatoid arthritis 

are illustrated in Table 6.4 and discussed further in Section 6.6.  

 

This is an assumption of exchangeability of treatment effects within the same group or class. It should 

be noted, however, that class effects were not always used consistently. One study (Russel, 2009) 

investigating sequencing of biological agents for the treatment of rheumatoid arthritis, used data from 

an RCT of a non TNF-inhibitor, abatacept, to represent the treatment effect a TNF-inhibitor used as 

the second or third-line biologic (coded as ST),261 whereas in other studies, for example Schipper, 

2011 (Table 6.4)265 and Lindgren, 2009 (Table 6.4)251, TNF-inhibitors were considered as a class 

separate from other biologics. I come back to this in Section 6.6.2. 
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6.5.3.3  Reduction of treatment effect 

The simplifying assumption of treatment independence ignores any potential sequencing effects. 

Some studies used alternative assumptions in order to acknowledge a potential decrease in effect of 

treatments used later in the sequence. Nine studies (14%) applied the assumption that treatment 

effect is reduced in line with a multiplier or reduction factor when used at a later point (coded as 

RF).17 18 199 229 235 244 261 264 272 The use of a multiplier or reduction factor and the methods used to 

develop these are described in more detail in Chapter 5, Section 5.6, since they are considered as 

part of the meta-analytic approach used to produce estimates of clinical effectiveness for developing 

the parameters of the decision-analytic model. However, only two studies (Connock, 2006; Rodgers, 

2011)17 199 reported the methods used to develop the multiplier or reduction factor; in the remaining 

studies it was merely noted that the figure was ‘informed by the available evidence’. The reduction in 

treatment effects was applied as part of a sensitivity analysis in two studies (Schadlich. 2005; Clark, 

2004), where the treatment-sequencing effects were ignored in the base case analysis.229 264 In one 

study (NICE GC137) the figure was varied in one-way sensitivity analyses.18 No other studies 

reported the conduct of sensitivity analyses to assess the impact of the reduction factor. However, 

Diamantpoulus et al., noted in their discussion that ‘sensitivity analyses showed that treatment 

response was not a major driver of the results’.234 

 

Four (6%) studies (Fitzsimmons, 2014, NICE CG81, NICE CG152, Welsing, 2005) applied the 

assumption that the treatment effect would diminish by an arbitrary amount at each point in the 

sequence (coded as TD).115 257 258 275 This differs to the use of a ’reduction factor’ (coded as RF), 

where the development of a specific multiplication factor based on relevant evidence is reported, 

because here all treatment effects are considered to decrease by the same or a generic proportion at 

each point in the sequence. Three of the studies (Fitzsimmons, 2014; NICE CG81; NICE CG152) 

applied this assumption within their sensitivity analyses (discussed in Section 6.5.3.1).115 257 258 One 

study (Fitzsimmons, 2014) evaluated the cost-effectiveness of using a stepped-care approach to 

treating sciatica.115 In that study the average treatment effect for each treatment category was derived 

from the network meta-analysis presented in Chapter 2; the potential reduction in effectiveness of 

treatments used during the later stages of the stepped approach was explored in sensitivity analysis 

using a relative reduction of 10%.115 A second study (NICE CG81) evaluated 17 chemotherapy 

sequences of up to three-lines of treatment.257 Whilst data for first-line treatments were obtained from 

a network meta-analysis, treatment effects for the two second-line treatments modelled were obtained 

from single studies, with the same effect estimate used to represent these drugs used as 3rd-line 

treatment in the base-case analysis. These estimates were reduced by a third in the sensitivity 

analysis, to represent their use as third-line treatment. The population of interest entering the model in 

a third study (Welsing, 2005) included patients with rheumatoid arthritis who were eligible for 

treatment with a first TNF-inhibitor, having had an inadequate response to at least two conventional 

DMARDs including methotrexate.275 The treatment effect of leflunomide, the first drug in the ‘control’ 

sequence, representing current practice, was derived from an RCT of leflunomide versus 

methotrexate in patients who had not previously used methotrexate. Patients entering the model were 



159 
 

assumed to have already failed methotrexate, and the effect estimate for leflunomide was therefore 

arbitrarily reduced by 25% in order to match the patient population indication of the economic 

evaluation. However, leflunomide was also the second treatment in the ‘intervention’ sequence, after 

inadequate response to a TNF-inhibitor (coded as DI, reported under Section 6.5.3.5). The same 

treatment effect was used to represent both indications. In the fourth study (NICE CG152), which 

included an evaluation of nine pre-defined sequences of up to three treatment lines for Crohn’s 

disease, the treatment effect of glycocorticosteroid following budesonide failure was adjusted in 

sensitivity analyses.258 This study is also described in section 6.5.3.1 under treatment independence. 

The data for first-line treatments were obtained from a network meta-analysis of monotherapies used 

as first line. However, glycocorticosteroid was also used as a second-line monotherapy in some of the 

included sequences, after the failure of budesonide, sulfasalazine, or mesalazine. The guideline 

development group reasoned that glycocorticosteroid would be less effective when used after 

budesonide failure, and that it would be appropriate to multiply the efficacy by an adjustment factor 

between 0-1. The probability of remission used in the base case analysis was 75%, and values used 

in the sensitivity analysis ranged from 50-100%. However, the probability of remission with 

glycocorticosteroid, obtained from the network meta-analysis of first-line treatment, was 66%. 

 

Four (6%) studies assumed a specific reduction in treatment efficacy with disease duration (coded as 

RDD). This included one non-rheumatology study (Fitzsimmons, 2014) that investigated the cost-

effectiveness of treatment sequences for sciatica.115 The assumption was used in their sensitivity 

analyses. In the base case analysis, it was assumed that there was no reduction in utility as a result 

of previous unsuccessful interventions. However, in clinical practice the likelihood of improvement is 

prone to diminish with time alone, as well as the failure of each successive treatment. The potential 

decreased effects with successive treatments were explored using the diminishing effects assumption 

described earlier. Sensitivity analyses were also used to explore the possibility that the effect of an 

individual treatment may depend more on how early it is employed after the onset of sciatica than on 

the specific treatment used. Sensitivity analysis therefore incorporated decreasing the utility achieved 

with resolution of symptoms following the failure of prior treatments by an arbitrary estimate of 25%. A 

separate arbitrary estimate of 5-10% was also used to represent the proportion of patients being non-

responders at each stage of the pathway (coded as TD).  

 

The remaining three studies coded as RDD, all of which used the Birmingham rheumatoid arthritis 

model (BRAM), show that the distinction between the use of simplifying assumptions regarding the 

decreasing effect of disease duration (or time alone) and that of the number (or type of) previous 

treatments failed is not straightforward,227 229 254 which was also discussed in Chapter 5, Section 5.5 

(the use of meta-regression). The positioning of a treatment later in the sequence can represent both, 

and it could be argued that these studies should have been coded as TD, representing decreasing 

effect. One of these studies (Malottki, 2011)254 cited and used a similar approach to a prior study 

(Chen, 2006),227 whose authors reported being unable to find data to support the quantification of a 

reduction in effectiveness with disease duration.227 Treatment effects of conventional DMARDs, 
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obtained from trials of early disease, were therefore halved to represent their later use, and the 

assumption assessed using scenario analysis. In the third study (Clark, 2004) the treatment effects of 

three conventional DMARDs, taken from selected studies of early disease, were each increased by 

0.125 points on the Health Assessment Questionnaire Index (HAQ) as part of the sensitivity analyses 

to account for the potential decrease in effect when conventional DMARDs are used later in the 

sequence.229 The model also assumed that an individual’s HAQ score increased gradually in steps of 

0.125 over time, representing progressive disease. This rate was reported to have been chosen to 

reflect the empirically observed increase reported by a separate study based on a database of 

leflunomide clinical trials.353.  

 

The fact that treatment effect is likely to diminish with time was also acknowledged in some 

rheumatology studies, but without using an explicit assumption. For example, one study (Finckh, 

2009) which compared treatment sequences representing early versus late introduction of TNF-

inhibitors (Table 6.4) used data from RCTs of early disease to inform initial treatment effects.238 It was 

acknowledged that the ability to induce remission or achieve a good or moderate response was likely 

to decline over time, and therefore, the probabilities for treatment response six months after therapy 

were estimated using a multivariate relationship based on a number of covariates including, among 

others, disease duration, baseline HAQ, and number of previous DMARDs. This was based on the 

regression analysis of a patient registry conducted by Wailoo et al.274 The study by Chen et al., 

described earlier, provides another example of this.227 Here the treatment effects for TNF-inhibitors 

added to a sequence of conventional DMARDs, as either the first, second, or third drug, were derived 

from two RCT data sets, one based on a population with ‘early disease’ and the other ‘late disease’. 

Data for the TNF-inhibitors modelled as the first drug were based on the dataset for early disease, 

representing patients who were naïve to methotrexate. Both datasets, for early and late disease, were 

used for TNF-inhibitors introduced as the third drug in the sequence, and the data set for late disease 

only were used for TNF-inhibitors added to the end of the sequence. The findings of scenario 

analyses showed that the results were sensitive to these assumptions; less favourable results were 

obtained for TNF-inhibitors using the ‘late disease’ data set for the third drug, and results obtained for 

TNF using the ‘early disease’ data set for the first drug were less favourable than those obtained 

when using the ‘early disease’ data set for third-line use. The study (Chen, 2006) also evaluated 

adding a further 2-3 subsequent TNF-inhibitors to the TNF used as the third drug, using the same 

treatment effect as the first TNF, which was not investigated in sensitivity analysis.227 

 

6.5.3.4  Impact of time since previous treatment  

Two studies assumed that treatment effects were not affected by previous treatments when patients 

had been in long term remission (Coded as LR). One (Soini, 2012) investigated treatment sequences 

for advanced cancer,269 and one (Frankum, 2005) evaluated treatments for onychomycosis.239 The 

treatments which achieved the remission could be re-used as subsequent treatments; in other words, 

treatment sequencing was not considered an issue. Neither study assessed the impact of this using 

sensitivity analysis. 
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6.5.3.5  Displacement effect ignored  

All five non-rheumatology studies that investigated adding a new treatment to an established 

sequence, ignored the potential effect of treatment displacement (Coded as DI). It was also ignored 

in 23 rheumatology studies that investigated adding a new treatment to an established sequence. It 

was not applicable to one study that investigated adding a second TNF-inhibitor to the end of the 

treatment sequence for psoriatic arthritis,17 as this did not displace anything. 

 

6.5.3.6  The use of uncontrolled trials or observational studies without bias adjustment 

Due to the limited evidence base, a number of studies used estimates of treatment effects derived 

from observational studies or uncontrolled trials. None of these studies used any methods to adjust 

the treatment effects to account for potential bias in the data source. These studies can be interpreted 

as having used the simplifying assumption that the observational studies or uncontrolled trials 

provided an unbiased estimate of treatment effect (Coded as UOBS).  

 

Four (6%) further studies used expert consensus to inform the treatment effects of interventions used 

primarily towards the end of treatment sequences (Coded as EXC). None accounted for any potential 

limitation within these estimates. However, one study (Albert, 2000) used the data from expert 

consensus on sequencing effects as part of a scenario analysis, whilst assuming that treatment 

effects were independent of other treatments in the base case analysis.216 The study compared four 

pre-defined sequences of three conventional DMARDs. The authors noted that their literature review 

did not identify any data for the composite effectiveness of whole sequences, or estimates of the 

effectiveness of each drug used at each specific point along the sequence. The authors therefore 

compared the use of different estimates of effectiveness obtained from three different sources, 

including expert rheumatologists, in order to assess the assumption that treatment effects were 

independent of other treatments in the sequence (Appendix Volume II, Appendix E) 

 

 

6.6 AN ASSESSMENT OF THE VARIATION IN HOW THE DATA ON TREATMENT 

SEQUENCES WAS SELECTED ACROSS MODELLING STUDIES EVALUATING A SIMILAR 

DECISION PROBLEM IN RHEUMATOID ARTHRITIS 

The choice of data should always be based on the best available evidence. However, the type of data 

chosen within the included studies varied substantially, even for the comparison of similar treatment 

options within a specific point in a treatment pathway. The impact of a limited evidence base, and how 

the data on treatment-sequencing effects are obtained to develop the decision-analytic model 

parameters are explored here in more detail using 22 studies that considered the sequential use of 

TNF-inhibitors when investigating treatments sequences for rheumatoid arthritis. An overview of the 

treatments for rheumatoid arthritis and the available evidence base is provided in Appendix Volume I, 

Section C3. The sequential use of TNF-inhibitors was identified as representing an important RCT 

evidence gap (Chapter 5, Section 5.4).  

 



162 
 

6.6.1  Modelling studies that evaluated sequential TNF-inhibitors 

The decision problem and treatment sequences evaluated by the included modelling studies which 

considered sequential TNF-inhibitors are presented in Table 6.4. Twenty-one studies modelled the 

sequential use of TNF-inhibitors, whilst one study (Malottki, 2011) modelled a second-line TNF-

inhibitor as the first treatment. Studies that considered the sequential use of TNF-inhibitors evaluated 

the introduction or use of biological agents at different points in the treatment pathway. Five studies 

investigated the introduction of biological agents in early disease, representing a patient population 

who were either DMARD-naïve or only failed to respond to one previous conventional DMARD (Table 

6.4, Section A).227 232 238 248 265 Five studies evaluated the introduction of biological agents in 

established disease, after an inadequate response to at least two conventional DMARDs, one of 

which was usually methotrexate (Table 6.4, Section B).234 235 261 273 274 Twelve studies investigated the 

use of biological agents in a patient population who have had an inadequate response to previous 

TNF-inhibitors (Table 6.4, Section C).222 223 225 228 229 241 246 251 254 256 260 262 

 

Table 6.4: The decision problem and treatment sequences evaluated by included modelling 

studies that considered sequential TNF-inhibitors 

AUTHOR, 
YEAR 
COUNTRY 

DECISION PROBLEM TREATMENT SEQUENCES 

A. Studies that evaluated the introduction of biological agents in early disease 

Chen, 2006 
UK  
(NICE TA130) 

TNF-inhibitor added to a sequence of 
DMARDs as the 1st, 3rd or last active 
drug (early vs late introduction of the 
TNF-inhibitor); also investigated adding 
a further 1-2 consecutive TNF inhibitors 
to the TNF used as the 3rd active drug. 
 

MTX - SSZ - SSZ+MTX - [SSZ+HCQ+MTX -] LEF - Gold -AZA - CyC - CyC+MTX - PEN 
TNF - MTX - SSZ – SSZ+MTX – SSZ+HCQ+MTX - LEF - gold - AZA - CyC - CyC+MTX - 
PEN 
MTX - SSZ - SSZ+MTX - TNF I-III - LEF - gold - AZA - CyC – CyC+MTX - PEN 
MTX - SSZ - SSZ+MTX - SSZ+HCQ+MTX - LEF - gold - AZA - CyC - CyC+MTX - PEN- TNF 
When TNF(s) added as the third drug it replaced SSZ+HCQ+MTX 

Davies, 2009 
US 

Comparing sequences starting with 1- 2 
consecutive TNF-inhibitors vs 
conventional DMARDs 

MTX - MTX+HCQ - LEF – gold 
TNF I - MTX+HCQ - LEF – gold 
TNF I - TNF II - MTX+HCQ - LEF - gold 

Finckh, 2009 
US 

Early vs late introduction of TNF-
inhibitors 

NSAIDs - 3 DMARDs – 3 TNFs  
3 DMARDs – 3 TNFs 
3 TNFs - 3 DMARDs 
Each treatment represented three consecutive treatments 

Kobelt, 2011 
Sweden 

Comparing sequences starting with a 
TNF-inhibitor vs a conventional DMARD 

MTX – standard DMARD therapy 
ETA – standard DMARD therapy  
MTX – 1st biologic – standard DMARD therapy  
ETA – 2nd biologic – standard DMARD therapy 

Schipper, 2011 
Netherlands 

Early vs late introduction of biological 
agents including TNF-inhibitors. 

MTX - MTX+LEF - TNF I - TNF II - RTX 
MTX+LEF - TNF I - TNF II - RTX - MTX  
TNF I - TNF II - RTX - MTX - MTX+LEF 

B. Studies that evaluated the introduction of biological agents in established disease 

Diamantpoulus, 
2012 
Italy 

Adding a new biologic (non-TNF-
inhibitor) to a sequence of biologics, 
and comparing biologics (TNF-inhibitor 
vs non-TNF-inhibitor) as the first drug 

TOC - ETA – ADA – RTX – ABA 
          TOC – ADA – RTX – ABA 
          ETA – ADA – RTX – ABA 
          TOC – ETA – RTX – ABA 
          ADA – ETA – RTX – ABA 
           INF – ETA – RTX – ABA 

Diamantpoulus, 
2014 
UK 

Adding a new biologic (non-TNF-
inhibitor), as first or second drug, to two 
different sequences of biological 
agents, depending on patient’s 
tolerance to MTX 

For MTX contraindicated population:  
           CZP - ETA - ADA 
TOC - CZP - ETA - ADA 
CZP - TOC - ETA - ADA 
For MTX tolerant population: 
           CZP - RTX - ETA - ADA - ABA - ADA - INF 
TOC - CZP - RTX - ETA - ADA - ABA - ADA - INF 
CZP - TOC - RTX - ETA - ADA - ABA - ADA - INF 

Russell, 2009 
Canada  
 

Comparing various biological treatment 
sequences (included TNF-inhibitor vs a 
non-TNF-inhibitor) 

ETA - INF - ADA 
ABA - ETA - INF 
ETA - ABA - INF 
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Tran-Duy, 2014 
Netherlands 

Comparing sequences with and without 
biological agents. TNF-inhibitors 
randomly chosen from ETA, ADA, INF, 
GOL, CZP; and the 2 non-TNF-inhibitor 
biologics from RTX, ABA, TOC 

MTX – SSZ/LEF       AZA - CyC - CYC - HCQ - gold 
MTX – SSZ/LEF – TNF I - TNF II - non-TNF I - non-TNF II - AZA - CyC - CYC - HCQ – gold 
 

Wailoo, 2006 
US 

Initial analysis compared 4 biologics 
(followed by cDMARDs). Subsequent 
analysis included treatment sequencing, 
which compared the use of 2nd or 3rd 
TNF-inhibitor with a single TNF (INF) 
followed by cDMARDs 

[ETA, ADA, ANA, INF] - cDMARDs 
INF - ETA - cDMARDs 
INF - ADA - cDMARDs 
ETA - ADA - cDMARDs 
ADA - INF - cDMARDs 
INF - ETA - ADA - cDMARDs 
INF - ADA - ETA - cDMARDs 
ETA - ADA - INF - cDMARDs 
ETA - INF - ADA - cDMARDs 

C. Studies that evaluated biological agents in a patient population who have had an inadequate response to a previous TNF-inhibitor 

Beresniak, 
2011 
Spain 

Comparing various biological treatment 
sequences (included TNF-inhibitor vs a 
non-TNF-inhibitor) 

ETA - ABA - ADA 
ETA - RTX - ADA 
ETA - ADA - ABA 
ETA - ADA - INF 

Beresniak, 
2013 
Germany 

Comparing various biological treatment 
sequences (included TNF-inhibitor vs a 
non-TNF-inhibitor) 

ADA - ABT - ETA 
ADA - RTX - ETA 
ADA - ETA - ABT 
ADA - ETA - INF 

Brennan, 2007 
UK  
(a submission 
for NICE TA36) 

The primary aim of the study was to 
compare the use of a first TNF-inhibitor 
with conventional DMARDs, but a 
secondary aim was to investigate 
sequential TNF-inhibitors, which is why 
this study is included here. 

(≥2 cDMARDs) - cDMARDs  
(≥2 cDMARDs) - TNFI - cDMARDs 
(≥2 cDMARDs) - TNF I - TNF II - cDMARDs  
Rather than specifying particular cDMARDs at different positions, a generalised DMARD was 
used. The number of treatments included in the sequences were not stated, but it was 
assumed that after the 6th treatment patients would no longer respond but still receive some 
maintenance therapy on cDMARDs. 

Cimmino 2011 
Italy 

Comparing various biological treatment 
sequences (included TNF-inhibitor vs a 
non-TNF-inhibitor) 

ETA - ABA - ADA 
ETA - RTX - ADA 
ETA - ADA - ABA 
ETA - ADA - INF 

Clark, 2004 
UK 
(NICE TA72) 

adding a new biologic (a non-TNF-
inhibitor) to two sequences containing 
1-2 consecutive TNF-inhibitors. The 
new biologic was added after TNF-
inhibitor(s) or as the last drug. 

SSZ - MTX - LEF [- ETA] - INF [- ANA] - gold - AZA - CyC - CyC+MTX - PEN 
SSZ - MTX - LEF [- ETA] - INF - Gold - AZA - CyC – CyC+MTX - PEN [- ANA] 
SSZ - MTX - HCQ - Gold - LEF [- ETA] – INF [- ANA] - AZA - CyC - CyC/MTX - PEN 
SSZ - MTX - HCQ - Gold - LEF [- ETA] – INF - AZA - CyC - CyC+MTX - PEN [- ANA] 
Both baseline sequences implemented with and without ETA, representing 1-2 consecutive 
TNFs. 

Hallinen, 2010 
Finland 

Adding biological agents to sequences, 
representing a gradual increase in the 
number of previous biological agents 

(TNF)                                                      - gold - CyC - MTX  
(TNF) - [ADA, ETA, INF, RTX, or ABT] - gold - CyC - MTX 
(TNF) - RTX - [ADA, ETA, INF, or ABT] - gold - CyC - MTX 
(TNF) - RTX - INF - [ADA, ETA, or ABT] - gold - CyC - MTX 
Assumed all patients entering model have had an IR to one TNF inhibitor. The sequence ‘gold 
- CyC - MTX’ was described as best supportive care.. 

Kielhorn, 2008 
UK  
 

Adding a new biologic (a non-TNF-
inhibitor) to two sequences, with and 
without 2 consecutive TNF-inhibitors. 

(TNF)            LEF - gold - CyC - (MTX) 
(TNF) RTX - LEF - gold - CyC - (MTX) 
(TNF)            ADA - INF - LEF - Gold - CyC - (MTX) 
(TNF) RTX - ADA - INF - LEF – Gold  - CyC - (MTX) 
Assumed all patients entering model have had an IR to one TNF inhibitor. MTX was described 
as palliative treatment 

Lindgren, 2009 
Sweden 
 

Adding a new biologic (a non-TNF-
inhibitor) to sequence of TNF-inhibitors. 

(TNF I) - TNF II - TNF III - TNF IV 
(TNF I) - RTX - TNF II - TNF III 

Malottki, 2011 
UK 
(NICE TA195) 

Adding a biological agent to sequence 
of cDMARDs, representing the 
comparison of second-line biological 
agents 

(TNF) [ADA, ETA, INF, RTX, or ABT] - LEF - gold - CyA - AZA 
(TNF)                                                    - LEF - gold - CyA - AZA 
Assumed all patients entering model have had an IR to one TNF inhibitor. 

Merkesdal, 
2010 
Germany 

Adding a new biologic, a non-TNF-
inhibitor to a standard treatment 
sequence of 2 TNFs followed by 2 
conventional DMARD. 

(ETA)            - ADA - INF - gold - CyC - BSC; 
(ETA) – RTX - ADA - INF - gold - CyC - BSC 
Assumed all patients entering model have had an IR to ETA, a TNF inhibitor. 

Puolakka, 2012 
Finland 

Comparing various biological treatment 
sequences (included TNF-inhibitor vs a 
non-TNF-inhibitor) 

ADA - ABT - ETA 
ADA - RTX - ETA 
ETA - ABA - ADA 
ETA - RTX - ADA 
INF - ABT - ETA 
INF - RTX - ETA 

Saraux, 2010 
France 

Comparing various biological treatment 
sequences (included TNF-inhibitor vs a 
non-TNF-inhibitor) 

ETA - ABA - ADA 
ETA - RTX - ADA 
ETA - ADA - ABA 
ETA - ADA - INF 

Abbreviations: Conventional DMARDs: AZA azathioprine; CyC cyclosporine / cyclosporin A; HCQ hydroxychloroquine; LEF 

leflunomide; MTX methotrexate; PEN D-penicillamine; SSZ sulfasalazine. 
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TNF-inhibitors (biological agents): ADA adalimumab; ETA etanercept; INF infliximab; GOL Golimumab, CZP Certolizumab 

pegol. 

Biological agents targeting different proteins: ABA abatacept; ANA anakinra; RTX rituximab; TOC tocilizumab  

Other abbreviations: DMARD disease-modifying anti-rheumatic drugs; cDMARD conventional disease-modifying anti-rheumatic 

drugs; TNF-inhibitor (or TNF) tumour necrosis factor α inhibitor; vs versus 

 

6.6.2  The evidence used to inform sequencing effects of TNF-inhibitors 

The main issue here is that there were no RCTs comparing the efficacy of successive first-generation 

TNF-inhibitors in patients with an inadequate response to a previous TNF-inhibitor (Appendix Volume 

I, Section C3). Four main data sources used are outlined below, the choice of which often impacted 

the data used for other treatments in the modelled sequences.  

 

To avoid repetition, the phrase ‘inadequate response to previous treatment’ is used to represent both 

insufficient response and intolerance. For the same reason, no distinction is made between biological 

agents used as combination therapy or monotherapy. Biological agents are used as both add-on 

therapy to existing conventional DMARDs, usually methotrexate, and monotherapy, with the former 

generally used in established rheumatoid arthritis, and the latter in early disease (Appendix Volume I, 

Section C3). 

 

6.6.2.1  Data obtained from patient registries  

Five studies obtained the treatment effects of sequential TNF-inhibitors from observational studies of 

patient registries.225 248 251 265 273 All five used individual patient level data to inform their models. One 

study (Brennan, 2007) used patient registry data to obtain a generic effect estimate for TNF-inhibitors 

irrespective of their positioning, whilst three studies (Schipper, 2011, Tran-Duy, 2014, Kobelt, 2011, 

Lindgren, 2009) used the data to obtain generic estimates that reflected the line of treatment 

(discussed in Section 6.5.3.2). In the fifth study (Tran-Duy, 2014), because the number of 

observations for some drugs were too small and the effectiveness of those with more observations 

were found to be similar, specific pairs of TNF-inhibitors were grouped; the data were sampled 

distinguishing between first- and second-line use. 

 

Studies using observational data to inform line specific effects for TNF-inhibitors: 

Two of the four studies that used patient registry data to obtain line-specific effect-estimates for TNF-

inhibitors (Schipper, 2011 and Tran-Duy, 2014) used data from the Dutch Rheumatoid Arthritis 

Monitoring (DREAM) biologic registry.265 273 Both studies assumed the effectiveness of second-line 

TNF-inhibitors was independent of specific previous TNF-inhibitors. The DREAM registry includes 

patients with established disease starting their first TNF-inhibitor. One study (Schipper, 2011) 

investigated the introduction of TNF-inhibitors in early rheumatoid arthritis (Table 6.4, Section A) and, 

in order to implement the registry based data, assumed that the treatment effects of TNF-inhibitors in 

DMARD-naïve patients were comparable to those in the registry who had failed at least two 

conventional DMARDs.265 The impact of this was assessed using scenario analysis, implemented 

using an estimated response rate of 30% taken from an RCT, instead of the 20% taken from the 

registry based on clinical practice data. Two studies (Kobelt, 2011 and Lindgren, 2009) used data 
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from the Southern Swedish Arthritis Treatment Group (SSATG) registry, which also included patients 

with established rheumatoid arthritis.248 251 One of these (Kobelt, 2011) investigated the introduction of 

TNF-inhibitors in early disease.248 Individual patient data for the first treatments modelled, 

methotrexate or etanercept, were therefore obtained from an RCT of early disease, which included 

patients who were methotrexate-naive. The treatment effects of subsequent treatments, either a first 

or second TNF-inhibitor, were obtained from the patient registry. The second study (Lindgren, 2009) 

compared two sequences consisting of sequential TNF-inhibitors, with and without the addition of a 

new biological agent rituximab (a non-TNF-inhibitor) at the start of the sequence.251 Patients entering 

the model were assumed to have had an inadequate response to their first TNF-inhibitor (Table 6.4, 

Section C). The model differentiated between TNF-inhibitors used as different treatment lines, but not 

the specific agent. Patients who discontinued rituximab were assumed to go back to TNF-inhibitors 

immediately, using event data for second-line TNF-inhibitors, based on the rationale that rituximab 

should not influence the magnitude of the effect of the next TNF-inhibitor. The register provided data 

for up to three lines of TNF-inhibitor, and the treatment effect of the fourth TNF-inhibitor was assumed 

to be the same as the third. The effect of this assumption was considered minimal as the average 

number of treatments resulting from the model was 2.6 in the TNF-inhibitor arm and 2.3 in the 

rituximab arm.251 The data were analysed using Cox regression with treatment line as one of the 

covariates. 

 

Observational data used to obtain a generic effect for TNF-inhibitors: 

One study (Brennan, 2007) used the alternative assumption that response to a second TNF-inhibitor 

was independent of the response to a first.225 The study compared the use of TNF-inhibitors as a 

class, with ongoing conventional DMARD therapy, in patients who had failed at least two conventional 

DMARDs (Table 6.4, Section C).225 The impact of a second TNF-inhibitor was only investigated as 

part of further analysis. A computer simulation model was used to synthesise evidence based on 

individual patient data from the British Society for Rheumatology Biologics Registry (BSRBR) 

database with other available sources from systematic reviews (reference given for data source was 

Barton, 2004219). At the time of the analysis, the register followed 7,083 patients with active 

rheumatoid arthritis treated with a TNF-inhibitor, and 870 patients treated with conventional DMARDs 

over three years. There were too few patients in the control group to restrict the analysis to patients 

starting a new conventional DMARD so the analysis included all patients, adjusting for the number of 

previous DMARDs used as well as other key parameters. The results showed a higher likelihood of 

response with fewer previous DMARDs. The decision model was conducted over the patients' 

lifetime, with observational data from a Swedish cohort used to extrapolate estimates from BSRBR to 

a longer time horizon. A generalised weighted average effect estimate was used for the initial TNF-

inhibitor and conventional DMARDs, irrespective of the specific drugs used. The assumption that 

response to a second TNF-inhibitor was independent of the response to a first (Section 6.5.3.1), was 

then used for the second TNF-inhibitor, based on the absence of evidence on any correlation. 

Subgroup analyses were also reported according to number of previous conventional DMARDs used 

(<2, <3, <4, <5, 5+). 
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6.6.2.2  Data obtained from RCTs of first-line TNF-inhibitors  

Nine studies used data obtained from RCTs of TNF-inhibitors used as the first-line biological agent.227 

229 232 234 235 238 241 246 256  

 

One study (Diamantpoulous, 2012) applied a reduction to the treatment effects obtained from the 

RCTs in order to represent the TNF-inhibitors’ use as second-line (Section 6.5.3.3).234 

Diamantpoulous et al., investigated incorporating a new biological agent, tocilizumab, to an 

established sequence of four biological agents starting with a sequence of two TNF-inhibitors in a 

patient population with inadequate responses to conventional DMARDs (Table 6.4, Section B). 

Tocilizumab was either added to the start of a sequence representing standard care, or replaced the 

initial TNF-inhibitor, which could be one of three agents. The baseline sequence included etanercept 

followed by adalimumab, and in the sequences where tocilizumab replaced the first drug, the second 

was either adalimumab or etanercept. Response rates for first-line etanercept or tocilizumab were 

obtained from a published network meta-analysis of placebo-controlled trials of six commonly used 

biological agents. Because of the lack of evidence about the efficacy of TNF-inhibitors after 

etanercept or tocilizumab, response rates for adalimumab were reduced by 30% to correspond to its 

second-line position in the sequence representing standard care (Chapter 5, Section 5.6.2). However, 

etanercept was also considered as the second TNF-inhibitor in alternative sequences and it was not 

stated whether the effect of etanercept was reduced here.  

 

The other eight studies (Clark, 2004; Davies, 2009; Chen, 2006; Hallinen, 2010; Diamantopoulos, 

2014; Kielhorn, 2008; Merkesdal, 2010; Finckh, 2009) all assumed that the treatment effect of a 

second TNF-inhibitor was the same as its use in the first-line setting (Section 6.5.3.1).227 229 232 235 238 

241 246 256 Only one study (Clark, 2004) investigated the potential impact of using the assumption that 

the treatment effects were independent of positioning.229 Clark et al. compared predefined sequences 

made up of both conventional DMARDs and TNF-inhibitors, with and without the addition of anakinra, 

a non TNF-inhibitor, at different points in the sequences, middle, late, and last (Table 6.4, Section C). 

The sequences incorporated either one or two consecutive TNF-inhibitors, which included etanercept 

followed by infliximab. Anakinra was added after the TNF-inhibitors as either the second or third-line 

biologic, or alternatively as the last active drug in the sequence. The authors noted that the effect of 

removing etanercept was that patients reached the divergent point earlier, and therefore tended to be 

younger. Therefore, although the base case analysis ignored sequencing effects, sensitivity analyses 

included replacing the treatment effects used for the two TNF-inhibitors with a higher score for the first 

biologic, etanercept, and a lower score for the second biologic, infliximab (discussed in Chapter 5, 

Section 5.6.2.3). Both had the same HAQ score in the base-case analysis. (This study was based on 

the Birmingham Rheumatoid Arthritis Model (BRAM) discussed in Chapter 7, Section 7.3.6.4.) 

 

One of the studies (Davies, 2009) using data obtained from RCTs of first-line TNF-inhibitors for 

second-line TNF-inhibitors, interestingly, obtained the data to inform the effects of subsequent 

conventional DMARDs from a follow-up study based on SSATG registry, as it included patients with 
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established rheumatoid arthritis.232 The study compared three TNF-inhibitors versus methotrexate as 

the first drug in a predefined sequence for early rheumatoid arthritis (Table 6.4, Section A). The 

treatment effects of each initial TNF-inhibitor were based on an RCT that included a methotrexate-

naïve patient population. A second TNF-inhibitor (etanercept) was then added to the most cost-

effective initial TNF-inhibitor (adalimumab) before switching to subsequent conventional DMARDs. It 

was assumed that etanercept efficacy in adalimumab-treated patients would be equivalent to 

etanercept efficacy in TNF-inhibitor-naïve patients. 

 

6.6.2.3  Data obtained from uncontrolled open-label studies 

An alternative data source used for the treatment effects of sequential TNF-inhibitors was the ReACT 

(Research in Active Rheumatoid Arthritis) study (Appendix Volume I, Section C3), a large, 

uncontrolled, open-label study that aimed to evaluate the effectiveness and safety of adalimumab in 

patients who had previously discontinued TNF-inhibitors in clinical practice.354 The study enrolled 

participants with active rheumatoid arthritis who had previously been treated with conventional 

DMARDs or TNF-inhibitors. Of the 6610 included patients, 899 (14%) had a history of etanercept and 

or infliximab therapy. 

 

The ReACT study was used by six included modelling studies (Cimmino, 2011; Saraux, 2010; 

Puolakka, 2012; Beresniak, 2011; Beresniak, 2013; Malottki, 2011) that evaluated the use of 

biological agents in a patient population with inadequate response to a previous TNF-inhibitor (Table 

6.4, Section C) (Section 6.5.3.1).222 223 228 254 260 262 One study (Malottki, 2011) compared three different 

TNF-inhibitors used as second line.254 It was assumed that all patients entering the model had an 

inadequate response to their first TNF-inhibitor. Data on sequencing effects for two TNF-inhibitors 

were obtained from uncontrolled open-label studies. Treatment effects of second line adalimumab 

were obtained from the ReACT study,354 whilst the data for etanercept were obtained from a study 

(Bringham, 2009)355 of patients treated with etanercept after failing infliximab (Appendix Volume I, 

Section C3). The treatment effect of infliximab, for which there were no studies, was assumed to be 

the same as etanercept (Section 6.5.3.2). This study was based on the Birmingham Rheumatoid 

Arthritis Model (BRAM) discussed in Chapter 7, Section 7.3.6.4. 

 

The remaining five modelling studies investigated different fixed sequences of three biological agents 

using the same evidence base and modelling approach, known as the advanced simulation model 

(Chapter 7, Section 7.3.2.3).222 223 228 260 262 The fixed sequences were used to compare the cost-

effectiveness of a TNF-inhibitor versus an alternative biologic as either the second- or third-line 

biological agent. The treatment sequences included specific drugs, presented in Table 6.4 (Section C) 

under the following authors: Beresniak, 2011,222 Beresniak, 2013,223 Cimmino 2011,228 Puolakka, 

2012,260 and Saraux, 2010.262 A 100% failure rate was assumed for the first TNF-inhibitor, generally 

etanercept or adalimumab, in all sequences. Adalimumab was used as a second TNF-inhibitor in 

three studies,222 228 262 and etanercept in one.223 However, the same treatment effect, taken from the 

ReAct study, was used for both TNF-inhibitors as second-line therapy. Although all the studies 
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modelled a third TNF-inhibitor as part of the fixed sequences, which included adalimumab,222 228 260 262 

infliximab,222 223 228 260 262 or etanercept,223 260 only infliximab was used as the comparator for the 

alternative biologic in sequences investigating a non-TNF-inhibitor as the third biologic (Table 6.4, 

Section C). A 100% inadequate response rate was assumed for both first and second TNF-inhibitors, 

etanercept and adalimumab. In the absence of published effects data for infliximab used after an 

insufficient response to two TNF-inhibitors, the results of the ReACT study were used as surrogate 

evidence (Section 6.5.3.2). 

 

6.6.2.4  Data obtained from RCTs of ‘new’ biological agents that include a patient population 

with inadequate response to TNF-inhibitors 

The advanced simulation modelling approach was also used by Russell et al., who assessed the use 

of abatacept, a non-TNF-inhibitor, as an alternative first-line biologic in patients with an inadequate 

response to conventional DMARDs, and a second-line biologic in patients with an inadequate 

response to a first TNF-inhibitor (Table 6.4, Section B) (discussed in Section 6.5.3.2).261 Modelling 

was based on fixed sequences of three biological agents. Data on treatment effects were taken from 

three pivotal trials. Two RCTs were of abatacept, one of which included a patient population with 

inadequate response to conventional DMARDs who had not previously received a TNF-inhibitor, and 

the other included participants with an inadequate response to TNF-inhibitors. The third RCT was of 

etanercept in a patient population with an inadequate response to conventional DMARDs. In the 

absence of relevant controlled trials, the treatment effect for etanercept used as both second- and 

third-line biologic was also taken from the RCT of abatacept in patients with an inadequate response 

to previous TNF-inhibitors using the assumption of a 10% reduction in effectiveness after each switch 

(Section 6.5.3.3). The assumption was based on observational studies reporting that switching TNF-

inhibitors is often associated with lower efficacy.  

 

 

6.7 DISCUSSION 

6.7.1  Summary of findings 

Decision-analytic models can be used to evaluate treatment sequences, where no sequencing clinical 

trials exist. Treatment sequences can be modelled as a series of individual treatments, but each 

treatment requires a specific treatment effect estimate that is conditional on its positioning in the 

sequence, or the previous treatments used. The scarcity of data to inform such estimates means that 

simplifying assumptions are used in conjunction with the available data on discrete treatments. The 

review of modelling studies identified a range of simplifying assumptions used to represent treatment-

sequencing effect-estimate. 

 

A coding scheme was developed as part of the data extraction process in order to group the studies 

according to the simplifying assumptions used. This coding system provides a useful addition to the 

framework presented in Chapter 8, in that it could help clarify to policy makers, modellers, and 

reviewers what actually has been done in previous or completed modelling studies.   
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Four issues were identified, which made it challenging to apply the coding scheme to the included 

studies: 

i. The differential application, within the same study, of multiple simplifying assumptions across 

different treatments, different points in the sequences, and in the use of scenario analysis.  

ii. The limited information provided on the simplifying assumptions used, especially for those 

applied to treatments used subsequent to the decision point of interest. In some instances, 

the simplifying assumptions reported did not account for all the compromises made due to the 

limited evidence base. 

iii. Studies generally did not distinguish between the potential decrease in treatment effect due to 

time alone (or disease duration) and that of the number and type of previous treatments used. 

iv. Variability in the way that treatments representing palliative or best supportive care were 

modelled and reported. 

 

The findings of the review demonstrated that priority was often given to matching the evidence for the 

decision point, rather than considering treatment sequences as a whole. Sequencing trials were rarely 

available, and the uncertainty in the quality of the alternative evidence to inform the sequencing 

effects was not investigated in depth. Only five (10%) studies using the most commonly applied 

assumption of treatment independence evaluated its impact in sensitivity analyses, by reducing the 

effect of treatments used later in the sequence using a factor based on evidence, an arbitrary amount, 

or expert consensus. The assumption that treatment effect is dependent on line of therapy was 

frequently used in conjunction with the assumption of treatment independence, applied to treatments 

adopted later in the sequence. 

 

The type of simplifying assumptions made is dependent on both the decision problem and the 

limitations or type of available evidence. The type of data selected for the discrete treatments used to 

inform treatment-sequencing effects varied considerably, even when considering similar decision 

problems. For example, data sources used for informing sequential TNF-inhibitors included 

observational studies of patient registries, RCTs of TNF-inhibitors used as first-line treatment, 

uncontrolled open-label studies, and RCTs of novel biological agents used after the failure of TNF-

inhibitors (used as a substitute effect). None of the data sources were ideal, and they necessitated 

simplifying assumptions to be made in order to apply them. Patient registry data was frequently used, 

but even this did not provide estimates of treatment effects conditional on the failure of a specific 

previous treatment. The review findings also showed that the modelling technique chosen can impact 

the extent of the treatment sequences that need to be modelled, the type of data required to inform 

the sequencing effects, and the assumptions required. The coding scheme may provide a useful tool 

for appraising and comparing different approaches used to address similar treatment sequencing 

decision problems. A review of the modelling technique used is provided in Chapter 7. 
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6.7.2  Previous reviews 

Two existing systematic reviews of economic evaluations investigating treatment sequences of 

biologic agents for rheumatoid arthritis (Tosh, 2014)28 or psoriasis (Mauskopf, 2014)185 were identified 

that also investigated the simplifying assumptions used. Mauskopf et al. aimed to analyse the 

assumptions about treatment sequencing after failure on a first-line biological agent in cost-

effectiveness models of biological therapy for moderate to severe plaque psoriasis, and to compare 

them with the most recent treatment guidelines.185 They identified five modelling studies, one of which 

investigated sequences of active treatments after the failure of a first-line biological agent. The 

authors concluded that cost-effectiveness models of first-line biological agents either do not include 

subsequent treatments or include only some of the regimes recommended in the current guidelines. 

They also concluded that the cost-effectiveness results may be sensitive to the assumptions about 

treatment sequencing and the choice and efficacy of subsequent treatment sequencing regimens. 

The second review, by Tosh et al., aimed to assess and critique how sequential DMARDs have been 

modelled for economic evaluations of their use in rheumatoid arthritis.28 They identified 25 studies 

modelling a sequence of treatments, but none that identified the optimum sequence of multiple 

treatments given a set of treatment options. They noted that the reporting of the methods and 

evidence used to assess the effect of downstream treatments in the sequences was generally poor; 

when lifelong models and downstream treatment sequences were considered, evidence gaps were 

identified. They concluded that methods were not consistently applied, leading to varied estimates of 

cost-effectiveness, and that treatment sequences were not fully considered and modelled, potentially 

resulting in inaccurate estimates of cost-effectiveness. 

