1,446 research outputs found

    Declarative techniques for modeling and mining business processes..

    Get PDF
    Organisaties worden vandaag de dag geconfronteerd met een schijnbare tegenstelling. Hoewel ze aan de ene kant veel geld geïnvesteerd hebben in informatiesystemen die hun bedrijfsprocessen automatiseren, lijken ze hierdoor minder in staat om een goed inzicht te krijgen in het verloop van deze processen. Een gebrekkig inzicht in de bedrijfsprocessen bedreigt hun flexibiliteit en conformiteit. Flexibiliteit is belangrijk, omdat organisaties door continu wijzigende marktomstandigheden gedwongen worden hun bedrijfsprocessen snel en soepel aan te passen. Daarnaast moeten organisaties ook kunnen garanderen dan hun bedrijfsvoering conform is aan de wetten, richtlijnen, en normen die hun opgelegd worden. Schandalen zoals de recent aan het licht gekomen fraude bij de Franse bank Société Générale toont het belang aan van conformiteit en flexibiliteit. Door het afleveren van valse bewijsstukken en het omzeilen van vaste controlemomenten, kon één effectenhandelaar een risicoloze arbitragehandel op prijsverschillen in futures omtoveren tot een risicovolle, speculatieve handel in deze financiële derivaten. De niet-ingedekte, niet-geautoriseerde posities bleven lange tijd verborgen door een gebrekkige interne controle, en tekortkomingen in de IT beveiliging en toegangscontrole. Om deze fraude in de toekomst te voorkomen, is het in de eerste plaats noodzakelijk om inzicht te verkrijgen in de operationele processen van de bank en de hieraan gerelateerde controleprocessen. In deze tekst behandelen we twee benaderingen die gebruikt kunnen worden om het inzicht in de bedrijfsprocessen te verhogen: procesmodellering en procesontginning. In het onderzoek is getracht technieken te ontwikkelen voor procesmodellering en procesontginning die declaratief zijn. Procesmodellering process modeling is de manuele constructie van een formeel model dat een relevant aspect van een bedrijfsproces beschrijft op basis van informatie die grotendeels verworven is uit interviews. Procesmodellen moeten adequate informatie te verschaffen over de bedrijfsprocessen om zinvol te kunnen worden gebruikt bij hun ontwerp, implementatie, uitvoering, en analyse. De uitdaging bestaat erin om nieuwe talen voor procesmodellering te ontwikkelen die adequate informatie verschaffen om deze doelstelling realiseren. Declaratieve procestalen maken de informatie omtrent bedrijfsbekommernissen expliciet. We karakteriseren en motiveren declaratieve procestalen, en nemen we een aantal bestaande technieken onder de loep. Voorts introduceren we een veralgemenend raamwerk voor declaratieve procesmodellering waarbinnen bestaande procestalen gepositioneerd kunnen worden. Dit raamwerk heet het EM-BrA�CE raamwerk, en staat voor `Enterprise Modeling using Business