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Overview

Processes are everywhere. A process can be defined as a set of actions or activities
that happen over time, but which are related to each other by a common goal. We
can find processes in our daily life. For example, when we want to attend a meet-
ing in an unknown location, we will first look up the address in a map, and either
find directions in a route planner (if we wish to travel by car) or consult the public
transport schedules to find a suitable connection. Then, we will drive, or travel using
public services, to our meeting. Depending on the nature of the trip (personal / pro-
fessional), we might fill out a travel declaration after the meeting took place to get
reimbursed for the travel costs.

We can find processes in companies, hospitals, government institutions, univer-
sities, and so on. At this point in time, more and more organizations use Information
Technology (IT) systems to support their business processes in some form. There
are different levels of support that are provided by these IT systems. For example,
a building permit procedure at a local municipality is highly regulated, and such
processes are often driven by strict, process-aware systems, e.g., a workflow man-
agement system that forces its users to execute particular sequences of activities. In
contrast, the care flows in a hospital are very diverse and flexible (every patient is
different after all), and IT systems in a hospital thus do not regulate the process but
merely record the medical activities for billing purposes. Nevertheless, all of these
IT systems leave their “footprints”, recording what happened when. These footprints
are called event logs and usually they are stored in data bases or in log files.

Event logs are the starting point for process mining techniques. Since the logs
of information systems provide factual data about the underlying processes, they are
an extremely valuable source of information. Many process owners have little to no
insight into how their processes are actually executed. At the same time, most organi-
zations document their processes in some form, for example, to comply with regula-
tions or for certification purposes. Using process mining techniques, it is possible to
(1) extract models of the real process flows automatically from the IT footprints (dis-
covery), (2) detect deviations from documented procedures (conformance), and (3)
enrich existing models by highlighting bottlenecks, incorporating other perspectives,
etc. (extension). Figure 1.1 visualizes the general idea of process mining.
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Fig. 1.1. Overview picture showing the three classes of process mining techniques (discovery,
conformance, and extension), and highlighting the focus of this thesis [8].

By leveraging IT footprints, process mining attempts to create a realistic picture
of the process as it actually takes place, and—as a consequence—enables targeted
adjustments to improve the performance or compliance of the process. The gained
transparency of what is actually going on is a huge value in itself. Moreover, knowl-
edge of the current status is also a prerequisite for any improvement actions, which
can be illustrated by the well-known saying “Only what can be measured can be
improved”.

All three dimensions of process mining, i.e., discovery, conformance, and ex-
tension, need to be considered to obtain a comprehensive picture of the process at
hand. For example, many companies have documented their processes and are much
more interested in deviations with respect to these documented procedures than in
newly discovered models. This becomes even more important if they are obliged to
follow a certain process by law. Furthermore, it is also necessary to check how much
a discovered process model actually represents reality. (Note that a discovered model
typically does not “fit” the log because of noise and/or limitations of discovery tech-
niques.) Finally, only the integration of additional characteristics such as time, cost,
or resource utilization provides the information that is necessary to spot bottlenecks
and actually make improvements. However, previous process mining research has
mainly focused on discovery techniques and not much attention has been paid to
conformance and extension. Therefore, the focus of this thesis is not on discovery,
but on the other two classes of process mining: conformance and extension.

This chapter starts with a description of a simple example scenario, which is then
used to illustrate the idea of process mining (Section 1.1). Then, an overview about
work in the area of process discovery is given (Section 1.2). Subsequently, we focus
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on the two neglected process mining areas, conformance and extension (Section 1.3).
In the end, the different types of IT systems that can generate logs are discussed in
more detail (Section 1.4). Finally, the chapter concludes with an overview about the
contributions and the structure of this thesis (Section 1.5).

1.1 Process Mining Example

To illustrate the general idea of process mining, we use the example of a customer
service process. In this section, we first describe the considered scenario in more
detail (Section 1.1.1) and then show some of the results that can be obtained using
process mining in the context of this scenario (Section 1.1.2).

1.1.1 Customer Service Process

Consider Figure 1.2, which illustrates the outsourced customer service process of
some imaginary Company A. Customers who have a problem with their product from
Company A contact the call center. As depicted in Figure 1.2, the call center has
a front office with agents who have general knowledge and can deal with the most
common, simple problems. If a problem cannot be solved by any of these front office
agents, the customer will be referred to a specialized back office agent. Each caller
gets a unique Service Request (SR) number that enables call center agents to access
the complete service history if the customer should call back later on. If the product
indeed needs repair and still has warranty, the customer receives a special Repair (R)
number and the product is sent to the repair shop. There, the incoming products are
repaired if possible. If the repair is successful, it needs to be tested before the product
can be shipped back to the customer. According to the quality guidelines, this test
should not be performed by the same person that does the repair. If a repair is not
possible, then the customer receives a new product for replacement.

While the information system in the call center automatically records the tim-
ing of any incoming calls or potential redirects, the call center agents add all further
customer-related data directly in the Customer Relationship Management (CRM)
system of Company A. Similarly, the repair shop employees directly submit the re-
pair process-related data to the Enterprise Resource Planning (ERP) system of Com-
pany A. Furthermore, the call center has access to the relevant parts in the ERP
system in order to inform potentially calling customers about the status of their re-
pair.

Within Company A, the Customer Service Engineer is responsible for cost and
quality of the service process. In terms of quality, the main interest is customer sat-
isfaction. There are a number of questions this customer service engineer wants to
be answered, such as “How many customers get their problem solved after the first
call (and thus never call back)?”. This percentage out of all calling customers is
called first-call resolution rate and has been shown to be correlated with customer
satisfaction (customers who need to call several times are considerably less satisfied
with the service offered by Company A). Another question could be related to the
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Fig. 1.2. Example scenario of an outsourced customer service process.

quality guidelines that were agreed upon with the repair shop. They imply that (1)
a repaired product needs to be tested before it can be shipped back to the customer,
and (2) it needs to be tested by another person than the one who did the actual re-
pair (“four eyes” principle). In the hope that the increase in customer satisfaction
will pay off the cost, Company A pays an increased price for these quality measures.
But are the quality guidelines indeed followed by workmen in the repair shop? Fi-
nally, the customer service engineer is also interested in the timing behavior of the
process, and whether the voluntary satisfaction ratings can be related to any proper-
ties of the service process. This rating is one of the latest initiatives of Company A
to measure brand reputation by a customer loyalty metric called Net Promotor Score
(NPS) [206]. The rating allows customers to quickly answer the question “How likely
is it that you would recommend our company to a friend or colleague?” between 0
(lowest score) and 10 (highest score) upon delivery of the product without the need
to go into further detail.

To answer all these questions, the data collected in the CRM and ERP systems,
i.e., the “footprints” of the service process, can be leveraged. Table 1.1 and Table 1.2
depict a few exemplary data entries as they could be found in these two systems.
The ‘SR No.’ and ‘R Number’ identify a service request and a repair request, re-
spectively. Furthermore, there is information about the date and time of each activity
(‘Date’), the involved resource for the manual steps (‘Agent’ and ‘Worker’), and ad-
ditional data such as ‘Notes’ or a ‘Problem’ classification. The actual process step is
identified by the fields ‘Activity’ or ‘Status’, respectively.

One can see that both systems contain a similar range of information, but with
different names (e.g., ‘Activity’ vs. ‘Status’). Furthermore, entries relating to the
same customer are identified by the ‘SR No.’ in the CRM system, while repair ac-
tivities belonging to the same repair request are identified by the ‘R Number’ in the
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Table 1.1. Example data that could be extracted from the CRM system used by the call center,
grouped by ‘SR No.’ and sorted by ‘Date’.

SR No. Activity Agent Problem Serial No. Date Freetext

50-100203 Answer Call Chris 2007-03-07
Front Office Welsh 11:08:24

50-100203 Finish Call Chris Product 2007-03-07 “Had problems
Welsh Assistance 11:11:44 using the new ...”

50-100204 Answer Call Pat 2007-03-07
Front Office Craig 11:09:05

50-100204 Finish Call Pat Hardware 896756343 2007-03-07 “Repair request
Craig Failure 11:14:56 initiated for ...”

50-100204 Inform about Ray 2007-03-17 “Not ready yet
Repair Status Olley 17:10:05 since additional ...”

...

Table 1.2. Example data that could be extracted from the ERP system used by the repair shop,
grouped by ‘R Number’ and sorted by Date.

R Number Status Worker Serial No. Satisfaction Date Notes

R678945 Register Incoming 89675634 2007-03-10
Product 08:08:01

R678945 Try to Repair Ivo de 2007-03-12 “Replaced
Product Boer 08:08:01 main ...”

R678945 Test Repaired Kenny 2007-03-23 “Repair
Product Verbeek 16:09:15 OK”

R678945 Ship Repaired 2007-03-24
Product 07:04:05

R678945 Shipment UPS-0987 SF Level 2 2007-03-25
Complete 16:34:00

R678946 Register Incoming 84923340 2007-03-10
Product 08:08:01

...

ERP system. Inconsistencies like these are rather the standard than the exception in
heterogeneous IT landscapes. However, both data sources need to be linked together,
to obtain an overview about the overall service process (and not just the call cen-
ter or the repair shop process in isolation). Fortunately, in our scenario the ‘Serial
No.’ can be used to correlate call center activities and repair steps belonging to the
same customer. That is, we are able to identify service instances. For example, the
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‘SR No.’ 50-100204 can be linked to the ‘R Number‘ R678945 by the ‘Serial No.’
896756343. All these entries together thus form one service instance.

1.1.2 Analysis of Customer Service Process

As explained earlier, process mining techniques attempt to extract non-trivial and
useful information about a real-life process on the basis of event logs. The minimal
requirements towards an event log are as follows: events in the log need to be (i)
related to a process instance, or case (such as the service instance in the example
described in Section 1.1), (ii) refer to some activity, or step, in the process (such as
the ‘Activity’ or ‘Status’ fields in the customer service example), and (iii) ordered
by their occurrence over time. Usually, a total order is required, but some algorithms
can also deal with partially ordered logs [83]. Furthermore, in many real-life systems
the following additional information can often be found for each event: a time stamp
of the time of occurrence (cf. ‘Date’ column), a performer of the activity (e.g., a
person such as the ‘Agent’ or ‘Worker’, or a system, or a web service), and addi-
tional data attributes (such as the ‘Problem’, ‘Satisfaction’, ‘Freetext’, and ‘Notes’
fields). Finally, there is often transactional data available that provide more detailed
information about whether an activity is scheduled, started, or completed (see, for
example, ‘Answer Call’ and ‘Finish Call’ in Table 1.1).

Depending on which information is available, different kinds of analysis are pos-
sible. For example, it is obvious that a bottleneck analysis with respect to the timing
behavior of a process is only possible if time stamps are present in the log. However,
to construct a process model capturing the causal relationships of the steps, or activ-
ities, in the process (e.g., in the form of a Petri net [78]) time stamps are not needed
and an ordering of the events is sufficient.

In the remainder of this section, the discussed customer service process is used
to give examples for possible analysis results related to each of the three classes of
process mining: discovery, conformance, and extension.

Discovery

Based on the service instances (extracted from the IT footprints), we can now use a
process discovery algorithm to automatically create a process model that describes
the service process as it takes place. Figure 1.3 depicts such a process model in an
informal notation. The process starts at the top with answering a call in the front
office. Then, the call is either finished directly in the front office, or redirected to the
back office, where it is handled and completed (cf. XOR symbol in process flow).
Afterwards, it could either be that the customer never calls again (for example, if the
product assistance provided by the agent solves the problem of the customer), or that
there is a follow-up call, or that indeed a repair request is issued. In the case that a
repair is necessary, the product will be handed in by the customer based on the ‘R
Number’ obtained in the call center, and the repair process is started. In parallel to
the repair process, the customer can get information about the repair status via the
call center (cf. AND symbol in process flow). For each new product that arrives at
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Fig. 1.3. Informal process model of the customer service process.

the repair shop, the engineers first try to repair it. If this is successful, it is tested and
shipped. In case a product cannot be successfully repaired, a new product will be
shipped as a replacement. With the delivery of the (either new or repaired) product,
the service process ends.
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To be able to automatically extract such a model from the data stored in IT sys-
tems is a huge benefit, because it can help to make visible how the process works in
reality. As a consequence, it is possible to further investigate potentially surprising
process flows. For example, in the case that a problem is found during the test, the
repair step should be repeated. However, this process flow is not present in the dis-
covered process model because a repeated repair has not happened in the observed
process. Furthermore, there is an arc directly leading from the repair activity to the
shipment of the repaired product (thus skipping the test activity altogether).

Similar to the process discovery, also interaction patterns between people work-
ing in the process (i.e., social networks) can be visualized [18]. We call this class
of process mining techniques discovery algorithms because they discover something
new just on the basis of log data.

Conformance

Nevertheless, it could also be the case that the customer service engineer already has
a model of how the service process should be executed. In this situation, the goal
is to compare an existing model with the log data extracted from the IT systems.
Note that this model could also be a set of business rules. For example, the customer
service engineer wants to see whether the quality guidelines are indeed followed in
the repair shop. We call this class of process mining techniques conformance analy-
sis algorithms because they check the conformance of some pre-existing model with
reality.

Figure 1.4 contains a process model that depicts the service flow for customers
who actually had to hand in their product for repair. This process model, which is
based on the process specification the customer service engineer assumes to be in
place, has been augmented by conformance information. The quality guidelines that
need to be checked are (1) whether there are any deviations from the prescribed
process flow, and (2) whether the “four eyes” principle is respected for the activities
‘Try to Repair Product’ and ‘Test Repaired Product’.

From the conformance visualization we can see that both quality guidelines have
been violated. First, the ‘Test Repaired Product’ activity has been bypassed (cf. dot-
ted arc in Figure 1.4). Second, in 85% of the cases where the test activity has not
been bypassed, it was executed by the same person who did the repair before. If we
would talk to the people in the work shop, we might find out that they perceive this
additional test step as completely useless: They never find any problems in the test
that have not been found in the repair step before. This also explains the missing
link back from ‘Test Repaired Product’ to ‘Try to Repair Product’ in Figure 1.4.
Such “unused” process flows are not a violation, but they indicate a discrepancy be-
tween the modeled and the observed behavior that can be interesting to investigate.
Furthermore—the workers in the repair shop might report—the test step creates extra
work and adds to their already high workload, which leaves them with more pressure
and actually leads to less quality work in the actual repair step.

Using this information, the customer service engineer could now, on the one
hand, re-evaluate the usefulness of the imposed quality guidelines, and perhaps
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Fig. 1.4. Process model of the service process for those customers who actually had a repair,
augmented with diagnostic information about conformance, performance, and decision rules.

change them to better suit the needs of the employees on the work floor (e.g., concen-
trate the quality guidelines on the repair step only). On the other hand, a consequence
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of the detected deviations might be that measures are taken to enforce the compliance
with the original guidelines, if that is the desired policy.

Extension

Next to conformance diagnostics a process model can also be augmented with in-
formation about other dimensions of the process, such as time, cost, data, resource
behavior, etc. The class of techniques that deal with projecting additional informa-
tion onto an existing model is called extension algorithms.

For example, in Figure 1.4 one can see that the arcs in the model are drawn us-
ing different line widths according to the frequencies at which cases have “traveled”
along this path. This notion is supported by the metaphor of maps and landscapes,
where roads that are traveled a lot tend to be wider than a less used road in the coun-
tryside [117]. So, for example, from the visualization in Figure 1.4 we can easily
see that calls are being redirected to the back office in less than 50%, and new re-
placement products are shipped very rarely. Furthermore, the lightness of the arcs
indicates how much time has been spent on each path. The lighter the arc is, the
more time is spent on average in this part of the process. In the example of the ser-
vice process, most of the time is spent in the queue before the ‘Try to Repair Product’
activity (1–5 days on average) and before the ‘Test Repaired Product’ activity (7–16
days). Clearly, this part of the process seems to be a bottleneck and would be a good
candidate for improvement programs if the overall service process should be made
faster.

Finally, consider the example of extracting decision rules. In a decision rule, a
particular routing characteristic is linked to certain attributes of the process, thus
characterizing those instances that “flow along this path”. These characteristics can
be data attributes that are part of the service instance, or meta attributes that have
been derived from the process instances. For example, the rule stated at the top-left
in Figure 1.4 indicates that customers who call often (say, more than two times) are
usually those who both are waiting more than 10 days for the overall process to be
completed and will deliver a very unsatisfactory rating in the end of the process.
There may be other customers who also wait long, but do not care so much about
the quickness of the repair process, and who thus tend to not call to be informed
about the repair status. Recall that the goal of the satisfaction ratings is to measure
customer loyalty. That is, the idea is to determine how many people contribute to a
positive brand reputation (‘SF Level’> 9) in relation to those who are likely to affect
the name of the company in a bad way (‘SF Level ‘ < 7). Obviously, the goal is to
have happy customers and to avoid unhappy customers as much as possible. Now,
one could interpret this detected correlation the other way around and say that if
someone calls up the second time already, it is likely that he or she will be eventually
unsatisfied if the whole process takes too long, and the case needs to be expedited
(in the hope to positively affect the satisfaction level of these customers).

This example scenario illustrates the added insight that process mining can gen-
erate. Standard reporting measures on which the billing is usually based on, such
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as call times in the call centers, or replaced parts for the products in the workshop,
fall short on providing such an in-depth and process-oriented perspective on confor-
mance and performance that process mining strives to deliver.

1.2 Process Discovery

Since the mid-nineties several groups have been working on techniques for process
discovery [24, 27, 65, 73, 83, 261], i.e., the discovery of process models based on
observed events. In [23] an overview is given of the early work in this domain. The
idea to apply process mining in the context of workflow processes was introduced
in [27]. In parallel Datta [73] looked at the discovery of business process models.
Cook et al. investigated similar issues in the context of software engineering pro-
cesses [65]. Herbst [125] was one of the first to tackle more complicated processes,
e.g., processes containing duplicate tasks.

Most of the classical approaches have problems dealing with concurrency. The α-
algorithm [24] is an example of a simple technique that takes concurrency as a start-
ing point. However, this simple algorithm has problems dealing with complicated
routing constructs and noise (like most of the other approaches described in litera-
ture). In [83] a more robust but less precise approach is presented. Heuristics [261]
or genetic algorithms [161] have been proposed to deal with issues such as noise.

More recently, dynamically adaptive process simplification algorithms have been
proposed to deal with less structured, i.e., very diverse or flexible, processes [117].
As an alternative to abstracting the mined model, trace clustering approaches have
been suggested to group similar process instances in a pre-processing step, after
which separate process models can be mined for each of the groups [110, 246].
Furthermore, the theory of regions has been used to design process discovery algo-
rithms [21, 265, 56]. The advantage of the theory of regions is that the characteristics
of the resulting model can be influenced before the mining starts (e.g., the number of
places in the Petri net, or the number duplicate tasks, can be determined beforehand).

Finally, not only process models, but, for example, also social networks and other
organizational models can be discovered from event logs [18, 247].

1.3 Conformance and Extension: Two Neglected Areas

Previous process mining research has mainly focused on discovery techniques. In
this section, we explain why it is important to also focus on the other two classes of
process mining: conformance (Section 1.3.1) and extension (Section 1.3.2).

1.3.1 Conformance

Nowadays, most organizations document their processes in some form. The reasons
for doing so are manyfold, including:
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• Regulations such as the Sarbanes-Oxley (SOX) Act [236] or Registration, Eval-
uation, Authorisation and Restriction of Chemicals (REACH) [203] enforce the
documentation of processes.

• Certification based on quality standards such as the ISO 9000 standards main-
tained by International Organization for Standardization (ISO) requires the doc-
umentation and monitoring of all key processes to ensure they are effective.

• For communication purposes, e.g., to instruct new employees.
• Process models can be used to configure a process-aware information system

(e.g., a Workflow Management (WFM) system [11]).
• Formalized process models enable analysis and simulation.

While some of these models may only exist on paper, many organizations have
heavily invested in business process modeling technology and now own repositories
that contain hundreds of process models. Maintaining these models as the underlying
processes change poses an enormous challenge and may become impossible to do on
a regular basis. As a consequence, models are often updated “on demand”, i.e., when
they are needed for a specific purpose, and the models in the process repository as a
whole cannot be guaranteed to reflect reality anymore. We will show later that even in
the situation of a WFM system, where process models are directly used to configure
the allowed process executions, deviations may occur. Therefore, it is highly relevant
to be able to automatically check the consistency of a process model with respect to
the actual process reality, and to measure and locate potential deviations.

Furthermore, companies often have sets of business rules, e.g., to prevent fraud,
that may not even be explicitly reflected in their process models. The ability to check
the compliance of their actual processes with these rules is thus highly important.

Finally, it is equally important to measure how well a model created by a process
discovery algorithm actually reflects reality, i.e., to evaluate the quality of a learned
process model. Quality measures are needed because a learned model cannot always
explain all the data, and there are multiple models for the same data (“Which one
is the best?”). These problems are due to the fact that a log typically does not con-
tain negative examples and that there may be syntactically different models having
the same (or very similar) behavior. Note that process discovery algorithms rarely
construct models that fully capture real-life processes of a certain complexity. As a
consequence, it is necessary to be able to tell how representative such a discovered
model actually is for the process at hand before drawing any further conclusions.

As illustrated in Figure 1.5, the question of conformance arises when both an
event log and a process model are available (i.e., “How well do the observed and the
modeled behavior conform to each other?”). Conformance checking will be one of
the main topics in this thesis. If the model is an existing prescriptive or descriptive
model, conformance checking provides solutions to measure (estimate the severity)
and locate (visualize potential points of improvement) deviations. If the model has
been created through process discovery, evaluation becomes important to assess the
validity and quality of the discovered model.
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Fig. 1.5. Conformance is concerned with the question how valid a given process model is with
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1.3.2 Extension

Once we are sufficiently confident about the validity of an (either existing or discov-
ered) process model, this model serves as a good basis for process analysis. It is not
without reason that so many efforts have concentrated on constructing good models
that reflect the control-flow perspective of a process, be it via modeling or through
automatic discovery. Process models are well-suited to reflect the dynamic structure
of a process (i.e., the dependencies of activities carried out in its context) in the way
people think.

Nevertheless, it is inevitable to consider also other perspectives, such as timing
information, organizational aspects, and data flows, to obtain a comprehensive pic-
ture of the overall process. A comprehensive overview is particularly relevant if we
are looking for ways to improve an existing process. These other perspectives could
be considered in isolation (for example, by creating charts and basic statistics). But
it is much more useful to integrate them into graphical models that reflect the way
people perceive a process naturally, and thus extend process models, social networks,
organizational diagrams etc. with additional quantitative and qualitative information.

Figure 1.6 illustrates the extension of an existing model by additional informa-
tion extracted from the event log. In this thesis, we will look at decision mining,
which can be used to discover routing patterns that provide additional insight in the
characteristics of the process flow, like in the scenario described in Section 1.1. Fur-
thermore, a comprehensive model that combines different process characteristics can
be used to generate a simulation model of the observed process. Using simulation,
redesigns can be explored and evaluated before they are actually implemented. Being
able to generate a simulation model based on process characteristics extracted from
the event log, we can arrive at the actual simulation phase much quicker compared
to the traditional approach, where simulation models are created manually. We eval-
uate the quality of our discovered process models by comparing the original event
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Fig. 1.6. Extension is concerned with the question how different perspectives can be integrated
in a given model to obtain a more comprehensive picture of the overall process.

logs with the logs obtained during simulation. Finally, to be able to use simulation
also for operational decision making we integrate the current state of the real-word
process, and we use it as the initial state of the simulation model.

1.4 IT Systems with Logging

Since all process mining techniques take event logs as the starting point, it seems
important to look at where these logs can be obtained. Fortunately, many of the activ-
ities occurring in today’s processes are either supported or monitored by information
systems. For example, the previously mentioned ERP, WFM, and CRM systems, but
also Supply Chain Management (SCM), and Product Data Management (PDM) sys-
tems support a wide variety of business processes while recording well-structured
and detailed event logs. However, also other operational processes or systems can
be monitored. For example, process mining has been applied to complex X-ray ma-
chines, high-end copiers, web services, careflows in hospitals, etc.

This illustrates that the concept of process mining is very generic. The essential
prerequisite is the availability of log data that can be grouped into process instances.
The notion of a process instance defines the scope of the process to be analyzed, and
often there are multiple views on the same process, depending on what is seen as
a process instance. For example, in the scenario described in Section 1.1, we chose
to analyze the overall service process, covering both the call center and the repair
shop activities. For this reason, we had to find a way to correlate those ‘SR’ and
‘R’ numbers that belong to the same service instance. However, we also could have
chosen to look at the call center process in isolation, in which case the ‘SR’ number
alone would identify the corresponding process instance. Similarly, we could have
analyzed the repair shop process in isolation. Furthermore, we also could have been
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interested in the daily process flow of a worker in the repair shop, in which case the
name of the worker together with the date would identify the process instance.
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Fig. 1.7. Overview of the different groups of IT systems that generate logs. In this thesis, we
mainly look at Workflow Management as a representative for business process IT systems.
Furthermore, we explore analysis possibilities of Deployed Applications, such as embedded
systems or software.

In this thesis, we analyze logs from two rather different types of IT systems,
which are characterized using Figure 1.7.

On the one hand, there are many systems that support business processes in some
form. The various steps in a business process usually create or process information
to achieve a certain business goal. For example, an ERP system is used to manage
and coordinate all the resources, information, and functions of an organization from
shared data storages in a company-wide manner. It usually includes several modules,
such as for manufacturing, supply chain management, financials, project manage-
ment, and human resources. PDM systems are used to manage and track the creation
and change of all information related to a product. The information that is stored
includes engineering data such as Computer-aided Design (CAD) models, drawings,
and other product-related documents, and typical users of a PDM system are project
managers, engineers, sales people, buyers, and quality assurance teams. CRM sys-
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tems store the history of customer interactions and are, for example, used by call cen-
ters. Furthermore, web services are increasingly used and combined (orchestrated)
to support interoperable machine-to-machine interactions between businesses. The
logs of all these systems can be analyzed using process mining techniques to, for
example, find ideas for improvement, deviations from prescribed procedures, or ex-
ceptional behavior. In short, the goal is usually to increase the control over the busi-
ness process at hand. In this thesis, we mainly look at the class of WFM systems as
a representative for such business process IT systems (Section 1.4.1).

On the other hand, there is an increasing interest in analyzing deployed applica-
tions, to gain insight into how a Hardware and/or Software product is operated by
end users in the field. In this scenario, the goal is not to control but to observe and
learn about the usage process of a deployed application (Section 1.4.2).

1.4.1 Workflow Management

Process mining of WFM systems can be positioned in the broader field of Busi-
ness Process Management (BPM) [14, 266]. BPM includes methods, techniques,
and tools to support the design, enactment, management, and analysis of operational
business processes. Consider Figure 1.8, which depicts the BPM life cycle. If a pro-
cess is to be supported by some kind of BPM system, the first step is the process
design. In this step, the process is modeled, or specified in some form. Then, the pro-
cess design is implemented by configuring some process-aware BPM system (e.g., a
WFM system) and the process is enacted. Process mining fits in the last phase of the
BPM life cycle, process diagnosis, where the running process is analyzed to identify
problems, or to find ideas for improvement. This enables both direct process control
and a targeted process redesign.

Process

Process
Mining

design

diagnosecontrol

implement

enact

Fig. 1.8. In the BPM life cycle, process mining is situated in the diagnosis phase [23].

In this context, process mining is related to Business Process Intelligence (BPI),
Business Activity Monitoring (BAM), and Business Operations Management (BOM).
In [112, 238] a BPI toolset on top of HP’s Process Manager is described. The BPI
toolset includes a so-called “BPI Process Mining Engine”. In [177] Zur Muehlen de-
scribes the PISA tool which can be used to extract performance metrics from work-
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flow logs. Similar diagnostics are provided by the ARIS Process Performance Man-
ager (PPM) [132]. It should be noted that BPI tools typically do not allow for process
discovery and conformance checking, and offer relatively simple performance anal-
ysis tools that depend on a correct a-priori process model [126].

For the sake of simplicity, process mining techniques reported in literature (and
in this thesis) are usually developed based on the assumption that the event log rep-
resents the history of a process within a certain time frame (e.g., “logs from the last
two years up to now”), and that this log is then to be analyzed offline. However, many
process mining techniques could be easily extended to allow for incremental online
monitoring of the process. While monitoring poses some additional challenges in
terms of efficiency (since the algorithms need to be able to run in real-time), it would
be very interesting to be able to, for example, be alerted of conformance violations as
soon as they occur, or to even continuously predict problems, e.g., provide forecasts
on cycle times [84], while the process is running.

1.4.2 Deployed Applications

Next to the analysis of logs from business process IT systems, which can be seen as
the more traditional application area for process mining techniques, we also explored
the analysis of deployed applications, that is, products that are being sold and eventu-
ally operated by end users in the market. As indicated in Figure 1.7, these deployed
applications can range from pure software products, or web-based applications, to
embedded systems.

The monitoring of deployed applications is receiving more and more interest, for
two main reasons.

First of all, there is an increased need to gain insight into how end users actually
operate a product, since the competitive edge of products lies more than ever in the
fit with the way customers want to use them. At the same time, especially for highly
innovative products there is a high uncertainty about the way customers will apply
this new technology. As a result, there can be a huge gap between real customer
requirements and product specifications [145]. A consequence of this so-called soft
reliability [49, 76] problem is a significant rise in complaints about seemingly sound
products. That is, more and more products are returned while on the company side
they are filed as “no fault found”.

Second, there is an increasing availability of event data. Examples include:

• The “CUSTOMerCARE Remote Services Network” of Philips Healthcare (PH)
is a worldwide internet-based private network that links PH equipment to remote
service centers. Any event that occurs within an X-ray machine (e.g., moving the
table, setting the deflector, etc.) is recorded and can be analyzed [119].

• Microsoft Office includes facilities that allow the user to let Microsoft track how
various features are used [67].

• Detailed log data regarding the navigation of websites are typically available on
a web server.
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• In the context of the ‘inGimp’ project an instrumented version of the open source
software ‘Gimp’ was created [250]. This instrumented software collects certain
types of event-based usage data, such as the commands that are used, user inter-
face events, and users’ own (optional) descriptions of their tasks. The resulting
data set is made publicly available and serves as a basis for usability improvement
efforts in the open source community.

In all these examples, log data is generated based on a fixed (i.e., hard-coded)
instrumentation dedicated to the intended analysis purposes. However, to help de-
velopers instrumenting their products without “re-inventing the wheel”, and with the
flexibility to change the instrumentation without affecting the actual product code,
efficient engineering methodologies that separate the observation logic from the rest
of the application (‘design for observation’) are needed. For this purpose, a generic
observation and analysis approach has been devised in a multi-disciplinary Soft Re-
liability project, where we developed an evaluation ecology that enables the antici-
pation of product use by gathering behavioral and attitudinal data early in the prod-
uct development process [145, 146]. Further information about the Soft Reliability
project is available at our project home page [245]. As a case study, we instrumented
an Internet Protocol Television (IPTV) product prototype with so-called ‘hooks’ and
collected usage data together with perceptional data over the internet [94, 95].

Finally, even in the case that the product to be monitored is not connected to
the internet (and not instrumented at all), it may be possible to generate log data.
For example, many usability experiments are carried out in a usability lab. There,
the participants are being recorded and “speak aloud” while they are are performing
certain pre-specified tasks. With the help of video analysis software, the usability an-
alyst can then semi-automatically create event logs that can be analyzed with process
mining techniques.

1.5 Structure of this Thesis

The remainder of this thesis is structured as depicted in Figure 1.9. Before we con-
clude this introductory Part I, we first introduce the concepts and notations of process
models and event logs in more detail (Chapter 2). Furthermore, tooling plays an im-
portant role because most of the presented approaches have been implemented (in
the context of the process mining framework ProM and using other existing soft-
ware systems). Therefore, we also provide an overview about the leveraged tools
and platforms (Chapter 3). Then, various conformance techniques are presented in
Part II (Chapter 4–6). Subsequently, extension techniques are presented in Part III
(Chapter 7–9). Finally, Part IV (Chapter 10) concludes this thesis.

To provide a better overview about the core contributions presented in Part II and
Part III of this thesis, consider Figure 1.10, which positions the corresponding chap-
ters within the different dimensions typically considered in process mining (control
flow, organizational, data, and time). In general, any discovery, conformance, or ex-
tension technique can be related to one or more of these dimensions. In Figure 1.10,
some existing ProM plug-in names are provided in grey font for each of the covered
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Fig. 1.9. Overview about the structure of this thesis.

dimensions. For example, most of the work in process mining so far has concentrated
on the discovery of the control flow perspective, but also social networks can be dis-
covered. Data and time-related model discovery approaches are the typical scope for
data mining algorithms. Our contributions focus on gaps in the areas of conformance
and extension. Moreover, the focus of extension is on the extension of control-flow
models.

Part II starts with a chapter on Petri net-based conformance checking (Chap-
ter 4). Conformance checking can be used to both assess an existing, prescriptive or
descriptive model or to evaluate the quality of a mined model that has been created
automatically by a process discovery algorithm. Furthermore, many models are pos-
sible with the same, or very similar, behavior. This raises the question “Which one
is the best?”. The topic of model evaluation is then further investigated by searching
for parallels in the data mining domain (Chapter 5). Similarities and differences with
respect to typical data mining evaluation approaches are described, and their applica-
bility to the process mining field is explored. Finally, the problems with one (the most
dominant) class of existing conformance checking approaches are described in more
detail, and a new, flexible method is defined (Section 6). Being synthesized from ex-
isting approaches and the lessons learnt, this definition makes the design choices for
such a conformance checking method explicit and clearly shows the trade-offs that
need to be made.

The conformance approaches presented in Part II are limited to the control-flow
perspective of a process. This means that, for example, the compliance of a real
process is checked with respect to a prescriptive process model, but it is not consid-
ered whether each step is performed by a person who is supposed to do it (organi-
zational perspective), whether the right documents are provided along the process
(data perspective), or whether required deadlines are met (time perspective). How-



22 1 Overview

Part II: 
Conformance LTL Checker

Control Flow Organizational Data

Part III: 
Extension

Decision Mining 
(Capter 7)

Performance Analysis 
with Petri net

Time

Discovery (Typical data mining methods)Social Network 
Miner

Organizational 
Miner

Petri net-Based 
Conformance Checking 

(Chapter 4)

Data Mining-inspired 
Evaluation Approaches 

(Chapter 5)

Flexible 
Conformance Checking 

(Chapter 6)

Deploying Process Mining Results for Simulation 
(Chapter 9)

A General Model for Process Extensions 
(Chapter 8)

Alpha Miner, Heuristic 
Miner, Fuzzy Miner, ...

Fig. 1.10. Positioning of the core contributions with respect to the most important dimensions
of process mining: control-flow, organizational, data, and time.

ever, in Chapter 6 we outline an approach that combines traditional model-based
conformance checking with declarative, constraint-based approaches (such as LTL
checking). Such declarative constraints can easily capture also data, organizational,
or time requirements.

Part III starts with one concrete extension approach relating to the data perspec-
tive. Decision Mining (Chapter 7) is a technique to relate data attributes that are
associated to process instances, and steps in the process instances, to decisions made
in the process flow. This way, one can discover hidden patterns for different routing
alternatives, such as finding out why for some cases a certain process step is skipped
while for others it is not skipped. The approach relies on classification algorithms
from the data mining domain, and like in classical data mining, it is of course only
possible to discover such hidden patters if there are any patterns, and if the relevant
attributes are present in the log. Note that while this approach, in principle, only con-
siders data attributes, it can easily be extended to discover patterns also relating to
the timing behavior, the organizational, and even the control flow perspective by a
pre-step that enriches the log by derived meta attributes from these dimensions. For
example, one can add meta attributes relating to the flow time of cases (time perspec-
tive), roles of participating people, or so-called history attributes that store the names
of those activities that were already executed for a case in each step of the process.

Then, we present a structure for integrating discovery and extension results from
various perspectives (Chapter 8), and show how these integrated models can be de-
ployed for simulation purposes (Chapter 9). Traditionally, simulation models are
often created manually. They are then used to explore and evaluate possible im-
provement scenarios or redesigns. However, using an integrated model with extracted
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characteristics the actual control flow, timing, data, and organizational behavior, it is
possible automatically generate a simulation model. The goal is to increase both the
speed of arriving at the simulation model, and the validity of the simulation models
themselves, since the generated model is based on factual data that stems from the
process to be simulated.

Part IV (Chapter 10) concludes the thesis and summarizes the contributions in
more detail. Furthermore, an appendix (Appendix A) provides information about the
ProM and ProMimport plug-ins that were developed in the context of this thesis from
a user perspective. Including our contributions, the process mining framework ProM
now supports almost all cells in the matrix depicted in Figure 1.10.
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Preliminaries

Chapter 1 introduced the notion of event logs and process models in an informal
manner. In this chapter on preliminaries, we want to sharpen these concepts and for-
mally introduce the necessary notations used in the remainder of this thesis. Further-
more, in the context of conformance and extension it is essential to be able to relate
event logs and process models to each other. Given the presence of both a model
and a log, a mapping between these two needs to be established in order to compare
them (conformance) or integrate additional, log-derived aspects in a model (exten-
sion). Therefore, also the relationship between event logs and process models—and
a number of constructs that emerge from the mapping—will be considered.

In the remainder of this chapter, we first introduce some notations that are needed
later on (Section 2.1). Then, event logs are defined in more detail (Section 2.2). Af-
terwards, we first consider some general elements of a process model (Section 2.3),
and then discuss the mapping of a process models and an event logs (Section 2.4).
Finally, we introduce a number of concrete process modeling languages that are used
in this thesis (Section 2.5).

2.1 Notations

To formally define the concepts of event logs and process models, we first need to
introduce the following notations.

• f ∈ A→ B is a function with domain (dom(f)) A and range (rng(f)) B.
• f ∈ A 6→ B is a partial function, i.e., the domain of f may be a subset of A

(dom(f) ⊆ A).
• A multi-set (also referred to as bag) is like a set where each element may occur

multiple times. For example, [a, b2, c3, d, d, e] is a multi-set with nine elements:
one a, two b’s, three c’s, two d’s, and one e.

• IB(A) = A → N is the set of multi-sets (bags) over a finite domain A, i.e.,
X ∈ IB(A) is a multi-set, where for each a ∈ A, X(a) denotes the number
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of times a is included in the multi-set. For example, if X = [a, b2, c3, d], then
X(b) = 2, X(e) = 0, etc.

• |X| = ∑a∈AX(a) is the cardinality of some multi-set X over A. This function
can also be applied to a set, where we assume that a set is a multi-set in which
every element occurs exactly once.

• P(A) is the powerset of A, i.e., P(A) = {X | X ⊆ A}.
• For a given set A, A∗ is the set of all finite sequences over A.
• A finite sequence over A of length n is a mapping σ ∈ {1, . . . , n} → A. Such a

sequence is represented by a string, i.e., σ = 〈a1, a2, . . . , an〉 where σ(i) = ai
for 1 ≤ i ≤ n, |σ| = n is the length of sequence σ.

• The concatenation of two finite sequences σ = 〈a1, a2, . . . , an〉 and σ′ =
〈b1, b2, . . . , bm〉 is denoted by σ · σ′ = 〈a1, a2, . . . , an, b1, b2, . . . , bm〉.

• set(σ) transforms a sequence σ into a set, i.e., set(σ) = {σ(i) | 1 ≤ i ≤ |σ|}.
• f(σ) is the application of a function f to each of the elements in the sequence σ,

i.e., f(σ) = 〈f(σ(1)), f(σ(2)), . . . , f(σ(|σ|))〉
• Let R ⊆ X ×X be a relation on X . Furthermore, R0 = {(x, x) | x ∈ X}, and

Rk+1 = {(x, z) ∈ X × X | (x, y) ∈ Rk ∧ (y, z) ∈ Rk} for any k ∈ N. The
reflexive transitive closure is defined as Rtrans =

⋃
i∈N

Ri.

2.2 Event Logs

We revisit the example scenario from Section 1.1 and assume that we have identified
unique service instances by correlating ‘SR No.’, ‘Serial No.’, and ‘R Number’ as ex-
plained earlier. Furthermore, we ignore the textual attributes ‘Freetext’ and ‘Notes’,
and thus only consider the ‘Satisfaction’ (SF Level) and ‘Problem’ classification at-
tributes. The resulting event log is shown in Table 2.1. Each row corresponds to one
event, and for each event the case ID (i.e., the service instance), activity name (refer-
ring to the corresponding call center or repair shop action), time stamp, performer,
and potential data attributes are given.

So, in Table 2.1 an event corresponds to one row, and each event can be char-
acterized by a number of properties, which are represented by the various columns
in Table 2.1. While event logs extracted from real-life systems can have all kinds of
formats, and events in these logs may carry different kinds of information, the notion
of an event that is characterized by a number of properties can be defined generally
as follows.

Definition 1 (Event, Property) We assume that I is the set of all possible case iden-
tifiers,A is the set of all possible activity names, T is the time domain,R is the set of
all possible resource names, and DX is the value range for the data attribute X . Let
E be the event universe, i.e., the set of all possible events. An event e ∈ E can have
various properties. In the context of this thesis, we define the following properties:
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Table 2.1. Event log of the example scenario from Section 1.1. Each row corresponds to one
event, and the events are sorted by their time stamp.

Case ID Activity Timestamp Performer Data
case1 Answer Call Front

Office (A)
2007-03-07
11:08:24

Chris Welsh

case2 Answer Call Front
Office (A)

2007-03-07
11:09:05

Pat Craig

case1 Finish Call (C) 2007-03-07
11:11:44

Chris Welsh Problem =
Product Assistance

case2 Finish Call (C) 2007-03-07
11:14:56

Pat Craig Problem =
Hardware Failure

case2 Register Incoming
Product (E)

2007-03-10
08:08:01

case2 Try to Repair
Product (F)

2007-03-12
08:08:01

Ivo de Boer

case2 Inform about
Repair Status (D)

2007-03-17
17:10:05

Ray Olley

case2 Test Repaired
Product (G)

2007-03-23
16:09:15

Kenny Verbeek

case2 Ship Repaired
Product (H)

2007-03-24
07:04:05

case2 Shipment Complete
(J)

2007-03-25
16:34:00

UPS-0987 SF Level = 2

... ... ... ... ...
case3 Register Incoming

Product (E)
2007-03-10
08:08:01

... ... ... ... ...

• propCase ∈ E → I characterizes the case ID of the event.

• propAct ∈ E → A characterizes the name of the corresponding activity.

• propTime ∈ E 6→ T characterizes the timestamp of the event.

• propRes ∈ E 6→ R characterizes the name of the resource initiating the event.

• propX ∈ E 6→ DX characterizes the value of some data attribute X related to
the event.

To give an example, for the event e represented by the first row in Table 2.1 the
following properties are defined: propCase(e) = case1, propAct(e) = Answer Call
Front Office, propTime(e) = 2007-03-07 11:08:24, and propRes(e) = Chris Welsh.
Note that propProblem and propSFLevel are not defined for the event represented by
the first row in Table 2.1, i.e., this particular event is not in the domain of these two
functions.

In Definition 1, all but the properties propCase and propAct are defined as partial
functions. Note that—in principle—there could be also events that are not related to
any process instance or activity but, for example, record that a particular person has
logged into the system. Such events can be used to calculate resource availabilities
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and, thus, may contribute to obtaining a comprehensive picture of the process per-
formance. However, in the context of this thesis we assume that each event can be
associated to a process instance and an activity.

Now, we introduce our notion of an event log, where we make use of the fact that
events are linked to a particular trace. In a nutshell, an event log is a set of traces and
the events within each trace are ordered in a sequence. Furthermore, each event in
the log is unique and can only be linked to one trace.

Definition 2 (Trace, Event log) A trace is a sequence of events σ = 〈e1, e2, . . . , en〉
∈ E∗ such that each event appears only once and all events in the trace have the
same case ID, i.e., σ(i) 6= σ(j) ∧ propCase(σ(i)) = propCase(σ(j)) for any
1 ≤ i < j ≤ n. C is the set of all possible traces (including partial traces). An
event log is a set of traces E ⊆ C such that each event appears at most once in the
entire log, i.e., for any σ1, σ2 ∈ E: set(σ1) ∩ set(σ2) = ∅ or σ1 = σ2.

Furthermore, we define the following notations for convenience:

• events(E) ∈ P(E) is the set of events contained in a given event log E, i.e.,
events(E) = {e ∈ σ | σ ∈ E}

• α(E) ∈ IB(A∗) is the simplified log, whereas each event in E is replaced by its
activity name, i.e., α(E) = [propAct(σ) | σ ∈ E]

While all the properties of the events in the log are relevant for a comprehensive
process mining analysis, control flow-related algorithms typically ignore time stamps
and additional data that are commonly present in real-life logs and focus on the actual
activities that take place (and their ordering relation). A process instance can then
be seen as a sequence of activities and an event log can be simplified to a set of
different log traces and their frequencies. Table 2.2 depicts such a simplified event
log, whereas shorthand labels are used for the actual activity names (cf. short names
enclosed by brackets in Table 2.1).

Table 2.2. Simplified event log as set of different log traces and their frequencies.

No. of Instances Trace
50 ABC
300 AC
10 ACAC
5 ACABC
20 ACEFGHJ
33 ACEFDGHJ
17 ACEDFDHJ
101 ACEFHJ

For example, if S = α(E) is the simplified event log for our customer service ex-
ample, then case2 from Table 2.1 is represented as σ = 〈A,C,E, F,D,G,H, J〉 ∈
S in Table 2.2. Furthermore, the frequency of sequence σ = 〈A,C,E, F,D,G,H, J〉
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∈ S is 33, i.e., S(σ) = 33, which means that 32 other service instances had exactly
the same order of activities as case2.

A closer inspection of Table 2.2 and some domain knowledge suggest that many
sequences that would be possible in the context of the customer service process are
actually not reflected in the event log. For example, the customer could call to get in-
formation about the repair status after the product was already shipped (i.e., between
H and J). Customers might contact the call center more than twice, and then still
issue a repair, and so on. So, we have to see the traces observed in an event log as
sampled but not necessarily complete behavior: Although these scenarios (customer
calls twice and then still issues a repair etc.) did not happen in the observed time
period, it does not mean that they cannot happen.

This problem can be further illustrated by the number of possible sequences
that can be generated by a process containing concurrent behavior. For example,
there are 5! = 120 possible combinations for executing five tasks in parallel, and
10! = 3, 628, 800 possible combinations for executing ten tasks that are parallel to
each other. So, it is very unlikely that all of these possible combinations can be ob-
served even if the process is monitored for a long time. Furthermore, if the process
contains loops, then an infinite number of traces is possible. Therefore, an event log
cannot be expected to exhibit all possible sequences of the process considered. As a
consequence, process discovery techniques strive for weakening the notion of com-
pleteness [24], that is the amount of information a log needs to contain to be able to
rediscover the underlying process model.

2.3 Process Models

When the service process example was introduced in Section 1.1, the model depicted
in Figure 1.3 was used to illustrate a process model as it could be discovered from
the call center and repair shop logs. For simplicity, this process model was drawn
in some arbitrary, informal notation. In reality, there exist many different process
modeling languages, and in Section 2.5 a number of process modeling formalisms
will be introduced in more detail.

However, for the moment we want to abstract from a concrete process modeling
language and consider some general constructs that emerge if a process model should
be mapped onto an event log. In process mining, there is often the situation that a
process model and an event log relate to the same process and, thus, a mapping needs
to be established between them. This is the case, for example, when a process model
has been discovered from an event log, or when an a-priori process model should be
compared with an event log that represents observations of the modeled process.

To establish a relation between process models and event logs, we introduce the
notion of an observable process model in Definition 3. In an observable process
model the tasks represent activities in a real process that are potentially observable,
i.e., they may cause events in a log. This potential observability is captured by the
notion of a labeling function, which relates observable tasks in the process model to
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a label. The label represents the observation that is triggered if the observable task is
executed.

Definition 3 (Observable Process Model) An observable process model is a tuple
(T, L, l), where:

• T is a finite set of tasks,
• L is a finite set of labels, and
• l ∈ T 6→ L is a partial labeling function.

Note that every executable process model has semantics that define the actual
behavior, i.e., the order in which the tasks in the model can be executed. These be-
havioral semantics are not described by Definition 3. In Section 2.5, the semantics of
several concrete process modeling languages will be described. However, first some
general constructs that are relevant in the context of observable process models are
discussed in more detail.

t1: Pick up Phone
Front Office

t3: Finish Call
Front Office

XOR

t5: Pick up Phone
Back Office

t6: Finish Call
Back Office

t2: Consult 
Supervisor

t4: Redirect to 
Back Office

XOR

P

F R P

F

Front Office Back Office

Fig. 2.1. Observable process model describing a procedure in a call center, where an agent in
the front office may escalate the call to a specialized agent in the back office only after having
consulted the supervisor.

Consider the observable process model depicted in Figure 2.1. The model con-
tains six tasks, i.e., T = {t1, t2, t3, t4, t5, t6}, which relate to activities both in the
front office and the back office of a call center. In the procedure described in Fig-
ure 2.1, an agent in the front office may escalate the call to a specialized agent in
the back office only after having consulted the supervisor. Most of the tasks in the
model are associated to a label, which is depicted in the upper right corner. These
labels represent action codes that are logged by the information system in the call
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center if the corresponding activity is performed. For example, the label associated
to the task ‘Redirect to Back Office’ is R, i.e., l(t4) = R. In total, there are three
different labels associated to tasks in the model, i.e., {F, P,R} ⊆ L. Note that the
supervisor consultation is not observable by the information system, since it is an
“offline” activity, i.e., t2 6∈ dom(l). Furthermore, the information system records
the same activity code regardless of whether the phone is picked up (or the call is
completed) in the front or back office of the call center, i.e., l(t1) = l(t5) = P
and l(t3) = l(t6) = F . As a consequence, the execution of the tasks t1t2t4t5t6
(cf. shaded path in Figure 2.1) results in the observation of the labels PRPF.

Because l is a partial function, there may be tasks in the model that are unlabeled,
and therefore cannot be observed in the event log. The tasks in T \dom(l), i.e., those
that are not in the domain of l, are called invisible tasks. Conversely, the set of tasks
that are labeled, i.e., those that are in dom(l), is the set of visible tasks. Visible and
invisible tasks can be defined as follows.

Definition 4 (Visible Tasks) Given an observable process model (T, L, l), the set of
visible tasks TV is defined as follows:

TV = dom(l)

Definition 5 (Invisible Tasks) Given an observable process model (T, L, l), the set
of invisible tasks TI is defined as follows:

TI = T \ TV
In the example in Figure 2.1, t2 is the only invisible task and all tasks except t2

are visible tasks.
Furthermore, there can be multiple tasks in the process model that have the same

label. They are called duplicate tasks and their occurrence cannot be distinguished
in the event log. Note that duplicate tasks only emerge from the labeling, since the
tasks of a process model themselves are distinguishable (be it not by means of their
name but their identity, or unique position in the graph). The set of all duplicate tasks
in an observable process model can be defined as follows.

Definition 6 (Duplicate Tasks) Given an observable process model (T, L, l), the
set of duplicate tasks TD is defined as follows:

TD = {t ∈ T | ∃t′∈T t 6= t′ ∧ l(t) = l(t′)}
In the example in Figure 2.1, t1, t3, t5, and t6 are duplicate tasks. Note that

duplicate tasks are always visible tasks.

2.4 Mapping Process Models and Event Logs

In the previous section, we have introduced observable process models, where ob-
servations are linked to the tasks in the model by the partial labeling function l.
Furthermore, in Section 2.2 we defined a simplified event log, where each event in
the log has been projected on its activity label. Now, we want to use these notions
to link a process model and an event log by assuming that the set of activity labels
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(cf. A in Definition 1) and the set of labels in an observable process model (cf. L in
Definition 3) are comparable, i.e., we assume that A = L.

For this mapping, we define the set of model labels and sequence labels as given
in Definition 7 and Definition 8, respectively.

Definition 7 (Model Labels) Given an observable process model (T, L, l), the set
of model labels LM is defined as follows:

LM = {l(t) | t ∈ dom(l)}
Definition 8 (Sequence Labels) Given an event log E, the set of sequence labels
LS is defined as follows:

LS =
⋃

σ∈α(E)

set(σ)

So, the set of model labels LM is the subset of labels L that is associated to tasks
in a given observable process model, i.e., LM ⊆ L. Similarly, the set of sequence
labels LS is the subset of activity labels A that have occurred in a given event log,
i.e., LS ⊆ A.

LSLM

(a) (b) (c)

Fig. 2.2. Relation of labels in an observable process model (LM ) and activity labels in a
simplified log (LS) as a Venn diagram.

Since we assume thatA= L, the set of model and sequence labels can be related
to each other as depicted in Figure 2.2. As can be seen in Figure 2.2, it is not neces-
sarily the case that every model label in LM is actually observed. For example, it can
happen that a certain alternative activity in a process is observable, but did not occur
in the time frame covering a particular event log (e.g., calls may have never been
re-directed to the back office in the example in Figure 2.1, and thus the observation
R is not present in the log). It is important to note that the corresponding tasks in the
observable process model are still visible (and not invisible) tasks. In Figure 2.2(a),
these unobserved (but actually possible) labels of an observable process model are
located in the subset LM \LS . The actually observed labels linked to the observable
process model are located by Figure 2.2(b) in the subset LM ∩ LS .

As indicated in Figure 2.2(c) by the subset LS \ LM , it may also be the case
that there are events in the log whose activity labels in LS are not associated to any
task in the observable process model. The reasons for this are manyfold. First of
all, activities in real business processes are often logged at a more fine-grained level
than they would be depicted in a process model. The event log may, for example,
contain separate events for the scheduling, the start, and the completion of an activity,
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while in a process model the corresponding activity would be represented by a single,
atomic task. Furthermore, there could be low-level events relating to error codes and
system status messages, from which we want to deliberately abstract in a process
model. Therefore, log events that are outside of the scope of the process, i.e., those
contained in the subset located by Figure 2.2(c), are usually removed. This happens
either during a filtering step before applying a process discovery algorithm, or during
the mapping step of an existing model and the event log. Also in this thesis, the
considered mapping is restricted to the set of labels indicated by the model labels
LM , and events with an activity label outside of LM are ignored.

However, it may well be that there are events in the log that are interesting, but
which do not have any correspondence in the process model. Consider, for example,
adaptive workflow management systems such as ADEPT [205], where additional ac-
tivities can be inserted for a process instance. Another example is a user test, where
participants perform a certain task on the tested product. In this situation, there is a
reference model describing the ideal steps to solve this task, but in reality the partici-
pants will also make steps that are outside of the ideal model. When the real behavior
is compared to the ideal model, these extra steps are interesting as they show devia-
tions from the intended flow.

To address this issue, it seems a good idea to be able to quantify the overlap of
process model and event log in some form. For this purpose, we define the following
auxiliary metrics, which indicate the degree of overlap from a log-based and a model-
based perspective, respectively.

Metric 1 (Log Coverage) Given an observable process model (T, L, l) and an event
log E, the log coverage metrics cE and cLE are defined as follows:

cE =
|{e ∈ events(E) | propAct(e) ∈ LM}|

|events(E)| (2.1)

cLE =
|LS ∩ LM |
|LS | (2.2)

If we assume that |events(E)| > 0 and |LS | > 0, then these metrics range from
0 (in the case that none of the log events is associated to any task in the model) to 1
(when every log event is associated to at least one task in the model). Note that the
metric cE really quantifies the overlap on the log event level, i.e., if, for example,
only one type of log event is not covered by the model but it happens very often in
the log, then this metric will reflect this, whereas metric cLE measures the degree of
overlap with respect to the types of log events only.