 

A more recent review, identified after completing the review of methods, by Zheng et al. aimed to 

provide practical guidance on conceptualising whether and how to model sequences in health 

economic models, by undertaking a review of the approaches used to model treatment sequences in 

published NICE technology appraisals.104 The authors concluded that the biggest challenge to 

modelling treatment sequences is the scarcity of clinical data that capture long-term impacts of 

sequences on efficacy and safety. They identified three commonly used assumptions to bridge the 

evidence gap, but noted that each had its own limitations. These included the assumption that the 

efficacy of a treatment stayed unchanged regardless of line of therapy, the use of data from trials in 

different lines of therapy to directly model a treatment sequence, and the use of retrospective studies 

of clinical registries or databases. This review did not identify any new assumptions that were not 

covered by the coding scheme that I developed. In fact, my review provides a much more in-depth 

evolution of the simplifying assumptions used, and it also separates out the issue of the type of data 

selected to inform the efficacy of subsequent treatments.   

 

6.7.3  Assessing the validity of assumptions relating to sequencing effects and their impact of 

structural uncertainty  

The validity of the simplifying assumptions made regarding treatment sequencing in terms of 

representing reality was not generally investigated. However, the limited evidence base means that 



171 
 

there is generally no gold standard to use as a reference point. One potential approach might be to 

compare the summary treatment effects developed by making simplifying assumptions with the 

findings of a sequencing RCT but, as discussed in Chapter 4 and 5, these are limited in both their 

availability and extent of the treatment sequences considered. An alternative approach might be to 

emulate the sequencing trial using big data (real world data).327 356 I come back to this in Chapter 9, 

Section 9.4.6. The issue of assessing the validity of a simplifying assumption is also closely related to 

the assessment of the external validation of a treatment sequencing model, which I discuss in 

Chapter 7, Section 7.4.4. I also return to this issue in the main discussion for the thesis (Chapter 9). 

 

The use of simplifying assumptions increases the uncertainty in estimating the effectiveness and cost-

effectiveness of treatments, the extent of which should be explored as part of the analysis of structural 

uncertainty (discussed in Section 6.2.2). Structural uncertainty can have a greater impact upon the 

model results than parameter uncertainties, which are more frequently reported in health 

economics.346 Only a small proportion of the studies that made the simplifying assumption of 

treatment independence assessed its impact on the overall results using scenario analysis. However, 

although scenario analyses can provide an indication of the impact of the uncertainty when making 

the structural assumptions on the model results, these methods cannot capture the overall model 

uncertainty,346 and do not provide an indication of the most credible scenario.347 No study used 

alternative methods to explore the impact of making simplifying assumptions on the model results, 

and more research is needed to develop these. However, current approaches for handling structural 

uncertainty are underdeveloped and research in this area is ongoing.346 

 

6.7.4  Implications for practice 

The implications of the findings of the review of simplifying assumptions for practice, which also 

inform the framework provided in Chapter 8, are presented here.  The recommendations for future 

research are presented in Chapter 9. 

 

The evidence and rationale for making simplifying assumptions, such as treatment independence, 

needs to be clearly reported. Their impact on the model output or estimates of cost effectiveness also 

needs to be explored using a range of plausible scenarios, representing different assumptions. The 

selection of data to inform these scenarios must be justified, and where they have to be based on 

clinical opinion due to the limited evidence base, should be extracted using appropriate methods of 

expert elicitation.357 358 

 

The review considered any modelling study that investigated treatment sequences in any disease 

condition, and as such identifies all the assumptions used to account for treatment-sequencing 

effects. This comprehensive list of simplifying assumptions representing treatment-sequencing effects 

can be used as a checklist to inform future practice. The new coding scheme can help 

commissioners, policy makers, reviewers, and modellers to appraise and understand a model better, 

and consider whether treatment sequencing should be considered. My research also revealed that 
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treatment sequencing may need to be considered, whatever the decision problem. The list of 

simplifying assumptions can also be used by modellers to help them consider this, and what implicit 

assumptions they may be making; for example, are they assuming all previous treatments are equal? 

However, in order to apply the coding system, better reporting of the simplifying assumptions made is 

required. 

 

Most economic evaluations aim to compare single treatments and focus on the downstream costs of 

subsequent treatments, for example when considering a lifetime horizon.284 They frequently employ 

the assumption that subsequent treatments, generally used to reflect usual care, are the same for all 

comparators, with any potential treatment-sequencing effects likely to be ignored or simplified. 

However, the proportion of patients going on to receive subsequent treatments, or the duration over 

which they are applied is likely to differ between the ‘single’ treatments of interest. The current review 

focused primarily on economic models that aimed to evaluate the effectiveness of treatment 

sequences. However, even when evaluating the cost-effectiveness of single treatments, the decision 

model should adequately account for the potential effects of treatment sequencing. The list of 

simplifying assumptions identified during the review will be useful for clarifying what is currently being 

used in all modelling studies.  

 

Modelling treatment sequences, as an alternative to comparing individual treatments used at a single 

point in the pathway, is important as it is more representative of real-life management of chronic 

conditions. This in turn reflects the importance of using the best available evidence to inform whole 

treatment sequences, or the treatments used beyond the decision point of interest. However, there 

are currently no standards or guidance available for selecting appropriate assumptions or data 

sources, which would be useful for informing and standardising practice. Treatment sequencing trials 

are likely to be limited, and the uncertainty in the quality of the evidence base used as alternatives to 

inform the sequencing effects needs to be investigated and its potential impact on the decision 

making assessed. 

 

The need to consider treatment sequences in the decision analysis, and the validity of using the 

assumption of treatment independence can be explored as part of the clinical evaluation, based on 

the assessment of clinical and statistical heterogeneity within the meta-analysis as outlined in 

Chapters 2 and 4. Ideally the clinical evaluation would also incorporate the development of the 

reduction or multiplication factors for adjusting treatment effects to account for treatment sequencing, 

or develop summary treatment effect-estimates that are conditional on positioning in the sequence. 

However, this would require treatment sequencing to be part of the original health technology 

assessment brief and not merely part to the economic model to account for the cost of downstream 

treatments. 

 

A potential reason for variation in the data sources used is the available time for identifying and 

selecting the evidence base. The time frame for producing an economic model and identifying the 
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best available evidence to inform it is generally limited. There is an increasing demand by policy 

makers for rapid reviews of the evidence base, especially for the introduction of single new 

technologies, which will lead to an even more condensed timeframe to work with. The clinical 

evaluation undertaken within a health technology assessment frequently fell short of the needs of the 

economic evaluation that included a model of treatment sequences, as they rarely considered 

treatment-sequencing effects, or concluded that insufficient evidence was available to evaluate 

treatment sequences. The lack of integration or direct use of the systematic review to inform the 

economic evaluation was also identified in a previous review of NICE technology appraisals.359 This 

review also identified the need for those undertaking a health technology assessment to consider the 

data requirement of the economic model at an early stage.359 

 

Economic evaluations undertaken by, or on behalf of, industry tended to focus on a specific decision 

point, which generally reflected the treatments used in available RCTs. The need to consider 

treatment sequencing should be identified during the scoping stage of the health technology 

assessment, and incorporate both the clinical and economic evaluation. The development and use of 

a conceptual framework to inform the whole technology appraisal may help this. I return to the use of 

a conceptual framework in Chapter 7, Section 7.4.6. 

 

 

6.8 THE NEXT STAGE 

The next chapter reviews the range and type of modelling approaches used for evaluating treatment 

sequences and how they were characterised within the model. The advantages and disadvantages of 

different modelling approaches are also reviewed. 
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CHAPTER 7: METHODOLOGICAL REVIEW OF DECISION ANALYTIC MODELLING 

APPROACHES USED FOR EVALUATING TREATMENT SEQUENCES 

 

 

7.1 CHAPTER OVERVIEW 

This chapter summarises the actual modelling approaches used for evaluating treatment sequences 

in practice, as identified in the literature review. It includes a description and evaluation of the different 

modelling approaches identified using a series of examples illustrating their application. These are 

ordered according to increasing complexity or sophistication of the modelling structure. It also 

includes a summary of the advantages and disadvantages of each approach for modelling treatment 

sequences. 

 

The term ‘modelling approach’ is used to describe the overarching modelling method, which includes 

the modelling technique, structure and assumptions used. Modelling technique is used to refer to the 

actual procedure used, and modelling structure is adopted here to describe the conceptual 

configuration of the decision problem. 

 

 

7.2 DEVELOPING CRITERIA FOR ASSESSING MODELLING APPROACHES USED FOR 

EVALUATING TREATMENT SEQUENCES 

Several decision analytic modelling techniques can be used for evaluating treatment sequences. Most 

techniques used in health economics in general have been borrowed from other fields and have 

different features that make them more or less applicable for different circumstances. The key 

features and underpinning assumptions of different modelling techniques and structures can 

potentially impede or assist the overall modelling and configuration of treatment sequences within the 

model.  

 

Two published taxonomies, developed for categorising different modelling techniques according to 

their key features, were used to guide the review of modelling studies.344 360 These were used to 

categorise the included studies and inform the criteria used for data extraction (Section 7.2.2). A 

summary of the two taxonomies and an overview of the key features they describe is provided in the 

Appendix Volume I (Section E). This also includes a description of parameter uncertainty and its 

representation in the model (Section E3.6). 

 

7.2.1  Existing guidance on selecting an appropriate modelling technique 

In addition to the two modelling taxonomies,344 360 a number of guides and algorithms have been 

developed to aid the selection of an appropriate modelling technique (also referred to as structures in 

some guides) for economic evaluation in general.242 361-371 
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The predominant modelling techniques used for health economic evaluation include the cohort-based 

models, the decision tree and the Markov cohort model. The guidance developed by the International 

Society for Pharmacoeconomics and Outcomes Research and the Society for Medical Decision 

Making (ISPOR-SMDM) Joint Modelling Good Research Practices Task Force recommends that a 

state transition model, rather than a simpler model with limited ability to reflect time, for example a 

decision tree, should be used if the model requires time dependent parameters, time to an event, or 

repeated events.372 However, they also note that other modelling techniques, such as discrete event 

simulation, are suitable for these situations. A number of other guides recommend the use of patient-

level simulation models as the preferred option when the assumptions required by a Markov model 

are not sustainable,361 364 373 374 and for modelling treatment sequencing.254 272 373 A review of NICE 

technology appraisals published up until January 2005 identified the following reasons for choosing 

an individual patient-level simulation approach: treatment switching, sampling patient characteristics, 

and dependence of patient histories including previous events and time in state.345 However, the 

authors went on to advocate further adapting the cohort framework for evaluating treatment 

sequences, instead of an individual patient level model, due to the increased computational expense, 

decreased transparency, and the potential requirement for specialist skills.345 This is also 

compounded by the need to conduct probabilistic sensitivity analyses. In terms of the computational 

expense, some argue that a discrete event simulation represents a more efficient approach367 373 than 

patient-level state-transition models, which require the current health state to be calculated for each 

patient at each model cycle making them computationally inefficient.373 Unlike state transition models 

that are focused around health states, discrete event simulation is conceptualised around events.367 

The model moves forward in time to the point at which the next event is experienced, therefore 

requires fewer calculations per patient than a patient-level state-transition model.367 373 It also allows 

greater flexibility in modelling timing of health-related events.344 Discrete event simulation can 

represent sophisticated methods, requiring extra time and expertise to implement.345 367 374 However, 

Davies et al. argued that discrete event simulation is more transparent and intuitive to clinicians than 

complicated cohort models.373  

 

The type of data required to implement and characterise the parameters of the chosen modelling 

technique can be an important factor. Modelling approaches based on individual patient simulation 

require more data to populate than a cohort-based model. However, for state-transition models, 

developing accurate transition probabilities is a potential problem whether they are based on cohort or 

individual-level simulation.363 372 375 Pooled estimates from meta-analyses, and associated uncertainty, 

need to be converted to transition probabilities before they can be applied to the model and, for 

individual-patient level simulation models, time-to-event data, for example survival data, need to be 

converted to time-dependent transition probabilities.83 84 373   
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7.2.2  Criteria used for categorising and assessing included modelling approaches 

The key features outlined in the two modelling taxonomies,344 360 and supported by the various guides, 

which are likely to be relevant for modelling treatment sequences were used for categorising included 

models. The modelling approaches used were grouped according to whether they: 

i. Were conceptualised around states or events 

ii. Simulated a closed cohort or a dynamic population 

iii. Simulated all individuals simultaneously or one at a time 

iv. Based on the Markovian assumption or not 

v. Allowed transitions to occur only at specified time intervals or not 

vi. Used expected or stochastic variables 

 

Within these groupings included models were also assessed in terms of how treatment sequencing 

was conceptualised, how the potential limitations of the Markovian property were overcome, and how 

time was interpreted in the model. They were also assessed in terms of their ability to account for: 

i. Heterogeneity in the target population 

ii. The outcomes of different subgroups 

iii. The time dependency of certain parameters 

iv. Repeated events 

v. Competing risks 

vi. Patient history or previous treatments 

vii. The need for differential treatment selection based on reason for discontinuing previous 

treatments 

viii. Parameter uncertainty 

ix. Dynamic decision making 

 
Other factors that are likely to influence the choice of modelling approach include the extent of the 

available evidence base, time and resources, and the need to include probabilistic sensitivity analysis 

to inform decision making. These factors were also taken account when assessing the advantages 

and disadvantages of included modelling approaches.  

 

The choice of an appropriate modelling approach depends on the complexity of the underlying 

decision problem, the extent of the treatment sequences being investigated, and the disease 

condition. The methods used to code the modelling studies according to the type of decision problem 

relating to treatment sequencing evaluated, is described in Chapter 6, Section 6.2.3 and 6.4.2. The 

type of sequencing decision problems evaluated by included studies are listed in Tables 6.1 and 6.2. 

The time horizon and number of treatment lines modelled are presented in Tables 7.1 ands 7.2. 

Modelling studies relating to rheumatologic conditions (Table 7.1) are listed separately from those of 

non-rheumatologic conditions (Table 7.2) in the same way as presented in Chapter 6 (Section 6.5.2). 
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7.3 MODELLING APPROACHES USED FOR EVALUATING TREATMENT SEQUENCES 

The literature searches and the methods used to identify and review the relevant modelling studies 

are described in Chapter 3.  

 

7.3.1. Summary of modelling approaches used by included studies 

The review of modelling approaches included 70 studies,17 18 115 199 204 207 216-279 36 (51%) of which 

were rheumatology studies,17 216 218 219 222-225 227-230 232 234 235 238 241 245 246 248 249 251 253 254 256 260-262 264 265 270 

272-275 279 and ten (14%) were oncology.204 207 226 236 243 250 252 257 269 277 The type of modelling approach 

used for investigating treatment sequences included deterministic decision tree, stochastic decision 

tree, Markov cohort model, partitioned survival cohort model, semi-Markov cohort model, individual-

patient simulation (IPS) state transition models, discrete event simulation, non-terminating population 

based simulation, terminating population based simulation, and dynamic Markov cohort model. The 

modelling technique used by each study is listed in Tables 7.1 and 7.2, along with information on the 

type of economic analysis conducted. A number of studies used a previously published model and, 

where feasible, these have been collated and are referenced under the original model. The models 

are referred to here using the model name listed in the third column of Tables 7.1 and 7.2. These are 

based on the name of the model provided in the publication, where given, or the name of the lead 

author. One exception to this is the model published by Fitzsimmons et al., which is named as the 

‘sciatica model’ as this was developed using the data from the network meta-analysis presented in 

Chapter 2.115  

 

Barton et al. proposed the use of ‘individual sampling model’ to describe all models in which the ability 

to track individuals is an essential part of the model structure, and where only one individual is 

modelled at a time.361 This was due to inconsistency in the use of the descriptors, ‘discrete event 

simulation’ and ‘state transition models’, to describe what appeared to be identically structured 

models in some instances. However, I have tried to differentiate between these two modelling 

techniques, as a number of researchers advocate the use of discrete event simulation over patient-

level state-transition model. For the purpose of this review the descriptor ‘state-transition models’ was 

used for those that only allow transitions to occur at specified time intervals. However, the modelling 

technique was often not adequately described, which means that the accuracy of this categorisation 

may not always be assured. Furthermore, it is also acknowledged that several modelling techniques 

fall under the broad category of ‘state transition models’, including models that use a continuous state 

process, and those that allow interactions between groups.372 However, none of the included 

modelling studies used these model types.  

 

Table 7.1: Modelling approaches used by rheumatology studies 

(ordered by model type then alphabetically by author) 

Author, year 
Country 

Condition Modelling 
technique 

Model name* Type of 
analysis 
(PSA 
conducted) 

Time 
horizon 

Lines of 
treatment 
in model 

Beresniak, 2011 
Spain 

RA Stochastic 
decision tree 

Advanced 
simulation model  

CEA 
(YES) 

2 years 3 
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Author, year 
Country 

Condition Modelling 
technique 

Model name* Type of 
analysis 
(PSA 
conducted) 

Time 
horizon 

Lines of 
treatment 
in model 

Beresniak, 2013 
Germany 

RA Stochastic 
decision tree 

Advanced 
simulation model  

CEA 
(YES) 

2 years 3 

Cimmino 2011 
Italy 

RA Stochastic 
decision tree 

Advanced 
simulation model  

CEA 
(YES) 

2 years 3 

Puolakka, 2012 
Finland 

RA Stochastic 
decision tree 

Advanced 
simulation model  

CEA 
(YES) 

2 years 3 

Russell, 2009 
Canada  

RA Stochastic 
decision tree 

Advanced 
simulation model  

CEA 
(YES) 

2 years 3 

Saraux, 2010 
France 

RA Stochastic 
decision tree 

Advanced 
simulation model  

CEA 
(YES) 

2 years 3 

Albert, 2000 
US 

RA Markov cohort  Albert model CE 
(NO) 

Not stated 3 

Coyle, 2006 
Canada 

RA Markov cohort Maetzel model CUA/CEA 
(YES) 

5 years 4 to 5 or 2 
to 3 
(based on 
toxicity) 

Schipper, 2011 
Netherlands 

RA  Markov cohort  Welsing model CUA 
(YES) 

5 years 5 

Tanno, 2006 
Japan  

RA Markov cohort Tanno model CUA 
(YES) 

Lifetime 3 or 4 

Welsing, 2005 
Netherlands  

RA Markov cohort  Welsing model CUA/CEA 
(YES) 

5 years 1, 2 or 3 

Wu, 2012 
China 

RA Markov cohort  Wu model CUA/CEA 
(YES) 

Lifetime 4, 5, or 6 

Maetzel, 2002 
Canada  

RA Markov cohort  Maetzel model CUA/CEA 
(YES) 

5 years 3 to 4, or  
5 to 6 
(based on 
toxicity) 

Rodgers, 2011 
UK 
(NICE TA 199) 

PsA Markov cohort  York psoriatic 
arthritis model 

CUA 
(YES) 

Lifetime 2 

Launois, 2008 
France 

RA Dynamic 
Markov cohort 

Launois model Budget 
impact 

Lifetime 3 or 4 

Schadlich, 2005 
Germany 

RA Partitioned 
survival 

Schadlich model CUA/CEA 
(YES) 

3 years 1or 2, 
4 or 5, and 
5 or 6 

Brennan, 2004 
UK  
(NICE TA36 - IS) 

RA Individual 
sampling  
(STM) 

Sheffield 
Etanercept model 

CUA 
(YES) 

Lifetime 3 to 4 

Bansback 2005 
Sweden 

RA Individual 
sampling 
(STM) 

Bansback model 
(Sheffield 
Etanercept and 
BPM) 

CUA 
(YES) 

Lifetime 1 or 2 

Brennan, 2007 
UK  
(NICE TA130 - IS) 

RA Individual 
sampling  
(STM) 

Sheffield BSRBR 
model 

CUA 
(YES) 

Lifetime 2 

Davies, 2009 
US 

RA  Individual 
sampling  
(STM) 

Bansback model 
 

CUA 
(YES) 

Lifetime 4, 5 or 6 

Diamantpoulus, 
2014 
UK 

RA Individual 
sampling  
(STM) 

Diamantpoulus 
model 

CUA 
(YES) 

Lifetime 3 or 4, and 
6 or 7 

Diamantpoulus, 
2012 
Italy 

RA Individual 
sampling  
(STM) 

Diamantpoulus 
model 

CUA 
(YES) 

Lifetime 4 or 5 

Finckh, 2009 
US 

RA Individual 
sampling  
(STM) 

Sheffield AHRQ 
model 

CUA 
(YES) 

Lifetime 6 or 7 

Hallinen, 2010 
Finland 

RA Individual 
sampling 
(STM) 

Kielhorn model CUA 
(YES) 

Lifetime 4, 5, or 6 

Kielhorn, 2008 
UK  

RA Individual 
sampling  
(STM) 

Kielhorn model CUA 
(YES) 

Lifetime 3, 4, 5, or 
6 

Kobelt, 2011 
Sweden 

RA  Individual 
sampling  
(STM) 

Kobelt model CUA 
(YES) 

10 years 1 to 2  

Merkesdal, 2010 
Germany 

RA Individual 
sampling  
(STM) 

Kielhorn model CUA 
(YES) 

Lifetime 4 to 5 
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Author, year 
Country 

Condition Modelling 
technique 

Model name* Type of 
analysis 
(PSA 
conducted) 

Time 
horizon 

Lines of 
treatment 
in model 

Wailoo, 2006 RA Individual 
sampling  
(STM) 

Sheffield AHRQ 
model 

CUA 
(YES) 

Lifetime 1 to 3 

Barton 2004 
UK  
(NICE TA36) 

RA Individual 
sampling 
(DES) 

BRAM CUA 
(NO) 

Lifetime 9 or 10 

Chen, 2006 
UK  
(NICE TA130) 

RA Individual 
sampling  
(DES) 

BRAM CUA 
(NO) 

Lifetime 10 to 11 
(or 13) 

Clark, 2004 
UK  
(NICE TA72) 

RA Individual 
sampling  
(DES) 

BRAM CUA 
(NO) 

Lifetime 9, 10, or 
11 

Jobanputra, 2002  
UK  
(NICE TA36) 

RA Individual 
sampling  
(DES) 

BPM CUA 
(NO) 

Lifetime 9 to 10 

Malottki, 2011 
UK 
(NICE TA195) 

RA Individual 
sampling  
(DES)  

BRAM CUA 
(YES) 

Lifetime 4 to 5 

Tran-Duy, 2014 
Netherlands 

RA Individual 
sampling  
(DES) 

Tran-Duy model CUA 
(YES) 

Lifetime 8 or 12 

Tran-Duy, 2011 
Netherlands 

AkS Individual 
sampling  
(DES) 

Tran-Duy model CUA 
(YES) 

Lifetime 5 or 7 

Lindgren, 2009 
Sweden 

RA Individual 
sampling  
(DES) 

Lindgren model 
 

CUA 
(YES) 

Lifetime 3 

* A number of studies used a model developed by a previous study. This is the name of the representative model under which 
the model is described within the text. 
Abbreviations: Aks Ankylosing spondylitis; BPM Birmingham Preliminary Model; BRAM Birmingham Rheumatoid Arthritis 
Model; CEA cost effectiveness analysis; CE clinical effectiveness; CUA cost utility analysis; DES discrete event simulation; IS 
independent submission (to NICE, including industry or charity); PSA probabilistic sensitivity analysis; PsA psoriatic arthritis; RA 
rheumatoid arthritis; STM state transition model 

 

Table 7.2: Modelling approaches used by non-rheumatology 

(ordered by model type then alphabetically by author) 

Author, year 
Country 

Condition Modelling 
technique 
(For base-case 
analysis) 

Modelling name* Type of 
analysis 
(PSA 
conducted) 

Time 
horizon 

Lines of 
treatment 
in model 

NICE CG131 
(2011) 

Cancer 
(advanced CRC) 

Stochastic 
decision tree 
and partitioned 
survival 

NICE CG131  
(Added marginal 
value method) 

CUA 
(YES) 

Lifetime Up to 2 

Dranitsaris, 2011 
Malaysia 

Cancer 
(metastatic 
CRC) 

Decision tree Dranitsaris model CUA 
(NO) 

Lifetime  2 

NICE CG81 
(2009) 

Cancer 
(advanced BC) 

Decision tree  NICE CG81 CUA 
(YES) 

Lifetime Up to 3 

NICE CG152 
(2012)** 

Crohn’s disease 
(induction / 
maintenance) 

Decision tree / 
Markov Cohort 

NICE CG152 CUA 
(YES) 

30 weeks / 
2 years 

Up to 4 

Fitzsimmons, 2014 
UK 

Sciatica Decision Tree Sciatica model CUA 
(NO) 

1 year Up to 3 

Frankum, 2005 
US 

Onychomycosis Decision Tree Frankum model CUA 
(YES) 

1-3 years 3 

Knoester, 2007 
Netherlands 

Epilepsy (>12 
yrs of age) 

Decision Tree Knoester model CUA 
(YES) 

1 year Up to 2 

Bensmail, 2009 
France 

Spasticity Stochastic 
decision tree 

Advanced 
simulation model  

CEA 
(YES) 

2-years 3 to 4 

Greenhalgh, 2005 
UK 
(NICE TA59) 
 

Major 
depressive 
disorder (MDD) 

Stochastic 
decision tree 

Greenhalgh model CEA 
(YES) 

1 year 3 

Anis, 2011 
US 

Psoriasis Markov cohort York psoriasis 
model  

CUA 
(YES) 

10-16 
weeks 

Up to 6 

Beard, 2011 Fibromyalgia Markov cohort  Beard model CUA/CEA 2 years 5 to 6 
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Author, year 
Country 

Condition Modelling 
technique 
(For base-case 
analysis) 

Modelling name* Type of 
analysis 
(PSA 
conducted) 

Time 
horizon 

Lines of 
treatment 
in model 

US (YES) 

Cameron, 2008 
UK 

Cancer 
(advanced BC) 

Markov cohort  Cameron model CUA 
(YES) 

10-years; 
lifetime 

4 to 5 

Davies, 2008 
UK 

Schizophrenia Markov cohort Davies model CUA 
(YES) 

10 years 3 

Heeg, 2015 
The Netherlands 

Cancer 
(Multiple 
Myeloma) 

Markov cohort Heeg cancer 
model 

CE 
(YES) 

Lifetime 4 

Lee, 2013 
South Korea 

Cancer  
(Ovarian cancer) 

Markov cohort  Lee model CUA 
(YES) 

10-years; 
lifetime 

5 

Lux, 2009 
Germany 

Cancer 
(advanced BC) 

Markov cohort  Cameron model CUA 
(YES) 

10-years; 
lifetime 

4 to 5 

Orme, 2012 
UK 

Glaucoma  Markov cohort Orme model CUA 
(NO) 

10 years 3 

Sawyer, 2013 
UK  
(NICE CG 153) 

Psoriasis Markov cohort  Sawyer model CUA 
(YES) 

1 year Up to 3 

NICE CG137 
(2012) 
 

Epilepsy  
(in children and 
adults) 

Markov cohort NICE CG137 
(structure based 
on York epilepsy 
model) 

CUA 
(YES) 

15 years Up to 3  

Shepherd, 2006 
UK 
(NICE TA96) 

Chronic Hep B 
infection 

Markov cohort  Shepherd model CUA 
(YES) 

Lifetime up to 3 

Sizto, 2009 
Canada 

Psoriasis Markov cohort York psoriasis 
model  

CUA 
(YES) 

Unknown 6 

Smith, 2007 
US 

Postherpetic 
neuralgia (PHN) 

Markov cohort  Smith model CUA 
(YES) 

Lifetime  4 to 5 

Soini, 2012 
Finland 

Cancer  
(Follicular non-
Hodgkin 
lymphoma FL) 

Markov cohort  Soini model CEA/CUA 
(YES) 

25 years; 
lifetime 

2  

Tebas, 2001 
US 

HIV Markov cohort  Tebas model Virology 
(NO) 

10 years Up to 3 

Wong, 2009 
US  

Cancer 
(metastatic 
CRC) 

Markov cohort  Wong model CUA 
(NO) 

Lifetime  Up to 3 

Woolacott 2006 
UK 
(NICE TA103) 

Psoriasis Markov cohort York psoriasis 
model  

CUA 
(YES) 

10 years 3 and 7 

Hind, 2008 
UK 
(NICE TA93) 

Cancer 
(advanced CRC) 

Partitioned 
survival 

Hind model CEA/CUA 
(YES) 

Lifetime Up to 2 

Wilby, 2005 
UK  
(NICE TA76) 

Epilepsy (in 
adults) 

Semi-Markov 
cohort 

York epilepsy 
model 

CUA 
(YES) 

15 years Up to 3  

Holmes, 2006 
South Africa 

HIV 
 

Individual 
sampling (STM) 

Holmes model CEA 
(YES) 

Lifetime  Up to 2 

Connock, 2006 
UK  
(NICE TA79) 

Epilepsy (in 
children) 

Individual 
sampling (DES) 

Birmingham 
epilepsy model 

CUA 
(NO) 

15 years Up to 4 

Denis, 2008 
France 

Glaucoma  Individual 
sampling (DES)  

Denis model CE 
(NO) 

5 years 2 

Heeg, 2008 
The Netherlands 

Schizophrenia Individual 
sampling (DES)  

Heeg 
schizophrenia 
model 

CUA 
(YES) 

5 years Up to 4 

McEwan, 2010 
UK 

Type 2 diabetes 
mellitus 

Non-terminating 
population 
based simulation 

Cardiff T2DM 
model 

CUA/CEA 
(NO) 

Lifetime  3 

Erhadt, 2012 
Germany 

Type 2 diabetes 
mellitus 

Terminating 
population 
based simulation  

Cardiff T2DM 
model 

CUA 
(NO) 

Lifetime 3 

* A number of studies used a model developed by a previous study. This is the name of the representative model under which 

the model is described within the text. 

** Different modelling approach used for two clinical situations: induction of remission and maintenance of remission. 

Abbreviations: CRC colorectal cancer; BC breast cancer; CE cost-effectiveness analysis; CG clinical guideline; CUA cost 

utility analysis; DES discrete event simulation; T2DM Type 2 diabetes mellitus; PSA probabilistic sensitivity analysis; STM state 

transition model 
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The next section includes a summary of each modelling approach and provides an overview of the 

range of relevant features that were accounted within the models using each approach. These are 

illustrated using a series of examples. A more detailed description of each included model is provided 

in Appendix Volume II (Appendix E), where different modelling approaches are presented in separate 

tables, as are studies investigating rheumatological and non-rheumatological conditions. A summary 

of the treatment sequences evaluated, the source of clinical effectiveness estimates, and 

assumptions used to inform treatment sequencing effects for each included study is presented in the 

Appendix Volume II (Appendix D), which is linked to the review of assumptions in Chapter 6. The 

review of the advantages and disadvantages of each approach, summarised at the end of each 

section is based on all included models. 

 

7.3.2  Decision tree 

7.3.2.1  Description of studies using decision tree modelling 

Fourteen studies used a decision tree model to evaluate treatment sequences, including three NICE 

clinical guidelines (CG81, CG131, CG152).115 207 221-223 228 236 239 240 247 257 258 260-262 Two clinical guideline 

studies used the decision tree in conjunction with another modelling technique. One clinical guideline 

study (NICE CG131) used a simple stochastic decision tree alongside a partitioned survival analysis, 

also known as the added marginal value method (Table 7.2).207 A second clinical guideline study 

(NICE CG152) used separate modelling techniques for treatment induction and subsequent 

maintenance of remission in Crohn’s disease.258 Here, a decision tree model was used for comparing 

predefined treatment sequences for induction of remission in patients with an acute exacerbation, 

whilst a separate Markov cohort model was used for comparing single maintenance treatments, with 

patients who relapsed receiving the most cost-effective acute induction treatment sequence identified 

using the decision tree model.  

 

Seven studies based on the same model called the advanced simulation model, were cost-

effectiveness analyses.221-223 228 260-262 The remaining studies were cost-utility analyses. Three studies 

(NICE CG 81; NICE CG131; Dranitsaris, 2011) used the decision tree framework for evaluating 

treatment sequences for advanced cancer over a lifetime horizon.207 236 257 The timeframe for 

remaining models ranged from one to three years. Most studies evaluated fairly simple treatment 

sequences consisting of two to three lines of treatment.222 223 228 236 239 240 247 260-262 Details of each 

included model is presented in the Appendix Volume II (Appendix E). A schematic diagram of a 

decision tree, using the Dranitsaris model as an example, is provided in Figure 7.1. 

 

Two studies only conducted a deterministic analysis of the decision tree model,115 236 whilst five used 

a deterministic analysis of the base case model along with subsequent probabilistic sensitivity 

analysis.207 239 247 257 258 These have been categorised here as deterministic decision trees.  The 

decision tree modelling technique called advanced simulation model is described as a type of 

decision tree which allow computing variable distributions.223 This is essentially the same as 

probabilistic sensitivity analysis, and has been categorised here as a stochastic decision tree,360 and 
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summarised separately.221-223 228 260-262 One additional study (Greenhalgh, 2005), which implemented 

the model using Monte Carlo simulation, is also categorised here as a stochastic decision tree.240 

 

7.3.2.2  Deterministic decision tree 

A deterministic tree was used for modelling treatment sequences for a wide range of different 

conditions including advanced cancer (NICE CG81, Dranitsaris model, NICE CG131),207 236 257 

neurological pain (Sciatic model),115 fungal infection (Frankum model),239 epilepsy (Knoester 

model),247 and Crohn’s disease (NICE CG152).258 The deterministic decision tree modelling approach 

was chosen in some studies due to the limitation of the evidence base. Some examples of alternative 

modelling approaches used to model treatment sequences for similar clinical conditions, for example 

epilepsy, are presented in the next sections. 

 

The different deterministic tree modelling approaches used are described in this next section using, 

primarily, the studies modelling overall survival for advanced cancer as examples. However, it starts 

with a description of the sciatica model, which provides an example of a fairly simple deterministic 

decision tree model used for implementing a very large number of treatment sequences. The same 

decision tree model can be used for modelling multiple pre-defined treatment sequences, or 

alternatively each sequence can be modelled separately. The NICE CG157 model for Crohn’s 

disease provides an example of a simple decision tree used to model each sequence separately. A 

detailed summary of this model is provided in the Appendix Volume II (Appendix E). The Knoester 

model, which is also described in more detail in the Appendix, provides an example of a decision 

problem that incorporated the differential use of a second treatment depending on the reason for 

discontinuing current treatment. The Frankum model is described briefly at the end of this section, as 

it provides an example of a decision problem where a successful treatment of onychomycosis could 

result in either permanent resolution or a recurrent infection that requires re-treatment. 

 

The sciatica model 

The sciatica model compared more than 100 treatment strategies, used over a 12-month period, 

within a single deterministic decision tree.115 This included the evaluation of three different treatment 

pathways, which represented: i) primary care management, which only included an initial treatment 

(n=5); ii) a stepped approach, based on one of the initial treatments followed by an intermediate 

treatment (n=6) and then invasive treatments, which included epidural, or epidural followed by disk 

surgery; and iii) immediate referral to surgery following an initial treatment (n=5) in primary care. The 

probability of success for each individual treatment was based on comparisons with placebo taken 

from a single network meta-analysis presented in Chapter 2. Most comparisons demonstrated wide 

confidence intervals around the summary estimate of effect, which was why a deterministic rather 

than a probabilistic approach was chosen. A counter-argument to this, is that this uncertainty could 

have been propagated through the model, thus reflecting the resulting large uncertainty in the 

probability of each intervention being cost-effective. The limited time horizon was chosen because of 

the heterogeneity in duration of effect, and lack of data on relapse and recurrence made it difficult to 
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extend the analysis beyond twelve months. Where multiple treatments were used in a sequence, their 

summary effects were combined. In other words, successive treatments were assumed to provide an 

additive effect, rather than the probability of success at each chance node being attributed only to the 

treatment used immediately prior to this point. It was also assumed that there was no reduction in 

utility with previous unsuccessful treatments, with the probability of a successful outcome multiplied 

by the same utility estimate, regardless of how many interventions were required to achieve this. 

However, potential reductions in effectiveness of intermediate therapies and surgery in the stepped 

approach were evaluated in sensitivity analyses. A reduction in utility and the potential subsequent 

effects of non-responders at each stage of the pathway were also explored in sensitivity analysis. 

These were described in more detail in Chapter 5, Section 5.6.2.3, summarising the assumptions of 

diminishing effects with consecutive treatments, and reduced efficacy with disease duration. 

 

NICE CG81 model 

The NICE CG81 model provides an example of a more complex decision tree model used to evaluate 

treatment sequences for advanced cancer, which required a lifetime perspective, and all outcomes 

result in eventual death from progressive disease.257 The economic evaluation investigated 17 fixed 

chemotherapy sequences for patients with metastatic breast cancer who had received prior 

anthracycline therapy. Treatment sequences included up to three treatment lines, each administered 

for a fixed period.  

 

Time is not made explicit in a decision tree, rather the aim of the model was to measure how long 

patients spent in the progression free ‘health’ state for each sequence. The model also needed to 

account for multiple levels of treatment response, for which time to progression will differ; different 

reasons for treatment switching; and the possibility of patients experiencing toxic death, which will 

have different probabilities and timing to that of all-cause mortality. The initial chance node 

represented a choice between four first-line treatments, each leading to a decision tree with 28 

branches. Time was implicitly incorporated based on the assumption made about the number of 

cycles that had elapsed prior to the chance node or event occurring. For example, it was assumed 

that after a patient received one cycle of treatment they would reach a point at which they might die of 

toxicity. Those who survived received two more cycles, after which they may experience major 

toxicity. Major toxicity prompted treatment discontinuation with a one-month time-lag included before 

starting the next treatment. Those who continued treatment faced the probability of having a complete 

or partial response, stable disease, or not responding. Responders and stable patients went on to 

receive additional cycles of treatment, whilst non-responders switched to the next treatment if 

feasible. Overall survival for each treatment sequence was estimated based on the assumption that 

chemotherapy impacts on time to progression and, through that, overall survival. Overall survival was 

calculated as the sum of the time to progression from first-line treatment, time to progression from 

second-line, time to progression from third-line and the period from progression to death, which was 

assumed to be a fixed period of five months, regardless of chemotherapy treatment (outlined in 

equation 7.1).  
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OS = (PFS1) + (PFS2) + (PD)       [7.1] 

 

The use of the endpoint progression free survival for evaluating treatment sequences in advanced 

cancer is discussed in Chapter 5, Section 5.3.2 using the review by Stenner et al. (2012) as example. 

This includes a discussion on the different interpretation of the outcome progression free survival 2, 

which is referred to here as the PFS associated with second-line of treatment. These outcomes are 

also defined and explained further in the Appendix Volume I (Section C4.2). 

 

Dranitsaris model 

A similar modelling approach to NICE CG81 was used by Dranitsaris et al., which compared a 

chemotherapy sequence of only two treatment-lines, with and without the targeted therapy 

bevacizumab, added to the first line treatment (Figure 7.1).236 Here the branches, after ascertaining 

whether the patients experienced severe adverse effects on initial treatments or not, were associated 

with fixed time periods representing time until progression (treatment duration) or death for the 

different regimens. This provided a fixed time until death for each terminal branch. No distinction was 

made between the type of response, with clinical benefit incorporating complete response, partial 

response, or stable disease. The authors chose to use a decision tree approach as they did not have 

data on disease progression and toxicity for each cycle of chemotherapy, with only the median 

number of cycles being presented in the published clinical trials. The authors noted that a Markov 

model would have been preferable, given its ability to incorporate the element time. Another included 

study (Wong, 2009), which also evaluated treatment sequences with bevacizumab, used a Markov 

model (described in Section 7.3.3.3).277  
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Figure 7.1: A schematic diagram of the Dranitsaris model: a decision tree model for the 

treatment of metastatic colorectal cancer 

 

Taken from: Dranitsaris, G., Truter, I., Lubbe, M. S., Sriramanakoppa, N. N., Mendonca, V. M., & Mahagaonkar, S. B. (2011). 

Using Pharmacoeconomic Modelling to Determine Value-Based Pricing for New Pharmaceuticals in Malaysia. The Malaysian 

Journal of Medical Sciences , MJMS, 18(4), 32–43. 

Abbreviations: mCRC  metastatic colorectal cancer; FOLFOX oxaliplatin in combination with infusional 5-fluorouracil; FOLFIRI  

irinotecan in combination with infusional 5-fluorouracil; ADR adverse drug reaction; CR complete response; PR partial 

response; SD stable disease; BSC  best supportive care; mon  month; d/c  discontinued; cont.  continue. 

 

NICE CG131 model 

The NICE CG131 model, which was used to evaluate treatment sequences for advanced colorectal 

cancer, was based on a combination of a simple decision tree model and partitioned survival 

analysis.207 A very simple generic decision tree model was used to account for the proportion of 

patients discontinuing first-line treatment who do not then go on to receive further active 

chemotherapy treatments. The study evaluated the cost-effectiveness of 10 fixed chemotherapy 

sequences containing only two lines of treatment. Survival time was partitioned in the model using the 

progression free survival and overall survival. Clinical effectiveness was based on quality adjusted life 

years (QALYs) gained. The model did not explore survival conditional on best response to treatment, 

as there was insufficient detail reported in the literature to facilitate survival analysis dependent on 

tumour response. The decision tree started with all patients receiving first-line treatment, which was 
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represented as a single branch. Disease progression is an inevitable outcome for patients with 

advanced cancer. Following which the model allowed for a proportion of patients to discontinue 

treatment and receive no further treatment (and would have disease progression until death), whilst 

the remaining proportion went on to receive second-line treatment. Patients would continue second-

line treatment until disease progression, which they would then receive until death. 207 Patients were 

assumed to be in a stable disease state whilst receiving chemotherapy, and prior to the onset of 

progressive disease. Following the point of disease progression, patients were assumed to be in a 

progressive disease state with a lower overall quality of life. It was considered that 60% of patients on 

first-line treatment go on to receive second-line treatment, based on published studies. However, it 

was not possible to obtain separate overall survival curves for the two subgroups, of patients who only 

received one line of treatment or two. The QALY calculations were therefore based on a weighted 

average of quality-adjusted survival across the combined patient populations and not as a separate 

absolute estimate for each subgroup. The QALY for patients who only received one line of treatment 

was estimated using equation 7.2, and 7.3 for patients who received two lines of treatment. 

 

(PFS1 x utility in stable) + ((OS-PFS1) x utility in progression);    [7.2] 

(PFS1 x utility in stable) + (PFS2 x utility in stable) + ((OS-PFS1-PFS2) x utility in progression)

           [7.3] 

 

Progression free survival for first-line treatment (PFS1) was taken from a network meta-analysis of 

clinical trials of first-line treatment, whilst progression free survival for second-line treatment (PFS2), 

and overall survival (OS) were taken from network meta-analyses of prospective sequencing studies.  

 

The modelling technique partitioned survival analysis is described in more detail in Section 7.3.4, as it 

was also proposed as an alternative to Markov modelling, for incorporating time dependency within a 

cohort framework. 

 

Frankum model 

The Frankum model was developed to evaluate the budgetary effect of up to three lines of treatment 

for toe nail onychomycosis.239 Unlike treatment failure due to adverse effects, recurrent infection can 

be treated using the same treatment that was used previously. A sequential treatment pathway 

framework was used to represent the series of recurring health states, or possible outcomes, as well 

as the corresponding treatment switching decisions, which patients could follow if they were treated 

with a predefined sequence of treatments. An initial treatment failure, which could include an adverse 

effect requiring discontinuation of treatment during the first prescription or a lack of response after a 

full course of treatment, resulted in switching to a new treatment, whilst a subsequent relapse or 

recurrence was treated with a second course of the successful initial treatment. The time horizon of 

the model was assumed to span between one and three years, based on the duration of follow-up 

and treatment pathway implemented.239 
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7.3.2.3  Stochastic decision tree 

There were two distinct stochastic decision tree models, the advanced simulation model and 

Greenhalgh model. 