Rules, Agents, Activities, Concepts and Events'. Het bestaat uit een formele ontolgie en een formeel uitvoeringsmodel. Dit raamwerk legt de ontologische basis voor de talen en technieken die verder in het doctoraat ontwikkeld worden. Procesontginning process mining is de automatische constructie van een procesmodel op basis van de zogenaamde event logs uit informatiesystemen. Vandaag de dag worden heel wat processen door informatiesystemen in event logs geregistreerd. In event logs vindt men in chronologische volgorde terug wie, wanneer, welke activiteit verricht heeft. De analyse van event logs kan een accuraat beeld opleveren van wat er zich in werkelijkheid afspeelt binnen een organisatie. Om bruikbaar te zijn, moeten de ontgonnen procesmodellen voldoen aan criteria zoals accuraatheid, verstaanbaarheid, en justifieerbaarheid. Bestaande technieken voor procesontginning focussen vooral op het eerste criterium: accuraatheid. Declaratieve technieken voor procesontginning richten zich ook op de verstaanbaarheid en justifieerbaarheid van de ontgonnen modellen. Declaratieve technieken voor procesontginning zijn meer verstaanbaar omdat ze pogen procesmodellen voor te stellen aan de hand van declaratieve voorstellingsvormen. Daarenboven verhogen declaratieve technieken de justifieerbaarheid van de ontgonnen modellen. Dit komt omdat deze technieken toelaten de apriori kennis, inductieve bias, en taal bias van een leeralgoritme in te stellen. Inductief logisch programmeren (ILP) is een leertechniek die inherent declaratief is. In de tekst tonen we hoe proces mining voorgesteld kan worden als een ILP classificatieprobleem, dat de logische voorwaarden leert waaronder gebeurtenis plaats vindt (positief event) of niet plaatsvindt (een negatief event). Vele event logs bevatten van nature geen negatieve events die aangeven dat een bepaalde activiteit niet kon plaatsvinden. Om aan dit probleem tegemoet te komen, beschrijven we een techniek om artificiële negatieve events te genereren, genaamd AGNEs (process discovery by Artificially Generated Negative Events). De generatie van artificiële negatieve events komt neer op een configureerbare inductieve bias. De AGNEs techniek is geïmplementeerd als een mining plugin in het ProM raamwerk. Door process discovery voor te stellen als een eerste-orde classificatieprobleem op event logs met artificiële negatieve events, kunnen de traditionele metrieken voor het kwantificeren van precisie (precision) en volledigheid (recall) toegepast worden voor het kwantificeren van de precisie en volledigheid van een procesmodel ten opzicht van een event log. In de tekst stellen we twee nieuwe metrieken voor. Deze nieuwe metrieken, in combinatie met bestaande metrieken, werden gebruikt voor een uitgebreide evaluatie van de AGNEs techniek voor process discovery in zowel een experimentele als een praktijkopstelling.