Metric 2 (Model Coverage) Given an observable process model (T, L, l) and an
event log E, the model coverage metrics cT and cLT are defined as follows:

cT =
|{t ∈ TV | l(t) ∈ LS}|

|TV | (2.3)

cLT =
|LM ∩ LS |
|LM | (2.4)
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If we assume that |TV | > 0 and |LM | > 0, then these metrics range from 0 (in
the case that every visible task in the model did not occur at all in the log) to 1 (in
the case that each visible task occurred at least once in the log). Note that the metric
cT quantifies the overlap on the task level, whereas metric cLT measures the degree
of overlap with respect to the different types of task labels only (i.e., it is abstracted
from duplicate tasks).

2.5 Process Modeling Formalisms

So far, all the process models were drawn in some arbitrary, informal notation. Fur-
thermore, we have introduced the notion of an observable process model (cf. Sec-
tion 2.3). In reality, there exist many different process modeling languages. Exam-
ples are the Business Process Modeling Notation (BPMN), Event-driven Process
Chains (EPCs), Unified Modeling Language (UML) Activity diagrams, but also nu-
merous vendor-specific languages. All these languages vary with respect to their
expressiveness, that is, the extent to which practically relevant behavioral patterns
can be specified [13]. Furthermore, some of the languages lack formal semantics
and have ambiguous constructs, such as the OR-join in EPCs [7, 142]. The problem
here is that it is difficult to provide unambiguous tool support for a language without
formal semantics (different vendors will interpret an ambiguous language standard
differently).

In this section, we briefly introduce five different process modeling formalisms
that appear in the coming chapters. Note that we only provide a partial formaliza-
tion for those modeling languages, i.e., only the parts actually needed later in this
thesis are defined formally. As the principal process modeling language we use Petri
nets, motivated by their formal semantics (Section 2.5.1). Furthermore, the work-
flow modeling language Yet Another Workflow Language (YAWL) (Section 2.5.2)
is used in the context of business process simulation in Chapter 9, Fuzzy models
(Section 2.5.3) are extended for flexible conformance checking in Chapter 6, Col-
ored Petri Nets (CPNs) (Section 2.5.4) are leveraged to represent simulation models
that include multiple perspectives in Chapter 8, and Hidden Markov Models (HMMs)
(Section 2.5.5) are a vehicle and comparative formalism in an approach towards pro-
cess model quality evaluation in Chapter 5.

2.5.1 Petri Nets

A Petri net [78, 209] is a process model that consists of a set of transitions, a set of
places, and a set of directed arcs that connect these transitions and places with each
other in a bipartite manner. Transitions are indicated by boxes and relate to some task,
or action, that can be executed. Places are indicated by circles and may hold one or
more tokens (indicated as black dots). Transitions are enabled as soon as all of their
input places (places connected to this transition via an incoming arc) contain a token.
If a transition is enabled, it may fire whereas it consumes a token from each of its
input places and produces a token for each of its output places (places connected to
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this transition via an outgoing arc). This way, the firing of a transition may change
the marking of a net, and therefore the state of the process, which is defined by the
distribution of tokens over the places.

Figure 2.3 depicts an example Petri net model of the customer service process
in the initial state. One can see one token in the top-most place, which is needed
to start the process. Once the transition with the short-hand label A fires, this token
will be consumed, and another token will be produced and put in the output place
of transition A. Then, there is a “race” between the transitions B and C, because
only one of them can consume this token. This way, Petri nets can model choice
constructs. Similarly, multiple branches can be activated at the same time as illus-
trated in the highlighted area labeled as parallel split. As soon as this transition fires,
two tokens will be produced (one for each of the output places), which enables the
independent (concurrent) action flow in these two branches. It is important to under-
stand that—due to the inherent concurrency—places themselves do not represent a
distinct process state. Rather, they can be seen as pre- and/or postconditions for the
occurrence of events (i.e., the firing of transitions). Only the distribution of tokens
over all places, i.e., the marking of a net, represents the current state of the process.
Although Petri nets can be represented graphically as shown in Figure 2.3, they have
an exact mathematical definition of their execution semantics, and thus can be used
completely without this graphical representation.

Petri nets are an interesting modeling formalism, since they provide a good bal-
ance between modeling power and analyzability [178]. Many properties, such as
reachability, liveness, and boundedness, can be determined efficiently for Petri nets,
or specific sub classes of Petri nets (e.g., Free-choice Petri nets [77]), while they are
very difficult to decide for more general types of concurrent systems [90]. We use
Labeled Place/Transition nets, which is a variant of the classic Petri-net model, and
which from now on we refer to as Labeled Petri nets for simplicity. They are defined
as follows.

Definition 9 (Labeled Petri net) A labeled Petri net is a tuplePN = (P, T, F, L, l),
where:

• P is a finite set of places,
• T is a finite set of transitions such that P ∩ T = ∅,
• F ⊆ (P × T ) ∪ (T × P ) is a set of directed arcs, called the flow relation,
• L is a finite set of labels, and
• l : T 6→ L is a partial labeling function.

Note that a labeled Petri net as defined in Definition 9 is also an observable
process model (cf. Definition 3). As a consequence, the same notions of visible,
invisible, and duplicate tasks can be applied. For example, in the Petri net depicted
in Figure 2.3 the two transitions with the label ‘Finish Call’ are duplicate tasks (i.e.,
they are in TD). Furthermore, the black transition that is highlighted to illustrate the
parallel split is an invisible task (i.e., it is ∈ TI ). In the remainder of this thesis,
invisible tasks within a labeled Petri net are always indicated by smaller transitions
filled with black color.



36 2 Preliminaries

Answer Call
Front OfficeA

Redirect to
Back Office B

Finish CallC

Finish Call C

Inform about
Repair StatusD

Register
Incoming ProductE

Try to Repair
ProductF

Test Repaired
Product G

Ship Repaired
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Shipment
CompleteJ

Parallel Split
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Fig. 2.3. Petri net process model of the customer service process.
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Later in this thesis, we will often consider models that belong to a well-investigated
subclass of Petri nets that is typically used to model business processes, which is the
class of sound Workflow nets (WF-nets) [11]. A WF-net requires the Petri net to have
(i) a single Start place, (ii) a single End place, and (iii) every node must be on some
path from Start to End, i.e., the process is expected to define a dedicated begin and
end point and there should be no “dangling” tasks in between. The soundness prop-
erty further requires that (iv) each task can be potentially executed (i.e., there are no
dead tasks), and (v) that the process—with only a single token in the Start place—
can always terminate properly (i.e., finish with only a single token in the End place).
Note that the soundness property guarantees the absence of deadlocks and live-locks.
This way, we abstract from correctness problems, which are not in the focus of this
thesis. Whether a WF-net is sound or not can be determined efficiently, for example
when restricted to Free-choice Petri nets this property can be verified in polynomial
time [1]. Furthermore, it is easy to translate an arbitrary Petri net with a given start
and end marking into a WF-net.

Note that the Petri net in Figure 2.3 is also a WF-net. There is a single Start place
at the top (only outgoing but no incoming arcs), which can only be marked at the
very beginning of the process. Furthermore, there is a single End place at the bottom
(only incoming but no outgoing arcs), and there are no “dangling” tasks in the model.

2.5.2 Yet Another Workflow Language (YAWL)

YAWL [12] is a workflow language that has been specifically designed with the
goal to support all (or most) of the so-called workflow patterns [13], and to have
formal semantics. The initiative was triggered by the observation that most existing
workflow languages had a poor support of the workflow patterns (i.e., constructs
identified to be essential to express business process behavior [13]). Furthermore,
as already indicated there were often ambiguities regarding the semantics of certain
constructs.

Because Petri nets provide a good basis for supporting the basic workflow pat-
terns, they were taken as a starting point for the design of YAWL, but several con-
structs were added to the formalism to extend the pattern support. The main con-
structs that were added are the OR join [270], cancellation sets, and multi-instance
activities [12, 13]. The OR join is one of the most problematic patterns, and many
languages struggle with its semantics. It is used in situations when one needs to
model “wait and see” behavior for synchronization (like a bus driver is waiting for
all approaching passengers), i.e., synchronization is only to be performed for active
paths. The question of how to decide whether (a) one should wait further or (b) en-
able the OR join is non-trivial, especially in process models that contain other OR
joins. The non-local semantics of the OR join require a synchronization depending
on an analysis of future execution paths. YAWL incorporates a formal and decidable
approach for dealing with OR joins in the presence of cancellation regions and other
OR joins. This approach exploits a link that is proposed between YAWL and reset
nets, a variant of Petri nets with a special type of arc that can remove all tokens from
a place [268]. Through these additional constructs (OR joins, cancellation sets, and



38 2 Preliminaries

Choice

Parallel Split

Fig. 2.4. YAWL model of the customer service process.
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multi-instance activities), the YAWL language is more expressive than plain Petri
nets, and its formal foundation is based on labelled transition systems rather than
Petri nets.

In addition, YAWL adds some syntactical elements to Petri nets in order to in-
tuitively capture other workflow patterns such as simple choice (XOR split), simple
merge (XOR join), and multiple choice (OR split). In the YAWL model of the cus-
tomer service process in Figure 2.4, it can be observed that—due to these syntactical
elements—most places and invisible tasks (pure routing tasks are indicated by a traf-
fic light sign in YAWL) have disappeared compared to the plain Petri net model in
Figure 2.3, and the model becomes more compact in its graphical representation.
For example, the choice highlighted in the Petri net in Figure 2.3 corresponds to the
workflow pattern ‘simple choice’ (XOR split) and models an exclusive choice (i.e.,
only one of the alternative paths may be taken). In YAWL, there is a special symbol
that indicates this kind of choice (cf. highlighted area in Figure 2.4), which makes
succeeding places obsolete. Similarly, there is a special symbol for a ‘parallel split’
(AND split) in YAWL (cf. Figure 2.4), which makes it possible to directly connect
the task ‘Register Incoming Product’ without a place in between.

 A  B  C 

   

(a) OR split in a Petri net model (b) OR split in a YAWL model

Fig. 2.5. An OR split modeled in a plain Petri net compared to the YAWL notation.

Another example is the ‘multiple choice’ pattern (OR split), which describes an
inclusive choice (i.e., between one and all of the alternative paths may be taken).
As shown in Figure 2.5(a), in Petri nets such behavior needs to be represented by
a network of invisible tasks that model all the possible combinations, i.e., enable 1-
out-of-n, 2-out-of-n, up to n-out-of-n of the branches following the multiple choice.
In YAWL, such a multiple choice can be represented in a very compact way by a
special symbol (cf. Figure 2.5(b)).

Finally, YAWL also allows to specify other workflow dimensions than the control
flow. For example, it is possible to define which kind of people are allowed to perform
certain tasks (based on roles and an organizational model). In fact, YAWL supports
most of the resource patterns described in [234]. It is also possible to define routing
rules based on complex data types to support the processing of information in the
real process.
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2.5.3 Fuzzy Models

While the workflow language YAWL, which was introduced in the previous sec-
tion, aims at the specification of a fully executable workflow, even covering multiple
perspectives such as resources and data, Fuzzy models [115] have been deliberately
designed to visualize complex processes in a less precise manner. With the goal
to show understandable models even for very unstructured and flexible processes,
Fuzzy models are able to abstract from details and to aggregate behavior that is not
of interest into cluster nodes [117]. As a consequence, the resulting models are not
suitable for enacting a process on a workflow system. Instead, they provide a means
to explore complex processes in an interactive manner, and on varying levels of ab-
straction.

Try to Repair
Product

Ship New
Product

Test Repaired
Product

Redirect to
Back Office

Finish Call

Answer Call
Front Office

Register
Incoming Product

Inform about
Repair Status

Shipment
Complete

Ship Repaired
Product

No distinction between 
Choice and Parallel Splt

Fig. 2.6. Fuzzy model of the customer service process.

Figure 2.6 illustrates how “relaxed” the semantics of Fuzzy models are compared
to process modeling languages as Petri nets or YAWL. If a task in a Fuzzy model has
multiple successor tasks, then all of these successors will be activated once the task
has been executed. However, they do not need to be executed. This way, there is
no explicit distinction possible between ‘simple choice’ (XOR split), ‘parallel split’
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(AND split), or ‘multiple choice’ (OR split). These patterns may emerge implicitly,
but they are not enforced by the model semantics.

Fig. 2.7. Abstracted Fuzzy model of the customer service process.

One of the main strengths of the Fuzzy models is that they were conceived to be
easily adaptable. In the Fuzzy miner, nodes and edges can be automatically removed
or clustered by moving a slider along a particular significance, or correlation, thresh-
old scale. For example, in Figure 2.7 a simplified version of the customer service
process model is shown, where the ‘Redirect to Back Office’ node has been com-
pletely abstracted from, and several tasks relating to the repair process have been
hidden in a cluster node.

The relaxed Fuzzy model semantics can be summarized as follows (see [115] for
a detailed description and an evaluation of the semantics in terms of the workflow
patterns):

• Instantiation. The process may start at any arbitrary node in the Fuzzy model,
i.e., there is no exclusive starting point.

• Branch semantics. Every node has AND split semantics, i.e., an executed node
enables all successor nodes.

• Join semantics. Every node has memory-less XOR join semantics [115], i.e., it
can be executed as soon as it has been enabled by any of its predecessor nodes
(but it does not “remember” how often it has been enabled).

• Termination. The process terminates implicitly whenever no further nodes are ex-
ecuted, i.e., there is no exclusive ending point and potentially remaining enabled
nodes are ignored.
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With their relaxed execution semantics, and the adaptive simplification mech-
anism in the Fuzzy miner, Fuzzy models are especially useful as a descriptive
means for complex and unstructured processes (such as product usage processes),
which would yield so-called “spaghetti” models if they would be precisely repre-
sented [115].

2.5.4 Colored Petri Nets (CPNs)

CPNs are a modeling formalism that combines Petri nets with the functional pro-
gramming language Standard ML (SML) [137]. Petri nets provide the primitives for
process interaction, while the programming language provides the primitives for the
definition of data types and the manipulations of data values. In ordinary Petri nets
tokens are indistinguishable, but in CPNs every token has a value (i.e., they are “col-
ored” and can be distinguished and used in computations). The values of tokens are
typed, and they can be tested and manipulated with statements written in SML.

6 K. Jensen, L.M. Kristensen and L. Wells: Coloured Petri Nets and CPN Tools
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Fig. 2. Marking M1 reached when SendPacket occurs in M0.

bind d to the string "COL". Hence, we conclude that the
binding:

〈n=1, d="COL"〉
is the only enabled binding for SendPacket (in the initial
marking). An occurrence of SendPacket with this bind-
ing removes the token with colour 1 from the input place
NextSend and removes the token with colour (1,"COL")
from the input place PacketsToSend. Since SendPacket is
connected to PacketsToSend and NextSend by means of
double-headed arcs, the occurrence of SendPacket with
this binding will also add a token with colour (1,"COL")
to PacketsToSend and add a token with colour 1 to
NextSend. This means that tokens removed from the
places PacketsToSend and NextSend according to the re-
sult of evaluating the arc expression, are immediately re-
placed by new tokens with the same token colours. Thus
the markings of these places do not change when the
transition occurs. This allows the packet to be retrans-
mitted (to recover from loss). The occurrence of Send-
Packet also adds a new token with colour (1,"COL") to
the output place A. Intuitively, this represents that the
first data packet (1,"COL") has been sent to the net-
work. Figure 2 shows a fragment of the CPN model in
the new marking M1. We show only a fragment of the
CPN model since the occurrence of a transition changes
only the markings of the places that are connected to
the transition via an arc.

Consider the marking M1 and the transition Trans-
mitPacket which has three variables n, d, and success.
The variable success is a Boolean variable declared as:

var success : BOOL;

which appears on the output arc. The colour set BOOL is
defined to be the set of Boolean values ({true, false})
bool:

colset BOOL = bool;

In marking M1, place A has a single token with colour
(1,"COL"). The variable success is only found on an
output arc from TransmitPacket, and this means that
the variable can be bound to an arbitrary value from its
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Fig. 3. Marking M+
2 —successful transmission in M1.

colour set (which is BOOL). Based on the arc expression
(n,d) on the input arc from A, it is straightforward to
conclude that transition TransmitPacket is enabled with
two different bindings in M1:

b+ = 〈n=1, d="COL", success=true〉
b− = 〈n=1, d="COL", success=false〉

The first of these bindings b+ represents successful trans-
mission over the network. If it occurs in M1 the following
happens:

– The data packet (1,"COL") is removed from input
place A.

– A new token representing the same data packet is
added to the output place B (in the if-then-else
expression the condition success evaluates to true
while 1‘(n,d) evaluates to 1‘(1,"COL")).

Figure 3 shows part of the marking M+
2 which is the

result of an occurrence of the binding b+ in M1.
The second binding b− represents an unsuccessful

transmission, i.e., that the data packet is lost by the
network. If it occurs in M1 the following happens:

– The data packet (1,"COL") is removed from input
place A.

– No token is added to the output place B (in the
if-then-else expression the condition success eval-
uates to false while the predefined constant empty
evaluates to the empty multi-set).

An occurrence of the binding b− in M1 leads back to the
initial marking M0 shown in Fig. 1.

Let us now consider the reception of data packets
in marking M+

2 . The token on place NextRec represents
the sequence number of the data packet that the receiver
expects to receive next. The variable k is bound to the
value of this sequence number. The variable data has
type DATA (i.e., text string):

var data : DATA;

(a) Places are typed

(b) Tokens have values

(c) Tokens values 
can be transformed

Fig. 2.8. Example of a CPN model [137].

Figure 2.8 depicts a fragment of a simple network protocol model (the complete
example can be found in the CPN reference publication [137]). Again, the boxes in-
dicate transitions and the circles indicate places in the Petri net. The fragment shown
contains the sending and the transmission part of the protocol (but not the acknowl-
edgement of successfully transmitted packages). As one can see in Figure 2.8(a),
places in a CPN model have a type. For example, the place ‘Packets To Send’ has
the place type ‘NOxDATA’, which is a record of a sequence number (‘NO’) and the
packet content (‘DATA’). This place contains 6 tokens, which correspond to 6 pack-
ages that are to be transmitted over the network. As highlighted in Figure 2.8(b),
each of these tokens has a value, which fits the place type (i.e., a sequence number
and some content).
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Now, these token values may also influence which token (i.e., packet) is con-
sumed by transition ‘Send Packet’. In addition to the existence of a token in the
input place of a transition, it is necessary to bind the token value in some form. In
Figure 2.8, both places ‘Packets To Send’ and ‘NextSend’ are input places for tran-
sition ‘Send Packet’, and from both tokens the variable n needs to be bound to the
same value. Because the place ‘NextSend’ only contains a token with the value 1, it
is only possible for transition ‘Send Packet’ to consume a token from place ‘Packets
To Send’ that has the sequence number 1 (packets with a higher sequence number
can only be sent once the acknowledgement packet arrived).

Besides the fact that token values can have an effect on the enablement of tran-
sitions, these values can also be manipulated when the transition produces a new
token for an output place. Consider, for example, Figure 2.8(c), which highlights an
SML statement that—based on some random variable success—either creates a to-
ken with the same values (n, d) for place ‘B’ or not. This way, it is modeled that the
packet is either successfully transmitted, or it is lost (in which case it needs to be sent
again).

In addition to color, CPNs extend Petri nets by the notion of hierarchy, which
enables the decomposition of a complex model into smaller modules (and modules
can be reused in multiple places without a repeated specification of their content).
Finally, CPNs may be used with an explicit reference to time. Untimed CPN models
are typically used to validate the functional/logical correctness of a system, while
timed CPN models are used to evaluate the performance of the system.

In Section 3.4, we will briefly introduce the CPN Tools environment that can be
used to edit, analyze, and simulate CPNs. We will use CPNs to represent business
processes including data, time, and resource aspects in Chapter 8 and in Chapter 9.

2.5.5 Hidden Markov Models (HMMs)

An HMM [201] is an extension of a discrete markov process. A discrete, first order,
Markov chain consists of a set of states and a set of state transition probabilities,
whereas the probabilistic description is truncated to just the current and the prede-
cessor state. This means, associated with each state we have a set of probabilities
describing the likelihood of changing to a particular other state (possibly going back
to the same state) that are independent of any previous states, and thus sum up to 1.

The difference between Hidden Markov Models and plain Markov Models is that
the actual states of the process cannot be observed (they are hidden). Instead, there
is a set of observable elements, whereas one observation can be produced by more
than one state. Therefore, seeing a particular observation element in isolation is not
enough to suggest the current state of the process. We define the Hidden Markov
Model as follows.

Definition 10 [Hidden Markov Model] A Hidden Markov Model is a tuple (N,L,A,
B, π), where:

• N is a finite set of states,
• L is a finite set of observations,
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• A : (N ×N)→ [0, 1] is a state transition matrix, such that:
∀s1∈N

∑
s2∈N A(s1, s2) = 1,

• B : (N × L)→ [0, 1] are the observation probabilities, such that:
∀s∈N

∑
o∈LB(s, o) = 1, and

• π : N → [0, 1] is the initial state distribution, such that:∑
s∈N π(s) = 1

So, in each of the states potentially all of the observation elements could be pro-
duced, and the likelihood of observation o to be produced in a particular state s is
captured by the observation probability B(s, o). Note that we want to use HMMs to
represent processes that have been observed by recording an event log, and therefore
use the same set of labels L as in the definition of an observable process model (cf.
Definition 3). Nonetheless, there are differences between a classical process model-
ing formalism that includes concurrency (such as Petri nets) and a stochastic formal-
ism such as HMMs, which will be discussed in more detail later in Section 5.4.

When represented graphically, the states in an HMM are indicated by circles
and the transition probability between two states aij = A(si, sj) is written on the
directed arc leading from state si to state sj . Furthermore, the probabilities B(s, o)
for each observation o ∈ L in state s are indicated by square brackets. Finally, initial
states, i.e., a state s where π(s) > 0, are decorated by a double border and their
initial state probability is given within the circle indicating the corresponding state.

Consider the following coin-tossing example taken from [201]. A certain se-
quence of coin tossing outcomes has been observed, but we do not know how many
coins were tossed and in which order. Furthermore, the coins are biased. Biased
means that the probability of heads, i.e., P (H), is not necessarily the same as the
probability of tails, i.e., P(T) (but P (H)+P (T ) = 1 still holds). So, the observation
elements are heads (H) and tails (T), and using HMMs we can construct different
models where each state has probabilities for how likely each of the observation
elements is to be produced.

The HMM depicted in Figure 2.9(a) models one biased coin with two states (rep-
resented by circles), wheras each of the states produces only one type of observation
(H is produced in state 1, and T is produced in state 2). It is, therefore, a degenerate
HMM, which corresponds to an ordinary Markov chain, where the states are observ-
able. So, when we observe an H we know that the HMM was in State 1, and when
we observe a T we know that the HMM was in State 2.

Now consider Figure 2.9(b) which depicts a true HMM, which can produce both
heads and tails in each state, with different probabilities. So, observing either a T
or an H, we do not know anymore in which state the model is just based on this
observation. Note that a11 denotes the transition probability from state 1 to state 1,
i.e., A(1, 1) according to Definition 10, while a12 denotes the transition probability
from state 1 to state 2, and so on. So, the state transitions are decoupled from the
observation probabilities. This representation is more powerful as it can model the
situation of two biased coins that are tossed in an arbitrary order, which is useful as
we do not know whether the observed sequence was produced by a single or multi-
ple coins (only the outcome is visible—the underlying source is hidden). Similarly,
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State 1
[ 1 0 ]

P(H)

State 2
[ 0 1 ]

1-P(H)
P(H)

1-P(H)

(a) Degenerate HMM modeling a sin-
gle biased coin. The only possible state
sequence for the observation sequence
HHTTHTHHTTH... is 11221211221...

State 1
[ P1(H) 1-P1(H) ]

a11

State 2
[ P2(H) 1-P2(H) ]

1-a11
1-a22

a22

(b) HMM modeling the merged outcome of two
biased coins. One of the many possible state
sequences for the given observation sequence
HHTTHTHHTTH... is 21122212212...

Fig. 2.9. Two possible HMMs that could be used to model the following observation sequence
of heads (H) and tails (T): HHTTHTHHTTH... Within the square brackets the probabilities for
the observations [H T] are given for each state, respectively. For simplicity, the initial state
distribution has been abstracted from.

we could construct an HMM with three states, which would be capable of modeling
three biased coins, etc., and we could also represent the degenerate HMM from Fig-
ure 2.9(a) by a true HMM with one state only. Obviously, the more states an HMM
has, the more representational power it embeds.

There are three fundamental problems for HMMs, for which formalized solutions
are provided in [201]. These problems are:

1. “Given observation sequence σ = o1, o2, ..., on, how to compute the probability
of σ, given the model λ, i.e., Pr(σ|λ)?”

2. “Given σ, how do we choose a corresponding state sequence s1, s2, ..., sn which
best explains the observations?”

3. “How do we adjust the model parameters to maximize the fit with the observa-
tion sequences?”

The first problem can be solved efficiently using the Forward-Backward Proce-
dure [36, 38]. The solution for the second problem depends on the optimality cri-
terion (i.e., what exactly means “best”?), and the most commonly used approach is
to determine the single state sequence that is most likely to produce the provided
observation sequence using the Viterbi algorithm [257, 93]. The third is the far most
difficult problem and can be solved iteratively, e.g., using the Baum-Welch algo-
rithm [37]. Furthermore, it is possible to calculate the distance between two HMMs,
for example using a Kullback-Leibler distance as in [138].

Later in this thesis (see Section 5.4), we make use of existing solutions to the first
two problems (without going into further detail about the actual techniques being
used). That is, we will compute the probability of a given observation sequence with
respect to a given HMM, and we will need to determine the most likely state sequence
for a given observation sequence with respect to a given HMM.
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Tools and Platforms

We relied on a number of different tools and platforms—which were either used or
extended—to test the applicability of the approaches described in this thesis. This
chapter provides an overview of these existing tools and platforms. Later in this
thesis we will describe our own extensions and implementations in more detail. Fur-
thermore, Appendix A contains an overview of the newly implemented functionality.

Event Log 
Recording

Event Log 
Transformation

Process
Analysis

Process
Simulation

▪ YAWL Engine 
▪ Noldus

▪ ProMimport

▪ ProM
▪ Weka

▪ D'PUIS 
▪ CPN Tools
▪ Other

▪ CPN Tools 
▪ Jahmm HMM

▪ Jahmm HMM

Fig. 3.1. Overview about the tools and platforms used in this thesis.

Figure 3.1 depicts the different phases of the analysis cycle. Since process mining
is about event log analysis, these logs need first to be created. While it was sometimes
enough to manually create an event log for a proof of concept, we also leveraged a
number of different tools and systems for Event Log Recording, which are described
in Section 3.1. Besides the tools presented in this chapter, we also analyzed real-life
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event logs that were recorded by other information systems during our case studies.
These logs are described in more detail in the case study sections of this thesis.

As a next step, any log, no matter whether artificially created or extracted from a
real-life system, needs to be translated into a format that can be analyzed by our anal-
ysis tools. For this step of Event Log Transformation we relied on the ProMimport
framework, which is described in Section 3.2.

Given that the logs are in the right format, we can analyze them with our process
mining tools. For Process Analysis, we used (and extended) the ProM framework.
Most of the analysis techniques presented in this thesis were implemented as plug-
ins in the ProM framework. In some occasions, we also relied on the Weka machine
learning workbench to leverage existing data mining algorithms. Both platforms are
introduced in Section 3.3.

Finally, for Process Simulation we used CPN Tools, which is described in Sec-
tion 3.4.

3.1 Event Log Recording

As outlined in Section 1.4, there are a variety of systems that record events. However,
in this thesis we focus on two types of IT systems that produce logs, which can be
analyzed using process mining techniques: business process IT and deployed appli-
cations (cf. Figure 1.7). In the remainder of this section, we first describe the WFM
system YAWL as a representative of a business process IT system (Section 3.1.1).
Then, we provide two examples of how logs can be produced for deployed applica-
tions (Section 3.1.2).

3.1.1 Business Process IT: The YAWL Workflow System

The YAWL language presented in Section 2.5.2 is supported by a software system
that includes an execution engine, a graphical editor and a worklist handler. The
system is available as open source software [272] under the GNU Lesser General
Public License (LGPL).

Figure 3.2 depicts the architecture of the YAWL system in a simplified way. A
detailed description of the service-oriented architecture of the YAWL system (and the
interaction of the engine with the YAWL services) can be found in [3]. As it is typi-
cal for a WFM system, process support is achieved by configuring the system with a
model rather than implementing the process on the application level. This means that
WFM systems are generic and can enact any process based on a given process speci-
fication. If a new process should be supported by the YAWL system, this process thus
needs to be specified in the YAWL editor first. In this step, all relevant perspectives
(control-flow, resources, data, etc.) are modeled, and the process designer has access
to organizational information from the resource database to assign tasks to certain
roles and organizational units.

This YAWL model can then be enacted by the YAWL engine, which means that
users can create new process instances, and the corresponding work items appear
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Fig. 3.2. Simplified architecture of the YAWL system.

in the work lists of the relevant people. In the YAWL engine, detailed event logs
are being created whenever an activity is enabled, started, completed or cancelled,
together with the time when it happened and who has initiated this event. The logs
are also kept for data values that have been entered and used throughout the system.
Therefore, it is possible to easily retrieve historical data with respect to a specification
that has been executed before.

3.1.2 Deployed Applications: Noldus and D’PUIS

As opposed to the automated logging facilities that come with a business process
IT system such as YAWL, the logging of events relating to the usage process of a
deployed application is more complicated and requires some additional effort. One
approach is to make video recordings during a classical user test, and to subsequently
annotate these recordings with events [127]. A software tool that can be used to create
loggings from such annotated videos is ‘The Observer XT’ from Noldus [184].

Figure 3.3 depicts a screenshot of the Noldus software in action. In the top-left
area, the actual video recording of the user test is shown. On the right side, a number
of states, and shortcut keys for the start and end of each state, can be defined. This
information needs to be added by the analyst who performed the user test. It relates
to specific phases of the usage process during the test. For example, ‘Select channel’
would be a possible state during a television usability test.

Once these states are defined, the analyst can watch the video recording and hit
the corresponding keys as she observes the participants’ behavior (for the start and
the stop of the ‘Select Channel’ activity, respectively). Each event is then automati-
cally extended with a time stamp that refers to the actual user test time (cf. bottom-
left area in Figure 3.3). The resulting log can be exported as a text file. A fragment
of such a user test log file created with Noldus’ software is depicted in Figure 3.4.

Obviously, the described semi-automatic approach is very time-consuming and
does not scale well. Furthermore, the need for manual annotation steps renders the
results error-prone and less precise. An alternative way to obtain event logs from
deployed applications is to build observation modules into products, and to automat-
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Video Area

Action Shortcuts

Resulting Log

Fig. 3.3. Screenshot of ‘The Observer XT’ from Noldus.

Start Date: 2008-06-03; Start Time: 14:56:08; Header Lines: 4; 
Time;ObservationName;Event Log File Name;Subject;Behaviour;State Event;Comment; 
0.000;"USER X TASK Y";"Obs22972Ods22973";"";"Read Task";"Point";""; 
34.976;"USER X TASK Y";"Obs22972Ods22973";"";"Start task";"State start";""; 
48.066;"USER X TASK Y";"Obs22972Ods22973";"";"Start task";"State stop";""; 
48.066;"USER X TASK Y";"Obs22972Ods22973";"";"Main menu";"State start";""; 
59.577;"USER X TASK Y";"Obs22972Ods22973";"";"Main menu";"State stop";""; 

Fig. 3.4. Example fragment of log data exported from ‘The Observer XT’.

ically collect usage data, which is pursued by the Dynamic Product Usage Informa-
tion System (D’PUIS) framework [94, 96, 97, 98].

Another advantage of this approach is that it allows for data collection from
testers using the product in their habitual environment and, this way, alleviates the
common problem that early user tests are often performed in non-representative envi-
ronments, where people do not behave normally as they feel observed. Furthermore,
tests can easily be run for several weeks, and thus cover different phases of use [47].
Research has shown that the long-term usage behavior is often quite different from
the behavior during the first few hours after unpacking the product. Finally, to ensure
that the right data is collected, D’PUIS allows the observation logic to be changed
dynamically by the development team, i.e., while the test is running. This way, truly
iterative data collection and analysis becomes possible.

Figure 3.5 shows an overview of the D’PUIS approach. One can see that the
product to be observed is equipped with an observation module which has access
to so-called hooks. These hooks and the observation module have to be built into
the product beforehand. For example, in a user test scenario, the product prototype
would be instrumented with hooks before actually giving it to testers at home. These
hooks are then triggered as soon as the participant interacts with the product (presses
a certain button etc.).
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Fig. 3.5. D’PUIS approach towards product usage monitoring [94].

Once the prototype has been given to the participants, the following three steps
are performed in an iterative manner: (1) The first step of the actual flow is the ob-
servation specification: domain experts visually define what information should be
observed in the product. This task is done within an easy, but formal visual language.
(2) The outcome is an observation specification which is used to automatically and
remotely instruct the observation modules in the various products by simply replac-
ing their observation component. The observation modules collect field data during
product usage depending on their current configuration and send it to a central data
storage (the D’PUIS data base). (3) In the third step the data is processed and can be
analyzed using process mining techniques.

As a case study (not further described in this thesis), we instrumented an IPTV
product prototype using D’PUIS and collected usage data together with perceptional
data over the internet [94, 95]. However, the framework can also be used to instru-
ment and evaluate pure software products in a structured way.

3.2 Event Log Transformation - The ProMimport Framework

For any log transformation tasks, we rely on the ProMimport Framework [116, 199],
which has been designed to provide a foundation for the extraction of event log data
from any given log-producing system. Currently, there exist more than 20 converters
for systems such as IBM’s WebSphere, Pallas Athena’s FLOWer, Eastman Workflow,
and Tibco’s Staffware. Furthermore, its flexible and extensible architecture make it
easy to write new converters for custom log formats. As depicted in Figure 3.6, the
target format of any conversions performed by the ProMimport framework is called
Mining XML (MXML), which can be read by process analysis tools such as ProM.
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Fig. 1. Positioning the ProM Import Framework in the BPI landscape

been devised. While this format has been designed to meet the requirements of
process mining tools in the best possible way, the conversion from many PAIS’s
custom formats to MXML is a non-trivial task at best.

This combination of recurring and time-consuming tasks calls for a generic
software framework, which allows the implementation of import routines to con-
centrate on the core tasks which differentiate it from others. Providing a common
base for a large number of import routines further enables to leverage the com-
plete product with marginal additional implementation cost, e.g. by providing a
common graphical user interface (GUI) within the host application.

The ProM Import Framework addresses these requirements, featuring a flex-
ible and extensible plug-in architecture. Hosted import plug-ins are provided
with a set of convenience functionality at no additional implementation cost,
thus making the development of these plug-ins efficient and fast.

This paper is organized as follows. Section 2 introduces process mining and
the ProM framework, followed by an introduction to the underlying MXML
format in Section 3. Section 4 describes requirements, design, architecture, and
implementation of the ProM Import Framework. Subsequently, Section 5 gives
an overview about target systems for which import plug-ins have already been
developed, after which Section 6 draws conclusions.

2 Process Mining and ProM

Process-aware information systems, such as WfMS, ERP, CRM and B2B sys-
tems, need to be configured based on process models specifying the order in
which process steps are to be executed [1]. Creating such models is a complex
and time-consuming task for which different approaches exist. The most tradi-
tional approach is to analyze and design the processes explicitly, making use of
a business process modeling tool. However, this approach has often resulted in
discrepancies between the actual business processes and the ones as perceived
by designers [3]; therefore, very often, the initial design of a process model is
incomplete, subjective, and at a too high level. Instead of starting with an ex-
plicit process design, process mining aims at extracting process knowledge from
“process execution logs”.

Process mining techniques such as the alpha algorithm [4] typically assume
that it is possible to sequentially record events such that each event refers to

Fig. 3.6. ProMimport framework for event log conversion [116].

In the following, first the structure of the MXML format is described in more
detail (Section 3.2.1). Then, we give one concrete example for a ProMimport plug-in
(Section 3.2.2).

3.2.1 The MXML format

The MXML format has been created as a standard format for event logs. Figure 3.7
depicts the structure of the format as a UML class diagram, based on the MXML
Schema definition [179].

As can be seen in Figure 3.7, the root element is a WorkflowLog, which may
point to the source of the log, and which can contain one or more Processes. Each
process contains an arbitrary number of ProcessInstances, which in turn each contain
an arbitrary number of AuditTrailEntries. Audit trail entry is another word for event.
Note that while the order of processes and process instances is not important (i.e.,
they are seen as a set), the order of audit trail entries is important (i.e., they are seen
as a sequence).

An audit trail entry consists of at least a WorkflowModelElement, which is the
name of the activity, and an EventType. The event type refers to the position of the
audit trail entry in the life cycle of an activity. Figure 3.8 depicts the supported ac-
tivity life cycle in more detail. The life cycle starts in the top-left state and it ends in
one of the two bottom states (i.e., either as ‘completed’ or ‘aborted’). The only event
types that are considered in the context of this thesis are highlighted in bold. They are
schedule, start, and complete, and thus relate either to the scheduling, the start, or the
completion of the activity indicated by the corresponding WorkflowModelElement.

Finally, there may be a Timestamp and/or an Originator given for each event.
To incorporate further log information that does not fit in the mentioned elements, a
collection of Attributes can be provided in a Data section on every level of the log
(i.e., for the whole log, a process, a process instance, an event, etc.).

Although MXML could be established as the process mining log standard since
2001, the format also has certain drawbacks. As pointed out in [115], MXML has
been developed with a specific kind of process meta-model in mind, which results in
the following shortcomings when used for more general process event logs as they
are, for example, found in more unstructured environments such as in product usage:
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Fig. 3.7. Structure of the MXML format for event logs [116, 115]. A log consists of a set
of processes, which each contain a set of process instances. A process instance contains a
sequence of audit trail entries, i.e., events.
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Fig. 3.8. The EventType denotes the position of an AuditTrailEntry in the transactional model
for activities [86]. So, events can relate to, for example, the start or the completion of a partic-
ular activity in the process.
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• The terminology used to describe structural elements and attributes hints at
workflow-like processes, which are driven by explicit process models. As an ex-
ample, the term “WorkflowModelElement” implies that an event can be related
to a task in a given workflow model.

• MXML has no concept for hierarchy and grouping, which makes it hard to trans-
late logs with a complex vertical hierarchy. Knowledge about such hierarchy is
either lost, or it needs to be encoded in proprietary data extensions.

• There is no straightforward way to extend MXML with additional information.
Additional knowledge can be encoded in the general data section, but then it is
no longer associated with any specific semantics.

The lack of hierarchy and extension possibilities can partly be addressed by
semantic annotations as they are allowed in the Semantic Annotated MXML (SA-
MXML) [164, 58] format, which is an extension of the MXML format. In SA-
MXML, every element in the log can be linked to one or more concepts in an ontol-
ogy. The ontology can thus be used to provide semantics for the logged information
and, for example, incorporate domain knowledge. Furthermore, ontologies are able
to capture these concepts in a hierarchical way, which enables the analysis of the log
on different levels of abstraction.

Nevertheless, the SA-MXML approach brings some additional challenges. For
example, ontologies are rarely available upfront, and thus need to be created first.
Furthermore, their handling introduces additional overhead in the analysis phase. To
address the above-mentioned shortcomings in a different way, a new event log stan-
dard called Extensible Event Stream (XES) [271] has been created recently. XES is
based on the experience gained over the past years and adopts a generic approach,
which, for example, allows to incorporate extensions in a standardized way. As a con-
sequence, it is possible to store data from arbitrary perspectives, or from specific ap-
plication domains (e.g., by mapping corporate data models). Currently, there already
exists an open source reference implementation of the XES standard, which is called
OpenXES [271]. However, since no conversion facilities (such as ProMimport) are
available yet for this next generation log standard, all event logs dealt with in this
thesis are either converted to MXML or SA-MXML, respectively.

3.2.2 An Example Plug-in

Many different ProMimport plug-ins have been created and/or used to convert logs
in the context of this thesis. For example, in the research described in this thesis
we extracted MXML logs from data obtained with the Eastman workflow system,
the YAWL workflow system, another custom workflow system used at a munici-
pality in The Netherlands, Oracle’s Cognos BI system, some in-house information
system used in a call center, a multi-agent observation system, CPN Tools, an Océ
copier prototype, D’PUIS, Philips’ x-ray machines, and ASML’s wafer scanner test
software. Appendix A contains an overview of the ProMimport plug-ins that were
created. As a representative for all these plug-ins, which are called ‘filters’ in the con-
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text of ProMimport, we now describe the ‘Noldus Observer XT’ (cf. Section 3.1.2)
filter in more detail.

Fig. 3.9. Example of ProMimport filter.

Consider Figure 3.9, which depicts the user interface of ProMimport, while the
‘Noldus Observer XT’ filter is selected (cf. list on the left in Figure 3.9). On the
right side, the properties for the currently selected filter are shown. Since properties
can simply be specified (and ProMimport takes care of providing the user interface
for them), almost all filters can be realized by implementing just a few methods in
a single class. For example, the class that realizes the ‘Noldus Observer XT’ filter
has only 200 lines of code, which includes documentation, empty lines, and methods
that provide the meta information shown above (author, description, etc.).

Furthermore, ProMimport provides all necessary means to actually write the con-
verted logs to disk in the framework. This way, the developer of a new filter can
concentrate on the essential task to map the input data to the corresponding elements
in the MXML format. For example, see the original data fragment obtained from
Noldus’ Observer XT shown in Figure 3.4. A separate log file is created for each of
the annotated videos, whereas one video corresponds to one participant (‘USER X’)
performing one particular task (‘TASK Y’). So, if we restrict the input data to the
files that are in the scope of our process of interest (e.g., only those files that belong
to one particular task are selected by the user of the ProMimport filter), then each file
can be seen as one process instance and we map the input data to MXML as shown
in Figure 3.10.
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<WorkflowLog ...>
  <Process ...>
    ...
    <ProcessInstance id="log file tvt test 2 high (24).txt">
      ...
      <AuditTrailEntry>
        <Data>
          <Attribute name="Behavior">Main menu</Attribute>
          <Attribute name="Event Log File Name">Obs22972Ods22973</Attribute>

      <Attribute name="ObservationName">USER X TASK Y</Attribute>
      <Attribute name="Offset">48.066</Attribute>
      <Attribute name="State Event">State start</Attribute>

        </Data>
        <WorkflowModelElement>Main menu</WorkflowModelElement>
        <EventType>start</EventType>
        <Timestamp>2008-06-03T14:56:56.066+01:00</Timestamp>
      </AuditTrailEntry>
      <AuditTrailEntry>
        <Data>
          <Attribute name="Behavior">Main menu</Attribute>

      <Attribute name="Event Log File Name">Obs22972Ods22973</Attribute>
      <Attribute name="ObservationName">USER X TASK Y</Attribute>
      <Attribute name="Offset">59.577</Attribute>
      <Attribute name="State Event">State stop</Attribute>

        </Data>
        <WorkflowModelElement>Main menu</WorkflowModelElement>
        <EventType>complete</EventType>
        <Timestamp>2008-06-03T14:57:07.577+01:00</Timestamp>
      </AuditTrailEntry>
      ...
    </ProcessInstance>
    ...
  </Process>
</WorkflowLog>

Fig. 3.10. MXML log fragment showing the two audit trail entries that represent the last two
shown events in the original log fragment in Figure 3.4.

Figure 3.10 shows a fragment of the MXML log as it is created from the ‘Ob-
server XT’ logs. It can be seen that one ‘AuditTrailEntry’ element is created for each
line in the original log data in Figure 3.4. For example, the original event with the
‘Behavior’ Main menu and the ‘State Event’ State stop is represented by an ‘Au-
ditTrailEntry‘ with the ‘WorkflowModelElement’ Main menu and the ‘EventType’
start in the fragment shown in Figure 3.10. Furthermore, the ‘Timestamp’ contains
now the absolute time, which has been calculated based on the reference time and
date at the beginning of the original input file and the corresponding offset given in
the ‘Time’ column.

Note that in such a data transformation step a particular view on the process will
be taken (a) by defining the scope of a process instance, and (b) by the association
of process instances to a process. For example, instead of looking at the behavior
of participants in a specific task, we could also be interested in how the participants
behave in the overall experiment. Then, one process instance would cover all actions
relating to the same participant for all the different tasks in the user test together.
So, often there are multiple ways to convert the original data, and depending on the
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questions that should be answered in the process mining analysis, multiple views on
the process can be created and leveraged.

3.3 Process Analysis

To analyze the converted event logs, we used and extended the ProM framework
(Section 3.3.1). Furthermore, existing algorithms from the Weka machine learning
workbench (Section 3.3.2) and the Jahmm HMM library (Section 3.3.3) have been
leveraged in some of the extensions that we made to ProM.

3.3.1 The ProM Framework

After the initial development of unpublished tools for empirical research [158], a
number of ad-hoc tools were created, which each only supported an individual pro-
cess mining algorithm. Examples of these individual mining tools are EMiT [82],
MinSoN [22], MiMo [24], and Little Thumb [261]. In 2004, the design of a flexible
Process Mining (ProM) framework was started [86] aiming to unite all these efforts.

Fig. 3.11. Screenshot of the ProM framework. Each of the three windows corresponds to a
different plug-in. Here, the Log dialog, the Heuristics miner, and the Fuzzy miner are shown.

Today, ProM (see Figure 3.11) is the most powerful process mining toolkit and
it includes more than 280 mining, analysis, conversion, and import/export plug-
ins [8, 198]. As an extensible, open source framework it supports a wide variety
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of process mining techniques. The idea is that plug-in developers can concentrate
on the implementation of their actual process mining techniques, and do not have to
“reinvent the wheel” for common tasks such as loading and filtering logs, and the
visualization of models.

In the context of this thesis, many new ProM plug-ins have been developed. Ap-
pendix A contains an overview about the plug-ins that were created. In particular, we
found the synergies that emerged between existing techniques to be equally impor-
tant to the availability of a common infrastructure for loading logs etc. Without the
possibility to build new techniques “on top” of other, existing methods, it would not
have been possible to realize some of the approaches presented later on.

3.3.2 Weka Machine Learning Workbench

Weka [267] is a collection of machine learning algorithms for data mining tasks. The
algorithms can be applied directly to a data set using a graphical environment, such
as the Weka explorer (see Figure 3.12). Weka contains tools for data pre-processing,
classification, regression, clustering, association rules, and visualization [263].

Fig. 3.12. Screenshot of the Weka Explorer [263].

Furthermore, the algorithms are available as an open source library, and thus can
be leveraged by other programs like ProM. In the context of this thesis, we relied on
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Weka algorithms for well-known data mining tasks, such as the discovery of decision
trees.

3.3.3 Jahmm HMM Library

We used the Java HMM (Jahmm) library [133] for HMM-specific algorithms (see
also Section 2.5.5) in the context of ProM. Jahmm can be used to, for example, build
up HMM data structures, learn HMMs based on a given data set, and to generate
observation sequences from an HMM model.

3.4 Process Simulation - CPN Tools

Reconsidering Figure 3.1, it is often the case that the process analysis is the end goal.
However, one of the topics of this thesis is to generate simulation models based on
the results obtained from the log analysis. For this purpose, we used CPN Tools as a
simulation means1, which is introduced in the remainder of this section.

CPN Tools [137, 69] is a tool for Coloured Petri nets (see also Section 2.5.4),
where the values of tokens are typed, and can be tested and manipulated with the
functional programming language SML. Furthermore, the CPNs are extended by the
notion of hierarchy and time, and their behavior can be simulated.

Fig. 3.13. Screenshot of CPN Tools.

1 We also leveraged the above-mentioned Jahmm library to simulate HMMs for model eval-
uation purposes.
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Figure 3.13 shows a screenshot of CPN Tools with the simulation palette being
visible in the top-right corner. CPNs can be simulated in CPN Tools both interactively
or automatically. In an interactive simulation the user is in control. It is possible to
see the effects of the individual steps directly on the graphical representation of the
CPN. This means that the user can investigate the different states and choose between
the enabled transitions. Similar to single-step debugging, it provides a way to “walk
through” a CPN model. Automatic simulations are similar to program executions.
Now the purpose is to be able to execute the CPN models as fast and efficient as pos-
sible, without detailed human interaction and inspection. For example, it is possible
to automatically replicate simulation experiments to enable statistical analyses, such
as calculating confidence intervals for specific model characteristics.

Using logging functions [162], it is also possible to generate MXML event log
fragments during simulation. These fragments can then be combined using the CPN
Tools filter of the ProMimport framework and again analyzed by ProM. This closes
the circle depicted in Figure 3.1.
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Conformance
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Petri-net Based Conformance Checking

4.1 Introduction

Many companies have adopted IT systems to support their business processes in
some form. As explained in Chapter 1, these systems typically log events related
to the actual business process executions. At the same time, explicit process mod-
els describing how the business process should (or is expected to) be executed are
frequently available. Together with the data recorded in the log, this situation raises
the interesting question “Do the model and the log conform to each other?”. Confor-
mance checking, also referred to as conformance analysis, aims at the detection of
inconsistencies between a process model and its corresponding execution log, and
their quantification by the formation of metrics (cf. Figure 4.1).

New legislation such as the SOX Act [236], Basel II, and the Health Insurance
Portability and Accountability Act (HIPAA), and an increased emphasis on corporate
governance and operational efficiency have triggered the need for improved auditing
systems. To audit an organization, business activities need to be monitored. Buz-
zwords such as BAM, BOM, and BPI illustrate the interest of vendors to support
the monitoring and analysis of business activities. The close monitoring of processes
can be seen as a second wave following the wave of business process modeling and
simulation. In the first wave the emphasis was on constructing process models and
analyzing them. This development has created the interesting situation where pro-
cesses are being monitored while at the same time there are process models describ-
ing these processes. The focus of this chapter is on conformance, i.e., “Is there a
good match between the recorded events and the model?”. A term that could be used
in this context is “business alignment”, i.e., are the real process (reflected by the log)
and the process model (e.g., used to configure the system) aligned properly.

Any organization documents its processes in some form. The reasons for making
these process models are manifold. Process models are used for communication, ISO
9000 certification, system configuration, analysis, simulation, etc. A process model
may be of a descriptive or of a prescriptive nature:
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IT systems

event
logs

models /
analyzes

discovery

leaves
"IT footprints"

controls /
supports

extension

conformance

"world"
business processes

people services
components

organizations

validation

(process)
model

Fig. 4.1. By measuring the conformance between event log and process model one is con-
cerned with the question of how valid a given model is with respect to the reality.

Descriptive models try to capture existing processes without being normative. As
an example, in a hospital process it must be possible to react to urgent situations
and, therefore, the flexibility to diverge from the normal flow of actions is cru-
cial. Another example could be a model that was made to document a certain
procedure in a financial system (which logs events of the activities that were ex-
ecuted without being driven by an explicit process model). Clearly, it is desirable
to keep this model aligned with the actual procedure in the financial system by
regularly using conformance checking techniques.

Prescriptive models describe the way that processes should be executed. In a WFM
system prescriptive models are used to enforce a particular way of working using
IT [11]. However, as shown in one of the case studies presented later in this
chapter, users may need to deviate even if they work with prescriptive models
in a rigid WFM system. Furthermore, in most situations prescriptive models are
not used directly by the information system. For example, the reference models
in the context of SAP R/3 [140] and ARIS [239] describe the “preferred” way
processes should be executed. People actually using SAP R/3 may deviate from
these reference models.

For both descriptive or prescriptive models it is important to be able to measure
and locate deviations. Note that a perceived conformance problem can always be
viewed from two angles:

1. First of all, the model may be assumed to be “correct” because it represents the
way the business process should be carried out. Hence, non-conformant behavior
recorded in the log corresponds to undesirable behavior. Therefore, it might, for
example, trigger actions to enforce the specified behavior.

2. Second, the event log may be assumed to be “correct” because it is what really
happened, and the process model might be either outdated or just not tailored to
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the needs of the employees actually performing the tasks. Highlighting this issue
facilitates the redesign of the model and therefore increases transparency.

As a consequence, a final interpretation of a detected conformance problem can
only be given by a domain expert. But even if the model and the log do conform
to each other, this can be an important insight as it increases the confidence in the
existing process model. For example, it could be useful to be able to deliver that
proof to speed up certification procedures. Furthermore, a model validated through
conformance checking can be the starting point for other types of analysis (e.g.,
simulation). Moreover, quantitative data extracted from the log may be projected on
the model (e.g., frequencies, probabilities, bottlenecks, etc.).

So far, we have only considered manually created process models that need to be
kept “in sync” with the operational process at hand. However, conformance check-
ing is also essential to evaluate the quality of automatically created process models.
Nowadays, process discovery algorithms are available to assist the process modeler
in, for example, designing an initial process model for the deployment of a WFM
system. The goal of a process discovery algorithm is to automatically construct a
process model that reflects the behavior that has been observed in the event log.
While all process discovery approaches aim at the discovery of a “good” process
model—often targeting particular challenges (e.g., the mining of loops, or duplicate
tasks)—they often also have particular limitations, and different quality measure-
ments are used to determine what “good” means.
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Fig. 4.2. Process models that were discovered by different process discovery algorithms based
on the same log. Which one is the “best”?

To illustrate the dilemma, we consider a simple example log, which only con-
tains the following five different traces: ABDEI, ACDGHFI, ACGDHFI, ACHDFI,
and ACDHFI. We applied six different process mining algorithms that are available
in ProM and obtained six different process models (for every plug-in, we used the
default settings in ProM 4.1). Figure 4.2 depicts the mining results as a Petri net for
the Alpha miner [24], the Heuristic miner [261], the Alpha++ miner [264], the Du-
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plicates Genetic miner and the Genetics miner [161], and the Petrify miner [20]. The
models seem similar, but are all different. Are they equivalent? If not, which one is
the “best”?

It is clear that users of process discovery techniques need to know how well
the discovered model describes reality, how many cases are actually covered by the
generated process description etc. For example, if process mining is to be used as
a knowledge discovery tool in an organization, it must be possible to estimate the
“accuracy” of a discovered model, that is, the “confidence” with which it reflects the
underlying process. Furthermore, as illustrated by Figure 4.2 end users need to be
able to compare the results obtained from different process discovery algorithms.

In summary, conformance checking is relevant both for existing process models
and for automatically discovered process models.

The remainder of this chapter is organized as follows. First, we discuss a num-
ber of dimensions that can be used to evaluate the conformance of a process model
and an event log (Section 4.2). Then, we present a concrete conformance check-
ing approach that is based on Petri nets (Section 4.3). Afterwards, we discuss the
implementation of the presented approach in ProM (Section 4.4) and describe four
different case studies were the presented conformance checking approach was ap-
plied (Section 4.5). Finally, related work is discussed (Section 4.6), and the chapter
is concluded (Section 4.7).

4.2 Evaluation Dimensions

Consider the following example of the processing of a liability claim within an in-
surance company, which is depicted as a Petri net (cf. Section 2.5.1) in Figure 4.3.
It sketches a fictive (but possible real-world) procedure and exhibits typical control
flow constructs that are relevant in the context of conformance checking.
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Fig. 4.3. Simplified model of processing a liability insurance claim.