 

Advanced simulation model 

The advanced simulation modelling approach was used primarily for comparing fixed treatment 

sequences of three biological agents for rheumatoid arthritis.222 223 228 260-262 It was also used in one 

study for evaluating treatment sequences with or without intrathecal baclofen therapy, used as first-

line treatment, for the management of severe spasticity.221 The model is discussed in more detail here 

using the rheumatoid arthritis example (discussed previously in Chapter 6, Section 6.6.2.3 and in the 

Appendix Volume I, Section D2.1).  

 

The decision trees were designed as simulation models and programmed to take into account the 

entire distribution of each pre-defined parameter according to specific distribution curves. These were 

performed using 5000 Monte-Carlo simulations. The results were expressed for one single 

hypothetical patient.223 

 

The rheumatoid arthritis model was mainly used for comparing second- or third-line treatments, whilst 

still accounting for the treatment switching used in general medical practice (Table 6.4). Separate 

simulations were run for each fixed treatment sequence, and for two clinical endpoints representing 

treatment success (achieve remission or low disease activity). The model was run over two years 

using four six-month treatment periods. A 100% inadequate response rate was assumed for the first 

TNF-inhibitor at six months in all models, and a 100% inadequate response rate for the second 

biological agent, at 12 months, for the comparison of third-line agents (Appendix Volume I, Section 

D2). This approach assumed that treatment success was sustained over the entire six-month 

treatment period and that each biological agent was maintained as long as clinical response was 

deemed adequate. The model assumed that if a patient failed to improve after three successive 

biologic agents, that they would receive conventional DMARDs with a residual level of effectiveness. 

The overall clinical effectiveness of each treatment sequence was based on the expected number of 

days in therapeutic success, which was calculated over the two-year time horizon using the following 

formula [7.4]: 

 

N=∑[Sri * 180]          [7.4] 

N= expected number of days in therapeutic success  

Sr= Success rate over 6 months 

I = 6 months treatment period 

 

The advanced simulation modelling approach was used to inform cost-effectiveness analysis, and not 

used for cost utility analysis. The overall results were based on the cost per day in therapeutic 

success, and clinical effectiveness was therefore not transformed into utilities. The two-year time 
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horizon was chosen in order to reflect the available data and avoid having to speculate or make 

assumptions about long-term effectiveness.222 223 228 260-262 The authors noted that the simulation 

models consumed large amounts of computer processing time, and were implemented using powerful 

workstations with parallel-processors, and adapted programming language.261  

 

Greenhalgh model 

The Greenhalgh model was used to assess the optimum positioning of electroconvulsive therapy 

(ECT) in major depressive disorder.240 It was evaluated as first, second, or third-line treatment, 

compared with pharmacological treatment. The three treatment lines represented acute treatment, 

which was followed by psychotherapy in non-responders. Each sequence was modelled separately. 

The model was based on a one-year time horizon and evaluated using one-week intervals. During 

each treatment line there was a probability that the patient would end treatment early, due to lack of 

efficacy or adverse event, and so move to the next treatment. At the end of each treatment line there 

was a probability that the treatment was successful, and the patient was discharged, or unsuccessful 

and the patient moved to the next treatment. The probabilities for successful treatment and leaving 

the treatment early were related to both treatment type and line of therapy (Chapter 6, Section 

6.5.3.1). The duration of each treatment, however, was based on a generic estimate of 6 weeks for 

pharmacological treatments, with dropouts averaging 2 weeks of treatment; and 4 weeks for 

electroconvulsive therapy, with dropouts averaging 1 week of treatment. Following successful 

treatment a patient may be given maintenance therapy to help prevent relapse. For each week the 

model determined whether the patient was in one of the following four states, relating to both the 

treatment and associated level of depression:  

i. Severely depressed and receiving acute treatment 

ii. Responder: successfully completed acute treatment, no longer severely depressed, and 

receiving maintenance /continued therapy 

iii. Non responder: receiving long-term psychotherapy, and on completing psychotherapy 

assumed to improve to mild depression 

iv. Relapsed state following successful treatment. Patients who relapsed from maintenance 

therapy assumed to require treatment to maintain a quality of life equivalent to moderate 

depression 

 

The model attributed a specific quality of life utility score to each state (representing severe, 

moderate, mild, and depression in remission) and determined the movement through these states. 

The authors noted that a 12-month time horizon was chosen as valid data for longer time periods 

were not available.240 

 

7.3.2.4  Advantages and disadvantages of the decision tree approach 

The decision tree approach is the easiest modelling method to implement, and has the advantage of 

simplicity and transparency.376 It provides a logical structure for the treatment sequencing decision 

problem, depicting the related actions and consequences, as they unfold over a specified time 
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horizon. It has also been successfully used as a simulation model, in order to account for the 

uncertainty in parameter estimates, but, this may have been at the expense of the simplicity of 

implementation. Separate models can be used for each treatment sequence or, alternatively, different 

treatment pathways can be modelled within the same decision tree. However, when a large number of 

different treatment sequences were implemented in the same model, simplistic assumptions were 

required regarding treatment switching and the impact of previous treatments. More complexity in the 

decision problem was successfully accounted for in decision trees used for the comparison of a 

limited number of fairly simple fixed sequences, generally over the short term, such as a one- or two-

year time period. This included accounting for: different reasons for treatment discontinuation and 

potential impact on subsequent treatment selection; different types or levels of treatment response; 

the option of relapse being treated with the same previously successful treatment; different reasons 

for mortality; and the fact that not all patients will be eligible for every subsequent treatment. However, 

as the number and length of potential sequences increases, or the model needs to account for 

varying treatment options as a consequence of different reasons for quitting treatment, etc. then the 

number of branches required will become more extensive. Decision trees may also be inefficient at 

modelling recurring events over time. Another potential limitation of this approach for modelling 

treatment sequences is the fact that decision trees are governed by fixed timing of the treatment 

outcomes, which may be problematic for considering a lifetime horizon. However, duration of time 

spent in a health state, or on each treatment, can be incorporated using assumptions regarding the 

timing of events or chance nodes. Overall survival for each treatment sequence can then be 

estimated based on the assumption that treatment impacts on time to progression and, through that, 

overall survival, by summing the time to progression for each treatment line plus a period representing 

progression to death. Alternatively overall survival can be estimated using partitioned survival 

analysis.207 Modelling treatment sequences for a chronic condition over a lifetime may also be better 

achieved using a Markov model. 

 

7.3.3  State transition (Markov) cohort model 

7.3.3.1  Description of studies using Markov cohort modelling 

Eight rheumatology studies (Table 7.1) 17 216 230 253 265 270 275 279 and sixteen non-rheumatology (Table 

7.2)217 220 226 231 243 250 252 259 263 266-269 271 277 278 used a Markov cohort modelling approach to evaluate 

treatment sequences. Most of the studies were cost utility analyses, or included both cost utility and 

cost-effectiveness outcomes (Table 7.1 and 7.4). However, three studies did not investigate cost-

effectiveness. One aimed at evaluating clinical effectiveness only (Albert, 2000),216 one overall 

survival (Heeg, 2015),243 and the other was based on virologic, rather than clinical, outcomes (Tebas, 

2001).271 Most studies included probabilistic sensitivity analysis.  

 

The Markov cohort modelling approach was used as a method for both identifying the optimal 

sequence from all conceivable strategies, and for comparing predefined sequences. The decision 

models were generally implemented using TreeAge Software or Microsoft Excel. 
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7.3.3.2  Markov cohort model used for identifying optimal sequence from all conceivable 

sequences 

York psoriasis model: net benefit per unit time 

The York psoriasis model, which was developed as part of a NICE appraisal (TA103; Woolacott, 

2006), provides an example of a simple Markov cohort model used to identify the optimal ordering of 

treatments.278 The same model was used by two other studies (Table 7.2).217 267 The model was used 

to investigate the cost-effectiveness of biological agents for the treatment of moderate to severe 

plaque psoriasis, which is a chronic, relapsing, but non-progressive disease.278 The modelling 

approach was developed based on the premise that:278 

i. It is the cost-effectiveness of treatment strategies, rather than individual treatments, which 

needs to be considered for decision-making, but it is not tractable to compare all possible 

treatment sequences 

ii. The earlier in the sequence a treatment is tried, the greater the proportion of patients who 

receive and respond to it will be 

The authors proposed that in order to maximise the expected total net-benefit per unit time for the 

overall treatment strategy, individual treatments should be tried in order of decreasing expected 

treatment period net-benefit per unit time.  

 

The treatment period net benefit for individual treatments represents the net-benefit during the entire 

period a patient receives that treatment, and equates to the weighted average of the expected net 

benefit incurred over the treatment lifetime for those patients who respond to the treatment, plus the 

expected net benefit over the treatment’s initial trial period (the interval during which a new treatment 

is used to see whether it works or not) for those who do not respond to treatment. This means that the 

analysis is able to account for the proportion of patients who do not respond to treatment but 

experience some gain in quality of life while still on the treatment before switching to the next in the 

pathway. Importantly, this approach also accounts for the net benefit of the future treatments needed 

by those who do not respond to the initial treatment. 

 

Each treatment option was modelled separately using a very simple two-state Markov chain model, 

with patients either being in a responding or non-responding state. Data on the proportion of patients 

who responded to each treatment were obtained from a network meta-analysis of placebo controlled 

trials, which did not consider treatment sequences. The duration of the ‘trial’ period was based on the 

design of efficacy trials and expert opinion, whilst duration of the ‘treatment’ period for responders 

was based on observational data. Both parameters were entered into the model as fixed parameters. 

The mean treatment response period was then estimated from a 10-year Markov model using a cycle 

length of one year. 

 

Interventions that offered a lower expected net-benefit than supportive care were disregarded as they 

were not cost-effective. The optimum sequence was then identified by ordering the remaining 

treatments according to their net benefits per unit of time, using those with higher net benefits earlier 
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in the treatment sequence. The expected net-benefit per unit time for the overall strategy was 

estimated using the equation presented below [7.5].278 

 

NBA + (1 – PA)NBB + (1 – PA)(1 – PB)NBC       [7.5] 

where NBA, NBB, and NBC are the expected net benefits per unit time estimated for treatment A, B, 

and C, respectively; PA and PB is the probability of responding to treatment A and B, respectively. 

 

The same approach was also implemented using cost-effectiveness ratio per unit time (Anis, 2011 

and Sizto, 2009).217 267 

 

7.3.3.3  Markov cohort model used for comparing predefined sequences 

Most studies used the Markov cohort modelling approach for comparing predefined treatment 

sequences.17 216 220 226 230 231 243 250 253 259 263 265 266 268-271 275 277 279 Treatment sequences were 

characterised within these models in three different ways, as:  

i. A series of health states, representing successive treatment lines that patients progressed 

through in a forward motion 

ii. A series of health states representing each treatment-line, but with additional health states to 

account for other relevant factors or attributes 

iii. A Markov cycle tree to implement treatment switching with the health states used to represent 

the patients’ transition through different levels of disease activity, or model the natural history 

of the condition 

These are illustrated in Figures 7.2 to 7.6, which provide schematic diagrams of Markov cohort model 

examples. The first approach is illustrated in Figures 7.2 and 7.3, using the Cameron model and Heeg 

model, respectively. The second approach is illustrated in Figure 7.4 using the Lee model. The third 

approach is illustrated in Figures 7.5 and 7.6, using the Maetzel model and Welsing model, 

respectively. 

 

Models using Markov states to represent successive treatment lines 

Six studies (one rheumatology270 and five non-rheumatology studies226 243 252 269 271) characterised 

treatment sequences as a series of health states. This approach is illustrated here using four studies 

(Cameron, 2008; Heeg, 2015; Lux, 2009; Soini, 2012)226 243 252 269 that investigated treatment 

sequencing for cancer. In essence, this approach can be viewed as building on the three-state 

structure (described in Appendix Volume I, Section C4.5, Figure C3) typically used for modelling 

single cancer treatments consisting of progression free survival (PFS), survival with progressive 

disease, and death. The model presented by Soini et al. represents the simplest adaptation of this 

typical structure, and is therefore discussed first. Two cancer studies (Cameron, 2008 and Lux, 2009) 

used the same modelling approach, referred to here as the Cameron model (Figure 7.2), which 

accounted for the fact that not all patients receive all treatments in the sequence The Heeg cancer 

model (Figure 7.3) accounted for differences in survival according to level of response. As noted 

previously in Section 7.3.2.2, under the description of the NICE CG81 decision tree model, the 
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outcomes used to evaluate treatment sequences for cancer are defined and explained in further in the 

Appendix Volume I (Section C4.2). The models used in the two non-cancer studies (Tanno, 2006 and 

Tebas, 2001) are descried in the Appendices. 

 

Soini model 

The Soini model was used for evaluating treatment sequences for Follicular lymphoma, which is the 

most common and incurable form of non-Hodgkin Lymphoma.269 The model structure was aligned 

with the clinical objective of placing patients into a progression free state for the longest period 

possible, and was used to estimate both mean progression free survival and overall survival for each 

sequence. The model included four health states: progression free first-line treatment (PF1), 

progression free second-line treatment (PF2), progressive disease, and death. Essentially, the 

‘progressive disease state’ here is equivalent to the ‘best supportive care state’ used in the Cameron 

model described below. However, despite the Soini model structure being simple, the four treatment 

sequences that were investigated were fairly complex, and not entirely clear. They represented the 

use of first-line maintenance treatment compared with observation, followed by the comparison of two 

second-line induction treatments. First-line maintenance was only used for patients who responded to 

first-line induction treatment, and second-line induction treatments only differed between sequences 

for patients who relapsed within one year of first-line maintenance treatment. In the case of early 

treatment failure a non-cross resistant scheme was preferred, whilst patients with long remission were 

assumed not to be affected by previous treatments (Chapter 6, Section 6.5.3.4).  

 

Cameron Model 

The Cameron model was used to compare treatment sequences with and without fulvestrant in a 

hypothetical population of hormone receptor-positive postmenopausal women with advanced breast 

cancer (Figure 7.2).226 252 Virtual patients were drawn and randomised to one of two cohorts differing 

only in whether fulvestrant was administered or not, as either the second,226 252 or third treatment.226 

This enabled the implementation of treatment-specific states. The treatment concept for the cohort 

without fulvestrant encompassed seven health states, which included an initial health state, four 

active treatment states, best supportive care, and a terminal state, death. Patients progressed forward 

through the model and could not switch back to any earlier treatments. A cycle length of 28 days was 

used, which corresponded to one interval of fulvestrant administration. At the end of each cycle, 

patients could either remain on the same treatment, experience disease progression and make a 

transition to another state, or die. The probability of any of these events occurring were dependent on 

treatment-specific median time to progression data and the probability of dying on each treatment-

line. Once patients had experienced a progressive event they could move to any later health state, 

including best supportive care. This was to reflect clinical practice, where not all patients receive all 

the treatments in the sequence. Estimates for the probability of skipping one or more lines of 

treatment or dying whilst on each treatment-line, were derived from a clinician survey. The patients’ 

progression sequences were generated by drawing from estimated probability distributions describing 
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progression rates, proportion of patients skipping treatment lines, and proportions deceased during 

each treatment line.252 

 

Figure 7.2: A schematic diagram of the Cameron model: a Markov cohort model for the 

treatment of advanced breast cancer 

 

Taken from: Cameron, D.A., Camidge, D.R., Oyee, J. & Hirsch, M. (2008) Economic evaluation of fulvestrant as an extra step 

in the treatment sequence for ER-positive advanced breast cancer. British Journal of Cancer, 99(12), 1984-90. 

Note: each compartment represent individuals mutually exclusive health states. Arrows represent allowed transitions between 

these states 

Abbreviations: BSC best supportive care; NSAI non-steroidal aromatase inhibitors (anastrozole or letrozole) 

 

Heeg cancer model 

The Heeg model was used for comparing fixed chemotherapy sequences of four treatment lines, for 

multiple myeloma ineligible for stem cell transplantation (Figure 7.3).243 The model was developed for 

comparing overall survival (OS) of 17 different treatment sequences. In clinical practise, complete 

response is used as a short-term marker for treatment success, and has between shown to be a 

predictor of overall survival in multiple myeloma.243 The first three treatment lines were therefore 

divided into three different response states, representing complete, partial, or non-response on each 

treatment line. The model also included a health state representing ‘subsequent treatment lines’, and 

the terminal state, death. A cycle length of one month was chosen as this is the shortest interval at 

which the patient’s response to therapy is typically measured in clinical practice. At the start of the 

model patients were distributed over the three response categories to first-line treatment, based on 

the specific treatment they receive in first line. During each following monthly cycle, members of the 

cohort could remain in their current response state, switch treatment, or die. In the model, response 

rates were combined with the probability of switching treatment and the mortality probability. The 

probability of switching treatment was based on time to next treatment. Patients who switched 

treatment were then redistributed over the three response health states in second line, where they 

could again remain on treatment, switch treatment or die. Treatment-specific probabilities of response 

(complete, partial, and non-response) on each first-line treatment were taken from a network meta-
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analysis of RCTs of newly diagnosed patients (Chapter 6, Section 6.5.3.1). The response specific 

probability of transition to the next treatment or death were obtained from a single trial (VISTA 

study)377 of newly diagnosed patients (using a Weibull model). The treatment-specific probabilities of 

response on both second and third-line treatments were obtained from a second network meta-

analysis of RCTs of patients with relapsed or refractory cancer. The response and line specific 

probability of transiting to the next treatment or death were obtained from another trial (APEX trial)378 

of relapsed patients (using exponential survival curve, and assuming constant treatment switch and 

mortality transition over time). The probability of dying whilst in the ‘further-treatment lines’ health 

state were obtained from a third trial (SUMMIT trial),379 which included patients who had already 

received many treatments before entering the trial. For consistency, the probabilities for treatment 

switching and mortality were derived from the results of the bortezomib arm in each of the three 

selected clinical trials. 

 

Figure 7.3: A schematic diagram of the Heeg model: a response-based Markov cohort model 

for the treatment of multiple myeloma 

 

Taken from poster presentation: Heeg, B., Van Agthoven, M., van Beurden-Tan, C., Liwing, J., Mellqvist, U. H., Plesner, T., 

Logman, F., Aschan, J., Einsele, H.., Treur, M., Barendse, M., Richardson, P. G., Palumbo, A., Nahi, H., Sonneveld, P. (2014). 

PCN24 Treatment Sequencing Survival Model for Patients with Multiple Myeloma Ineligible for Stem Cell Transplantation 

(SCT). Value Health, 17(7), A617-8.  

Abbreviations: CR compete response; NR non-response PR partial response 

 

In all three models (Soini, Cameron, and Heeg cancer) the evidence used to inform time to treatment 

failure or progression free survival was line specific, but not generally treatment-specific.226 243 269 This 

is based on the assumption that response to a specific treatment is independent of response to the 

previous treatments used, and ignores any potential cross-resistance. The probability of switching 

treatment in the Heeg cancer model was both response type and line specific.243 However, the model 

assumed the same duration of response across all treatments, and although the probability of 

switching treatment for first-line treatment was based on a Weibull distribution that can allow the 

probability to increase or decrease over time, the probability of switching for second and third line 

treatments were based on an exponential distribution, and therefore assumed to be constant over 

time. The Heeg cancer model provides an example of an adaptation of the basic three state cancer 
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model, which accounts for both the different levels of treatment response and treatment sequences. 

Other Markov models used a similar approach to also account for other attributes relating to the 

decision problem. 

 

Models using Markov states to represent response to each treatment line and other attributes 

Four studies used Markov health states to represent a combination of individual treatment lines and 

other factors to better represent the decision problem.231 250 263 277 All the models were based on the 

basic premise that each treatment line (or specific treatment) was associated with two health state, 

treatment response or non-response. Non-response generally led to treatment switching, whilst a 

treatment response state was generally recursive, thus representing continued treatment. The models 

also included other states in order to monitor additional attributes, such as serious adverse effects, or 

make state transitions conditional on certain attributes, such as relapse. This approach is initially 

illustrated here using a study of psoriasis (Sawyer, 2013) and then the two cancer studies (Wong, 

2009 and Lee, 2013). The Sawyer model adds to the narrative of modelling treatment sequences for 

psoriasis, and provides an example of modelling relapse.263 The study by Wong et al., represents the 

only cancer study to account for the possibility of toxic death and all-cause mortality separately within 

the Markov model, by incorporating toxicity as a separate health state.277 It also accounted for the fact 

that patients who develop toxicity can continue on the same treatment at a lower dose. However, 

similar to Soini et al. it evaluated fairly limited sequences of up to three lines of active treatment. The 

Lee model was used to evaluate more extensive treatment sequences, and also accounted for the 

fact that treatments were only administered for a fixed period (Figure 7.4).250 However, the 

chemotherapy sequences being compared only differed in terms of the first-line treatment used. The 

model used in the fourth study (Davies, 2008), of treatment sequences for schizophrenia does not 

add anything new, and is summarised in the Appendices.231 

 

Sawyer model 

The Sawyer model was used to investigate early treatments for psoriasis, which was described as a 

relapsing and remitting condition for which there was no evidence that response to treatment has an 

effect on its natural history.263 The model was used to inform the NICE clinical guideline 153. The 

model structure represented the movement of patients through a fixed sequence of three topical 

treatments used in primary care, over a one year time-horizon. The model included an additional 

health state, ‘relapse’, in order to account for the fact that a patient who initially responds to treatment 

and then relapses, may be eligible for the same treatment that was initially successful. Patients who 

failed to respond to all three treatments were referred to secondary care for more intensive 

treatments. Patients were assumed to undergo a maximum of eight weeks continuous therapy with a 

given topical agent, except corticosteroids, which were assumed to be trialled for four weeks. A cycle 

length of four weeks was used, and patients could respond within the first four weeks (early 

responder) or the second (late responder). The model appeared to include nine health states, 

depicting either a response or non-response to each treatment line, plus an additional health state 

representing relapse, which could occur whilst on any line of treatment. Only the responder states 
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were recursive, whilst relapse appeared to have been implemented as a temporary state through 

which patients could pass from each responder state back to the prior treatment. After receiving the 

first treatment, hypothetical patients entered the first-line responder state or the first-line non-

responder state. Those who responded stopped treatment and either maintained response (re-

entering the first-line responder state) or relapsed (entering temporary relapse state). Patients who 

relapsed resumed the initial treatment and, again, either responded or did not respond to treatment 

(entering either the first-line responder or non-responder state, respectively). Patients who did not 

respond (in first-line non-responder state) moved to the second treatment, to which they could 

respond (second-line responder) or not respond (second-line non-responder) etc. Probabilities of 

early and late response were treatment related but assumed to be independent of positioning in the 

sequence. All treatments were assumed to have the same relapse rate, which could occur at any 

point following response. The Markovian assumption also meant that patients in each treatment 

response state were treated as a homogenous group, and the patients’ history ignored. For example, 

those in the first-line responder state would have had equal probability of responding or relapsing to 

treatment, irrespective of whether they have had a previous relapse or not.  

 

Wong model 

The model by Wong et al. was developed for comparing fixed treatment sequences for newly 

diagnosed metastatic colorectal cancer.277 The model included toxicity and progression as separate 

health states. These can be conceived as competing risks, which were implemented in the Markov 

model by using a short one week cycle. At the end of each Markov cycle, patients could either remain 

on the same treatment, develop toxicity, experience progression, or die from all-cause mortality. 

Patients who developed toxicity could die, continue therapy at a reduced dose, or change treatment. 

Patients could have up to two toxic events. It was assumed that toxicity and progression were 

independent and mutually exclusive events within the course of a one week cycle. The main clinical 

effectiveness estimates were the rates of progression and toxicity. Progression rates, taken from 

clinical trials, were converted to weekly probabilities, and the data on the rates of Grade 3 or 4 

toxicities were converted to the probability of fatal or non-fatal outcomes.  

 

Lee model 

The Lee model was used for comparing two chemotherapy sequences containing four treatment lines 

for platinum-sensitive ovarian cancer (Figure 7.4).250 The model included four health states: 

responsive, progressive, clinical remission, and death. ‘Progress’ was referred to as a tunnel state, 

but actually appears to have been a temporary state, linking the ‘respond’ and ‘remission’ states to 

the next active treatment or best supportive care. A cycle length of nine weeks was used, which 

reflected the timing of treatment response assessment in clinical practice. Patients remained on the 

same treatment for 18 weeks if they responded. Patients who did not progress or experienced 

adverse effects within this period entered the clinical remission state, withdrawing from the drug. 

Patients could progress whilst on treatment or from remission, and would then enter the next line of 

treatment. 
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Figure 7.4: A schematic diagram of the Lee model: a Markov cohort model for the treatment of 

recurrent ovarian cancer 

 

Taken from: Lee, H-Y., Yang, B-M., Hong, J-M., Lee., T-J., Kim, B-G., Kim, J-W., et al. (2013). Cost–utility analysis for 

platinum-sensitive recurrent ovarian cancer therapy in South Korea: results of the polyethylene glycolated liposomal 

doxorubicin/carboplatin sequencing model. ClinicoEconomics and Outcomes Research: CEOR, 5, 297–307. 

Notes: The different compartments are mutually exclusive health states. Arrows represent allowed transitions between states. 

“Progress/stable” state is “tunnel” state. 

Abbreviations: BSC best supportive care; tx treatment 

 

Models using Markov states to represent disease condition or treatment response  

The use of Markov states to represent the patients’ disease condition or treatment response, rather 

than treatment lines, means that the model can account for different levels of disease activity or 

response. This approach was used by seven rheumatology studies (Albert, 2000; Coyle, 2006; 

Maetzel, 2002; Rodgers, 2011; Schipper, 2011; Welsing, 2005; Wu, 2012) representing five unique 

models,17 216 230 253 265 275 279 and four non-rheumatology studies (Beard, 2011; Orme, 2012; Shepherd, 

2006; Smith, 2007).220 259 266 268 Treatment sequencing was generally implemented using a Markov 

cycle tree, where the terminal branches represent the Markov states, and provides the distribution of 

the cohort among these states at the end of a model cycle.  

 

This approach is described here using mainly the studies of rheumatoid arthritis, which is a chronic 

condition with a varying disease course over time, characterised by periods of high disease activity 

alternating with low disease activity, or remission.275. The Albert model first provides an example of 

using a decision tree structure to implement treatment sequencing within a simple three state Markov 

model representing the response categories: improved, active disease, and toxicity. This initial model 

was subsequently modified by changing the improved state into a tunnel state in order to incorporate 

time dependency, which can vary between treatments. Maetzel et al., used the Markov cycle tree in a 

slightly different way, in order to account for what happens to patients who may continue treatment 

despite not having a clinical response (Figure 7.5).253 The Welsing model,275 which was further 

adapted by Schipper, et al.,265 provides an example of where four Markov health states were used to 

account for the fluctuating levels of disease severity that can occur over the course of a patient’s 
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lifetime (Figure 7.6). Finally, the Shepherd model, which is the most complex Markov cohort model in 

the review is also described here as it provides a good example of how tunnel states can be used to 

overcome the Markovian assumption of no memory.266 The model was used to evaluate sequences of 

up to two lines of antiviral drugs for chronic hepatitis B, which is a complex chronic condition that 

includes two distinct patient subgroups, and individual treatments with varying profiles and durations 

of administration.  

 

The remaining four models are described in more detail in the Appendices as they do not add any 

new information on modelling treatment sequences as such. However, they do provide examples of 

accounting for various additional factors in the model. The York psoriatic arthritis model accounted for 

the differential effect of the reason for withdrawal on the cost-effectiveness of a second TNF-inhibitor, 

by using separate subgroups for those who discontinued the first TNF-inhibitor due to adverse effects 

or intolerance.17 The Beard model, which was developed for evaluating the optimal positioning of 

duloxetine within a standard treatment sequence for fibromyalgia, accounted for three discrete-pain 

response levels as well as toxicity. It included the following five health states: full response, partial 

response, full response and intolerable adverse effects, partial response and intolerable adverse 

effects, and inadequate pain response. The Beard model also accounted for the fact that some 

patients decide not to have any further treatments. The model allowed for a proportion of patients to 

drop out of current treatment and be lost to subsequent treatments.220  The same percentage (25%) 

was used for all active treatments, and explored across a specified range (20-30%) in sensitivity 

analyses. The Smith model provides an example of a model based on the natural history of the 

condition, postherpetic neuralgia, the duration of which was not affected by the treatment.268 

Treatment was considered for pain relief only, and it was assumed that failure to respond to one 

treatment would have no effect on likelihood to respond to others. The Orme model provides an 

example of the implementation of a fairly complex treatment pathway for glaucoma or ocular 

hypotension.259 The model allowed different subsequent treatment selection based on reasons for 

quitting the prior treatment. It also considered patients with both high and low level of risk within the 

same model, and the differential follow-up required by patients with mild and moderate glaucoma. It 

used four levels of glaucoma severity as discrete health states. The model structure was based 

around three triggers for switching treatment: treatment intolerance; intraocular pressure not meeting 

the benchmark; and progression in visual field defect. The choice of next treatment was implemented 

using a decision tree structure. 

 

Albert model 

The Albert model was developed for assessing the clinical effectiveness of different management 

approaches for rheumatoid arthritis.216 This included the comparison of four fixed sequences of three 

drugs, representing strategies starting with either the least toxic or most effective drug first. The model 

allowed patients who did not respond to switch treatments, whilst those who responded or improved 

remained on their current treatment, which was initially modelled as a terminating state. In other 

words, it was assumed that once a successful treatment was found, its success would be maintained. 
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Every patient in the cohort was assumed to start on the first drug and then, after one cycle of 

treatment, moved to the ‘improved’, ‘active’ take second drug, or ‘toxic’ take second drug state etc. A 

cycle length of six months was used and at any given cycle the patients could be in any of the three 

health states. The model was used to estimate the mean time spent in the improved state for each 

sequence. Different sequences were compared by running the same model for each sequence, using 

specific transition probabilities for the different drugs but assuming treatment independence. The 

findings showed that by the third cycle, regardless of the sequence of drugs used, most individuals 

were improved. Although the rate of increase of patients in the improved category was greatest if the 

most effective agents were used first, the results converged after several cycles. The authors noted 

that this indicated that the model was not a good reflection of reality. They therefore develop an 

expanded Markov analysis, where the improved state was modelled as a separate tunnel for each 

drug instead of an absorbing state, and duration of therapy was modelled as a means to terminate the 

improved state. This meant that patients would have a period of time in the improved state and then 

be cycled back to the active or toxic states. The revised model was able to reflect the fact that 

probabilities for continuing the drug and develop toxicity vary with time, and for each drug. Tables with 

probability of remaining on one drug over time were used to calculate the transition probability of 

continuing a particular drug at each state.  

 

Maetzel model 

The Maetzel model was used to compare a sequence of conventional DMARDs, with or without 

leflunomide (Figure 7.5).253 The same model was used later by Coyle et al. for evaluating similar pre-

defined sequences of conventional DMARDs with and without the addition of a TNF-inhibitor.230 

Separate models were run for each sequence and compared in terms of the average time spent in the 

state of treatment response. Leflunomide was added after a sequence of up to three treatments 

containing methotrexate. Patients who were intolerant to methotrexate were allowed to cycle through 

a different treatment sequence, thus avoiding combination therapy with methotrexate. The model 

included two health states, ‘continue same DMARD’ and ‘start new DMARD’. Treatment response 

was measured using the American College of Rheumatology (ACR) criteria. Different degrees of 

improvement are referred to as ACR20, ACR50, ACR70, which represent 20%, 50%, and 70% 

improvement, respectively, on a 28-level symptom scale. Patients discontinued treatment if they failed 

to achieve ACR criteria for 20% improvement (<ACR20) or experienced severe adverse effects. A 

sub-decision tree, for each six-month cycle, was then used to depict the patient pathway, to assess 

the reasons for discontinuation and subsequent events for patients who continued treatment. The 

initial decision node in the tree, representing ‘DMARD’ treatment, branched into ‘continue’ or ‘stop 

treatment’. Stop treatment then branched, at a chance node, into severe adverse effect or lack of 

efficacy, with both branches ending in the health state ‘start new treatment’. Whilst ‘continue’ 

branched into ‘clinical response’ (ACR50/70) or ‘no clinical response’ (ACR20), with both then 

branching into ‘minor adverse effect’ or ‘no adverse effect’. All four branches stemming from ‘continue’ 

ended in the health state ‘continue same DMARD’. This approach meant that the model could 

account for the fact that in clinical practice some patients would continue treatment despite having ‘no 
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response’, as per ACR20, with the decision not to modify treatment taken, for example, based on X-

ray results. It also enabled the economic evaluation to include the cost of treating minor adverse 

effects in patients who continued treatment.  

 

Figure 7.5: A schematic diagram of the Maetzel model: a Markov cohort model for the 

treatment of rheumatoid arthritis 

 

Taken from: Maetzel, A., Strand, V., Tugwell, P., Wells, G. & Bombardier, C. (2002) Cost effectiveness of adding leflunomide 

to a 5-Year strategy of conventional disease-modifying antirheumatic drugs in patients with rheumatoid arthritis. Arthritis & 

Rheumatism, 47(6), 655–661. 

Note: Decision analysis tree representing the conditions under which patients move from one branch (i.e., treatment) to 

another within a 6‐month treatment cycle.  

Abbreviations: DMARD disease‐modifying antirheumatic drug.  

 

Welsing model 

The Welsing model was used for comparing fixed sequences of two active treatments followed by 

usual care (Figure 7.6).275 The active treatments included Leflunomide and a TNF-inhibitor. The same 

model was later adapted by Schipper et al. to compare three fixed sequences of five drugs in early 

rheumatoid arthritis.265 The initial model was not well reported. It included four health states that 

represented the patient’s transition through different levels of disease severity based on disease 

activity score 28 (DAS28) thresholds (Figure 7.6). These included remission (DAS<1.6), low disease 

activity (1.6-2.4), moderate disease activity (2.4-3.7), and high disease activity (>3.7).275 The cycle 

length was three months, and the model ran for 20 cycles. In the initial model all patients started in 

the high disease activity state, reflecting the patient population starting TNF-inhibitors. In the case of 

non-response at three months, patients switched treatment. Each treatment sequence was modelled 

separately, using specific transition probabilities for the different drugs. The model outcomes included 

the expected percentage of time spent on each treatment and the patient years spent in the disease 

activity states. The percentage of time spent on the second treatment was equal to the estimate for 

the first treatment minus usual care, which was the same in both sequences. In the model presented 

by Schipper et al. the simulated cohort represented patients who were starting conventional 
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DMARDs, and were evenly distributed across all the states at the start of the model.265 At the end of 

each cycle patients could be either in remission and remain on their treatment for the next three 

months, or not in remission (with low, moderate, or high disease activity) and switch to the next 

treatment. This was implemented using a Markov cycle tree. The initial Markov tree node branched to 

each of the five individual treatments. Each treatment was then attached to a sub-tree representing a 

decision node between the four disease activity health states, three of which led to switching to the 

next treatment, whilst remission led to the same treatment and a repeat of the sub-tree. The 

percentage of patients achieving remission for each treatment was based on individual patient level 

data from two cohorts. Patients were assumed to sustain remission after being in remission for two 

cycles.  

 

Figure 7.6: A schematic diagram of the Welsing model: a Markov cohort model for the 

treatment of rheumatoid arthritis 

 

Taken from: Welsing. P. M., Severens. J. L., Hartman. M., van Riel. P. L., Laan. R. F. (2004). Modeling the 5-year cost 

effectiveness of treatment strategies including tumor necrosis factor-blocking agents and leflunomide for treating rheumatoid 

arthritis in the Netherlands. Arthritis Rheum, 2004, 51(6), 964-73. 

Abbreviations: DAS Disease Activity Score. 

 

Shepherd model 

The Shepherd model was used to compare six fixed sequences of antiviral drugs for chronic hepatitis 

B, which is a fairly complex disease.266 Patients may remain asymptomatic for some time before 

developing symptoms of progressive liver disease, such as cirrhosis or hepatocellular carcinoma. 

They may also clear the virus spontaneously or move into remission. Patients can be either HBeAg 

positive or HBeAg negative, depending on the presence or absence of the e antigen. The aim of 

treatment differs between the two groups. Antiviral treatment for chronic hepatitis B can be divided 

into two classes which tend to differ in terms of their adverse effect and drug resistance profiles, and 

whether they are administered for a fixed period or maintained until treatment failure. The sequences 
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included a first-line immunomodulator followed by second-line nucleos(t)ide analogue, and in two 

sequences, a third-line salvage treatment with a nucleos(t)ide analogue. 

 

Treatment sequencing was implemented using tunnel states, within a natural history model depicting 

the complex nature of chronic Hepatitis B. The model included patients with both HBeAg positive and 

HBeAg negative disease. The same model and structural assumptions applied equally to both 

disease variants but it was necessary to be keep the two separate in the analysis as they had 

different distributions of age at diagnosis and transition probabilities between health states. This was 

also achieved using the tunnel states. The model was developed as a decision-tree Markov cycle 

model where all the destination states, other than death, consisted of up to 12 tunnel states, which 

were used to track history within the simulated patient cohort. Separate tunnels were defined for 

HBeAG-positive and -negative patients, which were then further subdivided to show whether the 

patients were resistant to either first or second-line drug, and whether they were continuing or had 

stopped treatment. The model had a cycle length of one year, with a half-cycle correction applied. The 

model included eight health states representing an asymptomatic condition, different treatment 

response, various progressive liver disease, and death. The Markov cycle tree included two subtrees, 

referred to as clones, which were attached to different locations, or nodes, in the tree. The 

‘Progression’ subtree indicated all the possible states that an individual could progress to in the next 

cycle. The ‘PreResitance’ subtree showed the different management options for individuals who 

develop resistance, and indicated whether the patient would continue, stop or, if other antiviral agents 

were available, switch treatment after experiencing treatment resistance. Patients who did not 

develop treatment resistance during a cycle followed a branch called ‘NoResist’ and had outcomes 

evaluated as descried in the progressive sub-tree. Patients who developed resistance followed the 

pre-resistance subtree. Each terminal branch of the pre-resistance subtree had a progressive subtree 

attached to it. During the progressive subtree, patients were first exposed to the probability of dying, 

based on age-specific all-cause mortality rates. The survivors were then exposed to the state-specific 

risks of seroconversion, remission, progressive liver disease, and state specific excess mortality risk. 

All the terminal branches, or destination states, except death were tunnel variables. Not all of the 

destination states were accessible from each starting state. For example, individuals with chronic 

hepatitis B were assumed not to progress directly to decompensated disease, and an individual with 

HBeAg-negative disease were not be able to undergo HBeAg seroconversion.  

 

The model was used to evaluate up to two active lines of antiviral drugs. There are a number of 

reasons why patients with chronic hepatitis B would switch treatment in practice, including sub-

optimal or non-response, intolerance, or cross resistance. The authors noted that switching in the 

model was ‘due to treatment failure’, but it was unclear how this was implemented as it appeared to 

have actually been based on treatment resistance. Furthermore, the two treatments used as first-line 

were immunomodulators, which are not associated with drug resistance. The clinical effectiveness 

estimates used to inform the model included HBeAg seroconversion rates and alanine 

aminotransferase (ALT) normalisation or remission rates, and the durability of these responses. 
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These estimates were taken from an accompanying systematic review, whist the data on treatment 

resistance was not. Treatment sequencing effects were not considered, and the same effect estimate, 

for each treatment, was used irrespective of their positioning in the sequence. Developing resistance 

to a second treatment was considered independent of the fact that the patient had already developed 

resistance to the first treatment. If patients developed resistance to the second drug, it was assumed 

that they either continued, but with no therapeutic benefit assumed, or stopped all antiviral treatments, 

receiving best supportive care from then on. 

 

7.3.3.4  Advantages and disadvantages of Markov cohort modelling 

The Markov cohort approach provides a means of modelling treatment sequences over time, and can 

be easily implemented within commonly used spreadsheet or decision analytic software. It is a 

method that is well suited for modelling time to event and repeated events. Markov cohort modelling 

was successfully used for both identifying the optimum treatment sequence from all conceivable 

sequences, and for comparing pre-defined sequences. The former included an approach based on 

ordering treatments according to their net benefit per unit of time (or cost-effectiveness ratio per unit 

of time), estimated separately using a simple two state Markov model. An advantage of this approach 

is that the equation for estimating the expected net-benefit per unit time for the overall treatment 

strategy can be used for any given treatment sequence, thus avoiding the necessity of selecting 

predefined sequences in advance. It can also be used to determine the optimum strategy for an 

individual patient based on the treatment options that are suitable to them. However, this approach is 

valid for treatments that aim to provide symptomatic relief only, and do not alter disease progression. 

This approach is also based on the assumption that treatments only provide benefit whilst they are 

being administered, and that the treatment effect is independent of positioning in the sequence. It also 

ignores the potential progressive accumulation of patients that may not respond to any treatment. 

 

Treatment sequencing, when comparing pre-defined sequences, were conceptualised within the 

Markov model in two ways. They were either implemented as a series of Markov states representing 

each line of treatment or, alternatively, using sub-decision-trees or algorithms, with the Markov health 

states used to represent the different levels of treatment response or disease severity that patients 

progress through. Additional health states were also used to control how patients progressed though 

the treatment sequences. Where certain transitions were dependent on particular attributes, such as 

disease progression,263 or relapse,250 these were incorporated as temporary or tunnel states, which 

patients must pass through to either re-enter the prior treatment, or enter the next line of treatment, 

respectively. The use of temporary or tunnel states also enabled the timing of events to be controlled. 

Some studies that used health states to represent each line of treatment also used additional health 

states to represent further attributes such as adverse effects. A potential limitation of the Markov 

model in implementing both treatment sequencing and additional attributes or health states is that 

patients cannot be in more than one health state at the same time. However, Wong et al. was able to 

achieve this by using a one week cycle length and the assumption that toxicity and progression were 

both independent and mutually exclusive events.277 This may not be practical for modelling a chronic 
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condition over a lifetime horizon. An alternative approach, which was used in the Maetzel model, is to 

incorporate details regarding, for example, the occurrence of adverse effects and the subsequent 

impact on treatment adherence or selection using a Markov cycle tree.253 Representing both the 

disease condition and treatment sequences as an exhaustive list of health states is likely to be 

challenging for modelling lengthy sequences with complex decisions relating to when and how 

treatment switching occurs. As the number of health states or potential attributes that need to be 

accounted for increases, such as the duration of treatment, different duration and levels of disease 

severity, treatment history, and reasons for discontinuing treatment, the less tractable the model will 

become. Identifying data to inform additional conditional transition probabilities will also be 

challenging.  

 

The main disadvantage of using Markov modelling for evaluating treatment sequences is the 

Markovian assumption, which implies that patients will have an equal opportunity to respond well to 

each treatment they encounter, irrespective of the order in which they are used, or the history of 

states visited. Memory can be introduced by creating states that include history. Shepherd et al. used 

tunnel states to account for treatment history within a model developed for comparing treatment 

sequences for chronic hepatitis B.266 The model was primarily based on a Markov cycle tree, which 

consisted of two repeating subtrees. All but one of the terminal branches, or destination states, within 

one of these subtrees were tunnel variables. This allowed each disease state to consist of up to 12 

tunnel states, which took into account previous treatment history and disease variant. The model was 

developed to consider a complex decision problem, but the sequences being investigated only 

included two lines of active treatment.266 The number of states required would greatly increase if more 

extensive sequences were considered, which would likely lead to a model that is difficult to handle. 