    Applying Process Mining Algorithms in the Context of Data Collection Scenarios

    Get PDF
    Despite the technological progress, paper-based questionnaires are still widely used to collect data in many application domains like education, healthcare or psychology. To facilitate the enormous amount of work involved in collecting, evaluating and analyzing this data, a system enabling process-driven data collection was developed. Based on generic tools, a process-driven approach for creating, processing and analyzing questionnaires was realized, in which a questionnaire is defined in terms of a process model. Due to this characteristic, process mining algorithms may be applied to event logs created during the execution of questionnaires. Moreover, new data that might not have been used in the context of questionnaires before may be collected and analyzed to provide new insights in regard to both the participant and the questionnaire. This thesis shows that process mining algorithms may be applied successfully to process-oriented questionnaires. Algorithms from the three process mining forms of process discovery, conformance checking and enhancement are applied and used for various analysis. The analysis of certain properties of discovered process models leads to new ways of generating information from questionnaires. Different techniques for conformance checking and their applicability in the context of questionnaires are evaluated. Furthermore, new data that cannot be collected from paper-based questionnaires is used to enhance questionnaires to reveal new and meaningful relationships

    Mining complete, precise and simple process models

    Get PDF
    Process discovery algorithms are generally used to discover the underlying process that has been followed to achieve an objective. In general, these algorithms do not take into account any domain knowledge to derive process models, allowing to apply them in a general manner. However, depending on the selected approach, a different kind of process models can be discovered, as each technique has its strengths and weaknesses, e.g., the expressiveness of the used notation. Hence, it is important to take into account the requirements of the domain when deciding which algorithm to use, as the correct assumptions can lead to richer process models. For instance, among the different domains of application of process mining we can identify several fields that share an interesting requirement about the discovered process models. In security audits, discovered processes have to fulfill strict requisites. This means that the process model should reproduce as much behavior as possible; otherwise some violations may go undetected (replay fitness). On the other hand, in order to avoid false positives, process models should reproduce only the recorded behavior (precision). Finally, process models should be easily readable to better detect deviations (simplicity). Another clear example concerns the educational domain, as in order to be of value for both teachers and learners, a discovered learning process should satisfy the aforementioned requirements. That is, to guarantee feasible and correct evaluations, teachers need to access to all the activities performed by learners, thereby the learning process should be able to reproduce as much behavior as possible (replay fitness). Furthermore, the learning process should focus on the recorded behavior seen in the event log (precision), i.e., show only what the students did, and not what they might have done, while being easily interpretable by the teachers (simplicity). One of the previous requirements is related to the readability of process models: simplicity. In process mining, one of the identified challenges is the appropriate visualization of process models, i.e., to present the results of process discovery in such a way that people actually gain insights about the process. Process models that are unnecessary complex can hinder the real behavior of the process rather than to provide an intuition of what is really happening in an organization. However, achieving a good level of readability is not always straightforward, for instance, due the used representation. Within the different approaches focused to reduce the complexity of a process model, the interest in this PhD Thesis relies on two techniques. On the one hand, to improve the readability of an already discovered process model through the inclusion of duplicate labels. On the other hand, the hierarchization of a process model, i.e., to provide a well known structure to the process model. However, regarding the latter, this technique requires to take into account domain knowledge, as different domains may rely on different requirements when improving the readability of the process model. In other words, in order to improve the interpretability and understandability of a process model, the hierarchization has to be driven by the domain. To sum up, concerning the aim of this PhD Thesis, we can identify two main topics of interest. On the one hand, we are interested in retrieving process models that reproduce as much behavior recorded in the log as possible, without introducing unseen behavior. On the other hand, we try to reduce the complexity of the mined models in order to improve their readability. Hence, the aim of this PhD Thesis is to discover process models considering replay fitness, precision and simplicity, while paying special attention in retrieving highly interpretable process models