At first, there are two tasks bearing the same label “Set Checkpoint” (we use A
as a shorthand to refer to this label). This can be thought of as an automatic backup
action within the context of a transactional system, i.e., activity A is carried out at
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the beginning to define a rollback point enabling atomicity of the whole process,
and at the end to ensure durability of the results. Then the actual business process
is started with the distinction of low-value claims and high-value claims, which get
registered differently (B or C). The policy of the client is always checked (D) but in
the case of a high-value claim, additionally, the consultation of an expert takes place
(G), and then the filed liability claim is being checked in more detail (H). The two
completion tasks E and F can be thought of as two different sub-processes involving
decision making and potential payment, taking place in another department. Note
that the choice between E and F is influenced by the former choice between B and C
(i.e., the model does not belong to the class of Free-choice nets [77], where choice
and synchronization are separated).

Now consider Figure 4.4, which shows three example logs for the process de-
scribed in Figure 4.3 in a simplified way (cf. also Section 2.2). This is possible
because only the control flow perspective is considered here. In a different setting
like, e.g., mining social networks [22], the resources performing an activity would
distinguish those instances from each other. Note that none of the logs contains the
sequence ACGHDFA, although the Petri net model would allow this. As explained in
Section 2.2, it is not reasonable to assume that a log exhibits all possible sequences
because typically the process (model) allows for much more execution sequences
than the actual cases observed.
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56
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(a) Event Log L1 (b) Event Log L2 (c) Event Log L3

Fig. 4.4. Three simplified logs for the process described in Figure 4.3.

The most dominant question in the context of conformance is whether the real
business process complies with the specified behavior, i.e., whether the log fits the
model. With respect to the example model M1 in Figure 4.3 this seems to apply
for event log L1, since every log trace can be associated with a valid path from
Start to End. In contrast, event log L2 does not match completely because the traces
ACHDFA and ACDHFA lack the execution of activity G, while event log L3 does not
even contain one trace corresponding to the specified behavior. Somehow, L3 seems
to fit “worse” than L2, and we want to measure the degree of fitness according to this
intuitive notion of conformance.

But there are other interesting—rather qualitative—dimensions of conformance,
which can be illustrated by relating event log L2 to the process models M2 and M3,
which are shown in Figure 4.5(d) and Figure 4.5(e), respectively. Although the log
fits well with respect to both models, i.e., the event sequences of the log can be
matched perfectly with valid execution sequences of tasks in the model, they do not
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seem to be appropriate in describing the insurance claim administration process.
The model M2 is much too generic as it covers a lot of extra behavior; it allows for
arbitrary sequences involving the activities A, B, C, D, E, F, G, or H. The model
M3 does not allow for more sequences than those that were observed in the log, but
it only lists the possible sequences instead of expressing the specified behavior in
a meaningful way. Therefore, it does not offer a better understanding than can be
obtained by just looking at the aggregated log. This illustrates that fitting models do
not need to be a good representation of the observed behavior.
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Fig. 4.5. Process model evaluation can take place in different dimensions.

While M2 and M3 are extreme models that are unlikely to be constructed man-
ually by a process expert, they can be easily constructed automatically by a process
discovery algorithm. It is important to understand that in automated process discov-
ery there is never a single “right” model for a given event log, but multiple models
are possible due to two main reasons.

1. There are syntactically different models having the same (or very similar) be-
havior. Furthermore, there are numerous different modeling formalisms that can
be employed. These models could be evaluated with respect to their complexity,
size, understandability etc.

2. For a given input, an infinite number of models can be constructed. Resulting
models might not always accommodate all the traces in the event log, and they
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might allow for behavior not present in any trace in the log. Both scenarios could
be desirable, and different criteria can be used to construct and evaluate these
models.

To illustrate these different evaluation dimensions, consider Figure 4.5 which
depicts four different process models that could be constructed based on the event log
in the center. The evaluation of these process models can take place in the following
orthogonal dimensions: fitness, precision / generalization, and structure:

Fitness The first dimension is fitness, which indicates how much of the observed
behavior is captured by (i.e., “fits”) the process model. For example, the model
in Figure 4.5(c) is only able to reproduce the sequence ABDEA, but not the other
sequences in the log. Therefore, its fitness is poor.

Precision / Generalization The second dimension addresses overly general models
and overly precise models. For example, the model in Figure 4.5(d) allows for
the execution of activities A – H in any order (i.e., also the sequences in the log).
Therefore, the fitness is good, but the precision is poor. Furthermore, the model
in Figure 4.5(e) only allows for exactly the five sequences from the log. In con-
trast to the model in Figure 4.5(b), which also allows for the trace ACGHDFA,
no generalization was performed in the model in Figure 4.5(e).

Structure The last dimension is the structure of a process model, which is deter-
mined by the vocabulary of the modeling language (e.g., routing nodes with
AND and XOR semantics). As already mentioned, often there are several syn-
tactic ways to express the same behavior, and there may be “preferred” and “less
suitable” representations. For example, the fitness and precision of the model
in Figure 4.5(e) are good, but it contains many duplicate tasks, which makes it
difficult to read.

In this chapter, we present conformance checking techniques that are directly
based on the Petri net modeling approach. More precisely, we assume the Petri nets
to belong to the sub class of sound WF-nets (cf. Section 2.5.1). Note that the mod-
els M1–M5 are all sound WF-nets. Nevertheless, the results can be applied to any
modeling language that can be equipped with executable semantics.

We propose an incremental approach to check the conformance of a process
model and an event log. First of all, the fitness (i.e., fitness dimension) between the
log and the model is measured (i.e., “Does the observed process comply with the
control flow specified by the process model?”). Second, the appropriateness of the
model can be analyzed with respect to the log (i.e., “Does the model describe the
observed process in a suitable way?”). Appropriateness can be evaluated from both
a structural (i.e., structure dimension) and a behavioral (i.e., precision and general-
ization dimension) perspective.

To operationalize the ideas presented in this chapter, a Conformance Checker has
been implemented in ProM (Section 4.4), and it has been evaluated in a number of
case studies using artificial and real-life event logs (Section 4.5).
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4.3 Measuring Conformance with Petri nets

Our goal is to develop conformance checking techniques that enable a business an-
alyst to both (1) measure these dimensions of conformance and (2) locate potential
points of improvement:

1. Metrics are important to estimate the severity of potential deviations, and to
compare different model-log combinations with each other.

2. The localization of discrepancies is crucial as otherwise it is not possible to gain
more insight into the problem, and to issue potential alignment actions.

In the remainder of this section, we present a Petri net-based conformance
checking approach [219, 216, 215] addressing the fitness dimension (Section 4.3.1),
the precision/generalization dimension (Section 4.3.2), and the structure dimension
(Section 4.3.3). Then, we evaluate how these dimensions can be combined (Sec-
tion 4.3.4). In the following sections, it is shown how these properties can be verified
using the Conformance Checker in ProM and some implementation details are dis-
cussed (Section 4.4). Furthermore, several applications of the presented conformance
checking techniques are described (Section 4.5).

4.3.1 Measuring Fitness

The most dominant requirement for conformance is fitness. An event log and Petri
net “fit” if the Petri net can generate each trace in the log. In other words: the Petri
net should be able to “parse” every event sequence. We will show that it is possible
to quantify fitness, e.g., an event log and Petri net may have a fitness of 0.66.

One way to measure the fit between event logs and process models is to replay the
log in the model and somehow measure the mismatch. The replay of each event se-
quence starts with the marking of the initial place in the model. Then, the transitions
that belong to the logged events in the trace are fired one after another.

There are different ways to measure the errors in the course of the replay (see
also Chapter 6 for a more general set of metrics). In the following we describe an
approach, where we count the number of tokens that had to be created artificially
(i.e., the transition belonging to the logged event was not enabled and therefore could
not be successfully executed) and the number of tokens that were left in the model
(which indicate that the process was not properly completed).

Metric 3 (Fitness) Assume a given event log E and a labeled Petri net PN (cf.
Chapter 2). For each event sequence σ ∈ S = α(E), let mσ be the number of miss-
ing tokens, rσ the number of remaining tokens, cσ the number of consumed tokens,
and pσ the number of produced tokens during log replay of that event sequence in
the given Petri net. The token-based fitness metric f is defined as follows:

f =
1
2

1−

∑
σ∈S

S(σ) ·mσ∑
σ∈S

S(σ) · cσ

+
1
2

1−

∑
σ∈S

S(σ) · rσ∑
σ∈S

S(σ) · pσ
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Note that ∀σ∈S mσ ≤ cσ and ∀σ∈S rσ ≤ pσ , and therefore 0 ≤ f ≤ 1. Note also
that cσ and pσ cannot be 0 because during log replay there will be always at least
one token produced for the Start place and one token consumed from the End place
of the WF-net.

To take a closer look at the log replay procedure consider Figure 4.6, which
depicts the replay of the first trace from event log L2 in process model M1. At the
beginning (a) one initial token is produced for the Start place of the model. Initially,
m = 0 (no missing tokens), r = 0 (no remaining tokens), c = 0 (no consumed
tokens), and p = 1 (prior to the execution of A a token is put into place Start).
The first log event in the trace, A, is associated with two transitions in the model
each bearing the label A. But only one of them is enabled and thus will be fired (b),
consuming the token from Start and producing one token for place c1 (c = 1, p = 2).
For the next log event the corresponding transition B is enabled and can be fired (c),
consuming the token from c1 and producing one token both for c2 and c5 (c = 2, p =
4). Then, the following log event corresponds to transition D, which is enabled and
therefore can be fired (d), consuming the token from c2 and producing a token for
c3 (c = 3, p = 5). Similarly, the transition associated to the next log event E is
also enabled and fires (e), consuming the token from c3 and c5, and producing one
token for c4 (c = 5, p = 6). Finally, the last log event is of type A again, i.e., is
associated with the two transitions A in the model. But only one of them is enabled
and therefore chosen to be fired (f), consuming the token from c4 and producing one
token for the End place (c = 6, p = 7). As a last step, this token at the End place is
consumed (c = 7) and the replay for that trace is completed, i.e., the removal of the
token from End is seen as a consumption. Because there were neither tokens missing
nor remaining (m = 0, r = 0), this trace perfectly fits the model M1. Similarly, the
second and third trace can also be replayed without any problems, i.e., neither tokens
are missing nor remaining (mσ = rσ = 0 for σ = ACDGHFA and σ = ACGDHFA).

Now consider Figure 4.7, which depicts the replay of the fourth trace from event
log L2 in M1. At the beginning (a)(b) the procedure is very similar, only that—instead
of transition B—transition C is fired (c), consuming the token from c1 and producing
one token each for c2 and c6 (c = 2, p = 4). But when we try to replay the next log
event, the corresponding transition H is not enabled. Consequently, the token in c7
is artificially created and recorded as missing (m = 1). Then, transition H is fired
(d), consuming the token, and producing one token for place c8 (c = 3, p = 5).
The following log events can be successfully replayed again, i.e., their associated
transitions are enabled and can be fired: (e) transition D consuming the token from
c2 and producing one token for c3 (c = 4, p = 6), (f) transition F consuming the
token from c8 and c3 and producing one token for c4 (c = 6, p = 7), (g) one of the
two associated transitions A is enabled and can be fired1, consuming the token from

1 Note that during the log replay, duplicate tasks cause no problems as long as exactly one
of them is enabled at the same time (as it was the case in Figure 4.6 and Figure 4.7 for the
two tasks labeled as A). However, as soon as multiple duplicate tasks are enabled simul-
taneously, or none of them, the situation becomes more complicated. We have to make a
choice to enable and/or fire the “right” task to progress properly. Invisible tasks are con-
sidered to be lazy [16], i.e., they are only fired if they can enable the transition in question.
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Fig. 4.6. Log replay for σ = ABDEA of event log L2 in process model M1. The trace can be
replayed without any problems, i.e., no tokens are missing (m = 0) or remaining (r = 0).

c4 and producing one token for the End place (c = 7, p = 8). At last, the token at
the End place is consumed again (c = 8). But then there is still a token remaining
in place c6, which will be punished as it indicates that the process did not complete
properly (r = 1). A similar problem will be encountered during the replay of the last
trace of event log L2 (i.e., rσ = 1, mσ = 1 for σ = ACDHFA).

In some cases, this makes it necessary to partially explore the state space of the currently
marked model. The log replay procedure in the presence of duplicate and invisible tasks is
described in more detail in Section 4.4.2.
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Fig. 4.7. Log replay for σ = ACHDFA of event log L2 in process model M1. The replay of this
trace requires the artificial creation of one token (m = 1) and one token is left behind (r = 1).
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Using the metric f we can now calculate the fitness between the whole event
log L2 and the process description M1. As stated before, besides the fourth trace σ =
ACHDFA there were only tokens missing or remaining in the last trace σ = ACDHFA.
Counting also the number of tokens that are produced and consumed while the other
three traces are replayed (i.e., cσ = pσ = 9 for the second trace σ = ACDGHFA and
the third trace σ = ACGDHFA, and cσ = pσ = 8 for the last trace σ = ACDHFA),
and with the given number of process instances for each simplified trace, the fitness
can be measured as f(M1, L2) = 1

2 (1− 51
10666 ) + 1

2 (1− 51
10666 ) ≈ 0.995.

Similarly, we can calculate the fitness between event log L1 and model M1, and
L3 and M1, respectively. Event log L1 contains only the three event sequences that
were fitting for L2. Thus, there are neither tokens left nor missing in the model during
log replay and the fitness measurement yields f(M1, L1) = 1. In contrast, for event
log L3 none of the traces can be associated with a valid firing sequence of the Petri
net, and about half of the produced and consumed tokens were missing or remaining,
which leads to a fitness measurement of f(M1, L3) ≈ 0.540. Finally, we calculate
the fitness for the model M7 and the event logs L1, L2, and L3, respectively. This
results in the following measurements: f(M7, L1) ≈ 0.977, f(M7, L2) ≈ 0.748,
and f(M7, L3) ≈ 0.630.
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Fig. 4.8. Diagnostic token counters provide insight into the location of errors: the “+51” in
place c6 indicates that 51 tokens remained (r = 51), and the “-51” indicates that 51 times H
occurred while it was not enabled (m = 51).

As mentioned earlier, it is also important to localize mismatches to give useful
feedback to the analyst. In fact, the place of missing and remaining tokens during log
replay can provide insight into fitness problems. Consider for example Figure 4.8,
which visualizes some diagnostic information obtained for event log L2. Because
of the remaining tokens (indicated by a + sign) in place c6, transition G remained
enabled, and as there were tokens missing (indicated by a− sign) in place c7, transi-
tion H occurred while this was not possible according to the model. As already dis-
cussed, a conformance problem can always be viewed from two angles. Supported
by the diagnostics shown in Figure 4.8, a domain expert from the insurance company
could either confirm that the expert consultation is indeed optional (so, the model is
“wrong”), or she discovers the problem that the prescribed check activity has been
omitted2 in 51 cases (so, the reality is “wrong”).

2 Note that our log replay is carried out in a non-blocking way and from a log-based per-
spective, i.e., for each log event in the trace the corresponding transition is fired, regardless
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One way to remove the mismatch visualized in Figure 4.8 would be to adapt the
process model to the process as it really happens (based on the observed behavior
in the log), and to introduce an invisible task that enables the skipping of activity G.
Figure 4.9 depicts this modified process model M4, which is now 100% compliant
with event log L2.
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Fig. 4.9. Model which is 100% compliant with event log L2, and which is also appropriate in
structure and behavior.

Unfortunately, a good fitness does not imply conformance. As we have shown
in Section 4.2, it is easy to construct Petri nets that are able to parse any event log.
Although such Petri nets have a fitness of 1 they do not provide meaningful informa-
tion. Therefore, other dimensions are needed to capture the structural and behavioral
appropriateness of a model. While a bad fitness can also indicate a quality problem
(e.g., the model may be outdated), appropriateness exclusively relates to the qual-
ity of the model. Clearly, such quality dimensions are not as easy to quantify as
fitness. In the following two sections, both the precision/generalization dimension
(Section 4.3.2) and the structure dimension (Section 4.3.3) are considered in more
detail.

4.3.2 Measuring Precision/Generalization

While fitness evaluates whether every trace in the log is a possible execution se-
quence with respect to the process model, behavioral appropriateness evaluates how
much behavior is allowed by the model which was actually “never used” for the ob-
served process executions in the log. The idea is that it is desirable to model a process
as precisely as possible. When the model becomes too general and allows for more
behavior than necessary (like in the “flower” model M2), then it becomes less infor-
mative as it no longer describes the actual process, and it may allow for unwanted
execution sequences. However, at the same time we have to acknowledge that event

of whether the current path of the model is followed or not. This leads to the fact that—in
contrast to directly comparing the event streams of models and logs—a series of “missing”
log events is punished by the fitness metric f to the same degree as a single “missing”
event, since this could always be interpreted as a missing link in the model.
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logs cannot be expected to be complete (cf. Section 2.2), and therefore a certain
degree of generalization (beyond the exact event sequences that were observed) is
desirable as well.

Consider the process model M6 in Figure 4.10. Similar to model M4, event log
L2 is compliant with respect to M6 because activity H can be executed without the
previous execution of activity G. However, in addition M6 also allows for arbitrary
repetitions of activity G, which might not be intended.
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Process Model M6

Fig. 4.10. Model which allows to skip activity G but, in addition, allows for arbitrary repeti-
tions of activity G.

Again, such a perceived conformance problem can be viewed from two angles.
Here, the two angles correspond to the inversely related precision and generalization
dimensions:

1. The extra behavior did not occur within the time frame covered by the log, but it
is in principle possible. So, the event log is not complete and the present gener-
alization is desirable.

2. The model is indeed too generic and allows for behavior that does or should not
happen in reality. In this case, a more precise model would be desirable.

A domain expert will have to be able to differentiate between these two situations.
Therefore, suitable metrics and visualizations are needed.

A first approach to measure the amount of possible behavior is to determine the
mean number of enabled transitions during log replay. This corresponds to the idea
that an increase of alternatives or parallelism, and therefore an increase of potential
behavior, will result in a higher number of enabled transitions during log replay.

Metric 4 (Simple Behavioral Appropriateness) Given an event log E and a la-
beled Petri net PN = (P, T, F, L, l), for each event sequence σ ∈ S = α(E), let xσ
be the mean number of enabled transitions during log replay of that event sequence
in the given Petri net3. The simple behavioral appropriateness metric aB is defined
as follows:

3 Note that invisible tasks may enable succeeding visible tasks, but they are not counted
themselves (refer to Section 2.3 for a definition of visible and invisible tasks).
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aB =

∑
σ∈S

S(σ) · (|TV | − xσ)

(|TV | − 1) ·
∑
σ∈S

S(σ)

Assuming that at least one task in the model is visible, i.e., |TV | > 1, this
metric ranges from 0 (if all visible tasks in the model are always enabled during
log replay, such as it is the case in the “flower” model M2) to 1 (a sequential pro-
cess)4. If we calculate the simple behavioral appropriateness for M4, the metric yields
aB(M4, L2) ≈ 0.967. This is a slightly better value than for the model that allows
for arbitrary loops of activity G (M6), which yields aB(M6, L2) ≈ 0.964.

However, there is the problem that this metric can only be used as a compara-
tive means, because the appropriateness measure is affected by the degree of model
flexibility. That is, model M4 is better than model M6, because the less behavior is
allowed by the model the better. So, the metric only reaches the value 1 in a purely
sequential model (such as M5 in Figure 4.5(c)), where exactly one task is enabled in
each step of the log replay. In addition, the metric is not applicable to situations where
the model is sequentialized through duplicate tasks (such as M3 in Figure 4.5(e)).

To design a metric that can be used also as an absolute measure (not only as a
comparative measue), it is necessary to provide values in a range from 0 to 1, whereas
1 should indicate some kind of “optimal point”. This optimal point is closely related
to the precision/generalization trade-off discussed earlier, and thus to the complete-
ness problem of the event log. For the new metric, we chose to adopt a completeness
notion similar to [24], where a log is defined to be complete as soon as all tasks
that can directly follow each other actually do so at one point in the event log5. As
a result, a certain degree of generalization (similar to the generalization typically
performed by process discovery algorithms) is encouraged and not punished by the
metric. To further weaken the completeness requirement towards the event log, and
to also capture long-distance dependencies between activities, the ‘Follows’ (or ‘Pre-
cedes’) relation is determined globally (i.e., the events do not need to directly follow
or precede each other in a trace).

To compare the behavioral variety of a process model with the behavioral variety
exhibited by the event log, we derive these global ‘Follows’ and ‘Precedes’ relations
both from a model and a log perspective. For this, we assume again that the activity
labels of the event log are comparable to the set of labels in the Petri net (see also
Section 2.4). Furthermore, we also look for all sequences where a certain activity
or task label x occurs and determine with respect to all labels y whether they either
always (i.e., in all sequences), never (i.e., in none of the sequences), or sometimes
(i.e., in some but not all sequences) follow/precede each other.

4 For simplicity, we here assume 100% fitness and, therefore, there is always at least one
transition enabled during log replay. Otherwise, aB could become larger than 1.

5 Note that this notion is much weaker than requiring all possible event sequences to be
present in the log.
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Fig. 4.11. Global ‘Follows’ relations derived for model M6 and event log L2.

Consider Figure 4.11, which illustrates the global ‘Follows’ relations that are
derived from model M6 and event log L2. To build these relations from a model
perspective, we analyze the possible execution sequences (based on a state space
analysis or “exhaustive” simulation of the model), and use the labeling function l
to project each visible task in the execution sequence onto a label (cf. Section 2.3).
From a log perspective we analyze the observed event sequences (“walking through”
the log). From this, we can determine whether two labels (x, y) ∈ L × L either
always, never, or sometimes follow each other globally.

For example, the label B is never followed by label C—not according to the
model and also not according to the event log. Therefore, this combination is an
element of the ‘Never Follows’ relation both from a model and a log perspective,
i.e., (B,C) ∈ NF , NF ⊆ L × L. In contrast, the label B is always followed by
label D both in the model and in the log, and thus (B,D) ∈ AF , AF ⊆ L × L.
Each combination of labels is an element of one of the disjoint relations AF , NF ,
or SF , whereas AF ∪ NF ∪ SF = L × L. The same can be done for the global
‘Precedes’ relations. So, there are three disjoint relations AP , NP , and SP , whereas
AP∪NP∪SP = L×L. For example, the label D is sometimes preceded by B, but not
always, i.e., (D,B) ∈ SP . (The ‘Precedes’ relations are not shown in Figure 4.11.)
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In Figure 4.11 one can see that while according to the model M6 activity G may
be followed by activity G (i.e., (G,G) is an element of the ‘Sometimes Follows’
relation), this actually never happened in event log L2 (i.e., (G,G) is an element of
the ‘Never Follows’ relation). We refer to a technical report [215] for a detailed and
formal description of these relations. Note that in general the number of paths in the
model is larger than the set of traces actually appearing in the log. Therefore, the
cost of deriving the relations from the model may be problematic, while constructing
them from the log is typically no problem (see Section 4.4.2 for some complexity
indications).

While the ‘Always’ and ‘Never’ relations describe hard constraints (i.e., ‘Fol-
lows’ or ‘Precedes’ relations that always or never hold for a sequence of activities),
the ‘Sometimes’ relations capture variabilities in behavior. For example, concurrent
activities may follow and precede each other in any order (cf. (D,H) and (H,D)
in Figure 4.11). Similarly, activities preceding a number of alternative branches are
sometimes followed by one of these alternative branches and sometimes by another
(cf. (A,B) and (A,C) in Figure 4.11). The same holds for activities that follow after
a number of alternative branches were joined (reflected in the ‘Sometimes Precedes’
relations).

Because we are interested in situations where the model has more variabilities
than the event log (i.e., the model is lacking precision), the idea of the following
metric is to compare the behavior allowed by the model and the behavior observed
in the log based on how many elements are contained in the ‘Sometimes Follows’
(SF ) and in the ‘Sometimes Precedes’ (SP ) relations.

Metric 5 (Advanced Behavioral Appropriateness) Let SmF be the SF relation and
SmP be the SP relation for the process model, and SlF the SF relation and SlP the
SP relation for the event log. The advanced behavioral appropriateness metric a′B
is defined as follows:

a′B = (
|SlF ∩ SmF |
2 · |SmF |

+
|SlP ∩ SmP |
2 · |SmP |

)

Note that we build the intersection of SlF and SmF (and SlP and SmP ) to consider
only those situations where the log becomes more specific, i.e., we capture situa-
tions where—according to the model—two activities may sometimes follow each
other (and sometimes not), but in the log they always or never follow each other.
The reverse can also happen, i.e., the model is more specific than the log, which then
indicates a fitness problem. However, since we discard these tuples, the values as-
signed by a′B range from 0 to 1. Note finally that although the SF and SP relations
are symmetric, we consider both and weigh them equally to make the metric stable
with respect to the position of the “extra behavior”.

If we calculate this new behavioral appropriateness metric for model M4, the
metric yields a′B(M4, L2) = 1, which indicates that the model M4 precisely allows
for the behavior that was observed in event log L2. Note that the model is “precise
enough” although the event sequence ACGHDFA (which is possible according to
the model) is not present in event log L2. This indicates that a certain amount of
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generalization has been taken into account for the “optimal precision point” (based
on the relaxed completeness notion).
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Fig. 4.12. Differences in successor and predecessor relationships can be visualized.

For process model M6 the metric yields a slightly worse value: a′B(M6, L2) =
( 19
2·20 + 20

2·21 ) ≈ 0.951. Here, the sometimes relations that are derived from the model
(SmF and SmP ) contain one element more than the ‘Sometimes’ relations that are
derived from the log (SlF and SlP ), which is the element (G,G). Finally, calculating
the value for the model M2 yields a′B(M2, L2) ≈ 0.271. Note that, because for the
new metric the actual distance between model and log relations is considered, the
“flower” model can also be a “good” model, namely if the event log itself exhibits
random behavior. In contrast, the metric value for the model M5, which is a simple
sequence, is trivially 1 (for any log), since there is no element in the ‘Sometimes’
relation6 (and thus no variability) of the model in the first place.

Building on a notion of global successor and predecessor relationships, we are
also able to highlight “unused” alternative and concurrent parts in the model, which
can be visualized, for example, as indicated in Figure 4.12.

4.3.3 Measuring Structure

Clearly, the structural quality dimension is difficult to assess in an objective way
because it relates to human modeling capabilities. Whether a model is perceived as
suitable may depend on subjective preferences (e.g., in layout) and is often related
to the specific purpose of the model. However, in this thesis we focus on structural
quality in the control flow perspective of a process model. As mentioned earlier,
often there are several syntactic ways to express the same behavior.

Consider, for example, model M7 in Figure 4.13, which allows for the same be-
havior7 as model M4. However, it contains the following constructs that may “inflate”

6 Note that the ‘Follows’ and the ‘Precedes’ relations are defined as soon as they hold for any
pair of labels within a sequence. To give an example, imagine a log containing the single
sequence 〈x, ..., x, ..., y, ..., x〉. Here, the tuple (x, y) would be an element of the ‘Always
Follows’ relation, even though not each x in the given trace is eventually followed by y.

7 Note that there exist many equivalence notions for process models [102, 173, 4, 197, 6].
Here, we assume trace equivalence: two models are considered equivalent if the sets of
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Fig. 4.13. Model containing some constructs that may “inflate” the structure of a process
model: (a) duplicate tasks, (b) invisible task, (c) implicit place.

the structure of a process model, and therefore render it less compact and understand-
able.

(a) Duplicate tasks. In addition to duplicate tasks that are necessary to specify
that a certain activity takes place in a completely different context, such as at the
beginning and at the end of the process like task A in process model M4 (see (a) in
Figure 4.9), there are also duplicate tasks that could be easily “folded” because the
different contexts of their execution can be captured in the model. For example, in
model M7 a duplication of task H is used to express that after performing activity
C either the sequence GH or H alone can be executed (see (a) in Figure 4.13). Fig-
ure 4.9 (process model M4) describes the same process with the help of an invisible
task (see (b) in Figure 4.9). Duplicate tasks can reduce the clarity of a model because
they prevent abstraction (it cannot be easily seen anymore from the model that two
tasks are actually the same). The model M3 shows the extreme case of a completely
instance-based view on the process with many superfluous duplicate tasks.

(b) Invisible tasks. Besides the invisible tasks used for routing purposes like,
e.g., indicated in Figure 4.9(b), there are also invisible tasks that only delay visible
tasks, such as the one indicated by (b) in Figure 4.13. If they do not serve any other,
modeling-related purpose they can simply be removed, thus making the model more
concise.

(c) Implicit places. Implicit places are places that can be removed without chang-
ing the behavior of the model [24]. An example for an implicit place is given by place
c10 (see (c) in Figure 4.13). Note that the place c5 in Figure 4.13 is not implicit as it
influences the choice made later between E and F. Both c5 and c10 are silent places,
with a silent place being a place whose directly preceding transitions are never di-
rectly followed by one of their directly succeeding transitions [24]. For example, M4
it is not able to produce an event sequence containing BE or AA. Process discov-
ery techniques by definition are unable to detect implicit places, and have problems
detecting silent places.

traces they can execute are identical. Since we look at recorded behavior without being
able to influence decisions, it makes no sense to use equivalence notions such as (branch-
ing/weak) bisimulation that capture the moment of choice.
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These constructs are only an indicator for a potential quality problem. For ex-
ample, there may well be situations in which a modeler finds it more convenient
to model a situation using duplicate tasks although it could be avoided (because
this, for example, eliminates potential synchronization tasks that would be otherwise
needed). Moreover, it may be useful to explicitly denote a certain partial state (such
as “machine busy”) with an implicit place. However, the detection of such poten-
tially problematic constructs can help the business analyst to systematically assess
the process model at hand.

As a first indicator for structural appropriateness we define a simple metric based
on the number of different task labels in relation to the graph size of the model.

Metric 6 (Simple Structural Appropriateness) Given a labeled Petri net (P, T, F,
L, l), the simple structural appropriateness metric aS is defined as follows:

aS =
|{l(t) | t ∈ T}|+ 2

|T ∪ P |
Given the fact that a WF-net (cf. Section 2.5.1) is expected to have a dedicated

Start and End place, the graph must contain at least one transition for every task
label, plus two places (the start and end place). In this minimal case |T ∪ P | =
|{l(t) | t ∈ T}| + 2 and the metric aS yields the value 1. The more the size of the
graph is growing, e.g., due to additional places, or invisible or duplicate tasks, the
measured value moves towards 0.

If we calculate the structural appropriateness for the model M3, it yields aS(M3)
≈ 0.170, which is a very bad value caused by the many duplicate tasks (as they in-
crease the number of transitions while having identical labels). For the model M4 the
metric yields aS(M4) = 0.5. A slightly worse value aS(M7) ≈ 0.435 is calculated
for the model in Figure 4.13. However, this metric can only be used as a comparative
means for process models that exhibit equivalent behavior (because it is only based
on the graph size of the model). Therefore, it is of limited applicability.

To approach structural model quality independently of the actual behavior of the
model, it is a better idea to verify certain design guidelines, which define the pre-
ferred way to express specific behavioral patterns, and to somehow punish violations
of these guidelines. It is obvious that the design guidelines may vary for different
process modeling notations and depend on personal or corporate preferences. Nev-
ertheless, in the following we present a new approach to evaluate structural model
quality based on the findings reported earlier in this section. As a design guideline,
the following constructs should be avoided because they unnecessarily diffuse the
structure of a process model:

• Alternative duplicate tasks, i.e., duplicate tasks that never occur in the same exe-
cution sequence, and

• Redundant invisible tasks, i.e., invisible tasks that can be removed from the model
without changing the behavior.

A more complete description including a formal specification of the approach
can be found in a technical report [215]. Note that because the number of paths in
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the model can become very large, the cost of detecting alternative duplicate tasks
may be problematic. In contrast, redundant invisible tasks can be detected via struc-
tural analysis of the model, which is typically very fast (see Section 4.4.2 for some
complexity indications).

Metric 7 (Advanced Structural Appropriateness) Given a labeled Petri net (P,
T, F, L, l), let TDA ⊆ T be the set of alternative duplicate tasks, and TIR ⊆ T the
set of redundant invisible tasks. The advanced structural appropriateness metric a′S
is defined as follows:

a′S =
|T | − (|TDA|+ |TIR|)

|T |
Note that TDA ∩ TIR = ∅ and TDA ∪ TIR ⊆ T , and therefore 0 ≤ a′S ≤

1 as duplicate tasks are always visible. Revisiting the example models it becomes
clear that—according to the defined design guideline—only model M7 and M3 are
reduced in structural appropriateness. For M7 the number of alternative duplicate
tasks |TDA| = 2 (see (a) in Figure 4.13) and the number of redundant invisible tasks
|TIR| = 1 (see (b) in Figure 4.13), which results in a′S(M7) ≈ 0.727. In M3 all
tasks but A, B and E belong to the set of alternative duplicate tasks and therefore
a′S(M3) ≈ 0.387.
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Fig. 4.14. Design guideline violations can be visualized.

Another advantage of building on some kind of design guideline is that it usually
also enables the location of violations. As a consequence, visualizations such as, for
example, indicated in Figure 4.14 can be provided.

4.3.4 Balancing the Conformance Dimensions

In general, the presented notions of conformance, i.e., fitness, precision/generaliza-
tion, and structure are orthogonal to each other. They measure something completely
different and, therefore, an improvement in one conformance dimension is not di-
rectly comparable to an improvement in another conformance dimension. This prob-
lem can be illustrated by evaluating the example models and logs on the basis of the
presented conformance metrics.
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Table 4.1. Overview of the values of the defined conformance metrics for all combinations of
example models and logs in this chapter.

M1 M2 M3 M4 M5 M6 M7
a′S 1.0 1.0 0.39 1.0 1.0 1.0 0.73
aS 0.53 0.77 0.17 0.5 0.55 0.56 0.43

f = 1.0 f = 1.0 f = 1.0 f = 1.0 f = 0.98 f = 1.0 f = 1.0
L1 a′B = 0.92 a′B = 0.23 a′B = 0.85 a′B = 0.85 a′B = 1.0 a′B = 0.81 a′B = 0.85

aB = 0.97 aB = 0.0 aB = 0.97 aB = 0.97 aB = 0.99 aB = 0.97 aB = 0.97

f = 0.99 f = 1.0 f = 1.0 f = 1.0 f = 0.75 f = 1.0 f = 1.0
L2 a′B = 1.0 a′B = 0.27 a′B = 1.0 a′B = 1.0 a′B = 1.0 a′B = 0.95 a′B = 1.0

aB = 0.97 aB = 0.0 aB = 0.97 aB = 0.97 aB = 1.0 aB = 0.96 aB = 0.97

f = 0.54 f = 1.0 f = 0.49 f = 0.60 f = 0.63 f = 0.58 f = 0.61
L3 a′B = 0.75 a′B = 0.46 a′B = 0.74 a′B = 0.74 a′B = 1.0 a′B = 0.71 a′B = 0.74

aB = 0.89 aB = 0.0 aB = 0.88 aB = 0.89 aB = 0.88 aB = 0.89 aB = 0.90

Consider Table 4.1, which contains the measured values for all combinations of
the models and logs used in this chapter. The results of the metrics aB and aS are
printed in grey, because it has been shown that they can only be used with restric-
tions. Within these restrictions, the metrics can be applied as a comparative means.
However, they are not suitable to compare all process models with each other.

If we simply weigh the remaining metrics f , a′B , and a′S equally, then process
model M4 has the best conformance with respect to event log L2. Only in this com-
bination all three metrics yield a value of 1.0. However, for event log L1 the situation
is less clear. On the one hand, the expected candidate M1 has perfect fitness, but only
M5 has perfect precision while the fitness is still quite good.

To understand why M1 is not 100% precise with respect to L1 (a′B = 0.92), we
can use the diagnostic visualization shown in Figure 4.15. While the log contains
event sequences where H does not occur, it holds that if H occurs then it is always
preceded by D. So, the trace ..., H, D, ... (which is allowed by the model) has not
been observed in the event log. As a result, there are three elements in the ‘Some-
times’ relations of the model that are matched by ‘Always’ or ‘Never’ tuples in the
corresponding log relations, thus causing the decreased precision value.

A possible conclusion could be that D and H should not be in parallel. Fig-
ure 4.16 depicts the adapted process model, where an invisible task has been used
to sequentialize these two tasks. According to the conformance metrics, the model
shown in Figure 4.16 has now perfect fitness (f = 1.0), precision (a′B = 1.0), and
structure (a′S = 1.0) with respect to L1. However, it could also be the case that a trace
containing the subsequence HD is possible but has not been observed in the consid-
ered time frame. So, the event log is not complete (even according to the weakened
completeness notion).

Cook and Wolf [65] approach the discovery of Finite State Machine (FSM) mod-
els for software processes as a grammar inference problem, and, reflecting on the
“goodness” of a model, they cite Gold [105] who showed that both positive and neg-
ative samples are required to construct ‘accurate’ (the FSM accepting all legal sen-
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Fig. 4.15. Diagnostic visualization for a′B(M1, L1), revealing where the model allows for
variability in behavior that has not been observed in the event log.
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Fig. 4.16. Process model that is still 100% fitting but more precise than M1 with respect to L1.

tences and rejecting all illegal sentences of the language) and ‘minimal’ (the FSM
containing the minimum number of states necessary) models. Furthermore, the sam-
ples must be complete (i.e., cover all possible inputs).

However, as discussed in Section 2.2 the event logs used for process discovery
and conformance checking cannot be assumed to be complete, and they normally do
not contain negative examples. Note that all the traces in the event logs in Figure 4.4
are positive examples, but no negative, or “forbidden”, traces are given. This lack of
negative examples is one of the main reasons that it is so difficult to balance precision
and generalization (see Chapter 5 for some more discussion on this topic). As a result,
we can only apply some weakened completeness notion of the log data (implicitly
determining the optimal level of generalization) and then measure the precision up
to that point.

At the same time, the model M5—while having a trivial precision (due to the
lack of variability in the model, which is the reference point for metric a′B)—has
still quite a good fitness: ca. 98%. One aspect to be aware of here is that M5 is
the only model whose task labels do not cover the complete set of activity labels
contained in the log. This is not taken into account by the fitness metric f , because
all events that cannot be matched to a task in the process model are removed when
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the mapping between the observable process model and the event log is established
(cf. Section 2.4). For example, if we calculate the label-based log coverage metric
defined in Metric 1, it yields cLE = 4

8 = 0.5. However, if we take the frequency of
the observed activity labels into account, then the event-based log coverage metric
yields cE = 8742+4070+4371+4070

5·4070+7·245+7·56 = 21253
22457 ≈ 0.95. This means that about 95% of

the events in the log are covered and represented by the fitness calculation. This high
coverage is obtained because the task sequence modeled in M5 corresponds to the
most frequent trace in the log. It represents 4070 event sequences out of the total
4371 sequences contained in L1. This means that M5 correctly covers 93% of the
observed sequences in L1, and it could thus well be seen as a good abstraction of
the most frequent behavior. So, if our intention was to have a simple model showing
only the main behavior of L1, we might even choose M5 over M1.

In summary, both conformance checking and process discovery have to face the
following problems:
1. Dealing with Incompleteness. If the log would be complete, it would be easy

to assume that every sequence not present in the log is a negative example, and
thus should not be possible according to the discovered model. Unfortunately,
total completeness is an unrealistic assumption as, for example, the number of
possible interleavings of concurrent activities increases exponentially (cf. Sec-
tion 2.2). Thus, generalization beyond the observed sequences to accommodate
concurrent or combined behavior is often desirable.

2. Further Abstraction. Besides generalizing to deal with incompleteness, further
abstraction may be necessary to obtain meaningful process models. For exam-
ple, in the presence of overly complex processes it often does not make sense
to show a very detailed (“spaghetti-like”) model. Furthermore, one might want
to deal with noise, or show the main flow of a process and thus ignore possi-
ble exceptions. In theses case, abstraction can lead to models with a decreased
precision and a decreased fitness.
So, we can see that—while on the first glance it seems logical to aim at mod-

els with perfect fitness and precision—especially for discovered models this is not
always desirable. Instead, process discovery algorithms strive to find “the right de-
gree of abstraction”, depending on the assumed circumstances and the purpose of
the discovered model. As a consequence, conformance checking needs to take these
goals into account, and may have an unwanted bias if applied in the wrong context.
In Chapter 5, we will further investigate whether data mining validation techniques
based on the splitting of training and test data, or the Minimal Description Length
(MDL) principle, can help to find the right degree of abstraction during model eval-
uation.

4.4 Conformance Checking in ProM

The concepts presented in this chapter are supported by ProM. Appendix A.1.1 de-
scribes the functionality of the Conformance Checker in ProM from a user perspec-
tive. In this section, we first describe how the mapping between model and log is
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established, which is a pre-condition for starting the Conformance Checker in ProM
(Section 4.4.1). Then, we elaborate on the implementation including some challenges
related to the log replay involving invisible and duplicate tasks (Section 4.4.2).

4.4.1 Mapping Process Model and Event Log

Before the Conformance Checker can be started, a mapping between the Petri net and
the event log needs to be established. This is done via existing ProM functionality.
Figure 4.17 shows a screenshot of ProM making the mapping between process model
M4 and event log L2. While the left column lists all the different transitions contained
in the Petri net model, each of them can either be related to a log event contained in
the associated log, or made invisible. A third possibility is to make it visible without
linking it to an event in the log, which is needed if this activity never occurred in the
log (cf. Section 2.4).

Fig. 4.17. Screenshot of ProM while associating model tasks with log events.

In the situation shown in Figure 4.17 the tasks B (complete) to H (complete) are
all one-to-one mapped onto different log events, while A1 (complete) and A2 (com-
plete) are both related to the same log event A (complete), i.e., they are duplicate
tasks. Moreover, the task with the name invisible is made invisible. Note that for
practical use the mapping has been made explicit, so any task label can be set in the
right column (the name of the task, the name of the log event, or even something
else). All audit trail entries that are not mapped to a task in the model are automati-
cally removed from the log.
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The Conformance Checker then replays the event log within the Petri net model
in a non-blocking way while gathering diagnostic information that can be accessed
afterwards. It supports all the metrics presented earlier in this chapter, and it also
provides visualizations for detected conformance problems. In connection with the
case studies we will show screenshots of the plug-in, and in Appendix A.1.1 an
overview of the functionality of the plug-in is provided.

4.4.2 Implementation

To calculate the presented metrics the Conformance Checker makes use of the fol-
lowing analysis methods:

• State space analysis, i.e., the coverability graph8 [77, 78, 178, 193] of the pro-
cess model is built. We then traverse the coverability graph (following loops at
most twice) to calculate the metrics a′B (deriving the task label relations from the
model perspective) and a′S (detecting alternative duplicate tasks).

• Structural analysis, i.e., the structure of the process model is analyzed. This is
used for the metrics aS (assessing the graph size) and a′S (detecting redundant
invisible tasks). Note that the redundant invisible tasks are distinguished via Petri
net-based reduction rules similar to [9] and based on [178].

• Log replay analysis, i.e., the log is replayed in a non-blocking way and from a
log perspective. This is necessary for calculating the metrics f (measuring the
amount of consumed, produced, missing and remaining tokens) and aB (mea-
suring the mean number of enabled transitions). To derive the activity relations
from a log perspective for metric a′B a single pass of the log is sufficient (i.e., no
actual log replay is needed).

In the following, we first provide some complexity indications. Then, we dis-
cuss some of the limitations of the presented conformance metrics. Finally, the most
important algorithms of the log replay are described in detail.

Complexity Indications

The computational complexity of any process mining technique is relevant if the
method can be expected to be applied to large event logs and process models as they
occur in practice. In the context of conformance checking, it is especially important
that a computation for real-life logs and models is feasible because the logs may be
huge.

In the following, a rough complexity indication for each of the three analysis
methods is provided:

8 Note that the coverability graph is slightly adapted by removing final states that are reached
by invisible tasks only. This is due to the fact that invisible tasks are considered “lazy” [161,
166], and should thus only fire if they enable another succeeding, visible task.
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State space analysis Because the state space of a model can grow exponentially9,
state-based analysis techniques may be problematic with respect to computa-
tional complexity. However, there exist techniques for state space reduction, such
as partial order reduction, and symmetry methods, which may be exploited in the
future. Moreover, the problem can be alleviated by approximation methods. For
example, the task label relations that are derived for metric a′B from the state
space of the process model serve as a footprint and may be approximated. The
Conformance Checker can stop constructing the state space after some time or
space limit is reached and construct the footprint based on this. Hence, it is pos-
sible to balance efficiency and precision.

Structural analysis Compared to the state space analysis, structural analysis tech-
niques are typically very efficient.

Log replay analysis The time complexity of the log replay method without invisible
or duplicate tasks increases only linearly with the size of the log. This is very
important for practical applicability as it also enables the analysis of large logs.
However, if the log replay involves invisible or duplicate tasks, there may be
situations in the course of replay where the state space of the process model
needs to be explored partially, which may degrade the performance.

Limitations

While the restrictions of the metrics aB and aS have already been discussed earlier
in this chapter, also the improved metrics a′B and a′S have some limitations.

As for the metric a′B , one of the core assumptions is that variability in the mod-
eled or real behavior can be detected by splitting up the global ‘Follows’ and ‘Pre-
cedes’ relations into ‘Sometimes’, ‘Always’, and ‘Never’ categories. However, this
reasoning falls short as soon as the considered activities are part of a larger loop.
Therefore, a simple sequence of two tasks that is contained in a loop is not reflected
by the expected ‘Always’ and ‘Never’ relations, but it is captured by the ‘Sometimes’
relations because the process might come back to this point in the model or not. Con-
sidering direct successors (and predecessors) instead of global successors might help
to better characterize the behavior in loops to some extent.

For a similar reason, alternative duplicate tasks (used for metric a′S) are not de-
tected if they are contained in a loop. Duplicate tasks are considered to be alternative
duplicate tasks if and only if they never occur in the same trace. However, if there is
a loop around two duplicate tasks that could be easily “folded”, then they are not rec-
ognized as alternative duplicate tasks by the algorithm. Perhaps, a structural merging
method that folds duplicate tasks and then checks whether the model has changed its
behavior could be designed to solve this issue.

Finally, the log replay used to calculate the fitness metric f has to use a heuristic,
local approach to limit its computational complexity in the case that a model contains

9 The theoretical worst-case complexity of generating a coverability graph is non-primitive
recursive space, although for small to medium-sized systems (up to 100 transitions) gener-
ating a coverability graph is often feasible [255].
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invisible or duplicate tasks. Unfortunately, this means that it cannot be guaranteed
that if the log fits the model it can be replayed correctly (and thus any mismatch really
indicates a conformance problem). For example, we choose the shortest sequence of
invisible tasks to enable the currently replayed task if possible. However, from a
global viewpoint it could always be the case that firing some longer sequence would
actually produce exactly those tokens that are needed in a later stage of the replay.
Dealing with this issue in a global manner (i.e., minimizing the number of missing
and remaining tokens during log replay) seems intractable for complexity reasons.
Fortunately, the used log replay algorithms work well in most of the cases, while
keeping the technique accessible for practical situations. They are described in the
remainder of this section.

Algorithms

Now, we concentrate on the log replay method and show how we approach two
non-trivial problems: whether a specific task can be enabled by firing a sequence of
invisible tasks (Algorithm 1), and how to choose one task out of a set of duplicate
tasks (Algorithm 2).

The first algorithm deals with the fact that invisible tasks are considered lazy [16],
i.e., they might fire to enable one of their succeeding visible tasks, but will never be
fired directly in the course of log replay since they do not have a log event associ-
ated.10 This implies that in the case that the task currently replayed is not directly
enabled, it must be checked whether it can be enabled by a sequence of invisible
tasks before considering it having failed. If there are multiple enabling sequences,
we choose the shortest sequence among them (or one of the shortest sequences if
there are more than one that are “the shortest”). This heuristic aims at having mini-
mal possible side effects on the current marking of the net, e.g., not to unnecessarily
fire an invisible task that is in conflict with another task later to be replayed. As in-
dicated earlier, there may be situations where a longer sequence of invisible tasks
results in a better replay than a shorter sequence. However, while an optimal solution
would be difficult from a complexity point of view, our “best effort” solution seems
to work well in practice. Algorithm 1 shows the flow of the method isEnabled().

First, a list is created to capture the (potential) enabling sequence. If the
transition is already enabled, this sequence remains empty and the method re-
turns true. Note that an empty list has length 0 but is not NIL (which can be
seen as undefined). In the case the transition is not directly enabled, the state
space11 is built from the current marking of the Petri net. To prevent nets that
10 Related to this Petri net version with lazy invisible transitions is the class of zero-safe nets:

Besides ordinary places, called stable places, zero-safe nets are equipped with zero places,
which are empty in any stable marking [52, 53]. Similarly, in “lazy Petri nets” tokens are
only produced by invisible tasks to be immediately consumed by some visible task.

11 Note that for Petri nets without loops we only need to build a partial state space depend-
ing on the maximum length of possible sequences of invisible tasks in the model. This
maximum depth can be efficiently calculated based on the structure of the model, and is
automatically determined by the Conformance Checker.
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Algorithm 1 Recursive method for transparently enabling a replayed task through a
sequence of invisible tasks (if possible)

isEnabled :

1: list← new empty list
2: soFarShortestPath← NIL
3: if not directly enabled then
4: clone Petri net and build state space from current marking
5: list← traceShortestPathOfInvisibleTasks(...)
6: end if
7: if list = NIL then
8: return false
9: else

10: while list has next element do
11: fetch next task from list
12: fire corresponding transition in Petri net
13: end while
14: return true
15: end if

traceShortestPathOfInvisibleTasks :

1: if current state already visited ∨ shorter path already found then
2: return soFarShortestPath // (a) (b)
3: else
4: while possible path from current state in state space left do
5: determine next task
6: if requested task found then
7: return currentPath // (c)
8: else if invisible task found then
9: set current state visited

10: copy currentPath and append task
11: determine next state
12: soFarShortestPath← traceShortestPathOfInvisibleTasks(...)
13: else
14: return NIL // (d)
15: end if
16: end while
17: return soFarShortestPath
18: end if

accumulate tokens from producing an infinite state space (which could happen,
e.g., when building the reachability graph of a Petri net) the coverability graph
builder of the ProM framework has been used for implementation. In a coverabil-
ity graph so-called ω-states help to represent also infinite state spaces [178, 255].
Then traceShortestPathOfInvisibleTasks()—the recursive program part—
is called. The idea is to look for a sequence of invisible tasks that can be fired to create
a marking of the Petri net that allows to execute the currently replayed transition (in
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this case, the transition is considered to be enabled, and there is no conformance
problem). For this, each possible path of invisible tasks in the state space is traced
until one of the following end-conditions is reached:

(a) If the current state has been already visited during traversal, it means that the
state space is cyclic and recursion stops to prevent an infinite loop.

(b) If a shorter sequence of invisible tasks enabling the transition in question than
the one currently traced has already been found, it is not necessary to pursue this
route any further.

Assuming that neither (a) nor (b) are fulfilled, the current state in the state space is
marked as visited, and all possible paths spawned from this state are considered and
further traced until one of the following end conditions holds:

(c) If the transition to be replayed is encountered, a possible enabling sequence has
been found and will be returned.

(d) If no invisible task can be found, recursion aborts as the path cannot be followed
any further.

If no possible sequence could be found, i.e., the checked transition cannot be enabled
via firing any invisible tasks either, the list will be set to NIL and the method
returns false. But in the case a possible path has been found, the selected sequence
of invisible tasks is executed to enable the transition and the method returns true.

The second algorithm deals with the fact that the mapping between model tasks
and log events may result in duplicate tasks. During log replay this is a problem since
for a log event that is associated with multiple tasks in the model, it is not always
clear which of the duplicates should be executed. Algorithm 2 shows the flow of the
implemented method chooseEnabledDuplicateTask(), which is called in the
case that more than one transition is found associated with the log event currently
replayed.

At first, only those tasks that are enabled12 by the current marking of the Petri
net are selected. If none of them is enabled, the method returns immediately and the
Conformance Checker will fire an arbitrary task from the list of duplicates (since cor-
rect replay is not possible anyway). If there is exactly one task enabled, it is returned
and will be executed subsequently. This will often be the case in scenarios where
the same task is carried out in multiple contexts (such as setting a checkpoint in the
beginning and in the end of the example process in Figure 4.3), i.e., the marking of
the net clearly indicates which choice is best. However, if there are more candidates
enabled, the remaining log events must be considered to determine the best choice.
For these purposes, chooseBestCandidate() is called. It makes a copy of the
current replay scenario for each enabled duplicate and fires the transition belonging
to that candidate (i.e., it starts to mimic every case). Then the entry point for the
recursive method tracking these scenarios traceBestCandidate() is reached and
will not return until there is only one scenario left, which can then be reported to the
12 Note that in the context of this algorithm the possibility of invisible tasks indirectly enabling

other transitions needs to be respected again (but without actually changing the marking of
the replayed net). Nevertheless, from now on we abstract from this.
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Algorithm 2 Recursive method for choosing one task among a set of duplicate tasks
during log replay

chooseEnabledDuplicateTask :

1: candidateList← select all enabled duplicates
2: if length of candidateList = 0 then
3: return NIL
4: else if length of candidateList = 1 then
5: return the only enabled duplicate
6: else
7: clone replay scenario for each candidate and fire corresponding transition
8: return traceBestCandidate(...)
9: end if

traceBestCandidate :

1: if no log events left then
2: return any of remaining candidateList // (a)
3: else
4: fetch next log event
5: nextTask ← determine transition(s) associated to log event
6: for each scenario from candidateList do
7: if nextTask is duplicate task then
8: nextTask ← chooseEnabledDuplicateTask(...)
9: else if nextTask is not enabled then

10: nextTask ← NIL
11: end if
12: if nextTask = NIL then
13: remove current from candidateList
14: else
15: further trace replay scenario via firing nextTask
16: end if
17: end for
18: end if
19: if length of candidateList = 0 then
20: return any of remaining candidateList // (b)
21: else if length of candidateList = 1 then
22: return the only remaining candidate // (c)
23: else
24: return traceBestCandidate(...)
25: end if

initial caller to proceed with the actual log replay. First, the following end-condition
is checked:

(a) If there are no log events left in the trace currently replayed, then one of the
remaining candidates is chosen arbitrarily and recursion finishes.
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Assuming that (a) is not fulfilled the next log event is fetched from the trace and the
number of associated transitions is determined. If there is only one task associated
to it, those scenarios are kept and updated where this task is enabled, i.e., where
the next replay step can be executed successfully as well. If there are multiple tasks
associated, the best duplicate must also be chosen for this case and for each scenario,
realized by a recursive call to the very entry point of the whole procedure. Then,
similarly, those scenarios are kept and updated that were able to determine an enabled
duplicate task for this anticipated next replay step. The possibility for having a 0:1
mapping has been discarded since log events not associated to any task in the model
were removed during import (cf. Section 2.4).

Now, the number of remaining scenarios is checked and if there are more than
one left, recursion proceeds to check at least one step further. Otherwise one of the
two following end-conditions is reached:

(b) If only a single candidate remains, this one is returned as the best choice.
(c) If after the replay of this next log event none of the scenarios is left, any of the

previously kept candidates is returned.

4.5 Case Studies

In this section, we describe five different case studies where the Conformance
Checker described in Section 4.4 has been applied. The first application involves
administrative processes of a municipality in the Netherlands (Section 4.5.1). In the
second case study, the Conformance Checker has been used to analyze (web) service
behavior (Section 4.5.2). In the third study, conformance checking has been applied
to analyze the behavior of users in a traditional usability test of a television (Sec-
tion 4.5.3). The fourth case has been performed in collaboration with ASML, a large
manufacturer of chip-making equipment, to analyze their test process (Section 4.5.4).
Finally, we report on a project where both the conformance metrics presented in this
chapter and other metrics presented in literature have been employed to compare
different process models and process discovery algorithms (Section 4.5.5).