 

Another challenge of using a Markov cohort modelling approach for evaluating treatment sequencing 

relates to how time is incorporated in the model. This is potentially relevant for modelling: i) changes 

in the responsiveness of the condition to treatment over time, ii) the time spent on individual 

treatments, iii) and duration of response. In a simple Markov chain model, time is represented as a 

constant variable, which means that it is unable to account for non-linear changes in responsiveness 

to treatment over time. This is adequate for modelling a stable disease or an ageing cohort but 

problematic for modelling a progressive condition with a varying disease course, such as rheumatoid 

arthritis. The duration of treatment or response, represented as the time spent within a state, is also 

unlikely to be constant over time. Most of the Markov models used for evaluating treatment 

sequences for cancer used structures based on line of therapy. In the Heeg cancer model, time-

independent transition probabilities, based on the exponential survival curve, had to be applied to the 

second- and third-line line treatments, thus assuming a constant treatment switching over time243 (I 

come back to this in Section 7.3.6.4 when discussing the Birmingham Rheumatology Arthritis Model). 

The authors noted that implementing time-varying transition probabilities in second and third line 

would have blown up the number of health states required, especially as the model also accounted for 

different levels of response, which can lead to different durations of response.243 However, the 
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counter-argument given to this was that, by incorporating line specific transition probabilities, time was 

implicitly included by defining specific transition probabilities. In the Heeg cancer model, the 

probabilities of moving from the health states representing response to first-line treatment were 

derived from a clinical trial using a Weibull survival model. However, the duration of response was 

assumed to be the same across all treatments.243 The probabilities for the level of response in the 

model (partial, complete, or non-response) were both treatment and line specific, whilst the duration 

of response was line specific only (Chapter 6, Section 6.5.3.1). Using simple Markov model structures 

based on line of therapy also potentially ignores the cross resistance between drug classes, which 

may need to be taken into account for some targeted therapies.243 The Markovian property assumes 

homogeneity within each individual health state, and limits the model’s ability to account for any 

variability, such as the time spent within a state.216 This means that the probability of treatment failure 

or experiencing serious adverse effects, which usually dictate transition to another state, cannot 

depend on the length of time spent in the current health state, whether it is used to represent 

treatment response or a specific treatment line. A variation in time dependency can be incorporated 

into the Markov cohort model using tunnel states. For example, Albert et al., who used a simple three-

state Markov model with treatment sequences implemented using a Markov cycle tree, revised their 

initial model to account for time spent in the ‘improved’ state. It was originally modelled as a terminal 

state, whilst the ‘active’ and ‘toxic’ states resulted in treatment switching. By modelling the ‘improved’ 

state as a separate tunnel for each drug, the model was able to reflect the fact that probabilities for 

continuing treatment and developing toxicity varied with time, and for each drug.216 The York psoriasis 

model, based on the net benefit per unit of time, also provided an approach that allowed the treatment 

trial period to vary between treatments, and the failure probabilities to depend on the duration of 

treatment for individual treatments. However, both these models were based on the assumption of 

treatment independence. In fact, Albert et al., deduced that treatment non-independence was the 

likely cause of their original model overestimating the effectiveness of treatment sequences.216 The 

added requirement of modelling treatment sequences when incorporating time-dependency using 

standard tunnel states can potentially make the process complicated to programme in a spreadsheet 

or decision analytic software.276 Alternative approaches used for incorporating time dependency in a 

state transition cohort model included the use of a partitioned survival modelling and semi-Markov 

cohort modelling. 

 

7.3.4  Partitioned survival models 

7.3.4.1 Description of studies using partitioned survival 

Three included studies used partitioned survival modelling, also known as an area under the curve 

model. Two economic evaluations that were undertaken on behalf of NICE used partitioned survival 

analysis for evaluating treatment sequences for advanced colorectal cancer. One study (NICE 

CG131), which was discussed previously (Section 7.3.2.2), used partitioned survival analysis within a 

decision tree modelling framework.207 The second study (Hind, 2008), which was a technology 

appraisal (NICE TA93), used the area under the curve to calculate the survival benefit of one 

treatment sequence over another.204 They limited inclusion to two prospective trials of treatment 
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sequences in order to obtain estimates of overall survival. One rheumatology study (Schadlich, 2005) 

also appears to have used an area under the curve state transition model.264 The model was 

described as a stochastic simulation model with clinical effectiveness parameters quantified by the 

model based on area under the curve calculations. The study included a cost utility analysis of adding 

leflunomide into sequential therapy consisting of the most frequently used conventional DMARDs over 

a three year time horizon. 

 

A theoretical modelling approach for evaluating treatment sequencing for advanced cancer using 

partitioned survival within a Markov cohort framework was presented by Briggs et al.195 The novel 

approach was proposed as a means of allowing time dependency in the time to event analysis within 

a cohort model framework, thus avoiding the disadvantages of resorting to individual simulations. 

They used a Weibull model to characterise time to event, but any parametric survival model can be 

used. The authors proposed that this provides a framework that is flexible enough to capture 

treatment effects that vary by line of therapy, and enables appropriate discounting that allows for 

differential timing to be made. However, this approach was only reported as an abstract and is yet to 

be applied to a real decision problem. Similar to the other included cancer studies that evaluated 

treatments sequences of more than two lines, the analysis was based on progression free survival for 

each treatment line, which is unlikely to be treatment-specific.  

 

The partitioned survival modelling approach is illustrated here in more detail using the Schadlich 

model.264 

 

Schadlich model 

The study by Schadlich et al. compared fixed treatment sequences, with and without leflunomide, in 

terms of the time a patient benefited from treatments, which is comparable to progression free 

survival used in cancer studies.264 Treatment sequences were implemented in the model using a 

series of treatment-specific health states. The model structure was based on a previous unpublished 

model developed by Cambridge Pharma Consultancy, and was not well reported in the current 

publication. The patient cohort progressed through a series of six DMARDs in a fixed order over a 

three-year period, in six-monthly intervals. Patients switched to the next treatment, due to loss of 

effectiveness or adverse effects, at the start of each successive interval based on DMARD specific 

proportions of patients remaining on treatment at the beginning of each interval. At each treatment 

interval, patients were either treated initially with a given DMARD or received follow-up treatment with 

the same DMARD as the preceding interval. The differentiation allowed the application of quantified 

costs and effectiveness parameters. The respective values relating to the first six months were 

applied to patients assigned to initial treatment within an interval, and the values relating to the 

following six months were applied to patients assigned to follow-up treatment within the interval. The 

interval related representation was necessary for proper discounting of costs and effects in the 

second and third year of treatment. 
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Clinical effectiveness was based on response years (RYs) according to the ACR criteria for 20%, 50% 

and 70% improvement. Different degrees of improvement and corresponding response years 

(ACR20/50/70RYs) were quantified by the model using the area under the curve for the proportion of 

patients with each ACR response within a given interval. Quality adjusted life years (QALYs) were 

also quantified in a similar way. Data on ACR response rates were taken from two RCTs for 

leflunomide and methotrexate, and a meta-analysis for the remaining four DMARDs relative to 

methotrexate. Termination rates were taken from observational studies with a minimum of three years 

follow-up. The area under the curve survival functions appear to have been determined graphically. A 

survival plot, depicting the decrease in the proportion of patients remaining on treatment for each 

DMARD, at the beginning of each successive six-month interval over 3 years, was presented.  

 

In the base case analysis the same treatment-specific effect estimate was used for each treatment 

irrespective of when they were used in the sequences. However, the impact of sequencing effects 

was explored in scenario analyses, as part of the sensitivity analyses. Response rates were reduced 

by 25% where four DMARDs, excluding leflunomide and methotrexate, were used as second or 

subsequent line (Chapter 5, Section 5.6). All other parameters were kept the same. Decreased 

treatment response rates could not be achieved for leflunomide and methotrexate due to the kind of 

data available and the underlying model framework, which estimated the effectiveness of four 

DMARDs based on data on their relative effectiveness compared with methotrexate. The retention 

rates, or the probability of reaming on each treatment depicted in the survival graph, were also 

decreased by 20% per successful interval for every DMARD given as second-line or later in the 

sequence.  

 

7.3.4.2  Advantages and disadvantages of partitioned survival analysis 

The partitioned survival approach provides a simple cohort framework for modelling treatment 

sequences, which allows the treatment effects to vary by line of treatment. It provides a non-data-

intensive approach but does not allow for other separate attributes, which may need to be accounted 

for when modelling a complex decision problem. The Schadlich model approach was able to account 

for the decreasing probability of remaining on a given DMARD with time.264 Treatment sequences 

were implemented as a series of health states, representing six consecutive DMARDs that patients 

could migrate through over time, which was divided into six intervals of six months. The model was 

also able to partially account for sequencing effects based on simplifying assumptions. However, the 

study was unable to account for disease duration and did not consider the impact of adverse effects 

or other attributes. 

 

7.3.5  Semi-Markov cohort process model 

7.3.5.1  Description of studies  

An alternative approach to modelling the probability of a patient making a given transition dependent 

on the time spent in the current state is to do so externally. An example of this is provided by the York 

epilepsy model, which used a semi-Markov process to build time dependency into the Markov cohort 
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model by using an additional time dimension.276 The use of a multi-dimensional transition matrix 

allows the transition probabilities to depend on more than just the start and finish state, giving a non-

Markov cohort state-transition model.373 The York epilepsy model was undertaken as part of a NICE 

technology appraisal (NICE TA76) of ‘newer’ anti-epileptic drugs for treating epilepsy in adults.276 380 

The available evidence for epilepsy indicated that the probability of a patient changing treatment 

decreases as the time they have been on a given treatment increases18 27 380 (See Appendix Volume I, 

Section C5). This means that assuming a constant probability of treatment failure over time, based on 

the clinical trial data, would overestimate treatment discontinuation.18 The Markov model therefore 

required the transition probabilities to be a function of both the current state and the time spent in the 

current state.  

 

An integrative model was developed for comparing antiepileptic drugs used for both newly diagnosed 

and refractory epilepsy, which were analysed separately. The treatment sequences included three 

active treatments, first-line monotherapy, second-line monotherapy, and third-line adjuvant therapy. 

Patients failing combination therapy were assumed to go on to receive maintenance therapy. The 

same model structure was also used for the de novo economic evaluation of drug sequences for 

epilepsy, conducted as part of NICE clinical guideline number 137, which was implemented using a 

Markov cohort model.18 The NICE CG137 model is summarised here in order to highlight the 

differences between them. Although the York epilepsy model accounted for the differential time spent 

on a treatment, it was based on the assumption that treatment response did not vary according to 

positioning in the sequence, whilst in the NICE CG137 model the response to second-line 

monotherapy was not independent of the response to the first monotherapy. The NICE CG137 model 

also accounted for four different treatment outcomes, whilst the York model was based on response 

or non-response to each treatment. However, both studies modelled fixed drug sequences used over 

a 15-year time horizon, and both models also accounted for differential epilepsy mortality linked to 

whether the patients were seizure free or not seizure-free. The two models are described in more 

detail below. 

 

York epilepsy model 

Treatment sequences were implemented in the York model as a series of health states representing 

starting and continuing each line of active treatment.276 The progress of the cohort through the model 

was tracked externally in the statistical software R, which can support multi-dimensional arrays. Time 

spent in the current state was implemented as a two-dimensional matrix, where one-dimension 

represented the current (starting) treatment state, and the other, the time or number of cycles spent in 

the current state. This enabled the proportion of patients in each state for each duration to be 

recorded, and transitions to the future state, representing the third dimension, to be conditional on 

both the current state and time spent in the current state.380 

 

The model included eight health states in total: start monotherapy for newly diagnosed patients; 

continue monotherapy for newly diagnosed patients; start monotherapy for refractory patients; 
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continue monotherapy for refractory patients; start combination therapy; continue combination 

therapy; maintenance therapy; and death. Depending on the initial state, patients could move through 

the first seven states in sequence. The model used a cycle length of six months. Patients only spent 

one cycle in the three starting active treatment states, and distribution within these states was 

established within the first cycle. After the first six-month cycle patients either moved to the 

corresponding continued treatment state or the next active treatment, based on treatment response. 

The probability of response during the first cycle were taken from stratified meta-analyses for each of 

the three indications: monotherapy for newly diagnosed patients, monotherapy for refractory patients 

(representing second-line treatment), and combination therapy. The definition for ‘response’ 

incorporated remaining on the drug until the end of the trial. The probability of continuing treatment 

during subsequent cycles was based on not failing treatment. The probability of treatment failure, i.e. 

not remaining on treatment, was taken from observational data, which was not specific to the drug 

under consideration.276 This included a longitudinal cohort study, the National General Practice Study 

of Epilepsy, for monotherapy and an open label follow-up study of tiagabine for combination therapy. 

 

NICE CG137 (2011) 

The NICE CG137 model was created using TreeAge Pro 2008.18 The model was described as a 

multistate Markov model, which was built to reflect transitions between health states defined by the 

outcomes of each treatment line (starting each treatment was represented as events). First line 

monotherapy was associated with four treatment outcomes, whilst second-line monotherapy and 

adjuvant therapy had three. All three treatment lines were associated with following three outcomes: 

complete seizure freedom, referred to as remission; a 50-99% reduction in seizure frequency; and 

treatment failure. Treatment failure was further subdivided, for first-line monotherapy, into inadequate 

seizure control and unacceptable adverse events. This allowed the differential choice of second-line 

treatment depending on the reason for discontinuing first-line treatment. The probability of achieving 

remission or treatment failure for monotherapies was informed by a network meta-analysis of RCTs, 

which incorporated individual patient data, whilst treatment failure and remission of adjuvant therapies 

were informed by a meta-analysis of placebo-controlled trials. The probability of treatment failure in 

subsequent cycles were obtained from observational and open-label clinical trial data that was not 

specific to the drug being considered. The data were interpolated from the published graphs 

presented by Wilby et al.,276 and converted to specific six-month transition probabilities.  

 

Similar to the York model, comparison of first-line monotherapies and adjuvant therapies was done 

separately using an integrative model. The first probability faced by the newly diagnosed hypothetical 

cohort was that of withdrawing due to adverse effects. Patients who did not fail treatment at the end of 

the first cycle next faced the probability of achieving remission. Patients who did not achieve 

remission or treatment failure in the first cycle were assumed to have a 50-99% reduction in seizure 

frequency. Patients who achieve seizure freedom were assumed to continue with the same drug 

treatment for subsequent cycles. Patients who experienced a reduction in seizure frequency 

continued for up to two cycles with the potential of achieving seizure freedom on the same drug. 
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Patients who experienced treatment failure at any point switched to the next treatment. Patients failing 

first-line monotherapy due to inadequate seizure control were assumed to be 75% less likely to 

achieve remission with second-line monotherapy. For patients who failed first-line due to intolerable 

side effects, it was assumed that response to the second monotherapy was independent of response 

to the first-line line drug. Patients who failed treatment with a second monotherapy were assumed to 

move on to adjunctive therapy, with no differentiation made as to the reason for treatment failure. 

Treatment response for adjuvant therapy was usually defined in the clinical trials as the achievement 

of greater than 50% reduction in seizure frequency. This outcome was divided into patients achieving 

seizure freedom, and patients achieving 50% to 99% reduction in seizure frequency. Patients who 

achieved partial seizure freedom on adjuvant therapy could continue to respond to treatment, or fail 

treatment and move directly to the ‘no response’ maintenance treatment state, during subsequent 

cycles. However, they could not transit to the seizure-free state. As with the York epilepsy model, 

patients could transit to death at any time.  

 

7.3.5.2  Advantages and limitations of using a semi-Markov cohort approach 

The semi-Markov process model based on the use of external multidimensional matrices provides a 

straightforward approach for incorporate time-dependency within the cohort framework for modelling 

treatment sequences. This was achieved by the York epilepsy model, which represented a simple 

model that did not require excessive data for parameterisation.276 380 It was used to model fixed 

treatment sequences where each treatment line was characterised as two health states, an initial 

temporary state representing the first six-month treatment period, and a recursive state representing 

continued treatment use. The probability that the patient would progress to the next treatment state 

was allowed to vary according to how long the patient had been in their current state. However, the 

model was not suitable for evaluating treatment sequences where the treatment effectiveness is 

dependent on positioning in the sequence. It also accounted for a fairly simple decision problem 

based on only one level of treatment response, where the patients had complete seizure freedom or 

not. It did not account for the impact of toxicity and it was assumed that all patients who did not 

respond would progress to the next line of treatment. The selection of add-on treatment was not 

dependent on specific treatments previously used. The NICE CG137 model, which used the same 

structure as the York model, was able to account for some of these complexities. However, the 

authors had access to a slightly better evidence base for the clinical effectiveness of first-line 

monotherapies, which included individual patient level data. In theory, multidimensional matrices can 

also be used to reflect ‘patient history’ or previous treatments into cohort models. However, no 

included study did this.  

 

Theoretical development: Nested Markov cohort model  

An alternative approach for incorporating time-dependency within a Markov cohort framework was 

presented by Shah, et al., based on the use of nested Markov models.381 However, this theoretical 

approach was only reported in a conference abstract. The hypothetical model was originally 

developed using Excel, and subsequently tested and implemented as a probabilistic decision model 
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using R, based on the York epilepsy model and data. The model structure was identical to that of the 

semi-Markov York epilepsy model.276 380 The method involved first disaggregating the model by 

treatment, first-line monotherapy, second-line monotherapy, and third-line adjuvant therapy, and then 

calculating the net present value for each treatment. The nested model was then rolled back into the 

treatment sequence by combining the net present values of each treatment weighted by the 

proportion of time spent in the sequence. These were then combined to calculate total outcomes. The 

authors concluded that the nested Markov modelling approach represented a straightforward and 

intuitive approach to modelling a fixed treatment sequence, but it may not be suitable if the position in 

a sequence is interchangeable and treatment effectiveness depends on the position in a sequence, 

for example cancer therapies where disease progression impacts treatment effectiveness. 

 

7.3.6.  Individual patient simulation  

7.3.6.1  Description of studies using Individual patient simulation 

An alternative approach, to using tunnel states in Markov cohort models or semi-Markov modelling, 

for incorporating time dependency or patient histories is the use if use of individual patient simulation. 

Twenty rheumatology studies218 219 224 225 227 229 232 234 235 238 241 245 246 248 251 254 256 272-274 and four non-

rheumatology199 233 242 244 used individual patient simulations, based on a closed cohort of patients.  

 

Six individual patient simulation models were described as being a Markov or state transition 

model.218 232 241 246 248 256 A further seven studies that merely reported using an individual sampling 

model appear to have used a similar approach based on discrete time intervals, and are therefore 

summarised here under the state transition model heading.224 225 234 235 238 244 274 Ten individual patient 

simulation models were reported as being discrete event simulation (DES).219 227 229 233 242 245 251 254 272 

273 One further study that used an individual sampling model and does not appear to have used 

discrete time cycles, but instead sampled from time to event distributions is summarised under 

discrete event simulation.199 The categorisation of included studies according to model type is 

presented in Tables 7.1 and 7.2. A schematic diagram of a state transition individual patient 

simulation model is provided in Figure 7.7 using the Diamantpoulus model as an example. A 

schematic diagram of a discrete event simulation model is provided in Figure 7.8 using the 

Birmingham rheumatoid arthritis model (BRAM) as an example. 

 

The implementation of treatment sequencing can be complex, with many decisions dependent on the 

attributes of individuals, such as response to previous treatment and disease duration. An alternative 

approach to account for the various pathways that can potentially be taken is to use an individual 

patient simulation. These can also account for a heterogeneous patient population, or be used to 

track the progress of specific subgroups within the model. Individual patient simulation allows the 

patients’ history to be memorised. This can potentially be used to facilitate simulating treatment 

selection based on past patient characteristics, for example, previous treatment or reasons for 

discontinuing previous treatment.  
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7.3.6.2  State transition individual patient simulation model 

Thirteen studies used a state transition individual patient simulation modelling approach, which is 

described here using the rheumatology studies. The twelve rheumatology studies (Bansback, 2005; 

Brennan, 2004; Brennan, 2007; Davies, 2009; Diamantopoulos, 2012; Diamantopoulos, 2014; Finckh, 

2009; Hallinen, 2010; Kielhorn, 2008; Kobelt, 2011; Merkesdal, 2010; Wailoo, 2006) represented 

seven distinct models (Table 7.1).218 224 225 232 234 235 238 241 246 248 256 274 This included a series of models 

developed by a group of health economists at Sheffield University, which have been collectively 

referred to as the Sheffield rheumatoid arthritis models.382 These include the Sheffield Etanercept 

model,224 the Sheffield BSRBR model,225 and the Sheffield AHRQ model.274 The Bansback model also 

represents consultancy work by the Sheffield team.218 The Sheffield models were also used, or further 

developed by other researchers (Davies, 2009; Finckh, 2009),232 238 Treatment switching was 

implemented in these models using a Markov tree (Section 7.3.3.3). Treatment sequences were 

represented within two other distinct models, as a series of health states (Section 7.3.3.3) that 

patients progressed through in a fixed order. However the modelling concept was similar to that of the 

earlier Sheffield models. This included the Diamantpoulus model (Figure 7.7)234 235 and Kielhorn 

model,246 256 which were based on a fairly similar approach. These models are summarised here using 

the Diamantpoulus model (Figure 7.7) as an example. The final Kobelt model was based on health 

states representing the combined effect of function and disease activity.248 The model also accounted 

for reducing the dose of etanercept, for those who achieve remission. The non-rheumatology study 

used an individual patient simulation model to investigate the cost-utility of antiretroviral therapy (ART) 

strategies.244 This is referred to in Table 7.2 as the Holmes model. The model was not well reported 

and is summarised in the Appendix Volume II (Appendix E). 

 

All the studies were cost-utility analysis and all reported probabilistic sensitivity analysis. All but one 

study used a lifetime perspective, whilst the Kobelt model was based on a 10-year time horizon. All 

the Sheffield models, the Diamantpoulus model, and the Kielhorn model were developed in Microsoft 

Excel. The Finckh model was implemented using R project statistical software. The software used for 

the Kobelt model was not reported. The Holmes model was implemented using TreeAgro software.  

 

Treatment for rheumatoid arthritis typically involves the use of a number of different therapies over the 

long term, with some patients having long periods of successful improvement in symptoms, whilst 

others withdraw more quickly due to lack of efficacy or adverse events, and move on to an alternative 

treatment.382 Individual patient simulation was considered the most appropriate approach for 

modelling treatments for rheumatoid arthritis by the Sheffield team, due to this typical sequential use 

of treatments over time and the uncertain duration of effect on each patient. Patients’ progression in 

the model is conditional on their past, which can include the number of previous treatments and 

disease level. The most complex model structure was implemented by Finckh et al. who noted that, 

although the model could be implemented within a Markov modelling framework, an individual 

sampling model was chosen as the probabilities were based on the historical factors.238 A Markov 
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model would have required a great number of tunnel states to ‘remember’ history, which is simple to 

implement in an individual sampling model. 

 

Most of the included individual sampling models for rheumatology were based around monitoring the 

patient’s disease activity over their whole lifetime. Most monitored changes in the patient’s health 

state over time using the Health Assessment Questionnaire Index (HAQ). This is a functional 

measure that is used as a proxy for the patient’s disease activity. There is currently no specific health 

related quality of life measure for rheumatoid arthritis,382 and the advantage of using HAQ is that it can 

be converted to health related quality of life using any number of published lineal regression functions. 

Most studies were based on the HAQ disability index sub-scale, which has been abbreviated here, for 

simplicity, as the HAQ score. A reduction in HAQ score represents improvement.  

 

Sheffield etanercept model and Bansback model 

The Sheffield etanercept model, presented by Brennan et al. (2004), represents the earliest model by 

the Sheffield team.224 It also represents the basic structure used by many of the rheumatology studies 

that used state transition individual patient simulation. It was developed to address the same decision 

problem as the initial rheumatology model developed by the Birmingham team (NICE TA36), which is 

summarised under discrete event simulation. The etanercept model was used to compare a fixed 

sequence of conventional DMARDs with and without etanercept added to the start. Three named 

conventional DAMRDs was used as an exemplar sequence. The model focused on the progression of 

the HAQ score over time. It represented a simple three state model implemented using a Markov 

cycle tree to depict whether, for each treatment, patients continued on the same treatment, switched 

to the next, or died. For each patient entering the model, the following baseline characteristics were 

sampled from appropriate distributions: age, gender, HAQ score, disease duration, and number of 

previous conventional DMARDs. A cycle length of six months was used, with the patient’s HAQ score 

and mortality evaluated at the end of each cycle. After the initial treatment period, patients could be 

an ‘initial responder’, based on the ACR20 threshold, or ‘non-responder’. Patients who did not-

respond switched to the next treatment. Initial responders remained on treatment for several six-

month cycles, until subsequent longer-term withdrawal due to loss of efficacy or adverse effects. 

Patients could also die during any cycle, based on the age, sex, and HAQ score achieved at that 

point. The first treatment period was set at three months, so that the model could explicitly examine 

the percentage of withdrawal from etanercept at that point, based on clinical guidelines that suggest 

that a TNF-inhibitor should be withdrawn at three months if no response.  

 

The mathematical approach used by Bansback et al. was built on both the Sheffield etanercept model 

and the Birmingham preliminary model.218 The model structure was similar to that of the etanercept 

model, with the addition of a separate health state representing serious adverse effects. This time the 

sequence of three conventional DMARDs was implemented using a generic DMARD at each line 

(Chapter 6, Section 6.5.3.2). At the end of each six-month cycle both non-responders and those who 

experienced severe adverse effects withdrew from their current treatment and moved to the next one, 
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whilst responders continued on the same treatment. Patients who were classified as treatment 

success or non-responders were also assessed for the occurrence of mild to moderate adverse 

effects in order to account for their potential treatment cost. The model used both ACR20 and ACR50 

as a response threshold for determining treatment success, which were implemented separately. 

Another study, reported by Davies et al, which used the same model, incorporated an additional stage 

where the initial treatment response was categorised into ACR intervals: ACR0-20, ACR20-50, and 

ACR70-100. Each level of response was associated with a given reduction in the patient’s HAQ score 

from baseline. Achieving the ACR50 threshold was used to determine the acceptable response for 

continuing treatment. This study also differed in that patients were randomly sampled to experience 

several alternative sequences. The study evaluated five treatment sequences in total, one of which 

included sequential TNF-inhibitors (Table 6.4). 

 

These models represent the use of a simple modelling structure, with the main advantage of using 

individual patient simulation being the ability to track a large number of patient histories, which vary in 

terms of response to treatment, risk of withdrawal, adverse events, and mortality. Subsequent models 

developed by the Sheffield team, including the Sheffield AHRQ274 and Sheffield BSRBR225 models, 

were able to further build on this by using a series of multivariate analyses to track individual patient 

pathways. This allowed model parameters to be based on covariate adjustment, which was made 

possible by the availability of individual patient data obtained from patient registries. This approach is 

illustrated here using the Sheffield AHRQ model. The AHRQ model was further developed by Finckh 

et al. to model a more complex decision problem relating to treatment sequencing for rheumatoid 

arthritis.238 Nick Bansback, from the Sheffield team, was a co-author and contributed to the 

development of the Finckh model.238 The Sheffield BSRBR model presented by Brennan et al. 

(2007)225 addressed the same decision problem as Chen et al.,227 which used the Birmingham 

Rheumatoid Arthritis Model (BRAM). It represents an independent evaluation of TNF-inhibitors 

submitted to NICE as part of the TA130, and was undertaken in collaboration with the British Society 

of Rheumatology Biologics Registry (BSRBR). The authors had access to individual patient level data 

from the BSRBR dataset. The use of sequential TNF-inhibitors was examined as part of further 

analysis. However, given the absence of correlation identified in the BSRBR data, the response and 

utility gain from a second TNF-inhibitor was assumed to be independent of the response to the first 

(Chapter 6, Sections 6.5 and 6.6). The model is described in more detail in Appendix Volume II 

(Appendix E). 

 

Sheffield AHRQ model 

The model presented by Wailoo et al., was commissioned by the Agency for Healthcare Research 

and Quality (AHRQ) in the United States.274 It was developed primarily for comparing individual 

biological treatment strategies, including three TNF-inhibitors. Separate models were run for each 

biological agent. The model was then used to assess the cost-effectiveness of adding a second or 

third TNF-inhibitor, compared to the using a single TNF-inhibitor. However, this additional analysis 

was only presented in the AHRQ monograph (Wailoo, 2006),274 and not in the subsequent peer-
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reviewed paper (Wailoo, 2008),383 which is generally used as a reference for the AHRQ model. The 

model was described in more detail for the evaluation of treatment strategies containing single 

biological agents. The model pathway was based on tracking the patient’s HAQ score over time. The 

model started with the individual’s baseline characteristics, from which a representative sample of 

10,000 patients were simulated. The patient characteristics included, among others, duration of 

disease, comorbidities, baseline and current HAQ, and type and number of previous conventional 

DMARDs. Alternative strategies were compared using the same patients. A series of regression 

analyses were used to estimate the parameters that the model used for simulating the path each 

individual patient would take. Individual patients were followed from the time of starting treatment on a 

biological agent until death, with changes calculated every six months. For each individual treated 

with a biological agent, the model simulated the level of ARC response (statistical model 1) and the 

HAQ score archived after six months (statistical model 2). The HAQ improvement score for each 

patient was estimated as a function of the type of responder they were, their HAQ baseline value, and 

other covariates, including disease duration. The model then simulated the long-term HAQ score for 

each patient at six-month intervals (statistical model 3) until treatment withdrawal due to either loss of 

efficacy or adverse effect (statistical model 4, duration of treatment). At the time of withdrawal the 

HAQ was assumed to deteriorate by the same magnitude as the initial six month improvement. After 

withdrawal, the patients were assumed to return to conventional DMARD-based treatment, and their 

long-term HAQ score was modelled over six-month intervals for the remainder of their lifetime 

(statistical model 5). The HAQ score for each patient was then translated into QALYs (statistical 

model 6), and the cost for each patient calculated (statistical model 7). 

 

The same model structure was then used for evaluating treatment strategies containing sequential 

TNF-inhibitors. At withdrawal from the first TNF-inhibitor, patients moved to the next TNF-inhibitor in 

the sequence, and statistical model 4 was followed by statistical models 1, 2, and 3 for the next TNF-

inhibitor in the sequence until withdrawal from the final TNF-inhibitor in the sequence. At that point, 

HAQ progression was estimated using statistical model 5. For the analyses, it was assumed that a 

TNF-inhibitor would be tested for at least six months before a decision to withdraw is made. It was 

also assumed that treatment response was independent of the position of the TNF-inhibitor in the 

sequence (Chapter 6, Sections 6.5).  

 

The statistical models governed how the HAQ score changed between each event, the time a patient 

withdrew from the TNF-inhibitor, the time of death, and the cost and QALYs incurred over the 

patient’s lifetime. The statistical models took into account the characteristics of the individual patient 

and the TNF-inhibitor. The model was based on two key data sources, which included the National 

Data Bank for Rheumatic Diseases (NDB) and a meta-analysis of RCTs (Nixon, 2007, introduced in 

Chapter 5, Section 5.4.2).208 The probabilities of treatment response for the TNF-inhibitors were 

estimated in two ways, using the two data sources (discussed in Appendix Volume I, Section D2.1). 

The remaining statistical models were based on data from the NDB, with rheumatoid arthritis life 

tables used to estimate time of death for each patient. 
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Finckh model 

The Finckh model was developed for comparing an early versus late introduction of TNF inhibitors in 

very early rheumatoid arthritis.238 Treatment strategies contained a sequence of two or three 

treatment groups, representing NSAIDs, conventional DMARDs, and TNF-inhibitors, with the last two 

groups containing three consecutive drugs represented by generic treatments (the sequences are 

illustrated in Table 6.4). The model was based on the AHRQ model, but was able to account for 

further complexities in the decision problem. Here the course of the disease was modelled using both 

HAQ and radiographic evidence of structural damage. The exact route a simulated patient took 

depended on i) the treatment strategy and the same patient characteristics used by the AHRQ model, 

and ii) the type of disease progression they were likely to follow. It was assumed that patients 

followed one of three disease courses, which could not be predicted at presentation. This included 

drug free remission, a mild course with slow progression, or rapid disease progression. The rate of 

disease progression was applied to each disease course pattern. Patient’s response to treatment was 

categorised as excellent, good, moderate, or none. Initial HAQ improvement at six months depended 

on treatment used, response, disease duration and radiographic damage. The rate of HAQ score 

progression was dependant on both response to treatment and radiographic damage. The 

probabilities of treatment response for TNF-inhibitors and conventional DMARDs used as early 

treatments were based on RCTs in early rheumatoid arthritis. The response rates for six months after 

therapy were based on the regression analysis of patient registry data conducted by Wailoo et al., 

which included covariates representing, among others, disease duration, number of DMARDs failed, 

and HAQ score at start of treatment. This was to account for the fact that response rates decrease 

with greater disease duration and number of previous treatments. However, the same generic effect 

estimate was used for each consecutive treatment within each treatment group, thus assuming 

treatment independence, and that the response to TNF-inhibitors would be the same whether the 

patient had previously responded to a TNF-inhibitor or not (Chapter 6, Section 6.5). 

 

Diamantpoulus model 

The Diamantpoulus model was developed to evaluate the cost-effectiveness of adding tocilizumab to 

the current treatment sequences, and to compare a number of different treatment sequences with and 

without tocilizumab (Figure 7.7).234 235 The patient characteristics were representative of a 

homogenous group of patients, which were obtained from three RCTs384-386 for an early version of the 

model (2011), and the British Society for Rheumatology Biologics Register (BSRBR)387 for a later 

version (2014). The 2014 version of the model was used to explore two separate scenarios: patients 

contraindicated to methotrexate and those who were methotrexate tolerant.  

 

Treatment sequences were represented as a series of health states, which patients progressed 

through in a fixed order. It was assumed that the patients received all treatments in the sequence, 

ending with palliative care. Patients could transition to death at any time, based of mortality risk 

adjusted for rheumatoid arthritis.  Initial treatment response was measured in terms of ACR response 

criteria, with simulated patients allocated to one of four categories: no response, ACR20 response, 
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ACR50 response, or ACR70 response. Those with no response moved to the next treatment in the 

sequence, whilst those with a response remained on treatment until withdrawal. Response to 

treatment was assumed to have an impact on disease severity, as measured by the HAQ score, in 

the earlier version, and both the HAQ and Visual Analogue Scale (VAS) pain score in the later 

version. As the patients progressed through the treatments, individual simulation was used to monitor 

HAQ changes. For the first six months of a new treatment, the model assumed a HAQ score (and 

VAS pain score) reduction according to four levels of ACR response. Although the proportion of 

patients achieving each level of response was treatment dependent, the initial HAQ benefit was 

assumed to be response, not treatment, related, and the HAQ reductions for each level of response 

were therefore applied universally to all treatments.  

 

Figure 7.7: A schematic diagram of the Diamantpoulus model: a state transition individual 

patient simulation model for the treatment of rheumatoid arthritis

 

Taken from: Diamantopoulos A, Finckh A. Huizinga T, Sungher DK, Sawyer L, Neto D, Dejonckheere F. (2014) Tocilizumab in 

the Treatment of Rheumatoid Arthritis: A Cost-Effectiveness Analysis in the UK. PharmacoEconomics, 32(8), 775–787. 

Abbreviations: ACR American College of Rheumatology; HAQ Health Assessment Questionnaire; QoL quality of life; 

sDMARD synthetic disease-modifying anti-rheumatic drugs; VAS Visual Analogue Scale. 

 

Kobelt model 

The kobelt model was based on the combined effect of both function and disease activity to estimate 

costs and utilities.248 The health states represented disease status. The model included five main 



218 
 

health states based on functional capacity, which were defined using the HAQ score. Each state was 

further divided into high or low disease activity using the DAS28 scores. In all resulting states, 

patients could be on a TNF-inhibitor (as first-line, second-line, or half dose), methotrexate, or a 

generic conventional DMARD. Changes in disease status or treatment were modelled as transitions 

between the states. 

 

7.3.6.3  Advantages and disadvantages of state transition individual patient simulation model 

Treatment sequencing was generally implemented using a fairly simple modelling structure, with the 

complexity of the decision problem being mainly accounted for by tracking individual patient event 

histories. Treatment sequencing was implemented as a series of health states, or a decision tree 

representing the response to each treatment and the subsequent decisions. However, the 

rheumatology models were based on a fairly similar process, which started with an initial assessment 

and categorisation of treatment response at three or six months. Non-response then triggered 

treatment switching, whilst response led to continued treatment, based on data on long-term 

withdrawal. Patients would progress through the treatment sequence in a fixed order, and were 

generally assumed to receive all the treatments in the sequence. Individual patients could differ in the 

way they progressed through the model in terms of their response to treatment, risk of withdrawal, 

adverse events and mortality. The advantage of individual patient simulation is that this variation can 

be tracked using patient histories. It can also incorporate a heterogeneous patient population. 

However, most of the included studies used initial patient characteristics representing a homogenous 

group of patients, reflecting the decision problem using the average patient. The variation between 

individuals therefore represented random variation only. None of the included studies considered a 

differential selection of subsequent treatments according to the reason for quitting the current 

treatment or evaluated patient subgroups. In fact Diamantpopulus et al. modelled patients with and 

without a contraindication to methotrexate separately.235 Only one study (Bansback. 2005) modelled 

the impact of serious adverse events as a separate health state.218 

 

The most complex model structure was developed by Finckh et al., in order to compare three different 

management strategies for patients with very early rheumatoid arthritis, following patients from 

symptom onset until death.238 The model included five disease states representing four different levels 

of treatment response, excellent, good, moderate, and none, and death. The model also accounted 

for three different potential modes of disease progression (spontaneous remission, slow progression, 

and rapid progression) that could not be predicted at presentation, and included two outcome 

measures to represent disease progression, eroded joints and HAQ score. The rate of disease 

progression was applied to the course of the disease. The model also monitored three other 

outcomes, quality of life, cost, and death. The time patients spent in a particular disease state 

determined the probability of transition and the ultimate outcome. 

 

The individual patient simulation modelling approach was generally used to monitor or track changes 

in disease progression through the treatment sequence, and over a life time horizon. Disease 
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progression in rheumatoid arthritis was generally measured using HAQ disability score, whilst 

treatment response was frequently assessed using ARC criteria. The observed improvement in HAQ, 

on treatment initiation was assumed to be response, and not treatment, related. Whilst the level of 

response was based on the treatment used. The parameters for most of the Sheffield models were 

developed using individual patient level data. This meant that regression analyses controlling for other 

covariates, such as disease duration, could be used for estimating the patient’s change in HAQ 

score.218 224 225 274 However, all the rheumatology studies used various assumptions for implementing 

long term changes in HAQ score. 

 

7.3.6.4  Discrete event simulation 

Eight rheumatology studies (Barton, 2004; Chen, 2006; Clark, 2004; Jobanputra, 2002; Lindgren, 

2009; Malottki, 2011; Tran-Duy, 2011; Tran-Duy, 2014) reported using a discrete event simulation 

model, representing four distinct models: the preliminary Birmingham model, the Birmingham arthritis 

rheumatology model (Figure 7.8), the Tran-Duy, and the Lindgren model.219 227 229 245 251 254 272 273 Three 

non-rheumatology studies (Connock, 2006; Denis, 2008; Heeg, 2008) used a discrete event 

simulation model,233 242 or a similar approach,199 for evaluating treatment sequences. These include: 

the Denis model,233 the Heeg schizophrenia model,242 and the Birmingham epilepsy model.199 

 

All eight rheumatology studies were cost utility analysis with a lifetime horizon, four of which included 

probabilistic sensitivity analysis. One of the non-rheumatology studies used a discrete event 

simulation to compare the clinical effectiveness of different treatment strategies for glaucoma (Denis 

model).233 The remaining two studies were cost utility analysis; the Heeg schizophrenia model, which 

was used to evaluate treatment sequences of antipsychotic drugs for schizophrenia,242 and the 

Birmingham epilepsy model for sequences of antiepileptic drugs.199 The time horizon of the non-

rheumatology models ranged from five233 242 to 15 years,199 and only one study (Heeg, 2008) included 

probabilistic sensitivity analysis.242 

 

Only the Heeg schizophrenia model was reported to have been developed using a dedicated discrete 

event simulation software package.242 The Birmingham Rheumatology model was initially developed 

using TreeAgree and then constructed using Borla Dephi.219 227 229 245 254 The Tran-Duy model was 

also developed using Delphi language.272 273 The software used was not reported for remaining 

models. 

 

The discrete event simulation modelling approach is illustrated here using mainly the rheumatology 

studies and one non-rheumatology study. The preliminary Birmingham model provides an example of 

a discrete event simulation adopting a simple structure for comparing fixed drug sequences. A 

summary of the evolution of the subsequent Birmingham rheumatology model is also provided, which 

was based on the random selection of pre-defined treatment sequences. This is followed by a brief 

summary of the Lindgern model.251 This represents an example where data on treatment sequencing 

were taken from a national registry to develop a background model, which was used to investigate the 
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changes that would occur when a new treatment is introduced. The Tran-Duy model provides an 

example of a discrete event simulation where individual treatments were randomly selected for each 

line of treatment in order to generate the treatment sequences.272 273 Finally, a summary of the 

Birmingham epilepsy model is provided, as a continuum of the previous narrative relating to the 

different approaches used for modelling treatment sequences in epilepsy.199 All models, including the 

Denis233 and Heeg schizophrenia242 models are summarised in Appendix Volume II (Appendix E). 

 

An individual sampling model was chosen for the Birmingham model, in order to allow for a 

continuous distribution of time to quitting any treatment, which was considered not follow an 

exponential distribution (discussed in Section 7.3.3.4).219 The Lindgren model was programmed as a 

discrete event simulation because the decision problem related to different treatment courses and 

sequences, with varying treatment durations and intervals between them, and structuring the question 

into a chronological ‘time-to-event’ was intuitive.251 A discrete event simulation was also considered a 

better candidate than a state transition individual patient simulation, in terms of computational 

efficiency, as fewer calculations are required. A discrete event simulation was chosen for the Tran-

Duy model as it allowed specific treatment algorithms to be implemented, reflecting the 

recommendations made in clinical guidelines and treatment decisions made in clinical practice.272 273 It 

also allowed greater flexibility for modelling treatment selection based on the disease activity and 

treatment history of the patient, as patients could be in both disease activity and specific treatment 

health states at the same time. It also meant that various drug sequences could be selected at 

random, and differential treatment selection could be implemented for specific patient subgroups. An 

individual sampling model was chosen for the Birmingham epilepsy model because of the need to 

consider a sequence of drugs, a potentially long time frame, and the need to account for the fact that 

individuals could receive any one drug for a variable length of time.199 The model was able to 

accommodate drugs being prescribed for variable intervals as it was not based on discrete time 

cycles. The modelling approach could also account for the many different treatment pathways a 

patient can follow, and include a patient cohort comprising of individuals with a mix of personal 

characteristics.  

 

Birmingham preliminary model (BPM) and the Birmingham Rheumatology Arthritis Model (BRAM) 

The Birmingham rheumatology arthritis model (Figure 7.8), which evolved from the Birmingham 

preliminary model, was designed to allow the comparison of a wide range of different treatment 

pathways for rheumatoid arthritis. It is continually being developed and updated and different versions 

have been used to inform a number of NICE technology appraisals.219 227 229 245 254 Most versions were 

used to investigate the addition of biological agents at various points in the baseline treatment 

sequence (Table 6.4 and Appendix Volume I, Section D). However, the third version was used to 

compare biological agents, which were added to a sequence of conventional DMARDs immediately 

after the failure of a previous TNF inhibitor.254 
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Figure 7.8: A schematic diagram of the Birmingham rheumatoid arthritis model (BRAM): a 

discrete event simulation model for the treatment of rheumatoid arthritis

 

Taken from: Barton, P. (2011). Development of the Birmingham Rheumatoid Arthritis Model: past, present and future plans. 