    Process mining : conformance and extension

    Get PDF
    Today’s business processes are realized by a complex sequence of tasks that are performed throughout an organization, often involving people from different departments and multiple IT systems. For example, an insurance company has a process to handle insurance claims for their clients, and a hospital has processes to diagnose and treat patients. Because there are many activities performed by different people throughout the organization, there is a lack of transparency about how exactly these processes are executed. However, understanding the process reality (the "as is" process) is the first necessary step to save cost, increase quality, or ensure compliance. The field of process mining aims to assist in creating process transparency by automatically analyzing processes based on existing IT data. Most processes are supported by IT systems nowadays. For example, Enterprise Resource Planning (ERP) systems such as SAP log all transaction information, and Customer Relationship Management (CRM) systems are used to keep track of all interactions with customers. Process mining techniques use these low-level log data (so-called event logs) to automatically generate process maps that visualize the process reality from different perspectives. For example, it is possible to automatically create process models that describe the causal dependencies between activities in the process. So far, process mining research has mostly focused on the discovery aspect (i.e., the extraction of models from event logs). This dissertation broadens the field of process mining to include the aspect of conformance and extension. Conformance aims at the detection of deviations from documented procedures by comparing the real process (as recorded in the event log) with an existing model that describes the assumed or intended process. Conformance is relevant for two reasons: 1. Most organizations document their processes in some form. For example, process models are created manually to understand and improve the process, comply with regulations, or for certification purposes. In the presence of existing models, it is often more important to point out the deviations from these existing models than to discover completely new models. Discrepancies emerge because business processes change, or because the models did not accurately reflect the real process in the first place (due to the manual and subjective creation of these models). If the existing models do not correspond to the actual processes, then they have little value. 2. Automatically discovered process models typically do not completely "fit" the event logs from which they were created. These discrepancies are due to noise and/or limitations of the used discovery techniques. Furthermore, in the context of complex and diverse process environments the discovered models often need to be simplified to obtain useful insights. Therefore, it is crucial to be able to check how much a discovered process model actually represents the real process. Conformance techniques can be used to quantify the representativeness of a mined model before drawing further conclusions. They thus constitute an important quality measurement to effectively use process discovery techniques in a practical setting. Once one is confident in the quality of an existing or discovered model, extension aims at the enrichment of these models by the integration of additional characteristics such as time, cost, or resource utilization. By extracting aditional information from an event log and projecting it onto an existing model, bottlenecks can be highlighted and correlations with other process perspectives can be identified. Such an integrated view on the process is needed to understand root causes for potential problems and actually make process improvements. Furthermore, extension techniques can be used to create integrated simulation models from event logs that resemble the real process more closely than manually created simulation models. In Part II of this thesis, we provide a comprehensive framework for the conformance checking of process models. First, we identify the evaluation dimensions fitness, decision/generalization, and structure as the relevant conformance dimensions.We develop several Petri-net based approaches to measure conformance in these dimensions and describe five case studies in which we successfully applied these conformance checking techniques to real and artificial examples. Furthermore, we provide a detailed literature review of related conformance measurement approaches (Chapter 4). Then, we study existing model evaluation approaches from the field of data mining. We develop three data mining-inspired evaluation approaches for discovered process models, one based on Cross Validation (CV), one based on the Minimal Description Length (MDL) principle, and one using methods based on Hidden Markov Models (HMMs). We conclude that process model evaluation faces similar yet different challenges compared to traditional data mining. Additional challenges emerge from the sequential nature of the data and the higher-level process models, which include concurrent dynamic behavior (Chapter 5). Finally, we point out current shortcomings and identify general challenges for conformance checking techniques. These challenges relate to the applicability of the conformance metric, the metric quality, and the bridging of different process modeling languages. We develop a flexible, language-independent conformance checking approach that provides a starting point to effectively address these challenges (Chapter 6). In Part III, we develop a concrete extension approach, provide a general model for process extensions, and apply our approach for the creation of simulation models. First, we develop a Petri-net based decision mining approach that aims at the discovery of decision rules at process choice points based on data attributes in the event log. While we leverage classification techniques from the data mining domain to actually infer the rules, we identify the challenges that relate to the initial formulation of the learning problem from a process perspective. We develop a simple approach to partially overcome these challenges, and we apply it in a case study (Chapter 7). Then, we develop a general model for process extensions to create integrated models including process, data, time, and resource perspective.We develop a concrete representation based on Coloured Petri-nets (CPNs) to implement and deploy this model for simulation purposes (Chapter 8). Finally, we evaluate the quality of automatically discovered simulation models in two case studies and extend our approach to allow for operational decision making by incorporating the current process state as a non-empty starting point in the simulation (Chapter 9). Chapter 10 concludes this thesis with a detailed summary of the contributions and a list of limitations and future challenges. The work presented in this dissertation is supported and accompanied by concrete implementations, which have been integrated in the ProM and ProMimport frameworks. Appendix A provides a comprehensive overview about the functionality of the developed software. The results presented in this dissertation have been presented in more than twenty peer-reviewed scientific publications, including several high-quality journals

