248,006 research outputs found

    Foundations and modelling of dynamic networks using Dynamic Graph Neural Networks: A survey

    Full text link
    Dynamic networks are used in a wide range of fields, including social network analysis, recommender systems, and epidemiology. Representing complex networks as structures changing over time allow network models to leverage not only structural but also temporal patterns. However, as dynamic network literature stems from diverse fields and makes use of inconsistent terminology, it is challenging to navigate. Meanwhile, graph neural networks (GNNs) have gained a lot of attention in recent years for their ability to perform well on a range of network science tasks, such as link prediction and node classification. Despite the popularity of graph neural networks and the proven benefits of dynamic network models, there has been little focus on graph neural networks for dynamic networks. To address the challenges resulting from the fact that this research crosses diverse fields as well as to survey dynamic graph neural networks, this work is split into two main parts. First, to address the ambiguity of the dynamic network terminology we establish a foundation of dynamic networks with consistent, detailed terminology and notation. Second, we present a comprehensive survey of dynamic graph neural network models using the proposed terminologyComment: 28 pages, 9 figures, 8 table

    Approximate IPA: Trading Unbiasedness for Simplicity

    Full text link
    When Perturbation Analysis (PA) yields unbiased sensitivity estimators for expected-value performance functions in discrete event dynamic systems, it can be used for performance optimization of those functions. However, when PA is known to be unbiased, the complexity of its estimators often does not scale with the system's size. The purpose of this paper is to suggest an alternative approach to optimization which balances precision with computing efforts by trading off complicated, unbiased PA estimators for simple, biased approximate estimators. Furthermore, we provide guidelines for developing such estimators, that are largely based on the Stochastic Flow Modeling framework. We suggest that if the relative error (or bias) is not too large, then optimization algorithms such as stochastic approximation converge to a (local) minimum just like in the case where no approximation is used. We apply this approach to an example of balancing loss with buffer-cost in a finite-buffer queue, and prove a crucial upper bound on the relative error. This paper presents the initial study of the proposed approach, and we believe that if the idea gains traction then it may lead to a significant expansion of the scope of PA in optimization of discrete event systems.Comment: 8 pages, 8 figure

    Dynamic state reconciliation and model-based fault detection for chemical processes

    Get PDF
    In this paper, we present a method for the fault detection based on the residual generation. The main idea is to reconstruct the outputs of the system from the measurements using the extended Kalman filter. The estimations are compared to the values of the reference model and so, deviations are interpreted as possible faults. The reference model is simulated by the dynamic hybrid simulator, PrODHyS. The use of this method is illustrated through an application in the field of chemical processe

    Real-time and Probabilistic Temporal Logics: An Overview

    Full text link
    Over the last two decades, there has been an extensive study on logical formalisms for specifying and verifying real-time systems. Temporal logics have been an important research subject within this direction. Although numerous logics have been introduced for the formal specification of real-time and complex systems, an up to date comprehensive analysis of these logics does not exist in the literature. In this paper we analyse real-time and probabilistic temporal logics which have been widely used in this field. We extrapolate the notions of decidability, axiomatizability, expressiveness, model checking, etc. for each logic analysed. We also provide a comparison of features of the temporal logics discussed

    Integration of an object formalism within a hybrid dynamic simulation environment

    Get PDF
    PrODHyS is a general object-oriented environment which provides common and reusable components designed for the development and the management of dynamic simulation of systems engineering. Its major characteristic is its ability to simulate processes described by a hybrid model. In this framework, this paper focuses on the "Object Differential Petri Net" (ODPN) formalism integrated within PrODHyS. The use of this formalism is illustrated through a didactic example relating to the field of Chemical Process System Engineering (PSE)

    Length scale dependence of dynamical heterogeneity in a colloidal fractal gel

    Full text link
    We use time-resolved dynamic light scattering to investigate the slow dynamics of a colloidal gel. The final decay of the average intensity autocorrelation function is well described by g_2(q,τ)1exp[(τ/τ_f)p]g\_2(q,\tau)-1 \sim \exp[-(\tau/\tau\_\mathrm{f})^p], with τ_fq1\tau\_\mathrm{f} \sim q^{-1} and pp decreasing from 1.5 to 1 with increasing qq. We show that the dynamics is not due to a continuous ballistic process, as proposed in previous works, but rather to rare, intermittent rearrangements. We quantify the dynamical fluctuations resulting from intermittency by means of the variance χ(τ,q)\chi(\tau,q) of the instantaneous autocorrelation function, the analogous of the dynamical susceptibility χ_4\chi\_4 studied in glass formers. The amplitude of χ\chi is found to grow linearly with qq. We propose a simple --yet general-- model of intermittent dynamics that accounts for the qq dependence of both the average correlation functions and χ\chi.Comment: Revised and improved, to appear in Europhys. Let

    A Survey on Continuous Time Computations

    Full text link
    We provide an overview of theories of continuous time computation. These theories allow us to understand both the hardness of questions related to continuous time dynamical systems and the computational power of continuous time analog models. We survey the existing models, summarizing results, and point to relevant references in the literature

    Integration of a failure monitoring within a hybrid dynamic simulation environment

    Get PDF
    The complexity and the size of the industrial chemical processes induce the monitoring of a growing number of process variables. Their knowledge is generally based on the measurements of system variables and on the physico-chemical models of the process. Nevertheless this information is imprecise because of process and measurement noise. So the research ways aim at developing new and more powerful techniques for the detection of process fault. In this work, we present a method for the fault detection based on the comparison between the real system and the reference model evolution generated by the extended Kalman filter. The reference model is simulated by the dynamic hybrid simulator, PrODHyS. It is a general object-oriented environment which provides common and reusable components designed for the development and the management of dynamic simulation of industrial systems. The use of this method is illustrated through a didactic example relating to the field of Chemical Process System Engineering
    corecore