Rheumatology, 50(Suppl 4), iv32-iv38. 

Abbreviations: HAQ 

 

The model starts from the point of initiating conventional DMARD therapy for early disease in most 

instances, with the population to which the decision problem applies being generated within the model 

(discussed further in Appendix Volume I (Section D2).219 227 229 245 The models did not start from the 

point at which the treatment sequences diverged in order to avoid the requirement of knowledge of 

distribution of patients’ age, gender and HAQ score for the separate starting populations at that 

point.229 This method meant that only a single data set for the starting population was required. 

Patients who did not reach the divergent point were excluded from the analysis. 

 

The initial Birmingham preliminary model (Jobanputra, 2002) was structured so that a patient followed 

a pathway containing a fixed sequence of conventional DMARDs, both with and without the addition 

of a TNF-inhibitor.245 Patients switched to the next DMARD in the sequence when the current DMARD 

was ineffective or produced toxicity. Only one initial patient characteristic was required, which was the 

patient’s remaining lifetime. Two things were sampled for each treatment; first, the time on treatment 

and, second, the question of whether the treatment was quit for toxicity or lack of effectiveness. The 

latter was used because the last active treatment included combination therapy of cyclosporin with 

methotrexate, which could not be given if either treatment component had previously been quit 

because of toxicity. The model cycles were based on the time spent on a particular DMARD. Tracker 

variables enabled the patient’s clinical course to be influenced by how long they had been on a 
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particular drug and be related to their past medical history. For individual patients, the total lifetime 

remaining from entry into the model, accounting for age and gender, and maximum time on a DMARD 

were sampled from appropriate distributions. For time on DMARD a Weibull curve was fitted to the 

available data points. The effect of each treatment was assumed to produce a fixed improvement in 

the patient’s health-related quality of life (HRQL), which would be lost on quitting treatment. This 

assumption allowed QALYs to be modelled relative to the basic curve representing natural history or 

deterioration over time.388 Deductions were made at the start and end of each treatment period 

representing the delay in treatment taking effect and an assumed gradual loss of benefit due to loss of 

effectiveness or toxicity.388 

 

One of the limitations of the preliminary model was that it did not incorporate flexibility in the order in 

which DMARDs were used, and did not considered the effect of DMARD on disease progression. The 

assumed fixed pattern of effects of DMARD on quality of life also prevented the model from allowing 

for mortality effects of DMARD. 

 

In the subsequent Birmingham rheumatology Arthritis Model (Barton, 2004; Clark, 2004) hypothetical 

patients were assigned to alternative pre-defined treatment sequences using computer-generated 

random numbers.219 229 Although the model was designed so that any desired sequences of DMARDs 

could be compared, a baseline sequence of conventional DMARDs was used in order to make the 

decision problem tractable. TNF-inhibitors were then added to this sequence to allow for the different 

comparisons to be made. The initial model allowed for a total of 16 treatment sequences, which were 

incorporated by allocating a strategy number to each sequence, with the more expensive and more 

effective treatments put first. However, all sequences were not simultaneously compared within the 

model; rather comparisons were made within different sets, for example with and without a TNF 

added as the third treatment.  

 

One of the main changes made to the model was to define the patient’s health state in absolute terms 

using the HAQ score rather than quality of life. The HAQ improvement on starting treatment was 

modelled as a fixed decrease in the score, based on the average decrease for all patients receiving a 

specific treatment. The general decline in a patient’s condition over time was also modelled using 

stepped HAQ increases. 

 

The model structure consisted of events, which took no time, and activities, which took a variable 

amount of time. The model included six events and only one activity, ‘on treatment’. The main loop, 

‘start new treatment’ – ‘on treatment’ – ‘quit DMARD’ – ‘select next treatment’ (Figure 7.8), was 

followed for each DMARD successively until no DMARDs remained and the patient then moved to 

palliation. The events ‘HAQ increase’ and ‘joint replacement’ interrupt the normal flow through the 

model whilst on treatment. Time was advanced in the model during the activity ‘on treatment’, which 

could be terminated by any of the following four competing events: death, HAQ increase, need joint 

replacement, or quitting DMARD. HAQ increase was not modelled as a separate event, but included 
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at the end of ‘on treatment’. Each virtual patient was assigned the attributes, age, gender, and starting 

HAQ score from the appropriate distributions. The number of DMARDs left and the identity of the first 

DMARD were determined according to the treatment strategy being applied. The patient then moved 

to ‘start new treatment’. Time on the DMARD was sampled from the Weibull distribution with 

parameters appropriate to the particular DMARD. This was added to the patient’s current age to give 

the age at which the DMARD was quit. Using age to quit avoided the need to resample after HAQ 

changes or joint replacement. Time to quitting treatment was found by subtracting the patients’ 

current age from age at which treatment was quit. Time to death, HAQ increase, and joint 

replacement were sampled from appropriate distributions. Each of the times sampled was calculated 

based on the assumption that no other event occurred first. The lowest represented the event that 

occurred next. If the next event was ‘change in HAQ score’, then the HAQ score was increased by 

0.125 and the patient restored to the state ‘on treatment’. Otherwise they moved to one of the 

remaining three events, as appropriate.  

 

The second version of the Birmingham rheumatology Arthritis Model (Chen, 2006) included two 

important improvements.227 Firstly, rather than using a fixed average HAQ change for all patients, the 

HAQ improvement on starting treatment was allowed to vary between individuals. The HAQ on 

starting a new DMARD was sampled on an individual basis and took the form of a multiplier, which 

was applied to the patient’s HAQ score on starting treatment. This allowed the model to reflect the 

fact that patients with a higher score on starting treatment have a greater scope for improvement. 

Secondly, time on treatment included explicit consideration of early quitting, with early quitting owing 

to lack of effectiveness being correlated with poor HAQ improvement on starting treatment. The 

model allowed for two stages of early quitting. The first was set at six weeks, with withdrawal 

assumed to be due to toxicity, and the second between 6 and 24 weeks, when withdrawal could be 

due to toxicity or inefficacy.  

 

The second version of the model was also used to inform additional work commissioned by NICE 

looking at the sequential use of TNF-inhibitors.389 The analysis included changes to the input 

parameters to that of the initial submission by Chen et al.227 In the initial submission227 the effect of 

the second TNF-inhibitor was assumed to be the same as the first, whilst the additional work389 

accounted for the differential effect of TNF-inhibitors when used as -first and second-line treatment. 

The data sources used to inform the second TNF-inhibitor are discussed in Chapter 6, Section 6.6. In 

modelling terms, the effect of a second TNF-inhibitor being less effective than the first was handled by 

allowing separate parameters for any treatment used as the first or second TNF-inhibitor.388 This 

additional work also used rituximab as the comparator for the second TNF-inhibitor, which is 

administered as fixed treatment courses at intervals of at least six months. This meant that time on 

treatment could not be modelled as following a survival curve in continuous time, and additional 

coding was required.388 It was proposed that future versions of the model should include each new 

prescription as a single event in the model.  
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The third version of the model (Malottki, 2011) included the use of probabilistic sensitivity analyses.254 

The model also allowed different choices of treatment options depending on toxicity of previous 

treatments. 

 

Software comparison for implementing a discrete event simulation 

Two adaptations of the first Birmingham Rheumatoid Arthritis Model were developed using different 

software, one in TreeAgree DATA Pro and the other in Borland Delphi.219 Barton et al. noted that:219  

“TreeAgree DATA has the advantage that the logic of the model is open to inspection by the 

user, whereas the Borland Delphi version runs quicker and can thus be used for extensive 

sensitivity analysis. In the TreeAgree DATA version of the model, the events and activities are 

coded as states following a Markov node Tracker variables are used to record all relevant 

information, including number of DMARDs remaining, total cost and QALYs to date, and time 

taken. The implicit time-keeping routines within DATA, which assume a constant (and 

unspecified) time interval between each cycle of the model, are completely bypassed. The 

structure of this model is substantially different from that of a Markov model; the use of a 

Markov node is simply the means provided by the software which allows the model to be built. 

In the Borland Delphi version, procedures are used for each event and activity. These are 

linked through further procedures which ensure that the ‘working’ procedures are called in the 

correct order.” 

 

Lindgren model 

The Lindgren model was developed to evaluate the introduction of rituximab, as a second-line 

treatment after the failure of the first TNF-inhibitor for rheumatoid arthritis.251 The authors had access 

to individual patient level data on the effectiveness of up to three lines TNF-inhibitors from a National 

registry. This included data on functional capacity (HAQ), disease activity (DAS28), and utility (EQ-

5D). Data for rituximab was based on aggregate data taken from the treatment arm of a placebo-

controlled trial. 

 

The model structure included three events: ‘start treatment’, stop treatment’, and ‘die’. Patients could 

therefore be in one of three states: on treatment, off treatment, or dead. For on treatment, a difference 

was made between the first, second, and third TNF-inhibitor, but not between agents per se. The 

treatment state was further divided into high or low disease activity (using a DAS28 score of 3.2 as 

the cut-off point). In between treatments all patients were assumed to have a high disease activity. A 

change in state for each individual was triggered by treatment discontinuation, treatment re-initiation, 

change in disease activity or death. While in a given state, the characteristics for individual patients 

relating to gender, age, disease duration and function drove the time to the next event. A cox 

proportional hazard model was used to identify covariates with possible impact on times to event data 

for TNF-inhibitors, which included gender, age, disease duration, current HAQ, current disease 

activity and treatment line. 
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Patients entering the model were either starting their second TNF-inhibitor or rituximab, and stayed on 

these treatments until discontinuation, according to the registry data for TNF and an RCT for 

rituximab. Patients on a TNF-inhibitor would then re-initiate treatment with their third TNF-inhibitor 

according to the timings in the registry, whilst patients on rituximab would start immediately on their 

second TNF-inhibitor. Not all patients re-initiated treatment as treatment intervals could be longer than 

the simulated time, representing the data in the registry. Where patients failed again they switched to 

another TNF-inhibitor, which was assumed to be the same as the third-line. When patients withdrew 

from treatment it was assumed that the treatment effect would be lost immediately and patients would 

return to their HAQ score at baseline.  

 

Tran-Duy Model 

A discrete event modelling framework was chosen by Tran-Duy et al. (2011) for simulating long-term 

outcomes of sequential treatment strategies for ankylosing spondylitis.272 The same modelling 

approach was subsequently used (Tran-Duy, 2014) for evaluating treatment sequences for 

rheumatoid arthritis.273  

 

The models were used for comparing two alternative strategies, with and without the use of biological 

agents. Patients entering the model were newly diagnosed, with the decision population developed as 

part of the modelling process. For rheumatoid arthritis, the treatment strategy without biological 

agents included eight conventional DMARDs, where the first two were pre-specified and the 

remaining five drugs were selected at random. The alternative strategy included the same eight 

conventional DMARDs plus four biological agents, which included two consecutive TNF-inhibitors 

followed by two biological agents using a different mode of action. TNF-inhibitors were initiated after 

the failure of the first two conventional DMARDs and randomly selected from a list of five available 

drugs. Non-TNF-inhibitors were randomly chosen from a list of three available drugs, with the 

selection taking into account the patients rheumatic factor status.  

 

The model included seven patient attributes, four DAS28-related states, eight treatment-related 

states, three DAS28-related events, five DAS28-neutral events, and eight procedures. These are 

summarised in the Appendix Volume II, (Appendix E). Disease activity was characterised by changes 

in DAS28. The authors noted that if no toxicity occurred, the DAS28 status of a patient could be 

conceptualised as undergoing three phases whilst on active treatment: a decreasing phase 

characterised by a steady decrease in DAS28, a maintenance phase characterised by small 

fluctuations in DAS28, and increasing phase where there is a continuous increase in DAS28 after a 

patient stops responding to treatment. Within this third phase the patient’s DAS28 score was 

assumed to return to the baseline value, known as rebound. The treatment-related states included: on 

methotrexate, on second conventional DMARD, on first TNF-inhibitor, on second TNF-inhibitor, on 

first non-TNF-inhibitor, on second TNF-inhibitor, and on ‘palliative’ treatment. The DAS28-related 

states were used to determine the events that may occur given a trend of change in DAS28. Whilst 

the treatment states were used to determine changes in DAS28, times to DAS8-related events, and a 
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new treatment when the current drug failed. Three events (severe toxicity, select new treatment, start 

new treatment) only arose when a visit to a rheumatologist occurred. The remaining seven events 

were competing events. For competing events the patient ‘jumped’ to the event to which the sampled 

time was shortest. When the event occurred an associated procedure was invoked for 

implementation, where the patient characteristics were updated and times to next events computed. 

 

The treatment algorithm in the model was based on clinical guidelines and rheumatologist opinion. 

Within this algorithm, methotrexate was started as soon as the patient was diagnosed. The next 

treatment was considered when a drug failed primarily or secondarily, or caused severe toxicity. 

Primary failure was assumed if DAS28 was still higher than 3.2 after 3-6 months since the start of the 

treatment. Secondary failure was assumed when DAS28 went back to a level less than 3.3 after 

primary response to the treatment. Biological agents were combined with methotrexate if patients did 

not experience severe toxicity when receiving methotrexate monotherapy after diagnosis. Differential 

treatment selection was also implemented according to whether the patient was Rhesus factor 

positive or negative. 

 

Treatment effects on disease activity, toxicity, and duration of effect and timing of toxicities were 

based on individual patient-level data obtained from observational studies. These were based on an 

inception cohort for conventional DMARDs and a national patient registry for biological agents. A 

number of treatment-related assumptions were made due to insufficient data. It was assumed that the 

effectiveness of a specific drug was independent of the identity and the cause of failure of the drugs 

that had been given previously. The absolute changes in DAS28 were sampled for each drug, or drug 

class, distinguishing the first and second biologic, using a statistical linear model with DAS28 at the 

start of the treatment as an explanatory variable. Estimates for the intercept and slope were obtained 

from patient registry data. Long term progression of physical function, which was measured by HAQ, 

was simulated based on the longitudinal relationship between DAS28 and HAQ. The study accounted 

for the fact that QALYs and costs are non-linearly related to DAS28 and HAQ. 

 

Birmingham epilepsy model 

The Birmingham epilepsy model presented by Connock et al. was used for comparing fixed drug 

sequences of up to four treatment lines for patients with newly diagnosed partial epilepsy.199 The 

model represented the use of antiepileptic drugs during childhood, and patients therefore exited the 

model on becoming 18 years of age. The baseline treatment sequence included monotherapy for the 

first- and second-line treatment, followed by either a monotherapy or adjuvant therapy for third- and 

fourth-line, depending on treatment outcome. For each patient in the model a tracker variable 

monitored whether or not the drugs used as monotherapies earlier in the sequence were partially 

effective and, if so, the drug would be available for use as combination therapy.  

 

The included patients varied in terms of the age at diagnosis, gender, and whether or not they 

experience learning difficulties. As patients progressed through the model their treatment pathways 
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and experience of epilepsy were monitored. Treatment sequences were compared in terms of the 

average time spent in each of four main treatment outcome states, with the assumption that longer 

durations in states with reasonable efficacy and side-effect profiles represent a positive outcome. The 

four treatment outcome states included: i) intolerable adverse effects, ii) lack of effect on seizure rate, 

iii) partial efficacy with tolerable or no adverse effects, and iv) complete seizure freedom with tolerable 

or no adverse effects. The last two states, ‘partial efficacy’ and ‘seizure freedom’, also included 

secondary states relating to successful or unsuccessful drug withdrawal, depending on whether the 

patient had seizure freedom, or not seizure free but preferred to remain untreated, respectively. The 

first two treatment outcomes lead to early discontinuation of treatment. Patients who experienced 

these outcomes progressed to the next choice monotherapy or opted to discontinue drug treatment. 

Those who entered the third outcome could stay on the current drug, try next choice monotherapy, try 

next choice add-on therapy, or discontinue treatment. It was assumed that the patients’ willingness to 

try an alternative treatment depended on the number tried at this point and that, as the number of 

drugs tried increased, the patient was more likely to try add-on therapy and less likely to try further 

monotherapy. Patients who achieved outcome four were assumed to withdraw from the drug after a 

given period, which was sampled in the model, or remain on current drug if reluctant to withdraw. It 

was assumed that the proportion discontinuing due to late toxicity or reduction in efficacy over time 

was negligible. 

 

The Birmingham model represents the most sophisticated model of treatment sequences for epilepsy. 

However, it was still restricted by the available evidence. Transition probabilities, or the likelihood of a 

patient reaching a particular outcome for each drug were based on a systematic review of RCTs, and 

the use of a reduction factor and assumptions to account for treatment sequencing effects. This is 

discussed in more detail in Chapters 5 (Section 5.6) and 6 (Section 6.5.3). Data for other clinical 

parameters, such as proportions discontinuing treatment, time to discontinuation or withdrawal, and 

likelihood of moving on to add-on therapy were based on epidemiological studies and clinical advice. 

Data on the proportion of patients achieving secondary outcomes were not treatment-specific, but 

were specific to each line of treatment. It was approximated that 10% of patients went on to have 

successful surgery, and did not have any further drug treatment after first-line treatment. One of the 

main challenges of this approach was the limited data on time to event from the available evidence. 

Where time to treatment withdrawal was reported, it could not be disaggregated according whether 

treatment was discontinued due to adverse effects or lack of effect.  

 

7.3.6.5  Advantages and disadvantages of discrete event simulation models 

Discrete event simulation appears to provide a flexible approach for modelling treatment sequences 

and can handle complex sequencing decision problems intuitively. It was successfully used for 

implementing treatment selection and cessation based on algorithms reflecting clinical guidelines and 

practice. This required the implementation of stopping rules and specific sequence of treatments to be 

followed based on the different reasons for quitting treatment. It was able to account for different 

treatment selection for patient subgroups, such as patient with rhesus positive or negative rheumatoid 

arthritis. It was also able to accommodate the unpredictable nature of disease progression, multiple 
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treatment outcomes, and the fact that not all patients go on to receive subsequent treatments in the 

sequence. 

 

Treatment sequencing was implemented within the model based on either the random selection of 

pre-defined sequences, or developing the sequences by selecting individual drugs using a random 

process at specific points in the sequence. Discrete event simulation was also used for implementing 

fixed treatment sequences, whilst allowing for treatment duration to be modelled as a continuous 

distribution. 

 

The main advantage of discrete event simulation over state transition models for modelling treatment 

sequences is the way it handles time, as it is not restricted to either the use of equal time periods, or 

the Markovian assumption. In fact, the discrete event simulation approach was frequently chosen in 

order to implement the variable time to quitting treatment, which may not be constant and will differ 

between treatments. Another advantage is the ability to accommodate competing risks. Patients 

moving through the discrete event simulation can experience events at any time period after the 

previous event. The analysis of the model is triggered by the occurrence of an event, at which point 

the model asks what and when is the next event for this patient, rather than a Markov process, which 

asks what events are occurring at regular intervals.366  

 

The main disadvantage is the extensive data required for model parameterisation, including time to 

event data. The flexibility of the discrete event simulation allows the modelling of complex treatment 

and disease process, but treatment independence was often assumed due to insufficient data, or 

simplifying assumptions used for treatment sequencing effects. Patient level data are preferred for 

implementing discrete event simulation, but they can also be based on aggregate data. Only two 

included studies used individual patient level data. Tran-Duy et al. used data from an inception cohort 

(Nijmegen Inception Cohort) and a patient registry (Dutch RhEumatology Arthritis Monitoring, 

DREAM).273 However, despite this the effectiveness of a specific drug was assumed to be 

independent of the identity and the cause of failure of the drugs that had been given previously. For 

Lindgren et al.251 individual patient data were only available for usual care from a patient-based 

registry (Southern Sweden Antirheumatic Therapy Group, SSATG), whilst the new treatment was 

based on aggregate data from a published RCT (REFLEX).390 Another important limitation is the 

added skills required for implementation. Specialist software may be preferable, in terms of ease of 

implementation and time commitment, to trying to adapt commonly used decision analytic modelling 

software. However, none of the studies reported problems with computing and implementation, and 

although earlier versions of the Birmingham Rheumatoid arthritis model did not include probabilistic 

sensitivity analysis, many of the included studies using discrete evet simulation did (Table 7.1). 

 

The relationship between the patient characteristics and the outcomes, costs and health utilities are 

non-linear. Using linear regression with constant error terms may lead to biased expected outcomes 

of a population based on individual patient simulation. Tran-Duy et al. reported using a different 
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approach from linear models used in existing discrete event simulation models,272 where long-term 

progression of physical function in rheumatoid arthritis was quantified using a linear mixed-effects 

model.273  

 

7.3.7.  Population based models or open cohort models 

Open models allow new cohorts to enter over time and are sometimes referred to as population 

models.369 Two included studies (Erhardt, 2012; McEwan, 2010) were described as population 

models, which were based on an individual patient simulation.237 255 Both studies used the same 

model, known as the Cardiff Diabetes model, and are therefore described together here. However, 

one of the studies (Erhardt, 2012) was in fact a closed model.237 One further included study (Launois, 

2008) used an open cohort model. The Launois model, which was described as a dynamic Markov 

cohort model, was used in order to considered the budget impact of treatment sequencing.249  

 

7.3.7.1  Non-terminating and terminating population based models 

Cardiff Diabetes Model 

The Cardiff type 2 diabetes mellitus model (T2DM) was developed for evaluating a wide range of 

health economic issues. It was used in one study (McEwan, 2010) for evaluating treatment 

sequences representing treatment escalation, and in the other study (Erhardt, 2012) for comparing 

two second line-treatments within a fixed sequence of three treatments. For the evaluation of 

treatment escalation a previous version of the Cardiff model was adapted to operate as a non-

terminating simulation (McEwan, 2010), whilst for the comparison of fixed sequences it was 

implemented as a terminating simulation (Erhardt, 2012). A terminating simulation is one in which the 

model either has a natural run length, for example, the model terminates when the last simulated 

individual dies, or is run for a fixed amount of time, for example, 40 years. The terminating model was 

described as a ‘discrete event simulation’, and as a ‘fixed-time-increment stochastic simulation’.255 

 

The Cardiff model uses the UK Prospective Diabetes Study (UKPDS) Outcomes Model equations to 

predict macrovascular and microvascular complications in subjects with type 2 diabetes mellitus. The 

model is continually being updated in order to incorporate the most recent risk equations and input 

parameters from UKPDS, including UKPDS 82 outcome study equations in 2014. It can be 

implemented using mean values, probabilistic inputs, or user-supplied patient level data. Standard 

model outputs include time-dependent event rates, and total cost and utility decrements associated 

with all predicted events.  

 

Treatment pathways for type 2 diabetes tend to advocate a failure-driven algorithm for lowering blood-

glucose, which leads to the sequential addition of treatments, or treatment escalation. The addition 

and combination of multiple blood-glucose lowering agents may be associated with significant side 

effects resulting in detrimental quality of life.255 The Cardiff model was therefore used in treatment 

escalation study (McEwan, 2010) to examine the effects of treatment strategies on health related 

quality of life (HRQoL) improvements associated with different hypoglycaemia profiles, rather than the 
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efficacy variables, such as change in blood glucose levels (HbA1c). However, the latter outcome was 

used as an indicator for treatment switching. In the second study (Erhardt, 2012) the Cardiff model 

was adapted to accommodate treatment effects, as well as complications resulting from disease 

progression. As well as producing the standard model outputs developed by the core equations, the 

model was also used to estimate changes in HbA1c and body weight, and occurrence of 

hypoglycaemia.237 Treatment switching to second- and third-line was either time dependent or 

controlled via pre-specified glycated haemoglobin (HbA1c) thresholds. 

 

The non-terminating simulation model (McEwan, 2010) was initialised using a prevalent patient 

population profile and utilised the annual type 2 diabetes incident rate to allow new cases to enter the 

model each year. Patients exited the model through diabetes-specific or all-cause mortality. The 

baseline cohort characteristics were drawn from the UK Prospective Diabetes Study (UKPDS) 68 

outcome study, and time-dependent evaluation of risk factor profiles were implemented using 

equations reported in the same study. Where appropriate, each simulated cohort had a treatment 

effect profile applied, which was consistent with that reported for each treatment. Treatment profiles 

were taken from a systematic review of first-line metfomin, and selected RCTs for second and third-

line. These treatment profiles were fully applied in the first cycle of the model. In all subsequent 

cycles, the risk factor trajectories were updated according to the natural history progression specified 

by the UKPDS 68 panel equations for HbA1c, systolic blood pressure (SBP), and total cholesterol. 

 

Patients started on first-line treatment as they entered the simulation. Following the application of a 

treatment effect modification to each patients’ baseline HbA1c, the model used dynamic equations to 

project HbA1c over time. Pre-specified HbA1c threshold values were used to invoke an escalation in 

treatment to second- or third-line. To control for the rate at which simulated subjects progressed 

through the therapy escalations, the slope coefficient that controlled the change in HbA1c over time 

was recalibrated for each treatment-line. This ensured that the model predicted a constant proportion 

of subjects on first-, second-, and third-line treatment to that seen in the UK when applying the 

specific thresholds to second- and third-line. 

 

The core Diabetes model was coded in C++ and linked to a Microsoft Excel front end. Non-

terminating simulations require a ‘run in’ period to achieve a steady state prior to collecting summary 

statistics.255 The model was run over 100 years and data collected over last 10-year period. The 

terminating model was run over 40 years using yearly cycles in which treatment-dependent risk factor 

profiles, including glycated haemoglobin and body weight, were modelled dynamically.237 

 

7.3.7.2  Dynamic Markov multi-cohort model 

Launois model  

The Launois model was used to estimate the budget impact implied by the introduction of rituximab 

after failure of one or more TNF-inhibitors for rheumatoid arthritis.249 A Markov model was developed 

to reproduce the course of patients treated by either infliximab, etanercept, adalimumab or rituximab 
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after the failure of one or more TNF-indictors. Sensitivity analysis was conducted to account for 

patients on third and subsequent lines of treatment who were expected to consume more healthcare 

resources. The model period extended over 4 years. The model was run by having the current patient 

cohort progress through the model, accompanied at each six-month cycle by a cohort of newly 

diagnosed patients. The model comprised of four states corresponding to the four biologics, and one 

additional entry/exit state, where patients switch to a new biologic or die. At the end of each cycle a 

patient could either continue with the original treatment if ACR20 criterion was fulfilled, or switch to a 

new biologic treatment, or exit the model (switch to a non-biologic strategy or die). New patients on 

second line treatment were generated from the ‘switch’ state to exactly compensate for patients 

exiting the model. In other words, it was assumed that the target population was constant over time. 

The main weakness of the dynamic cohort approach is that a patient who failed a biologic treatment 

could receive exactly the same treatment after a switch. However, the authors were not interested in 

individual patient patterns, but in the global budget impact of rituximab for the whole target population. 

 

The model was used to test three different hypotheses for rituximab penetration into the market. 

These represented the following situations: 

i. TNF-inhibitors are the only available treatments. This was based on the market shares of: 

infliximab 16%, etanercept 38% and adalimumab 46% 

ii. Rituximab penetrates the market progressively. This was based on previous market shares 

for the first cycle. Then, each patient who failed a TNF-inhibitor switched to rituximab and 

each new patient in second-line biologic treatment began with rituximab. 

iii. Rituximab is the only available treatment. 

The overall findings showed that rituximab is expected to produce important savings when used after 

the failure of one or more TNF-inhibitors, but this is mainly due to its lower drug acquisition cost. 

 

7.3.7.3  Advantages and disadvantages of open or population based models 

The included studies did not show any clear advantage of using an open model for modelling the 

clinical effectiveness of treatment sequences, compared to other included modelling approaches. The 

included studies that used an open approach were also dynamic models. As with previously reported 

discrete event simulation models, the Cardiff model was able to account for a dynamic disease 

process whilst incorporating treatment sequencing. The Cardiff model also provides another example 

of a model that utilised the natural history and time to event data from an observational study, and 

treatment effect profiles based on clinical trials. The model is capable of running using various levels 

or types of data, and can potentially be built upon in the future.  

 

 

7.4 DISCUSSION 

7.4.1  Summary of the findings 

An initial evaluation of the key features of different modelling approaches was conducted based on 

published taxonomies.344 391 This was then used for categorising the different modelling approaches 
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used for evaluating treatment sequences. The included modelling approaches were discussed under 

three broad headers, depending on whether they simulated a closed cohort or a dynamic population 

and, for closed models, whether they simulated all individuals simultaneously or one at a time. The 

included models were also grouped according to whether they were state transition models, such as 

Markov models, or conceptualised around events, such as decision trees and discrete event 

simulation. Individual-level simulation models were grouped according to whether they allowed 

transitions to occur only at specified time intervals or not. Those that did were considered as state-

transition models, and those that did not were categorised as discrete event simulation.  

 

The different modelling approaches were assessed in terms of their advantages and disadvantages 

for modelling treatment sequences. The rule of thumb generally used for choosing a modelling 

approach is to select the simplest approach required, which will be dependent on the complexity of 

the decision problem and the extent of the treatment sequences being investigated.370 392 One 

important question is whether a simple modelling approach can accommodate the added complexity 

sometimes required for modelling treatment sequences. This not only includes the need to consider 

different algorithms that dictate the choice of subsequent treatments, but also the need to 

simultaneously capture other important elements relating to the treatment and natural history of the 

disease. Included models were therefore evaluated in terms of what types of additional attributes or 

complexity in the decision problem they also accounted for. 

 

Seventy modelling studies were reviewed and fifty distinct models identified. A wide range of 

modelling approaches were used for investigating treatment sequences, which included deterministic 

decision tree, stochastic decision tree, Markov cohort model, partitioned survival cohort model, semi-

Markov cohort model, individual-patient simulation (IPS) state transition models, discrete event 

simulation, non-terminating population-based simulation, terminating population-based simulation, 

and dynamic Markov cohort model. No study compared different approaches for evaluating treatment 

sequences. Thirty-six included studies (51%) were rheumatology and ten (15%) were oncology. Most 

non-rheumatology studies used a Markov cohort modelling approach, whilst most of the rheumatology 

studies used individual patient simulation. The extent of the sequences being modelled varied quite 

considerably. The number of treatment lines considered by the rheumatology studies ranged from two 

to 12, whilst the number of treatment lines modelled by the oncology studies ranged from two to five, 

and for the remaining studies ranged from two to six.  

 

A summary table that provides a quick reference and allows for the comparison of all the different 

modelling approaches used, the individual attributes they accounted for, and their advantages and 

disadvantages in modelling treatment sequences was developed (Table 7.3).  
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7.4.2  Advantages and disadvantages of different modelling approaches 

7.4.2.1  Cohort models 

Decision trees 

Decision trees are the most transparent and simplest modelling approach to implement. They enable 

the decision problem to be structured in a meaningful and visual manner. Treatment sequences can 

be compared simultaneously within the same model, or implemented as a separate model for each 

sequence. Their potential limitations for modelling treatment sequencing is that they have a finite time 

horizon, only allow one way progression, and cannot handle recursive events very easily, without 

potentially becoming bushy and unwieldy.391 393 However, they were in fact successfully used for 

modelling treatment sequences that represented the option of treating a relapse with the same 

treatment that was initially found to be successful.239 They were also used to model the overall time 

spent in a health state by incorporating assumptions regarding the timing of events or chance 

nodes.236 257 An alternative approach used to account for the timing of long term outcomes was to 

implement a decision tree model alongside a portioned survival analysis.207 The decision tree was 

used to account for the fact that not all patients went on to receive a second active treatment. The 

included decision tree models were also able to allow further complexities in the decision problem, 

such as different levels of response that lead to different durations of response, different reasons for 

discontinuation that impact on the selection of subsequent treatments, and different reasons for 

mortality that will have different probabilities and timing, for example toxic death and all-cause 

mortality. However, despite this, decision trees are likely to be inefficient at modelling treatment 

sequencing for a chronic disease, which generally includes a series of repeatable events and evolves 

over time. The fact that they are governed by fixed timing of the treatment outcomes means that, for 

example, events such as recurrence or intolerance to treatment are based on the simplifying 

assumption that these would occur at a fixed time in the future.  

 

Markov cohort models 

A Markov cohort model allows events to occur at any time, which is why it is often used for modelling 

treatments for a chronic disease. Within a Markov model, the decision problem is conceptualised as a 

series of mutually exclusive health states, with transitions between states based on events. It has the 

advantage of being easily implemented within commonly used spreadsheet or decision analytic 

software, and is well suited for modelling time to event and repeated events. However, the 

occurrences of these events are analysed at fixed intervals, or model cycles, and, in the commonly 

used Markov chain, are assumed to be constant over time. Other potential limitations for modelling 

treatment sequencing relate primarily to the Markovian property. The Markov model requires state 

transition probabilities to be independent of previous states of the model, and asserts that patients 

can only be in one state at any given time.394 This means that a Markov model cannot account for 

patient’s history, time spent in a specific states, or the occurrence of multiple events within a single 

cycle, all of which are relevant for modelling treatment sequencing. However, the Markov cohort 

model is commonly used in health economics in general and a number of solutions have been 
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developed over the years to overcome these limitations, which could also be useful for modelling 

treatment sequences.  

 

Most Markov models were used for comparing pre-defined sequences, based on modelling a series of 

individual treatments or treatment lines. However, one distinct Markov cohort model was developed 

for identifying the optimal treatment strategy out of all conceivable sequences.278 A very simple two 

state Markov model was run for each individual treatment and the optimal treatment based on 

ordering the treatments according to their net-benefit or cost-effectiveness per unit of time. The 

advantage of this approach is that it can incorporate all conceivable sequences, does not require the 

treatment sequences to be defined in advance, and can also be used for individualised treatment 

decision making. However, this approach was based on the strong assumptions that the efficacy of 

individual treatments are independent of treatment history, and that the treatment does not impact 

disease progression, and is therefore only suitable for certain health conditions and treatment types. 

 

The Markov framework was used for comparing predefined sequences by running a separate model 

for each sequence, generally using the same structure and an identical cohort of patients. Three 

different approaches were used to conceptualise treatment sequencing within the Markov cohort 

model. This included: 

i. Treatment sequences implemented as a series of treatment-specific Markov states that 

patients progressed through in a forward motion 

ii. Markov states used to represent both treatment-line and other relevant factors or attributes 

iii. Markov cycle tree used to implement a treatment switching algorithm or event, with the 

Markov states being used to represent the patients’ transition through different levels of 

disease activity, or to model the natural history of the condition. 

Most of the rheumatology studies implemented treatment sequences using Markov cycle trees, whilst 

all the cancer studies used the first two approaches.  

 

The first approach represents the simplest structure for modelling treatment sequences. It can easily 

allow for treatment skipping and can be expanded to account for different levels of response (to each 

treatment), which are likely to have different progression rates. This approach was frequently based 

on line of therapy. A potential limitation of modelling lines of therapy, rather than specific treatments, 

is that it ignores potential cross resistance between classes, which may be an issues for some 

targeted therapies.  

 

The first approach does not account for additional factors, for example, different reasons for quitting 

treatment (adverse effect, lack of response, or loss of efficacy), which are likely to influence the 

choice of subsequent treatment. For this reason some studies used the second approach to represent 

other attributes. However, the challenge here is that the Markovian property only allows patients to be 

in one state at a time.394 Treatment sequencing was generally based on a simple structure, with 

Markov states representing response and non-response to each line of treatment, and with treatment 
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response being modelled as a recursive state.269 Additional states were usually implemented as 

temporary or tunnel states, which allowed the model to overcome the Markovian assumption of no 

memory and make certain transitions dependent on particular attributes such as relapse or disease 

progression.216 263 These were also used for modelling treatments administered for a fixed period, 

where patients who respond to treatment, or enter a state of clinical remission, could withdraw from 

treatment.250 Temporary states such as relapse were then used to trigger the next treatment, or even 

the re-use of a prior treatment. Additional states were also used to monitor adverse effects. One 

cancer study incorporated toxicity as a separate health state, allowing toxic death and all-cause 

mortality to be modelled separately.277 This also enabled the model to account for the fact that 

patients who develop toxicity can continue on the same treatment at a lower dose. However, toxicity 

and progression are not mutually exclusive events, and therefore a short cycle length of one week 

was used to overcome the Markovian property prohibiting multiple events to occur within a cycle. This 

solution, however, may not be feasible for most complex sequencing decision problems. An 

alternative approach used was to include additional health states and stratification, for example, 

modelling response to each line of treatment with and without adverse effects as a series of mutually 

exclusive states.  

 

The second approach can potentially lead to state explosion, and a complicated model. Some studies 

therefore used the third approach, where the occurrence of multiple events such as treatment 

response and adverse effects were implement them using a Markov cycle tree. The Markov cycle tree 

consists of a series of chance nodes representing the events that can occur within a model cycle.372 

The terminal branches represent the resulting health states, and the distribution of the cohort among 

these states at the end of the cycle. This approach was used in models where there was a need to 

account for different treatment response, fluctuating levels of disease activity, and fairly complex 

treatment pathways.253 265 266 It also enabled the model to be based on the natural history of the 

disease condition.268 One model (Maetzel model) used the Markov cycle tree to account for what 

happens to patients who continue on treatment who may not achieve a clinical response but still 

choose to continue the same drug, or may experience mild adverse effects, which have cost 

implications.253 It also enabled the model to allow patients who experienced intolerance to skip some 

of the subsequent treatments.  

 

The third approach, of using cycle trees, was used for implementing both simple and complex models. 

One model (Shepherd model) provides an example of a complex model that also used tunnel states 

to track treatment history.266 Tunnel states were used to account for potential cross-resistance from 

previous treatment and to monitor two patient subgroups with a different disease variant. The model 

was implemented as a Markov cycle tree, which included a subtree with terminal states representing 

multiple tunnel variables. However, the treatment sequences being investigated only included two 

lines of active treatment. Modelling more extensive and complex treatment sequences would 

potentially lead to state explosion or require the use of simplifying assumptions that may not hold. 

Another model (Albert model) provides an example of a simple model using the cycle tree, which also 
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used tunnel states to allow transition probabilities to vary with time and for each treatment.216 The 

model used a cycle tree to implement treatment sequencing within a simple three state model 

representing the treatment outcomes improvement, active disease, and toxicity. The improved state 

was modelled as a separate tunnel state for each treatment, which allowed the model to reflect the 

fact that probabilities for continuing treatment and developing toxicity varied with time, and for each 

drug. Another approach used was to make the duration of treatment dependent on the level of 

response, rather than treatment, whilst the level of response was treatment-specific. This allowed 

generic estimates of duration of treatment to be used. An example of this was provided by one model 

(Heeg cancer model), which assumed that the probability of treatment switching was dependant on 

the level of response and line of treatment, but independent of the actual treatment used, whilst 

treatment response was dependent on both the actual treatment used and the line of therapy.243 This 

assumes a homogenous duration of response across different treatments, but not line of therapy.  

 

Partitioned survival 

The partitioned survival model, also referred to as area under the curve, is another example of a 

cohort model with a finite number of exhaustive and mutually exclusive health states. However, in this 

type of model, the number of patients in each health state at any time is determined directly from the 

underlying survival curves,395 and based on continuous time. This approach was used in studies of 

advanced cancers for modelling overall survival for specific sequences of two to three-lines of 

treatment, with data on survival obtained from prospective sequencing trials. One theoretical study, 

presented as an abstract only, proposed using partitioned survival analysis based on the progression 

free survival for each treatment line for modelling more extensive treatment sequences for advanced 

cancer.195 A partitioned survival approach was also used by one included rheumatology study 

(Schadlich model) to model fixed sequences of five or six treatments.264 Treatment sequences were 

implemented as a series of health states that patients could migrate through over time. However, the 

base case analysis was based on the assumption of treatment independence, the impact of which 

was explored in sensitivity analysis (Chapter 5, Section 5.6.2 and Chapter 6, Section 6.5.3.1). The 

model was also unable to account for disease duration, and did not consider the impact of adverse 

effects, or other additional attributes.  

 

Semi-Markov cohort model 

An alternative approach to incorporate time dependency in specific Makarov states is to use a semi-

Markov process model. An example of this was provided by a model (York epilepsy model) of 

antiepileptic drug sequences of three treatment lines.276 In epilepsy the probability of treatment failure 

decreases with increased time spent on an antiepileptic drug (Appendix Volume I, Section C5). The 

progress of the cohort through the model was tracked externally using a three-dimensional transition 

probability matrix. Time spent in the current state was implemented as a two-dimensional matrix, 

where one-dimension represented the current treatment state and the other represented the time, or 

number of cycles, spent in the current state. This enabled the proportion of patients in each state for 

each duration to be recorded. The transition probability matrix included a third dimension, represented 
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by the potential future state. This meant that transitions to the future state were conditional on the 

current state and time spent in the current state.380 A fairly simple structure was used to model fixed 

treatment sequences, which were implemented as a series of health states. Each active treatment 

line was characterised by two health states. An initial temporary state representing the first six-months 

of treatment, and a recursive state representing continued treatment use. The use of multidimensional 

matrices allowed the probability of the patient progressing to the next treatment state to vary 

according to how long they had been in their current state. However, the model was based on the 

assumption of treatment independence, whilst an alternative model (NICE CG137),18 which 

implemented the same antiepileptic drug sequencing structure, but within the conventional Markov 

cohort framework, applied a reduction to the efficacy of treatments used as second line (Chapter 5, 

Section 5.6). The York epilepsy model only accounted for one level of treatment response, complete 

seizure freedom or not, whilst the NICE CG137 also incorporated partial response. In theory, 

multidimensional matrices can also be used to allow cohort models to reflect ‘patient history’, or 

previous treatments; however, no included study did this.  

 

7.4.2.2  Individual sampling models 

One of the reasons why implementing of treatment sequencing can be complex is that many 

decisions are dependent on the attributes of individuals, such as response to previous treatment and 

disease duration. An alternative approach to account for the various potential individual pathways that 

can be taken is to use an individual patient simulation. The use of individual patient simulation allows 

the models to be based on both disease activity and the treatment history of patients.373 Virtual patient 

histories are constructed by first developing a set of baseline patient characteristics sampled from 

appropriate distributions or a multivariate distribution. The patient’s history is then allowed to develop 

over time, taking into account the properties of the various treatments applied. This development can 

be done either for each patient’s full remaining lifetime or with a maximum time horizon in the 

model.388 Relevant outcomes are then developed from the patient histories using a computer random 

number generator. Some of the proposed advantages of using individual patient simulation include 

the ability to account for a heterogeneous patient population, and that the progress of specific 

subgroups can be tracked within the model.344 373 The fact that patients’ history is memorised means 

that it can also potentially be used to facilitate simulating treatment selection based on past patient 

characteristics, for example, previous treatment or reasons for discontinuing previous treatment.344 361 

382  

 

State transition individual patient simulation 

The individual patient simulation state transition model is similar to that of the Markov cohort model 

except that it simulates each member of the cohort one at a time. The number of states required are 

greatly reduced as the model keeps track of each individual’s history. Tracker variables can include 

past states, risk factors, time in states, and time since last event. The individual-based model is also 

not limited by the Markovian property. However, its potential limitations are that it is less 

straightforward to implement, and not transparent. It is also still based on the use of mutually 
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exclusive states, and transitions between states can only occur at specified or fixed time intervals. 

Included modelling studies used this approach to investigate treatment sequencing within a 

homogenous group of patients, and none investigated patient subgroups. This approach was also 

used to evaluate fixed sequences, based on specific treatments or class of treatments used at a 

specific line. They did not include treatment skipping, or a differential selection of subsequent 

treatment due to reason for discontinuation.  