    Improving data preparation for the application of process mining

    Get PDF
    Immersed in what is already known as the fourth industrial revolution, automation and data exchange are taking on a particularly relevant role in complex environments, such as industrial manufacturing environments or logistics. This digitisation and transition to the Industry 4.0 paradigm is causing experts to start analysing business processes from other perspectives. Consequently, where management and business intelligence used to dominate, process mining appears as a link, trying to build a bridge between both disciplines to unite and improve them. This new perspective on process analysis helps to improve strategic decision making and competitive capabilities. Process mining brings together data and process perspectives in a single discipline that covers the entire spectrum of process management. Through process mining, and based on observations of their actual operations, organisations can understand the state of their operations, detect deviations, and improve their performance based on what they observe. In this way, process mining is an ally, occupying a large part of current academic and industrial research. However, although this discipline is receiving more and more attention, it presents severe application problems when it is implemented in real environments. The variety of input data in terms of form, content, semantics, and levels of abstraction makes the execution of process mining tasks in industry an iterative, tedious, and manual process, requiring multidisciplinary experts with extensive knowledge of the domain, process management, and data processing. Currently, although there are numerous academic proposals, there are no industrial solutions capable of automating these tasks. For this reason, in this thesis by compendium we address the problem of improving business processes in complex environments thanks to the study of the state-of-the-art and a set of proposals that improve relevant aspects in the life cycle of processes, from the creation of logs, log preparation, process quality assessment, and improvement of business processes. Firstly, for this thesis, a systematic study of the literature was carried out in order to gain an in-depth knowledge of the state-of-the-art in this field, as well as the different challenges faced by this discipline. This in-depth analysis has allowed us to detect a number of challenges that have not been addressed or received insufficient attention, of which three have been selected and presented as the objectives of this thesis. The first challenge is related to the assessment of the quality of input data, known as event logs, since the requeriment of the application of techniques for improving the event log must be based on the level of quality of the initial data, which is why this thesis presents a methodology and a set of metrics that support the expert in selecting which technique to apply to the data according to the quality estimation at each moment, another challenge obtained as a result of our analysis of the literature. Likewise, the use of a set of metrics to evaluate the quality of the resulting process models is also proposed, with the aim of assessing whether improvement in the quality of the input data has a direct impact on the final results. The second challenge identified is the need to improve the input data used in the analysis of business processes. As in any data-driven discipline, the quality of the results strongly depends on the quality of the input data, so the second challenge to be addressed is the improvement of the preparation of event logs. The contribution in this area is the application of natural language processing techniques to relabel activities from textual descriptions of process activities, as well as the application of clustering techniques to help simplify the results, generating more understandable models from a human point of view. Finally, the third challenge detected is related to the process optimisation, so we contribute with an approach for the optimisation of resources associated with business processes, which, through the inclusion of decision-making in the creation of flexible processes, enables significant cost reductions. Furthermore, all the proposals made in this thesis are validated and designed in collaboration with experts from different fields of industry and have been evaluated through real case studies in public and private projects in collaboration with the aeronautical industry and the logistics sector

    Workflow Behavior Auditing for Mission Centric Collaboration

    Get PDF
    Successful mission-centric collaboration depends on situational awareness in an increasingly complex mission environment. To support timely and reliable high level mission decisions, auditing tools need real-time data for effective assessment and optimization of mission behaviors. In the context of a battle rhythm, mission health can be measured from workflow generated activities. Though battle rhythm collaboration is dynamic and global, a potential enabling technology for workflow behavior auditing exists in process mining. However, process mining is not adequate to provide mission situational awareness in the battle rhythm environment since event logs may contain dynamic mission states, noise and timestamp inaccuracy. Therefore, we address a few key near-term issues. In sequences of activities parsed from network traffic streams, we identify mission state changes in the workflow shift detection algorithm. In segments of unstructured event logs that contain both noise and relevant workflow data, we extract and rank workflow instances for the process analyst. When confronted with timestamp inaccuracy in event logs from semi automated, distributed workflows, we develop the flower chain network and discovery algorithm to improve behavioral conformance. For long term adoption of process mining in mission centric collaboration, we develop and demonstrate an experimental framework for logging uncertainty testing. We show that it is highly feasible to employ process mining techniques in environments with dynamic mission states and logging uncertainty. Future workflow behavior auditing technology will benefit from continued algorithmic development, new data sources and system prototypes to propel next generation mission situational awareness, giving commanders new tools to assess and optimize workflows, computer systems and missions in the battle space environment

    Interactive process mining

    Get PDF

    Interactive process mining

    Get PDF

    Flexible evolutionary algorithms for mining structured process models

    Get PDF
    corecore