4.5.1 Town Hall13

We had the opportunity to apply our techniques to real-life logs stemming from four
different administrative processes in a town hall in the Netherlands. Three processes
deal with the handling of complaints and the fourth process handles building permit
applications. As an example, Figure 4.18(a) shows the original description of one
of the complaint handling procedures. It has been created in a tool called “Route-
builder”, which comes with the Global 360 Enterprise EX workflow system (for-
merly known as eiStream WMS). Note that all the tasks in the depicted process
model have XOR-split/join semantics.

13 This research is based on joint work with A.K. Alves de Medeiros.
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(a) The original description of the complaint handling procedure as used by the G360 Enterprise EX workflow system

(b) The Petri net model of the complaint handling procedure loaded into ProM

Fig. 4.18. Translating the original process description into a Petri net.

The managers at the municipality were especially interested in answers to the
following questions: “Are there deviations from the designed process?”, “What are
the exact differences?”, “What are the most frequently followed paths per process?”,
and “How does the actually followed process look like?”. While the first three ques-
tion could be answered using the conformance checking techniques presented in this
chapter, the last question was addressed using genetic process mining algorithms
(refer to [161] for further details with respect to this case study).

As a first step, domain experts (i.e., employees of the town hall) helped us to
understand the semantics of their initial model, so that it could be translated into a
Petri net model, which can be analyzed by the Conformance Checker in the ProM
framework (see Figure 4.18(b)). Note that the crossed-out tasks were not consid-
ered because they are executed by external third parties (and not by the personnel
from the municipality). Then, an extract of the corresponding log data was exported
from the town hall’s database and converted into the MXML format using a custom
ProMimport plug-in (see also Section 3.2). Finally, all fragmentary process instances
were removed from the log in ProM. This means that only those cases were con-
sidered which actually executed both the start activity and one of the possible end
activities of the process.

The Petri net models and the cleaned event logs could then be analyzed by
the Conformance Checker. Although the municipality uses a workflow system and,
therefore, in principle all cases should comply with the prescriptive models, only
for one of the four processes all cases were indeed 100% compliant with the origi-
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nal, deployed model (this was one of the three complaint handling processes and the
analyzed log contained 358 process instances). For example, for the building per-
mit handling procedure only 80% of the 407 cases were fully compliant (i.e., had a
fitness of 1.0). The main reason for these deviations was a temporary misconfigu-
ration of the system. When the process was initially configured, a synchronization
task could already be executed as soon as 3 out of the 4 incoming parallel branches
were ready, which then also happened for some cases. The system administrator in-
spected the cases that had this problem and confirmed that they happened before this
configuration error was corrected. For the complaint handling process depicted in
Figure 4.18 only 51% of the 35 cases were fully compliant with the deployed model.
The conformance analysis results for this process are now described in more detail.

(a) The fitness analysis of the non-compliant cases shows that activity ‘Voorstel’ was not ready to be 
executed once for six, and even twice for one of the cases

(b) The log view reveals that activity ‘Voorstel’ was indeed executed two and even three times (cf. log trace 
indicated by mouse pointer) by some of the cases, which is not allowed according to the original model

Fig. 4.19. Screenshots of the Conformance Checker while analyzing a complaint handling
process of a town hall in the Netherlands.
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Figure 4.19(a) shows the Fitness result screen of the Conformance Checker. As
discussed before, during the replay of the log in the model there may be tokens miss-
ing and remaining. Hovering over a problematic place or transition provides more
detailed information, e.g., about the number of instances leaving or lacking a certain
amount of tokens at that place. Further visualization options indicate the number of
times each edge has been passed during log replay, and mark those transitions that
have been fired at least once (path coverage). This way, one can directly see how
often certain paths in the model were actually used. Note that pressing the Select Fit-
ting button automatically selects all traces of the log that are 100% compliant with
the given model (“drill down function”). This functionality is important for practical
use as it enables the automatic separation of fitting and non-fitting process instances,
which is particularly useful for large log files. Every subset of the event log can then
be further investigated (“Do the non-compliant cases usually take a certain path?”
etc.), and may be exported, e.g., to carry out an in-depth performance analysis.

In Figure 4.19(a) the fitness analysis results of the non-compliant cases of the
complaint handling process are depicted. The visible part of the process model is
indicated by rectangle A in Figure 4.18(a) and (b). It shows that activity “Voorstel”14

was not ready to be executed (because one token was missing during replay) for
six cases. For one case this task was even executed twice although it was not ready
(because two tokens were missing during replay). Figure 4.19(b) depicts a screenshot
of the log view, which reveals that sometimes activity “Voorstel” was executed twice,
or even three times, although this is not allowed according to the original model.

So, we were curious to find out how these deviations were possible in a WFM
system, and the people responsible for these processes in the municipality explained
that the discrepancies resulted from an explicit change of the case by the system
administrator. So, for example, users had to re-edit an already completed case, or
needed to jump to other tasks in the process (and the deployed model did not allow
for this). This is a very interesting result as it shows that people may need to deviate
from prescribed procedures even if they have a workflow system guiding that pro-
cess in a non-flexible way. Then, the changes are realized in an ad-hoc way, such as
through a system administrator who has the right to work “behind the back” of the
supporting system.

We also used the Conformance Checker to perform a structure and precision anal-
ysis. For example, Figure 4.20 shows a screenshot of the behavioral appropriateness
analysis of the same complaint handling process discussed before. The visualization
indicates where the log is more specific than the model (i.e., activities always or
never followed or preceded each other in reality while according to the model more
variability would be allowed).

In Figure 4.20, the task in the center of the diagnostic visualization is activity
“Intrekken”, which is indicated by rectangle B in Figure 4.18(a) and (b). This task
is connected to almost every other task in the process as it relates to some optional
cancel activity (i.e., when the complaint handling is not further pursued). Analyzing

14 Note that an understanding of the process is not needed. Therefore, we did not translate the
Dutch task names.
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Fig. 4.20. The behavioral appropriateness analysis highlights that, although activity ‘In-
trekken’ could have been executed in many states of the process, this was not used for the
recorded cases.

the behavior in the log, it became clear that complaints were only cancelled in a very
early stage of the process. So, after the execution of most of the other activities “In-
trekken” actually never happened (although it would have been possible according
to the deployed model). This is not necessarily a problem but provides insight into
the way the process is actually executed.

These examples demonstrate that using the presented techniques it is possible to
discover conformance problems in real-life scenarios.

4.5.2 Conformance Checking of Service Behavior15

In [10, 9] we investigated conformance in the context of service-oriented systems.
Service-oriented systems are composed of services that are typically (a) indepen-
dently developed and operated, and (b) interact with one another exclusively through
message exchanges. To coordinate the communication between different services
there are process descriptions that specify how these services should interact. Since
partners will typically not expose the internal structure and state of their services,
the question of conformance arises: “Do all parties involved operate as described?”.
The expected behavior may deviate as soon as, e.g., a service receives a reply of
the wrong type, messages are received in the wrong order, etc. Using the Business
Process Execution Language (BPEL) as a choreography language, and observing
the exchanged Simple Object Access Protocol (SOAP) messages, we demonstrated
that it is possible to tackle this problem using the conformance checking techniques
presented in this chapter.

15 This research is based on joint work with W.M.P. van der Aalst, M. Dumas, C. Ouyang,
and H.M.W. Verbeek [9, 10].
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Fig. 4.21. Reduced Petri net model of the supplier service. While the non-reduced model con-
tained 71 transitions, 72 places, and 209 arcs, the reduced model contains only 27 transitions,
28 places, and 121 arcs. Furthermore, “dangling” model fragments that result from the trans-
lation of, e.g., unused exception paths have been removed to fulfill the WF-net requirements.

Using the example of a simple supplier service, we showed how an analyzable
process model can be obtained for the choreography:

1. The supplier service was specified as an abstract BPEL process, which is a non-
executable process specification describing the business protocol as seen from
one of the partners involved.
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2. We automatically created a Petri net description of the intended choreography,
using the translation described in [187]. This translation is implemented in the
tool BPEL2PNML [35].

3. The resulting net was reduced using a tool called WofBPEL [35, 186], which
yielded a process model that could be analyzed by the Conformance Checker in
ProM (i.e., a sound WF-net). The reduced Petri net is depicted in Figure 4.21.

To obtain an event log of actual service executions, we showed that it is possible
to monitor and correlate messages, and to group them into log traces where each
trace reflects one service execution instance. By implementing the example process
in Oracle BPEL we could obtain logs of SOAP messages for both directions (both to
and from the supplier service). Note that we do not make assumptions with respect
to the implementation of the process logic in the service. Instead of executable BPEL
any other language could have been used.

Log trace

(order, orderResponse)
(order, orderResponse, orderResponse, orderResponse)
(order, orderResponse, change, orderChangeResponse)
(order, orderResponse, orderResponse, change, orderChangeResponse)
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(orderResponse)
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Fig. 4.22. Desirable and undesirable scenarios for the supplier service execution.

Having demonstrated that it is feasible to obtain such event log from real service
executions we then used the presented conformance checking techniques to validate
the supplier service specification for a number of interaction scenarios. Figure 4.22
shows five execution sequences which should be valid for the supplier service (Sce-
narios 1 – 5) and eight which should not (Scenarios 6 – 9 correspond to possible
violations by the supplier service and 10 – 13 contain violations by the client or en-
vironment of the service). We imported the reduced Petri net model generated from
the abstract BPEL process (shown in Figure 4.21), and we used the Conformance
Checker to replay the given scenarios in this model.

For example, Figure 4.23(a) depicts the Conformance Checker showing the dot-
ted part of the model in Figure 4.21 after the replay of Scenario 8. In this situation a
single orderResponse was sent without having received any previous order, which is
not allowed. Following the control flow of the model it can be observed that the or-
der transition is supposed to fire first to produce a token in the enlarged place on the
right, which can be consumed by the orderResponse transition afterwards. However,
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(a) The fitness analysis of scenario No. 8 shows that ‘orderResponse’ was not ready to be executed when it 
occurred (tokens were missing), and that ‘order’ was expected to occur but did not happen (tokens were 
remaining)

(b) The behavioral appropriateness analysis based on the desirable scenarios reveals that the model 
allows for more behavior than expected. Due to intermediate states it is possible to send an 
‘orderResponse’ after a ‘change’ request has been received

Fig. 4.23. Screenshot of the Conformance Checker while analyzing the supplier service exe-
cution scenarios.

since the log replay is carried out from a log-based perspective the missing tokens
(indicated by a − sign) are created artificially and the task belonging to the observed
message in the model (i.e., the orderResponse transition) is executed immediately.
The fact that it had been forced to do so is recorded and the task is marked as having
failed successful execution (i.e., it was not enabled). Furthermore, there are tokens
remaining in the enlarged places in the upper and the lower left corner (indicated by
a + sign), which which is why the order transition remains enabled after replay has
finished (cf. visualization by shaded rectangle in the background). Remaining tasks
point to situations where a task would have been expected to be executed, but was
not.
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Now reconsider Figure 4.22, where the Fitness column indicates for each sce-
nario whether it corresponds to a valid execution sequence for our supplier service
(i.e., fitness = 1.0) or not (i.e., fitness < 1.0). As it shows 100 % fitness for Scenario
1 – 5 the abstract BPEL process has been proven to be a valid specification with re-
spect to the “well-behaving” conversation scenarios we thought of. However, it also
allows for an execution sequence that we classified as undesirable behavior, namely
Scenario 9: Although another orderResponse is sent after a change request has been
received already (and thus only orderChangeResponses should be sent) the scenario
proved to comply with the given abstract BPEL process specification. This was an
interesting result as it made us aware of the fact that—due to a number of interme-
diate states—the chosen fault/event handler construct did not completely capture the
intended constraint.

The same conclusion can be drawn from the precision analysis based on the five
desirable scenarios. The visualization shown in Figure 4.23(b) enables us to spot the
(undesirable) extra behavior allowed by the specification.

Fig. 4.24. The structural appropriateness analysis of the initial, non-reduced Petri net model
highlights a number of redundant invisible tasks (in the visualized fragment all invisible tasks
except the one indicated by the mouse pointer are redundant).

Finally, Figure 4.24 depicts a screenshot from the structural appropriateness anal-
ysis of the non-reduced Petri net model. Recall that in the process of generating a
Petri net from the BPEL model, the tool WofBPEL was used to reduce the initially
created Petri net. In fact, a part of this reduction is the removal of redundant in-
visible tasks as advocated in this chapter. The reduced model (i.e., after applying
WofBPEL) contains 27 transitions. The non-reduced model (which is partly shown
in Figure 4.24) contains 71 transitions, i.e., 41 invisible transitions are redundant and
can be removed. These redundant invisible tasks are also detected and highlighted by
the Conformance Checker. Note that, besides the export of all the diagnostic visual-
izations, the Conformance Checker also allows the user to export the reduced Petri
net model (i.e., a trace-equivalent model without the redundant invisible tasks that
were detected).
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This application demonstrates that precision analysis can help to detect undesir-
able behavior. Furthermore, in the presence of negative examples (i.e., “forbidden”
scenarios) the fitness metric can also be used to analyze the precision of a given
process model. Because these negative examples should not “fit”, they provide a
concrete boundary for the allowed generalization of the model.

4.5.3 Analyzing Product Usage Behavior16

Due to an influx of new technologies, products—and especially consumer electronics—
are getting more and more complex. As a consequence, consumers are not always
able to deal with these complexities and usability becomes a distinguishing factor
in brand reputation and customer satisfaction. Usability tests, such as first-use con-
sumer tests, can help to obtain early feedback from the field while there is still time
to adapt the product before releasing it to the market.

Traditional usability measures, however, typically do not preserve the temporal
aspects of the test data and only include information about number of errors pro-
duced, the time required to complete the task, number of keystrokes, etc. [129].
Therefore, in [127] the opportunities of analyzing consumer test data using process
mining techniques were explored. The results were compared to traditional usabil-
ity measures and it was concluded that significantly more insight can be obtained
by leveraging process-oriented techniques. Specifically, the actual user behavior can
be visualized using process models to reveal usage patterns (qualitative feedback),
and the conformance of the real user behavior to the envisioned (idealized) usage
sequences can be determined (quantitative feedback).

Consider Figure 4.25, which depicts the “correct procedures” to solve each of
three different usability tasks concerning an innovative television. In a usability test
of this new television prior to product launch, a Dutch group of participants was
presented with these three tasks:

Channel selection After installation of the television, channel RTL 7 has been au-
tomatically programmed on channel 25. The participants were asked to put RTL
7 on channel 7. The optimal solution of this task is depicted in Figure 4.25(a).

Dual screen The ‘Dual screen’ function is innovative in comparison with previous
versions of the product. It is one of the features promoted by marketing to sell
the product. The participants were asked to watch the channels NEDERLAND
2 and NET 5 simultaneously. The optimal solution of this task is depicted in
Figure 4.25(b).

Digital picture Another function that is new in comparison with previous versions
of the television is the ‘Digital picture’ function, which allows to view digital
pictures from a USB stick on the television screen. The optimal solution of this
task is depicted in Figure 4.25(c).

16 This research is based on joint work with P.P.H.J. Hofstra, J. Keijzers, Y. Lu, and A.J.M.M.
Weijters [127].
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Fig. 4.25. Petri net process models that capture the optimal user behavior for solving each of
the three television usability tasks.
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The experiment was performed with 29 participants, ranging from the age of 22
to 66. 19 participants were male and 10 were female. They performed the task in a
simulated living room to make them feel at home as much as possible. Manuals were
provided and the television was installed properly, so the product was ready for use.
The participants and the television screen were captured on a video camera.

All participants were instructed to perform the tasks as they would have done
them at home, and they received a time limit in which they had to complete the task.
They were told that the experiment was designed to examine the usability of the tele-
vision. Then, they were asked to perform the tasks in a pre-defined order, and to think
aloud about why they make certain decisions. This experiment only investigated the
first-use phase and did not take learning effects into account. The entire experiment
took about 15-40 minutes per person, depending on the participants’ performance.

After the experiment, the video recordings were annotated using the ‘The Ob-
server XT’ software from Noldus as explained in Section 3.1.2. The created log files
were then converted into MXML event logs as described in Section 3.2.2. Based
on these event logs, a process mining analysis of the participants’ behavior for the
different usability tests could be performed.

One of the goals of the study reported in [127] was to assess the effect of a
consumer’s knowledge on usability. Here, “knowledge” means product knowledge.
People with high product knowledge are assumed to be more familiar with the prod-
uct, and to have more experience in using it. Due to the ‘Digital picture’ task not
only television knowledge but also computer knowledge was of interest for the ex-
periment. The knowledge level of each participant was measured by asking them
questions assessing their familiarity and expertise with televisions and computers.
For example, participants had to react to statements such as “Compared to most
other people, I know less about televisions/computers” (familiarity) and “I usually
talk with friends and colleagues about new developments regarding televisions/com-
puters” (expertise) on a 5-point Likert scale (ranging from total disagreement to total
agreement). Further details on the knowledge measurement method and the complete
set of questions can be found in [127].

The test participants were divided into ‘High Knowledge’ (13 people) and ‘Low
Knowledge’ (16 people) groups based on their knowledge ratings in the question-
naire. Other ways of grouping are possible (for example, in [127] also the effect
of age on usability was investigated). Furthermore, the behavior of all participants
together could be analyzed as well. But in the following we use the grouping of per-
ceived high and low knowledge to illustrate one possible process mining scenario in
a consumer test setting. As a first step, a process model was discovered for each of
the groups and each of the three tasks using the Heuristics Miner [261].

Consider Figure 4.26, which depicts the behavior of the ‘High Knowledge’ group
performing the Dual Screen task. One can see that the people in this group behaved
similarly, because the model does not contain many irrelevant menus and only a
limited number of arcs. Most people use the dual screen button and immediately
enter the dual screen menu, whereas some people find the dual screen menu via the
TV menu. In the dual screen mode, some participants press on the TV button to select
the preferred channel of the left screen (which is not needed) and then go back to the
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Fig. 4.26. Heuristic net process model discovered for the ‘High Knowledge’ group performing
the Dual Screen Task. The numbers in the task nodes and on the arcs indicate frequencies.

dual screen mode. If people from the ‘High Knowledge’ group visit a deviant state,
they return to the dual screen mode. An interesting loop that shows the switches
between the screens leads from ‘Highlight second screen’ back to ‘Highlight first
screen’ and then to ‘Selected channel first screen’.

Figure 4.27 depicts the behavior of the ‘Low Knowledge’ group performing the
Dual Screen task. The participants in this group exhibit more varied behavior, which
can be seen from the lower frequency numbers on the arcs. Furthermore, they visit
many many menus that are irrelevant for the dual screen task. Interestingly, the par-
ticipants in this group return to the main menu more frequently than the participants
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Fig. 4.27. Heuristic net process model discovered for the ‘Low Knowledge’ group performing
the Dual Screen Task. The numbers in the task nodes and on the arcs indicate frequencies.
Note that—compared to Figure 4.26—this model is more complex showing more variability
among the group of users.
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Fig. 4.28. Heuristic net process model discovered for the ‘High Knowledge’ group performing
the Channel Selection Task.



4.5 Case Studies 109

Read Task
17

Start task
16

 16

Main menu
39

 13

TV
17

 3

 3

Installation menu
49

 29

TV Menu
2

 2 7

 3

Manual installation menu
22

 14

Channel menu
27

 18

Language menu
3

 3

Automatic installation menu
1

 1  5

Preferred exchange channel
26

 6

Preferred Channel
31

 7

Deviant state
26

 3

 6

 1

 1

 7

Selected exchange channel
10

 10

 13

 1

 3 4

 6

 2

 3

Selected channel
11

 11

 5

 1

 15

 5

 7

Task Completed
16

 9

 3

 5 6

 7

Task not successfully completed
7

 3

Configuration menu
2

 1

 7

 3

 1

 1

 1

Fig. 4.29. Heuristic net process model discovered for the ‘Low Knowledge’ group performing
the Channel Selection Task. Also for the channel selection task, the model discovered for the
‘Low Knowledge’ group is more complex than the one for the ‘High Knowledge’ group shown
in Figure 4.28.
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Fig. 4.31. Heuristic net process model discovered for the ‘Low Knowledge’ group perform-
ing the Digital Picture Task. For the digital picture task the discovered model for the ‘Low
Knowledge’ group is actually simpler than the one for the ‘High Knowledge’ group shown in
Figure 4.30.

in the ‘High Knowledge’ group. Another important insight is that people from the
‘Low Knowledge’ group are not able to visit the dual screen mode via the TV menu
(there is no arc between ‘TV menu’ and ‘Dual screen mode’), since they seem to get
stuck in this menu.
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Figures 4.28 – 4.31 show the discovered process models for the Channel Se-
lection and the Digital Picture task, respectively. Similar to the Dual Screen task
models, valuable qualitative insight can be derived from these models. As for the
comparison between the ‘High Knowledge’ and ‘Low Knowledge’ groups, the ‘Low
Knowledge’ group generally exhibited more complex and irrelevant behavior than
the ‘High Knowledge’ group (apart from the Digital Picture task).

However, other than just visually evaluating the process models, the degree of
deviation from the ideal action sequences (cf. Figure 4.25) can also be measured
quantitatively using conformance checking techniques. Furthermore, the “goodness”
of the discovered process models can also be evaluated using conformance checking
metrics.

Consider Table 4.2, which depicts the fitness values (metric f ) for the behavior
observed in the different knowledge groups with respect to both the ideal reference
model and the discovered process model for each of the three usability tasks. What
stands out is that the fitness values of the reference model are not so very different
from the fitness values of the discovered process models. For example, the difference
between the fitness of the reference model and the discovered model for the ‘High
Knowledge’ group in the Dual Screen task is a mere 2%. This seems odd given the
fact that the participants had significantly deviated from the ideal action sequence.

Table 4.2. Fitness and coverage values for the behavior observed in the different knowledge
groups with respect to both the ideal reference model and the discovered process model for
each of the three usability tasks. Note that the discovered models have a much better fitness
than the reference models shown in Figure 4.25.

Reference Model Discovered Model

Usability Task
Knowledge Fitness Coverage Combined Fitness
Group (f ) (cE) (f · cE) (f) = (f · cE)

Dual Screen
high 0.91 0.82 0.75 0.93

low 0.89 0.61 0.54 0.94

Digital Picture
high 0.84 0.70 0.59 0.95

low 0.91 0.83 0.76 0.95

Channel Selection
high 0.74 0.80 0.59 0.90

low 0.67 0.75 0.50 0.96

However, we have to keep in mind that during the mapping of event log and
process model all events that cannot be associated with a task in the model are re-
moved (cf. Section 2.4). As a result, much of the deviant behavior is removed from
the log because it is not present in the optimal scenario, and it is thus not considered
for the fitness calculation of the reference model. In many cases, it may be accept-
able to simply ignore events that are not represented in the model (e.g., because the
tasks in the model represent the interest scope for the analysis). But in this situation,
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these unmapped events are clearly of interest and need to be taken into account when
measuring the conformance of the user behavior with respect to the reference model.

Therefore, we also calculated the log coverage (metric cE) as defined by Metric 1
in Section 2.4, and we combined the fitness and coverage values by multiplication
to obtain a better indication of the conformance. Note that the coverage of the log
and the discovered process model is always 1.0 (i.e., 100%) because the Heuristics
Miner includes a task node for every type of event that was found in the log.

As one can see in Table 4.2, the combined fitness and coverage values for the ref-
erence model are now much lower than the fitness values for the discovered process
model. So, the discovered model is clearly a better representation of the participants’
behavior. Furthermore, one can see that the ‘High Knowledge’ group indeed per-
formed better in terms of conformance to the optimal solution (except for the Digital
Picture task), which supports the initial impression derived from the visual models.
Interestingly, the performance of the ‘High Knowledge’ group was better also for the
Digital Picture task in terms of timing, i.e., the participants in that group were much
faster in completing the task—although they made more (and more deviant) steps in
the process.

Many other process mining techniques could be applied to usability test data as
analyzed in this study. For example, the timestamps in the log could be leveraged to
visualize the time that people spent in different states of the application directly in the
process model [130]. This would provide richer insight into the participant’s behavior
than just their time to task completion as it is done in traditional usability measures
(“Where do people hesitate?”, “Where do they get lost’?’). Furthermore, the usage
traces could be automatically clustered into homogeneous groups of behavior [246],
and one could try to find out whether there are attributes that make people behave
similarly (e.g., age, gender, or knowledge level).

Here, we have focused on conformance. We have shown that conformance check-
ing can be used to evaluate the degree of deviation from an optimal solution scenario,
if available. Furthermore, conformance checking can be used to provide an indication
of the quality of discovered process models.

4.5.4 ASML’s Test Process17

ASML is the world’s leading manufacturer of chip-making equipment and a key
supplier to the chip industry. ASML designs, develops, integrates and services ad-
vanced systems to produce semiconductors, e.g., wafer scanners that print the chips.
There is an ongoing effort to reduce the line width on silicon wafer to enhance the
performance of the manufactured semi-conductors. Every new generation of wafer
scanners is balancing on the border of what is technologically possible. As a result,
the testing of manufactured wafer scanners is an important but also time-consuming
process. Every wafer scanner is tested in the factory of ASML. When it passes all
tests, the wafer scanner is disassembled and shipped to the customer where the sys-
tem is re-assembled. At the customer’s site, the wafer scanner is tested again. Clearly,
17 This research is based on joint work with I.S.M. de Jong, C.W. Günther, and W.M.P. van

der Aalst [221, 224, 220].
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testing is a time-consuming process and takes several weeks at both sites. Since time-
to-market is very important, ASML is involved in an ongoing effort to reduce the
test period. To assist ASML in these efforts, we applied process mining techniques
to their test processes. Rather than focusing on fault detection, the subject of study is
here the test process [46, 45] itself.

At any point in time, ASML’s wafer scanners record events that can easily be dis-
tributed over the internet. Hence, any event that takes place during the test process
can be recorded easily. The availability of these event logs and the desire of ASML
to improve the testing process triggered the case study reported in [221, 224, 220].
Using process discovery, we tried to answer the question “How are the tests actually
executed?”, i.e., based on the event logs we automatically constructed process mod-
els showing the ordering and frequency of test activities. We then compared them to
the idealized reference model. This revealed that the real process is much more com-
plicated than the idealized reference model that ASML is using to instruct the test
teams. The reference model shows a rather structured process while in reality the
testing process requires much more flexibility. Using conformance checking tech-
niques, we investigated this further by answering the question “How compliant are
the actual test executions to the reference process?”. Through conformance checking
we were able to quantify and pinpoint the deviations of the real test process from the
idealized reference model.

In this section, we focus on the conformance aspect of our study. We first describe
the test process in more detail. Then, the available log data are described. Afterwards,
we present the conformance analysis results. Finally, an evaluation of the findings
from ASML’s perspective is given.

The Test Process

The whole test process of a waver scanner at ASML consists of three phases: (1) the
calibration phase, (2) the test phase (the actual testing), and (3) the final qualification
phase. The whole process takes several weeks. When finished, the wafer scanner is
partly taken apart and shipped to a customer. A part of the calibration and test phase
is repeated at the customer site, after re-assembling the wafer scanner.

Why is this test process so important for ASML? ASML operates in a market
where the time-to-market of system enhancements and the time-to-market of new
system types is critical. Wafer scanners are continuously enhanced. As a result, the
number of manufactured wafer scanners of a single type is typically less than 50.
With each new type, parts of the calibration and test phase are adjusted. On average
five different system types are manufactured in parallel. The short time-to-market,
the constant innovation, and the high value of wafer scanners make testing very im-
portant. Spending too much time on testing will result in high inventory costs and lost
sales. However, inadequate tests will result in systems which are malfunctioning.

Sets of calibration and test actions are grouped into so-called job steps. These
job steps are executed according to a certain sequence. Only large changes in the
system design result in changes in the job step sequence, so the job step sequence
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Fig. 4.32. Example sequence of three job steps with a synchronization point.

can be considered a fixed sequence across different systems. Some of these job-
steps can be executed independently of each other. An example sequence of three
job steps is depicted in Figure 4.32. Note that in ASML such structures are referred
to as “sequences”. However, strictly speaking these are process models rather than
sequences. The synchronization point sync enforces that both job step A and job step
B must be finished before job step C can start.

Each calibration action or test case can fail. Some of the causes for test failure
can require a replacement of a faulty hardware component. The duration of this re-
placement can take up to hours or longer. If such a failing test is in the example job
step A, then the independent job step B can be started to ensure maximal progress.
When the replacement hardware becomes available, either job step B is finished first
and then job step A is finished, or the other way around. Job step C is only started
when job step A and B are both finished. Note that a failure in a test case in job
step C results in no activity on the system (idle time) until the malfunctioning part of
system is fixed and testing can continue.

Some of the causes for a failure can be fixed immediately. For example, some
parameters in the system can be ‘out of specification’. This measurement informa-
tion can now be used to adopt the control set-points in the system. After a second
measurement, the parameters can be within norms and the test passes. Most of the
software which executes the tests is constructed such that this fast-fix loop is au-
tomated. Testing, calibration and retesting is performed in a single test. Finally, a
change in low-level machine parameters, because of a hardware replacement, can
cause a re-execution of a previous job-step. For instance, the profile of some of the
mirrors in a wafer scanner are measured and stored in X,Y and Z directions. This
profile information is used in all positioning calibrations, such that the errors caused
by the non-flat mirrors are minimized. Replacing these mirrors results in a new pro-
file. For this reason, a large set of job steps needs to be redone if a faulty mirror is
replaced in one of the last job steps in the sequence.

In summary, job steps are executed according to a fixed sequence for a set of
machine types. The sequence allows variation of the detailed tests within the limits
of the synchronization points. The actual execution of tests results in failing test
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cases, which can result in a lengthy re-test of parts of the sequence depending on the
failure at hand. For ASML, the goal is to minimize the waiting time for a hardware fix
(idle time) and to reduce the re-execution of parts of the job-step sequence. This goal
could be easily met by testing all components and building blocks thoroughly before
and during system assembly. However, the increase in test effort would result in an
increase of the total test duration and therefore an increase in time-to-market. This
is the main reason that testing everything thoroughly beforehand is not considered a
solution, so the main goal is a reduction of the duration of the test process and not
cutting costs.

Initial Log Data and Conversion

Each wafer scanner in the ASML factory produces a log of the software tests which
are executed. The manual assembly and calibration actions are not logged and appear
as idle time in this log. The wafer scanner is calibrated and tested using calibration
and performance software, indicated in the logging as a four-letter code. The logging
contains the start and stop moment of each test. The idle time, i.e., the time between
stop of the previous test and the start of the next test, is not specified in detail. This
idle time has a number of causes, ranging from inexperienced operators reading the
procedures, the end of the automated test queue during the night to diagnosing a
problem, or waiting for additional parts. Some parts of the test sequence are executed
in an automated fashion. The operator starts a test queue which contains a set of test
cases which are executed in a sequence. This test queue can also contain part of the
recovery and retry sequence for certain failing test cases. The recovery or retry tests
are executed depending on the outcome of a test in the queue.

(a) Fragment of the original log 
data. Each line corresponds to 
a test execution with start and 
end time

(b) Log fragment in MXML 
format. A separate audit trail 
entry is created for the start 
and the end of each test

1596,31-01-2006 17:33:13,31-01-2006 17:33:39,POLA
1596,31-01-2006 17:33:50,31-01-2006 17:34:46,OSWL
1596,31-01-2006 17:34:48,31-01-2006 17:35:10,OSSP
1596,31-01-2006 17:36:18,31-01-2006 17:36:49,AHZI
1596,31-01-2006 17:42:18,31-01-2006 17:43:25,DSNA
1596,31-01-2006 17:43:39,31-01-2006 17:44:56,AHZI
1596,31-01-2006 17:44:57,31-01-2006 17:59:10,SVEI
1596,01-02-2006 07:15:37,01-02-2006 07:33:25,SVEI
1596,01-02-2006 07:35:00,01-02-2006 07:53:24,SCEI
1596,01-02-2006 07:53:25,01-02-2006 07:54:58,YHLH
1596,01-02-2006 07:54:59,01-02-2006 07:57:41,AHHJ
1596,01-02-2006 07:57:42,01-02-2006 08:04:40,AHCA

<ProcessInstance id="1596" description="Test instance 1596">
  ...
<AuditTrailEntry>
<WorkflowModelElement>OSWL</WorkflowModelElement>
<EventType>start</EventType>
<Timestamp>2006-01-31T17:33:50.000+01:00</Timestamp>
<Originator>unknown</Originator>

  </AuditTrailEntry>
<AuditTrailEntry>
<WorkflowModelElement>OSWL</WorkflowModelElement>
<EventType>complete</EventType>
<Timestamp>2006-01-31T17:34:46.000+01:00</Timestamp>
<Originator>unknown</Originator>

</AuditTrailEntry>
  ...
</ProcessInstance>

Fig. 4.33. Converting the log into the MXML format.

An example fragment of the test log of one of the wafer scanners is depicted
in Figure 4.33(a). Each line corresponds to the execution of one test. The number
at the beginning of the line identifies the machine (i.e., the wafer scanner) that is
tested. Afterwards the start time, the completion time, and the four-letter code for
the executed test are recorded.18

To analyze the log data with ProM, we first built a custom ProMimport plug-in
for data conversion (cf. Section 3.2). Figure 4.33(b) depicts the resulting MXML log

18 Note that both the actual machine numbers and the four-letter test codes have been
anonymized for confidentiality reasons.
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fragment for the test highlighted in Figure 4.33(a). One can see that the start and
the completion of the test are captured by separate audit trail entries (including the
corresponding timestamps), and that the enclosing process instance (i.e., the case)
corresponds to the tested machine.

Note that the logging takes place on the test-code level, and that there is no ref-
erence to the job step in whose context the test is performed. However, in addition
to the log data and the job step reference sequence, ASML also provided us with an
additional document specifying which test codes should be executed in which job
step. In this mapping, there are a number of tests that appear in more than one job
step (i.e., are executed in different phases of the test process).

Data Selection and Filtering

In most domains, we usually see a large number of relatively short log traces, i.e.,
many process instances with just a few events. For example, in processes related to
patient flows, insurance claims, traffic fines, etc., there are typically thousands of
cases each containing less than 50 events. ASML’s test process has very different
characteristics: there are just a few cases (i.e., machines) but for each machine there
may be thousands of log events. In the initial data set we faced process instances that
contained more than 50000 log events (each indicating either the start or the comple-
tion of a specific test). As mentioned earlier, the test process of a wafer scanner lasts
for several weeks and is partly repeated after the machine has been re-assembled at
the customer, thus explaining the huge number of events per machine.

From a larger set of machines we selected 24 machines that fulfilled our criteria:
(1) the test process was recorded from begin to end, (2) only include the test period
on the ASML (and not the customer) site, (3) belong to the same family (recall that
typically not more than 50 wafer scanners of the same type are produced), and (4)
not be a pilot system (as a pilot system is used for development testing and not for
manufacturing qualification). These 24 cases comprise 154966 log events in total,
and the number of log events per process instance (i.e., the length of the executed test
sequence) ranges from 2820 to 16250. The log contains 720 different types of events,
which corresponds to 360 different four-letter test codes as each test is captured by
both a ‘start’ and ‘complete’ event.

We are interested in analyzing the job steps, i.e., the test phases that can be asso-
ciated to the reference sequence. To be able to analyze the log on the job-step level,
we first have to apply certain filtering techniques. Recall that there is no information
about job steps recorded in the log, but that we have obtained a document specifying
which tests need to be executed for each job step. In this mapping, there are 184 out
of the 360 detected test codes associated to a job step. This means that 176 of the
four-letter codes cannot be connected to a specific job step (in the remainder of this
case study we call them “unmapped” codes). They mainly correspond to additional
(more specific) tests that are executed as part of the diagnosis process after a failure.
At the same time, there are 49 out of the 184 mapped test codes that are associated
to more than one job step, i.e., they occur in different phases of the test process (in
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Fig. 4.34. A combination of filtering techniques was applied to bring the log data from the
test-code level to the job-step level.

the remainder we call them “multiple” codes). The rest of the four-letter codes (i.e.,
135 test codes) can be unambiguously mapped onto a specific job step.

In Figure 4.34 we show as an example how a part of the log fragment from
Figure 4.33 is transferred to the job-step level19 using a combination of multiple
log filters. As a first step, we mapped each of the unambiguous test codes onto their
corresponding job step identifier, or the ‘multiple’ or ‘unmapped’ category if this was
not possible. For example, Figure 4.34 shows that the tests ‘OSWL’, ‘OSSP’, and
‘AHZI’ are associated to the job step ‘e’, while the test ‘DSNA’ cannot be mapped
to any job step (i.e., ‘unmapped’). As a next step, we abstracted from all events that
occurred between the first and the last event belonging to the same job step in a row.
For example, in Figure 4.34 only the beginning of the first occurrence of a test in
job step ‘e’ (i.e., test ‘OSWL’) and the end of the last occurrence in job step ‘e’ (i.e.,
test ‘AHZI’) is retained. Note that using this mapping, now also idle times within
one job step are covered by the overall job-step duration (for example, the idle time
between the completion of test ‘OSWL’ and the start of test ‘OSSP’). As a result,
only changes between job steps become visible in the log, which we will use in the
following for process discovery on the job-step level.

Conformance Analysis Results

In our study [221, 220], we applied process discovery techniques to gain insight into
the actual flow of the test process. Here, we focus on the discovered process models
on the job-step level (rather than the test-code level) because we want to compare
them to the existing reference sequence.

The reference sequence is depicted in Figure 4.35(a) as a Heuristic net [261].
It reflects the normal flow of the test sequence if nothing goes wrong (i.e., if no test
fails). We already know that in reality parts of the test sequence need to be repeated in

19 Note that also the actual job step names have been replaced by simple letter codes for
confidentiality reasons.
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(a) Reference model (b) Discovered process model

Fig. 4.35. Translated reference sequence and discovered process model on job-step level. (The
framed part of the model is analyzed further in Figure 4.36).
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certain occasions. This also becomes visible in the discovered process model, which
is depicted in Figure 4.35(b). It was created using the Heuristics Miner [261] based
on the log filtered for job step executions (cf. Figure 4.34). Note that the discovered
process model allows for considerably more paths than the reference model. Fig-
ure 4.36(a), shows the framed part of the mined model in more detail, where one
can easily recognize the repetitive nature of the real (as opposed to the ideal, i.e.,
reference) test process. The numbers next to the arcs show the importance of the dif-
ferent paths (the lower number indicates how often this connection was observed in
the log, while the upper number indicates the heuristic strength of the corresponding
connection).

But how well is the actual process represented by these models? And to which
extent does the observed process comply with the behavior specified in the reference
model? Where in the process do most of the deviations occur? These are questions
that are addressed by the conformance techniques presented in this chapter. With
the help of these techniques, we can analyze the conformance of both the reference
model and the discovered model in Figure 4.35 with respect to the filtered event log
as shown in the remainder.

Table 4.3 shows the fitness values for each of the test instances with respect to
both the reference sequence and the discovered model depicted in Figure 4.35. (We
used existing conversion facilities in ProM to translate both models into a Petri net
before starting the conformance check procedure.) Furthermore, it shows the number
of job step executions contained in the filtered log for each machine (second last
column in Table 4.3), and how many test code events were originally recorded for
this machine (last column in Table 4.3). In the bottom row average values are given
for all the 24 machines.

This fitness analysis clearly indicates that the discovered model is much more
representative for the observed test process than the reference model. We can see that,
although the discovered process model does not completely “match” the behavior
observed in the log (i.e., the fitness is ca. 71% but not 100%), it fits much better than
the reference sequence. This is not surprising as we already know that—in contrast to
the discovered model—the reference model does not capture the possible repetitions
in the process at all, but it describes the ideal flow of the process if nothing goes
wrong. So, the discovered model is a much better representation of the test process as
it took place, which demonstrates that process mining can provide valuable insights
into how processes are really executed. More detailed models with an even better fit
can also be discovered, but then the insight that can be derived will be diminished
because of the increased complexity of the model.

Evaluation From ASML Perspective

To identify concrete improvement suggestions, we evaluated the presented process
mining results from an ASML perspective. For this, the order of job steps was an-
alyzed. The job-step order is the sequence in which job steps are executed in the
factory. Some variation is allowed, but not too much. We investigated whether—
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Table 4.3. Fitness values (f ) indicating the degree of compliance for each of the test instances
with respect to both the reference model and a discovered process model. Clearly, the discov-
ered model fits much better than the reference model.

Fitness (f ) # Events
Machine ID Reference Model Discovered Model Job-step Level Test-code Level

0431 0.309 0.751 238 6504
0278 0.385 0.828 270 6136
0185 0.376 0.717 206 5710
0466 0.356 0.745 422 8162
0391 0.384 0.727 159 3902
1722 0.334 0.760 301 6270
1694 0.397 0.782 526 10408
1256 0.410 0.744 222 5722
1343 0.399 0.701 130 5360
1981 0.357 0.667 551 12670
1754 0.402 0.776 192 16250
1662 0.414 0.769 182 3830
1453 0.405 0.596 164 6410
1298 0.378 0.424 170 3852
1876 0.356 0.753 150 4538
1656 0.368 0.656 126 2820
1099 0.424 0.672 193 3946
1919 0.337 0.727 205 5048
1348 0.410 0.638 184 5240
1596 0.410 0.581 224 5784
1164 0.376 0.672 499 10860
1032 0.324 0.706 301 6896
1794 0.394 0.734 114 2972
1160 0.405 0.770 186 5676

Average 0.375 0.711 246.458 6456.917

according to the discovered model as in Figure 4.35—the test process followed the
reference process (including the allowed variations).

When we investigated whether the real process followed the reference process,
considering the allowed variations, we obtained three types of results: (1) job steps
that are actually executed on a different place in the reference sequence (i.e., devi-
ations from the process model shown in Figure 4.35(a)), (2) groups of highly con-
nected job steps, and (3) job steps that are not in the reference sequence but in the
test log. In the following, we describe them in more detail.

(1) It appeared that job step ‘i’ was positioned in 81% of the cases just after
the ‘zero’ job step, i.e., at the beginning of the discovered process model, while—
according to the reference sequence—it should be executed in the middle of the test
process. While looking for possible root causes for this difference, we realized that a
newer version of the reference sequence was released in the end of 2006. The main
change in the new reference sequence was that job step ‘i’ and ‘j’ were positioned just
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after the ‘zero’ job step at the beginning of the test sequence. The analyzed systems
were build up according to the new sequence for job step ‘i’. Interestingly, job step
‘j’ was still found in the original position. If job step ‘j’ is really to be executed in
the beginning of the sequence, then active steering should take place to align the test
execution. Note that we also re-checked the conformance of the test log with respect
to the updated reference sequence, but the fitness values did not change significantly
(on average f ≈ 0.45).

(2) Two highly connected groups of job steps are included in the discovered
process model. The first group is depicted in Figure 4.36(a), a strong connection
between job step ‘f’ and a number of other job steps: ‘e’, ‘b’, ‘g’ and ‘o’. These
connections are bi-directional between ‘f’ and the other job steps. A reason for this
effect could be that any execution of the job steps ‘e’, ‘b’, ‘g’ and ‘o’ results in a
re-execution of job step ‘f’. Job step ‘f’ is a relatively short job step which can be
executed automatically. As a result, the entire test set is executed. Specific parts of
the test set in job step ‘f’ could be faster when job step ‘f’ needs to be executed
after job step ‘e’, ‘b’, ‘g’ and ‘o’ are executed. In general, speeding up job step ‘f’ is
beneficial because it is executed multiple times in the entire sequence.

(a) Framed area in Figure 4.35(b) (b) Other group

Fig. 4.36. Highly connected groups of job steps, which have been identified based on the
process mining results of ASML’s test logs.

The second highly connected group is centered around job steps ‘r’, ‘s’, ‘t’, and
‘j’. The mined process showed the following pattern (see Figure 4.36(b)). Job step ‘r’
and ‘t’ are bi-directionally connected. Job steps ‘r’, ‘j’ and ‘t’ are illumination steps
(i.e., the wafer is exposed by light), while job step ‘s’ is a non-illumination step.
The root cause of a failure of job step ‘t’ is solved by job step ‘r’. A re-execution of
job step ‘r’ causes a re-execution of job step ‘s’ (and possibly ‘j’). An improvement
proposal would be to introduce a more thorough test in job step ‘r’ (i.e., add a similar
test to the one in job step ‘t’) which causes that, if the failure occurs, it already
occurs in job step ‘r’ and can be immediately fixed in job step ‘r’. This prevents the
re-execution of job step ‘s’ (and possibly ‘j’).

(3) One of the feedback loops revealed that job step ‘d’ is executed, although it is
not in the reference sequence. Job step ‘d’ is currently not investigated to be improved
to decrease the cycletime, because this job step is not supposed to be executed. The
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process mining results revealed that job step ‘d’ is executed as part of a recovery
plan. Job step ‘d’ could be further investigated for cycle time reduction.

The presented case study illustrates that process mining can be applied to check
the conformance of complex real-life processes. Given an event log and a process
model as input, conformance checking can be used to detect deviations. The severity
of these deviations can be qualified and possible causes can be analyzed.

4.5.5 Comparison of Different Mining Algorithms20

In Section 4.1, we have seen that different mining algorithms create different process
models based on the same event log (cf. Figure 4.2). This raises the question which
model is the “best”?

An answer to this question is needed both for researchers and for end users:

Researchers want to know whether their algorithm performs better (in terms of the
quality of the output) than other, existing algorithms. Currently, many different
quality measures are used.

End users must be able to compare the results obtained from different process dis-
covery algorithms. They need to know how well each of the discovered models
describes reality: how many cases they cover, how precise they are, etc.

Over the last decade many process discovery approaches have been proposed (see
also Section 1.2). While all these approaches aim at the discovery of a “good” process
model, often targeting particular challenges (e.g., the mining of loops, or duplicate
tasks), they have their limitations and many different event logs and quality metrics
are used. Hence, no standard measure is available.

As a first step towards a possible standard measure or evaluation methodology,
we reviewed the existing process mining quality metrics (see Section 4.6.1), and we
created a Control Flow Benchmark plug-in in ProM to make these metrics more ac-
cessible [222, 223]. Appendix A.1.2 provides an overview about the functionality
of the Control Flow Benchmark plug-in. We used this plug-in to calculate the avail-
able metrics for all the discovered models depicted in Figure 4.2. For readability, we
reproduce these models in Figure 4.37. Table 4.4 contains the results of this compar-
ison.

As mentioned earlier, the values of fitness, structure, and precision/generalization
metrics are not directly comparable to each other as they measure different aspects
of quality. Furthermore, the metrics within each dimension are defined at different
levels of granularity. They are even defined for different modeling formalisms.21

Nevertheless, they can highlight potential problems and, together, provide a quality
profile.

For example, from the results in Table 4.4 we can see that:

20 This research is based on joint work with A.K. Alves de Medeiros, C.W. Günther, A.J.M.M.
Weijters, and W.M.P. van der Aalst [222, 223].

21 The Control Flow Benchmark plug-in transparently converts the Petri net to the process
modeling language for which the metric is defined, if this is necessary.
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Fig. 4.37. Process models from Figure 4.2. These models were discovered by different pro-
cess discovery algorithms based on the same log containing the following five traces: ABDEI,
ACDGHFI, ACGDHFI, ACHDFI, and ACDHFI.
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Table 4.4. Overview of the presented fitness, precision and generalization, and structure met-
ric values for the process models in Figure 4.2(a)–(f). If the assumptions of the metric are not
fulfilled, and therefore no valid result can be obtained, ‘n.a.’ (not applicable) is given rather
than the calculated value.

Dimension Metric Alpha Alpha++ Genetic Dupl. GA Heuristic Petrify

PM 0.965 0.965 1.0 1.0 1.0 1.0
fitness f 0.995 0.995 1.0 1.0 1.0 1.0

PF complete 0.993 0.993 1.0 1.0 1.0 1.0

a′B 0.646 1.0 1.0 1.0 0.664 1.0
precision / BP 0.964 0.993 1.0 1.0 0.972 1.0

generalization BR 0.983 0.983 1.0 1.0 1.0 0.997
Causal Footpr. 0.975 0.986 1.0 n.a. 0.988 n.a.

a′S 1.0 1.0 1.0 0.818 1.0 0.727
SP 1.0 1.0 1.0 1.0 1.0 0.854

structure SR 0.938 1.0 1.0 0.938 0.938 1.0
DP 1.0 1.0 1.0 0.9 1.0 0.9
DR 1.0 1.0 1.0 1.0 1.0 1.0

• All discovered models except the models returned by the Alpha and Alpha++
miner fit the log (cf. metrics PM, f , and PFcomplete). The algorithms Alpha and
Alpha++ have problems to return fitting models because they cannot correctly
discover the skipping of tasks. Note that task G was sometimes skipped in the log
used to discover the models in Figure 4.2.

• Among the fitting models, the Genetic, Duplicates GA and Petrify miner returned
also precise models (cf. metrics BP and a′B). Note that there is a long-term de-
pendency between task B and E, which was not discovered by all algorithms.

• The Petrify miner returned an overly precise model, which does not allow for the
trace ACGHDFI (cf. metric BR). Note that the desired generalization can only
be measured here because the metric BR assumes that there is an ideal reference
model available (see also Section 4.6.1).

• The structures of the models returned by the Duplicates GA and Petrify miner
contain unnecessary duplicate and invisible tasks (cf. metrics DP , DR, and a′S).

This exercise demonstrates that the discussed metrics are able to successfully
capture real deficiencies of the discovered models. According to the results in Ta-
ble 4.4, all the discovered models in Figure 4.2 are relatively good models, whereas
the model discovered by the Genetic miner (cf. Figure 4.2(e)) seems to be the best
solution for the example log.

4.6 Related Work

Conformance checking as presented in this chapter is closely related to the work of
Cook et al. [66, 64] who have introduced the concept of ‘process validation’. They
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propose a technique comparing the event stream coming from the process model with
the event stream from the execution log based on two different string distance met-
rics. To address the problem of time-complexity while exploring the state space of the
model they investigate (and reject) several techniques from domains like compiler
research and regular-expression matching. In the end an incremental, data-driven
state-space search is suggested, using heuristics to reduce the cost. An interesting
point is that they include the possibility to assign weights to differentiate the relative
importance of specific types of events. In [64] the results are extended to include
time aspects.

The notion of conformance has also been discussed in the context of secu-
rity [15], business alignment [2], and genetic mining [16] (all proposing some kind
of log replay). However, in each of the papers mentioned only fitness is consid-
ered and precision/generalization and structure is mostly ignored. More recent work
on genetic mining also includes penalties for “too much behavior” and experiments
with the introduction (and evaluation) of duplicate tasks [168, 167, 161]. In fact, the
techniques presented in this chapter are inspired by the fitness function22 used in ge-
netic process mining. Later, also the Fuzzy mining [117, 115] approach adopted a
log replay-based approach to measure the fitness of the discovered models (see also
Chapter 6.2.1).

In [139] the authors present a polynomial algorithm to decide whether a scenario
(given as a labelled partial order) is executable in a given Petri net. The VipTool [41]
implements this approach. In [29] it is suggested that database technology can play
an important role in assisting compliance with the internal control provisions of SOX.
In [259] case-based reasoning is applied to explicitly recorded information about
non-compliant cases, which can be re-used for potential adaptations of the business
process model. All these approaches are complementary to the techniques presented
in this chapter.

Related to the structural quality of a process model as discussed in this chap-
ter is [171], where the authors carried out empirical work to find out “What makes
process models understandable?”. One of the results was that the number of arcs in
models has an influence on the understandability.

Finally, an example of model-based conformance testing outside the BPM field
can be found in the model-based testing domain [252, 251], where a software under
test is tested for compliance with a model that describes the required behaviour of
the implementation. The models are expressed as labelled transition systems.

In [89] current work in the area of compliance checking is reviewed, whereas
(from a conformance checking perspective as presented in this chapter) the focus
is on the fitness dimension only. The techniques are classified in either forward or
backward compliance. The authors see forward compliance as either a procedure that
takes place at design- or at run-time, whereas backward compliance is characterized

22 The term ‘fitness function’ should not be confused with the ‘fitness dimension’ discussed
earlier. In genetic algorithms, the fitness function is a function determining the overall
quality of an individual. Therefore, the fitness function in genetic process mining is usually
a composite of all quality dimensions (i.e., fitness, precision/generalization, and structure).
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as being based on execution histories of systems. We argue that most backward com-
pliance approaches could also be realized as run-time, i.e., monitoring solutions.

In the following, we provide another categorization to review further related work
in the field: approaches where a process model is the reference point for describ-
ing the behavior that should be complied with, or captured in a good quality (Sec-
tion 4.6.1), and constraint-based approaches where declarative formulas are used to
capture the requirements rather than a process model (Section 4.6.2).

4.6.1 Process Model Quality Metrics

Process discovery literature describes several measures to assess the quality of a
mined model. In the desire to derive a “good” model for the behavior observed in
the event log, shared notions of fitness, precision/generalization, and structure have
been developed.

For example, in [110] the process mining problem is approached with the aim
of deriving a model which is as compliant as possible with the log data, accounting
for fitness (called ‘completeness’) and also precision (called ‘soundness’). Starting
with a disjunctive workflow schema containing all the traces from the log (similar
to the model shown in Figure 4.5(e)) they try to incrementally cluster these traces
until a given lower bound for the number of schemata contained is reached, which,
in fact, corresponds to some notion of structural quality as well. Another example
is the process mining approach presented in [260], which aims at the discovery of a
WF-net that (i) potentially generates all event sequences appearing in the execution
log (i.e., fitness), (ii) generates as few event sequences not contained in the execution
log as possible (i.e., precision), and (iii) captures concurrent behavior and (iv) is as
simple and compact as possible (i.e., structure).

Naturally, these quality measures can be used to evaluate and compare process
models. But because they are typically defined for a specific mining context, there
may be assumptions that are not necessarily fulfilled in a more general setting.

Some of these metrics make use of a so-called reference model. This reference
model represents the “true model”, and it is used to compare the discovered model
with the original model. In an experimental setting, we often know the original model
that was used to generate an event log. For example, the log in Figure 4.5(a) could
have been created from the simulation of the process model depicted in Figure 4.5(b).
Knowing this, one can leverage process equivalence notions to evaluate the discov-
ered model with respect to the reference model [6]. However, in a real mining con-
cept a “true” process model is rarely available.

On the other hand, comparison methods between two models could be lever-
aged for the conformance checking of an existing descriptive or prescriptive process
model under the condition that it was possible to mine an absolutely accurate and
fitting model representing the reality observed in the event log. In this case, the mined
model would be the reference model against which the existing model would be com-
pared. An advantage of this technique is that meaningful differences between the two
models can be derived and visualized for the analyst [79].
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To provide an overview about some of the validation metrics in the process min-
ing area, Table 4.5 summarizes the following aspects:

1. Which of the dimensions (fitness, precision, generalization, and structure) are
addressed by this metric?

2. Which input is required to calculate the metric (reference log and/or reference
model)?

3. What is the output value range?
4. What is the computational complexity? Here, we give a rough indication based

on whether the state space of the model needs to be explored (−), some form of
log replay is performed (+/−), or only purely structural aspects of the model
need to be considered (+).

5. For which process model type is the metric defined?
6. Is it already implemented in the ProM framework?
7. Which assumptions need to hold to calculate the metric, or to obtain a valid

result?

In the following, we briefly review the metrics listed in Table 4.5 and compare
them to the metrics presented in Section 4.3. Note that those metrics that are already
implemented in ProM have been made accessible via the Control Flow Benchmark
(see Section 4.5.5).