 

State transition individual patient simulation modelling was mainly used in rheumatology studies. For 

example, a series of models commonly referred to as the Sheffield models382 specifically chose this 

approach to model the sequential use of treatments over time and the uncertain duration of effect on 

each patient, which is typical for rheumatoid arthritis. Most models were set up to measure the 

patients’ disease activity over their lifetime. This was generally done using the HAQ-disability score as 

a proxy for disease activity, which was measured at six-monthly intervals. However, three studies 

were able to model disease activity using multiple outcomes. A number of studies, including most of 

the Sheffield models, had access to individual patient level data, which was generally taken from a 

patient registry. This enabled changes in the HAQ score and other parameters or key events in the 

patient histories to be calculated using a series of multivariate analyses, allowing adjustment for 

important covariates. The regression analyses provided the parameters that the model used for 

simulating the path each individual patient would take. Baseline characteristics included the HAQ 

score, and for some models also included disease duration and number of previous conventional 

DMARDs used, as well as generic patient characteristics such as age and sex. The models 

themselves were based on a fairly simple structure, with health states representing either treatment 

response, non-response, or death.218 224 225 274 Patients who did not respond switched to the next 

treatment, whilst those who responded continued treatment for a predefined period. One of the earlier 

Sheffield models included serious adverse effects as an additional state, which, similar to non-

response, led to treatment switching.218 Patients who were classified as ‘treatment success’ or ‘non-

responders’ were also assessed for the occurrence of mild to moderate adverse effects in order to 

account for their potential treatment cost. Treatment sequencing was represented as a series of 

health states in one model (Diamantpoulous model), but the model was essentially still based on the 

same structure as other models.234 235 Treatment response was measured at the end of a cycle, and 

those with no response moved to the next treatment, whilst those with a response remained on 

treatment until withdrawal. The majority of models also included allocating patients, after initiating 

treatment, to different response categories or thresholds, with only those who achieved a specific 

threshold (representing remission) continuing the same treatment. The observed improvement in the 

HAQ score during the first six months of treatment was then assumed to relate to the level of 

response, not treatment, allowing universal HAQ reductions for each level of response to be applied 

across all treatments. The model (Finchkh model), which accounted for the most complex decision 

problem, was based on a series of statistical regression analyses.238 It was developed to investigate 

three different management strategies for patients with very early rheumatoid arthritis: a stepped care 

approach starting with non-steroidal anti-inflammatory drugs and other symptomatic treatments, the 



239 
 

use of early conventional DMARD, and the use of early biological therapy. The model also accounted 

for the fact that the patient could follow one of three different disease courses, which could not be 

predicted at onset. This allowed the model to account for the fact that patients with rapidly 

progressing disease cannot be reliably identified in early disease, and that expensive biological 

therapy may be given to patients who would have responded satisfactorily to conventional DMARDs. 

 

The series of Sheffield models provides an example of where an initial model was modified and built 

upon with time, and used to address different decision problems.218 224 225 274 Other examples of this 

includes the Tran-Duy model272 273 and the Birmingham Rheumatoid Arthritis Model,219 227 229 245 254 

both of which used discrete event simulation. Patients entering these models were newly diagnosed 

patients, with the decision population developed as part of the modelling process. This meant that, for 

the Birmingham model, only a single data set for the starting population, or knowledge of the 

distribution of patient baseline characteristics was required, irrespective of which decision problem the 

model was used for. 

 

Discrete event simulation 

In a discrete event simulation the course of the disease and its management are represented as a 

chronological sequence of events that can happen to individuals over time, and the subsequent 

effects of these events on their current and future health.272 This was conceived within the included 

models using both a fairly simple structure,219 245 similar to that used in the state-transition models, 

and a very complex one.199 273 As a complex structure it was also able to accommodate the 

unpredictable nature of disease progression, multiple treatment outcomes, and the fact that not all 

patients go on to receive subsequent treatments in the sequence. It was also used to investigate 

treatment sequencing within a heterogeneous patient group, and to account for different treatment 

selection for patient subgroups, such as patient with rhesus positive or negative rheumatoid arthritis. 

 

Treatment sequencing was implemented within the discrete event simulation model in three different 

ways. This included: 

i. Using fixed treatment sequences (for example the initial Birmingham Preliminary Model); 

ii. Based on the random selection of pre-defined sequences (for example the subsequent 

Birmingham Rheumatoid Arthritis model) 

iii. Developed as part of the modelling process by selecting individual drugs, using a random 

process, at specific points in the sequence (for example in the Tran-Duy model) 

 

As a complex structure it was successfully used for implementing treatment selection and cessation 

based on algorithms reflecting specific clinical guidelines and practice. This required the 

implementation of stopping rules and specific sequences of treatments to be followed based on the 

different reasons for quitting treatment. Similar to the state transition models described previously, 

states were used to characterise changes in disease activity and treatments. However, unlike a 

Markov model, the states in a discrete event simulation are not necessarily mutually exclusive.273 This 
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allowed greater flexibility for modelling treatment selection based on the disease activity and 

treatment history of the patient. Conceptually, patients could be in one of multiple disease activity 

phases whilst being treated on a specific drug used at a particular point in the pathway.  

 

The discrete event simulation approach was frequently chosen in order to implement the variable time 

to quitting treatment, as this may not be constant and differed between treatments. For example, a 

discrete event simulation was chosen for this specific reason in one model (Birmingham epilepsy 

model) of treatment sequences for epilepsy.199 The model was able to account for different levels of 

treatment response, and the fact that patients with either complete or partial response may then 

progress to a successful or unsuccessful drug withdrawal. They may also have different preferences 

about trying monotherapy or adjuvant therapy, based on prior treatment experience. However, the 

main challenge was the limited data on time to event from the available evidence. For example, where 

time to treatment withdrawal was reported, it could not be disaggregated according whether treatment 

was discontinued due to adverse effects or lack of effect. The discrete event simulation was also 

chosen as the preferred approach for the Birmingham rheumatology models as it allowed treatment 

duration to be modelled as a continuous distribution. Time on each DMARD was sampled from a 

Weibull distribution, with parameters appropriate to the particular treatment. The earliest preliminary 

version of the model represented one of the simplest structures used by included discrete event 

simulation models.245 In the Birmingham preliminary model only one initial patient characteristic was 

required, which was the patient’s remaining lifetime, and only two things were sampled for each 

treatment, which included the time on treatment, and whether the treatment was quit due to toxicity or 

lack of effectiveness.245 The latter was used because the last active treatment could not be given if 

either components of the combination therapy had previously been quit due to toxicity. The effect of 

each treatment was assumed to produce a set improvement in the patient’s health related quality of 

life (HRQL), which would be lost on quitting treatment. One of the main changes in the subsequent 

Birmingham rheumatology Arthritis Model was to define the patient’s health state in absolute terms 

using the HAQ score, rather than quality of life.219 The HAQ improvement on starting treatment was 

modelled as a fixed decrease in the score, based on the average decrease for all patients receiving a 

specific treatment. The model structure was still fairly simple though, with the main loop consisting of 

‘start new treatment’ – ‘on treatment’ – ‘quit DMARD’ – ‘select next treatment’. The second version of 

this model incorporated two important improvements, which included allowing the HAQ improvement 

on starting treatment to vary between individuals, and for time on treatment to explicitly consider early 

quitting.227 The model allowed for two periods of early quitting, where withdrawal was assumed to be 

due to toxicity in the first, and could be due to toxicity or inefficacy in in the second. The third version 

of the model included the use of probabilistic sensitivity analyses.254 The model also allowed different 

choices of treatment options depending on toxicity of previous treatments. 

 

The main advantage of a discrete event simulation over an individual patient state transition is that it 

requires fewer calculations as it is not governed by the analyses of the data at set intervals, or time 

cycles. Chrosny et al. have shown that Markov models can introduce bias to the absolute costs and 
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QALYs due to the simplifying assumptions of fixed cycle length and half cycle corrections, which 

discrete event simulation models do not suffer from.396 In a discrete event simulation the analysis of 

the model is triggered by the occurrence of an event, at which point the model asks what and when is 

the next event for the patient, unlike a Markov process, which asks what events are occurring at 

regular intervals. Each event occurs at a specified time, and where there are competing events, the 

patient will ‘jump’ to the event to which the sampled time is shortest.364 The main disadvantage of 

using a discrete event simulation is the extensive data required for model parameterisation, including 

time to event data.367 373 Patient level data are also preferred for implementing discrete event 

simulation, but they can also be based on aggregate data.373 Only two models were based on 

individual patient level data, both were used in rheumatology studies. One of these models (Tran-Duy 

model) was able to incorporate a complex treatment and decision process, but still had to use 

simplifying assumptions regarding treatment sequencing effect, due to limited data. The data source 

included an inception cohort and a patient registry.273 It was assumed that the effectiveness of a 

specific drug was independent of the identity and the cause of failure of the drugs that had been given 

previously.  

 

7.4.2.3  Dynamic population models 

Open models allow new cohorts to enter over time, and are sometimes referred to as population 

models.369 An open cohort model and individual patient simulation were identified that evaluated 

treatment sequences. This included a budget impact study249 that used a dynamic Markov cohort 

model, and the Cardiff diabetes model255 based on discrete event simulation. The included studies did 

not show any clear advantage of using an open model, over the other included modelling approaches, 

for modelling the clinical effectiveness of treatment sequences. However, the Cardiff model was able 

to account for a dynamic disease process whilst incorporating treatment sequencing. The Cardiff 

model also provides another example of a model that utilised the natural history and time to event 

data from an observational study, and treatment effect profiles based on clinical trials. The model is 

continually being developed and updated and is capable of running using various levels or types of 

data. 
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Table 7.3: Summary of the different modelling approaches used and their advantages and disadvantages for evaluating treatment sequences 

Description of modelling 
approach 

How treatment sequences are 
conceptualised in the model 

Further complexities in the decision problem 
that were allowed for 

Advantages Disadvantages Examples 

COHORT-BASED MODELS: Simulates a closed group of individuals 

Decision tree (DT) 

Depicts the risk of events over a 
fixed time period. 

Naturally provides a 
diagrammatic representation of 
treatment sequences, possible 
outcomes, and events. 

Relapse treated with a previous successful 
treatment. 
Duration of response differs according to levels of 
response. 
Reason for discontinuation impacts selection of 
subsequent treatments. 
Some treatments administered for a fixed period 
only. 
Toxic death and all-cause mortality have different 
probabilities and timing. 
Not all patients receive all treatments in sequence 
(implemented in conjunction with portioned survival). 

Can be relatively straightforward to develop and 
not computationally intensive.  
Can be easy to interpret and transparent. 
Can include a large number of different treatment 
sequences within the same model. 
Can be used in conjunction with other methods. 

No explicit time component; governed by 
fixed timing of outcomes and events. 
Only allows one way progression. 
Cannot handle looping/recurring events 
easily. 
Can become exponentially complex with 
additional events and disease states. 
Poorly suited for complex scenarios. 

Dranitsaris model 
NICE CG81 
NICE CG152 
Sciatica model 
Frankum model 
Knoester model 

Stochastic decision tree (DT) 

A type of DT which allows the 
comparison of variable 
distributions 

Same as DT Same as DT Same as DT Same as DT Advanced simulation 
model 
Greenhalgh model 

Markov cohort 

Simulation of a hypothetical 
cohort through a set of heath 
states over time, which is divided 
into equal intervals (cycles). 
Involves time-dependent 
transition between states. In 
Markov chain transition 
probabilities (TPs) are constant 
over time. 

Implemented using three different 
approaches: 
i) a series of treatment-specific 
Markov states; 
ii) as a series of treatment-
specific states (or lines) along 
with additional temporary states 
representing e.g. adverse effects, 
relapse; 
iii) as a Markov cycle tree, with 
Markov states used to represent 
different levels of disease activity 
or natural history. 

Not all patients receive all treatments in sequence. 
Duration of response differs according to levels of 
response and treatment line. 
Probability of continuing treatment and developing 
toxicity varies with time and for each treatment 
(using tunnel states). 
Reason for discontinuation impacts selection of 
subsequent treatments. 
Some treatments administered for fixed period. 
Cycle trees used to account for: 
Consequence of adverse effects. 
Different levels of treatment response  
Some patients continue treatment despite not 
achieving full/clinical response. 
Fluctuating disease activity. 
Complex treatment pathways. 

Can be relatively straightforward to construct and 
communicate. 
Has a time component; events can occur at any 
time. 
Allows looping/recurring events. 
Transitions can be unidirectional or bidirectional. 
Can be used in conjunction with decision tree 
(Cycle tree). 
The use of cloned subtrees enables ease of 
update. 

Markov assumption (memoryless): prohibits 
TPs being dependent on time spent in the 
state, or previous states visited (can be 
overcome using additional states and 
stratification).  
Patients can only be in one state at a time. 
Transitions limited to fixed intervals defined 
by cycle length. 
Cannot account for multiple events within 
one cycle (can be overcome using short 
cycles or cycle trees). 
Occurrence of events assumed to be 
constant over time (Markov chain). 
Exponential increase in complexity with 
increasing number of states. 
 

Albert model 
Maetzel model 
Welsing model 
Tanno model 
Wu model 
York psoriasis model 
Beard model 
Cameron model 
Davies model 
Heeg cancer model 
Lee model 
Orme model 
Sawyer model 
NICE CG137 
Shepherd model 
Smith model 
Soini model 
Tebas model 
Wong model 

Semi-Markov cohort 

Incorporates the use of a 
multiple-dimension transition 
matrix. Assumes TPs depend on 
the current state, and the time 

A series of treatment-specific 
health states. 

Probability of treatment failure decreases with time 
on a specific drug. 

Same as Markov cohort 
Reduced impact of Markovian assumption (not 
memoryless; incorporates time dependency). 
 

Patients can only be in one state at a time. 
Transition limited to fixed time intervals 
defined by cycle length. 
Transitions can only occur at fixed intervals. 
Only one transition allowed per cycle. 

York epilepsy model 
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spent in each state depends upon 
the current and next state. 

Becomes more complex with added states. 

Partitioned survival 

Simulation of a hypothetical 
cohort through a set of exhaustive 
and mutually exclusive heath 
states over time. Time spent in 
each health state calculated from 
the area under the curve of 
survival functions. 

A series of treatment-specific 
health states. 

Decreasing probability of remaining on a given 
treatment with time. 

Can be relatively straightforward to develop and 
not computationally intensive.  
Non-data intensive. 
Transparent. 
Area under the curve can be calculated 
continuously over time; no cycles required. 
Can be used in conjunction with DT. 

Cannot account for complex treatment 
sequencing algorithms or additional 
attributes (e.g. adverse effects, disease 
duration). 

Schadlich model 
NICE CG131 (with DT) 
Hind model 

INDIVIDUAL SAMPLING MODELS: Simulates one individual at a time. Tracks the past health states of each individual and stochastically models the risk of future events 

State transition (STM) 

Simulates each individual through 
a set of exhaustive and mutually 
exclusive heath states over time, 
which is advanced in fixed 
intervals. 

Fixed treatment sequences; 
disease activity monitored for 
each individual over time. 
Health states generally 
represented response or non-
response to each treatment, with 
the addition of adverse effects as 
a separate state in some models. 

Duration of response differs according to levels of 
response. 
Fluctuating disease activity (changes in disease 
activity assumed to relate to level of response, not 
treatment). 
Complex treatment algorithms. 
Patients follow different disease courses, which 
cannot be predicted at the onset. 
 

Not limited by Markov assumption (eliminating 
need for excessive number of states). 
A large number of characteristics can be ascribe 
to individually simulated patients. 
Access to individual patient data enabled key 
parameters and events in patient histories to be 
calculated using multivariate regression, allowing 
adjusting for important covariates. 
Can account for heterogeneous population. 

Transition limited to fixed time intervals 
defined by cycle length. 
Cannot account for multiple events in one 
cycle. 
Can be computationally intensive. 

Sheffield Etanercept model 
Bansback model 
Sheffield BSRBR model 
Diamantpoulus model 
Sheffield AHRQ model 
Kielhorn model 
Kobelt model 
Holmes model 

Discrete event situation (DES) 

Simulates time to an event and 
subsequent events for each 
individual. Probability of the 
occurrence and timing of an event 
is determined by random 
sampling of a probability 
distribution. Simultaneously 
varies multiple variables; inputs 
vary over time. 

Implemented in three different 
ways:  
i) fixed treatment sequences; 
ii) random selection of pre-
defined sequences; or 
iii) developed as part of the 
modelling process by selecting 
individual drugs, using a random 
process, at specific points in the 
sequence. 

When conceived as a simple structure: 
Variable time to quitting treatment. 
Duration of response differs according to levels of 
response. 
Fluctuating disease activity. 
Reason for discontinuation impacts selection of 
subsequent treatments. 
When developed as a more complex structure: 
Treatment selection and cessation based on 
algorithms reflecting specific clinical guidelines 
Unpredictable nature of disease progression. 
Multiple treatment outcomes. 
Not all patients go on to receive subsequent 
treatments in the sequence. 
Differential treatment selection for subgroups. 

Can ascribe a large number of characteristics to 
individually simulated patients. 
Can account for heterogeneous population. 
Not limited by the use of fixed time advancement 
(cycles). 
Patients can simultaneously be in multiple states, 
and experience different events. 
Allows for modelling of complex scenarios and 
treatment algorithms. 
Computationally more efficient than STM. 
Can be easily adapted to incorporate additional 
events or patient attributes. 

Model structures can be difficult to 
communicate and interpret 
Computationally challenging in terms of 
model design and running it. 

BPM / BRAM 
Tran-Duy model 
Lindgren model 
Birmingham epilepsy 
model 
Denis model 
Heeg schizophrenia model 
 

(OPEN) POPULATION-BASED MODELS: Allows new cohorts to enter over time 

Non-terminating population based simulation 

Individual sampling model (DES) Pre-specified clinical thresholds 
used to invoke escalation to next 
treatment. 

Dynamic disease process (dynamic equations used 
to project haemoglobin levels over time). 

Same as DES Same as DES Cardiff T2DM model 

Markov multi-cohort model 

Cohort model (Markov) Markov cycle tree (Markov states 
represented individual treatments 
and ‘switching’ [entry/exit state]). 

Impact of adding a new drug on health care budget 
assessed using prevalence approach (target 
population kept constant over time - entry of newly 
diagnosed cohort at each cycle). 

Same as Markov Cohort Same as Markov Cohort Launois model 

BPM Birmingham preliminary model; BRAM Birmingham Rheumatoid Arthritis model; NICE National Institute for Health and Care Excellence; T2DM type 2 diabetes mellitus 
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7.4.3  Summary of software and implementation issues  

Potential limitations for using individual sampling models include the computational burden, expertise 

required to implement them, and the need for specialist software.373 A number of studies mentioned 

that implementing the model could be time consuming, but this was also reported for implementing 

probabilistic decision trees223 and not just the more sophisticated approaches such as discrete event 

simulation.273 A number of studies reported choosing a discrete event simulation over a state 

transition model due to the improved computational efficiency,199 251 272 273 but none of the included 

studies compared the two approaches for modelling treatment sequences.  

 

The most commonly used software packages for modelling treatment sequences were Microsoft 

Excel (Microsoft Corporation, Redmond, WA, USA) and TreeAge Pro (TreeAge Software, Inc., 

Williamstown, MA, USA). TreeAgro Pro supports the development of Markov models through the 

decision tree structure. The use of specialist software was reported to be an advantage, especially for 

implementing Markov cycle trees and discrete event simulation. One of the limitations of implementing 

an individual patient level state transition model within a spread sheet package using programming 

language (such as Microsoft Visual Basic) is that as the complexity of the model increases it becomes 

harder to detect programming errors.373 When implemented within TreeAge Pro using the 

‘microsimulation’ function, the tracker variables can be used to capture significant prior events and 

drive the transition matrix in a more transparent manner.373 TreeAge Pro (from 2014 version) also 

includes time to event functionality, which means that it can be used to implement a discrete event 

simulation. One discrete event simulation model (Birmingham Rheumatoid Arthritis Model) was 

developed using both TreeAge DATA Pro (2004) and Borland Delphi (Borland Software Corporation, 

Scotts Valley, CA, USA), and the two software platforms were compared in terms of efficacy and 

transparency.219 The use of TreeAge DATA allowed the model to be constructed transparently, with 

the logic open to inspection, whereas the use of Borland Delphi programming language sped up the 

analysis allowing extensive sensitivity analysis to be conducted, but it required programming skills on 

behalf of the modeller, and led to the loss of transparency in the model.219 There are also bespoke 

software packages available for developing a discrete event simulation model that can be used to 

guide the model development.364 Davis et al. (2014) suggest that using a bespoke simulation package 

such as Simul8 (Simul8 Corporation, Boston, MA, USA) has a number of benefits including: graphical 

representations of the simulation, easy debugging and validation, quick and easy development of new 

models, random number control, and easy sampling of time-to-event variables from commonly used 

distributions.373 However, Simul8 is not currently included in NICE’s list of recommended software 

packages for conducting technology appraisals.373 397 Only one included study reported using a 

dedicated discrete event simulation software package, with most models having been implemented 

using Delphi language. It could be argued that the use of specialist software is likely to increase the 

skillset required to implement the model and potential cost of purchasing, but the use of common 

software packages for implementing complex models would also require extensive programming 

skills. A promising new addition to the choice of approaches for conducting economic modelling for 

health technology assessment is the discretely integrated condition event (DICE) simulation,398 which 
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can incorporate multiple different modelling approaches within the same framework and is 

implemented in the commonly used spreadsheet package Microsoft Excel. However, this is yet to be 

used for modelling treatment sequences.  

 

In the past, the need to conduct probabilistic sensitivity analysis has been viewed as a barrier to using 

patient-level simulation due to the computational requirements of simulating both a large number of 

patients to limit stochastic uncertainty, and a large number of parameter samples to evaluate 

parameter uncertainty.373 Overall, this did not appear to be problematic, or to affect the choice of 

modelling approach used in the current review, with all modelling approaches having a number of 

examples where probabilistic sensitivity were both included and not included.  

 

7.4.4  External validation of a sequential treatment model 

The lack of sequencing studies means that data for performing external validation of a treatment 

sequencing model may not be available. Modelled estimates could also be compared to those 

produced in real life (clinical experience or real-world data), or previously developed models.81 

However, observational studies are likely to suffer from bias (Chapter 5, Section 5.9.9), which could 

result in the model being validated against the type of flawed estimates that it was designed to 

replace.81 

 

The type of data required for validating the model outcomes will also be dependent on the model 

structure.243 One study (Heeg, 2015) that developed a Markov model (Heeg cancer model) for 

predicting overall survival for treatment sequences for multiple myeloma compared the predicted 

findings of the model with those reported in RCTs of first-line treatment in order to assess external 

validity.243 This was considered appropriate by the authors because the model used transition 

probabilities, representing treatment switching or mortality, that were response and line specific, not 

treatment-specific. The findings showed that the median survival predictions for one treatment 

sequence underestimated the medial survival reported in the VISTA trial (of newly diagnosed 

patients), which may be considered unusual, as the model input for first-line treatment was largely 

derived from VISTA.243 377 The main reason for this underestimation was the use of the APEX trial (of 

relapsed patients) data to estimate the overall survival and time to next treatment transition 

probabilities for second and third-line treatments. Patients who went on to have second line treatment 

after VISTA would have received on average better treatment compared to APEX patients, given that 

the VISTA trial is more recent than the APEX trial.243 378 Hence the second and third line transition 

probabilities derived from APEX are likely to be higher for patients after VISTA, causing an 

underestimation of the modelled median overall survival.243 

 

7.4.5  Structural complexity of the modelling approach 

The decision problem relating to treatment sequencing can be complex, especially when considering 

its impact on a chronic condition such as rheumatoid arthritis. The extent of the structural complexity 

of the model will in turn also depend on the clinical scenario being modelled, the extent of the 
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treatment sequences being considered, the need to incorporate algorithms or various logical rules on 

which treatment to use next, and whether there is a need to account for variation in treatment 

duration, which may not be constant. There are three important questions regarding model complexity 

that needs to be considered when choosing which modelling approach to use: 

i. Is there a point at which the level of complexity required means that a specific modelling 

approach is preferable to another?  

ii. Does the decision problem necessitate a complex modelling structure? 

iii. Is there sufficient data to parametrise a complex model?  

 

The findings of the review of modelling studies shows that it is too simplistic to think of cohort models 

such as decision trees and Markov models as examples of simple modelling approaches, and that 

individual patient simulation approaches represent complex modelling approaches. According to 

Barton et al. the complexity of the model is dependent on the size and not the technique used,361 

which was also reflected by some of the included studies. The review included a discrete event 

simulation model219 that had a much simpler structure than many of the included Markov cohort 

models and some of the decision tree models. Both the Markov cohort modelling approach and 

individual patient simulation were used to implement complex decision problems relating to treatment 

sequencing. Simpler models are usually easier to understand than complex models, and thus easier 

to validate.361 Cohort models, such as decision trees and Markov models, can be more transparent 

than individual patient simulation approaches, but this advantage can soon be lost when they are 

adapted to account for further complexities in the decision problem.266 The inherent flexibility of 

individual patient simulation enables a simpler model to be constructed, compared with using a 

Markov cohort model, where the need to overcome some of the limitations of the modelling approach 

in order to allow treatment sequencing and specific characteristics of the disease to be modelled adds 

another layer of complexity to the structure. The use of a discrete event simulation, which involves 

codifying the behaviour of a complex system as an ordered sequence of well-defined events in time, 

provides even greater flexibility than an individual patient level state transition model, especially in 

terms of intuitively modelling treatment sequencing algorithms.272 273 

 

Treatment sequencing does not always mean that the decision problem is necessarily complex, and 

all models essentially represent a simplification of reality. The extent or level of complexity in the 

decision problem, which was accounted for in the models, varied quite considerably within the 

included studies, even within the same disease condition. For example, three studies evaluating 

similar antiepileptic drug sequences chose different modelling approaches and incorporated different 

levels of the disease process.18 199 276 (This is also described in the Appendix Volume I, Section C5, as 

all three studies were conducted on behalf of NICE). The decision problem can be simplified by 

modelling a limited number of treatments, streamlining the disease process, and using a short time 

horizon.  
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The greater the complexity and sophistication of the model, irrespective of the modelling approach 

used, the more extensive the data and resources required for developing and parameterising them. 

One of the reasons given for simplifying certain aspects of the decision problem regarding treatment 

sequences was due to limited data. For example, a few studies reported having to use a short time 

frame for modelling treatment sequences for rheumatoid arthritis, because a longer time horizon 

implied too many assumptions.222 223 228 260-262 275 Complex models may be able to represent treatment 

sequencing and related issues better, but if the data required to parameterise the model is not 

available, or limited, then a simpler approach may be preferable. An important but unaddressed 

question is, at what point will a complex model be unrealistic because of the use of too many 

simplifying assumptions, and the model output becomes non-informative or even misleading? The 

data on sequencing effects, or treatment effects that are conditional on the previous treatments used, 

was missing or limited in most cases. However, on the other hand, a model based on an over 

simplification of the decision problem and clinical practice is also unlikely to be useful for decision 

makers. 

 

7.4.6  Using a conceptual framework to inform the structural complexity of the model 

The process of developing a model structure requires the modeller, in conjunction with other 

stakeholders, to make a number of structural model development choices regarding what is relevant 

and what can be considered as irrelevant to the decision problem.399 The development of a qualitative 

conceptual model as a pre-curser to the quantitative decision analytic model provides a powerful tool 

to help understand of the nature of the decision problem, to inform choices about the level of 

structural complexity required by the proposed model, and assist communication regarding its intent 

and structure.399 A conceptual model provides a visual picture of the decision problem and all relevant 

aspects of the disease. Conceptual modelling frameworks have been developed, which guide 

modellers step-by-step through the process of developing a model structure183 and encompass both 

the process of conceptualising the problem and disease, and conceptualising the structure of the 

subsequent mathematical model. For example, Squires et al. have recently published a conceptual 

modelling framework for developing the structure of public health economic models.400 The ISPOR-

SMDM Joint Modelling Good Research Practices Task Force have also developed guidance to inform 

conceptual modelling for health economics.370 The guidance recommends that the initial model 

conceptualisation process should: 

i. Be linked to the problem and not based on data availability 

ii. Be used to identify key uncertainties in the model structure where sensitivity analysis could 

inform the impact of structural choices 

iii. Follow an explicit process (expert consultations, influence diagrams, concept mapping, or 

similar method) to convert the conceptualisation of the decision problem into an appropriate 

model structure to ensure that the model reflects current theory of disease or the process 

being modelled 
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The guidance also advocates simplicity in the model structure for transparency, ease of validation, but 

also note that the structure must be sufficiently complex to answer the question, and should maintain 

face validity.370 

 

7.4.6.1  INTEGRATE-HTA 

The recently competed EU-funded research project INTEGRATE-HTA, which ran from January 2013 

to December 2015, can provide some very useful information here. (The INTEGRATE-HTA project 

was first discussed in Chapter 5, Section 5.9.10.3). One of the project’s main aims was to develop a 

process that supports asking questions that are relevant and finding answers that fit the questions, 

rather than substituting difficult to answer questions with those that can be answered.401 The main 

product of the project was a series of seven publicly available guidance documents on the integrated 

assessment of complex health technologies.402 A themed issue presenting the results of the project, 

as well as the application of some of the guidance by the Canadian Agency for Drugs and 

Technologies in Health (CADTH) was published in the International Journal of Technology 

Assessment in Health Care in December 2017.403 

 

The INTEGRATE-HTA project included developing guidance on the use of logic models in health 

technology assessments or systematic reviews of complex interventions.404 Logic models encompass 

any of the following: conceptual frameworks, analytic frameworks, concept maps, or influence 

diagrams.404 Logic models were described as providing a key means for integration across different 

parts of the health technology assessment,402 can be used to ‘think through’ the multiple components 

of a complex intervention in context, enhance the transparency of underlying assumptions, and can 

assist in communication within the technology assessment / systematic review author team and with a 

range of stakeholders.404 Four different types (generic logic model, a priori logic model, iterative logic 

model, and staged logic model) and a number of sub-types were identified, each with different 

strengths and limitations. It was also acknowledged that the process of developing any type of logic 

model can take a significant amount of time, potentially delaying subsequent stages of the already 

time-consuming health technology assessment / systematic review process.404 

 

7.4.7  Developing a flexible model that can be re-used or further developed 

The time and resources available for conceiving and implementing a complex decision analytic model 

within a health technology assessment is limited. It may therefore be tempting to try to develop a 

simplified model. An alternative approach to overcome this would be to re-use or further develop an 

established model. In health technology assessment a new model is generally developed for each 

decision problem. However, the review identified some good examples where an existing model was 

further developed over time. This included the Tran-Duy, Birmingham, and Sheffield rheumatology 

models, and the Cardiff Diabetes model. Most of these models were developed using a discrete event 

simulation. The discrete event simulation, which was originally developed in industrial engineering 

and operations research, is generally used to model physical systems where an initial model is refined 

and built upon over time.368 Discrete event simulations can be easily adapted to incorporate additional 
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events or patient attributes and, as such, may lend themselves to iterative decision making processes 

or repeated use, whilst adapting decision tree or state-transition models to include additional health 

states or patient attributes can be time consuming, particularly if the model is implemented within a 

spreadsheet package.373 However, the Shepherd model provides an example of how a complex 

Markov model can be made easier to update.266 The model was implemented as a Markov cycle tree, 

which included two subtrees referred to as clones that were attached to different locations, or nodes, 

in the tree. The use cloned subtrees meant that only one ‘master’ copy needs to be maintained rather 

than requiring maintenance of numerical identical trees. This would also aid updating the model. 

 

The extent of the available data to inform treatment sequencing effects may improve over time, which 

is another reason for developing a model that can be easily updated. This is especially true bearing in 

mind the current trends in developing large datasets,327 and the requirement of many funders that 

data arising from their grants are shared.79 Alternatively, an existing model can be re-run using a 

different modelling approach, or a simple model further developed to incorporate further complexities 

in the decision problem that may have evolved over time as more treatments become available. This 

provides a case for publishing the pre-curser conceptual framework (Section 7.4.6) alongside the 

modelling data. 

 

7.4.8  Potential decision analytic modelling approaches not covered by included studies 

A number of new modelling approaches that were not used by the included studies evaluating 

treatment sequences are now being used by health economists. These include attributes that may be 

useful for modelling treatment sequences in the future. 

 

7.4.8.1  Agent-based simulation 

An example of an alternative modelling technique that has not yet been used for evaluating treatment 

sequences is agent-based simulation.405 It has many similarities to discrete event simulation, but 

unlike the system-based rules used in discrete event simulation, the agent-based simulation applies 

rules to agents (individuals), or group of agents, and their responses, which depend on the individual 

characteristics of the agents and can change either over time or due to interactions with the 

environment.368 406 Agent-based simulation is more complex than discrete event simulation and can 

require considerably more data to represent the heterogeneous population.406 

 

An example of an agent based simulation used for evaluating complex multicomponent public health 

interventions is Archimedes,406 which was introduced in Chapter 1, Section 1.4.2.2. Archimedes is an 

object-orientated, continuous-time simulation model designed to be both comprehensive and deep, 

and covers the anatomy, pathophysiology, tests, treatment, and outcomes pertaining to a specific 

condition, for example diabetes.96 It can be applied to a wide variety of clinical and administrative 

decision problems and can be used to simulate RCTs of interventions.96 However, it relies on a large 

amount of processing power and data. For example, the level of detail in the diabetes model 
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corresponds to that found in general medical textbooks, patient charts, clinical practice guidelines, 

and designs of clinical trials.95 

 

7.4.8.2  Whole disease modelling 

Another potentially useful development in health economic modelling that incorporates the use of a 

single comprehensive model to address both current and future decision problems is ‘whole disease 

modelling’ (Section 1.4.2.2).92 93 This represents a system or disease-level modelling approach that 

simulates treatment pathways from preclinical disease through to death. Whole disease models are 

developed using the discrete event simulation framework, and can be used to inform a range of 

different decision problems relating to any part of the patient pathway, including screening, diagnosis, 

active treatment, and palliative care. Examples have been developed to inform NICE clinical 

guidelines for colorectal cancer,93 prostate cancer,407 and atrial fibrillation.408 These were not 

considered in the review of modelling studies, as treatment sequencing was not extensively 

evaluated; they were based primarily on the assumption of treatment independence, and therefore did 

not contribute any new information. For example, due to the lack of randomised clinical trials that 

evaluated planned sequences of treatments for advanced prostate cancer, it was assumed that first-

line palliative treatment was the sole determinant of overall survival due to prostate cancer.94 

 

7.4.8.3  Markov influence diagrams 

Influence diagrams are a graphic representation of the causal relationships between decisions, 

external factors, uncertainties and outcomes.409 They provide a way of representing decision 

problems that are mathematically equivalent to decision trees and Markov Models.371 However, unlike 

decision trees, which are open graphs, and Markov models, which are partially cyclic graphs, 

influence diagrams are closed, directed graphs without recursion.371 

 

Markov influence diagrams are a new type of probabilistic graphical model that extends influence 

diagrams in the same way that Markov cycle trees extend decision trees.410 They can be used to 

easily build and evaluate complex models within the paradigm of state-transition models, in which 

many health economics feel more comfortable.410 Their potential advantages include the fact that they 

can contain several variables per cycle using a causal graph, they can model various patient 

characteristics without multiplying the number of states, and they can represent the history of the 

patient without using tunnel states.410 If implemented using the OpenMarkov software 

(http://www.openmarkov.org/), probabilistic sensitivity analysis can be conducted without writing any 

code.410 

 

7.4.9  Comprehensive decision analytic modelling  

The comprehensive decision analytic modelling approach, which was introduced in Chapter 1, 

Section 1.4.2.1, is where both the meta-analysis (including network meta-analysis and meta-

regression) and the economic model are conducted within a single framework, or one coherent 

model.88 This approach allows the probabilistic sensitivity analyses to draw directly from the posterior 
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distribution output of the meta-analysis. This approach was used by a number of included studies 

using Markov cohort modelling as part of the economic evaluation for a NICE technology appraisal or 

clinical guideline.207 257 276 278 However, none have yet used meta-analysis that accounted for 

treatment sequencing effects.  

 

 

7.5 CHAPTER SUMMARY AND NEXT-STEP 

7.5.1  Chapter summary 

A wide range of modelling approaches have been used for evaluating treatment sequences. The 

decision problem regarding treatment sequencing can be complex, especially when extensive 

treatment sequences are considered. There may be a need to account for differential algorithms that 

dictate the choice of subsequent treatments, as well as additional aspects of the natural history of the 

disease that need to be considered. More sophisticated models based on individual sampling are 

better able to accommodate the complexity in the decision problem than the simpler cohort models. 

Examples where cohort models were successfully adapted to accommodate additional complexity in 

the decision problem were identified, but these were no longer simple models. The discrete event 

simulation approach appeared to provide the optimum approach in terms of intuitively modelling 

treatment sequencing algorithms, computational efficacy, and ease of updating, however, they require 

more extensive modelling skills and specialist software. The added advantage of using a state 

transition individual patient model, over a complex Markov cohort model structured around a Markov 

cycle tree is unclear. A discrete event stimulation appears to have some advantages to that of an 

individual patient state transition model, especially when implemented using specialist software. The 

greater the complexity and sophistication of the model the more extensive the data requirement were 

for implementing them.  

 

The limited evidence base regarding treatment effects that are conditional on the previous treatments 

used meant that these complex models were frequently supplemented with simplifying assumptions, 

even when an individual patient level data source such as a national patient register was available. In 

fact, the overall findings tended to indicated that a single data source is unlikely to be sufficient for 

modelling treatment sequences. The list of simplifying assumptions developed in Chapter 6 will 

provide a useful tool to clarify what assumptions were made regarding treatment sequencing effects 

in implementing a complex or sophisticated models. Another potential disadvantage of developing 

complex and sophisticated models is the time required to develop and implement them, which is 

generally limited for health technology assessment. One potential solution to this would be to use or 

further adapt an established model which has already been developed and tested. Another potential 

option would be to re-build an existing model using a different, more flexible, modelling approach.  

 

The choice of an existing model to re-use or further develop is likely to be based on those developed 

for a similar decision problem, however, models used for other health conditions may also be 

informative. The table (Table 7.3) summarising the existing models developed for evaluating 
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treatment sequences, and the type of additional features that they accounted for, could help to 

choose relevant models. Information on any accompanying conceptual or logic models would also be 

useful. A number of models were developed with the intention of being able to use them to inform 

future decisions, most of which were developed using a discrete event simulation. 

 

7.5.2  Next-step 

This chapter provides a summary table (Table 7.3) that allows the comparison of different modelling 

approaches used and the individual attributes they accounted for. The next step is to incorporate the 

data identified in Chapter 6 on the type of simplifying assumptions made when modelling treatment 

sequences to this table. This can then be used as part of a framework for assisting future researchers 

to choose an appropriate modelling approach for a specific treatment sequencing decision problem, 

or identify a published model that can be developed or further adapted for their own purposes.  
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CHAPTER 8: FRAMEWORK FOR EVALUATING TREATMENT SEQUENCES 

 

 

8.1 CHAPTER SUMMARY  

The aim of the thesis was to develop a framework for conducting quantitative evidence synthesis of 

the effectiveness of sequential treatment options within the context of undertaking evidence reviews 

for informing clinical and policy decision making. The current chapter presents the framework for 

evaluating treatment sequences, and is one aspect of the novel contribution of the thesis. The 

framework considers the decision problem from the perspective of the policy maker and, although it is 

primarily intended for analysts (e.g. evidence review groups), it is also appropriate for appraisers (e.g. 

NICE committees). It aims to contribute to the evaluation of treatment sequences within a health 

technology assessment or similar process, such as comparative effectiveness research, technology 

appraisal, and evidence-based clinical guideline development. The framework is underpinned by my 

comprehensive review of previously-used methods for evaluating treatment sequences or estimating 

the treatment effects for an intervention conditional on the previous treatments administered, and my 

investigation of the added value of using complex evidence synthesis methods over more simplistic 

approaches. 

 

The findings of the series of integrated literature reviews conducted within the thesis showed that 

there is no optimal way of evaluating treatment sequences. A range of different approaches have 

been used, each with advantages and disadvantages. The choice of approach is dependent on a 

number of issues, such as the extent and type of the sequences being evaluated and the available 

evidence base. The review of modelling studies revealed that, even when accounting for the 

limitations of the evidence, the best approach was not necessarily adopted by modellers. It is my 

intention that the framework and the simplifying assumptions work will aid future modellers to improve 

the modelling of treatment sequences and hence reduce the uncertainty and bias in the results 

generated. 

 

The framework can be used to help choose the best approach, and consists of a series of 

recommendations developed in response to the key issues that emerged from the review.  

 

 

8.2 DEFINITION AND SCOPE OF THE FRAMEWORK  

There is very little guidance for conducting quantitative evidence synthesis of treatment sequences to 

inform clinical and policy decision making. Furthermore, there is nothing to help modellers recognise 

when treatment sequence issues are pertinent and should be included in a model. The evaluation of 

treatment sequencing is bound to be more complex than synthesising the evidence of the clinical 

effectiveness of single (or discrete) treatments. A framework for evaluating treatment sequences 

would be useful here. The Collins dictionary defines a framework as ‘a particular set of rules, ideas, or 

beliefs which you use in order to deal with problems or to decide what to do’.411  
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The framework incorporates recommendations for key stakeholders (reviewers, statisticians, 

modellers, heath economists, commissioners of health technology assessment or evidence reviews) 

and covers the entire health technology assessment process, from the initial scoping of the research 

question and articulating the decision problem, to the development of a decision-analytic model. It is 

based on the premise that there is no single best way of evaluating treatment sequences, and that a 

range of approaches and methods are currently in use, each with advantages and disadvantages. It 

also incorporates the key challenges identified for evaluating the evidence for treatment sequences. 

The framework has been developed to use alongside general best-practice guidance for undertaking 

systematic reviews, meta-analyses, and decision-analytic modelling. It is based on the guidance and 

guidelines development processes and methods used by NICE, which was used as an exemplar 

commissioner (of health technology assessment) and policy maker. 

 

The decision problem relating to treatment sequencing can be complex and requires different types 

and levels of evidence to address it. Decision-analytic modelling can be used to synthesise different 

types of data. Health economic models often draw together evidence concerning the natural history of 

a disease, epidemiology, treatment effectiveness, health state utilities, adverse events, resource use 

and costs.346 A review of modelling approaches was undertaken to inform the use of decision 

modelling. However, it was not the intention of the review to give an in-depth evaluation of how to 

actually build and run a model, rather it focused on the overall approach for incorporating or 

evaluating treatment sequences within the model. The review addressed important questions such as, 

how was this done within current modelling studies? What were the simplifying assumptions that had 

to be made to achieve this? How does each approach compare with others? Of note here also is that 

the framework (and the thesis) focuses on the impact of treatment sequencing on effectiveness and 

not costs. 

 

Treatment sequences are generally represented within a decision-analytic model as a series of 

discrete treatments, each requiring a summary effect estimate that is conditional on positioning in the 

treatment pathway. The scarcity of data to inform such estimates means that simplifying assumptions 

are frequently used in conjunction with the available data on discrete treatments. The framework also 

incorporates a coding scheme for simplifying assumptions used to inform treatment sequencing 

effects. This can be used to support the choice of modelling approach, but also to assess existing 

models. 