Metrics to quantify fitness. Fitness refers to how much behavior in a log is cor-
rectly captured (or can be reproduced) by a model. From literature, we identified five
metrics that relate to the fitness dimension: Completeness (both completeness [111]
and PF complete [161]), Fitness (f ) (cf. Section 4.3.1), Parsing Measure (PM) and
Continuous Parsing Measure (CPM) [262]. All these metrics are based on replaying
logs in process models and they mainly differ in what they consider to be the “unit
of behavior”.

• For the metrics completeness [111] and PM [262], the trace is the unit of behav-
ior. Both metrics quantify which percentage of the traces in a log can also be
generated by a model.

• For the metric CPM [262] the event is the unit of behavior. It equally weighs
events that occurred while the corresponding task was “not activated” and tasks
that “remain activated” during log replay. The metric f (Section 4.3.1) is slightly
more fine-grained as it is based on the missing and remaining tokens during the
log replay (note that, for example, more than one token may be consumed, or
missing, in order to activate a task in the model).

• The metric PF complete [161] is similar to metric CPM [262], but it also takes
trace frequencies into account when weighing the problems during the log re-
play. Consequently, problems in low-frequent traces become less important than
problems in traces that are very frequent in the log (on top of their frequency-
based impact on the event level). So, for PF complete both traces and events are
units of behavior.
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Two approaches not mentioned in the table are [131] and [115]. In [131] an pro-
cess discovery algorithm is described that creates block-structured process models
according to a pre-desired fitness threshold (e.g., a model that captures 80% of the
log). The fitness is measured using a trace-based approach (comparing event log
traces and simulated model traces), and the fitness is increased during the mining
by inserting “skip” and “self-loop” structures on different levels of the nested model
(thus making the model more general).

In [115] the Fuzzy mining approach is described, which creates models on dif-
ferent levels of abstraction (by leaving out task nodes and/or edges). The resulting
model is measured by two different metrics: detail and conformance. While the con-
formance metric provides an indication of the fitness of the mined model (also using
a log replay-based approach), the detail metric indicates how many events from the
log are actually represented by tasks in the model (similar to the Log Coverage met-
rics provided in Section 2.4). Note that all the above-mentioned fitness metrics ignore
such a detail (or log coverage) indication, since they assume that all events in the log
are represented in the model.

Metrics to quantify precision and generalization. Precision and generalization re-
fer to how much more behavior is captured in the model than was observed in the
log. The following metrics focus only on the precision dimension: soundness [111],
(advanced) Behavioral Appropriateness (a′B) (cf. Section 4.3.2), and Behavioral Pre-
cision (BP ) [161]. The Behavioral Recall (BR) [161] metric focuses only on the
generalization dimension, and the Causal Footprint [87, 85] addresses both preci-
sion and generalization (basically evaluating the equivalence of a mined model with
respect to the reference model).

• The soundness metric [111] calculates the percentage of traces in the log that
can be generated by the given model. The problem with this metric is that it only
makes sense when the log contains all possible traces. As mentioned earlier, this
might be unrealistic when the target model has many tasks in parallel and is
impossible when the target model has loop constructs.

• The a′B metric (Section 4.3.2) derives ‘Sometimes’ follows and precedes rela-
tions (reflecting alternative or parallel behavior) for activities in a log and for
tasks in a model, and compares these relations. The less elements are contained
in the ‘Sometimes’ relations derived from the log (compared to the ‘Sometimes’
relations derived from the model), the less precise is the model for this log. While
these relations can be derived from the log in a linear way, deriving them from
the model requires an exploration of the state space of the model.

• The behavioral precision (BP ) and recall (BR) metrics [161] quantify the pre-
cision and generalization of the mined model with respect to the input log and
the reference model that was used to generate this log. The metrics BP and BR
measure the intersection between the set of enabled tasks that the mined and ref-
erence models have at every moment of the log replay. This intersection is further
weighed by the frequency of traces in the log. BP measures how much extra be-
havior the mined model allows for with respect to a given reference model and
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log. BR quantifies the opposite. These metrics have the advantage that they cap-
ture the moment of choice in the models, and thus allow for a more fine-grained
comparison between these models than would be possible by trace equivalence-
based approaches.

• The Causal Footprint metric [87, 85] measures behavioral similarity based on
two models’ structures. It works by (i) mapping these models to their causal
closure graphs, (ii) transforming these graphs to vectors in a multidimensional
space, and (iii) measuring the cosine distance between these two vectors.

Metrics to quantify structure. The structure of a model consists of (i) its tasks, (ii)
the connections (or dependencies) between these tasks, and (iii) the semantics of the
split/join points. The existing metrics for structural comparison typically focus on
one or more of these constituent elements, but not all of them.

• The metric Structural Appropriateness (a′S) (cf. Section 4.3.3) measures if a
model is less compact (in terms of the number of tasks) than necessary. It pun-
ishes models with extra alternative duplicate tasks and redundant invisible tasks
independently of the model behavior (so it can also be used to compare models
with different behaviors).

• The metrics precision and recall [195] (similar to the metrics Structural Preci-
sion (SP ) and Structural Recall (SR) [161]) quantify how many connections the
mined model and the reference models have in common. When the mined model
has connections that do not appear in the reference model, precision will have a
value lower than 1. When the reference model has connections that do not appear
in the mined model, recall will have a value smaller than 1.

• The metrics Duplicates Precision (DP ) and Duplicates Recall (DR) [161] are
similar to the metrics precision and recall [195]. The only difference is that they
check how many duplicate tasks the mined and reference models have in common
with respect to each other, under the assumption that the number of task labels is
the same for the discovered model and the reference model (which is the case in
a typical mining setting).

4.6.2 Constraint-based Compliance Approaches

Especially in fields such as corporate governance and risk management, the checking
of business rules and so-called control objectives is extremely important. Instead of
relying on a process model that explicitly specifies which behavior is allowed (and
assumes that non-specified behavior is not allowed) rule-based approaches specify
what must and must not happen. Therefore, constraints restrict the possible behav-
ior without specifying explicitly what is allowed. Figure 4.38 illustrates these two
complementary approaches.

Most of the work on compliance checking has been done on model analysis with-
out taking event logs into account. For example, in [109] it is checked whether busi-
ness processes are compliant with business contracts, and in [108] a non-monotonic
deontic logic of violations is used to detect all obligations that will not necessarily
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process model

(a) A process model explicitly de-
fines the possible behavior

cons
train

tsconstraints
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(b) Constraints restrict the possible
behavior

Fig. 4.38. Classical process modeling approaches and constraint-based approaches comple-
ment each other [191].

be fulfilled by executing the model. Similarly, in [235], the compliance of processes
to regulations and standards is enforced by design rather than being checked a pos-
teriori. In [156], the authors introduce OPAL, a compliance-checking framework,
and related tools, including a static method to check business process models against
compliance rules. In [101] semantically annotated process models and formal rep-
resentations of compliance requirements are compared for auditing BPMN process
models for compliance with legislative/regulatory requirements, and for exploring al-
ternative modifications to restore compliance in the event that the processes are found
to be non-compliant. Finally, in [34] compliance rules are translated into temporal
logic formulae that serve as input to model checkers, which in turn verify whether a
given BPMN process model satises the requested compliance rule.

While it is certainly useful to be able to check whether complex process mod-
els satisfy certain constraints (recall the web service example from Section 4.5.2,
where an undesirable execution scenario was actually possible with respect to the
designed BPEL specification), it is also clear that an approach of “conformance by
design” is not sufficient to guarantee compliant process executions. For example, in
Section 4.5.1 we have seen that people can deviate from prescribed processes even
in the context of a rigid workflow system.

So, to truly support the auditing of processes, the real process executions need
to be checked (either at run-time or in retrospect based on the historical data). In the
conformance checking approach presented in this chapter we can check the compli-
ance of an event log with respect to a given process model. However, the checking
of a set of declarative constraints is a complementary approach that can be applied if
the prescribed behavior is given in terms of rules rather than a model.

An example for such a constraint-based conformance checking approach is the
checking of a temporal formula with respect to a log [5]. In [5] it is shown that the
Linear Temporal Logic (LTL) Checker [39] in ProM can check which cases in the
event log satisfy a given property. The LTL Checker has also been extended to allow
for the analysis of semantically annotated event logs [165]. Another example is the
SCIFFChecker [61, 60] in ProM, which—inspired by the declarative ConDec [192]
workflow language and the LTL checker—is able to check business rules with re-
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spect to an MXML log. The employed rules are slightly more expressive than LTL
formulas because they are able to constrain execution times, and thus can explicitly
model delays and deadlines [175].

The advantage of these constraint-based conformance checking approaches is
that they are inherently capable of addressing multiple perspectives (instead of only
the control-flow perspective): depending on their expressiveness such techniques can
be used to check rules also with respect to people (e.g., the ‘four eye principle’),
time (e.g., deadlines), and data attributes. Furthermore, graphical notations such as
ConDec [192] ease the adoption and lower the otherwise relatively high barrier of
declarative approaches for practical use.

4.7 Conclusion

From the coexistence of explicit process models and event logs originates the inter-
esting question “Do the model and the log conform to each other?”. This question is
highly relevant for all kinds of situations where there is a notion of a process model
but people can deviate. This chapter proposes to check the conformance of a process
model and an event log in different dimensions. At first, the fitness between the log
and the model needs to be ensured (i.e., “Does the observed process comply with
the control flow specified by the process model?”). In addition, the appropriateness
of the model can be analyzed with respect to the log (i.e., “Does the model describe
the observed process in a suitable way?”). Two aspects of appropriateness are consid-
ered, evaluating structural properties of the process model (“Is the behavior specified
by the model represented in a structurally suitable way?”) and behavioral properties
(“Does the model specify the behavior of the observed process in a sufficiently pre-
cise way?”).

Apart from existing process models describing the required or assumed business
procedures in an idealized way, conformance checking is also needed to evaluate
the quality of a discovered process model (i.e., a process model that was automati-
cally created by a process mining algorithm), and to compare the results of different
mining algorithms (“Which model is the best?”). We presented a Petri net-based ap-
proach that can be used in both scenarios. Moreover, we described five different case
studies where our approach was applied in diverse contexts ranging from munici-
pality processes to web service choreographies, consumer tests, and complex test
procedures. However, this approach has also its limitations and these are analyzed
further in Chapter 6.

Furthermore, we reviewed related conformance checking and compliance ap-
proaches. Based on this review, we can draw a number of conclusions.

(i) Quality measures from the process discovery literature can be used for con-
formance checking purposes. Shared notions of fitness, precision/generalization, and
structure have emerged in this area. However, the following aspects need to be con-
sidered:

1. Quality metrics developed in the context of a process discovery approach may
be based on hidden assumptions that do not hold for all models (e.g., only apply
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to block-structured models, or models without duplicate tasks). Separating the
evaluation metrics from the mining approach and clearly stating the assumptions
for each of them is advisable to enable the use of the quality metric in a wider
setting.

2. Several methods require a reference model, which is only available to evaluate
the quality of a discovered model if logs have been generated from this original
(i.e., reference) model in an experimental context. In a practical, application-
driven setting it would not be very interesting to discover a process model if the
actual, “true” model was already known and reasonably correct.

3. Reference model-based approaches could be used to check the conformance of
an existing model by using a discovered process model as the reference point if
and only if the mined model is guaranteed to be 100% faithful. Otherwise, it is
not clear whether detected deviations can be attributed to a lack of conformance
of the observed behavior with respect to the existing model (or whether the mis-
match is actually caused by a mining problem, i.e., the observed behavior is not
properly captured in the discovered model).

4. Visualization methods are crucial to assist the analyst in locating, and thus find-
ing the root cause of, a conformance problem. However, visual methods are
rarely available. According to [89], providing intuitive graphical notations for
business analysts is one of the main aspects that need to be incorporated by
current compliance checking techniques. Apart from the Petri net-based confor-
mance checking techniques presented in this chapter, some visual feedback is
only provided by the approaches described in [87, 85] and [79].

(ii) Constraint-based approaches are complementary to process model-based ap-
proaches, also for conformance checking purposes. Our observations can be summa-
rized as follows:

1. Most of the constraint-based conformance approaches reported in literature fo-
cus on ‘compliance by design’, i.e., they check whether a given process model
guarantees the absence of some undesirable, or the presence of some desirable
behavior. Due to the complexity of today’s process specification languages, such
techniques can be very useful to ensure certain properties already in the model-
ing phase. However, these techniques are not suitable to ensure the compliance
of the actual process because deviations from the modeled behavior are common
in practice.

2. To support the conformance checking of the actual process (either at run-time
or a posteriori), constraint-based approaches such as the LTL Checker or the
SCIFFChecker can be used. They verify the fulfillment of specific properties
with respect to individual process instances in the event log and are truly com-
plementary to the Petri net-based conformance checking techniques presented in
this chapter.

3. Constraint-based approaches can be used to check control objectives beyond
control-flow aspects, while current process model-based conformance checking
techniques (including the Petri net-based approach presented in this chapter) are
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typically limited to the control-flow perspective. For example, segregation of
duty constraints such as the “four eyes” principle (used for fraud prevention)
can be easily checked using the LTL Checker.

Finally, we would like to emphasize that while our techniques can be used to
compare the results of different process discovery algorithms for a concrete event
log (see Section 4.5.5), evaluating the actual performance of a process discovery
algorithm is more difficult. The field of data mining has a long-standing tradition in
evaluating algorithms and the models they create. For this reason, in the next chapter
we investigate whether existing model evaluation approaches in the data mining field
can be applied to the process model evaluation problem.





5

Data Mining-inspired Evaluation Approaches

5.1 Introduction

Model evaluation is a very important and well-studied topic in the data mining do-
main. So, it is worth to take a good look at the existing methods, and to see to which
extent they are applicable to process mining. While the field of machine learning is
concerned with the question of how to construct computer programs that automati-
cally improve with experience [174], the focus of data mining is how to make sense
out of a potentially huge data set, with the goal to extract structural patterns [267].
While these patterns can also be used to make predictions, the gained knowledge
and deeper insights are often far more important. So, data mining can be seen as a
practical tool that helps to explain data by using machine learning techniques. Note
that not all machine learning techniques produce meaningful structural patterns. For
example, artificial neural networks can be trained and used to, e.g., recognize spoken
words [149], but the knowledge is mostly hidden (“blackbox”) and thus not accessi-
ble.

Also in the field of process mining, we are also mainly interested in extracting
structural patterns. While there have been attempts to make predictions [84] or rec-
ommendations [240] with respect to a running process, most of the techniques aim
at the discovery of structural models, such as process models or organizational net-
works. Whether or not the learned models are used to make predictions, it is impor-
tant to estimate their performance (i.e., be able to judge their quality). In the follow-
ing, we will reflect on the commonalities and differences between process mining
(more specifically: process discovery) and data mining, and their requirements to-
wards model evaluation.

Input The input for any machine learning technique takes the form of a concept de-
scription, instances, and attributes. The ‘concept’ is the thing to be learned. For
example, typical machine learning problems are to classify or cluster data, find
associations between attributes, or to make numeric predictions. The instances
are the examples that are available for the learning task, and the attributes de-
scribe the information that is available for each of the instances.
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The concept to be learned by a process discovery algorithm is a description of the
process behavior, and the available examples are the observed process instances,
or log traces. However, in contrast to a set of attributes each instance consists of
a sequence of attributes (the events).

Output The output is a model in a concept description language. For example, pos-
sible outputs of a classification task in data mining would be a set of decision
rules or a decision tree.
The output of a process discovery algorithm is a process model in some process
modeling language, for example, a Petri net.

The question we are concerned with in this chapter is “how to assess the quality
of the output?”. Consider, for example, the setting of a classification task. Say, we
want to be able to automatically distinguish photos of apples from photos of pears.
The input is a set of photos depicting either an apple or a pear, together with a set
of features that have been derived from these photos by some visual recognition
program. We then train our machine learning algorithm using these data. As a result,
we obtain a set of rules over the features, which determine whether the photo contains
an apple or a pear. To find out how good these learned rules classify our data, we can
then calculate the success rate, which determines to which degree apples have been
correctly classified as apples and pears as pears (with respect to the total number of
photos).

However, an important lesson from the machine learning domain is that the per-
formance of a learned model with respect to new data cannot be estimated based on
how successfully the model handles the data it was trained on. The reason is that the
model may “overfit” the training data. So, the success rate of the model with respect
to the training photos is likely to be much more optimistic than the true performance
of the model with respect to new, unseen photos of apples and pears. For example, it
could be the case that two out of the apple photos contain a wormhole, while none
of the pear photos does. As a consequence, the learning algorithm might assume that
the wormhole is an essential feature to identify apples (and include it into the rule
set), while it is actually not.

A common practice in machine learning is thus to separate training and test data:
the quality of the model is then only judged based on test data (which was not used in
the training step before). Furthermore, it is often also necessary to estimate training
parameters, or to further generalize a model (during the training). For example, we
would want to avoid that a rule involving the wormhole is included in our model in
the first place (not only discover that the model is bad in the evaluation phase). For
this reason, machine learning techniques often make use of so-called validation data,
which must form even another, separate data set (different from the training and test
data).

But how does the classification of apple and pear photos translate to the setting
of process models? First of all, we do not have two classes (apples and pears) but
only one (the process to be characterized). This is comparable to the situation where
we should identify apples from non-apples. But as explained earlier, event logs con-
tain only positive examples. This is comparable to the situation where we have only
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examples of apples but none of non-apples. In data mining, this problem is called
one-class classification [249], but also the terms outlier detection [176], novelty de-
tection [42], or concept learning [136] are used.

ABDEA
ACDGHFA
ACGDHFA
ACHDFA
ACDHFA

Event Log

B
A

C
D

E

F
A

G H

Simulation

Process Model

Fig. 5.1. A process model and an event log that is generated while simulating the model.

To illustrate the problem for the process discovery setting, let us assume that we
have the Petri net process model depicted in Figure 5.1 on the left. Furthermore,
we simulate this model a few times and record the executed tasks in the event log
depicted on the right in in Figure 5.1. Now, this event log is used as input for process
mining.

During process discovery, we can build a model that completely captures our
training data (so, the fitness is 100%). An example of such a model is depicted in
Figure 5.2(a)–(c) on the right. This model captures exactly the five traces from the log
depicted in Figure 5.1, and it excludes all other traces. Now, what does generalization
exactly mean in this setting? We can see that the model on the right in Figure 5.2(a)–
(c) is more compact than the fully sequentialized model depicted in Figure 4.5(e).
So, we could say that some generalization of the data took place—this model is more
useful than the model in Figure 4.5(e), which did not offer any extra insight compared
to looking at the log. However, here we characterize such structural generalization
by the structure dimension, and use the term generalization only with respect to
behavioral aspects of the model.1

The goal of behavioral generalization is to account for unseen examples. This
is similar to the situation where we want the apple classifier to be able to recognize
also apples on other photos than were used for the training. We have discussed earlier
that an event log is unlikely to be complete, since there may be too many possible
variations to be observed. So, given the event log in Figure 5.1 on the right, we prefer
a model that also allows for the trace ACGHDFA, such as the model in Figure 5.1 on
the left, because it is a very close variation of the observed traces.

We illustrate the problem of generalization in a process discovery setting using
the three scenarios shown in Figure 5.2.
1 Nevertheless, it is important to note that the structure and the behavior of a process model

are intertwined. For example, the merging or removal of places in a Petri net typically adds
behavior, while adding places and removing transitions restricts behavior. Therefore, the
structural aspects of a model need to be either (a) balanced against the behavioral proper-
ties, (b) formulated in a behavior-independent way (such as metric a′S in Section 4.3.3), or
(c) evaluated with respect to equivalent behaviors only.
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(a) Model M captures exactly the five traces from the log depicted in Figure 4.5(a). However,
it excludes all other traces—also the possible (but unobserved) trace ACGHDFA. Therefore,
this model is too precise and further generalization is desirable.
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(b) Model M includes the unseen trace ACGHDFA but also allows for the trace GAHBBB,
which does not correspond to possible behavior. Therefore, this model is too general, i.e., too
much generalization has been performed.
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(c) Model M has the “right” level of generalization, because is both general enough to ac-
count for possible but unobserved behavior such as the trace ACGHDFA and precise enough
to exclude impossible traces such as GAHBBB.

Fig. 5.2. The problem of generalization in a process discovery setting. Finding the the “right”
level of generalization is difficult because event logs do not contain negative examples.
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• In the first scenario depicted in Figure 5.2(a) no generalization was performed
at all. The model M corresponds to the model on the right and only allows for
the traces that have been observed in the log. As discussed above, such an overly
precise model is not desirable because we cannot assume that all possible traces
have been observed in the log.

• In the second scenario depicted in Figure 5.2(b) too much generalization was
performed. The model M corresponds to the model on the left and also includes
very unlikely behavior. Clearly, such an overly general model is not desirable
because it does not reflect the characteristic behavior of the observed process
anymore.

• The third scenario depicted in Figure 5.2(c) shows the ideal situation, where the
model M has just the right level of generalization. For example, the model in Fig-
ure 5.1 includes the unseen trace ACGHDFA but does not allow for the unlikely
trace GAHBBB.

Figure 5.2 illustrates the problem of finding the right level of generalization as a
“sliding scale” between very precise models (on the right) and very general models
(on the left). But how far should we “move the bar” to the left, without running the
risk to also include unlikely behavior in our model? Without the presence of negative
examples, the decision boundary is supported only from one side, not from both.
While there are no negative examples in the event log, it is clear that the extreme case
as depicted in the trivial model on the left in Figure 5.2 (which we could characterize
as “everything is an apple” in the classification example) is not desirable.

Another way to look at it is using the notion of false negatives and false positives.
The ‘positives’ are the instances classified as the target class by the model, while the
‘negatives’ are the instances that are rejected. In Figure 5.2, an example log trace
that is accepted by the process model (positives) is depicted to the right of the cor-
responding model bar (allowed behavior), while rejected log traces (negatives) are
located to the left of the bar (forbidden behavior). Knowing what the true property of
an instance is (e.g., an apple or a non-apple photo), one can then identify how many
examples have been correctly accepted or rejected (true positives and true negatives),
and how many have been incorrectly accepted or rejected (false positives and false
negatives). However, due to the absence of negative examples we can only determine
the rate of false negatives, but not of false positives.

So, without negative examples it is inevitable to make certain assumptions about
the boundary of the desired generalization (i.e., “What exactly is unlikely behav-
ior?”). For example, in one-class classification, an assumption about the outlier dis-
tribution has to be made to avoid the trivial solution of accepting all data (e.g., the
assumption that the outliers are uniformly distributed around the target data [249]).
Similarly, in process model evaluation it is relatively easy to determine the number
of false negatives, which has been addressed by a number of metrics in the fitness di-
mension. However, due to the absence of false positives, all metrics in the precision
and generalization dimension are driven by assumptions about the desired level of
abstraction (e.g., the detection of parallelism), or even require a reference model.
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While there are metrics to evaluate a given process model with respect to a given
event log, there remains the imperative to only judge the quality of a model based on
independent test data. Model quality may not be so relevant when the conformance
of an existing model is checked, because there fitness is often the most dominant
dimension. It seems more important in the context of a discovered process model
(“How good is the model?”), and even more so if the performance of a process dis-
covery algorithm is to be evaluated (“Is my algorithm generally performing better
than existing algorithms?”). In the data mining area, various approaches exist to de-
termine the “true” performance of a model.

In the remainder of this chapter we will look at process model evaluation from
two viewpoints. First of all, we investigate to which extent validation approaches
from the data mining area can be leveraged for process model evaluation: We discuss
the problems related to separating training and test data (Section 5.2). Furthermore,
we try to apply the so-called Minimum Description Length (MDL) approach [210],
which does not require the separation of training and test data (Section 5.3). Sec-
ond, we approach the topic of bias. The term ‘bias’ is used to describe a tendency or
preference towards a particular perspective. In data mining, researchers have, for ex-
ample, discussed how a search bias leads to a preference of particular solutions dur-
ing the mining phase [267]. In this chapter, we make use of Hidden Markov Models
(HMMs) to reveal an evaluation bias of existing process mining metrics that leads
to pessimistic measurements for simple models without parallelism (Section 5.4).
Finally, related work is discussed (Section 5.5) and the chapter is concluded (Sec-
tion 5.6).

5.2 Separating Training and Test Data2

Model quality in machine learning is generally seen as predicting performance. But
even if the purpose of process discovery is not prediction (but insight), the model
as a “theory of data” [267] should be a generalized description of the essence of
the observed behavior (accounting for the fact that you usually cannot observe all
parallel interleavings, for example).

Within the machine learning community, there is a relatively simple experimen-
tal framework called k-fold Cross Validation (CV) [174]. Based on the observation
that estimating the performance of the learned model on the learning material leads
to overly optimistic results, a strict separation between training data and test (and
potentially validation) data is advocated. The following steps can be distinguished:

1. The available data is divided into k subsets numbered 1 to k.
2. The algorithm is trained k times. In training i (1 ≤ i ≤ k), subset i is used as

test material, the rest of the material, i.e., {1, ..., i − 1, i + 1, ..., k}, is used as
learning material.

2 This research is based on joint work with A.K. Alves de Medeiros, C.W. Günther, A.J.M.M.
Weijters, and W.M.P. van der Aalst [222, 223].
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3. The performance of the algorithm on the current data set (or the performance
of the definitive learned model) is estimated by the average (or otherwise com-
bined) error over the k test sets.

Note that the final model can be still built based on the whole data set (includ-
ing the test data). It is only that the quality of the final model is judged based on
this procedure. The framework can also be used for parameter optimization, and for
comparing the performance of different learning algorithms (using the paired T-test
to calculate a confidence interval).

In the following, we are interested in whether this framework is useful for com-
paring the performance of the different process discovery algorithms in the example
in Figure 4.2. To apply the k-fold cross validation framework in a process discovery
setting, the following questions need to be answered: “How to partition the data into
training and test material?” (Section 5.2.1), and “How to calculate the error for each
test run i?” (Section 5.2.1). Different options are possible for each of these points.
In the following, only two illustrative combinations are chosen and applied to the
example (Section 5.2.3).

5.2.1 Partitioning the Data

The simplest way to separate test and training data would be to set aside a part of
the data used for testing only. One of the challenges is that both the training and
the test data should be representative. For example, to train and evaluate a classifier
each class in the full data set should be represented in about the right proportions in
the training and test sets. The procedure of ensuring a proper distribution is called
stratification.

The k-fold CV approach is a way to mitigate any bias caused by the particular
sample chosen for holdout. Because it repeats the whole process with different ran-
dom samples, in each iteration a certain proportion of the data is used for training
and testing (and the error rates are averaged to yield an overall error rate). Often, this
is repeated multiple times (e.g., 10 times 10-fold CV), and the results are averaged
again, to obtain a reliable error estimate. But there is still the problem that the random
samples chosen for holdout in each step might not be representative, so stratification
is often applied in combination with cross validation.

Now, partitioning an event log into representative subsets is not so easy. For ex-
ample, the log used for the example in Figure 4.2 contains 1459 process instances,
but only 5 different traces. So, when we first used k = 10 (a commonly used value
for k), and randomly partitioned the log in 10 pieces of equal size, each of the 10 par-
titions is likely to contain all these 5 traces (in different frequencies), and, therefore,
the test set does not contain really “new” data. Here, the example seems too simple.

Therefore, we also chose another partitioning strategy, where k is the number of
different traces in the log (i.e., here k = 5) and each partition contains those instances
that exhibit the same sequence of activities. In this 5-fold CV experiment, 4 out of
these 5 partitions were then used as training data, and the remaining part as test data.
Looking just at the different traces, this essentially corresponds to the Leave-one-out
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method [267] (i.e., n-fold CV, whereas n is the number of examples in the data set).
A problem here, however, is that—because the example the log only contains the
minimal number of traces needed to rediscover the model—important behavior is
missing in the training data.

In fact, many process discovery algorithms do not consider the frequency of
traces. So, a trace is either present as a positive example that should be captured
by the model or not. But how exactly can we then split up the log without missing
essential information for the training phase? What are the “classes” that should be
represented properly both in the training and the test set? The key here again seems
to be the desired level of generalization.

For example, if the goal is to detect parallelism then the different variations of
parallel activities could be considered to belong to “one class”. If one of these vari-
ations per class was held back for testing purposes (and the discovered model was
evaluated based on these held-back traces), then any over-fitting model (such as the
one on the right in Figure 5.2) will perform poorly compared to more generalized
models.

5.2.2 Estimating the Error

Assuming that we are able to hold back the right examples from the original event
log, we can use some kind of fitness function to determine whether the unseen exam-
ple can be parsed by the model. That is, the generalization is measured based on this
held-back, unseen log trace. The idea here is that if the model is general enough to
cover this held-back example, then the final model will also be able to accommodate
other, really new traces.

However, to avoid over-generalization (e.g., a model such as depicted on the left
in Figure 5.2), we also need some kind of precision measurement. In a typical data
mining application there are usually negative examples available in the test set to
support the generalization boundary “from the other side”. However, as discussed
earlier process discovery techniques need to learn from only positive examples.

One possibility is to deal with this problem is to generate negative examples.
In the following, we use a very simple solution to do that: We generate an event
log EventLogRandom by building m random traces of length n (where m is the
number of traces and n the number of different activities in the original event log).3

Note that using this simple procedureEventLogRandommay accidentally con-
tain positive examples.4 In the presence of a reference model, one could also use
more sophisticated approaches to generate negative examples that reflect really “for-
bidden” behavior. Furthermore, based on a concrete completeness assumption it has
been proposed to leverage the event log itself to generate negative events that fall

3 Note that we could also have taken a variable number of events in each random trace.
4 Consider, for example, a process that behaves completely randomly. In this situation, a

“Flower” model such as depicted on the left in Figures 5.2(a)–(c) would be the most precise
model one could get. Any randomly generated trace will be a positive example, and using
it as a negative example would be a mistake.
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outside of the “completeness boundary” [103]. So, while we here use this simple,
random-based procedure for illustration, let us assume that we are able to generate a
set of “truly” negative examples.

Given such a set of negative examples, we can then again use some kind of fitness
function to determine whether they are actually rejected by the discovered model,
i.e., whether the precision is good.

For our example we use the following procedure to estimate the error during the
k-fold CV experiment: For each test run i:

1. We first discover a process model based on the training data.
2. Then, we calculate the error pos based on the positive examples of the test set

(should be parsed by the model), and
3. the error neg based on the negative examples (should not be parsed by the

model).

To calculate the errors pos and neg, we used the fitness metric f (other fitness
metrics could be chosen). For each test run i, we then determined the overall error as
(pos + (1 − neg))/2 (to weigh the fitness and precision equally), whereas pos and
neg are fractions of positive and negative examples that “fit”. Other ways to balance
fitness and precision are possible as well. The average error of all the k test runs is
taken as the result of the k-fold cv experiment. For example, for the Heuristic miner
the overall error for each of the 10 test runs evaluates to (1.0 + (1.0-0.389))/2 = 0.805.

As an alternative to the artificial negative examples, also some kind of explicit
precision measurement could be used for an evaluation of the precision of the dis-
covered model in each of the k runs.

5.2.3 Example

We compare the quality of the discovered models depicted in Figure 4.2 using the
set-up described above. The event log used to discover these models contains in total
1459 event sequences, whereas five different traces are represented with different fre-
quencies. More specifically, the log contains the following event sequences: ABDEI
(1207 times), ACDGHFI (145 times), ACGDHFI (56 times), ACHDFI (23 times),
and ACDHFI (28 times). We also generated an event log with negative examples
(EventLogRandom) that also contains 1459 event sequences (m), each of length 9
(n). None of these sequences are valid traces with respect to the ideal model that was
used to create the original event log.

The results of this comparison both for the 10-fold and the 5-fold CV experiment
are given in Table 5.1.

One of the advantages of the presented machine learning approach is that well-
known statistical techniques can be applied to investigate whether one algorithm
performs significantly better than others on a particular data set. For example, we
performed a paired T-test for 15 combinations, where we compared the performance
of all the 6 process discovery algorithms based on the data sets used for the 10-fold
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Table 5.1. Overview of the evaluation results for the example from Figure 4.2 in the 10-fold
and 5-fold CV experiment.

Experiment Alpha Alpha++ Genetic Dupl. GA Heuristic Petrify

10-fold CV 0.814 0.818 0.813 0.795 0.805 0.787
5-fold CV 0.702 0.701 0.705 0.705 0.716 0.696

CV experiment in a pair-wise manner5. From this, we can conclude that—using the
fitness measure f and the earlier described experimental set-up—the results are all
statistically significant using a 95% confidence interval, except for one combination
(namely Duplicates GA and Petrify). The significance is most likely influenced by the
fact that all partitions in the 10-fold cv experiment contained all the 5 different traces
from the log (in different frequencies), and, therefore, almost all6 the discovered
models were identical for each of the i test runs.

The results of the two CV experiments show that it is problematic to apply this
technique for small examples. The approach still seems attractive because it is able to
evaluate generalization without a given reference model, which none of the metrics
discussed in Chapter 4 is able to do. However, partitioning the data in a smart way
is important to make this method work. More experiments with larger, perhaps more
unstructured or noisy logs, would be needed to investigate the approach in more
detail.

5.3 Using the Minimal Description Length (MDL) Principle7

The MDL [210] principle follows a long-standing tradition in science, known as
Occam’s razor8. It says that, other things being equal, simple theories are preferable
to complex ones. So, according to the MDL paradigm model quality is no longer only
based on predicting performance, but also on the simplicity of the model. In fact it is
not even based on predicting performance (in the sense that the performance needs
to be measured against new, unseen examples) but the performance can be judged on
the training data alone. Instead it advocates that the best theory for a body of data is
one that minimizes the size of the theory plus the amount of information necessary to
specify the exceptions relative to the theory [267].

Reconsider Figure 5.2 again and recall that evaluating the model based on unseen
examples was necessary to ensure that there is some generalization taking place, i.e.,
to avoid that the output is a mere list of all the “facts” rather than a succinct theory

5 If we compare each of the 6 process mining algorithms with every other algorithm then this
yields

`
6
2

´
= 6!

2!·(6−2)!
= 15 pairs.

6 The Duplicates GA miner is sensitive to the frequency of traces in the training set, and
therefore discovered different models.

7 This research is based on joint work with T. Calders, M. Pechenizkiy, and C.W.
Günther [55].

8 After the medieval philosopher William of Occam (or Ockham).
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of the facts. However, according to the MDL principle such an extreme, highly over-
fitted model that makes no errors on the training set (cf. right model in Figure 5.2)
is bound to be very complex. The other extreme is a very simple model (cf. left
model in Figure 5.2) which does not help in encoding the data. So, ideally, by taking
the simplicity of the model into the equation, the right balance in between the two
extremes can be automatically determined.

In [55], we have investigated the applicability of the MDL principle for the pur-
pose of evaluating process models. To make the MDL principle work in this setting,
one needs to find (a) a way to encode a log based on the model, and (b) a way to
encode the model itself. In this section, we show how this can be done for Petri net
process models.

Consider the following example. Figure 5.3 depicts two different scenarios,
where an event log is encoded using a process model. Then, both the process model
and the encoded data are transmitted via some channel. Finally, the receiver uses the
model to decode the transmitted data and reconstruct the original event log. How-
ever, the goal of the MDL principle is not to actually transmit the encoded data but
to compare models with respect to their simplicity and their ability to compress the
original data.

For example, the process model that is used in the scenario of Figure 5.3(a) is
a very simple model that only captures the most frequent log trace ABC. As a con-
sequence, all event sequences that match this frequent trace can be encoded using
only one bit (1 indicates that the sequence matches the model). However, all event
sequences that do not match need to be encoded explicitly (e.g., using an error code
0 followed by the actual sequence of events). In the second scenario shown in Fig-
ure 5.3(b) a more complex process model is used for the encoding. The model cap-
tures all the traces in the event log. As a consequence, it is enough to indicate for
each sequence which alternative branch in the model it corresponds to (none of the
sequences must be explicitly encoded). However, it also takes more bits to encode
the process model itself.

Note that the encoding in Figure 5.3 has been simplified for illustration purposes.
For example, when events are explicitly encoded, such as XF in Figure 5.3(a), then
their representation takes more than 1 bit—so, the encoding of the data is actually
longer than indicated. Furthermore, process models do not only contain alternative
branches. So, in reality both the model encoding as well as the encoding of the log
with respect to the model is more involved. A concrete and fully functional (i.e.,
deterministic and decodable) encoding scheme will be proposed later in this section.

The goal here is to illustrate that according to the MDL principle a comparison
between two models can be as simple as adding up the size of both the encoded
data and the process model itself: The model that yields the overall smaller sum is
considered to be better. Model simplicity and log compression can also be weighed
differently if one of them is considered to be more important than the other.

The remainder of the section is organized as follows. First, we define an encod-
ing scheme for an event log to measure the log’s compression by the model (Sec-
tion 5.3.1). Then, we give an encoding scheme for measuring the complexity of the
model itself (Section 5.3.1). Afterwards, we consider reference models to lift the
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XF
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AD

Transmit model:   ABC 

Transmit data:     110AD110XF1110AD 

Sender Receiver
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(a) The model is simple and only captures the most frequent event sequence in the log: ABC.
As a consequence, the three exceptional traces must be transmitted explicitly.

ABC
ABC
AD
ABC
ABC
XF
ABC
ABC
ABC
AD

ABC
ABC
AD
ABC
ABC
XF
ABC
ABC
ABC
AD

Transmit model:   AD or ABC or XF  

Transmit data:     2212232221 

Sender Receiver

X F

A

A B C

D

X F

A

A B C

D

(b) The model also captures the less frequent event sequences in the log. As a consequence,
the data can be encoded more succinctly but in turn the model transmission is more costly.

Fig. 5.3. Illustration of the MDL principle using two different scenarios. The goal of the MDL
principle is to achieve an optimal balance between (process) model simplicity and the ability
of the model to compress the (event log) data.

measure from a merely comparative means to a quality metric that indicates a value
relatively to a “worst” and “best” case scenario (Section 5.3.3). Finally, some ex-
perimental results are reported and the practicability of the approach is evaluated
(Section 5.3.4).

5.3.1 Measuring Log Compression

As explained before, the MDL principle favors a model that minimizes the sum of
the size of the model and the amount of information necessary to specify the excep-
tions relative to the model. Looking at the second summand, we find a discrepancy
between typical data mining applications (e.g., a classification task) and our pro-
cess discovery setting: There is an assumption put forward by the MDL principle
that implies that making the model more general (and thus simpler) will cause more
exceptions, i.e., examples in the training data that cannot be covered by the model
anymore. However, considering the model at the left in Figure 5.2 we find that this
model will not cause any exceptions—it will accept all the training examples without
any problems. What is the difference?
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Again, the issue at hand is the lack of negative examples in a process discovery
setting. Suppose there would be negative examples, then the very general model
at the left in Figure 5.2 would indeed cause errors—because it would accept these
negative examples although it should not. From this observation we can conclude
that defining exceptions, or errors, in terms of fitness is not enough. We also have to
include some form of precision component in our log encoding.

In the following, we will describe an encoding based on the enabled transitions
during log replay (cf. log replay procedure in Section 4.3.1). This way, transitions
that are enabled during replay will have a much shorter encoding than faulty transi-
tions, because for them we will need to trigger an error recovery mechanism in the
encoding. Therefore, the log encoding favors models that are correctly describing
the input data. Furthermore, models that have less transitions enabled during replay
will have a shorter encoding than those allowing for many choices during replay.
Therefore, the log encoding favors models that are accurately describing the input
data.

Encoding of the Log

The idea behind the encoding is simple: If a Petri net captures most of the sequences
in the log (but not many more), it will be easy to compress the log using this Petri net.
Suppose that, for example, the log contains only valid and complete firing sequences
of the Petri net. In this case we can—instead of having to list all traces in the log
completely—just list the fired transitions during log replay that resulted in this trace.
Because the number of enabled transitions is usually smaller than the number of
transitions, we will be able to encode this number more succinctly. However, if there
are many enabled transitions during log replay (i.e., a lack of precision), then the
encoding will be more costly. Similarly, if there are events that cannot be matched
with a valid firing sequence of the model (i.e., lack of fitness), then the encoding of
these events will also be more costly.

Definition 11 (Compression Encoding) The encoding of an event sequence σ =
〈e1, e2, . . . , en〉 ∈ E with respect to a Petri net (P, T, F, L, l) is defined as follows:

• ti ∈ T is the transition to be fired when replaying σ(i), 1 ≤ i ≤ n,
• Ei ⊆ T is the set of enabled transitions before replaying σ(i), 1 ≤ i ≤ n,
• rank ∈ T × P(T ) → N is an identification function, such that for all t ∈ Tx:

1 ≤ rank(t, Tx) ≤ |Tx|, and for all t1, t2 ∈ Tx: t1 6= t2 =⇒ rank(t1, Tx) 6=
rank(t2, Tx),

• ri ∈ N is a replay code such that for any 1 ≤ i ≤ n:

ri =
{
rank(ti, Ei) if ti ∈ Ei
0 if ti 6∈ Ei

• ci ∈ N∗ is a code sequence such that for any 1 ≤ i ≤ n:

ci =
{ 〈ri〉 if ri 6= 0
〈0, rank(ti, T )〉 if ri = 0
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• enc ∈ E → N∗ is an encoding function such that for any σ = 〈e1, . . . , en〉 ∈ E:

enc(σ) = c1 · . . . · cn.

While Definition 11 defines the encoding only for a single event sequence, the
encoding can be easily extended to a whole log by assuming that every event se-
quence starts with a dedicated start event and ends with a dedicated end event, which
are associated to a unique start task S and a unique end task E in the Petri net model,
respectively.9 This way, the encoded event sequences can be simply concatenated.
A receiver of such an encoded event log would know whenever a trace has finished,
and could thus initialize the replay for the next sequence.

Consider the example depicted in Figure 5.4. The shown Petri net contains 5
tasks: the start transition S, the end task E, and the tasks A, B, and C. The event
sequence that should be encoded using this model is σ = 〈S,C,A,C,A,E〉. Fig-
ure 5.4 depicts each replay step 1 ≤ i ≤ 6 for this sequence and the corresponding
variables Ei and ri. The variable Ei simply contains the set of enabled tasks at the
current replay step. The variable ri indicates the code for the transition that is being
fired for the current event. If the transition that should be fired for the current event is
among the enabled tasks, then the code directly identifies that transition. If the tran-
sition is not enabled, ri holds an error code 0. When there is such an error, the error
code must be followed by an identification of the violating transition in the complete
set of transitions T . Note that the rank function needs to establish a total order over
the set of transitions to serve as an identifier. For example, here we assume that the
start task S is the smallest, the end task E is the greatest, and that all other transitions
of the model are sorted in between based on their alphabetic order.

The encoding of the event sequence σ = 〈S,C,A,C,A,E〉 for the given Petri
net is thus:

〈1, 0, 4, 1, 3, 1, 0, 5〉
The first integer in the sequence, 1, indicates that that the first (and only) enabled

transition is chosen: E. The second transition is encoded by the error indicator 0,
and the rank 4 of the transition C in T . The next three transitions are all valid and
are identified by the ranks 1, 3, and 1 in the corresponding set of enabled transitions.
The last transition is again invalid, so the code 0 is used, and the rank of E in T , 5,
is given.

Length of the Encoding

One could imagine that the encoded event log would be transmitted through some
channel. The receiver of the encoded log should then be able to completely recon-
struct the log based on the process model and the knowledge of the encoding scheme
above. However, actual encoding and decoding is not the goal. We are only interested
in the size of the encoding to find out how much we can compress the log this way.

9 This is not a limitation because artificial start and end events/tasks could be added to the
log/model automatically before starting the encoding.
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Based on these notions, we introduce our encoding. If the trace is a firing
sequence for the Petri net, basically, the encoding of the ith transition comes
down to give its rank in the list of enabled transitions Ei−1. In case of an error,
however, the transition is not in this list. For this purpose, a special “rank 0” is
introduced to denote an error, followed by the rank of the violating transition in
the complete set of transitions T . The encoding of S given (P , M) thus becomes:

l1 · l2 · . . . · ln
with:

li = 〈ri〉 if ti ∈ Ei−1

= 〈0, rank(ti, T )〉 otherwise

Example 3. The encoding of 〈S, C, A, C, A, E〉 with the given marked Petri net
of last example thus becomes:

〈1, 0, 4, 1, 3, 1, 0, 5〉
For reasons of clarity, extra spacing is inserted between the encodings of the
different transitions. The first integer 1 indicates that that the first (and only)
enabled transition is chosen; E. The second transition is encoded by the error
indicator 0, and the rank 4 of the transition C in T . The next 3 transitions are
valid and have respectively ranks 1, 3, and 1 in their sets of enabled transitions.
The last transition is again invalid, so the code 0 is used, and the rank of E in
T , 5, is given.

4.2 Lengths of the encoding

To encode an element of a predefined set with b elements, log2(b) bits are needed
(binary representation). When there are k violating transitions, the encoding cost
is hence: ⌈

n∑
i=1

log2(ei−1 + 1) + k log2(|T |)
⌉

Indeed; for every transition ti, either the value 0 if it is invalid, or its rank in the
set Ei−1 has to given. There are hence ei−1 + 1 values between which there has
to be chosen, and hence log2(ei−1 + 1) are needed. For the violating transitions,
besides the error code 0, also log2(|T |) bits have to be given to indicate the rank
of the transition in the set T .

Fig. 5.4. Example illustrating the replay of the sequence σ = 〈S,C,A,C,A,E〉 in the given
Petri net for determining the compression of that trace with respect to the model [55].
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To encode an element of a predefined set with n elements (i.e., a number in the
range 1 . . . n), then log2(n) bits are needed (binary representation). When there are
k violating transitions during the replay of an event sequence σ = 〈e1, e2, . . . , en〉,
the encoding cost are hence:⌈

n∑
i=1

log2(|Ei|+ 1) + k log2(|T |)
⌉

For every transition ti, either the value 0 (if the firing is invalid) or its rank in the
set Ei (if it is valid) has to be given. There are thus |Ei| + 1 values among which
one can choose, and, therefore, log2(|Ei|+ 1) bits are needed for the encoding. For
the violating transitions, besides the error code 0, also log2(|T |) bits are needed to
indicate the rank of the transition in the set T .

We can compute the encoding length of the example in Figure 5.4 as summarized
in the following.

i 1 2 3 4 5 6
ti S C A C A E
Ei {S} {A,B} {A,B} {A,B,C} {A,B} {A,B,C}
ci 1 0, 4 1 3 1 0, 5

cost log2(2) log2(3) + log2(5) log2(3) log2(4) log2(3) log2(4) + log2(5)

The total cost are: d14.398743691938192 . . . e = 15 bits.

5.3.2 Measuring Model Simplicity

In the previous section, a log encoding was defined to measure the amount of infor-
mation necessary to specify the exceptions relative to the model (i.e., the log com-
pression with respect to the model). The second ingredient of the MDL principle is
the size of the model itself, which is addressed in this section. The underlying as-
sumption is that by allowing a model to become more complex, we will be able to
achieve better log compression. And vice versa, if we reduce the model complexity,
the log compression ratio will decrease.

Encoding of the Model

While it was not so obvious what exactly the “exceptions relative to the model” are
in a process discovery setting, the encoding of the model is quite simple. Again, we
have to encode the structure of the Petri net in such a way that it could, theoretically,
be transmitted over some channel and completely reconstructed by the receiver (just
based on the knowledge of the encoding scheme). The encoding length will then be
an indicator of the complexity of the model.

Definition 12 (Simplicity Encoding) The encoding of a Petri net (P, pS , pE , T, tS ,
tE , F, L, l) is defined as follows:
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• pS ∈ P is the unique start place and pE ∈ P is the unique end place,
• tS ∈ T is the unique start task and tE ∈ T is the unique end task,
• Tcore = T \ {tS , tE},
• Lcore = L \ {l(tS), l(tE)},
• rankT ∈ Tcore → N provides a task rank, such that for all t ∈ Tcore: 1 ≤

rankT (t) ≤ |Tcore|, and for all t1, t2 ∈ Tcore: t1 6= t2 =⇒ rankT (t1) 6=
rankT (t2),

• codeT ∈ T → N is a function that provides a task code such that for any t ∈ T

codeT (t) =
{
rankT (t) if t ∈ Tcore
0 if t 6∈ Tcore

• rankL ∈ Lcore → N provides a label rank, such that for all l ∈ Lcore: 1 ≤
rankL(l) ≤ |Lcore|, and for all l1, l2 ∈ Lcore: l1 6= l2 =⇒ rankL(l1) 6=
rankL(l2),

• codeL ∈ Tcore → N is a function that provides a label code such that for any
t ∈ Tcore

codeL(t) =
{
rankL(l(t)) if t ∈ dom(l)
0 if t 6∈ dom(l)

• for p ∈ P : •p = {x|(x, p) ∈ F} and p• = {x|(p, x) ∈ F} denote the set of
predecessor and successor tasks, respectively,

• enc ∈ P → N∗ is an encoding function such that for any p ∈ P , •p =
{i1, i2, . . . , ip}, p• = {o1, o2, . . . , oq}:

enc(p) = 〈|•p|, |p•|〉 · 〈codeT (i1), codeT (i2), . . . , codeT (ip)〉 ·
〈codeT (o1), codeT (o2), . . . , codeT (oq)〉

• for Tcore = {t1, . . . , tk},∀1≤i≤k i = rankT (ti) and P \ {pS , pE} =
{p1, . . . , pl} the overall encoding of the Petri net is:

〈|Tcore|〉 · 〈codeL(t1), . . . , codeL(tk)〉 · enc(p1) · . . . · enc(pl)
The log replay procedure used for the encoding of the log assumes a sound WF-

net. Therefore, there is always a unique start place and a unique end place contained
in the Petri net. Furthermore, we had assumed the presence of a dedicated start and
end task (so that we would be able to tell the different event sequences apart when
transmitting them after another over some channel).

These assumptions thus also apply to the Petri net model, and because we know
that both the start and end places, and the start and end transitions are always present,
they do not need to be explicitly encoded. Furthermore, because the start task cannot
be an output task for any place, and because the end task cannot be an input task for
any place, there is no need to distinguish them with a separate code (the code 0 can
be used in both situations).

Consider the example Petri net depicted in Figure 5.5. The set of transitions
without start and end task Tcore = {B1, A2, A3}, whereas rankT (B1) = 1,
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rankT (A2) = 2, and rankT (A3) provide an absolute order for these tasks. Fur-
thermore, l(B1) = B, and l(A2) = l(A3) = A. So A2 and A3 are duplicate
tasks. The order established by the rankL function is assumed to be alphabetical.
So rankL(A) = 1 and rankL(B) = 2. Finally, there are four places besides the
start and end place. The order of these places is not important.

10

where enc(p) denotes the following encoding of the place p: let •p \ {ts} =
{ti1 , . . . , tip}, and p • \{te} = {to1 , . . . , toq}; (i.e., apart from potential connec-
tions to ts and te, place p has incoming arcs from transitions ti1 , . . . , tip and out-
going arcs to to1 , . . . , toq). Let Num(•p) now denote {i1, . . . , ip} ∪ {0 | ps ∈ •p}
and Num(p•) now denote {o1, . . . , op} ∪ {0 | pe ∈ p•} That is, for the special
transitions b and e, the number 0 is used; as ts cannot appear in the output list
of a place, and te not in the input list, using 0 to encode both does not lead to
ambiguities. We then have:

enc(p) = 〈|•p|, |p•|, i1, i2, . . . , ip, o1, o2, . . . , oq〉

Example 5. A place with inputs from transitions B, t1, t2 and output to E, t4 is
encoded as:

〈3, 2, 0, 1, 2, 0, 4〉
Notice that the places a, ps, and pe are not encoded in the model, as their
connections to the transitions in the net is fully determined by the rest of the
net.

Example 6. Consider the following Petri net.
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The order between the transitions is B1, A2, A3; i.e., t1 = B1, t2 = A2, t3 = A3.
The labels are: λ(A2) = A, λ(A3) = A, λ(B1) = B, and the order on the labels
is the alphabetic order. The order of the places is indicated by their number. As
in the previous examples, the place a is not depicted.

The encoding of this model is as follows:

〈3〉 · 〈2, 1, 1〉 · 〈2, 1, 0, 1, 2〉 · 〈1, 1, b, 3〉 · 〈1, 2, 2, 1, 0〉 · 〈1, 1, 3, 0〉

The encoding has been split into parts to increase the readability; the leading
3 indicates that, besides the begin- and end-transitions an -places, there are 3
transitions. The next block 2, 1, 1 indicates that the labels of the three additional
transitions are respectively l2 = B, l1 = A, and again l1 = A. After that, the
encodings of the 4 places p1, . . . , p4 come. For the first place, the encoding
2, 1, b, 1, 2 indicates that this place has two incoming arcs, and one outgoing
arc (leading 2, 1). The incoming arcs come from transitions tb and t1 (b, 1),
and the outgoing arc goes to transition t2 (2). The complete encoding is the
concatenation of all these elements.

Fig. 5.5. Example Petri net to illustrate the model complexity encoding in the presence of
duplicate tasks [55].

According to Definition 12, the encoding of the Petri net depicted in Figure 5.5
is as follows:

〈3〉 · 〈2, 1, 1〉 · 〈2, 1, 0, 1, 2〉 · 〈1, 1, 0, 3〉 · 〈1, 2, 2, 1, 0〉 · 〈1, 1, 3, 0〉

The encoding has been split into parts to increase the readability. The leading 3
indicates that the Petri net contains 3 transitions besides the start and end tasks tS
and tE . The next block then indicates the labels for each of these three transitions
in the order of their rankT numbering (i.e., 〈codeL(B1), codeL(A2), codeL(A3)〉
= 〈2, 1, 1〉). Note that A2 and A3 have the same code because they have the same
label. If there would be an invisible task in the model, its label code would be 0.
Finally, all places (except the start and end place) are encoded. For example, the first
place encoding block stands for place 1. The leading 2, 1 indicates that this place has
two incoming arcs and one outgoing arc. The predecessor tasks are tS = S and B1

(indicated by the task codes 0, 1). The successor task is A2 (indicated by the task
code 2). The other three places are encoded in the same way. The complete encoding
of the Petri net is the concatenation of all these elements.

Length of the Encoding

The more tasks, places, and arcs are contained in the Petri net, the more elements
need to be encoded. The size of the encoding is thus directly related to the size of the
model. Similar to the compression encoding, the actual length of the encoding can
be determined in the following way.

Again, encoding a number requires log2(n) bits if the number is in the range
1 . . . n. If the number is in the range 0 . . . n then log2(n + 1) bits are needed
for the encoding. To encode the integer i, when no upper bound on i is known,
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2 · dlog2(i+ 1)e+ 1 bits are required for i ≥ 0 (i.e., if i is in the range 0 . . .). Simi-
larly, 2 · dlog2(i)e+ 1 bits are required for i > 0 (i.e., if i is in the range 1 . . .). The
encoding of such an integer without upper bound is as follows: let b1 . . . bk be the
binary representation of i. The encoding is then:

k×︷ ︸︸ ︷
1 . . . 1 0 b1b2 . . . bk

The k leading 1’s are used to indicate the length of the binary encoding. The first 0
marks the boundary between the length indicator and the actual binary representa-
tion. The length of the complexity encoding is thus

d(2dlog2(|Tcore|)e+ 1) + |Tcore| log2(|Tcore|+ 1) +
l∑
i=1

length(enc(pi))e ,

whereas

length(enc(p)) = 2 log2(|T |) + (|•p|+ |p•|) log2(|Tcore|+ 1) .

We assume that Tcore 6= ∅, and thus need 2dlog2(|Tcore|)e + 1 bits to encode
the number of transitions (because |Tcore| is in the range 1 . . .). Then, it follows
|Tcore| times an encoding of the label for each of these transitions. Because the label
code may include 0, and because we use |Tcore| as an upper bound for |L| (i.e.,
|L| ≤ |Tcore|), it requires log2(|Tcore| + 1) bits to encode. Finally, each place is
encoded. We assume that each of the places (except the start and the end place,
which however are not encoded) has at least one incoming and one outgoing arc.
Furthermore, there cannot be more than one arc between a place and a transition and
vice versa. Therefore, 2 times log2(|T |) bits are needed to encode the number of
predecessors and successors of the place. Then, |•p| + |p•| times log2(|Tcore| + 1)
bits are needed to actually encode the predecessor and successor tasks (recall that the
code 0 is used both for the start task as well as for the end task).

For the Petri net in Figure 5.5 the encoding length equals d(2(dlog2(3)e) + 1) +
3 log2(4) + 8 log2(5) + 10 log2(4)e = 50 bits.

5.3.3 Using Universal Reference Models for Evaluation

As discussed earlier, the MDL-based approach can be used to guide a model selection
process. So, if multiple process models have been discovered based on the same log,
then one could simply choose the model that needs the least number of bits to encode
both the log and itself. That is, given a set of Petri net models, the best model M is
the one that minimises L(M) + L(E|M), where L(M) is the length of the model
encoding, and L(E|M) is the length of the data (event log) encoded with M .

However, besides having such criterion for model selection, one usually wants to
know how good or how bad the current model is. For this, we need a notion of what
the worst (or simply definitely bad) and what the best (or simply definitely good)
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model is. Defining an absolute measure (rather than a mere comparative means) is
essential to be able to judge the “goodness” of a single model, or to measure the
progress of a learning process. To build such an absolute measure, one needs refer-
ence points that define the “worst” and the “best”. Furthermore, because the encoding
cost estimation consists of two parts (log compression and model simplicity), these
reference points are needed for each of the dimensions.
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Fig. 5.6. Illustration of the model simplicity / log compression trade-off using the example
models from Figure 4.5.

Consider Figure 5.6, which illustrates the trade-off that needs to be made between
model simplicity and log compression using the example models from Figure 4.5.
The y-axis indicates the log compression dimension, and the x-axis represents the
model simplicity dimension. The model at the point indicated as (1) is the model
of Figure 4.5(e), which exactly represents the five different traces of the log in Fig-
ure 4.5(a). Our hypothesis is that it should compress the log very well, because after
the initial choice there is only one transition enabled at the same time and there are
no events that “do not fit”. At the same time, the model is very complex. Because of
this verbosity, we here refer to it as the ‘bad structure’ model. The two models indi-
cated at the point (2) in Figure 5.6 are the ‘overly general’ model from Figure 4.5(d)
and the ‘non-fitting’ model from Figure 4.5(c). Both models are quite compact and
thus have a high model simplicity. But at the same time, their compression rate is
supposed to be very low. For the ‘non-fitting’ model the compression should be low
because it does not capture all the data from the log, and, therefore, the encoding of
the non-fitting events is more costly. The ‘overly general’ model should have a bad
compression because all transitions are enabled in each step during log replay, thus
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also making the log more costly to encode. The idea of the MDL principle is that
the perfect model lies somewhere in between these two extremes. For example, the
model from Figure 4.5(b) is indicated at the point (3) in in Figure 5.6. Note that there
is a trade-off between log compression and model simplicity. So, there is no model
that has both perfect simplicity and compression at the same time. Furthermore, it
is not guarantied that no other models score “worse” or “better” on these two di-
mensions. For example, one can construct more complex models than the one with
the ‘bad structure’ (in theory, the model can be more complex than the event log).
Similarly, one could construct an even simpler model than the ‘non-fitting’ model
in Figure 5.6 (e.g., a model that just contains a single transition). However, if we
want to use a reference model we have to draw the line somewhere, and will simply
consider models that are, e.g., “worse than the definitely bad model” as equally bad
as the reference model.

Now, these extreme models at point (1) and (2) in Figure 5.6 seem good candi-
dates for a reference model that can be used as a base line for measuring the absolute
quality of a process model. However, at point (2) we have two models with high
model simplicity and low log compression, which seems confusing at first sight.
What is the difference? The ‘non-fitting’ model should have a low compression be-
cause it fails to capture many of the (positive) examples in the event log. This is in
line with the idea that a simple model usually cannot capture all the exceptions and
irregularities in the data well. In contrast, the ‘overly general’ model does not have
any fitness problems. However, reconsidering Figure 5.2 it becomes clear that this
model—in principle—also fails to capture the (negative) examples of the process
under consideration. Just that these negative examples are not known in a process
discovery setting. In this setting, there is a penalty for such models because they do
not help in compressing the log.

Because of the difficulty imposed by the lack of negative examples, we choose
the ‘overly general’ model as a reference model with high simplicity and low com-
pression. A process discovery algorithm can take care to construct models that “fit”
the data, but can the MDL principle help us to find a good balance between precision
and generalization?
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(a) FRM Model
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Fig. 5.7. Reference models for an event log with the traces 〈S,A,B,C,E〉, 〈S,A,B,E〉,
〈S,B,A,E〉, and 〈S,C,A,C,A,E〉.
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Figure 5.7 depicts the two reference models for our example log. The model
shown in Figure 5.7(a) will be referred to it as Flower Reference Model (FRM). It
allows for the execution of all activities that occurred in the event log in any order,
and is thus the least precise model possible. This model can be automatically created
based on the given event log, and we use it as the worst reference point for the
log compression dimension (i.e., L(E|M) ≤ L(E|FRM)). The model shown in
Figure 5.7(b) will be referred to it as Explicit Reference Model (ERM). It explicitly
includes each possible trace as an alternative path of the model. Also this model can
be automatically created based on the given event log, and we use it as the worst
reference point for the model simplicity dimension (i.e., L(M) ≤ L(ERM)).

Using these reference models, the compression and simplicity metrics are calcu-
lated as follows.

Metric 8 (Compression) Given a Petri netM and an event logE, the compression
of the event log with respect to the model can be defined as follows:

compression = 1− L(E|M)
L(E|FRM)

Metric 9 (Simplicity) Given a Petri net M and an event log E, the simplicity of
the model can be defined as follows:

simplicity = 1− L(M)
L(ERM)

Note that we can actually always create worse-fitting and more complex process
models as discussed earlier. Therefore, we simply neglect models that are worse
than the definitely bad models, and thus round negative values to zero. This way, the
compression and simplicity metrics have a value range of [0, 1].

Metric 10 (MDL) Given a Petri net M and an event log E, the MDL metric is
defined as follows:

MDL = α · compression+ (1− α) · simplicity
To balance the trade-off between compression and simplicity, we introduce a pa-

rameterα, which specifies whether log compression and model simplicity are equally
important (α = 0.5) or not. This way, the MDL-based metric can be used to guide
a “balanced” model selection process by favoring Petri nets of the “desired” com-
plexity to compression ratio via choosing an appropriate α value. Note that an MDL
value of 1 is optimal.

5.3.4 Experimental Results

We implemented the metrics and encoding schemes described above as a Minimum
Description Length plug-in in ProM. Appendix A.1.3 provides an overview about
the functionality of the plug-in. Using this plug-in, we performed a few experiments.

Figure 5.8 depicts the resulting compression/simplicity values for two of the ex-
periments. The left graph depicts the results for the models discovered by the Alpha
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Fig. 3. Comparison of the process mining techniques.

8 Related Work

8.1 Data compression approach to DM

The data compression approach to DM can be stated in the following way:
compress the dataset by finding some structure or knowledge within it, where
knowledge can be interpreted as a representation that allows coding the data
using a fewer amount of bits.

The data compression approach has rather old Occam’s razor principle. One
of commonly used formulation of this principle in DM is ”when you have two
competing models which make exactly the same predictions, the one that is
simpler is better”.

Many (if not all) DM techniques can be viewed in terms of the data com-
pression approach. For example, association rules and pruned decision trees can
be viewed as ways of providing compression of parts of the data. Clustering can
also be considered as a way of compressing the dataset. There is a connection
with the Bayesian theory for modeling the joint distribution - any compression
scheme can be viewed as providing a distribution on the set of possible instances
of the data. Model evaluation/selection criteria including Akaike Information
Criterion (AIC), Bayesian Information Criterion (BIC), and Minimum Descrip-
tion Length (MDL) have intuitive interpretations from the data compression
perspective. For example, the MDL principle can be used to select among differ-
ent encodings accounting for both the complexity of a model and its predictive
accuracy [12].

The compression-based approaches have been applied in classification, in-
cluding inferring decision trees [12], pruning decision trees [13], and classification
rules; X-means [14] and G-means [7] clustering, graph partitioning as e.g. in [1]
where the number of partitions is estimated by the success of the adjacency ma-
trix compress. Forecasting can be also considered within the compression-based
paradigm; ARIMA’s success in voice compression is one of the good examples
[15].

Fig. 5.8. Compression and simplicity results for the running example from Figure 4.5 (right),
and for the mining results of different discovery algorithms based on the event log from the
complaint handling process discussed in Section 4.5.1 (left).

miner [24], the Heuristic miner [261], the Alpha++ miner [264], and the Duplicates
Genetic miner and the Genetics miner [161] based on the event log from the com-
plaint handling process discussed in Section 4.5.1. The graph on the right depicts
the results for the event log and the four models depicted in Figure 4.5, whereas
goodmodel corresponds to Figure 4.5(b), nonfitting to Figure 4.5(c), overlygeneral
to Figure 4.5(d), and bad structure to Figure 4.5(e).

From our experiments, we can draw a number of conclusions:

• We realized that, again, the assumption that all events in the log can be related to
some task in the evaluated model does not always hold. It is only guaranteed in
a process discovery context, and also here only if the mining algorithm does not
abstract from certain events completely (as, e.g., done by the Fuzzy miner [117]).
The removal of all unrepresented events before the log replay explains that the
nonfitting model on the right in Figure 5.8 has such a good compression although
it does not capture most of the behavior in the log.

• Contrary to our expectations, we realized that the ERM model does actually not
always have the best compression. For example, most of the models plotted in
Figure 5.8 on the left had a lower compression encoding length than the ERM
reference model. It seems that this higher encoding length value is caused by
the “big choice” at the very beginning (i.e., after the start task S). It seemed to
have more impact than the fact that afterwards only one task is enabled at a time,
given that for most of the discovered models there were also not that many tasks
enabled during the log replay.10

10 Note that in our Minimum Description Length plug-in described in Appendix A.1.3 we also
calculate model simplicity and log compression metrics that—in addition—take the FRM
model and the ERM model as an optimal reference point, respectively. There, these ‘new’
metrics are called, e.g., New Log Compression. However, due to the fact that our reference
models do not always have the best compression, the values of these metrics can exceed 1.
Conversely, the model simplicity and log compression metrics defined in this section never
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• In fact, the precision component in the compression encoding (i.e., measuring
the number of enabled tasks during log replay) is very similar to the Simple Be-
havioral Appropriateness metric (cf. Metric 4) defined in Section 4.3.2. Already
there we realized that measuring the number of enabled transitions is not a good
precision indicator if applied to highly sequentialized models such as the ERM
or bad structure model. In fact, this method may lead to different precision val-
ues for trace-equivalent models. Because it depends on the “moment of choice”,
stronger equivalence notions (e.g., branching bisimulation) would need to be the
basis for the comparison. However, in process discovery, the trace equivalence is
a more natural, and often the expected, equivalence notion.

Overall, we realized that the choices that need to be made for the encoding are
not so different from directly measuring fitness, precision, and structure as discussed
in Chapter 4.1. The MDL principle is no silver bullet, because “the devil is in the
details” [267], namely in the encoding. Many other encodings than the proposed
ones would be possible. Which one is the best? Furthermore, we remain with the
same problem of having to measure precision because of the absence of negative
examples. MDL does not solve that either.

There might be an opportunity to use the MDL principle as a means to bridge
modeling languages, because it is based on the neutral notion of ‘encoding cost’.
However, this would require a model-independent encoding scheme, which, again,
basically means that we first need to have model-independent fitness, precision, and
structure notions that can be used in this encoding.

Finally, the perhaps biggest issue that remains is the following. The relationship
between structure and behavior of such a higher-level structure as a process model is
more complex than for typical data mining knowledge representations. For example,
in a decision tree there is a direct relation between the size of the model and its
ability to compress the training data. In contrast, the introduction of loops in a Petri
net model just adds a little to the syntactic complexity, but changes the behavior in
the space of the observations tremendously. Also, a Petri net model can be made
simpler by (a) merging or removing places, which makes the model more general,
and (b) by removing transitions, which makes the model less general. Furthermore,
a Petri net model can be made simpler by (c) folding duplicate tasks, which may not
change the behavior at all.

So, while for classification models, model complexity roughly corresponds to
the complexity of the decision boundary in the feature space, this is not longer the
case with more complex models like Petri nets. But this balancing of model size and
data compression is the core of the MDL principle, directly driving the level of gen-
eralization. However, for process models generalization can be related to structure,
fitness, and precision, which makes it difficult to measure and balance in “one go”.

actually reach the optimal value 1, because there is always some encoding cost involved
also for simple models, or for well-compressed logs.
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5.4 Markovian Approach11

Hidden Markov Models (HMMs) are a stochastic signal modeling formalism (see
also Section 2.5.5) that is actively used in the machine learning community for a wide
range of applications such as speech and activity recognition [201, 123]. Efficient
techniques exist to learn HMM models from a given data set (cf. Problem No. 3 in
Section 2.5.5)), and to estimate the data likelihood of a sequence σ with respect to a
given HMM, i.e., “How probable is it that these data were produced by this HMM?”
(cf. Problem No. 1 in Section 2.5.5). The latter enables the evaluation and selection
of suitable models.

In [228, 229], we investigate the applicability of HMMs for the purpose of eval-
uating process models. Because the types of models used in process mining are typi-
cally on a higher level of abstraction (i.e., they are more expressive as they, for exam-
ple, allow to capture concurrency), the problem of model evaluation is challenging
and HMMs can only be used by posing certain restrictions. Within these limits, we
will apply HMM-based quality measurements and compare them to the metrics typ-
ically used in the process mining domain. We will see that typical process mining
evaluation techniques—precisely because they need to deal with concurrency—have
a bias when applied to simpler, sequential models.

The remainder of this section is organized as follows. We first define an effi-
cient mapping from Simple Petri nets (Labeled Petri nets without parallelism) to
HMMs (Section 5.4.1), and show how event sequences from the log can be re-
lated to this HMM (Section 5.4.2). Afterwards, we provide HMM-based metrics
for the quality dimensions fitness and precision (Section 5.4.3). Then, we illustrate
that if this mapping is applied to Petri nets with concurrency, the metrics—due to
the simplification—yield optimistic fitness and pessimistic precision results (Sec-
tion 5.4.4). Finally, we leverage the probabilistic nature of HMMs and present a
framework to generate logs for a given model with varying, yet determined levels
of noise (Section 5.4.5), and we use this framework to compare a number of fit-
ness metrics from the process mining domain with the HMM-based fitness metrics
defined here (Section 5.4.6).

5.4.1 Constructing an HMM for a Petri net Process Model

To evaluate the quality of a Petri net model (with respect to a given event log) by
HMM-based techniques we need to define a mapping from Petri nets to HMMs. As
a first step, we restrict ourselves to Simple Petri nets as defined in the following.

Definition 13 (Simple Petri net) Let •x = {y | (x, y) ∈ F} denote the input nodes
and x• = {y | (y, x) ∈ F} denote the output nodes of x ∈ P∪T . A simple Petri net is
then a labeled Petri net (P, T, F, L, l) where the following two additional constraints
hold:

1. ∀t∈T : |t • | ≤ 1

11 This research is based on joint work with M. Veloso and W.M.P. van der Aalst [228, 229].
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2. ∀t∈T : | • t| ≤ 1

The two constraints ensure that no transition has more than one outgoing and
one incoming arc and, therefore, no parallelism is present in the the model. This sub
class of Petri nets is called state machines and also excludes so-called long-distance
dependencies. Note that Simple Petri nets as defined above may still contain invisible
and duplicate tasks.

These restrictions are necessary because, unlike Petri nets, HMMs are not able to
capture parallelism. As a consequence, many real-life processes cannot be analyzed
within this scope. However, the subclass of Simple Petri nets is not irrelevant. There
are often also simpler processes (or at least parts of processes) that only exhibit se-
quential routing, alternative behavior, and loops (but no parallelism). Examples of
such processes can be found in administrative procedures employed in municipali-
ties, insurance companies etc. For example, three out of the four town hall process
models provided during the case study mentioned in Section 4.5.1 were Simple Petri
nets after their conversion, and all the model variants discussed in the municipality
case study presented in [107] could be mapped to Simple Petri nets. Furthermore,
the SAP reference model is a publically available model that contains more than 600
enterprise models expressed in terms of EPCs [170], of which—after conversion to
Petri nets—118 fulfill the conditions of Simple Petri nets as defined above. Finally,
all reference models and discovered process models for the consumer test case study
reported in Section 4.5.3 correspond to Simple Petri nets.

Figure 5.9 depicts a Simple Petri net. In this Petri net, after placing a token in the
left-most place, transition A is enabled and can be fired. Afterwards, either transition
B or C (but not both) can be fired. Finally, A is fired and the process ends. Thus, there
are precisely two valid firing sequence for this process, namely ABA and ACA.

A

C

B

A

Fig. 5.9. A simple Petri net modeling the choice between C and B. Possible firing sequences
are thus ABA and ACA.

Now we want to map this Petri net onto an HMM. For this, we basically represent
each labeled transition by a state in the HMM, whereas we link the corresponding
observation element with 100% probability to that state (but multiple states may be
linked to the same observation). Unlabeled tasks are not represented by a separate
state in the HMM as they are not observable. Instead, their impact on observable state
transitions will be reflected by introducing additional arcs between the corresponding
states (based on a structural analysis of the Petri net).

As explained earlier, an HMM—in contrast to an ordinary Markov chain—does
not assume that the states correspond to directly observable events. Instead, the ob-
servation is a probabilistic function of the state (for example, in a particular state two
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types of observable events might be equally likely). Thus, each state is, in addition to
the parameters present in an observable Markovian model, associated with a vector of
observation element probabilities (which again sum up to 1). Note that for our map-
ping we need this separation of states and observations although each state produces
exactly one type of observation with 100% certainty (see Figure 5.10). However, be-
cause two states may produce the same observation element (for example, state 0 and
state 3 both produce observation element A), from the mere observation we cannot
conclude in which state we are. Thus, the states are not observable.

3 (A)
[ 1 0 0 0 ]

4
[ 0 0 0 1 ]

1

12 (C)
[ 0 0 1 0 ]

1

1 (B)
[ 0 1 0 0 ]

1

0 (A)  Pi= 1
[ 1 0 0 0 ]

0.5

0.5

Fig. 5.10. The HMM constructed from the Petri net model in Figure 5.9. In our mapping, we
create a direct link between the state and the observation element to be produced. For example,
in state 0 we definitely produce the event A, in state 1 we produce event B, etc. The observation
event probability vector corresponds to [A B C e].

The HMM depicted in Figure 5.10 can be formalized as a tuple (N,L,A, B, π)
according to the definition in Section 2.5.5 as follows:

• The states N are 0, 1, 2, 3, and 4,
• The observations L are A, B, C, and e,
• The state transitionsA areA(0, 0) = 0,A(0, 1) = 0.5,A(0, 2) = 0.5,A(0, 3) =

0, A(0, 4) = 0, A(1, 0) = 0, A(1, 1) = 0, A(1, 2) = 0, A(1, 3) = 1, A(1, 4) =
0, A(2, 0) = 0, A(2, 1) = 0, A(2, 2) = 0, A(2, 3) = 1, A(2, 4) = 0, A(3, 0) =
0, A(3, 1) = 0, A(3, 2) = 0, A(3, 3) = 0, A(3, 4) = 1, A(4, 0) = 0, A(4, 1) =
0, A(4, 2) = 0, A(4, 3) = 0, A(4, 4) = 1,

• The observation probabilities B are B(0,A) = 1, B(0,B) = 0, B(0,C) =
0,B(0, e) = 0,B(1,A) = 0,B(1,B) = 1,B(1,C) = 0,B(1, e) = 0,B(2,A) =
0, B(2,B) = 0, B(2,C) = 1, B(2, e) = 0, B(3,A) = 1, B(3,B) =
0,B(3,C) = 0,B(3, e) = 0,B(4,A) = 0,B(4,B) = 0,B(4,C) = 0,B(4, e) =
1, and

• The initial state probabilities π are π(0) = 1, π(1) = 0, π(2) = 0, π(3) =
0, π(4) = 0
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While a Markov chain is an inherently stochastic model, plain Petri nets are an
analytical representation and do not directly support probabilistic descriptions12. We
thus need to infer the probabilistic parameters of the Markovian model from the
structure of the Petri net. This can be done as follows.

Step 1: Each labeled transition in the Petri net is represented by exactly one state in
the Markov model (associated with a degenerate probabilistic observation func-
tion as described earlier). Transitions corresponding to invisible tasks are not
represented by a state in the HMM. Instead, they affect the transition probabili-
ties between states (cf. Step 2).

Step 2: To assign transition probabilities between states we analyze the structure
of the Petri net and assign an equal transition probability from the state cor-
responding to the current transition to all states corresponding to possible suc-
cessor transitions. For example, after executing A in the Petri net in Figure 5.9
either B or C are possible. Thus, in the HMM depicted in Figure 5.10 the transi-
tion probabilities from state 0 to state 1 and the transition probability from state
0 to state 2 are both 0.5. After firing C it is only possible to fire A. Therefore, the
transition probability from state 1 to state 3 is 1 etc. If the successor transition
is an invisible task, the successor transitions of this invisible transition are de-
termined instead (until only labeled successor transitions are left). These labeled
successor transitions are then treated as if they were direct successors of the ini-
tial transition, and the state transitions probabilities are determined accordingly.
Transition probabilities equal to 0 are not shown.

Step 3: All states that correspond to transitions connected to the Start place of the
Petri net are assigned an equal probability of being the initial state of the HMM.
Initial states in the HMM are indicated by a double circle. In the Petri net of
Figure 5.9 the left-most A transition is the only start task (i.e., all possible event
sequences start with A). Therefore, state 0 has an initial probability π(s) = 1
(Pi = 1 in Figure 5.10) and all other states have an initial probability π(s) = 0.
If a transition connected to the Start place of the Petri net is an invisible task,
again, their successor transitions are determined until only visible tasks have
been found. These transitively connected transitions are then included in the set
of initial states. Initial probabilities equal to 0 are not shown.

Step 4: To model the end of the process, a separate final state (in the following re-
ferred to as sfinal) is introduced, which does not produce any observable events
from the set L. Instead, it is associated to some dummy end element e. Once it
is reached, it cannot be left anymore. In the HMM depicted in Figure 5.10 this
is state 4. Transition probabilities from states that correspond to possible final
tasks in the Petri net (i.e., tasks that can happen at the very end of the process)
are not only split among possible successor states but also the final state. In the

12 Note that there are more expressive representations, such as Colored Petri nets (cf. Sec-
tion 2.5.4), which extend Petri nets—next to, e.g., hierarchy and time—also with proba-
bilistic capabilities. There are also various stochastic Petri nets (SPM, GSPM, etc.) that can
be mapped onto Marcov chains.
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Petri net shown in Figure 5.9 the process always ends after firing transition A.
Thus, the transition probability from state 3 to state 4 is 1.

Note that in the procedure described above we assign equal probabilities (which
sum up to 1 to satisfy the requirements of Markov model) both to transitions between
states and initial states. This is necessary because we we have no knowledge about
the likelihood of alternative paths just based on the structure of a Petri net model.

5.4.2 Relating Event Sequences to the HMM

So far, we have used the given Petri net to create an HMM, which is simply another
representation of the same process. For example, according to the Petri net in Fig-
ure 5.9 it is not possible to fire the second transition A directly after firing the first
A. Correspondingly, the transition probability from state 0 to state 3 in the HMM
depicted in Figure 5.10 is 0.

However, recall that our goal is to evaluate a Petri net model with respect to
a given event log. Therefore, consider Figure 5.11, which depicts three different ex-
ample scenarios containing each 100 process instances. We want to evaluate the Petri
net in Figure 5.9 with respect to each of these event logs. In the first scenario, the
event sequences ABA and ACA have been observed, whereas ABA occurred 90 times
and ACA occurred 10 times. In the second scenario, three different event sequences
have been recorded. In addition to ABA (88 times) and ACA (10 times) also the se-
quence AA (2 times) was observed. Finally, in the third scenario only the sequence
ABA was observed (100 times). The element e is not actually in the event log, but we
artificially inserted it to mark the end of each sequence.

Trace 1 (# 10) A C A e

Trace 0 (# 90) A B A e

(a) Scenario 1

Trace 2 (# 02) A A e

Trace 1 (# 10) A C A e

Trace 0 (# 88) A B A e

(b) Scenario 2

Trace 0 (# 100) A B A e

(c) Scenario 3

Fig. 5.11. Three different event logs are given in the scenarios 1–3.

If we now want to relate these observation sequences to the HMM constructed
from the model to evaluate their “match”, then we cannot do this directly although
each state is linked with 100% certainty to a specific observation element. The reason
is that there can be multiple states that are linked to the same observation element
(for example, both state 0 and state 3 are linked to the observation A). Fortunately,
we can make use of existing solutions to the common HMM problem of finding the
best sequence of states for a given observation sequence, such as the well-known
Viterbi algorithm [257, 93].
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So, using such an existing mechanism to retrieve the best state sequence s1, s2,
..., sn, sfinal for a given observation sequence o1, o2, ..., on, e, we could, for ex-
ample, relate the first trace ABAe in the log depicted in Figure 5.11(a) to the state
sequence 0134 in the HMM depicted in Figure 5.10. Similarly, we obtain the state
sequence 0234 for the second trace ACAe in Figure 5.11(a).

However, if we try to do the same for the event log depicted in Figure 5.11(b), we
will find out that the last trace AAe cannot be related to any state sequence of equal
length as the observation sequence. The reason is that in the HMM in Figure 5.10 it
is not possible to move from state 0, which does produce observation A, to a state
also producing A (both the transition probability A(0, 0) as well as the transition
probability A(0, 3) is 0). So, for this observation sequence the Viterbi algorithm
cannot give us a result (there is no “most likely” sequence as there is no possible
sequence at all).

Nevertheless, we want to be able to obtain a state sequence for any given ob-
servation sequence. For this, we have to adapt the HMM that was constructed from
the process model in such a way that it also allows for state transitions that are
not possible for the input model. Furthermore, the initial state probabilities must be
adapted as an observation sequence can potentially start with any observation. But
on the other hand we want that in the case of multiple possible state sequences those
paths that are correct according to the input model are chosen over impossible state
sequences, if they are available. Therefore, correct state transitions in the adapted
HMM must be much more likely than incorrect state transitions. We call this adapted
HMM to be used to relate event sequences to the input model an ε-HMM.

Definition 14 (ε-HMM) Let λM = (N,L,AM , B, πM ) be the HMM created from
a simple Petri net model PN , and ε be a sufficiently small value. The state tran-
sition probabilities Aε and the initial state probabilities πε of the ε-HMM λε =
(N,L,Aε, B, πε) are defined such that for any s, s′, s′′ ∈ N :

Aε(s, s′) =



1 if s = sfinal ∧ s′ = sfinal
0 if s = sfinal ∧ s′ 6= sfinal

1− ε
|{(s, s′′) | A(s, s′′) > 0}| if s 6= sfinal ∧A(s, s′) > 0

ε

|{(s, s′′) | A(s, s′′) = 0}| if s 6= sfinal ∧A(s, s′) = 0

πε(s) =


0 if s = sfinal

1− ε
|{s′ | π(s′) > 0}| if s 6= sfinal ∧ π(s) > 0

ε

|{s′ | π(s′) = 0}| if s 6= sfinal ∧ π(s) = 0

Figure 5.12 shows the ε-HMM for the HMM depicted in Figure 5.10 with ε being
0.01. For example, while the transition probability from state 0 to state 1 and from
state 0 to state 2 was 0.5 for the model HMM, it is now 1−0.01

2 = 0.495 for the
ε-HMM. The transition probabilities from state 0 to the remaining states 0, 3, and 4
where previously 0, and are now 0.01

3 ≈ 0.0033. Similarly, the initial state probability
for the previously only possible initial state, state 0, is 1−0.01

1 = 0.99, while the
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Fig. 5.12. The ε-HMM. To allow the detection of the most likely state sequence for each event
sequence, impossible transitions and initial states must be made possible. Here, the ε-Hmm
for the Petri net model in Figure 5.9 is depicted with ε = 0.01.

remaining states, which were previously impossible initial states, have now an initial
state probability of 0.01

3 ≈ 0.0033.
Now, using the ε-HMM, we are able to find a state sequence for the observation

sequence AAe. The most likely state sequence is 034. Note that this state sequence
contains a transition from state 0 to state 3, which was not possible according to the
initial model HMM. These situations are interesting because according to the model
AA should not be possible (B or C must happen in between), but it still occurred in
the event log. So, the model fails to capture all the observed behavior. Coming from
a model perspective, we call these situations ‘false negatives’, and we will use them
later to measure the fitness of the process model.

Definition 15 (False Negatives) Let λM = (N,L,AM , B, πM ) be the HMM cre-
ated from a simple Petri net model PN , andE be an event log. Furthermore, assume
that given any observed event sequence σ = o1, . . . , on, e, n ∈ N≥2, the most likely
state sequence γ(σ) = s1, . . . , sn, sfinal can be determined with respect to the ε-
HMM. The set of false negatives FN over a set of event sequences E is defined as
follows:

FN =
⋃

γ(σ)=s1,...,sn,sfinal, σ∈α(E)

{(si, si+1) | AM (si, si+1) = 0, 1 ≤ i ≤ n− 1}

Note that transitions to the artificial final state sfinal are excluded, because we
choose to focus on the actually observed behavior without considering whether the
sequences have been terminated correctly. This allows us to also analyze incomplete
(i.e., still running) process instances in an event log.

Finally consider the log depicted in Figure 5.11(c), which only contains the event
sequence ABAe. The most likely state sequence for this observation sequence with
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respect to the ε-HMM (and also with respect to the initial model HMM) is 0134.
Looking at the model HMM in Figure 5.10, we notice that not all initially possible
state transitions have been observed (for example from state 0 to state 2 and from
state 2 to state 3). These situations are interesting because according to the model
AC and CA should be possible, but they did not occur in the event log. So, the model
actually captures more than the observed behavior. We call these situations ‘false
positives’, and we will use them later to measure the precision of the process model.

Definition 16 (False Positives) Let λM = (N,L,AM , B, πM ) be the HMM created
from the simple Petri net model PN , and E be an event log. Furthermore, assume
that given any observed event sequence σ = o1, . . . , on, e, n ∈ N≥2, the most likely
state sequence γ(σ) = s1, . . . , sn, sfinal can be determined with respect to the ε-
HMM. The set of false positives FP over a set of event sequences E set is defined as
follows:

FP = {(s, s′) ∈ N ×N | AM (s, s′) > 0 ∧ s, s′ 6= sfinal} \⋃
γ(σ)=s1,...,sn,sfinal, σ∈α(E)

{(si, si+1) | AM (si, si+1) > 0, 1 ≤ i ≤ n− 1}

Note that, again, we exclude state transitions that involve the artificial final state
sfinal, because we choose not to consider whether all possibilities to complete a
process instance (i.e., all possible last activities) have actually been observed in the
event log at the end of some sequence.

5.4.3 HMM-based Evaluation Metrics

Based on the mapping presented previously, we now define several metrics to evalu-
ate the fitness and precision of the process model with respect to the given event log.
These metrics will then be used later together with other metrics to evaluate a larger
set of models.

Fitness Metrics

Fitness essentially measures the extent of observed behavior that is rejected by the
model. Depending on the viewpoint, it either evaluates to which degree “legal se-
quences are not properly captured by the model” (log-based view) or to which degree
“sequences are erroneous given the model” (model-based view). These viewpoints
are equivalent and matter mostly when it comes to interpreting the results to take
corrective actions.

A very simple notion of fitness is defined by the fraction of process instances in
the event log that can be represented by the model without any error. This notion has
been used before, for example by the ‘Parsing Measure’ (cf. [262] and Section 4.6.1).
We record an error if there are two events in the trace directly following each other,
but in the model-based HMM the transition probability between the corresponding
states is 0. This can be directly measured by Pr(σ|λ), the probability of the given
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observation sequence σ with respect to the HMM λ, which yields 0 if it contains
a transition which is impossible. Fortunately, the probability of a given observation
sequence with respect to a given HMM can be efficiently computed (see [201]).

Metric 11 (Trace Fitness) Let λM = (N,L,AM , B, πM ) be the HMM created
from a simple Petri net model PN , and E be an event log. Furthermore, S0 = [σ ∈
α(E) | Pr(σ = o1, o2, ..., on|λM ) = 0] is the multi-set of non-fitting sequences. The
trace fitness ftrace is defined as follows:

ftrace = 1−

∑
σ∈S0

S0(σ)∑
σ∈α(E)

α(E)(σ)

Assuming that the event log is not empty, this metric yields a value between 0
(none of the observed sequences is possible according to the model) to 1 (all observed
sequences are possible). For example, for the Scenario 2 depicted in Figure 5.11(b)
the trace fitness yields 1− 2

100 = 0.98.
A second way to look at fitness is to evaluate how many “forbidden” transitions

in the model have been “broken” by the log. So, the fitness is measured in direct
relation to the causal relations of the model. Here, we can use the notion of ‘false
negatives’ defined above. Note that we ignore the final state here as our goal is not
to evaluate the “proper completion” of the traces. That is, sequences that do not lead
to the final state but are otherwise possible with respect to the model are considered
to be correct13.

Metric 12 (Model Fitness) Let λM = (N,L,AM , B, πM ) be the HMM created
from a simple Petri net model PN , and E be an event log. Furthermore, AN =
{(s, s′) ∈ N × N | AM (s, s′) = 0 ∧ s, s′ 6= sfinal} is the set of all negative
transitions in the model-based HMM. The model fitness fmodel is defined as follows:

fmodel = 1− |FN ||AN |
Assuming that at least one transition probability in the HMM is 0, the metric

ranges from 0 (all “forbidden” transitions in the model have been “broken”) to 1
(none of them has been “broken”). For example, in the Scenario 2 depicted in Fig-
ure 5.11(b) (3, 0) ∈ FN and the model fitness yields 1− 1

12 ≈ 0.92.
A third way to define fitness is to take the direct succession of events as a refer-

ence point and to punish the occurrence of subsequences that are “forbidden” by the
model based on their frequency in relation to the whole log.

Metric 13 (Log Event Fitness) Let λM = (N,L,AM , B, πM ) be the HMM cre-
ated from a simple Petri net model PN , and E be an event log. Furthermore,
m′σ : N × N → N is a frequency function for how often a pair of states

13 This is motivated by our later simulation experiments where we generate traces that are not
necessarily completed.
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(s, s′) ∈ N × N has been determined as direct successors for an observed event
sequence σ = o1, . . . , on, e, n ∈ N≥2, i.e., how often s = si ∧ s′ = si+1 in the
most likely state sequence γ(σ) = s1, . . . , sn, sfinal determined with respect to the
ε-HMM. The log event fitness fevent is defined as follows:

fevent = 1−

∑
σ∈α(E)

∑
(s,s′)∈FN

α(E)(σ) ·m′σ(s, s′)∑
σ∈α(E)

α(E)(σ) · |σ|

The metric yields a value between 0 (none of the observed event pairs should
be possible according to the model) to 1 (all the observed transitions were allowed
according to the model). For example, for the Scenario 2 depicted in Figure 5.11(b)
the event fitness yields 1− 2

198 ≈ 0.99.

Precision Metrics

Precision essentially measures the extent to which non-observed behavior is accepted
by the model. As discussed earlier, the notion of precision is highly linked to how
we define the completeness of a log.

Similarly to the model fitness metric defined above we can define a precision
metric based on how many “allowed” transitions in the model have “not been used”
by the log. So, the precision is measured in direct relation to the causal relations of
the model. Here, we can use the notion of ‘false positives’ defined earlier.

Metric 14 (Model Precision) Let λM = (N,L,AM , B, πM ) be the HMM cre-
ated from a simple Petri net model PN , and E be an event log. Furthermore,
AP = {(s, s′) ∈ N × N | AM (s, s′) > 0 ∧ s, s′ 6= sfinal} is the set of all
positive transitions in the model-based HMM. The model precision pmodel is defined
as follows:

pmodel = 1− |FP ||AP |
Assuming that at least one transition probability in the HMM is not 0, which is

always true for a non-empty model as there is at least one state leading to the sfinal,
the metric ranges from 0 (none of the “allowed” transitions in the model have been
“used”) to 1 (all of them have been “used”). For example, in the Scenario 3 depicted
in Figure 5.11(c) (3, 1), (1, 0) ∈ FP and the model precision yields 1− 2

4 = 0.5.
Furthermore, we can again use the fact that the probability of a given observation

sequence with respect to the HMM can be efficiently computed, and add up the
probabilities of all different traces in the log with respect to the model HMM to see
how much of the model behavior is covered. Based on the sum of probabilities of the
sequences, an absolute log completeness metric (here called ‘total precision’) can be
defined as follows.
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Metric 15 (Log Completeness) Let λM = (N,L,AM , B, πM ) be the HMM cre-
ated from a simple Petri net model PN , and E be an event log. The total precision
ptotal is defined as follows:

ptotal =
∑

σ∈α(E)

Pr(σ = o1, o2, ..., on|λM )

For the Scenario 3 depicted in Figure 5.11(c) the only sequence in the log has a
probability of 0.5, and thus the log completeness yields 0.5. However, for the Sce-
nario 1 depicted in Figure 5.11(a) each of the sequences in the log has a probability
of 0.5, and thus the log completeness metric ptotal yields 1: All possible sequences
that can be generated with the HMM in Figure 5.10 are thus covered by the log in
Figure 5.11(a).

Note that this essentially enables us to efficiently compute the portion of observed
sequences in relation to the total number of possible sequences as, for example, de-
fined by the ‘completeness’ precision metric defined in [111], despite the fact that
the number of sequences allowed by the model may be infinite!

5.4.4 Representational Power of HMMs and Petri Nets

In our mapping we have associated each labeled task with only one state in the
Markov process. To do this, we had to pose restrictions on the process models and
limit them to Simple Petri nets. The assumption of Markovian processes is to de-
termine the next step only based on the current state (ignoring the history), which
is usually not appropriate for process models that may exhibit long-distance depen-
dencies (e.g., some later choice depends on the outcome of an earlier choice in the
process) and concurrency. However, being inclined to look more than one step for-
ward then also renders the situation inherently more complicated.

For example, if one wants to map the situation more precisely then one could
model the state space of the process model by representing each possible marking by
a separate state. This then corresponds to a so-called reachability graph (or coverabil-
ity graph if infinitely growing markings are to be caught in ω-states). But unfortu-
nately the state space of a model grows exponentially fast (“state space explosion”),
and already seemingly small models may not be computable anymore with contem-
porary personal hardware (see Figure 5.13 for an example). Therefore, theoreticians
strive for finding ways to evaluate interesting properties by structural analysis, i.e.,
investigating the structure of the Petri net rather than the state space.

Formal methods often employ abstraction techniques such as in model check-
ing [40], or the reduction rules in Petri nets [178], to verify interesting properties on
only a subset of the original model. In a similar way, we can apply our mapping of
one state per labeled task to models beyond the limits of Simple Petri nets (which
can be truthfully represented) and see it as an abstraction of the original model.

Consider, for example, the concurrent Petri net in Figure 5.14. The process model
contains two parallel tasks B and C, which can be executed in any order after A but
must be completed before starting D. If we map this Petri net onto our HMM repre-
sentation with one state per labeled task we obtain the HMM shown in Figure 5.14.
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Fig. 5.13. Relatively small Petri net model, which already produces a coverability graph that
cannot be computed with contemporary personal hardware.



5.4 Markovian Approach 173

D

C

B

A

3 (D)
[ 0 0 0 1 0 ]

4
[ 0 0 0 0 1 ]

1

1

2 (C)
[ 0 0 1 0 0 ]

0.5

1 (B)
[ 0 1 0 0 0 ]

0.5 0.5

0.5
0 (A)  Pi= 1
[ 1 0 0 0 0 ]

0.5

0.5

Fig. 5.14. A Petri net that includes concurrency (B and C can be executed in parallel) and its
HMM mapping.

Due to the abstraction, this HMM allows for observation sequences that were not
possible for the Petri net (e.g., ABCBCBD would be a possible observation sequence
with respect to the HMM but not a legal sequence for the Petri net).

Interestingly, we can still say something about the Petri net based on only looking
at the HMM, namely that sequences that are impossible for the HMM must also be
impossible for the Petri net (e.g., AD). Thus, if we find a sequence to be illegal with
respect to the HMM, we can conclude that the sequence is also illegal for the Petri
net, but this does not hold for legal sequences (possible sequences for the HMM do
not need to be legal for the Petri net). Thus, we obtain optimistic fitness results based
on our mapping. Conversely, we can look at the precision of the mapped model with
respect to some log. While we cannot be sure that a sequence that would be possible
according to the HMM and is not present in the log should be also possible with
respect to the Petri net, we can say that those sequences that are represented by the
Petri net are also represented by the HMM. Thus, we obtain pessimistic precision
results based on our mapping.

Note that it is possible to “unfold” the concurrent Petri net from Figure 5.14 by
listing each possible interleaving as an alternative path using duplicate tasks, which
are allowed for our simple Petri nets, like depicted in Figure 5.15. However—due to
the exponentially increasing number of possible interleavings—this leads exactly to
the same problem as the state space explosion described before (the abstraction level
of the model is simply lowered towards its state space), and, thus, is only of limited
applicability.

Finally, one could say that—due to the fact that we link each state to precisely
one of the possible observation elements—the potential of HMMs has not been fully
leveraged. However, this is necessary if we aim at an exact representation, which en-
ables us to calculate metrics like presented above. While the HMM from Figure 5.10
can be further abstracted by collapsing two states without changing the behavior of
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Fig. 5.15. The concurrent Petri net from Figure 5.14 as a simple Petri net, unfolded using
duplicate tasks.

the model as shown in Figure 5.16, already for the Petri net model depicted before in
Figure 5.15 cannot be mapped anymore to such a more concise HMM representation
without adding unwanted behavior.
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Fig. 5.16. The HMM from Figure 5.10 further abstracted by collapsing two states.

Nevertheless, there may be other applications of HMMs in the context of pro-
cess mining. For example, it would be interesting to see how one could leverage
the stochastic nature of HMMs to capture very unstructured processes that typically
result in so-called “spaghetti-models” when traditional mining techniques are em-
ployed. As indicated in Section 2.5.5, several learning approaches are available to
“fit” the probabilistic parameters of an HMM to a set of observation sequences (cf.
third common problem for HMMs).

5.4.5 Generating Noise

In our experiments we now concentrate on the fitness dimension and want to evaluate
a model with respect to logs containing different degrees of noise. For this, we define
two different types of noise: observation noise and transition noise.

Observation Noise

One possibility to generate distorted logs is to make use of the separation of states
and observation elements in the HMM by adjusting the observation element proba-
bilities for each state. Previously, each state could only produce the one observation
element that was linked to this state. Now, with increasing degree of noise we can
decrease the probability of the “right” observation element and introduce some prob-
ability to generate a “faulty” observation element for each state. This way, we can
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conveniently use the modified HMM to generate observation sequences by means of
simulation.
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Fig. 5.17. Examples HMMs for different levels of observation noise.

Consider the example in Figure 5.17(a), where we adjusted the observation prob-
abilities of the HMM depicted in Figure 5.10 to introduce 20% noise. In each state,
the correct observation element is being generated with a probability of 0.8, and a
wrong observation element is being generated with a probability of 0.2 (each of the
possible wrong observations has a probability of 0.1). Now consider Figure 5.17(b),
which represents the same HMM with degree of 100% noise. That is, in each state
the correct observation is impossible, i.e., an incorrect observation element is pro-
duced with 100% certainty. For example, state 0 would always produce an A in the
noise-free HMM. However, with 100% observation noise the observation element
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probability for A in state 0, while the observation element probabilities for B and C
are 0.5 each.

Because we want to generate event logs with different levels of noise (e.g., 20%,
40%, 60%, 80%, and 100% noise), we determine upfront the number of noise levels
that should be generated. Between these levels, we then vary the degree of noise
equally (by using the same ∆). For example, five different noise levels (nl = 5)
would yield 5 logs with 20%, 40%, 60%, 80%, and 100% noise, respectively. We
can determine the observation element probabilities for the noisy HMM on each
noise level as follows.

Definition 17 (Observation Noise) Let λ = (N,L,A,B, π) be an initial HMM,
nl ∈ N≥1 the number of noise levels to be generated, and ∆ = 1

nl the difference by
which the correct observations are to be reduced on each noise level. The observation
probabilitiesBi of the HMM on noise level i, 1 ≤ i ≤ nl, i.e., λi = (N,L,A,Bi, π),
are defined such that for any s ∈ N, o ∈ L:

Bi(s, o) =


0 if s = sfinal
1− i ·∆ if s 6= sfinal ∧B(s, o) = 1
i ·∆
|L| − 1

if s 6= sfinal ∧B(s, o) = 0

While the correct observation element probabilities (B(s, o) = 1 in the initial
HMM) decrease, the incorrect observation element probabilities (B(s, 0) = 0 in
the initial HMM) increase with an increasing noise level. Note that the observation
probabilities of the final state do not change, since the final state has the special role
of representing the end of the process and does not actually produce an observation
element from the set L.

Note that for this kind of noise we only distorted the observation element prob-
abilities of the HMM, but the transition probabilities remain the same. This means
that the generated traces for the running example will still always have exactly three
events, since the structure of the HMM is properly followed. We can see this kind of
noise as a faulty logging mechanism. That is, the right task is being executed, but the
corresponding log element that is produced is “noisy”.

Transition Noise

While we only modified the observation element probabilities for the previous type
of noise, we now change the behavior of the process by modifying the transition
probabilities between the states. This way, the process may increasingly “jump” from
one state to another although it would not be possible to the original process descrip-
tion. We can see this kind of noise as a behavioral noise.

Consider the example in Figure 5.18(a), where we adjusted the state transition
probabilities of the HMM depicted in Figure 5.10 to introduce 20% noise. In each
state, a correct state transition is performed with a probability of 0.8 (for example,
both transition probabilities from state 0 to state 1 and from state 0 to state 2 are
0.4), and a wrong state transition is performed with a probability of 0.2 (each of



5.4 Markovian Approach 177

3 (A)  Pi= 0.067

[ 1 0 0 0 ]

0.05

2 (C)  Pi= 0.067

[ 0 0 1 0 ]

0.05

1 (B)  Pi= 0.067

[ 0 1 0 0 ]

0.05

0 (A)  Pi= 0.8

[ 1 0 0 0 ]

0.05

4

[ 0 0 0 1 ]

0.8

0.8

0.05

0.05

0.05

0.05

0.8

0.05

0.05

0.05

0.05

0.067

0.4

0.4

0.067

0.067

1

(a) 20% noise

3 (A)  Pi= 0.333

[ 1 0 0 0 ]

0.25

2 (C)  Pi= 0.333

[ 0 0 1 0 ]

0.25

1 (B)  Pi= 0.333

[ 0 1 0 0 ]

0.25

0 (A)

[ 1 0 0 0 ]
0.25

0.25

0.25

0.25

4

[ 0 0 0 1 ]

0.25

0.25

0.25

0.25

0.25

0.333

0.333 0.333

1

(b) 100% noise

Fig. 5.18. Examples HMMs for different levels of transition noise.

the otherwise wrong state transitions has a probability of 0.067). Furthermore, the
initial state probabilities are being gradually changed because the starting point of
the process is also part of the behavior. In Figure 5.18(a) the initial state of the noise-
free HMM still has the highest initial state probability (i.e, 0.8).

Now consider the example in Figure 5.18(b), which represents the same HMM
with degree of 100% noise. For this HMM, in each state the correct transitions are
impossible, i.e., an incorrect state transition is performed with 100% certainty. Fur-
thermore, it is guaranteed that the initial state is incorrect, because the initial state of
the noise-free HMM now has an initial state probability of 0. And all the other three
states that had an initial state probability of 0 in the noise-free HMM now have an
equal probability to be the initial state (i.e., 0.33).

Again, we want to generate event logs with different levels of noise and determine
upfront the number of noise levels that should be generated. We determine the state
transition probabilities and initial state probabilities for the noisy HMM on each
noise level as follows.



178 5 Data Mining-inspired Evaluation Approaches

Definition 18 (Transition Noise) Let λ = (N,L,A,B, π) be an initial HMM, nl ∈
N≥1 the number of noise levels to be generated, and ∆ = 1

nl the difference by which
the correct observations are to be reduced on each noise level. The state transition
probabilities Ai of the HMM, and the initial state probabilities πi, on noise level
i, 1 ≤ i ≤ nl, i.e., λi = (N,L,Ai, B, πi), are defined such that for any s, s′, s′′ ∈
N :

Ai(s, s′) =



1 if s = sfinal ∧ s′ = sfinal
0 if s = sfinal ∧ s′ 6= sfinal

1− i ·∆
|{(s, s′′)|A(s, s′′) > 0}| if s 6= sfinal ∧A(s, s′) > 0

i ·∆
|{(s, s′′)|A(s, s′′) = 0}| if s 6= sfinal ∧A(s, s′) = 0

πi(s) =


0 if s = sfinal

1− i ·∆
|{s′|π(s′) > 0}| if s 6= sfinal ∧ π(s) > 0

i ·∆
|{s′|π(s′) = 0}| if s 6= sfinal ∧ π(s) = 0

Note that transitions from the final state do not change, because the final state
still represents the end of the process and should not be left once it has been reached.
Furthermore, the final state will never be an initial state, because we do not want to
generate empty sequences.

5.4.6 Experimental Results

We implemented the described approach as an HMM Experimenter plug-in in ProM
(see Appendix A.1.4). Using this plug-in, we performed experiments for varying de-
grees of noise based on process models from different domains. First, we used four
process models that were mined based on log data collected by the CMDragons team
during the international robot soccer competition ’RoboCup’ 2007, and thus consti-
tute models of the behavior in a multi-agent robotic system (see also Section 7.7).
Second, we evaluated three different models of administrative processes within a
municipality in the Netherlands. The same processes were used for mining experi-
ments in [161]. Finally, we selected three suitable models from the SAP reference
model, which is a publically available model that contains more than 600 enterprise
models [170], and analyzed them with our approach.

The original models were given in terms of Heuristics nets and EPCs, and they
were translated into Petri nets using conversion facilities in the ProM framework,
respectively. We performed experiments on these models with varying parameters.
The results of these experiments are very similar, and in the following we use a
single, but representative, example to point out the main conclusions that we can
draw from them. The detailed results are provided in a technical report [229].

As for the process model evaluation metrics, we used the HMM-based fitness
metrics defined above as well as the following two metrics f and PF complete from
the process mining domain (see also Section 4.6.1).
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• The fitness metric f is based on replaying the log in a Petri net process model and
measuring the number of “missing” and “remaining” tokens during log replay
(here referred to as Token Based). A similar metric is the CPM metric, which
measures the number of missing and remaining activations while replaying a
Heuristics net.

• The PF complete metric (here referred to as Improved Continuous) is used by the
Genetic Miner to select the best process models in each generation of the genetic
algorithm, and incorporates a fitness evaluation similar to the CPM metric. In
addition, it gives some extra weight based on the number of traces that have
problems.

Now consider Figure 5.20, which depicts the fitness values (y axis) for 50 differ-
ent noise levels (x axis), with 100 traces generated per log (that is, per noise level),
and a maximum of 100 events per trace, for one of the models mined from the robot
soccer data (see Figure 5.19). Since this figure is representative for the larger set of
experiments, we can use it to illustrate our main conclusions from the experiments.

1. Existing metrics have a bias when applied to simple models. We can see that
the Token Based fitness, which stands for other similar fitness approaches in
the process mining domain, does not drop to much less than a fitness of 0.4
throughout the whole experiment. This can be explained by the fact that the log
replay “leaves tokens behind” for potential later use, which is appropriate for
models containing parallelism (as one needs to look more than one step forward
to satisfy all the dependencies) but not for simple Petri nets as evaluated in our
experiments. Thus, in these situations, and more severely with an increasing
level of noise, this metric provides overly optimistic results.

2. Metrics should measure only one thing. We can see that the Improved Continu-
ous fitness suddenly drops dramatically when the noise level is increased above
40%. This can be explained by the fact that this metric was designed to steer a
genetic algorithm based on a mixture of different (trace-based and event-based)
measurements. For that purpose, it is a good metric. However, if one wants to use
the metric to gain insight into the quality of a process model, it becomes difficult
as the interpretation of results becomes difficult (“Which aspect contributed to
this value?”, “Is it the property I want to measure?”).

3. Trace-based metrics do not make much sense for large models and long process
instances. Based on the Trace Based fitness, we can see that this metric drops
very quickly towards 0, already for low levels of noise. This is due to the fact that
in case of longer process instances (as here up to 100 events per trace) already
one small error in the trace renders the whole trace to have a negative impact on
the overall fitness. With an increasing level of noise, there will be soon no more
traces that have no errors, thus rendering the measure to provide pessimistic
results if compared to our notion of noise.

The underlying assumption here is that a fitness metric should decrease as uni-
formly as possible with an increasing portion of noise, which is what one would
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Fig. 5.19. The Petri net model mined from the round robin game between “CMDragons” and
“BSmart”.
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Fig. 5.20. Experimental results for the model depicted in Figure 5.19.
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intuitively expect without further knowledge of the metric’s behavior. We can trans-
late this assumption into the requirement that a fitness metric should be inversely
related to the percentage of noise. For example, if we have 20% noise (n = 0.2)
then the fitness metric should indicate a fitness of 80% (f = 0.8) and the other way
around. So, in the ideal situation n = 1− f and f = 1− n.

If both sides of the equation n = 1 − f are indeed equal, then the ratio n
1−f

should yield 1. However, if the fitness value is higher than it should be at the given
noise level, then the resulting ratio will be greater than one. Conversely, if the fitness
value is actually lower than it should be at the given noise level, then the resulting
ratio will be lower than one.

In the following, we further normalize the noise fitness ratio by subtracting 1.
This way, we obtain an indicator that yields 0 in the ideal situation, positive values
if the fitness measurement is optimistic given the noise level, and negative values in
the case that the fitness measurement is pessimistic given the noise level.

Definition 19 (Noise Fitness Ratio) With a fitness value f (f = 1 corresponding to
100% fitness) being calculated for a log with n degrees of noise (n = 1 correspond-
ing to 100% noise), the noise fitness ratio rnf is defined as follows:

rnf =
n

1− f − 1 , 0 ≤ f < 1, 0 < n ≤ 1

As an example, the average noise fitness ratios for one of the models are shown
in Table 5.2.

Table 5.2. Average noise fitness ratios rnf during the replicated experiments for model
’1Be 2xk1’ with (1) observation noise and (2) transition noise [229]. The compared met-
rics are the process mining metrics ‘Token Based’ (Metric 3) and ‘Improved Continuous’
(PF complete [161]) discussed in Section 4.6.1, and the HMM-based ‘Trace Based’ (Met-
ric 11), ‘Model Level’ (Metric 12), and ‘Event Level’ (Metric 13) fitness metrics defined in
Section 5.4.3.