 

 

8.3 THE FRAMEWORK TO INFORM THE EVALUATION OF TREATMENT SEQUENCES  

In summary, the overarching framework has three components: 

i. Framework to guide practice presented as two related tables outlining:  

a. Recommendations for practice (Figure 8.1 and Table 8.1) 

b. Advantages and disadvantages of different modelling approaches that can be used to 

help guide modellers to choose which approach to use (Table 8.2)  
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ii. A list of publications that can be used as a resource to support the use of best-practice 

guidance for undertaking meta-analysis and decision modelling in general (Figure 8.2) 

iii. A coding scheme for simplifying assumptions applied to treatment effects when modelling 

treatment sequences (Table 8.3) 

 

8.3.1  Framework component 1: Framework to guide practice in the conduct of health 

technology assessment 

The recommendations presented in Table 8.1 are currently ordered in line with the health technology 

assessment process and its reporting, which starts with developing the research question, then the 

clinical evaluation, followed by the economic evaluation. The recommendations are categorised 

according to: 

i. How to assess the importance or need to consider treatment sequences, which corresponds 

to developing the research problem (Sections A and B) 

ii. Meta-analytic methods (Sections C and D)  

iii. Data sources used to inform sequencing effects (Section E)  

iv. Simplifying assumptions regarding sequencing effects (Section F)  

v. Decision-analytic modelling approaches (Section G) 

These are illustrated in Figure 8.1. 

 

Each recommendation is designed to be ‘stand-alone’, this allows re-arrangement or deletion for 

future development. Consequently, there is some repetition with a few recommendations being 

relevant under more than one header.  

 

The relevant stakeholder(s) for each recommendation are listed in Table 8.1. The recommendations 

pertaining to decision-analytic modelling approaches are supplemented by Table 8.2, which 

summarises the advantages and disadvantages of different modelling approaches and the simplifying 

assumptions made for evaluating treatment sequences as identified in the review of modelling studies 

(Chapters 6 to 7). 
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Figure 8.1: A schematic of the categorisation scheme for practice recommendations 

 

The dotted lines indicate where there are recommendations which relate to more than one category 

 

Table 8.1: Framework for evaluating treatment sequences: recommendations for practice 

 STATEMENT BASED ON REVIEW 
FINDINGS (RELATED CHAPTER) 

DRAFT RECOMMENDATION FOR PRACTICE* RELEVANT 
GROUP** 

A THE DECISION PROBLEM – ARE TREATMENT SEQUENCES PERTINENT?  

1A Health technology assessments and 
clinical guidelines may need to 
consider treatment sequences. 

The potential importance of treatment sequencing needs to 
be considered prior or at the very start of the scoping 
process. This should include asking ‘Is there a reason why 
treatment sequencing issues are not relevant at all?’ 
 
The need to consider treatment sequencing will likely 
depend on a range of factors including i) the underlying 
disease condition, ii) the care pathways, iii) the aim of the 
treatment, iv) type of treatment, v) range of existing 
treatments, and vi) the fixed term or continuous 
administration of treatments.  

Policy 
maker 
Reviewer 
Modeller 
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2A The assessment of heterogeneity and 
inconsistency within pairwise MA and 
NMA of discrete treatments may 
provide important information on 
whether treatment sequencing effects 
needs to be considered. This would 
be enhanced in a MA based on 
individual patient data (see 9C) 
 

Consider whether previous treatment is an effect modifier, 
and the impact of which needs to be accounted for.  
 
Assessment of heterogeneity: 

 Elicit expert opinion on potential clinical heterogeneity.  

 Use consensus-based recommendations for 
investigating clinical heterogeneity in systematic 
reviews (Gagnier, 2013). 

 Use MR to explore whether ‘previous treatments’ is an 
important effect modifier. Where the findings are not 
statistically significant, consider whether this is due to 
insufficient power. (see also 2C) 

 If there are insufficient studies (reporting on previous 
treatment) for MR use subgroup analysis to explore the 
impact of previous treatments. This should include the 
use of appropriate statistical tests for interaction. (see 
also 2C) 

Reviewer 
Policy 
maker 

3A When comparing the effectiveness of 
single treatments, subsequent 
treatments can have a confounding 
effect on the long-term outcome 
overall survival. 

Consider whether the impact of subsequent treatment 
needs to be considered. (see also 3C) 

 

B SCOPING AND ARTICULATING THE RESEARCH QUESTION   

BI Identifying pertinent treatment sequencing issues  

1B A number of factors can influence 
both the choice and the effects of 
each treatment used at different 
points in the pathway. These factors, 
which are both treatment- and time-
dependent and independent, need to 
be accounted for when evaluating 
treatment sequences.  

Elicit expert opinion on all potential factors that are likely to 
impact treatment sequencing effects, and whether each is 
likely to have a dependent and/or independent effect. (See 
also 5F) 
 
Consider using a conceptual framework/logic model to 
inform the process. Guidance is available on using 
conceptual framework and logic models for health 
technology assessment (Roberts, 2012; Rohwer, 2016; 
Squires, 2016). (See also 3G) 
 
The assessment of clinical and statistical heterogeneity in 
previous MA of single treatments is likely to provide useful 
information here. (See also 2A) 

Policy 
maker 
Reviewer 
Modeller 

2B Treatment may be discontinued for 
various reasons, which will have a 
differential impact on the 
effectiveness of subsequent 
treatment. 

Consider from the onset whether there is a need to 
differentiate between discontinuation due to lack/loss of 
effectiveness and adverse effects/intolerance, or non-
adherence, which may be independent of both of these. 
However, implementation may be hampered by the reasons 
for switching treatment being poorly reported in the primary 
studies. (See 6C and 5F) 

Policy 
maker 
Reviewer 
Modeller 

3B Disease duration could be considered 
as a surrogate outcome for previous 
treatments, but treatments may also 
become less effective with time due 
to disease progression (independent 
of treatment).  

There is a need to ascertain whether disease duration and 
previous treatments are independent predictors of treatment 
response. Disease duration is a crude measure and 
therefore should only be used if no other relevant data is 
available. (See also 2B and 3-4D) 

Policy 
maker 
Reviewer 
Modeller 

BII Selecting sequences for evaluation  

4B Selecting appropriate sequences for 
evaluation may be challenging. In 
some clinical areas, for example 
oncology, the introduction of new 
therapies means that the treatment 
sequences used in clinical practice 
change rapidly. 

The choice of sequences for inclusion needs to be justified. 
The involvement of key stakeholders for selecting pre-
defined sequences for inclusion in the analysis is essential. 
The sequences may be defined by the policy maker 
(commissioner). When conducting a NMA of complete 
sequences, the inclusion of further comparator sequences, 
outside the commissioning brief, may be necessary in order 
to develop a closed network. 

Policy 
maker 
Reviewer 
Modeller 
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Consider the pace at which the treatments available in 
practice are likely to change, and the usefulness of 
developing a model that can be updated easily. (See 
Section G) 

5B Selecting a manageable number of 
treatment sequences for inclusion in 
the evaluation may not be easy. 
Alternative modelling approaches 
have been developed that aim to 
identify the optimal ordering of 
treatments, and are thus able to 
consider any conceivable sequence. 

The net benefit per unit time modelling approach can be 
used for identifying the optimal ordering of treatments. 
However, it should not be used where treatment 
sequencing has an effect, as it requires the simplifying 
assumption of treatment independence to be made.  
This approach is based on the premise that the earlier in 
the sequence a treatment is tried the greater the proportion 
of patients who receive it and respond to it will be. 
(See Section F, and 3rd component of the framework: 
CODING SCHEME for simplifying assumptions, Table 
8.3) 

Policy 
maker 
Reviewer 
Modeller 

6B Identifying where the ‘decision node’ 
lies within the treatment pathway, and 
whether both upstream and 
downstream effects need to be 
considered is important. 

A conceptual/logic model should be developed to identify 
the decision node, and whether upstream effects are 
important or influential, or only the downstream effects are 
relevant. The involvement of key stakeholders is also 
important. (See also 1B and 3G) 

Policy 
maker 
Reviewer 
Modeller 

C META-ANALYTIC (MA) METHODS FOR EVALUATING CLINICAL EFFECTIVENESS  

 This section covers methods used for evaluating clinical-effectiveness and develop clinical effect 
estimates to parameterise the decision-analytic model (Section G).  

 

1C Prospective sequencing trials are few 
in number, and may not cover the 
breadth of decision making needed. 
They generally evaluate a limited 
number of treatment-lines. 

A MA of sequencing studies is likely to be hampered a lack 
of available studies, which can cause problems with 
establishing a closed network of treatments, evaluating 
extensive treatment sequences, and considering important 
sub-populations. 
 
In order to be useful for clinical decision-making, the 
evidence review will need to consider a broad evidence 
base (and meta-analytic approaches) even when 
prospective treatment sequencing trials exist. (See also 
Section E1) 

Reviewer 

2C MR and subgroup analysis are 
generally used to provide evidence 
on the optimal treatment for patients 
who have failed previous treatment 
(or assess the impact of previous 
treatment). 

MR can be used for adjusting for previous treatment (and or 
disease duration), and subgroup or stratified analysis can 
be used to assess whether the treatment effect differs 
according to the specific precious treatments used or line of 
therapy. (See Sections DI and DII) 
 
MR and subgroup analysis are likely to be limited to the 
evaluation of the impact of immediate prior treatment, a 
specific series of prior treatments, or the number and type 
of previous treatments.  
 
MR and subgroup analysis will not be useful for evaluating 
the optimal initial treatment in a sequence or accounting for 
the effect of subsequent treatments on long term outcome 
measures.  

Reviewer 

3C To inform decision making, methods 
are needed to assess the impact of 
subsequent treatments. 

Methods that have been used to identify the optimal initial 
treatment or account for the impact of subsequent 
treatments on long term outcomes include: limiting inclusion 
to sequencing studies, partitioned survival analysis, or 
decision-analytic modelling. (See also 2A) 
 
Recent reviews of the latest methodological developments 
in mathematical modelling methods (Panayidou, 2016) and 
using partitioned survival (Woods, 2017) can be used to 
inform the implementation of these methods.  

Reviewer 
Modeller 
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4C To inform decision making, treatment 
effect estimates that are conditional 
on positioning in the treatment 
pathway are needed. 

One approach for adjusting a summary treatment effect to 
make it conditional on positioning in the pathway is to apply 
a reduction or multiplication factor. (See also 5E and 5F) 
 
A specific reduction, or multiplication factor, can be 
developed and then applied to the treatment effects 
obtained from RCTs of first-line use to represent their use 
later in the treatment pathway. However, developing the 
multiplication or reduction factor will not be trivial or 
straightforward, as the evidence base is likely to be very 
limited.  

Reviewer 
Modeller 

5C There is no established method for 
developing a reduction or 
multiplication factor, and the evidence 
base available for developing such 
estimates are likely to be limited. 

The methods and data sources used to develop the 
reduction or multiplication factor should be clearly stated. 
Current methods include: i) the comparison of Hazard ratios 
of treatment withdrawal for a class of drugs used as first vs 
subsequent line (based on an observational study of 
registry data); and ii) comparing the findings from 2 RCTs of 
the same drug used at different points in the treatment 
pathway (1st-line and last resort). 
 
The beta-coefficient taken from MR can potentially be used 
as a multiplying factor, but this approach has not yet been 
used in practice (See also 1D). The time and resource 
implications of using this approach means that it will need to 
be planned for from the onset and be part of both the 
clinical and economic evaluation. (See Section B) 
 
The impact of using a reduction or multiplication factor 
needs to be explored in sensitivity analysis. (See Section 
F) 

Reviewer 
Modeller 
 

6C The reason for discontinuing previous 
treatments can have a differential 
impact on the clinical effectiveness of 
subsequent treatments. However, 
reasons for switching treatment are 
often poorly reported by primary 
studies. 

When adjusting a treatment effect conditional on positioning 
in the pathway, if feasible, consider the impact of 
discontinuing previous treatment due to inefficacy 
separately to that of switching due to intolerance or adverse 
effects. (See also 2B and 5F) A separate modifying factor 
should be developed and used for discontinuation due to 
lack of effect and intolerance. (See also 5E) 

Reviewer 
Modeller 
 

7C One approach used for identifying the 
optimum sequence is to order 
treatments according to the absolute 
treatment effect estimates of single 
treatments. 

This approach represents a naive method, and should not 
be used unless there is clear evidence that treatment effect 
is independent of positioning in the sequence. 

Reviewer 
Modeller 

D META-REGRESSION AND SUBGROUP ANALYSIS  

 This section provided further detail on the use of meta-regression and subgroup analysis as part of 
the meta-analytic technique used (Section C) 

 

DI Meta-regression (MR)  

1D MR provides the most useful 
approach for developing summary 
estimates for discrete treatments that 
allow for previous therapies. 
Individual regression coefficients 
(from MR analysis) describe how the 
intervention effect changes with each 
unit increase of the covariate, which 
may be useful for evaluating 
treatment sequences. 

MR can be used to develop ‘adjusted’ treatment effect 
estimates (plus an estimate of the uncertainty) according to 
the number and type of previous treatments used. (See 
also 4-5C) 
 
 

Reviewer 
Modeller 

2D Poor reporting of previous treatment 
within primary studies is likely to 
contribute to non-statistical or false 
positive/negative findings due to 

When selecting covariates for inclusion in the MR consider 
the clinical (not just statistical) significance of previous 
treatment (and disease duration).  
 

Reviewer 
Modeller 
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insufficient power. But previous 
treatment may still be an important 
covariate despite non-significant 
findings.  

 

3D Disease duration may be better 
reported within primary studies than 
previous treatment, and could be 
used as a surrogate outcome for 
previous treatments. 

Consider using disease duration as a surrogate for previous 
treatments, especially when evaluating whether to consider 
treatment sequencing by assessing heterogeneity. 
However, this is a crude measure and therefore should only 
be used if no other relevant data is available. (See also 2A 
and 3B) 
 
The likely scenario is that some data on both disease 
duration and previous treatments will be reported 
(inconsistently) by relevant studies. Both outcomes are 
correlated. 

Reviewer 
Modeller 

4D Both previous treatment and disease 
duration are likely to be important 
treatment effect modifiers. 

The MR will likely need to include the covariates 
representing both previous treatment and disease duration, 
which are correlated. A potential limitation is the limited 
number of covariates that can be considered in a MR. (See 
also 2A and 3B) 

Reviewer 
Modeller 
 

5D The availability of RCTs reporting 
IPD, including full treatment histories, 
would greatly enhance the usefulness 
of MR (and subgroup analysis) as a 
method of developing sequence 
specific effect estimates. 

Consider using an IPD-MA, which has much higher power if 
patient level covariates are of interest. However, access to 
IPD without adequate reporting of previous treatment is 
insufficient. 
 
The evidence synthesis is likely to be based on both 
aggregate and individual participant data. There is guidance 
on conducting IPD-MA recent review methods outlining the 
challenges (Debray, 2015; Tierney, 2015).  

Reviewer 
Modeller 
 

6D For MR to be useful in informing 
treatment sequencing decision 
making the findings need to be 
reported in full irrespective of 
statistical significance, especially 
when non-significance is likely to be 
due to lack of power. 

The method used for selecting covariates in the MR needs 
to be reported in full. The findings or prior univariate 
analysis and non-significant MR analysis also need to be 
made available. (See also 5F) 
 

Reviewer 
Modeller 
 

DII Sub-group analysis  

7D Subgroup analyses are easier to 
implement than MR and can provide 
useful information on potential trends. 

Subgroup (or stratified) analyses can be used to assess 
whether treatment effect varies according to positioning in 
the pathway (treatment-line) or population (treatment 
history), but need to be analysed using appropriate 
statistical tests for interaction.  

Reviewer 
Modeller 
 

DIII Limitations of MR and subgroup analysis  

8D The methods of MR and subgroup 
analysis have a number of generic 
limitations. 

Potential limitations of using MR and subgroup analysis 
include: poor reporting of previous treatment; susceptibility 
to type I error (false negative) due to a small number of 
studies; and potential for ecological fallacy. They are also 
inherently observational in nature, and will have the same 
inherent limitations associated with non-randomised 
studies, including selection bias and confounding.   
 
Potential solutions include conducting an IPD-MA and 
including a broader evidence base (e.g. non-randomised 
studies; multiple outcome measures). The latest 
methodological developments in multi-parameter MA will 
aid the implementation of these solutions (Efthimiou, 2017; 
Debray, 2015; Cooper, 2015; Tierney, 2015). 

Reviewer 
Modeller 

9D The use of subgroup analysis has 
similar limitations to MR, as well as 
other drawbacks. 

Further potential limitations of using subgroup analyses 
include: 

Reviewer 
Modeller 
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i) they can only consider one covariate at a time, and each 
analysis will be confounded by other variables (e.g. disease 
duration);  
ii) they cannot provide an estimate of the extent of 
interaction;  
iii) it is difficult to interpret the findings when a series of 
subgroup analyses are used to assess multiple covariates, 
especially when low power produced insignificant findings;  
iv) the evaluation of numerous variables increases the risk 
of chance findings (type II error, false negative). 

E DATA SOURCES FOR SEQUENCING EFFECTS  

EI Randomised sequencing trials  

1E Treatment sequences can be 
conceived as a series of decision 
rules that specify how the treatment 
should change depending on the 
patient’s needs (also referred to as 
dynamic or adaptive treatment 
regimens). 

The sequential, multiple assignment, randomised trial 
(SMART) design allows for the testing of multiple potentially 
adaptive interventions along with tailoring variables that 
trigger change in (or switching) treatments (Almirall, 2014). 
SMART designs can provide good empirical evidence on 
the optimal treatment sequence, but are unlikely to cover all 
conceivable sequences and relevant patient subgroups. 
They are also designed to develop an adaptive (dynamic) 
treatment rather than confirm that the adaptive treatment is 
better than an alternative (control). 

Reviewer 
Modeller 
 

2E Well conducted RCTs provide the 
most valid data for causal inferences. 
Pragmatic RCTs have been 
developed for evaluating both fixed 
sequences, dynamic/adaptive 
treatment regimens. 

Three types of RCTs have been used in used to inform 
treatment sequences:  

 RCTs of pre-defined (fully formed) sequences;  

 RCTs of dynamic treatment sequences, e.g. SMART, 
which allow for the comparison of different treatment 
options within the context of what happens in later 
stages (patients randomised at each stage); and 

 Quasi-sequencing trials: RCTs of discrete treatments 
that incorporate subsequent treatment in the trial 
protocol. 

 
Other RCT designs that are potentially useful for evaluating 
dynamic treatment sequences: 

 N-of-1 trials; and 

 Adaptive trial designs 
 
The benefit of randomisation is lost when making inferences 
about the causality of whole sequences based on RCTs of 
discrete treatments used at single points in the pathway. 
(See RCTs of discrete treatments) 

Policy 
maker 
Reviewer 
Modeller 

3E RCTs of predefined sequences can 
be synthesised using established 
meta-analytic techniques, but the 
synthesis of dynamic/adaptive 
treatments or N-of-1 studies may not 
be so straightforward. 

No methods were identified for synthesising multiple 
SMART trials or N-of-1 studies for evaluating treatment 
sequences. 
 
The latest methods and guides on synthesising complex 
interventions and meta-analysis to inform personalised 
medicine may provide useful information here (Pedder, 
2016; Melendez-Torres, 2015; Punja, 2016a, Punja, 
2016b, Tate, 2016). The methods used to analyse the 
findings of a single SMART, based on machine learning 
approaches, may also be useful for developing future MA 
methods. 

Reviewer 
Modeller 
 

4E Large RCTs take years to complete, 
and treatment sequences used in 
practice are likely to change 
continually with the ongoing 
introduction of new treatments and 

There will never be sufficient sequencing RCTs that cover 
the breadth of clinical and policy decision making questions 
relating to treatment sequences. Alternative sources of 
evidence will need to be considered and meta-analytic 
methods for developing summary effect estimates that are 
conditional on positioning in the sequence.  

Reviewer 
Modeller 
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alterations to licence indication of 
exiting treatments. 

EII Randomised controlled trials of discrete treatments  

5E The available RCT evidence is often 
limited to discrete treatments used at 
a single point in the pathway (e.g. 
first-line), which are frequently used 
to inform the effects of the same 
treatment (or class) at other points in 
the sequence. 

Current methods used for adjusting the effect estimates 
taken from studies of discrete treatments used early in the 
sequence in order to represent their use later in the 
treatment pathway include: applying a modifying (reduction 
or multiplication) factor; decrementing the relative effect by 
a set amount at each treatment line; using expert opinion; 
using the summary effect from an alternative similar 
treatment evaluated at the relevant point in the pathway; 
and using the naive estimates of single treatments. 
 
No hierarchy can be established, but the use of a reduction 
or multiplication factor is considered the preferred option 
(See also 4-5C), and the use of a naïve approach should 
not be used unless there is evidence to show that treatment 
effect is independent of position in the sequence. (See 
Sections A and F)  
 
Sensitivity analysis should always be used with these 
methods. 

Reviewer 
Modeller 
 

6E Providing evidence to show that 
treatment effects are not dependent 
on positioning in the sequence or 
disease duration may not be 
straightforward, especially in the 
presence of a limited evidence base. 

Evidence that treatment effect is independent of position 
can be provided by: i) a MA showing homogeneity between 
studies of treatments used as different therapy lines (or 
positioning in the treatment pathway), ii) non-significant 
findings for covariates representing previous treatment (and 
disease duration) within a MR. However, both scenarios 
can be the result of low power. 
 
These approaches are not useful for treatments that have 
only been evaluated in RCTs as first-line (or at a single 
point in the treatment pathway).  

Reviewer 
Modeller 
 

EIII Non-randomised studies  

7E Non-randomised studies may provide 
important information on sequencing 
effects. For example, registry data 
may be able to provide comparative 
effectiveness data for a specific line 
of treatment, which is adjusted for 
patient characteristics at the time of 
initiating the treatment, including the 
treatments received in previous lines. 

The evidence review (and MA) will likely need to include 
both randomised and non-randomised studies. The meta-
analysis will need to incorporate methods that adjust for 
known biases and over-precision. However, not all biases 
and confounding factors will be known (or measured) and 
some, for example confounding by indication, may not be 
controlled for. 
 
Several approaches can be used to jointly synthesise data 
(and adjust for bias and over-precision) from randomised 
and non-randomised studies. The choice will likely be 
driven by data availability, time and resources, and 
technical expertise available in the research team 
(Efthimiou, 2017).  
 
An overview of different approaches used for bias 
adjustment is provided by NICE DSU TSD3 (Dias, 2012). A 
number of subsequent methods reviews and guidance for 
incorporating non-randomised data are also available, 
produced by DSU (Faria 2015; Bell, 2016), ISPOR 
(Berger, 2017), and others (Verde, 2015). The recent 
systematic review of the latest developments in NMAs 
conducted by the GetReal project also includes an 
overview of the latest methods for adjusting for study 
limitations and possible sources of bias (Efthimiou, 2016). 
Studies have also compared different methods for 

Reviewer 
Modeller 
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combining randomized and non-randomized evidence in 
NMA (Schmitz, 2013; Efthimiou, 2017). 
 
Whichever method is used to synthesise randomised and 
non-randomised studies, the quality of the evidence should 
be assessed, and sensitivity analysis should be used 
(Efthimiou, 2017). 

8E There are potential biases that are 
specific to the evaluation of treatment 
sequencing effects. 

Potential biases specific to the evaluation of treatment 
sequences include: selection (allocation) bias, channelling 
bias, regression to the mean, immortal time bias when 
restricting inclusion to participants who have received a 
specific late line of treatment; confounding by disease 
duration; enrichment with refractory patients or patients 
susceptible to adverse effects; class effect bias or 
confounding by the type of patients treated with a specific 
treatment class; aggregate data collection (treatments being 
reported at class rather than drug-level); and potential for 
missing or inaccurate data. 
 
Quality appraisal needs to encompass the extent to which 
primary studies have adjusted for these biases.  

Reviewer 
Modeller 
 

F USING SIMPLIFYING ASSUMPTIONS TO REPRESENT SEQUENCING EFFECTS  

 A coding scheme for simplifying assumptions relating to treatment sequencing effects used in 
decision-analytic modelling is presented in the third component of the Framework (Table 8.3) 

 

1F The scarcity of data to inform 
sequence-specific effect estimates 
within decision models means that 
simplifying assumptions are 
frequently used in conjunction with 
the available data on discrete 
treatments. No consistent or objective 
methods are generally used for 
selecting the simplifying assumptions 
used or the available evidence. 

The choice of assumptions should be based on a clear 
rationale and evidence that they are appropriate. Where 
direct evidence is not available, this could include: i) citing 
expert literature/opinion; or ii) providing theoretical 
reasoning. Where relevant, appropriate methods for expert 
elicitation should be used.  
 
Commonly used assumptions (See the CODING SCHEME 
Component of the Framework) include: 

 treatment effect is independent of positioning in the 
treatment sequence; 

 treatment effect is dependent on treatment line, but 
independent of the type of treatments used; 

 treatment effect is the same as a substitute 
treatment used at the same point in the sequence; 

 treatment effect is reduced, in line with a reduction 
factor, when used at a later point in the sequence; 
and 

 treatment effect decrements with each successive 
treatment. 

 
The validity and reasonableness of the assumptions used in 
representing reality should be assessed using, for example 
real world data, other modelling studies, or expert 
consensus. The assumption of treatment independence 
should only be used if there is clear evidence to show that it 
is valid, which will need to be reported appropriately. (See 
Sections A and B)  

Modeller 

2F The application of simplistic 
assumptions regarding sequencing 
effects will result in significant 
uncertainty around the effectiveness 
and cost-effectiveness estimates, the 
extent and impact of which should be 
explored as part of the analysis of 
structural uncertainty. 

The evaluation of structural uncertainty is much less 
common than that of parameter uncertainty in health 
economics, but can have a greater impact on the results 
(Stevenson, 2014). The most common approach used is 
scenario analysis.  
 
The impact of the simplifying assumptions made regarding 
treatment sequences should be explored using a range of 

Modeller 
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plausible (or extreme) scenarios, which need to be justified. 
Where these are based on clinical opinion, appropriate 
methods for expert elicitation should be used. Scenario 
analysis will not provide an indication of the most credible 
scenario. Other methods for handling structural uncertainty 
exist, but they are underdeveloped and research in this 
area is still ongoing (Stevenson, 2014; Briggs, 2012).  

3F The data sources used alongside the 
simplifying assumptions vary, even 
when considering the same decision 
problem and addressing the same 
evidence gap. 

The reasons for choosing certain data sources over other 
possible data needs to be justified. This should ideally be 
planned from the onset of the health technology 
assessment and be part of the clinical evaluation. (See 
Section B and E) 

Reviewer 
Modeller 
 

4F The choice of data to inform the 
efficacy of subsequent treatments 
(beyond the decision point) are not 
consistent and not always based on a 
review of the evidence. Priority is 
often given to matching the evidence 
for the decision point rather than 
considering the treatment sequence 
as a whole.  

Methods used to develop sequence specific treatment 
effect estimates to parameterise the model should be based 
on a comprehensive review of the evidence base and not 
selected single studies. A clear declaration of the data 
sources used and justification for their selection is required. 
(See Section E)  
 
The need to consider treatment sequences should be 
identified at the scoping stage of the review and considered 
as part of both the clinical and economic evaluation. (See 
Section A) Developing a conceptual model would help 
inform this process. (See 1B and 3G) 

Policy 
maker 
Reviewer 
Modeller 

5F The assumption that a treatment 
becomes less effective when used 
later in the sequence, or with 
increased disease duration is 
sometimes employed. But methods 
used to inform the decrement or 
amount by which the treatment 
effects are reduced are often not 
reported or based on selected single 
studies.  

The methods and evidence used to develop an estimate to 
downwardly adjust the efficacy of discrete treatments 
should be clearly reported (See also 4-5D and 5E). The 
evidence should take into account the disease and known 
pharmacology, e,g. whether non-response (requiring a 
move to the next treatment) is due to pharmacogenetic 
factor influencing absorption, distribution, metabolism, and 
excretion (ADEM), disease pathogenesis, or poor 
adherence. The methods and evidence used should Ideally 
be based on a comprehensive review of the evidence base, 
which is likely to time consuming and need to be planned 
for from the onset of the technology assessment. (See also 
1B) The impact of discontinuation of previous treatments 
due to lack of efficacy and toxicity should be considered 
separately. (See also 2B and 6C) 

Policy 
maker 
Reviewer 
Modeller 

G DECISION-ANALYTIC MODEL 

 This section is linked to TABLE 8.2, which outlines the advantages and disadvantages of current modelling 
approaches used for evaluating treatment sequences. 

1G Appropriate recognition of treatment 
sequencing is crucial to many policy 
decisions, but developing a related 
economic model may not be 
considered and is not straightforward. 

Prior to developing any economic model it is important to 
consider whether there is good reason why some treatment 
sequencing issues are NOT pertinent, i.e. is there scope to 
simplify to discrete treatments. (See Section A)  

Policy 
maker 
Reviewer 
Modeller 

2G A wide range of decision-analytic 
modelling approaches have been 
used to evaluate treatment 
sequences.  
The most appropriate modelling 
approach should reflect the simplest 
model to answer the question, but it 
needs to adequately reflect the 
decision problem and its complexity 
in order to produce realistic results.  

Table 8.2 provides a summary of the different modelling 
approaches used in existing studies (and includes the 
indexing codes for the ‘simplifying assumptions’ that were 
applied by included studies using each approach). 
 
Developing the simplest model required will depend on the 
complexity of the decision problem and the extent of the 
treatment sequences being modelled. (See Section B) 
 
Additional complexity (or key features) in the decision 
problem that the modelling approach may need to account 
for include: heterogeneity in the target population, patient 
history or previous treatments, the need for differential 

Policy 
maker 
Reviewer 
Modeller 
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treatment selection based on reasons for treatment 
discontinuation, the fact that not all patients go on to receive 
the subsequent treatment; outcomes of different subgroups, 
differential time on treatment; time dependency of certain 
parameters, repeated events, competing risks, parameter 
uncertainty, dynamic decision making. 

3G The extent of the treatment 
sequences to be modelled and 
pertinent key features, both of which 
will impact the choice of modelling 
approach, need to be identified in 
advance. 

Use a conceptual framework (or logic model) to identify the 
extent of the complexity of the decision problem. This 
process should involve all key stakeholders and follow best 
practice guidance. (See also 1B.) 

Policy 
maker 
Reviewer 
Modeller 

4G The question of when a simple model 
would suffice is not straightforward, 
and the use of commonly used cohort 
approaches may not represent the 
use of a simple model structure. 

The question of when a simple model would suffice is 
dependent on the decision problem and the ease with which 
the modelling techniques is able to account for the 
treatment sequences and additional complexities (or key 
features) required. It is also dependent on the value of 
reducing uncertainty in the cost-effectiveness. 
 
Existing modelling studies provide examples of where 
complex modelling structures have been implemented using 
both commonly used cohort approaches and advanced 
methods based on individual patient simulation. Similarly, 
simple modelling structures have also been implemented 
using different approaches.  
 
Existing modelling studies also provide examples of where 
the decision problem has been simplified to allow a simple 
(cohort) model to be implemented, or used because the 
limited available evidence would render an extensive model 
unrealistic. The appropriateness of using this approach 
should be informed by an a-priori conceptual model and 
involve relevant stakeholders. 

Policy 
maker 
Modeller 

5G The feasibility of a modelling 
approach is dependent on the 
available data. 

The trade-off between the details accounted for in the 
model structure and the available data needs to be explicit. 

Policy 
maker 
Modeller 

6G Modelling treatment sequences may 
require a complicated or a 
sophisticated model, which will be 
time consuming and resource 
intensive to develop and implement.  

Consider adapting an existing model or developing a model 
that can be further developed for future use (rather than 
developing for single use models). 

Policy 
maker 
Modeller 

7G A range of modelling approaches 
have been used to evaluate treatment 
sequences and, although there is no 
clear evidence that any one type is 
superior to another, some may have 
advantages (or disadvantages) for 
considering different types of decision 
problems. 

Table 8.2 summarises the advantages and disadvantages 
of the different modelling approaches used in existing 
studies, the different ways treatment sequences have been 
conceptualised within the model, and the extent of the 
decision problem complexity that the different approaches 
were able to account for. No study has systematically tested 
different approaches for modelling treatment sequences. 
 
Cohort models can be simple, and easy to implement, but 
these advantages are lost when accommodating extensive 
sequences and additional complexities in the decision 
problem. Individual sampling models are more 
sophisticated, better able to accommodate greater decision 
problem complexity, and provide more flexibility. DES 
appeared the optimum approach in terms of intuitively 
modelling sequencing algorithms, computational efficacy, 
and ease of updating, but requires more extensive 
modelling skills, specialist software, and likely to be data 
and time intensive. 

Modeller 
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A review of current guidelines for decision-analytic 
modelling is provided by Ramos, 2015 

8G Markov cohort modelling is the most 
popular approach for evaluating 
treatment sequences, but can be 
limited by the Markovian property 
(assumption) that patients may only 
be in one state at a time and 
transition between states cannot 
depend on previous states visited, or 
time in a state.  

The Markovian property means that the model cannot 
account for patient’s history, differential time on treatment, 
or the occurrence of multiple events within a single cycle, 
unless commonly used adaptions are implemented. 
 
The Markov cohort model can be successfully adapted for 
evaluating treatment sequences, using for example the 
Markov cycle tree, tunnel states, and 3-D matrix (semi-
Markov model), but this is likely to be at the expense of 
having a simple model structure or accounting for the full 
extent of the decision problem. If the decision problem 
cannot be depicted in an appropriate way or requires an 
excessive number of health states, then a DES is preferable 
as it would enable a much simpler model structure to be 
implemented. However, DES models are expensive in 
terms of data and long running times, which limit the 
practicability of the model. 

Modeller 

9G The limited evidence base often 
precluded modelling extensive 
treatment sequences and lengthy 
time horizon, but better evidence may 
become available at a later date. 

The trade-off between the details accounted for in the 
model structure and the available data needs to be explicit. 
Consider using a modelling approach (model technique and 
structure) that will optimise the feasibility of updating as and 
when new evidence appears.  

Policy 
maker 
Reviewer 
Modeller 

10G Economic modelling undertaken to 
inform reimbursement decisions are 
generally required to include 
probabilistic sensitivity analysis (PSA) 
to account for the uncertainty in the 
decision problem.  

A cohort-based model may be chosen as it is considered 
easier to implement PSA within this approach. However, 
uncertainty in the decision regarding which treatment 
sequence to choose should incorporate the distribution of 
the treatment sequencing effects.  

Modeller 

*  The details of references highlighted in bold are presented separately Figure 8.2. 

** This relates to the stakeholder group for whom the recommendations are likely to be relevant to. The term ‘reviewers’ refers to 
researchers involved in conducting the clinical evaluation (and includes systematic reviewers and statisticians, as well as health 
economists conducting a meta-analysis to inform the economic model). ‘Modellers’ refers to those involved in developing and 
implementing a decision-analytic model, and ‘policy makers’ refers to those who commission or interpret the evidence reviews in order to 
make policy decisions. 
Abbreviations: DES discrete event simulation; IPD individual patient (level) data; MA meta-analysis; MR meta-regression; NICE DSU 
NICE Decision Support Unit; ISPOR International Society For Pharmacoeconomics and Outcomes Research; NMA network-meta-
analysis; PSA probabilistic sensitivity analysis; RCT randomised controlled trial; S section; SMART sequential, multiple assignment, 
randomised trial. 
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Table 8.2: Advantages and disadvantages of current modelling approaches used for evaluating treatment sequences 
How treatment sequences are 

conceptualised in the model 

Sequencing decision 
problems evaluated* 
Maximum number of 
treatment lines (time 
horizon range) 

Simplifying 
assumptions 
made**  

Further complexities in the decision problem that were 

allowed for in the model 

Advantages of modelling approach Disadvantages of modelling approach 

COHORT-BASED MODELS 

Decision tree (DT) 

Treatment sequences, possible 
outcomes, and events depicted as 
decision tree. 

Adding treatment 
Optimum sequence 
Predefined sequences 
Treatment approach 
 
- 4 (1 year - lifetime) 

IP, NPT, PGE, 
ST, RF, TD, DI, 
UOBS, EXC, 
RDD, LR. 

 Relapse treated with a previous successful treatment. 

 Duration of response differs according to levels of 
response. 

 Reason for discontinuation impacts selection of 
subsequent treatments. 

 Some treatments administered for a fixed period only. 

 Toxic death and all-cause mortality have different 
probabilities and timing. 

 Not all patients receive all treatments in sequence 
(implemented in conjunction with portioned survival). 

 Can be relatively straightforward to develop and 
not computationally intensive.  

 Can be easy to interpret and transparent. 

 Can include a large number of different treatment 
sequences within the same model. 

 Can be used in conjunction with other methods. 

 No explicit time component; governed by 
fixed timing of outcomes and events. 

 Only allows one way progression. 

 Cannot handle looping/recurring events 
easily. 

 Can become exponentially complex with 
additional events and disease states. 

 Poorly suited for complex scenarios. 

Markov cohort 

i) a series of treatment or line-
specific Markov states; 
ii) above with additional temporary 
states representing e.g. adverse 
effects, relapse; 
iii) Markov cycle tree, with Markov 
states used to represent different 
levels of disease activity or natural 
history. 

Adding treatment 
Different points 
Optimum sequence 
Predefined sequences 
Single point 
Treatment approach 
 
- 7 (1 year - lifetime) 

IP, NPT, PGE, 
ST, RF, TD, DI, 
UOBS, EXC, 
LR. 

 Not all patients receive all treatments in sequence. 

 Duration of response differs according to levels of 
response and treatment line. 

 Probability of continuing treatment and developing 
toxicity varies with time and for each treatment (using 
tunnel states). 

 Reason for discontinuation impacts selection of 
subsequent treatments. 

 Some treatments administered for fixed period. 
Cycle trees used to account for: 

 Consequence of adverse effects. 

 Different levels of treatment response  

 Some patients continue treatment despite not 
achieving full/clinical response. 

 Fluctuating disease activity. 

 Complex treatment pathways. 

 Can be relatively straightforward to construct and 
communicate. 

 Has a time component; events can occur at any 
time. 

 Allows looping/recurring events. 

 Transitions can be unidirectional or bidirectional. 

 Can be used in conjunction with decision tree 
(Cycle tree). 

 The use of cloned subtrees enables ease of 
update. 

 Markov assumption (memoryless): prohibits 
TPs being dependent on time spent in the 
state, or previous states visited (can be 
overcome using additional states and 
stratification).  

 Patients can only be in one state at a time. 

 Transitions limited to fixed intervals defined 
by cycle length. 

 Cannot account for multiple events within 
one cycle (can be overcome using short 
cycles or cycle trees). 

 Occurrence of events assumed to be 
constant over time (Markov chain). 

 Exponential increase in complexity with 
increasing number of states. 

 

Semi-Markov cohort 

A series of treatment specific 
health states. Multiple-dimension 
transition matrix used to allow time 
spent in each state to depend on 
current and next state. 

Single point 
 
- 3 (15 years) 

IP.  Probability of treatment failure decreases with time on 
a specific drug. 

 Same as Markov cohort 

 Reduced impact of Markovian assumption (not 
memoryless; incorporates time dependency). 

 

 Patients can only be in one state at a time. 

 Transition limited to fixed time intervals 
defined by cycle length. 

 Transitions can only occur at fixed intervals. 

 Only one transition allowed per cycle. 

 Becomes more complex with added states. 

Partitioned survival 

A series of treatment specific 
health states. Time spent in each 
state calculated from the area 

Predefined sequences 
Adding treatment 
Different points 

NONE, IP, DI, 
RF.  

 Decreasing probability of remaining on a given 
treatment with time. 

 Can be relatively straightforward to develop and 
not computationally intensive.  

 Non-data intensive. 

 Cannot account for complex treatment 
sequencing algorithms or additional 
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under the curve of survival 
functions. 

 
- 6 (3 years - lifetime) 

 Transparent. 

 Area under the curve can be calculated 
continuously over time; no cycles required. 

 Can be used in conjunction with DT. 

attributes (e.g. adverse effects, disease 
duration). 

INDIVIDUAL SAMPLING MODELS 

State transition (STM) 

Fixed treatment sequences; 
disease activity monitored for each 
individual over time. 
Health states usually represent 
response or non-response to each 
treatment, with the addition of 
adverse effects as a separate state 
in some models. 
 

Adding treatment 
Treatment approach 
Predefined sequence 
Single point 
 
- 7 (10 years - lifetime) 

IP, NPT, PGE, 
RF, DI, UOBS. 

 Duration of response differs according to levels of 
response. 

 Fluctuating disease activity (changes in disease 
activity assumed to relate to level of response, not 
treatment). 

 Complex treatment algorithms. 

 Patients follow different disease courses, which cannot 
be predicted at the onset. 

 

 Not limited by Markov assumption (eliminating 
need for excessive number of states). 

 A large number of characteristics can be ascribe 
to individually simulated patients. 

 Access to individual patient data enabled key 
parameters and events in patient histories to be 
calculated using multivariate regression, allowing 
adjusting for important covariates. 

 Can account for heterogeneous population. 

 Transition limited to fixed time intervals 
defined by cycle length. 

 Cannot account for multiple events in one 
cycle. 

 Can be computationally intensive. 

Discrete event situation (DES) 

i) fixed treatment sequences; 
ii) random selection of pre-defined 
sequences; or 
iii) developed as part of the 
modelling process by selecting 
individual drugs, using a random 
process, at specific points in the 
sequence 

Adding treatment 
Different points 
Predefined sequences 
Single point 
 
- 13 (5 years - lifetime) 

IP, NPT, PGE, 
RF, DI, UOBS, 
RDD. 

When conceived as a simple structure: 

 Variable time to quitting treatment. 

 Duration of response differs according to levels of 
response. 

 Fluctuating disease activity. 

 Reason for discontinuation impacts selection of 
subsequent treatments. 

When developed as a more complex structure: 

 Treatment selection and cessation based on 
algorithms reflecting specific clinical guidelines 

 Unpredictable nature of disease progression. 

 Multiple treatment outcomes. 

 Not all patients go on to receive subsequent 
treatments in the sequence. 

 Differential treatment selection for subgroups. 

 Can ascribe a large number of characterises to 
individually simulated patients. 

 Can account for heterogeneous population. 

 Not limited by the use of fixed time advancement 
(cycles). 

 Patients can simultaneously be in multiple states, 
and experience different events. 

 Allows for modelling of complex scenarios and 
treatment algorithms. 

 Computationally more efficient than STM. 

 Can be easily adapted to incorporate additional 
events or patient attributes. 

 Model structures can be difficult to 
communicate and interpret. 

 Computationally challenging in terms of 
model design and running it. 

(OPEN) POPULATION-BASED MODELS:  

Non-terminating population based simulation (DES) 

Pre-specified clinical thresholds 
used to invoke escalation to next 
treatment (dynamic equations used 
to project clinical measures over 
time). 

Single point IP  Dynamic disease process.  Same as DES  Same as DES 

Markov multi-cohort model      

Markov cycle tree; Markov states 
represented individual treatments 
and ‘switching’. 

 NA  Impact of adding a new drug on health care budget 
assessed using prevalence approach (target population 
kept constant over time - entry of newly diagnosed 
cohort at each cycle). 

 Same as Markov Cohort  Same as Markov Cohort 

*Different treatment sequencing decision problems considered by included studies: 

Adding treatment: adding a new drug to a pre-defined sequence;  

Comparing sequences: comparing predefined sequences; 

Different points: evaluating the optimum positioning of a treatment within a sequence;  
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Optimum sequence: identifying the optimum sequence from all conceivable sequences;  

Single point: comparing different treatments used at the same point within a sequence;  

Treatment approach: comparing different management approaches, e.g, ‘step-up’ or ‘step-down’ treatment approaches. 