Metric 5% Noise 10% Noise 20% Noise 50% Noise 100% Noise

Token (1) -0.201 (1) -0.168 (1) -0.111 (1) 0.050 (1) 0.516
Based (2) 0.292 (2) 0.568 (2) 0.463 (2) 0.433 (2) 0.567

Improved (1) -0.376 (1) -0.333 (1) -0.264 (1) -0.216 (1) 0.0
Continuous (2) -0.024 (2) 0.219 (2) 0.153 (2) 0.132 (2) 0.0

Trace (1) -0.716 (1) -0.677 (1) -0.614 (1) -0.444 (1) 0.0131
Based (2) -0.704 (2) -0.615 (2) -0.582 (2) -0.365 (2) 0.141

Model (1) -0.853 (1) -0.81 (1) -0.72 (1) -0.465 (1) 0.029
Level (2) -0.827 (2) -0.771 (2) -0.728 (2) -0.496 (2) 0.0

Event (1) -0.468 (1) -0.452 (1) -0.380 (1) -0.284 (1) 0.112
Level (2) -0.251 (2) -0.076 (2) -0.105 (2) -0.046 (2) 0.0
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In [229] we provide graphs of the fitness values for different observation and
transition noise levels. They visualize consistently that the Token Based metric yields
optimistic results for logs containing a high portion of noise, and that the Trace Based
metric and Model Level metric yield rather pessimistic results. Furthermore, if we
calculate the average variance of the fitness noise ratios of the replications within
one noise level, then the Improved Continuous metric consistently yields an average
variance which is about one magnitude higher than the average variance values of
the remaining metrics, thus highlighting its instability. The best metric seems to be
the Event Level metric.

Overall, the results for the two different kinds of noise are very similar and con-
firm the same trend. Two differences can be noted:
• If the transition noise has a level 100%, then the Event Level metric really falls

to the value 0, which is not the case for the observation noise. The reason is that
by generating random observation elements, it may be still the case that, acci-
dentally, correct sub sequences are created. This is similar for noise generation
mechanism typically used in the process mining domain, such as deleting and ex-
changing log events as defined in [261], but it is not true for the transition noise,
which with a noise level of 100% is guaranteed to produce no valid sub sequence
anymore.

• The Trace Based metric often drops not as quickly for the transition noise as for
the observation noise. This may be due to the fact that among the noisy transitions
is also the transition to the final state, which then leads to the end of the event
sequence. Such shorter process instances are then less likely to have an error than
longer sequences.
Of course these results are influenced by our notion of noise and our assumption

that it is desirable for a fitness metric to scale as linearly as possible with respect to
the degree of distortion in the log. In principle, there may be other notions of noise
(e.g., introducing distortions gradually over different parts of the process), which
would render the Model Level metric less pessimistic, or errors might be distributed
over different portions of traces (thus rendering the Trace Based metric to scale lin-
early with the degree of noise). Furthermore, one might prefer the metric to scale
linearly from 0% (metric yields 1) to 20% noise (metric yields 0), since lower por-
tions of noise (e.g., 5% or 10%) are much more common in real processes than a
very high portion (e.g., 80%). However, for a first general evaluation the presented
setup seems reasonable.

In any case, knowledge about the behavior of a metric is important as we interpret
the calculated values correspondingly (“How good or bad is a result of 0.7?”). In
Section 6.2.2, we will come back to the topic of metric quality in more detail.

5.5 Related Work

In this chapter, approaches from the data mining [267] and machine learning [174]
domain have been explored for process model evaluation purposes. In the follow-
ing, we first outline the relation between process mining and data mining in general.



184 5 Data Mining-inspired Evaluation Approaches

There are similarities, differences, and also hybrid approaches exist where the two
fields can complement each other (Section 5.5.1). Afterwards, some model evalua-
tion work from the data mining domain is discussed in more detail (Section 5.5.2).

5.5.1 Process Mining and Data Mining

From a theoretical point of view, process discovery is related to some work discussed
in the data mining and machine learning domain. In [32, 104, 105, 196] the limits
of inductive inference are explored. For example, in [105] it is shown that the com-
putational problem of finding a minimum finite-state acceptor compatible with given
data is NP-hard. Several of the more generic concepts discussed in these papers could
be translated to the domain of process mining. It is possible to interpret the process
discovery problem as an inductive inference problem specified in terms of rules, a
hypothesis space, examples, and criteria for successful inference.

However, despite the many relations with the work described in [32, 104, 105,
196] there are also many differences. For example, process discovery techniques are
targeting models at the net level rather than sequential or lower level representa-
tions (e.g., Markov chains, finite state machines, or regular expressions). As a con-
sequence, process mining needs to deal with various forms of concurrency. For ex-
ample, process modeling language constructs such as OR-splits can capture a broad
range of alternative concurrent behaviors in a compact way. Therefore, the gap be-
tween the (net) structure and the represented behavior is greater than for lower level
representations. In fact, process models are capable of expressing infinite state spaces
in a finite manner.

A problem domain in machine learning that sounds related—but interestingly
is very different—is dealing with the ‘induction of process models from observa-
tions’ [48]. The notion of a process is inherently different since these learned models
seek to explain the observed behavior of continuous dynamical systems, i.e., time-
series data. The resulting process models then describe relations between variables
in a language based on the systems of differential and algebraic equations. In con-
trast, process discovery attempts to extract discrete models (usually directed graphs)
based on a set of finite event sequences, whereas each event sequence corresponds
to one particular materialization of the process. So, the process observations are dis-
crete events relating to steps or states in a process rather than continuous variable
observations.

There is a long tradition of theoretical work dealing with the problem of infer-
ring grammars out of examples: Given a number of sentences (traces), find the sim-
plest language that can generate these sentences. There is a strong analogy with the
process-discovery problem: Given a number of process traces, find the simplest pro-
cess model that can generate these traces. A good overview of prominent computa-
tional approaches for learning different classes of formal languages is given in [189]
and a special issue of the machine learning journal about this subject [150]. Many
issues important in the language-learning domain are also relevant for process min-
ing (i.e., learning from only positive examples, how to deal with noise, measuring
the quality of a model, etc.).
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However, as indicated before, an important difference between the grammar in-
ference domain and the process-mining domain is the problem of concurrency in
the traces: concurrency does not seem to be relevant in the grammar inference do-
main. Overall, it seems that the process discovery problem cannot be directly tackled
by these traditional machine learning approaches, but that the fields are sufficiently
similar to render process mining an interesting area also for data mining researchers.

There are also many opportunities to leverage existing data mining techniques for
process mining purposes. For example, in Chapter 7 we make use of classification
algorithms to discover decision rules at decision points in a process model, based on
the data attributes in the event log. Case data attributes could also be analyzed for
association rules [28] much like shopping baskets can be analyzed in a supermar-
ket setting. Furthermore, event data attributes could be used to discover sequential
patterns [30, 148] from a data perspective.

In the process mining area, clustering techniques have been successfully used to
group similar process instances for yielding more precise models [163, 110, 44], to
mine higher-level activities [118, 43], and for tackling unstructured processes such
as hospital data [246]. Expectation maximization algorithms have been applied to
perform sequence clustering of workflow traces [254] and to discover case IDs for
event logs where the case IDs are missing [92]. Also HMMs have been used as
a basis for sequence clustering [31]. Furthermore, genetic mining algorithms were
used process discovery [161].

Finally, another field where data mining can really complement process mining
approaches is in the area of unstructured “freetext” data. Often, such natural language
fields contain important information about the process. For example, it is very typical
in the service industry that agents record information in some kind of ‘Freetext’ field
(as in the call center scenario in Section 1.1). Process mining has problems with such
freetext data because it assumes the log data to be structured in the sense that there
are event types or attributes that reoccur in some form. So, text mining [172] could
be used for pre-processing the data before starting the process mining analysis.

5.5.2 Data Compression and Model Evaluation

Data compression approaches are very common in the data mining world. They com-
press the dataset by finding some structure or knowledge within it. Note that there
are also instance-based methods such as k-nearest neighbor [72] or case-based rea-
soning [25], which do not attempt to extract structural patterns but instead use all the
data to make predictions for future instances.

Examples for data compression are compact knowledge representations such as
association rules and pruned decision trees. Clustering can also be considered as a
way of compressing the dataset. There is a connection with the Bayesian theory for
modeling the joint distribution - any compression scheme can be viewed as providing
a distribution on the set of possible instances of the data.

Compression-based approaches have been applied in classification (including in-
ferring decision trees [169], pruning decision trees [188], and classification rules),
X-means [190] and G-means [121] clustering, and graph partitioning (e.g. in [59]).
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Forecasting can be also considered within the compression-based paradigm, e.g.,
ARIMA’s success in voice compression is one of the good examples [202].

Some of the model evaluation (or model selection) criteria including Akaike In-
formation Criterion (AIC), Bayesian Information Criterion (BIC), and MDL have
intuitive interpretations from the data compression perspective. As discussed ear-
lier in this chapter, the MDL principle, which suggests that the best explanation of
a phenomenon represented with a limited sample is the one that achieves the best
compression of the sample [210], can be used to select among different encodings
accounting for both the complexity of a model and its predictive accuracy [169].

The MDL principle has been used in different research areas including ma-
chine learning, data mining, information retrieval, signal processing, and others. In
data mining it was used for decision tree inference [169] and pruning [188], and
clustering [147] (including (spatial) parameter-free bi-grouping of binary matrices
in [188]). In frequent item sets mining the MDL principle was used to define the
set of frequent item sets that compresses the database best [242]. MDL was also
used to demonstrate why mining frequent generators is favorable to mining closed
patterns [154]. The MDL principle has been used as an evaluation criterion in the
search for the best Document Type Definition (DTD), given a document in an XML
database that does not have an accompanying DTD [100].

In spite of the many successful applications of the MDL principle, it has been
actively criticized [258, 80] emphasizing that MDL and Occam’s Razor are naı̈ve by
assuming that simple models are a priori more likely to be true than complex ones.
Grünwald in his excellent tutorial on the MDL principle [114] addressed this critique.
His belief is that the MDL philosophy is agnostic about whether any of the models
under consideration is ‘true’, or whether a ‘true distribution’ even exists, but it does
suggest a strategy for inferring models from data. However, it should be mentioned
that MDL-approaches are indeed not always successful, but MDL-related research is
active in finding the ways for the improvement [114].

5.6 Conclusion

The evaluation of process models and process discovering algorithms is a non-trivial
task. In the last two chapters we have discussed the limitations of existing evaluation
approaches from the process mining domain, and explored the applicability of some
typical data mining evaluation approaches for the process model evaluation problem.
We have to conclude that evaluation depends on many parameters (e.g., the desired
level of abstraction during mining, the process modeling language, etc.). Further-
more, it poses particular challenges such as the absence of negative examples, and
the higher level nature of process modeling languages, which makes the relationship
between structure and behavior more complex. Thus, no easy, golden standard is
available.

The MXML log format was defined in [23] to enable researchers and practition-
ers to share their logs in a standardized way, and process mining has has been used in
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a variety of real-life case studies [19, 221, 119]. But a a common framework to eval-
uate process mining results is still lacking. For example, currently, process mining
researchers are forced to implement their custom, ad-hoc simulation environments
to generate process models and/or logs that can then be used to evaluate their mining
approach, or to compare their approach to other mining approaches (see [262] and
[195] for two examples).

We believe that there is the need for a concrete framework that enables (a) pro-
cess mining researchers to compare the performance of their algorithms, and (b) end
users to evaluate the validity of their process mining results. In the following, we
identify some components that are relevant in the context of a common process min-
ing evaluation framework (cf. Figure 5.21).

Repository

Process Models

Event Logs

Negative
Examples

Discovered
Model

Positive
Examples

Reference 
Model

Modification 
Tools

Process 
Discovery

Log 
Generation

Verification 
Tools

Evaluation and Comparison

Fig. 5.21. Possible ingredients of a benchmark framework for process mining techniques.

Repository. To systematically compare process mining algorithms, there should be
common data sets, which can be used and extended by different researchers to
“benchmark” their algorithms on a per-dataset basis. For instance, in the ma-
chine learning community there are well know data sets (e.g., the UCI Machine
Learning Repository, CMU NN-Bench Collection, Proben1, StatLog, ELENA-
data, etc.) that can be used for testing and comparing different techniques. Such a
process mining repository would consist of a collection of event logs and process
models, and should also provide information about the process or log character-
istics as these may pose special challenges.

Log Generation. At the same time it is necessary to be able to influence both the
process and log characteristics. For example, one might want to generate an
event log containing noise (i.e., distorting the logged information), or a certain
timing behavior (some activities taking more time than others), from a given
model. For log generation, simulation tools such as CPN Tools can be used. For



188 5 Data Mining-inspired Evaluation Approaches

example, in Chapter 8 we will describe how to automatically generate a CPN
with certain data, time, and resource characteristics, including the monitors that
are necessary to generate logs during simulation in CPN Tools. In this chapter,
we have generated logs from HMMs (cf. Section 5.4.5). Finally, another example
for log generation is the generation of “forbidden” scenarios as a complement to
the actual execution log [103].

Modification and Verification Tools. It is also necessary to verify certain properties
with respect to event logs or process models. For example, assumptions such as
the absence of duplicate tasks in the model must be checked to ensure the va-
lidity of certain evaluation metrics (see also Section 4.6.1), or the completeness
of the log needs to be ensured before starting the process discovery algorithm.
Finally, the modification of event logs or process models might be necessary to,
e.g., generate “noisy” logs (e.g., in Section 5.4.5 two different noise generation
approaches were presented). Artificial start and end activities might need to be
added to fulfill certain pre-conditions (as, e.g., implemented for the approach in
Section 5.3), or the log needs to be split up into training and test set (see also
Section 5.2).

Of course, first there needs to be a clear, goal-driven methodology for how
(method) to evaluate what types of models (scope) in which situations (context). Ide-
ally, it should then be possible to automatically invoke the required verification tools,
log generation, and process discovery algorithms to set up complex experiments.
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Flexible Conformance Checking

6.1 Introduction

In Chapter 4 we have seen that by replaying an event log in a Petri net one can mea-
sure conformance in a quantitative manner as well as localize conformance problems,
both in the model and the event log. Besides the Petri net-based replay approach pre-
sented in Chapter 4, a number of other log replay-based conformance approaches
have been suggested in literature. For example, Fuzzy models [115] and Heuristic
nets [261] can be replayed as well. As has been shown in Chapter 4, shared notions
of conformance have emerged and similar types of metrics have been developed over
the past years. Yet, in Chapter 5 we discussed the need for more uniform quality
measurements in the context of benchmarking different process mining techniques.
In this chapter, we focus on the most dominant conformance dimension, namely fit-
ness. We want to take a closer look at what unites and what distinguishes existing
conformance techniques in this dimension. These insights are used to develop a more
flexible approach to check conformance.

The remainder of this chapter is organized as follows. First, we take an end user
perspective and formulate a number of requirements that need to be fulfilled to turn
fitness-based conformance analysis into common practice. Furthermore, we high-
light some of the problems that current techniques have with respect to these require-
ments (Section 6.2). Afterwards, we explore a possible log replay approach that over-
comes the shortcomings of existing approaches and can serve as a common basis for
fitness analysis. However, rather than presenting yet another specific replay method,
we develop a so-called flexible approach that makes the design choices explicit that
emerge in a log replay context (and which have been implicitly made by existing
approaches). So, the presented log replay framework is intended as an analysis of
the identified log replay parameters “under the hood” rather than a method that aims
at one specific measurement. Instead, these parameters should be pre-configured de-
pending on the purpose and context of the conformance checking assignment. Sim-
ilar to the analysis of possible log replay parameters, we also investigate the range
of possible fitness metrics in a systematic way. A set of generic metrics is proposed
to make the different variants of existing fitness notions more explicit (Section 6.3).
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After an exemplary application of the log replay and fitness measurement framework
(Section 6.4), we conclude the conformance part of this thesis by outlining the in-
gredients and architecture of a comprehensive conformance checking tool that also
allows for the verification of business rules, which—due to their declarative nature—
are complementary to process model-based conformance approaches (Section 6.5).

6.2 Challenges

If we want to see conformance checking techniques adopted in a day-to-day business
context, there are a number of challenges that need to be addressed. In this section,
we identify three requirements and outline the problems that persist when applying
existing conformance checking techniques. In a nutshell these requirements are:

Applicability With applicability we denote the fact that a particular model can be
analyzed. One way in which the applicability can be hampered is when the con-
formance checking technique explicitly excludes certain constructs in the model.
A second way in which the applicability can be impaired is when the confor-
mance checking process itself takes “too long”.

Metric Quality With metric quality we refer to the understandability of a metric’s
results (within the boundaries of applicability outlined above). For a user, it must
be clear what a particular value “means”, and how two different values relate to
each other.

Unification With unification we describe the desire to use the same conformance
checking techniques for different process modeling languages. It should be
avoided that different notions and different ways of measurement emerge from
one language to the other.

In the remainder of this section, we describe applicability (Section 6.2.1), metric
quality (Section 6.2.2), and unification (Section 6.2.3) problems in the context of
existing conformance checking techniques.

6.2.1 Applicability

One of the most dominant requirements of conformance checking is that it needs
to be feasible for any real-life process. So, the conformance checking process itself
must be efficient enough to evaluate complex models and large logs. We argue that—
in principle—the log replay-based methods perform reasonably well, because the
effort to perform the analysis increases only linearly with the size of the log. In
contrast, methods that rely on exponentially complex techniques (e.g., state space-
based approaches) tend to be too slow or cannot deal with large logs / models.

However, to keep, for example, the Petri-net based log replay efficient also in
the presence of invisible or duplicate tasks, local heuristics need to be employed.
As we will see, for certain constructs (e.g., OR splits) these heuristics may lead to
situations where conformance problems are reported that in fact are no problems
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(false positives). As a consequence, models containing these constructs cannot be
checked in a reliable way. The Fuzzy model log replay [115] does not have any
problem with OR splits since it is based on the relaxed execution semantics of Fuzzy
models. However, because of this permissive interpretation, a conformance check
based on a model originally containing an XOR split (e.g., translated into a Fuzzy
model from an EPC diagram) will not detect any problems if the XOR split actually
behaves more like an AND split (false positives). So, only models of a certain type
can be reliably checked using the Fuzzy model replay.

In the following, we assess the shortcomings of the Petri net-based approach
(Chapter 4) and the Fuzzy conformance method [117, 115] in more detail.

Problems of Petri net-based Conformance Checking

Despite its demonstrated usefulness, there are a number of problems with the Petri
net-based conformance checking approach. In principle, the log replay can take place
entirely on the Petri net level, which is very efficient. However, as soon as the model
contains invisible or duplicate tasks, the procedure becomes more difficult. The prob-
lem is that invisible tasks do not have a representation in the event log, and are only
fired to enable visible tasks in the model. To make the Petri-net based approach fea-
sible also for large models and logs, we chose to employ the local heuristic of firing
the shortest sequence of invisible tasks to enable the replay of the current event (cf.
Section 4.4.2). This way, only a partial state space based on the current marking of
the net needs to be built and explored, which renders the procedure relatively effi-
cient. However, as a consequence the resulting replay is not necessarily optimal from
a global perspective.

A

+1

B

C

D

t

-1

Fig. 6.1. A Petri net that cannot replay the valid trace ABC by local decision making.

Consider for example the Petri net depicted in Figure 6.1. This Petri net only
allows for two traces: ABC and ABD. Note that after the execution of A, both the
invisible task and B are enabled. If B fires, the invisible transition is disabled and
only D can occur. If the invisible transition fires, then B is still enabled and firing B
will be followed by C. However, the valid trace ABC cannot be replayed correctly
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and thus leads to an indicated conformance problem, which is in fact no problem
(false positive). The reason is that after the replay of event A, the transition that
corresponds to B is already enabled. So, the shortest sequence of invisible tasks is
the empty sequence, and B is fired directly. However, to be able to replay this net
correctly we would need to look further ahead and fire the invisible task before firing
B, if B is to be followed by C. But to find this solution in the general case, we would
need to build and explore the complete state space based on each marking during log
replay, which would not be tractable for many situations.

Based on the example in Figure 6.1, we can observe the expressive power of
Petri nets: Already before actually firing B, we have to make the choice whether
to fire C or D later on. However, this choice is not directly observable in the event
log. Consider, for example, the Petri net depicted in Figure 6.2(a). This Petri net is
trace-equivalent to the Petri net in Figure 6.1, i.e., the two models are considered
equivalent because the sets of traces they can execute are identical. There exist many
equivalence notions for process models [4, 102, 173], most of which are “stronger”
(i.e., more selective) than trace equivalence, which, for example, consider the mo-
ment of choice (e.g., bisimulation [102]). But since for the purpose of conformance
checking, trace semantics are sufficient as the model is to be compared to the event
log, which only consists of a set of traces. Note that if the choice itself was observ-
able (e.g., the possible traces were A, Decide for C, B, C and A, Decide for D, B, D),
then a model such as depicted in Figure 6.2(b) could also be checked correctly with
our Petri-net based conformance approach, which relies on local decision making.

 A 

 B 

 C  D 

(a) Petri net which is trace-equivalent to the
example in Figure 6.1

 A 

 B 

 C  D 

 Decide 
for C 

 Decide
for D 

(b) Petri net explicitly modeling the
decision between C and D

Fig. 6.2. Alternative process models for the example in Figure 6.1, which could be replayed
by local decision making.

One might say that the example Petri net in Figure 6.1 seems like a special case,
which would not be encountered often in practice. However, there is a more serious
problem with the local log replay heuristic of invisible tasks, which relates to the
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quite common construct of an OR split. This behavioral pattern has been discussed
before in the context of YAWL (cf. Section 2.5.2). The same construct also exists
in the EPC [185] notation, which is, for example, used to model business processes
in the SAP R/3 system [70, 140]. An OR split allows to choose anything between a
single branch (1 out ofm) and all branches (m out ofm) following the split. In Petri
nets, this construct is realized by a set of invisible tasks that model all the possible
combinations (see Figure 6.3).

t61

t64

t34

t66

t62

t65

t32

t53

+1

t67

t22

t56

t24

f1

f0

promdemo.htm (complete)

people.htm (complete) +1

whatsnew.htm (complete)

t54

t51

t55

t42

t52

t44

t50

t63

Fig. 6.3. OR split in a process model fragement, where the valid event sequence people.htm
whatsnew.htm cannot be replayed correctly by local decision making (the invisible transition
t52 should have been fired instead of t56, and thus an unnecessary token remains in the net).

Consider Figure 6.3, which illustrates the problem of OR splits in the context of
the Petri net-based log replay. The depicted Petri net fragment stems from an EPC
model that has been mined using the Multi-phase approach [83] based on web server
logs, and which has subsequently been converted to a Petri net. The used web server
log sample contains events about the pages from a web site that were viewed by
different visitors of the web site. For example, after entering the web page, people
would view the page people.htm, whatsnew.htm, or promdemo.htm, or all of them,
which is characterized by an OR split enabling any combination of these three pages
in Figure 6.3. In fact, the Multi-phase mining algorithm always creates a process
model that completely fits the log data [81] by introducing generalizations such as
OR splits and OR joins, if necessary. So, also the corresponding Petri net models
should be replayed without any errors.
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However, as one can observe in Figure 6.3 this is not feasible by local decision
making. It is necessary to further look ahead in the trace to enable the right set of
tasks. Since the local heuristic employed in the Petri net-based log replay approach
will choose any of the available shortest sequences of invisible tasks, one of the
sequences f0 t51, fo t52, and fo t56 will be fired randomly for the trace people.htm
whatsnew.htm. All of these invisible task sequences have the same length and enable
the transition belonging to the first event people.htm, which reflects the local decision
making. But only the sequence f0 t52 would yield the marking that would be globally
optimal to replay the given trace. Instead, one can see in Figure 6.3 that firing t56
instead of t52 leads to an unnecessary token remaining in the net.

Similarly to the problems discussed above, also the decision of which duplicate
task should be replayed in the net cannot be made locally if it should be optimal. For
example, if there are multiple duplicate tasks enabled (or not enabled), then each of
them forms a scenario, for which the state space along the future of the trace will be
explored by the Petri net-based log replay. For models with many duplicate tasks and
long log traces, this can significantly decrease the performance.

Due to their preciseness and expressive power, labeled Petri nets are suitable
for the simulation of processes, and even enactment. However, it seems that for the
purpose of of a token-based, local log replay they are less suitable.

Problems of Fuzzy model-based Conformance Checking

Log replay-based approaches have also been employed by other conformance meth-
ods. For example, the Fuzzy miner [117] provides an indication of how much of
the behavior in the log is covered by the current Fuzzy model, whereas this Fuzzy
conformance is calculated in near real-time even for large logs.

Due to the relaxed execution semantics of Fuzzy models (cf. Section 2.5.3), OR
splits like the one in the previously shown web server log example can be replayed
without problems. If a task in a Fuzzy model has multiple successor tasks, then all
of these successors will be activated once the task has been executed. However, they
do not need to be executed. This way, there is no explicit distinction between ‘sim-
ple choice’ (XOR split), ‘parallel split’ (AND split), or ‘multiple choice’ (OR split).
These patterns may emerge implicitly, but they are not enforced by the model seman-
tics. As a consequence, the OR split pattern is captured naturally in the Fuzzy model
formalism.

Consider Figure 6.4, which depicts the Fuzzy model of the web server example
that was problematic for the Petri net-based approach before. Due to the relaxed exe-
cution semantics, the valid event sequence people.htm whatsnew.htm can be replayed
without any problems in the Fuzzy model. This means that the Fuzzy conformance
is 1 (i.e., 100%). (Note that an artificial start and end task have been inserted in the
Fuzzy model during the mapping to ensure that the nodes are connected.)

However, while it is easy to describe ambiguous choice situations like an OR
split, in a Fuzzy model it is impossible to be precise. This is intended and acceptable
in the fuzzy mining context they were created for. But it is problematic in a confor-
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Fig. 6.4. The valid event sequence (ArtificialStartTask) people.htm whatsnew.htm (Artificial-
EndTask) can be replayed naturally in a Fuzzy model (i.e., the Fuzzy conformance is 1), due to
the relaxed execution semantics. Here, the whole model of the fragment depicted in Figure 6.3
is shown as a Fuzzy model.

mance checking context, where the fit between an event log and the given process
description is to be evaluated.

As an example, consider the model depicted in Figure 6.5, where the Petri net
process model from Figure 6.2(a) has been converted into a Fuzzy model. In addition
to the two valid event sequences ABC and ABD we also included a new invalid event
sequence ABCD in the event log before starting the replay. However, due to the
relaxed execution semantics the measured Fuzzy conformance for all three traces
is 100%.

Fig. 6.5. The model from Figure 6.2(a) has been translated into a Fuzzy model. Because of
the XOR split between C and D in the original model, the event sequence ABCD should not
be replayed without errors. But due to the relaxed semantics the mismatch is not detected (i.e.,
the Fuzzy conformance is 1).



196 6 Flexible Conformance Checking

From an end user perspective it is problematic if certain models cannot be
checked reliably. It is especially problematic if the user has to check herself whether
the model fulfills all applicability requirements. However, even if the applicability
check would be automated (e.g., by detecting structural constructs that cannot be an-
alyzed), ideally, it should be possible to analyze every model a user might want to
check for conformance.

Later in this chapter, we will present a new conformance checking approach
based on a representation that can have relaxed semantics (like the Fuzzy models)
but also allows for precise specifications of split and synchronization requirements,
if needed. This way, the level of precision can be tailored towards the models and the
questions at hand.

6.2.2 Metric Quality

Given that a model can be analyzed with the conformance checking approach at
hand (i.e., the approach is applicable for the considered model), a conformance value
can be derived. From an end user perspective the next question is now “What does
this value mean?”. If the resulting value cannot be interpreted easily, the application
possibilities of the conformance approach are limited.

Literature about metric quality [155] describes a number of desirable metric
properties. For example, the following properties can be found:

Validity requires a sufficient correlation of the measured value to the actual property
to measure.

Reproducibility means that the measurement process can be repeated at any time
and will lead to the same results.

Stability indicates that the measured value is only correlated to the actual property
to measure (but not correlated to other properties that should not be measured).

Analyzability relates to the degree of comparability of two measured values.

Note that discussing ‘analyzability’ leads to the scale type of a metric, such as
(1) nominal, (2) ordinal, (3) interval, and (4) ratio scale. For example, a ratio scale
enables propositions like model A is twice as fitting as model B with respect to a
certain log rather than only saying that model A is more fitting than model B (which
would be a mere ordinal scale). Values on the nominal scale cannot be compared
at all. For example, the values “red”, “green”, and “blue” are not really compara-
ble. Finally, an interval scale indicates that two equally distant values on different
parts of the scale (e.g., 10◦ vs. 20◦ Celsius and -15◦ vs. -5◦ Celsius) are comparable
considering the difference in the measured property. Note that temperature measured
in Celsius is no ratio scale, because a ratio scale needs a lowest starting point (for
example, temperature measured in Kelvin is a ratio scale). The interval scale is thus
situated between the ordinal and the ratio scale.

In addition to the four mentioned properties, we would like to add the following
desirable property:
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Understandability requires that the measured value can be interpreted easily, in the
sense that the user can understand intuitively what it “means”.

This last property relates to the initial concept of the property that should be
measured in the first place rather than to the metric properties themselves. We add
this requirement because the concept of conformance (or even fitness) is not self-
explanatory, and it needs to be clearly defined what exactly should be measured.

If we evaluate existing fitness metrics based on these requirements, we can find
some problems. In the following, we provide three examples:

• As discussed in Section 4.6.1 and Section 5.4.6, the metric PF complete [161] is a
mix of a trace-based and event-based fitness function. As a consequence, it is hard
to interpret the result (understandability). Furthermore, because the metric can
yield negative values, it does not define a clearly “worst” point (analyzability).

• As discussed in Section 4.6.1, the Fuzzy miner [115] measures the resulting
model using two metrics: detail and conformance. The detail metric provides
an inverse indication of the degree of abstraction (percentage of nodes that are
neither clustered nor totally hidden, weighed by their significance). As a com-
plement, the conformance metric is supposed to measure the fit of the abstracted
model, and it is based on a log replay according to the relaxed execution seman-
tics of Fuzzy models.
However, not only events that cannot be replayed because their clustered or prim-
itive node is not enabled are counted as a deviation, but also events that belong
to nodes that were totally removed (i.e., are not represented in the abstracted
model at all). This is counter-intuitive, because one would expect the confor-
mance metric to indicate the conformance of the abstracted model with respect
to the projected log—the conformance should thus only depend on the arcs in
this abstracted model and not on events that were abstracted from (stability).

• The token-based fitness metric f presented in Section 4.3.1 also has several prob-
lems. For example, the definition is based on the number of missing and re-
maining tokens during log replay, so the user is forced to concern oneself with
the underlying replay mechanism for interpreting the metric (understandability).
A notion based on the portion of “problematic events” or “problematic traces”
would be much easier to grasp.
Furthermore, due to the complexity of replaying Petri nets including invisible and
duplicate tasks, some of the replay choices (that cannot be decided locally) are
being made randomly, which means that the same result can only be guaranteed
if the analysis is performed with the same implementation and with the same
Petri net file (reproducibility). Because the replay is not fully deterministic, the
same Petri net (in a logical sense)—but listing the tasks in a different order in the
file that is loaded for analysis—might lead to a different result.
Finally, as shown in Section 5.4.6, due to token accumulation the metric leads to
optimistic results for simple models without parallelism (rarely dropping below
40% fitness for logs with 100% noise). This leads to a distorted fitness ratio as
the measured fitness may seem much better than it actually is (analyzability).
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The problems discussed for the token-based metric can be transferred to other
log replay-based fitness metrics as well. For example, optimistic results for simple
models without parallelism are also yielded for the metric CPM [262] and the event-
based part of the metric PF complete [161]. Furthermore, the notion of tasks that
“remain enabled” assumes an understanding of the underlying replay mechanism.

A similar metric to the Improved continuous semantics fitness (PF complete [161])
is the Continuous semantics fitness (not yet discussed in this thesis). Both metrics
are provided as feedback for the quality of the discovered model in the Heuristics
miner [261] in ProM. The latter metric relates the number of events that could be
parsed correctly to the total number of events (first component), and measures the
number of properly completed traces on the process instance level (second compo-
nent). The first component of the metric is weighed with 40% and the second com-
ponent with 60% for the overall fitness indication. So, event-based and trace-based
measurements are being mixed in a 40-60 ratio.

Again, this metric can be explained in the context of the genetic mining algo-
rithm [161], which needs a single fitness function1 for evaluating the quality of the
discovered models, and thus for steering the genetic algorithm. So, the “right mix”
of quality parameters is essential for a genetic algorithm to provide good results.
However, from an end user perspective it would be better to have separate metrics
for the event-based and trace-based fitness. As discussed earlier, trace-based metrics
are often meaningless if process instances are long because no trace will fit even for
small percentages of deviations. Recall for example the ASML case study presented
in Section 4.5.4, where there were very few process instances containing thousands
of events each, and none of the instances is fitting completely.

In [159] process mining is used to perform simulation experiments based on the
discovered models. In this context, the Continuous semantics fitness is used as the
only quality measure for the degree with which the discovered models are able to
describe reality. While the authors sometimes change the parameters of the heuristic
miner to obtain better fitting models, they also turn to the conformance visualization
of the Fuzzy miner [115] to identify traces that have the most replay problems (the
Heuristics miner does not provide any help in locating the problems). They then
remove these “outlier” traces to discover a new model with a better fitness.

Apart from the fact that representativeness of their discovered models should not
be evaluated based on the cleaned log (while it is legitimate to simplify the model
based on mining the cleaned log, the fitness of the new model should be evaluated
based on the complete reality, i.e., the whole log), the Fuzzy conformance and the
metrics used in the Heuristics miner are also not really comparable. However, for
a user of the process mining tools this is not apparent. There are all these different
metrics, for different types of models, and a user is expected to know what these
metrics mean and when they can be applied—it surely is confusing.

1 The term ‘fitness function’ refers to a general quality measure that is used by any genetic
algorithm to evaluate and select individuals in each generation. From a process mining
perspective this ‘fitness function’ may include quality aspects from the fitness, precision/-
generalization, and structure dimension.
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6.2.3 Unification

We have seen that a number of fitness metrics have been defined for different process
modeling languages (e.g., Petri nets, Heuristic nets, and Fuzzy models). They are
all based on some kind of log replay. However, their notion of fitness varies and,
therefore, the metrics are not directly comparable to each other. Furthermore, other
process modeling languages (e.g., EPCs or BPMN models) cannot be replayed yet.

From an end user perspective, one would wish to be able to take any existing
process model and measure the fitness to a given event log. For this, two ingredients
are required: (1) a commonly interpretable set of fitness metrics, and (2) a way to
bridge the different semantics of existing modeling languages.

Figure 6.6 depicts one possible way to approach unification of currently existing
and future fitness methods. A process model-specific log replay is implemented for
each modeling language, and a set of agreed-upon measurements is being derived
during the log replay. Based on these measurements, generic fitness metrics could
be calculated for any input model that can be replayed. One problem with this alter-
native is that most of the effort and also difficulties lie in the log replay itself. So,
making a new log replay for a new type of model is not trivial. Furthermore, we
will see later that there are many design choices as to which and when tokens need
to be consumed. So, any new log replay implementation is likely to be limited and
somewhat arbitrary. Finally, this approach does not solve the problems described in
Sections 6.2.1 and 6.2.2.
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Fig. 6.6. Unification alternative A: Implement log replay for each new model type, and derive
a commonly agreed set of fitness measurements that can be used to calculate generic fitness
metrics.

Figure 6.7 illustrates another unification approach, which will be pursued in the
next section. Instead of implementing specific log replays for new types of process
models, we design a log replay based on a type of process model that is flexible
enough to both capture fuzzy choice situations (e.g., OR-splits) and precise require-
ments (e.g., XOR-splits and AND-joins). Translations into this new formalism are
then needed to support the approach for existing process modeling languages.
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Fig. 6.7. Unification alternative B: Implement log replay for a flexible process model type,
and create translations to this formalism from other languages.

6.3 A Flexible Conformance Checking Framework

Figure 6.7 provides a road map for the conformance checking framework described
in this section. We termed it ‘flexible’ to emphasize the parameterized nature of the
framework, which allows to accommodate different model semantics, replay seman-
tics, and fitness semantics. First, the model representation of the flexible confor-
mance checking approach is described (Section 6.3.1). These process models can
then be replayed with varying parameters (Sections 6.3.2–6.3.3), thus making the
design choices during log replay explicit and changeable. (In Section 6.4 will show
the effect of varying one of these parameters.) Finally, a set of generic fitness met-
rics is defined based on the new log replay (Section 6.3.4). The translations that are
necessary to apply this approach to the different types of process models (e.g., Petri
nets, EPCs, Heuristic nets, etc.) are beyond the scope of the described framework.

6.3.1 Model Representation

To enable our flexible conformance checking approach to be based purely on local
decision making, we choose a representation that allows for an easy description of
more complex choice situations (e.g., OR splits) natively. In Section 6.2.1 we have
shown that Petri nets are not a suitable modeling language for replaying OR splits.
Therefore, we take the Fuzzy model formalism as a starting point. However, we do
not consider hierarchical models and thus do not allow for clusters in the model2.
Similar to the current Fuzzy model approach, we also do not allow for duplicate
or invisible tasks in our process model. This is necessary to guarantee an efficient
conformance check procedure based on the log replay method. Nevertheless, later in
2 Note that this is not a restriction since clusters (or other types of sub processes) can be

“unfolded” for the purpose of conformance checking.
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this chapter we will see how also global control-flow constraints and duplicate tasks
can be incorporated by adopting a hybrid approach (see Section 6.5).

While we take the Fuzzy model formalism as a conceptual starting point, we
have shown in Section 6.2.1 that Fuzzy models are not capable of describing more
precise split and join situations. Since this, however, is necessary for the purposes of
conformance checking, we provide an extended definition of this formalism, which
we call flexible process model.

Definition 20 (Flexible Process Model) An flexible process model is a tuple (T, tS ,
L, l, F, in, out), where:

• T is a finite set of task nodes,

• tS ∈ T is the start task,

• L is a finite set of labels,

• l ∈ T → L is an injective labeling function,

• F ⊆ T × T is a set of directed arcs, called the flow relation,

• in ∈ T → P(P(T )) is a function that provides a set of synchronization al-
ternatives for a task t ∈ T , whereas each element in the set corresponds to a
combination of tasks that enable t,

• out ∈ T → P(P(T )) is a function that provides a set of enabling alternatives
for a task t ∈ T , whereas each element in the set corresponds to a combination
of tasks that are enabled by t,

• for t ∈ T : •t = {x|(x, t) ∈ F} and t• = {x|(t, x) ∈ F} denote the set of
predecessor and successor nodes, respectively,

• •tS = ∅, i.e., the start node has no predecessor nodes,

• ∀t∈T (tS , t) ∈ F trans, i.e., every node can be reached via a path from the start
node,

• ∀t∈T • t = ∪X∈in(t) X , i.e., the synchronization alternatives are composed of
predecessor nodes, and

• ∀t∈T t • = ∪X∈out(t) X , i.e., the enabling alternatives are composed of succes-
sor nodes.

The formalism is called ‘flexible’ because it is able to be both precise and fuzzy
to the degree necessary. Consider the following example. Figure 6.8 depicts a paper
review process as a flexible process model. Without further specification, every node
has AND split and OR join semantics, thus enabling all successor nodes while being
enabled by a single predecessor node (just like the Fuzzy models). As an example, the
corresponding in and out specifications for the default semantics have been indicated
in italic in Figure 6.8 for node ‘Evaluate Reviews’ and ‘Hand Out Reviews’ (of which
either one, or two, or all may be returned), respectively.

However, if needed, the split and join semantics can be made more precise by
adapting the in and out specifications. For example, it is also possible to specify that
the paper must be either accepted or rejected (cf. out specification of task ‘Decide’).
So, as soon as either ‘Accept Paper’ or ‘Reject Paper’ has been triggered, the other
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out: {{Receive Review 1, 
          Receive Review 2, 
          Receive Review 3}} 

in: {{Receive Review 1}, 
      {Receive Review 2}, 
      {Receive Review 3},
      {Receive Review 1, Receive Review 2},
      {Receive Review 1, Receive Review 3},
      {Receive Review 2, Receive Review 3},
      {Receive Review 1, 
       Receive Review 2, 
       Receive Review 3}} 

Hand Out Reviews

Receive Review 1 Receive Review 2 Receive Review 3

Evaluate 
Reviews
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Perform Missing 
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Decide
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Receive Copyright 
Form
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Publish Paper

out: {{Perform Missing Reviews, 
          Get External Advice}, 
         {Decide}} 

out: {{Accept Paper}, 
         {Reject Paper}} 

in: {{Receive Copyright Form, 
       Receive Revised Version}} 

in: {{Perform Missing Reviews}, 
       {Evaluate Reviews}, 
       {Perform Missing Reviews, 
        Get External Advice}} 

Fig. 6.8. Example of a flexible process model.

option is not valid anymore (XOR split semantics). Furthermore, it is possible to
require that in order to publish the paper it is necessary to both receive the copyright
form AND the revised version of the paper (cf. in specification of task ‘Publish
Paper’).

In addition, also more fuzzy synchronization and choice situations can be spec-
ified via in and out declarations, respectively. For example, after the evaluation of
the reviews it may turn out that not enough reviews have been collected, and that the
missing reviews must be performed by the organizers. If all reviews are present, this
is not necessary and the decision can be taken immediately. However, in the situation
that the organizers have to perform the missing reviews they can ask for advice from
another person outside the committee to ensure their neutral position. However, this
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is not required. There are thus three options: either the reviews are complete and the
decision can be taken immediately, only the missing reviews are being performed
before the decision can be taken, or both the missing reviews are being performed
and the external advice is obtained before taking the decision.

Note that flexible process models as defined above require a dedicated start task.
However, this is not a limitation because process models with multiple start elements
can implement their instantiation semantics [75] by introducing an artificial start task
(and start event) during the conversion.

The next step is to replay such a flexible process model for a given event log to
measure the conformance. The general replay procedure and the emerging design
choices related to the replay are considered in the next section.

6.3.2 Flexible Log Replay

To replay an event log in a flexible process model as described in the previous sec-
tion, it is again necessary to map log events to tasks in the process model (cf. Sec-
tion 2.4). However, because we excluded duplicate and invisible tasks (by defining l
as an injective and total labeling function), it is easy to map activity labels from the
event log to their corresponding task in the model (if possible).

Nevertheless, in the course of the log replay itself there are several design choices
that need to be made. However, before we describe these design choices in more
detail, the replay semantics of a flexible process model are formalized. The core
of the flexible replay is the fire function, which changes the replay state by (a)
removing tokens that are consumed by the fired task, (b) removing tokens that are
competing with tokens that are consumed, and (c) adding tokens that are produced
by the fired task.

The tokens that are produced (c) solely depend on the structure of the process
model, i.e., a token is produced for each outgoing arc of the task that is fired. The
consumed tokens (a) depend on the current replay state (i.e., the available tokens)
and the in specification of the task. However, here the consume function is not
fully specified yet. Instead, different consumption strategies will be discussed later
in Section 6.3.3. The destroy function has a special role (b). It destroys tokens that
are competing with the tokens that are consumed for the firing of the task according
to the out specification of the tasks that have produced these (now consumed) tokens
in an earlier replay step. This way, choices between alternative tasks can be realized
although tokens for all successor tasks are produced initially (c).

Definition 21 (Flexible Replay) The replay semantics of a flexible process model
(T, tS , L, l, F, in, out) can be defined as follows:

• I is a totally ordered set of IDs, e.g., I = N,

• TS is a totally ordered set of timestamps, e.g., TS = R,

• S = P(F × I)× (I 6→ TS) is the current replay state,
whereas for s = (a, tm) ∈ S
a is the set of available tokens (identified by IDs on arcs),
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tm is a function mapping each occurrence identified to a timestamp, and
∀i,j∈dom(tm) i < j =⇒ tm(i) ≤ tm(j),

• s0 = (∅, ∅) is the initial replay state,

• next ∈ S → I , provides a new, “fresh” ID, i.e.,
∀s=(a,tm)∈S next(s) ∈ I \ dom(tm),

• consume ∈ (S×T )→ P(F × I) is a token consumption function such that for
any s = (a, tm) ∈ S and t ∈ T : consume(s, t) ⊆ a,

• destroy ∈ (S × T ) → P(F × I) is a token destruction function such that for
any s = (a, tm) ∈ S and t ∈ T : destroy(s, t) =
{((t′, t′′), i) ∈ a | ((t′, t), i) ∈ consume(s, t) ∧ t′′ 6∈ ⋃d∈out(t′)

t∈d
d},

• fire ∈ (S×T×TS)→ S is a firing function such that for any s = (a, tm) ∈ S,
t ∈ T , and ts ∈ TS: fire(s, t, ts) =
((a \ (consume(s, t) ∪ destroy(s, t))) ∪ {((t, t′), next(s)) | t′ ∈ t•},
tm ∪ {(next(s), ts)}).
Both the destroy and the fire function depend on the consume function (and

consume is a “parameter” in the replay strategy). Consider the example scenario
depicted in Figure 6.9. Suppose that no task has been fired yet. Then, task X is being
fired at time 5 and a token is produced for each of X’s output arcs, as shown in
Figure 6.9(a). All these tokens are associated with the same ID, and the ID is mapped
to some timestamp that corresponds to the time of the firing. Now, task D is fired at
time 8 in the next replay step, which is depicted in Figure 6.9(b). Here, it is easy to
see that the token that was provided by the firing of task X is consumed. Furthermore,
new tokens would be produced on the output arcs of D if there were any successor
tasks. But in addition to the consumed token on the arc to D, also two other tokens
on the arcs to A and B are removed from the replay state. They are destroyed because
according to the specification of out(X) they are incompatible with the consumed
token, and must thus no longer be available.

X

A DB C

out: {{A,B}, {C,D}, {C}}

(a) After firing task X the replay state
is s = ({((X,A), i), ((X,B), i),
((X,C), i), ((X,D), i)}, {(i, 5)})

X

A DB C

out: {{A,B}, {C,D}, {C}}

(b) After firing task D the replay state is
s = ({((X,C), i)}, {(i, 5), (i+ 1, 8)})

Fig. 6.9. Illustration of the replay state before and after firing task D. Competing tokens are
destroyed based on the out specification of task X.
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The fire function indicates how the replay state is changed by consumed, de-
stroyed, and newly created tokens whenever a task t is fired. So, given that a concrete
consume strategy has been defined (cf. Section 6.3.3), we can already use this fire
function to replay our model.

However, as discussed in Section 5.4.6, it is not always desirable to let “very
old” tokens be consumed at a much later point in time. Therefore, we introduce the
additional concept that tokens may “expire” along the course of a replay.

Definition 22 (Expire) During a flexible log replay, expire ∈ (S × TS) → S is
the function that removes all tokens that have expired in the current replay state. For
any s = (a, tm) ∈ S and ts ∈ TS:

expire(s, ts) = ({((t, t′), i) ∈ a | tm(i) ≥ ts}, tm)

Note that although expire is based on the timestamp of a token, the replay times-
tamps could also be realized via a discrete time concept, e.g., based on the sequence
number of an event in the trace. This enables, for example, a replay in which to-
kens expire if they are not consumed in the next replay step. In contrast, the expiring
of tokens can also be avoided completely by providing a sufficiently low reference
timestamp for the comparison.

The replay in Definition 21 does not specify whether enough tokens are available
to fire a particular task. It only defines how the current replay state is changed when-
ever a task is fired. In fact, it does not even specify exactly which tokens are to be
consumed (only which tokens are to be destroyed, and which tokens are to be pro-
duced). The consume function has been deliberately under-specified, because there
are multiple strategies as for how to select the tokens that should be consumed. We
will discuss some of the possible consumption strategies later in Section 6.3.3.

However, if we perform a log replay for conformance checking purposes3, then it
is necessary to determine whether a particular task is actually enabled in the current
replay state. This can be done based on the in specification of that task and the set
of available tokens as defined in the following.

Definition 23 (Enabled) During a flexible log replay, enabled ∈ (S×T )→ {true,
false} is the function that determines whether a task is enabled in the current replay
state. For any s = (a, tm) ∈ S and t ∈ T :

enabled(s, t) =
{
true if ∃d∈in(t) d ⊆ {t′ ∈ T | ∃i∈I((t′, t), i) ∈ a}
false if 6 ∃d∈in(t) d ⊆ {t′ ∈ T | ∃i∈I((t′, t), i) ∈ a}

Now, we can introduce the concrete log replay procedure that we suggest for a
flexible process model (see Algorithm 3). The replay is carried out for each trace σ
in the event log. It starts in the initial replay state s0 (see Definition 21). Then, each
event in the trace is processed as follows.

If the activity label of the event can be matched with a task label in the flexible
process model, the corresponding task is determined (otherwise the next event is

3 The log replay could also be used to, for example, collect performance measurements based
on the times that tokens are available during the replay.
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processed immediately). As discussed earlier, there cannot be multiple tasks for the
same activity label because l is an injective function. Then, the reference timestamp
is derived based on the timestamp of the current log event and the given expiration
delay (a relative time indicator for token expiration), and the expire function is used
to remove all tokens that are “older” than the reference timestamp ts−expiration
delay. Finally, the task belonging to the current event is fired, and the next event is
processed.

Algorithm 3 Log replay procedure of a flexible process model for conformance
checking purposes. consume (used by fire) and expiration delay are the parameters
in the log replay.
1: EPC ← ∅ // not related to any task
2: EPR ← ∅ // could not be replayed
3: while trace σ = 〈e1, e2, . . . , en〉 ∈ E left do
4: s← s0
5: for all i such that 1 ≤ i ≤ n do
6: if propAct(σ(i)) /∈ rng(l) then
7: EPC ← EPC ∪ {σ(i)} // (a) record coverage problem
8: continue with next i
9: end if

10: t← task with label propAct(σ(i))
11: ts← timestamp propTime(σ(i))
12: s← expire(s, ts−expiration delay)
13: if enabled(s, t) = false then
14: EPR ← EPR ∪ {σ(i)} // (b) record replay problem
15: end if
16: s← fire(s, t, ts)
17: end for
18: end while

In the course of the replay, we collect information about those events that could
not be related to any task in the model (EPC ). Furthermore, we collect information
about those events that—although they were associated to a task in the model—could
not be replayed successfully (EPR ). EPC and EPR are thus sets of problematic events
from a conformance point of view, and they will be used later in Section 6.3.4 to
define the general fitness metrics.

6.3.3 Consumption Strategies

The under-specified consume function in Definition 21 indicates that, based on the
current replay state and the task to be fired, a number of tokens should be selected
for consumption. The set of tokens can also be empty, for example if no tokens are
available for this task. But there are many different strategies to determine which of
the available tokens should be consumed in a replay step.
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The decision of which tokens to consume has an effect both on the tokens to be
destroyed, and on the availability of these tokens in a future replay step. For example,
if one would now consume token A while an alternative token B could be consumed
instead, this may lead to a fitness problem if token A is needed for replay later on.
Furthermore, consuming “older” tokens instead of “newer” tokens might increase
the fitness if the log replay is used in combination with token expiration. Because of
the impact of the decision, and because there is no obvious strategy, we want to show
the spectrum of strategies that are possible rather than making an arbitrary choice.

The first component in a consumption strategy is the decision for one of the
synchronization alternatives given in the in specifications of the task to be replayed.
However, this decision may not be taken in a single step, but a number of “filtering”
strategies can be applied in different orders. Such a selection filter is thus defined to
yield a subset of the synchronization alternatives (rather than a single element).

Definition 24 (Selection Filter) During a flexible log replay, filter ∈ (S × T ) →
P(P(T )) is a function that selects a set of synchronization alternatives such that for
any s = (a, tm) ∈ S and t ∈ T :

filter(s, t) ⊆ in(t)

Note that the selection filter determines synchronization alternatives with respect
to the in specifications. But that does not necessarily mean that the required tokens
are present to enable the task. In fact, the availability of tokens may be one criteria
that influences the decision of which of the synchronization alternatives is eventually
chosen. In the following, three example categories for how to select synchronization
alternatives are shown.

X

A LB C IH J K

in: {{A, B, C}, {H, I, J, K, L}}

Fig. 6.10. Example illustrating the “most fitting” filters: None of the two synchronization
alternatives {A,B,C} and {H, I, J,K,L} has enough tokens to be satisfied.

(1) A first obvious category is to look at which of the alternatives is “most fitting”
based on the tokens available in the current replay state. For example, in the situation
depicted in Figure 6.10 none of the two synchronization alternatives would have all
the tokens it needs.

To filter the input sets of a task based on the “most fitting” principle, the following
filtering strategies could be applied:
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• Most tokens available: Select those sets of input tasks for which the most tokens
are available. For the example in Figure 6.10, this filter would lead to a selection
of the set {H, I, J,K,L}.

• Least tokens missing: Select those sets of input tasks for which the least to-
kens are missing. For the example, this filter would lead to a selection of the set
{A,B,C}.

• Relative token availability: Select those sets of input tasks for which the rela-
tively most tokens are available (compared to the total amount of tokens needed).
For the example, this filter would also lead to a selection of the set {A,B,C}.

Note that the first strategy would select {H, I, J,K,L} and the second and third
strategy would select both input sets in the case that a token would be available on
each of the arcs in the example depicted in Figure 6.10.

X

A B C

in: {{A}, {B}, {A,C}}

3
4

12

Fig. 6.11. Example with 4 tokens available in the current replay state. All tokens needed for
the input sets {A}, {B}, and {A,C} are available. The numbers indicate the token ID.

(2) A second filtering category is based on the size of the set of input tasks. For
example, in the the example depicted in Figure 6.11 all tokens needed to satisfy
the three input sets are available. So, one would still need to choose one of them
to eventually consume the corresponding tokens. Based on the size principle, the
following filtering strategies could be applied:

• Largest set: Select those sets of input tasks that have the most members. In the
example in Figure 6.11 this would lead to a selection of the set {A,C}, because
the set has two elements and the other one have only one element.

• Smallest set: Select those sets of input tasks that have the least members. In the
example this would lead to a selection of the sets {A} and {B}, because both
sets have only one element and {A,C} has two elements.

(3) A third filtering strategy is based on the ID of the tokens (which is assumed to
be consistent with the timestamps according to Definition 21). The following time-
based filtering strategies could be applied:

• Earliest ID. The earliest token selection strategy corresponds to a first-in-first-
out strategy. Choosing the set of synchronization alternatives based on the notion
of “earliest timestamp” leads thus to the consumption of tokens that were pro-
duced earliest in the replay procedure. However, this strategy can again have
several variants. Three examples are listed below.



6.3 A Flexible Conformance Checking Framework 209

X

A B C

in: {{A,C}, {B,C}}

3 12

Fig. 6.12. Example with 3 tokens available in the current replay state.

(a) Single earliest: Select those sets of input tasks that contain the token with the
earliest ID. For the example in Figure 6.11 this would lead to a selection of the
set {A,C}, because this is the only set that contains the element with the earliest
token (i.e., C). Note that because the input sets do not need to be disjoint, the
earliest token may be associated to more than one synchronization alternative.
For example, in the example depicted in Figure 6.12 {A,C} and {B,C} would
be selected, because both contain the the element with the earliest token (i.e., C).
(b) Lowest average: Select those sets of input tasks that contain lowest average
ID. For the example, for Figure 6.11 this strategy leads to the selection of the sets
{B} and {A,C}, because both have an average token time of 2.
(c) Most earliest: Select those sets of input tasks that map to tokens with the over-
all lowest ID. Here, one again starts with the earliest token, but unlike with the
single earliest strategy the next-earliest token is considered if the selection has
not yielded a definite answer (i.e., a single synchronization alternative). For ex-
ample, in Figure 6.12 this strategy would lead to the selection of the set {B,C}.