**Simplifying assumptions made regarding treatment effects (see Table 8.3): 

IP  Treatment effect is independent of positioning in the sequence; 

NPT  Treatment effect is dependent on the number of previous treatments (treatment line), but independent of the type of treatments used; 

PGE  Treatment effect is the same as an alternative treatment (substitute from same class) used at the same point in the sequence; 

GE  Treatment effect is the same as an alternative treatment (substitute from same class) irrespective of positioning in the sequence; 

ST  Treatment effect is the same as an alternative treatment (substitute from different class) used at the same point in the sequence; 

RF  Treatment effect is reduced, in line a reduction factor, when used at a later point in the sequence; 

TD  Treatment effect decrements with each successive treatment; 

DI Treatment effect does not change when the treatment is displaced by adding a new prior treatment (displacement ignored); 

Abbreviations: .NA not applicable 
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8.3.2  Framework component 2: List of references to related methodological development  

The thesis focused on methods used for evaluating treatment sequences. However, the framework is 

intended to be used alongside best-practice guidance standards for a health technology, incorporating 

systematic reviews, meta-analysis, and decision-analytic modelling. The framework also refers to the 

use of recent methodological advances in evidence synthesis and modelling methods to aid 

assessment of treatment sequences in a number of recommendations. These were informed by 

several recent relevant methodological reviews. Some key papers summarising recent 

methodological developments are listed below as a supplementary resource for the framework. These 

have been derived, primarily, from three important information sources, which can also be used to 

support the framework and the implementation of a health technology assessment of treatment 

sequences:  

i) The series of Technical Support Documents produced by NICE Decision Support Unit 

(DSU). These documents provide detailed guidance on appropriate methodology for 

specific issues in health technology assessment and economic evaluation. The DSU also 

developed the NICE methods guide update and conducted other relevant methods work. 

(https://scharr.dept.shef.ac.uk/nicedsu/). 

ii) Methodological reviews and cases studies conducted within the Get Real project. 

(http://www.imi-getreal.eu/) 

iii) A series of consensus guideline reports on good practice standards for outcomes 

research (clinical, economic, and patient-reported outcomes) and on the use of this 

research in healthcare decision making developed by the ISPOR-SMDM Good Research 

Practices Task Force. These are produced collaboratively by the International Society for 

Pharmacoeconomics and Outcomes Research (ISPOR) and The Society for Medical 

Decision Making (SMDM). (https://www.ispor.org/taskForces/TFindex.asp) 

 

The reference list below is not intended to include all guidance documents relating to evidence 

synthesis or decision-analytic modelling developed by the NICE DSU centre, the GetReal Project, or 

ISPOR Good Practice Task force. Rather it lists the references referred to in Table 8.1 to indicate the 

type of resource that may be used and further developed as part of the framework. Comprehensive 

lists of publications relevant to network meta-analysis methods have been developed and maintained,  

by a team of researchers from the Universities of Leicester and Bristol (http://www.bristol.ac.uk/social-

community-medicine/projects/mpes/courses/treatmentcomparisons/), and Georgia Salanti 

(http://www.mtm.uoi.gr/index.php/tutorial). The DSU also provides Technical Support Documents on 

evidence synthesis (http://www.nicedsu.org.uk/Evidence-Synthesis-TSDseries%282391675%29.htm). 

 

 

 

 

 

http://www.bristol.ac.uk/social-community-medicine/projects/mpes/courses/treatmentcomparisons/
http://www.bristol.ac.uk/social-community-medicine/projects/mpes/courses/treatmentcomparisons/
http://www.mtm.uoi.gr/index.php/tutorial
http://www.nicedsu.org.uk/Evidence-Synthesis-TSDseries%282391675%29.htm
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Figure 8.2: List of references relating to recent methodological development referred to in the 

framework 
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8.3.3  Framework component 3: Coding scheme for simplifying assumptions used to represent 

treatment sequencing effects  

Simplifying assumptions relating to treatment sequencing effects used by existing modelling studies, 

along with their indexing codes, and grouped into six broad types, are listed in Table 8.3. The list of 

assumptions can be used to aid the consideration of treatment sequences within a decision problem, 

to inform the choice of approach to use within an economic model by clarifying what has actually been 

done previously, or to highlight whether modellers have used the same or different approaches within 

health technology assessments of a similar decision problem. Different assumptions are likely to be 

applied at different positions in the treatment pathway. The coding scheme (as indexing codes) is 

used in Table 8.2 to indicate the type of simplifying assumptions applied by included studies using 

each modelling approach. 

 

Table 8.3: Coding scheme for simplifying assumptions relating to treatment sequencing 

effects  

SIMPLIFYING ASSUMPTIONS CODE 

Treatment independence  

Treatment effect is independent of positioning in treatment sequence. IP 

Treatment effect is dependent on the number of previous treatments used (or line of therapy) but 

independent of the specific previous treatment used. 

NPT 

Substitution with another treatment effect  

Treatment effect is the same as an alternative treatment from the same class, or a generic class effect - 

matching the same position in the sequence. 

PGE 

Treatment effect is the same as an alternative treatment from the same class, or a generic class effect - 

irrespective of positioning in the sequence. 

GE 

Treatment effect is the same as a substitute treatment taken from an alternative but related class of 

treatments, matching the same position in the sequence. 

ST 

Reduction of treatment effect  

Treatment effect is reduced in line with a specific multiplier or reduction factor, when used at a later 

point in the sequence. (Reduction or multiplication factor is informed by the available evidence that is 

also relevant to the treatment of interest.) 

RF 

Treatment effect decrements by the same pre-set amount (proportion) at each point in the sequence, or 

with each successive treatment. (The proportion is not necessarily based on a specific evidence base.) 

TD 

Treatments become less effective with increased disease duration. RDD 

Impact of time since previous treatment   

Treatment effect is not affected by previous treatments if patients have been in long term remission, and 

thus can re-use the same treatment(s)/class of treatment(s) as that which achieved the prior remission. 

LR 

Displacement effect ignored  

The effect of a treatment displaced further down the sequence by the introduction of a new treatment is 

unaffected. 

DI 

The use of uncontrolled/observational studies without bias adjustment  

Non-randomised studies provide an un-biased estimate of treatment sequencing effects. UOBS 

Expert consensus provides an un-biased estimate of treatment sequencing effects. EXC 

 

 

8.4 FUTURE DEVELOPMENT OF THE FRAMEWORK 

The framework presented here provides evidence-based guidance for conducting or using 

quantitative evidence synthesis of treatment sequences. It was informed by an extensive search and 
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in-depth evaluation of the international literature covering multiple disease and treatment types. The 

next stage is to incorporate the views of key stakeholders, validate the recommendations, and test its 

use in practice. Future development could include qualitative interviews with experts in the field to 

corroborate and build on the list of recommendations. A modified Delphi consensus process could 

also be used to assess agreement with the subsequent list and identify any recommendations that 

may not be important. A similar process to that used to develop the ISPOR good practice guidance 

could be used. The thesis used NICE as the exemplar policy maker, and feedback from NICE on the 

usefulness of the framework and its potential adaptation would enhance future implementation. 

Researchers working on NICE technology appraisals and clinical guidelines could also be recruited to 

test the use of the framework in practice. 

 

The next stage of developing the framework needs to consider how best to incorporate public 

involvement in the evaluation of treatment sequences. The views of both patients and clinicians will 

be important in developing the scope of the review and informing the extent and type of treatment 

sequences that need to be evaluated. Public involvement will also be important in designing and 

conducting the review, as well as writing and disseminating the findings. The future development and 

refinement of the framework needs to involve patients as advisors. 

 

 

8.5 CHAPTER SUMMARY 

This chapter presents a framework for conducting quantitative evidence synthesis of the effectiveness 

of sequential treatment options within the context of the evidence review for informing clinical and 

policy decision making. The framework now requires further input and refinement by experts in the 

field (key stakeholders, clinicians, and patients), to include selecting the most relevant 

recommendations, to be tested for usefulness in informing practice.  
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9. DISCUSSION AND CONCLUSIONS 

 

 

9.1 CHAPTER OVERVIEW 

This chapter provides a discussion of the research presented in the thesis and outlines the main 

conclusion of the work. It starts with a summary of the key findings, and their importance. The thesis 

chapters represent a series of integrated literature reviews. Each chapter contains a summary of how 

the findings of each review fits into the context of existing research. This is not presented again in 

detail in this discussion. Rather, this chapter outlines the strengths and limitations of the overall 

research and summarises the implications of the findings for policy, practice, and research. 

 

The thesis identified a wide range of quantitative evidence synthesis methods used for evaluating 

treatment sequences. However, all were hampered by the limitations of the primary studies, and 

would benefit from access to individual patient data. An important outcome of the thesis is the 

recommendations for future research corresponding to the identified gaps in the research evidence. 

These are outlined here. 

 

 

9.2 SUMMARY OF THE MAIN FINDINGS 

The aim of the thesis was to develop a framework for conducting quantitative evidence synthesis 

methods to estimate the effectiveness of treatment sequences within a health technology assessment 

or similar process. This includes methods for developing summary estimates of clinical effectiveness 

or the clinical inputs to the cost-effectiveness assessment. The framework (Chapter 8) was developed 

through an in depth evaluation of current approaches. It consists of a series of recommendations 

developed in response to the key issues that emerged from the review. It also includes a summary 

table to support modellers to choose an appropriate modelling approach, a bibliographic resource to 

support the use of best-practice in quantitative evidence synthesis, and a coding scheme of 

simplifying assumptions applied to treatment effects when modelling treatment sequences.  

 

The thesis focuses on the evaluation of treatment sequences to support clinical and policy decision 

making. Where multiple treatments are available, the use of network meta-analysis is required to 

inform decision making, which also enables the inclusion of a broader evidence base. A health 

technology assessment of the clinical and cost-effectiveness of treatments for sciatica demonstrates 

my experience gained in conducting a network meta-analysis (Chapter 2).  

 

The National Institute for Health and Care Excellence (NICE), which provides funding 

recommendations for England and Wales, was used as an exemplar policy maker. A review of NICE 

guidance (Chapter 4) demonstrated that appropriate recognition of treatment sequencing is crucial to 

many policy decisions, but not always considered during the scoping stage of the evidence review or 

the clinical evaluation. 
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A comprehensive review of current quantitative evidence synthesis methods (Chapter 3) was 

conducted that considered:  

i. Meta-analytic techniques used to develop summary effect estimates of treatment 

sequences, or effect estimates that are conditional on previous treatment used (Chapter 5)  

ii. The range of simplifying assumptions made by decision analytic modelling studies in the 

absence of an adequate evidence base on treatment sequencing effects (Chapter 6)  

iii. The actual decision analytic approaches used for modelling treatment sequences (Chapter 

7) 

 

The findings demonstrated the following: 

i. Reviewing the evidence on treatment sequencing is neither trivial nor straightforward.  

ii. There is no single best way to evaluate treatment sequences, rather there is a range of 

approaches that have been used.  

iii. Each approach has advantages and disadvantages and is influenced by both the evidence 

available and decision problem.  

iv. Previous treatment is an important effect modifier, and subsequent treatments can confound 

long term outcomes such as survival.  

v. The reason for discontinuing treatment has a differential effect on the effectiveness of 

subsequent treatment.  

vi. Prospective sequencing trials are few in numbers and do not cover the breadth of decision 

making needed.  

vii. The extent and type of sequences being evaluated tended to reflect the available research 

evidence rather than clinical practice. 

 

The evidence used to inform treatment sequencing was broadly considered in two ways, representing 

a one-step-at-a-time evaluation based on series of single treatments or the comparison of whole 

sequences. No novel meta-analytic methods were developed for evaluating treatment sequences, 

and none were directly aimed at developing a conditional summary estimate of effect. 

 

The current meta-analytic approaches, which can be used in a clinical evaluation (Chapter 5) include: 

i. Network meta-analysis of whole sequences (Section 5.3). This approach is hampered by the 

limited number of available sequencing trials, which made it difficult to establish a closed 

network. There is likely to be a benefit from extending the evidence base to include non-

randomised studies. However, the analysis would need to incorporate methods that adjust for 

known biases. A number of potential biases were identified that are specific to the evaluation 

of treatment sequences (Section 5.9). 

ii. Stratified meta-analysis of single treatments according to the line of therapy (Section 5.4). 

This approach does not account for the specific prior treatments used or consider the impact 

of whole sequences in any depth. 
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iii. Network meta-analysis of all single treatments irrespective of where they are used in the 

pathway (the meta-analysis of sciatica treatments in Chapter 2 provides an example of this). 

An important limitation of this approach is that previous treatment can have both an impact on 

treatment effect, acting as an effect modifier resulting in heterogeneity, and be associated 

with the type of treatment comparison, acting as a confounding factor. For example, in the 

sciatica review non-invasive treatments were more likely to be used as initial treatments, and 

invasive treatments used after the failure of other treatments. However, the investigation of 

clinical heterogeneity within this approach can be used to assess whether treatment 

sequences need to be considered. This is dependent though on previous treatment, or 

positioning in the pathway, being clearly reported in the primary studies. Disease duration 

could potentially be used as proxy measure for the number of previous treatments used.  

iv. Meta-regression, or the combined use of network meta-analysis and meta-regression, to 

adjust for the previous treatment used (Section 5.5). This approach was not generally used 

for the sole purpose of evaluating treatment sequences, rather it was used to account for the 

heterogeneity within the meta-analysis. The covariate representing previous treatment was 

often dropped from the final analysis due to non-significant findings, but this may have been 

due to lack of power as previous treatment was often poorly reported in the primary studies. 

The initial covariates selected for evaluation sometimes included both previous treatment and 

disease duration, which are correlated, with the effect of one likely to be confounded by the 

other. There may be justification for the inclusion of both covariates in the meta-regression 

analysis. Meta-regression can be used to estimate the effect of previous treatment whilst 

adjusting for the effect of disease duration. 

v. Network meta-analysis based on multivariate analysis of both first and second-line 

treatments, as opposed to stratified analysis for first and second-line (Section 5.8). The 

biggest challenge here was developing an estimate of the correlation between the first and 

second-line treatment in order to conduct the analysis. Real world data from patient registries 

can potentially be used to provide this estimate. This approach was not developed for 

evaluating treatment sequences as such, but rather to evaluate the methods for incorporating 

real-world data in the evidence synthesis of second-line treatment. This included the issue of 

how to connect disconnected networks. The network meta-analysis did not directly compare 

first versus second-line treatment but provided estimates for all treatments in first and second-

line, by using the correlation between them to predict estimates in second-line (or first-line) 

where these estimates did not exist previously. 

vi. The development of a multiplication factor, which can be applied to the summary effect of a 

treatment used as first-line in order to represent its use at a later point in the pathway (Section 

5.6). The optimal approach for developing a multiplication factor is yet to be established. 

 

Treatment sequences were often represented within the economic model as a series of single 

treatments, each requiring a summary treatment effect estimate conditional on positioning in the 

treatment pathway (Chapter 6). The findings of the clinical evaluation within a health technology 
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assessment were generally used to inform the effectiveness of interventions used at a single decision 

point in the economic evaluation. The scarcity of data on sequencing effects meant that simplifying 

assumptions were often applied to the available data on discrete treatments. A novel coding scheme 

was developed based on all the simplifying assumptions made (Chapter 6), which can also be used to 

assess future models. The most common assumptions were that treatment effect is independent of 

positioning in the sequence, or that treatment effect is dependent on the number of previous 

treatments (treatment line), but independent of the type of treatments used. These assumptions were 

frequently not validated, nor their impact on the overall results assessed. The data sources used 

alongside the simplifying assumptions for treatments used beyond the decision point varied, even 

when considering the same decision problem and addressing the same evidence gap.  

 

A decision analytic model structure is generally kept as simple as possible in order to aid 

implementation, transparency, and understanding by decision makers.370 392 The advantages and 

disadvantages of different modelling approaches were reviewed whilst considering the structural 

complexity required by the clinical scenario, and the extent and type of treatment sequences being 

modelled (Chapter 7). The range of treatment sequencing decision problems investigated included: 

i. Identifying the optimum sequence 

ii. Adding a new drug to an established sequence 

iii. Comparing ‘step-up’ or ‘step-down’ treatment approaches 

iv. Comparing different treatments used at the same point within a sequence 

v. Evaluating a drug used at different points within a sequence 

vi. Comparing predefined sequences 

 

Examples of some of the additional attributes that were accounted for in the model structure included: 

i. Different treatment selection for patient subgroups 

ii. Reason for discontinuation impacts subsequent treatment 

iii. Some treatments administered for fixed period, others until failure 

iv. Early recurrence treated with a prior treatment 

v. Not all patients receive all treatments in the sequence 

vi. Variable time to quitting treatment 

vii. Duration of response differs with type, and treatment line 

viii. Fluctuating disease activity 

ix. Unpredictable nature of disease progression 

The absence of data was sometimes used as a justification for simplifying important issues. 

 

A wide range of modelling techniques were identified, which fall under three main headers:  

i. Cohort-based models (deterministic and stochastic decision trees, Markov, semi-Markov, 

partitioned survival) 

ii. Individual sampling models (state transition and discrete event simulation) 

iii. Open population-based models (discrete event simulation and Markov cohort) 



279 
 

No study systematically tested modelling approaches for treatment sequences. The most popular 

approach was a Markov cohort. Cohort models have the advantage of being simple and easy to 

implement. Examples of cohort models that were successfully adapted to accommodate additional 

complexity in the decision problem were identified, but these were no longer based on a simple 

structure, which impacts transparency and implementation. Individual sampling models are more 

sophisticated, better able to accommodate greater decision problem complexity, and provide more 

flexibility. However, they are likely to be more resource-intensive and less transparent. The discrete 

event simulation appeared the optimum approach in terms of intuitively modelling sequencing 

algorithms, computational efficacy, and ease of updating, but requires more extensive modelling 

skills, specialist software, and is data and time intensive. 

 

 

9.3 STRENGTHS AND LIMITATIONS OF THE RESEARCH 

This is the first review of methods to investigate the evaluation of treatment sequencing across all 

clinical scenarios, and to include both meta-analytic techniques and decision analytic modelling. It 

represents an extensive in-depth review of current methods used to evaluate the clinical effectiveness 

of treatment sequences, representing a broad and disparate area of research.  

 

Most of the included studies investigated methods for evaluating treatments for inflammatory arthritis 

or advanced cancer. It is unclear whether the clustering of included studies around these two chronic 

conditions was due to either of the following:  

i. The ‘information scent searching’ approach used, which also involved scanning the reference 

list of exiting reviews that tended to be limited to these conditions  

ii. The fact that these are the only conditions for which treatment sequencing has been explored 

in any depth  

I suspect that the latter is true, and that this has been influenced by the fact that NICE have 

highlighted the importance and challenge of investigating treatment sequencing for both inflammatory 

arthritis and advanced cancers. The review also identified other chronic conditions, such as 

depression, epilepsy, nerve pain, and viral infections e.g. immunodeficiency virus (HIV) and hepatitis, 

for which treatment sequencing is an important issue for informing clinical practice and decision 

making. 

 

The review of methods, and the related searches focused on studies that specifically aimed to 

evaluate treatment sequences, the vast majority of which were economic modelling studies. It also 

focused on treatment sequencing effects, and not costs. However, some of the included modelling 

studies reported that treatment sequences were modelled in order to reflect clinical practice and 

capture the downstream cost of subsequent treatment; some aimed to evaluate the cost-effectiveness 

of single treatments. A potential limitation of the review is that the searches, in particular those of the 

reference databases, may have missed some relevant studies that aimed to evaluate single 

treatments, but developed a model of treatment sequences in order to account for the downstream 
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cost of subsequent treatment. This is because their published title, abstract and indexing terms are 

unlikely to have included sequencing-related terms. In fact, this may have been one of the reasons 

why so many relevant modelling studies were identified via the hand search (Chapter 3, Figure 3.1), 

rather than the reference databases. Another potential contributing factor to this is that the reference 

database searches, completed in 2013, were not updated, whilst hand searching continued 

throughout the review process. New literature was also picked up during the writing process, and I am 

therefore fairly confident that no new methods were missed. The search strategy did not cover NICE 

single technology appraisals, as discussed in Chapter 4 (Section 4.5). However, it is unlikely that any 

health technology assessment or economic evaluation that did not specifically aim to compare 

treatment sequences used a novel method or one that is not covered by the included studies. The 

findings of the review of methods demonstrated that modelling studies focusing on the evaluation of 

single treatments tended to either ignore potential sequencing effects or only consider them in a 

simplistic way. This is corroborated by the findings of a published review of NICE appraisals 

evaluating treatment sequences, which did not identify any new methods not already included here.104 

This was discussed in more detail in Chapter 4, (Section 4.5) and Chapter 6 (Section 6.7.2). I come 

back to this in Section 9.4.3. 

 

The methodology review was based on objective and transparent methods. However, it was 

conducted by a single reviewer, and the data extraction was not checked for accuracy against the 

published papers. The review findings, and their translation into recommendations for practice in the 

framework, was subject to peer review by the multidisciplinary PhD supervisor panel. 

 

 

9.4 RECOMMENDATIONS FOR PRACTICE AND FUTURE RESEARCH 

9.4.1  Recommendations for policy and practice regarding health technology assessment of 

treatment sequences 

The recommendations for practice, in terms of implementing quantitative evidence synthesis methods 

for evaluating treatment sequences are incorporated in the framework presented in Chapter 8, which 

also includes recommendations for future development of the framework (Section 8.4).  

 

Health technology assessment is time and resource intensive, and there is increased pressure on 

both researchers and policy makers to expedite the process. The single technology appraisal, based 

on industry submission, is often used to this end, especially for making decisions on the use of new 

treatments (Chapter 4, Section 4.2). However, it is important that the clinical context within which 

these treatments will be used in practice is considered, including the availability of multiple 

treatments, with all treatments for chronic conditions being part of a treatment sequence. The 

evaluation of treatment sequences is likely to be more appropriate within a multiple technology 

appraisal and may also require the modelling of disease pathways. However, it may be unrealistic to 

consider extensive treatment sequences for the assessment of all new treatments or clinical 

conditions where multiple treatments are available. More research is needed to establish when it is 
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necessary to evaluate treatment sequences, and how best to make this decision. This is likely to be a 

condition-specific endeavour, but the methods will be relevant across different clinical scenarios.  

 

It is important that any proposed solutions, and the guidance provided in the framework for evaluating 

treatment sequences, are both practical and feasible within the proposed timeframe of a health 

technology assessment. However, it is also important that this does not result in the omission of 

important methods required for evaluating treatment sequences that are likely to be burdensome. For 

example, in a systematic review of multiple complex, multi-dimensional interventions, which are 

context-dependent, essential methods for identifying, accounting for, and communicating the added 

complexity in the interventions will be an added burden.402 404 Examples of such methods include the 

development of logic or conceptual models involving the entire research team and key stakeholders183 

400 402 404 (Chapter 7, Sections 7.4.6).  

 

The development of a complex decision model supported by an appropriate evidence base will be 

resource intensive. The importance of treatment sequences is increasingly recognised for many 

clinical and policy decisions, for example in the introduction of new targeted therapies for metastatic 

cancer (Appendix Volume I, Section C4).412 Therefore, there may be a need to consider moving away 

from a health technology process that is reliant on developing single use decision models.413 

However, this may require the commissioned model to be passed to another research team at a later 

date for further adaptations to address another technology appraisal. It is unclear how the single 

technology appraisal process, where the model is developed by industry, would fit in here (Chapter 7, 

Sections 7.4.7). However, some manufacturer evidence submissions to NICE include a model 

developed by an academic group. 

 

The simplistic assumptions regarding sequencing effects made by modelling studies are likely to 

result in significant uncertainty around the effectiveness and cost-effectiveness estimates, the impact 

of which is generally unknown (Chapter 7). This needs to be recognised in decision making, and 

further evaluated. As discussed in Section 9.3, economic evaluations of single treatments that also 

account for the downstream cost of subsequent treatments, which represent current practice, are 

likely to model treatment sequences in an overly simplified way. Furthermore, the most common 

simplifying assumption made by included modelling studies was that the efficacy of individual 

treatments were independent of positioning in the sequence. In other words, treatment sequencing 

effects are ignored. The use of the coding scheme for simplifying assumptions developed as part of 

the thesis (Chapter 6, Section 6.5.1) can help make this more explicit. This also highlights the need to 

establish the importance of accounting for treatment-sequencing effects, which is discussed further in 

the next section (9.4.2). Recommendations for practice relating to the simplifying assumptions made 

regarding treatment-sequencing effects within decision analytic modelling are presented in Chapter 6 

(Section 6.7.4). I also come back to this in Section 9.4.3. 
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There was little reference made within the existing research on the potential, or actual role, of 

incorporating patient perspectives into the evolution of treatment sequences. Further work is needed 

to develop the optimal approach for involving members of the public in health technology assessment 

of treatment sequences, especially beyond that of helping to define the research question during the 

scoping stage (Chapter 8, Section 8.4). 

 

9.4.2  Assessing the need to account for treatment sequencing effects and implications for 

future research 

There is a need for more research to assess the importance of accounting for treatment sequences, 

and the full impact of not doing so. However, the limited evidence base makes this very difficult. A 

closely related issue is the need to test the validity of making the simplifying assumption of treatment 

independence within a decision model, which I come back to in Section 9.4.3. The comparison of 

existing RCTs of treatment sequences with RCTs of the matching single treatments may provide 

some useful information, but the limited available sequencing studies will be problematic. 

Mathematical simulation methods may aid the exploration of the presence and size of a sequencing 

effect, as they could be used to develop the evidence base for a potential ‘ideal’ treatment sequence 

for comparison. Datasets such as Archimedes or patient registries could similarly be used to simulate 

a treatment sequencing RCT.95 356 The extent of the interaction between individual treatments, when 

used as part of a sequence, could also be explored using a model-based network meta-analysis 

(discussed in Chapter 5, Section 5.5.3), which is generally used for modelling treatments used at 

different dosages.206 The interaction between individual treatments could be explored using RCTs 

comparing the simultaneous administration of combination therapy with sequential administration of 

the same treatments.206 414 However, an important consideration here is that treatment sequences, 

unlike combination therapy, are not fixed, with the duration of each treatment and the choice of 

subsequent treatments depending on various factors. This was discussed in Chapter 1 (Sections 1.2 

and 1.5.1) and Chapter 3 (Section 3.4.3). The interaction between individual treatments can also be 

explored using a component-based network meta-analysis, which is increasingly being used for 

synthesising complex interventions61 336 (discussed in Chapter 5, Section 5.9.10.3). This approach is 

used to assess whether the individual components of the complex intervention interact or not. 

However, this approach does not account for the time course of treatment sequences, or the fact that 

that the choice of the subsequent treatment is dependent on the impact of the previous one. 

 

9.4.3  Recommendations for practice and research for decision modelling and the use of 

simplifying assumptions 

Decision modelling studies generally considered a limited number of predefined sequences, usually 

selected based on clinical guidelines or expert opinion. The extent of the treatment sequences being 

investigated was sometimes chosen based on the available data. Further work is needed to ascertain 

how best to identify relevant sequences and the number of treatment lines to be considered in the 

model.   
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Due to the scarcity of data, many modelling studies applied simplifying assumptions to the available 

data on discrete treatments used at a single point in the pathway. A coding scheme for all possible 

assumptions was developed, providing a unique resource. The use of simplifying assumptions and 

the presence of important gaps in the evidence base may mean that some sequencing models will not 

be correct, but they may still be more accurate than not incorporating sequences within the model. 

More research is needed to test this.  

 

The application of simplifying assumptions to the available evidence in order to represent treatment 

sequencing effects within a decision model results in structural uncertainty, which are generally 

explored using scenario analysis347 (Chapter 6, Section 6.2.2). Further research is needed to develop 

methods for selecting the most credible scenario for evaluating treatment sequences. Further 

research is also needed to identify the most applicable method for assessing the robustness and 

validity of the simplifying assumptions used, especially when the relevant data are not available. The 

reasons for selecting certain data sources in preference to others need to be justified. This should 

ideally be planned from the outset of the health technology assessment and be part of the clinical 

evaluation. There is also a need for more research to determine how best to test the validity of making 

the simplifying assumption of treatment independence (introduced in Section 9.4.2). This is especially 

true when the available evidence is limited to a single RCT for each treatment or RCTs of first-line 

treatments as, for example, in the modelling studies of new anti-epileptic drugs.18 276 The issue and 

methods of assessing the validity of simplifying assumptions made regarding treatment sequences is 

discussed further in Chapter 6 (Section 6.7.3), and the external validity of a treatment sequencing 

model in Chapter 7 (Section 7.4.4). 

 

The coding scheme for simplifying assumptions has the potential to be an important tool for clarifying 

the extent to which treatment sequencing effects have been accounted for within a decision model. 

Further research is needed to test whether this scheme is comprehensive. The coding scheme was 

developed with the intention for it to be applied to a model of any clinical condition. More research is 

needed to identify any additional simplifying assumptions that are only applicable to specific clinical 

scenarios. One approach to further develop the coding scheme and test its comprehensiveness would 

be to apply the coding scheme to all NICE single technology appraisals conducted in the last decade. 

This would also provide useful information on the extent to which industry submissions have 

accounted for treatment sequencing effects, and whether this has changed over time or differs across 

clinical conditions. 

 

9.4.4  Recommendations for practice and future research for meta-analytic methods 

There have been some great advances in multi-parameter evidence synthesis methods in recent 

years, especially in terms of incorporating multiple treatments.59 164 However, although these methods 

are continually evolving, none have been adapted to develop sequence-specific effect estimates. 

Network meta-analysis has evolved in response to the need for decision making to account for the 

multiple treatments that are available in practice. There appears to be slow but increasing recognition, 
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based on the findings of the review of modelling studies, that decision making also needs to account 

for the use of these treatments used as part of a sequence. However, the advances in evidence 

synthesis methods have yet to reflect this, with more focus currently being placed on identifying the 

reasons for heterogeneity within the evaluation of discrete treatments. Further research work is 

needed to identify how best to develop a summary treatment effect of an intervention that is 

conditional on the previous treatment being ineffective or partially effective, or the evaluation of whole 

sequences. The lack of advances in meta-analytic methods for evaluating treatment sequences is 

also likely to be a reflection of the fact that the primary research is still mainly focused on the 

evaluation of single treatments. This is discussed further in Section 9.4.5. 

 

The review findings demonstrated that, in most cases, treatment sequences represent complex, 

multifaceted, dynamic interventions, which will require advanced methods of quantitative evidence 

synthesis, especially if evaluated using a ‘one-step-at-a-time’ approach. It may not initially be feasible 

to account for all the complexity involved in either future meta-analytic techniques or decision analytic 

modelling, even if a perfect evidence base was available. For example, conditional effect estimates 

may need to account for the impact of both the immediate prior and other previous treatments, the 

reason for discontinuation including non-adherence, time on treatment, the duration of benefit or loss 

of effectiveness over time, evolving disease, and patient-specific prognostic factors that may impact 

clinical effectiveness. It may be possible to develop a novel method, based on the adaptation of 

current methods, which accounts for some of this complexity in the first instance. The methods that 

could potentially be further developed are discussed in Chapters 2 (Section 2.8) and 5 (Section 

5.9.10). It is unlikely that a single method would suffice, and a range of solutions could evolve as 

better data, computing ability, and researcher skills and experience emerge over time. My research 

provides an important first stage in developing the methods to evaluate treatment sequencing. An 

ongoing review of methods will likely be required to maintain the framework to guide the 

implementation of these methods. In the meantime, there is also a need to establish which elements 

are the most impactful and thus need to be accounted for in the present. This is likely to vary 

depending on the clinical condition and type of decision problem or research question being 

considered. The conceptual or logic model discussed in Chapter 7, Section 7.4.6 will provide a useful 

tool here, which can be used to ‘think through’ the multiple components of the complex intervention in 

context, enhance the transparency of underlying assumptions, and assist in communication, both 

within the review team and with a range of stakeholders including patients and public.404  

 

An important limitation for performing a meta-analysis of whole sequences was the lack of available 

trials. Two types of RCT designs were identified for evaluating treatment sequences, depending on 

whether they aimed to compare pre-defined (static) or adaptive treatment sequences (Appendix 

Volume I, Section B). This included the sequential multiple assignment randomised trial (SMART) 

design, which is a relatively new and innovative trial design created to inform the development and 

optimisation of time-varying adaptive or dynamic treatment regimens (Appendix Volume I, Section 

B2).415-417. I come back to the SMART design in Section 9.4.5. The availability of multiple sequencing 
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studies for evaluating each specific sequence of interest within a health technology assessment is 

unlikely. A more realistic scenario would be a need to conduct a synthesis of prospective sequencing 

trials, including both SMART and RCTs of predefined sequences (Appendix Volume I, Section B1), 

and non-randomised studies of specific sequences. In other words, the evidence synthesis would 

need to consider the inclusion of diverse study designs. Data from RCTs of single treatments may 

also be required. Furthermore, the analysis of the data from a single time-varying SMART design is 

challenging and not straightforward.16 418 A synthesis of the data from multiple SMART studies will 

therefore be even more complicated; although no such meta-analyses were identified. 

 

Further research is needed: 

i. To identify the best way to conduct a meta-analysis of multiple SMART trials 

ii. To decide how best to meta-analyse data from both SMART and RCTs of predefined 

sequences (Appendix Volume I, Section B), and whether it is feasible to also incorporate 

studies of singe treatments within the same analysis 

iii. To evaluate how recent adaptations of network meta-analyses methods (e.g. multivariate 

meta-analysis to incorporate multiple outcome measures or follow-up intervals, or bias-

adjustment methods to incorporate observational studies) can be used to improve the 

scope of the available evidence base for analysing treatment sequences. This is likely to 

differ according to the clinical scenario 

iv. To identify how best to incorporate data from RCTs and non-randomised studies in the 

same network meta-analysis of treatment sequences    

v. To identify how best to adjust for the biases that are important for the evaluation of 

treatment sequences 

vi. To ascertain what methods should be used to adjust for the potential biases relevant to 

using non-randomised studies to inform treatment sequences 

vii. To ascertain whether disease duration and previous treatments are independent 

predictors of treatment response for clinical scenarios where treatment sequences is 

considered important, e.g. the treatment of rheumatoid arthritis 

viii. To identify the best method of estimating and testing modifying factors. Any proposed 

methods will need to take into account the fact that the evidence available for developing 

them is likely to be limited 

 

9.4.5  Recommendations for future practice and research regarding primary studies 

The review findings demonstrated that the main challenge for evaluating treatment sequences was 

the limitations and poor reporting of primary studies. 

 

9.4.5.1  Recommendations relating the design of primary research 

There is a need for more good quality primary studies of treatments sequences. However, this will 

require the development and use of innovative, efficient, and adaptive study designs. The SMART 

design provides a good example of this but does not represent a definitive trial. In many instances a 
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large number of treatment sequences are likely to be feasible for evaluation, which can soon become 

outdated as new treatments become available. The SMART design provides a robust approach for 

developing and selecting treatment sequences for evaluation in a definitive trial.  

 

There is also ongoing research on developing adaptive trial designs to make RCTs more efficient,107 

419 which could also potentially inform the evaluation of treatment sequences. A description of the 

adaptive trial designs is provided in Appendix Volume I (Section B). Common adaptations made 

during the implementation of adaptive designs, based on interim analysis include:107 419 

i. Adding or dropping treatment arms  

ii. Changes to the required sample size to ensure sufficient power 

iii. Changes to the allocation ratio to ensure more patients receive the superior treatment 

iv. Refinement of the existing study population according to their predictive biomarkers 

(enrichment)  

v. Transition directly from one trial phase to another 

There may be scope for applying some of these methods to expedite the SMART design, for example 

the capability of adding new treatments or dropping inefficient treatment arms. The adaptive trial 

designs can also potentially be further developed for evaluating treatment sequences, for example by 

making adaptations based on the interim analysis to identify whether participants are responding to 

an initial treatment. The adaptive trial design has become especially appealing in the development 

and evaluation of biological-directed therapies, also referred to as personalised medicine420 (Chapter 

1, Section 1.7). They are able to simultaneously evaluate both multiple treatments and biomarkers in 

heterogeneous patient populations.107 421 They could potentially be further adapted to evaluate 

multiple treatments in a patient population that is heterogeneous due to previous treatments, rather 

than due to the heterogenetic nature of tumours of the same site and stage. Further research is 

needed to explore these issues in more detail. The N-of-1 trial is also used to inform personalised 

medicine.110 Further research is also needed to evaluate the potential of using the N-of-1 trial design 

for evaluating treatment sequences.  

 

The study design and the available evidence base for evaluating new treatments are often driven by 

the requirements of the regulatory authorises for licencing purposes rather than the need to develop 

evidence to facilitate the selection of the most effective treatment31 422 (Chapter 1, Section 1.3.2). The 

evidence requirements and optimal study design for regulatory approval does not always translate 

into suitable data for reimbursement decisions. The findings of my research demonstrated that 

primary research tends to focus on the evaluation of single treatments at a defined point in the 

pathway (Chapter 6, Section 6.6). The lack of data on the effectiveness of these treatments when 

used at another point in the pathway is a barrier to making policy decisions about the optimal 

positioning of new treatments or treatment sequences. The focus of primary research on single 

treatment is unlikely to change unless the regulatory authorities specify the importance of treatment 

sequencing or optimal positioning of new treatments. Technology appraisal plays a significant role in 

opening or closing market access for many new treatments, and the relevancy of the of the data 
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submitted by industry to health technology assessment agencies is consistently increasing.32 423 The 

reimbursement agencies and health technology assessment bodies are also becoming increasingly 

well placed to make recommendations on the nature of the clinical evidence required to inform 

treatment sequences. This in turn is relates to the recommendations for research in Section 9.4.2. 

 

9.4.5.2  Recommendations relating the reporting of primary research 

There is a need for better reporting on previous and subsequent treatments by primary studies of 

single treatments. An increased recognition of the importance of treatment sequencing for many 

policy decisions may provide more impetus for the demand for improved reporting. This needs to 

include: 

i. The reporting of specific previous treatments and their duration, as well as the reasons for 

treatment discontinuation and the timing 

ii.  The reporting of specific subsequent treatments in studies that evaluate long-term outcomes 

or survival associated with single treatments 

The availability of individual patient level data from primary studies, including both randomised and 

non-randomised studies, would greatly enhance both the development and implementation of future 

methods. This was discussed in Chapter 1 (Section 1.4.1) and Chapter 5 (Section5.5.3). There is 

already some impetus for improved access to this type of individual level data for quantitative 

evidence synthesis methods in general.74 75 However, better reporting of previous (and subsequent) 

treatments is still needed to make this type of data useful for informing treatment sequences. 

 

9.4.6  Recommendations for future practice and research regarding patient registries  

Real world patient registries of high quality and validity are likely to provide an important source of 

data on treatment sequencing effects, although methods are still required to adjust these effects in 

order to account for any potential bias.45 59 333 424 The use of linked databases, or ‘big data’, are likely 

to further enhance their use.43 44 

 

Patient registries provided an important data source for treatment sequencing effects used in 

economic modelling studies included in the review of methods (Chapter 6-7). However, important 

gaps and limitations for informing treatment sequencing effects still existed in terms of matching the 

treatments used in practice, with previous treatments often reported as a class rather than individual 

treatments (Chapter 7). This was true even when the modelling studies had access to individual 

patient level data.225 248 251 273 274 Patient registries are often set up to monitor the potential long-term 

effects and adverse effects of new treatments, such as biological agents for rheumatoid arthritis425 

(Appendix Volume I, Section C3.3). It would be beneficial to consider the type of data that is required 

for evaluating treatment sequences during the development and planning stages of these registries. 

An increased recognition of the importance of treatment sequences would likely improve this. It is also 

important that the data from National patient registries (such as those listed in the Appendix Volume I, 

Section C3.3) are made available to researchers, including individual-patient level data. 
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More research is also needed to inform the optimum methods for evaluating registry, or big data, to 

inform treatment sequencing effects. The methods developed to evaluate SMART trials, such as Q-

learning (Appendix Volume I, Section B2),16 418 may be useful here. The thesis focused on the use of 

secondary analysis and did not consider methods for evaluating primary data. The continual 

improvement of the processing power of computers, ongoing developments in statistics, artificial 

intelligence and machine learning methods, and related research initiatives such as Archimedes 

(Chapter 1, Section 1.4.2 and Chapter 7, Section 7.4.8) may be useful here. The methods used for 

developing computational prediction models of cancer patients’ response to therapies based on the 

analysis of multiple types of genome-wide molecular data in order to support personalised medicine426 

(Chapter 1, Section 1.7) may also be useful. A future review of these methods may be required to 

inform practice.  

 

Further work may also be needed to ascertain whether a better summary estimate of the clinical 

effectiveness to inform the economic model may be obtained from the evaluation of treatment 

sequences based on a single linked ‘big’ data source rather than a meta-analysis of multiple studies 

(Section 9.4.4). The specific limitations and biases inherent within observational studies for evaluating 

treatment sequences, including missing and inaccurate data are listed in Chapter 5 (Section 5.9.9). 

The generic limitations associated with this type of data are also discussed in the Appendix Volume I 

(Section A).  

 

An alternative approach to obtaining a summary estimate of the clinical effectiveness when no 

relevant RCTs of treatment sequences exist is to use the observational data to emulate an RCT 

(Chapter 6, Section 6.7.3).356 Target trial emulation involves the application of design principles from 

randomised trials to the analysis of data from large observational studies (big data) in order to make 

causal inferences.427 The targeted trial design emulated using observational data is typically a 

pragmatic RCT, as it is not usually possible to emulate blinding.327 427 If the emulation is successful 

the analysis of the observational data would yield the same effect estimate, except for random 

variability, as the target trial if it had been conducted.327 However, it is acknowledged that it is not 

possible to emulate the ideal trial and a number of compromises will have to be made, for example 

there may be a need to choose alternative inclusion criteria due to the type of data capture, the 

intervention may not be sufficiently defined, or it is not possible to measure enough baseline 

confounding to emulate random assignment.327 427 Hernan and Robins outline a framework for 

comparative effectiveness research using big data that makes the target trial explicit, provides a 

structured process for the criticism of observational studies, and helps avoid common methodologic 

pitfalls.327 The authors also acknowledge the need for the observational databases to have passed 

through many high quality validation studies.327 Hernan and Robins also argue that using an explicit 

target trial approach has the advantages of improving the quality of the big data, such as patient 

registries, and can be used to articulate a compelling rational to modify data structuring and recording 

practices.327 They also note that in order to maximise the benefits of big data for making causal 
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inferences, this explicit target trial approach needs to be used in combination with subject matter 

expertise, epidemiological and methodological proficiency, and innovative computer science tools.327 

 

 

9.5 CONCLUSIONS 

The use of appropriate quantitative evidence synthesis of treatment sequencing is essential for 

informing policy and clinical decision making. The thesis provides a state of the art overview of current 

practices in conducting quantitative evidence synthesis of treatment sequences. It included a series of 

integrated literature reviews and meta-analyses that contributed to the development of a novel 

framework that provides guidance for commissioners, producers, and users of health technology 

assessment (or similar process), for the evaluation of treatment sequences to inform policy and 

clinical decision making. The findings of the integrated literature reviews provide important information 

on when and how to account for treatment sequences, describe the main challenges of doing so, and 

identify key gaps in the evidence base. The thesis also provides important ground work for developing 

future meta-analytic or decision analytic methods for evaluating treatment sequences. Further 

research work involving the wider community of stakeholders is now required to further develop the 

framework, and make recommendations that are condition specific. Further work is also needed to 

ascertain the importance of considering treatment sequencing within the evaluation of the evidence 

and decision making. 
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