• Latest ID. Instead of following a first-in-first-out consumption strategy, one
could also choose a last-in-first-out strategy. Here, the same variants exist:
(a) Single latest: Select those input sets that contain the single most recently
produced token. In Figure 6.11 this would lead to the selection of the sets {A}
and {A,C}, because both contain the element with the latest token (i.e., A).
(b) Highest average: The highest average token time strategy in the example in
Figure 6.11 leads to the selection of the set {A}, because for this set the highest
average token time of 4 (while the highest average token time for {A,C} is 2.5).
(c) Most latest: The selection of the set with the overall latest tokens currently
available also leads to choosing the set {A} in Figure 6.11, because there is no
further element in the set that could be compared (but {A,C} contains one more
element, and thus has less “most latest” tokens).

The idea is that strategies from the three categories discussed above will be used
in combination to yield a single synchronization alternative, which will then be the
basis for the log replay in this consumption step. However, it is important to see
that the order of applying these strategies makes a difference. Consider for example
Figure 6.11, where applying first the single earliest and then the smallest set strategy
will lead to the selection of the set {A,C} while applying first the smallest set and
then the single earliest strategy will lead to the selection of the set {B}.
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Furthermore, it seems reasonable to first apply one of the “most fitting” strategies
to ensure that the replay is using the tokens that are available. Also, note that none of
these strategies in the three categories discussed above is guaranteed to yield a single
synchronization alternative, except the most earliest and most latest strategies in
category (3). Therefore, one of these strategies should be applied as the last filtering
step to ensure that the log replay is deterministic.

Assuming that a combination of filtering strategies has lead to a single synchro-
nization alternative from the in specifications of the task to be fired, one now needs
to select the exact tokens that should be used for consumption.

Definition 25 (Token Selection) During a flexible log replay, select ∈ (S × T ×
P(T ))→ P(F × I) is a function that selects a set of tokens for a given synchroniza-
tion alternative such that for any s = (a, tm) ∈ S, t ∈ T , and d ⊆ T :

select(s, t, d) ⊆ {((t′, t), i) ∈ a | t′ ∈ d}
For the actual token selection there could be again several strategies:

• Earliest of the same type: Select the earliest token from each input arc for the
chosen synchronization alternative.

• Latest of the same type: Select the latest token from each input arc for the chosen
synchronization alternative.

• All: Select all tokens from the input arcs determined by the synchronization al-
ternative. Together with the largest set filtering, this selection strategy would, for
example, correspond to the current replay semantics of the Fuzzy models (where
all input tokens are consumed upon firing a task).

• None: Select no token and return the empty set. This selection strategy could, for
example, pursued if one only wanted to consume tokens if the task is actually
enabled.

From the examples above one can see that there are many different consumption
strategies by combining different selection filters and a token selection strategy. In
the following, we give two example consume functions and explain them informally.

• consumeA: (1) The filtering of synchronization alternatives starts with the Least
tokens missing strategy. This way, it is guaranteed that only “fitting” synchro-
nization alternatives are chosen if they are available (there may be still multiple
alternatives that fulfill this requirement). (2) In a second filtering step the sets
with the least input elements are chosen using the Smallest set strategy (among
the fitting sets determined in the first step). This way, only the minimum num-
ber of available inputs is chosen. (3) Finally, the Most earliest strategy is applied
to choose among the remaining synchronization alternatives in an unambiguous
way. (4) For the actual token selection, the strategy Earliest of the same type is
used.

• consumeB : (1) The filtering also starts with the Least tokens missing strategy. (2)
In contrast to consumeA, however, the largest fitting sets will be then determined
using the Largest set strategy (and thus tokens will be consumed greedily during
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the replay). (3) Finally, also the Most earliest strategy is applied to choose the
synchronization alternative to be used for token selection. (4) For the actual token
selection, the strategy All is used, again, to greedily consume tokens.

One important aspect is that using these strategies the log replay can be made
fully deterministic. Available tokens are not consumed randomly, and therefore the
replay can be reproduced with a different implementation or with equivalent log
and model files as well. Furthermore, performance measurements (e.g., based on
measuring the time between production and consumption of tokens) can be made
more reliably.

X

A B

in: {{A}, {B}, {A,B}}

(a) Replay of the sequence ABXX in this
model fragment would only be valid in
combination with the smallest set filtering
strategy

X

A B

in: {{A}, {B}}

(b) Replay of the sequence ABXX in this
model fragment would be valid in combi-
nation with either the smallest set or largest
set filtering strategy

Fig. 6.13. Illustrative example where the consumption strategy changes the model semantics
depending on the flexible process model representation.

Finally, note that the consumption mode directly affects the model semantics.
For example, consider Figure 6.13, where the same model fragment is depicted with
different in specifications. While the smallest set and largest set filtering strategy
make no difference for the model depicted in Figure 6.13(b), i.e., one of the two to-
kens will be consumed when firing X in the current replay state, choosing the largest
set strategy in the case of Figure 6.13(a) will lead to the consumption of both tokens
instead of one (as would be the case with the smallest set strategy).

Task X in the model fragment in Figure 6.13(b) thus corresponds to the multi
merge semantics [13] regardless of the strategy, while the fragment in Figure 6.13(a)
will act as a multi merge only in combination with the smallest set strategy. So, when
translating the initial process model into a flexible process model, the replay seman-
tics might need to be considered as well to capture the desired behavior appropriately.

6.3.4 Generic Fitness Metrics

The log replay procedure defined in Algorithm 3 identifies (a) events that could not
be replayed properly according to the model (EPR ), and (b) events that were not
covered by the process model in the first place (EPC ). Based on these sets EPR and
EPC a number of generic fitness metrics can be defined.
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Coverage problems can emerge if the process discovery algorithm simplifies the
model by removing less significant nodes (like the Fuzzy miner [117]), or if an exist-
ing, idealized model does not cover all the activities that occurred in reality (cf. the
usability test case study in Section 4.5.3). In the case that there are coverage prob-
lems during log replay, there are different possibilities as for what to consider as a
fitness problem.

We capture the choice between considering coverage and/or replay problems in a
so-called fitness mode (cf. Definition 26). For example, it is possible to consider re-
play problems in isolation, and thus ignore events that are not covered by the model
(replay). This is the typical situation for existing quality metrics from the process
mining domain, since they assume all events being represented in the model. Further-
more, one can consider coverage problems in isolation (coverage). This approach
corresponds to the log coverage metrics provided in Section 2.4 and the detail metric
in the Fuzzy miner [115]. Finally, both replay and coverage problems can be consid-
ered as problems that should be counted (total).

The fitness mode thus determines which events are problematic, and which events
are in the scope of the analysis. It will be later used as a parameter in the calculation
of actual fitness metrics.

Definition 26 (Fitness Mode) After a flexible log replay of an event log E has been
completed, FM = P(E) × P(E) indicates the possible fitness modes such that for
any fm = (ε, ε′) ∈ FM : ε ⊆ ε′. Note that ε is the set of problematic events, and
ε′ is the set of reference events. In the following three example fitness modes are
defined:

total = (EPC ∪ EPR , events(E)) (6.1)
replay = (EPR , events(E) \ EPC ) (6.2)

coverage = (EPC , events(E)) (6.3)

The fitness mode defined above yields a tuple with two sets of events. In a fitness
mode fm = (ε, ε′) ∈ FM the first element ε corresponds to the set of events
that are considered problematic, while the latter element ε′ corresponds to the set
of reference events (both problematic and unproblematic events) from the replayed
log. Note that the reference events for the replay fitness mode replay are only those
events that are covered by the model, and that for all formulas in Definition 26 ε ⊆ ε′
holds.

Based on the fitness mode, different metrics can be defined. The first metric is
a trace-based fitness (Metric 16), which determines the portion of process instances
that had no problems during log replay (whereas the definition of ‘problem’ depends
on the fitness mode).

Metric 16 (Trace Fitness) Given a flexible process model (T, tS , L, l, F, in, out)
replayed for event log E, and a given fitness mode fm = (ε, ε′), the trace fitness
ftrace can be defined as follows:

ftrace = 1− |{σ ∈ E | ε ∩ set(σ) 6= ∅}|
|E| (6.4)
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A more fine-grained way to look at fitness in a trace-based manner is to calculate
the portion of events that had no problem during log replay for each trace. This way,
one can determine the average trace fitness (Metric 17). The minimum trace fitness
(lowest fitness value of all traces) and maximum trace fitness (highest fitness value
of all traces) could be defined in a similar way.

Metric 17 (Average Trace Fitness) Given a flexible process model (T, tS , L, l, F,
in, out) replayed for event logE, and a given fitness mode fm = (ε, ε′), the average
trace fitness favg can be defined as follows:

fEavg = 1−

∑
σ∈E

|ε ∩ set(σ)|
|ε′ ∩ set(σ)|
|E| (6.5)

fLEavg = 1−

∑
σ∈E

| {propAct(e) | e ∈ ε ∩ set(σ)} |
| {propAct(e) | e ∈ ε′ ∩ set(σ)} |

|E| (6.6)

Note that the average trace fitness is specified both on the event level (fEavg) and
on the log event level (fLEavg). The latter in fact corresponds to the portion of types of
events that had no problem during replay. This is similar to the log coverage metrics
provided in Section 2.4, which were also defined both on the event and the event type
level.

Finally, the fitness can be based on absolute portion of events, or types of events,
that had no problem during replay of the whole event log (Metric 18). Here, process
instance boundaries are ignored and, therefore, it makes no difference in which way
the errors are distributed over the traces in the log.

Metric 18 (Absolute Fitness) Given a flexible process model (T, tS , L, l, F, in,
out) replayed for event log E, and a given fitness mode fm = (ε, ε′), the absolute
fitness fabs can be defined as follows:

fEabs = 1− |ε ||ε′| (6.7)

fLEabs = 1− | {propAct(e) | e ∈ ε } || {propAct(e) | e ∈ ε′} | (6.8)

All the metrics defined in this section range from 0.0 (worst value) to 1.0 (best
value), and they measure a different aspect of fitness in isolation (e.g., Trace Fitness
vs. Absolute Fitness). In combination with all possible fitness modes, they cover 15
different fitness metrics4. This way, the metrics provide a fitness spectrum with well-
defined semantics rather than a single metric without a clear meaning. Depending
on the goal of the fitness measurements, different metrics from this spectrum can be
considered and weighed accordingly.
4 If one considers also Minimum and Maximum Trace Fitness (next to Average Trace Fit-

ness), then there are 27 different fitness metrics.
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Table 6.1 depicts an overview, where each of the 15 cells in the table corresponds
to one of the generic fitness metrics (i.e., a particular metric / fitness mode combi-
nation). In these cells, we filled in a number of other fitness metrics that come close
to these concepts. One can observe that many of the cells remain empty, and most
existing fitness metrics populate the ftrace and the fEabs metric in the replay fitness
mode.

Table 6.1. Overview of how other fitness metrics relate to the generic fitness metrics defined in
this section (Metrics 16–18) in the three fitness mode variations total, replay, and coverage
(cf. Definition 26).

fm ftrace fE
avg f

LE
avg fE

abs fLE
abs

total • Fuzzy conformance [115]

replay

• completeness [111] • f (Metric 3)
• PM [262] • CPM [262]
• PF complete [161] • PF complete [161]
• Trace Fitness • Log Event Fitness
(Metric 11) (Metric 13)

coverage
• CE (Metric 1) • CLE (Metric 1)
• Fuzzy detail [115]

Note that, however, not all of these metrics exactly match the generic fitness met-
ric in the indicated cell. For example, the metric PF complete is listed in two cells be-
cause it combines a trace-based and an event-based fitness component. Furthermore,
the metric f is actually defined on the token level (not the event level).

Finally, one aspect that most of the metrics that are listed in Table 6.1 in the
replay fitness mode column share is that they also punish “unused” activations that
remain in the model after replay (the absence of such remaining activations is often
called ‘proper completion’). In the generic fitness metrics defined in Metrics 16–18
we deliberately do not consider ‘proper completion’. This choice is motivated by
several reasons:

• In analyzing fitness, one is interested in the “allowed” behavior described by
the model, and to which extent reality deviates from it. It is not necessary that
the model can be used to control the process (e.g., in a workflow engine). As a
consequence, also modeling formalisms with more relaxed execution semantics
(e.g., Fuzzy models) can be used to describe these models in a less precise way.
For such relaxed formalisms, however, it is not true anymore that activations
correspond to control threads that must be carried forward. Activations describe
possible but not necessarily obligatory behavior.

• Fitness problems caused by, for example, missing activities, or activities per-
formed in the wrong order typically lead to a symmetric amount of “missing” and
“remaining” tokens. If a precise process model (e.g., a Petri net) can be replayed
correctly and there are only remaining activations, then this usually indicates a



6.4 Evaluation 215

correctness problem of the model. This may be useful feedback in a process dis-
covery setting (where fitness metrics are used as a quality metric), but detecting
correctness problems is not the purpose of conformance checking. Other methods
exist to perform verification tasks. For example, it can be determined efficiently
whether a WF-net is sound or not (cf. Section 2.3).

• Understanding the concept of ‘remaining activations’ requires an understanding
of the log replay procedure itself. The idea of “events that do not match the flow
of the process model” has a much more intuitive interpretation for the end user.

• It should be possible to analyze incomplete traces (i.e, process instances that are
still running) in order to verify whether they have been compliant “up to now”.
This is particularly important if conformance checking is to be used at run-time,
e.g., in the context of a monitoring solution.

• If remaining activations are not completely optional, then their firing will be
required for some task at some point in the process. Even if it is only required to
perform the activity at “some point in time”, then its output can be mapped to the
end task (or an artificial end task) of the process, so that non-execution leads to a
‘missing activation’ problem. If this is not the case, there is no need to “punish”
an activity for being enabled and not fired.

6.4 Evaluation

Making translations from existing process modeling languages to the Flexible Pro-
cess Model formalism defined in Section 6.3.1 is not trivial and has not been tackled
in this thesis (cf. scope in Figure 6.7). As a consequence, it is difficult to evaluate the
approach based on real-life models and logs.

Therefore, the evaluation in the remainder of this section focuses on the following
aspects. First, we revisit two of the examples that were shown to be problematic
for the Petri net-based and the Fuzzy model-based approach, respectively, and we
illustrate that the framework can now handle both of these examples (Section 6.4.1).
Then, we limit ourselves to the evaluation of one of the replay parameters of the
flexible log replay framework, namely the token expiration parameter. The effect of
this parameter is investigated both for artificially generated logs with varying levels
of noise (Section 6.4.2), and for an earlier case study example (Section 6.4.3).

6.4.1 Applicability

One of the first problems considered at the beginning of this chapter (cf. Sec-
tion 6.2.1) was that not all models were applicable for conformance checking. For
example, the OR-split in the model discovered from the webserver logs in Figure 6.3
could not be replayed using the Petri net-based approach.

Figure 6.14 depicts this model as a flexible process model. The in and out spec-
ifications of the people.htm and whatsnew.htm tasks are not depicted in Figure 6.14.
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ArtificialStartTask

people.htm whatsnew.htm promdemo.htm

ArtificialEndTask

out: {{people.htm, whatsnew.htm, promdemo.htm}}

in: {{people.htm}, {whatsnew.htm}, {promdemo.htm}, 
       {people.htm, whatsnew.htm}, 
       {people.htm, promdemo.htm}, 
       {whatsnew.htm, promdemo.htm},
       {people.htm, whatsnew.htm, promdemo.htm}}

in: {{ArtificialStartTask}}

out: {{promdemo.htm},
         {ArtificialEndTask}}

Fig. 6.14. Webserver log mining example from Figure 6.3 and Figure 6.4 as a flexible process
model. The in and out specifications of the people.htm and whatsnew.htm tasks are similar to
the promdemo.htm in and out specifications.

They are similar to the promdemo.htm in and out specifications (i.e., the Artificial-
StartTask is the only required input, and the task itself and the ArtificialEndTask are
competing output nodes).

We replay this model for the event sequence (ArtificialStartTask) people.htm
whatsnew.htm (ArtificialEndTask) using the following replay parameters for the pro-
cedure described in Algorithm 3:

• expiration delay =∞ (i.e., no token expiration)
• consumeB (cf. Section 6.3.3)

Note that this greedy filtering and token selection strategy of consumeB mimics
the Fuzzy model replay semantics given that the model is translated with the cor-
rect in and out specifications. Similar to the Fuzzy model replay, the OR-split in
Figure 6.14 can be replayed without problems. All fitness metrics yield 1.0.

A

D

B

C

out: {{B}}

in: {{A}}

out: {{C}, {D}}

in: {{B}}in: {{B}}

Fig. 6.15. Example from Figure 6.2(a) as a flexible process model.

However, the Fuzzy model-based approach was not capable to detect a problem
when replaying the sequence ABCD in the model depicted in Figure 6.2(a). Fig-
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ure 6.15 depicts this model as a flexible process model. We use the following param-
eters from Algorithm 3 for the replay of the flexible process model in Figure 6.15:

• expiration delay =∞ (i.e., no token expiration)
• consumeA (cf. Section 6.3.3)

This filtering and token selection strategy of consumeA matches the semantics
of the Petri net-based log replay defined in Chapter 4, except that there the eventual
token selection is not based on time (but made randomly). The replay of the incorrect
trace ABCD in the model of Figure 6.15 leads to a fEabs (cf. Metric 18) fitness of 0.75:
1 out of 4 events cannot be replayed because the token produced for node D has been
destroyed after firing C.

These two examples illustrate that—compared to the existing approaches—a
wider spectrum of models (precise and fuzzy) can be replayed using the flexible
conformance checking framework. However, note that in order to enable an efficient,
local replay, duplicate tasks are not allowed in the flexible process model formalism
(whereas duplicate tasks are allowed in the Petri net-based approach presented in
Chapter 4). In Section 6.5, we will suggest to alleviate this problem by using a hy-
brid conformance approach that combines the checking of an explicit process model
and declarative constraints. At the same time, there are also rich process modeling
languages such as YAWL (cf. Section 2.5.2) that contain advanced workflow patterns
such as cancellation regions. Further research is needed to investigate to which ex-
tent existing process modeling languages can be represented in the new conformance
checking framework.

6.4.2 Token Expiration – Artificial Example

Although we do not have translations from existing process modeling languages to
flexible process models in place yet, it is relatively easy to create a naı̈ve conversion
algorithm for simple process models without parallelism5 in order to investigate the
effect of the new token expiration function on such simple models.

In Section 5.4.6, we had observed that (in such simple process models without
parallelism) tokens accumulating from the replay of earlier tasks were re-used much
later, which lead to an optimistic fitness measurement particularly for poorly fitting
logs. As discussed in Section 6.2.2, this leads to an analyzability problem of the fit-
ness metric. In Section 6.3.2, we defined the expire function as one of the parameters
of the flexible log replay to address this problem.

To illustrate the effect that this replay parameter can have on the fitness measure-
ments, we evaluated logs for 50 different transition noise levels with respect to the
sequential Channel Selection Task reference model depicted in Figure 4.25(a), using
the HMM-based noise generation approach presented in Section 5.4. We compared

5 In fact, we used the conversion mechanisms from Petri nets and Heuristic nets to Fuzzy
models as realized in [115] for a structural transformation. Furthermore, all in and out
specifications were formulated in such a way that they represent XOR splits and joins.
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the development of the values for the token-based fitness metric f (cf. Metric 3 de-
fined in Section 4.3.1) and the event-based absolute fitness metric fEabs (cf. Metric 18
defined in Section 6.3.4).
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Fig. 6.16. Fitness values of the token-based metric f , and the event-based absolute metric fE
abs

with and without token expiration for 50 different transition noise levels, 100 traces per log,
and maximum 100 events per trace, for the Channel Selection Task reference model depicted
in Figure 4.25(a).

For the absolute fitness metric fEabs we used two different replay configurations.
For both configurations, we used the consumeA function for filtering and token
selection. However, in one of the configurations we set expiration delay = ∞ (i.e.,
no token expiration), while in the other configuration expiration delay = 1 (assuming
discrete time reflecting the replay steps). This way, tokens expired if they were not
used in the next replay step. The latter configuration corresponds to the semantics one
would expect for a model without parallelism. Because the model does not contain
parallelism, we can be sure that tokens do not need to “live longer” than up to the
next replay step, and thus adjust the expire function accordingly.

Figure 6.16 depicts the fitness values (y axis) for the different noise levels (x
axis). Absolute Fitness (exp) refers to the event-based metric where tokens expired
during log replay if they were not used in the very next step. One can see that the
Absolute Fitness (i.e., without token expiration) behaves very similarly to the Token
Based metric. Both yield optimistic results particularly for very noisy logs. However,
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the metric Absolute Fitness (exp) scales more or less linearly, inversely related to the
degree of errors in the noisy logs.

6.4.3 Token Expiration – Case Study

Being confident that we can now determine the “true” fitness for sequential models
using our flexible conformance checking approach, we repeat the fitness measure-
ments performed for the usability task logs in the case study in Section 4.5.3. We
selected the trace-based metric ftrace and the event-based metrics fEavg and fEabs, and
vary both the fitness mode (total, replay, and coverage) and the expiration mode
(yes, no).

So, just like in Section 6.4.2 we let tokens expire in one configuration (Expire =
yes in Table 6.4.3), and not in the other (Expire = no). But here the expiration policy
is slightly different: Again, a token is being removed from the set of available tokens
if it is not consumed in the next replay step. This corresponds to the correct replay
semantics because all models have only XOR splits and joins (i.e., they are like state
machines). However, for the idealized reference sequences there may be events in the
log that are not covered by the model, and these non-covered events are not counted
as a replay step. We chose this strategy, because if a participant goes “off track” by
performing an action she is not supposed to do to fulfill the task, then this is already
punished by the coverage and total replay mode. As long as the participant returned
to the right step in the reference sequence, we did not want to punish the “off track”
behavior twice.

The results of the analysis are summarized in Table 6.2. We can see that for the
discovered process models all events in the log are represented by a corresponding
activity in the model. Therefore, the coveragemetrics are always 1.0, and there is no
difference between the replay and the total fitness mode results. In contrast, there
are both coverage and replay problems with respect to the reference models, and it
is best to consider the total fitness mode to get an overall indication of the fitness for
these models. Furthermore, the trace-based metrics are relatively low, which means
that few participants made no error at all.

However, what we are most interested in is to which extent the optimistic fitness
measurements of the metric f have distorted the results reported in Section 4.5.3.
From Table 6.2 one can see that the difference between the measurements with-
out and with token expiration are not very big for the reference models (maximal
2% in the replay mode). However, the quality indication of the discovered models
varies significantly: The “true” fitness measurement (i.e., Expire = yes) is up to 13%
lower than the fitness measurement that is reported without token expiration (cf. high
knowledge group in the Channel Selection task).

The observation that the token expiration configuration had more impact on the
discovered models than the reference models can be explained by the fact that the
token expiration configuration has only an effect on replay errors (not on coverage er-
rors). The deviations for the reference models consist mostly of “off-track” behavior
(i.e., performed activities that are not covered by the reference model). In contrast,
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Table 6.2. Fitness measurements for the usability task logs with respect to both the idealized
reference models and the discovered models from the case study reported in Section 4.5.3.

Usability Task Group fm Expire
Reference Model vs. Discovered Model
ftrace fE

avg fE
abs ftrace fE

avg fE
abs

high

total
no 0.23 0.82 0.74 0.46 0.92 0.91
yes 0.23 0.82 0.74 0.46 0.91 0.88

replay
no 0.69 0.94 0.90 0.46 0.92 0.91
yes 0.69 0.94 0.90 0.46 0.91 0.88

Dual coverage 0.23 0.86 0.82 1.0 1.0 1.0

Screen

low

total
no 0.25 0.67 0.54 0.43 0.93 0.91
yes 0.25 0.66 0.53 0.43 0.89 0.86

replay
no 0.44 0.89 0.87 0.43 0.93 0.91
yes 0.44 0.88 0.87 0.43 0.89 0.86

coverage 0.25 0.73 0.61 1.0 1.0 1.0

high

total
no 0.0 0.64 0.59 0.38 0.93 0.93
yes 0.0 0.63 0.58 0.38 0.92 0.92

replay
no 0.0 0.84 0.84 0.38 0.93 0.93
yes 0.0 0.84 0.83 0.38 0.92 0.92

Digital coverage 0.08 0.75 0.70 1.0 1.0 1.0

Picture

low

total
no 0.31 0.79 0.75 0.5 0.95 0.94
yes 0.31 0.78 0.74 0.5 0.94 0.93

replay
no 0.31 0.91 0.90 0.5 0.95 0.94
yes 0.31 0.90 0.89 0.5 0.94 0.93

coverage 0.38 0.86 0.83 1.0 1.0 1.0

high

total
no 0.15 0.66 0.58 0.15 0.89 0.87
yes 0.15 0.66 0.57 0.15 0.80 0.74

replay
no 0.23 0.77 0.73 0.15 0.89 0.87
yes 0.23 0.76 0.72 0.15 0.80 0.74

Channel coverage 0.15 0.83 0.80 1.0 1.0 1.0

Selection

low

total
no 0.06 0.53 0.5 0.19 0.92 0.92
yes 0.06 0.53 0.49 0.19 0.88 0.88

replay
no 0.06 0.68 0.67 0.19 0.92 0.92
yes 0.06 0.67 0.65 0.19 0.88 0.88

coverage 0.13 0.77 0.75 1.0 1.0 1.0

the discovered models have no coverage errors. Instead, all errors are replay errors
because the mined models contain all activities that have been observed in reality.
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When we consider the fitness values of the discovered models from Section 4.5.3,
then we can see that all the six models have at least 90% fitness according to metric
f , and that three of them have a fitness of 95% and higher. However, according to
the fitness measured by metric fEabs including token expiration—which represents
the “true” fitness for these sequential models as demonstrated in Figure 6.16—only
two out of the six models has a fitness of at least 90% (none reaches 95%), only five
of the models have a fitness that is higher than 80%. So, if, for example, our quality
target for the mined models was 90%, then we should go back to the mining phase
and change the parameters of the Heuristics miner to create more detailed (and thus
more complex) models that fulfill this quality criteria.

Obviously, the token expiration problem is not so easy to solve for process mod-
els that contain parallel behavior. For such models, activations are not always to be
consumed in the next replay step, and it is not trivial to determine which expira-
tion delay would be “optimal” to replay such a model, i.e., allowing for the desired
concurrent activations while avoiding too many “old” tokens being consumed com-
pletely out of context. However, one strategy could be to perform the log replay
twice: once without token expiration (optimistic value) and once with a very short
token life time (pessimistic value). The fitness result would then not be a single value,
but a window indicating a lower and an upper boundary of possible fitness values.

6.5 Conclusion

In this chapter, we have discussed the challenges and problems of existing confor-
mance checking approaches. Based on these insights, we presented a flexible con-
formance checking framework with the goal to address the challenges. The resulting
framework has many different parameters, which is a disadvantage because these
parameters make it hard to configure and evaluate the approach thoroughly. Further-
more, some of these parameters are interrelated (such as the model semantics may
be affected by the replay semantics), which makes evaluation even harder.

But it important to keep in mind that our framework only makes those complex
design choices visible that emerge in a log replay-based fitness analysis context, and
which are implicitly made by existing approaches. Note that these design choices
have an impact on the fitness measurement. By no means, the presented framework
is meant for actual end users of a conformance checking tool. Rather, our framework
can be seen as an analytical guide of which aspects need to be considered when
replaying an arbitrary process model for conformance purposes.

By looking at conformance from different angles, and by defining a universe of
replay parameters and fitness semantics, an informed decision can be made of which
translation and configuration is the best for the situation at hand. For the end user,
such translations and configurations need to be made transparent and automated as
much as possible. If there remain decisions (e.g., with respect to the desired fitness
metric) then it is vital that they can be formulated understandably and unambiguously
in natural language.
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While not all the advanced behavioral patterns available in modern workflow
languages may be representable in the proposed framework, it seems reasonable to
aim at a unified conformance checking method for multiple languages to guaran-
tee a shared understanding of what the conformance results actually mean. Similar
to [211], where the authors define a canonical process format to find a common de-
nominator for process models from different languages in the context of a smart pro-
cess repository, it may be acceptable that some of the (advanced) language elements
are simply not supported.

process model

co
ns

tra
in

ts
constraints

Fig. 6.17. The declarative and process modeling approach are complementary to each
other [191].

To conclude this chapter and the conformance part of this thesis, we want to
sketch the idea of a hybrid conformance checking approach. In Section 4.6.2, we re-
viewed a number of compliance methods that are typically concerned with checking
declarative constraints with respect to a given process model (according to the ‘com-
pliance by design’ approach). However, we also mentioned declarative methods that
are able to verify a set of constraints with respect to an event log (e.g. the LTL or the
Sciff checker in ProM). Since the checking of an event log with respect to a process
model and with respect to a set of declarative constraints are inherently complemen-
tary approaches, the idea to combine them seems promising (see Figure 6.17).

While a process model explicitly defines possible behavior, constraints can re-
strict the possible behavior by specifying what must and what must not happen. The
advantages of constraint-based conformance checking approaches are the following:

(1) Global process constraints can be expressed easily. For example, LTL applies
the temporal operators (i.e., always, eventually, next, and until) in the scope of
a whole log trace. As a result, global constraints that are difficult to verify by local
approaches such as the log replay, can be addressed naturally by LTL checking.

For example, the insurance claim example from Figure 4.3 could be translated
to a flexible process model only by “folding” the two duplicate tasks A as depicted
in Figure 6.18. By doing this, the resulting model allows for more behavior than
intended, namely the repetition of the whole process after the end has been reached.
However, a constraint that forbids this behavior could be added and checked with a
declarative method.

(2) Constraint-based conformance checking approaches are able to address mul-
tiple perspectives. While it would be possible to create a log replay that checks the
consistency of an organizational model, data constraints, or time requirements, such
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A

D

B C

E F

G

H

A:
in: {{Start}, {E}, {F}}
out: {{B}, {C}}

B: 
in: {{A}}
out: {{E, D}}

C: 
in: {{A}}
out: {{D, G}}

D:
in: {{B}, {C}}
out: {{E}, {F}}

Start

E:
in: {{B, D}}
out: {{A}}

F: 
in: {{D, H}}
out: {{A}}

G: 
in: {{C}}
out: {{H}}

H:
in: {{G}}
out: {{F}}

Fig. 6.18. Running example from Figure 4.3 as a flexible process model.

organizational, data, and time-related properties can already be verified by declara-
tive methods such as the LTL checker.

Fitness 
Calculation

+ 
Diagnostic

Visualizaiton

Event Log

Process 
Model X

Flexible 
Process 
Model

Flexible 
Log Replay

Translation

Control-
flow 

Constraints

Other 
Constraints

Constraint
Checking

Fig. 6.19. Hybrid conformance checking approach that combines efficient log replay method
for process model and leaves the remaining control-flow constraints to a declarative method.
Furthermore, other constraints (e.g., organizational, data, and time requirements) can be veri-
fied using the declarative method.
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Figure 6.19 illustrates how such a hybrid approach could be realized. The initial
process model is converted into a flexible process model to by analyzed by the log
replay approach. However, since there may be aspects of the model that cannot be
expressed in this formalism (e.g., duplicate tasks), these aspects are expressed as
control-flow constraints to be checked by a declarative method. Furthermore, other
constraints (e.g., stemming from business rules in the organization) can be checked
by the declarative method as well.

One challenge in using a constraint-based approach for conformance checking
purposes lies in the fact that there may be multiple violations per trace. For example,
an organizational constraint might have been violated in three occasions, which is
more severe than if it would have been violated only once. However, the verification
of a logical formula typically leads to a yes/no answer. As a consequence, new fitness
metrics for the constraint-based approach must be developed and integrated into the
spectrum of conformance metrics.

Furthermore, the violations must be visualized to provide meaningful feedback
to the end user. One possibility is to use graphical notations such as ConDec [192]
in combination with a conventional process modeling languages. Ideally, both con-
straint violations and log replay problems can be visualized in the initial input model,
and the event log, respectively.
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Decision Mining

7.1 Introduction

In the previous chapters we have seen how conformance checking techniques can
be used to compare the behavior recorded in event logs with some already existing
process model to detect possible deviations. Furthermore, conformance techniques
can be used to evaluate the quality of discovered models. Once we are confident about
the quality of an (existing or discovered) process model, extension techniques can be
used to further enrich this model by leveraging additional information contained in
the event log, e.g., timestamps, information about the people who performed tasks in
the process, and data attributes that were provided or modified (see Figure 7.1).

IT systems

event
logs

models /
analyzes

discovery

leaves
"IT footprints"

controls /
supports

extension

conformance

"world"
business processes

people services
components

organizations

(process)
model

Fig. 7.1. Extension means that an existing model is enhanced by additional characteristics
extracted from the event log.
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In this chapter, we assume an existing control-flow model and are interested in
how the value of a data attribute may affect the routing of a case. Machine learning
algorithms have become a widely adopted means to extract knowledge from vast
amounts of data [174, 267], and we explore the potential of such techniques in order
to gain insight into the data perspective of business processes. More specifically, we
will use well-known classification algorithms to carry out a decision point analysis,
also referred to as decision mining [218, 217], which means that we want to find
out which properties of a case might lead to taking certain paths in the process.
Starting from a discovered process model, we try to enhance the model by integrating
patterns that can be observed from data modifications, i.e., every choice in the model
is analyzed and, if possible, linked to properties of individual cases and activities.

Event log

Enactment phase
Analysis phase

Process 
Miner

Process model

Decision 
Miner

case ID activity

...
case 39
case 30
case 39
case 23

...

...
Send email
Register participant
Process answer
Register participant

...

originator timestamp data

...
John
Sue

Mona
Lilly
...

...
9-3-2005:15.01
9-3-2005:15.12
9-3-2005:16.03
9-3-2005:16.07

...

...
MailingDate = ”9.3.2005”
SendVia = “letter”, Address = ...
Available for future surveys = “yes”
SendVia = “email”, Email = ...

...

IT System

- SAP R/3
- Flower
- Staffware
- Peoplesoft
- Eastman
- WebSphere PC
...

Decision point Decision rule

Process
answer

Send
email

Send
letter

Time
out

20.12. < MailingDate < 24.12.
SendVia = letter

 

...

Fig. 7.2. The decision mining approach pursued in this chapter.

Figure 7.2 illustrates the overall approach. First of all, we assume some IT system
that records event logs. The top-half of Figure 7.2 sketches the content of such an
event log and lists some example systems that can be used to obtain this data from.
As shown in Figure 7.2, the event log may contain information about the people exe-
cuting tasks (cf. originator column), the timing of these tasks (cf. timestamp column),
and about data attributes that are manipulated (cf. data column). However, classical
process discovery algorithms such as the α-algorithm [24] tend to only use the first
two columns to obtain some process model.1 The Petri net shown in the middle of
the lower half of Figure 7.2 illustrates the result of applying the α-algorithm to the
event log of some survey process. Many other process discovery algorithms could

1 Note that while the exact timing of activities is usually not important for process discovery,
it might be necessary to use existing timestamps to establish an order between the events
(if the order is not explicitly given).
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have been used to obtain such a process model, expressed in terms of a Petri net
or another process modeling language. What is essential is that the process mining
algorithm identifies decision points.

Figure 7.2 highlights one decision point in the survey process. (There are two
additional decision points but for decision mining we focus on one decision point at a
time.) The decision point considered is concerned with the choice between a Timeout
activity that leads to the repetition of certain steps in the process, such as re-sending
the survey documents, and a Process answer activity that concludes the process.
The Petri net shows no information regarding this choice (only that it is there). The
goal of decision mining is to find “rules” explaining under which circumstances the
Timeout activity is selected rather than the Process answer activity. The result is a
rule as shown in Figure 7.2. This decision rule indicates that survey documents sent
by letter to the participant are very often not returned in time, just like documents
sent shortly before Christmas. Consequently, an extension of the time limit in these
cases could help to reduce mailing expenses.

Clearly, the application of existing data mining techniques for detecting frequent
patterns in the context of business processes has the potential to gain knowledge
about the process, or to make tacit knowledge explicit. Moreover, the type of de-
pendency which may be discovered is very general. Besides data attributes, resource
information, and timestamps, even more general quantitative (e.g., key performance
indicators like waiting time derived from the log) and qualitative (i.e., desirable or
undesirable properties) information could be included in the analysis if available. To
directly support data analysis for business processes we have implemented a Deci-
sion Miner in the context of ProM.

The chapter is organized as follows. First, we introduce a simple example pro-
cess that is used throughout the chapter (Section 7.2). Then, we explain how existing
classification techniques from the machine learning domain can be used in the con-
text of the decision point analysis (Section 7.3). Afterwards, the challenges related
to decision mining are discussed in more detail (Section 7.4), and we present the
Decision Miner plug-in in ProM (Section 7.5). Then, we describe the potential use
of decision mining in a fictional case (Section 7.6), and report on a case study, where
decision mining was applied to analyze the behavior in a multi-agent system (Sec-
tion 7.7). Finally, related work is discussed (Section 7.8) and the chapter is concluded
(Section 7.9).

7.2 Running Example

Table 7.1 shows an event log for the processing of a liability claim within an insur-
ance company in a schematic way. We will use this example throughout the chapter
to explain our decision mining approach.

As depicted in Figure 7.2, the first step comprises the application of some process
mining algorithm in order to obtain a process model. Figure 7.3(a) shows the event
log from Table 7.1 in a simplified way. The activity sequences have been grouped by
instances (according to the Case ID), and all information except the executed tasks
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Table 7.1. Example log in tabular form. Each row corresponds to one event, and the events
within each case occurred in the given order. Some of the events have data attributes.

Process Seq.
Activity

Data Attributes
Instance No. Amount CustomerID PolicyType Status

Case 1

1 (A) Register Claim 1000 C567894938 premium
2 (C) Check policy only
3 (D) Evaluate claim approved
4 (G) Send approval letter
5 (E) Issue payment
6 (H) Archive claim

Case 2

1 (A) Register Claim 700 C938609223 normal
2 (B) Check all
3 (D) Evaluate claim rejected
4 (F) Send rejection letter
5 (H) Archive claim

Case 3

1 (A) Register Claim 550 C135697567 normal
2 (B) Check all
3 (D) Evaluate claim approved
4 (E) Issue payment
5 (G) Send approval letter
6 (H) Archive claim

Case 4

1 (A) Register Claim 500 C568120443 normal
2 (C) Check policy only
3 (D) Evaluate claim approved
4 (G) Send approval letter
5 (E) Issue payment
6 (H) Archive claim

Case 5

1 (A) Register Claim 50 C493823084 normal
2 (C) Check policy only
3 (D) Evaluate claim rejected
4 (F) Send rejection letter
5 (H) Archive claim

Case 6

1 (A) Register Claim 200 C945675110 premium
2 (C) Check policy only
3 (D) Evaluate claim rejected
4 (F) Send rejection letter
5 (H) Archive claim

has been been discarded. Furthermore, letters are used as a shorthand for the activity
names. Based on this log the α-algorithm [24] induces the process model shown in
Figure 7.3(b).

The discovered model shows the procedure of the claim processing within the
insurance company: In the beginning of the process there is a task where data related
to the claim gets registered (A), and then either a full check or a policy-only check
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is performed (B or C). Afterwards the claim is evaluated (D), and then it is either
rejected (F) or approved and paid (G and E). Finally the case is archived and closed
(H). The discovered process model is used as input for the decision mining phase.

1
2
3
4
5
6

Case ID

ACDGEH
ABDFH

ABDEGH
ACDGEH
ACDFH
ACDFH

Log trace

(b) Mined process model(a) Event log
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Check all

D

Evaluate 
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Start End
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Fig. 7.3. The process mining phase in Figure 7.2 illustrated by a running example.

The decision points of the discovered model are highlighted in Figure 7.4. The
process model only indicates that a decision is being made at that point. No informa-
tion is provided about the likelihood or root cause for each of the possible decisions.
One possibility to extend the process model by additional information would be to
enrich the decision points by probabilities (e.g., “How often is the full check per-
formed instead of the policy-only check?”). We will get back to enriching a process
model by stochastic information later in this thesis when discussing business process
simulation (Chapter 8 and 9). However, another possibility to gain more insight in
these decision points is to discover possible correlations between the characteristics
of cases and their routing through the process (i.e., “Why is the full check performed
instead of the policy-only check?”). This is the purpose of decision mining.

To do this, we make use of the data attributes that are provided in Table 7.1
(highlighted in grey). Note that the MXML format (cf. Section 3.2.1) allows for data
attributes both on the process instance level (i.e., globally for the whole case) and on
the audit trail entry (i.e., event) level. Both types of attributes can be used for decision
mining. However, in our example, only event-level data attributes (for activity A and
D) are given. We interpret a data item within an audit trail entry as an attribute that
has been created or modified in the context of the associated task.

So, during the execution of task ‘Register claim’ information about the amount of
money involved (Amount), the corresponding customer (CustomerID), and the type
of policy (PolicyType) are provided, while after handling the task ‘Evaluate claim’ the
outcome of the evaluation is recorded (Status). Semantically, Amount is a numerical
attribute, the CustomerID is an attribute which is unique for each customer, and both
PolicyType and Status are enumeration types (being either ‘normal’ or ‘premium’, or
either ‘approved’ or ‘rejected’, respectively).
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As illustrated in Figure 7.2 the discovered process model and the detailed log are
the starting point for the decision mining approach, which is explained in the next
section.

7.3 Using Classification For Discovering Decision Rules

In order to analyze the choices in a business process we first need to identify those
parts of the model where the process is split into alternative branches, also called
decision points (Section 7.3.1). Subsequently, we want to find rules for following
a particular branch based on data attributes associated to the cases in the event log
(Section 7.3.2).

7.3.1 Identifying Decision Points in a Process Model

In terms of a Petri net, a decision point corresponds to a place with multiple outgoing
arcs. Since a token can only be consumed by one of the transitions connected to these
arcs, alternative paths may be taken during the execution of a process instance. The
process model in Figure 7.3(b) exhibits three such decision points: p0 (if there is a
token, either B or C can be performed), p2 (if there is a token, either E or F can be
executed) and p3 (if there is a token, either F or G may be carried out).

In order to analyze the choices that have been made in past process executions
we need to find out which alternative branch has been taken by a particular process
instance. Therefore, the set of possible decisions must be described with respect to
the event log. Starting from the identification of a choice construct in the process
model a decision can be detected if the execution of the task in the respective alter-
native branch of the model has been observed, which requires a mapping from that
task to its “occurrence footprint” in the event log. So if a process instance contains
the given “footprint” it means that there was a decision for the associated alterna-
tive path in the process. The example model in Figure 7.3(b) has been mined from
the given event log, and therefore all the task names already correspond to their log
event labels. For example, the occurrence of task “Issue payment” is recorded as “Is-
sue payment” in the log2, which can be directly used to classify the decision made
by that process instance with respect to decision point p2. So, for the time being it is
sufficient to consider the occurrence of the first task per alternative branch in order
to classify the possible decisions, and we know enough to demonstrate the idea of
such decision point analysis. However, in order to make decision mining operational
for real-life business processes additional complications such as loops need to be
addressed. They are discussed in Section 7.4.

2 Note that the two labels match. As explained in Section 2.3, this is not always the case
(e.g., multiple tasks may be logged using the same label or tasks may not be logged at all).
Initially, we assume that the task label denotes the associated log event but later we will
generalize this to also allow for duplicate and invisible tasks.
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7.3.2 Turning a Decision Point into a Classification Task

Having identified a decision point in a business process we now want to know
whether this decision might be influenced by case data, i.e., whether cases with cer-
tain properties typically follow a specific route. As explained in Section 5.1, machine
learning techniques [174] can be used to discover structural patterns in data based on
a set of training instances. One category of techniques are classification algorithms,
which can “learn” to distinguish classes of instances based on their attributes as-
sociated. The structural pattern inferred by such a classification technique may be
represented in different forms, e.g., as a list of rules or as a decision tree (depending
on the classification algorithm applied). Although the inferred pattern can be used to
predict the class of future instances, the main benefit is typically the insight gained
into attribute dependencies which are “explained” by the explicit structural represen-
tation.

Using decision point analysis we can extract knowledge about decision rules as
shown in Figure 7.4. Each of the three discovered decision points corresponds to one
of the choices in the running example. With respect to decision point p0 the extensive
check (task B) is only performed if the amount is greater than 500 and the policyType
is ‘normal’, whereas a simpler coverage check (task C) is sufficient if the amount is
smaller than or equal to 500, or the policyType is ‘premium’ (which may be due to
certain guarantees by ‘premium’ member corporations). The two choices at decision
point p2 and p3 are both guided by the status attribute, which is the outcome of the
evaluation activity (task D). In the remainder of this section we describe how these
rules can be discovered.

amount = R
clientID = String
policyType = normal | premium
status = approved | rejected
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amount
clientID
policyType

status

Fig. 7.4. Enhanced process model.

The idea is to convert every decision point into a classification problem [174,
267, 200], where the classes are the different decisions that can be made and the
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attributes used for classification are data values. As training examples we can use the
process instances in the log (for which it is already known which alternative path they
have followed with respect to the decision point). The attributes to be analyzed are
the data attributes contained in the log. While data attributes on the process instance
level may generally influence all choices in a process, data attributes provided within
the scope of a particular activity are unlikely to influence a choice if that activity
occurred later than the actual decision. Therefore, we here assume that all attributes
that have been written before the considered choice construct may be relevant for the
routing of a case at that point.3
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(a) training examples for decision point “p0” (b) decision tree for decision point “p0”

status
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(c) training examples for decision point “p2” (d) decision tree for decision point “p2”

(e) training examples for decision point “p3” (f) decision tree for decision point “p3”

status

G F

approved rejected

E F

Fig. 7.5. Decision points represented as classification problems.

So, for decision point p0 only the data attributes provided by task A are consid-
ered (i.e., amount, clientID, and policyType), and in Figure 7.5(a) the corresponding
values contained in the log have been used to build a training example from each
process instance (one training example corresponds to one row in the table). The
last column represents the (decision) class, which denotes the decision that has been
made by the process instance with respect to decision point p0 (i.e., whether task B
or C has been executed). Similarly, Figure 7.5(c) and (e) represent the training ex-

3 However, other scoping rules are possible as well and can be chosen in our implementation
(see Appendix A.2.1).
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amples for decision point p2 and p3, respectively. Here, an additional attribute (i.e.,
status) has been incorporated into the data set because it is provided by task D, which
is executed before p2 and p3 are reached. Furthermore, the class column reflects the
decisions made with respect to decision point p2 and p3 (i.e., E or F, and G or F,
respectively).

There are various algorithms available that can solve such a classification prob-
lem and provide structural patterns as output [174, 267]. We decided to use decision
trees (such as C4.5 [200]), which are among the most popular of inductive inference
algorithms and provide a number of extensions that are important for practical appli-
cability. For example, they are able to deal with continuous-valued attributes (such
as the amount attribute), attributes with many values (such as the clientID attribute),
attributes with different costs, and missing attribute values. Furthermore, there are ef-
fective methods to avoid overfitting the data (i.e., to avoid that the tree is over-tailored
towards the training examples). A decision tree classifies instances by sorting them
down the tree from the root to some leaf node, which provides the classification of
the instance. Figure 7.5(b), (d), and (f) show the decision trees that have been de-
rived for decision point p0, p2, and p3, respectively. Further information about the
decision trees can be found in [174, 267].

From the decision trees shown in Figure 7.5(b), (d), and (f) we can now infer
the logical expressions that form the decision rules depicted in Figure 7.4 in the fol-
lowing way. If an instance is located in one of the leaf nodes of a decision tree, it
fulfills all the predicates on the way from the root to the leaf, i.e., they are connected
by a boolean AND operator. For example, class B in Figure 7.5(b) is chosen if (pol-
icyType = ‘normal’) AND (amount > 500). When a decision class is represented
by multiple leaf nodes in the decision tree the leaf expressions are combined via a
boolean OR operator. For example, class C in Figure 7.5(b) is chosen if ((policyType
= ‘normal’) AND (amount ≤ 500)) OR (policyType = ‘premium’), which can be
reduced to (policyType = ‘premium’) OR (amount ≤ 500).

7.4 Challenges for Decision Mining

If we want to apply decision mining to real-life business processes, a number of
challenges need to be addressed in addition to the “normal” data mining challenges
such as noise in the data, or incomplete training samples. These challenges relate to
the correct interpretation of the control-flow semantics of a process model when it
comes to classifying the decisions that have been made.

Classification tasks fall in the category of so-called supervised learning, which
means that the “true” class is known for each example during the learning and eval-
uation phase. As discussed before, the classes in decision mining are the decisions
that have been made at a particular decision point in the process (which are not im-
mediately known but first need to be inferred from the event log for each instance).
The example process from Figure 7.3(b) is rather simple and it does not show more
advanced constructs that must be dealt with in order to make decision mining opera-
tional for real-life business processes. In fact, providing a correct specification of the
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possible choices at a decision point, which is needed to provide classified learning
examples, can be quite difficult.

In the remainder of this section we highlight problems related to the control-
flow semantics of real-life business processes, namely invisible tasks (Section 7.4.1),
duplicate tasks (Section 7.4.2), and loops (Section 7.4.3), and we present a simple
approach for how they can be solved in order to provide decision mining support
through a software tool. In the end, we evaluate the shortcomings of this simple
approach and indicate how it can be overcome in the future (Section 7.4.4).

7.4.1 Invisible Tasks

As stated in Section 7.3.1, with respect to the example model in Figure 7.3(b) all
the task names already correspond to their log event labels, and there are no two
tasks that have the same label. Furthermore, there is no task in the model that has no
log event associated to it. However, real-life process models may contain tasks that
have no correspondence in the log, e.g., unobservable tasks (like phone calls), or task
nodes added for routing purposes only. As explained in Section 2.3, these tasks are
called invisible tasks. Figure 7.6 shows a fragment of a process model that contains
a decision point at the place p1 where each of the alternative paths starts with an
invisible task.

A

B

C

D

p1

E

F G...

Fig. 7.6. A decision point involving invisible tasks.

Problem

The problem with invisible tasks is that they are inherently unobservable in the event
log. For example, the invisible task in the alternative branch at the bottom in Fig-
ure 7.6 realizes the “skipping ahead” from the decision point p1 directly to the exe-
cution of task G. However, this “skipping” behavior is not explicitly recorded in the
event log. It can only be derived from an analysis of the observable behavior (e.g.,
the fact that G occurred but none of the other tasks A–F did).
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Solution

In our simple approach, we attempt to classify decisions based on the occurrence of
the first task in each alternative branch. However, because invisible tasks cannot be
observed in the log it means that considering the occurrence of the first task in each
alternative branch is not always sufficient in order to classify the possible choices
relating to a decision point.

We observe that in Figure 7.6 the occurrence of each of the tasks A or B indicates
that the first (i.e., upmost) alternative branch has been chosen during the process
execution. Similarly, the occurrence of each of the tasks C or D indicates the decision
for the third branch4. So, we extend our simple approach by “tracing” invisible tasks
until the next visible task has been found, which may lead to a set of tasks whose
occurrences each indicate the decision for the respective alternative branch.

However, this tracking can also reach too far. Looking for visible successors of
the invisible task which starts the second branch (see Figure 7.6) results in finding
task F, whose occurrence, however, does not necessarily indicate that the second
branch had been chosen at p1. Since F is preceded by a join construct the first or
third path might have been followed as well. Similarly, the occurrence of G is not
sufficient to conclude that the fourth branch has been followed.

So, this simple solution based on activity occurrences has its limitations: We have
to stop tracking invisible tasks as soon as a join construct is encountered, because
after that the occurrences of activities cannot be unambiguously associated to the
traced branch anymore. As a consequence, those alternative paths that cannot be
specified in the described way must be discarded from the analysis. Refer to the end
of Section 7.4 for an indication of how this problem can be overcome by a more
powerful specification language.

7.4.2 Duplicate Tasks

A related challenge in classifying the possible choices at a decision point with respect
to the log is posed by duplicate tasks. As explained in Section 2.3, they emerge from
the fact that real-life process models often contain multiple tasks that have the same
label associated (i.e., the labeling function l defined in Section 2.3 is not an injective
function), which means that their occurrences cannot be distinguished in the log.

Often, invisible tasks and duplicate tasks can be seen as alternative structural
means to describe the same (i.e., trace-equivalent) behavior. Figure 7.7 illustrates this
point by two example models that allow for the same sequences of activities (ABC
and AC), but which express the alternative paths via an invisible and via duplicate
tasks (here highlighted in grey color), respectively.

Figure 7.8 shows another fragment of a process model that contains a decision
point where each of the alternative paths starts with a duplicate task A, which in the
first branch is followed by another duplicate task B.

4 Note that, although the tasks C and D are in parallel, and therefore will both be executed,
observing the occurrence of one of them is already sufficient.
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B CA B

C

CA

Fig. 7.7. Two Petri nets allowing for the sequences ABC and AC, once realized with an invisi-
ble task (left) and once realized with duplicate tasks (right).
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Fig. 7.8. A decision point involving duplicate tasks.

Problem

The problem with duplicate tasks is that—although they are observable in the log—
their occurrence cannot be traced back to a single task in the process model in an
unambiguous way. As a consequence, they complicate the classification of the deci-
sions. For example, in Figure 7.8, the occurrence of task B in a process instance in
the log alone does not guarantee that the upper alternative branch was chosen (only
the second occurrence of task B indicates this choice).

Solution

Similar to invisible tasks, in our simple approach we cannot use the occurrence of
the first task in an alternative branch to classify the choices made at the decision
point if that first task is a duplicate task. Instead, we will deal with duplicate tasks
in the same way as with invisible tasks, that is, to trace their succeeding tasks until
either an unambiguous task (i.e., a non-duplicate visible task) or a join construct has
been encountered. With respect to Figure 7.8, therefore, only C and D can be used to
determine which path has been taken by a specific process instance.

In the example depicted in Figure 7.7 one can see that with respect to duplicate
tasks the simple, activity occurrence-based approach suffers from the same limitation
as was identified for invisible tasks. In fact, for both models in Figure 7.7 the lower
branch can be characterized by this approach (via the occurrence of B), but the upper
branch must be discarded.

7.4.3 Loops

Another obstacle in classifying decisions is posed by the loop semantics of a process
model. Figure 7.9 shows a fragment of a process model containing three decision
points that can all be related to the occurrence of task B and C. However, as discussed
in the following, the corresponding interpretations differ from each other.
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Fig. 7.9. Loop semantics affect the interpretation of decision occurrences.

Problem

Loops can lead to multiple occurrences of decisions:

Decision points contained in a loop (a) Multiple occurrences of a decision related
to this decision point may occur per process instance, and every occurrence of
B and C is relevant for an analysis of this particular choice. This means that,
opposed to the procedure described in Section 7.3.2, one process instance can
result in more than one training example for the decision tree algorithm.

Decision points containing a loop (b) Although a process instance may contain
multiple occurrences of task B and C, only the first occurrence of either of them
indicates a choice related to this decision point.

Decision points that are loops (c) This choice construct represents a post-test loop
(as opposed to a pre-test loop), and therefore each occurrence of either B or C
except the first occurrence must be related to this decision point.

Solution

As for decision points that are contained in a loop (cf. (a) in Figure 7.9), we can split
up a process instance into multiple training examples as soon as multiple occurrences
of a decision have been observed. However, the choice situations indicated by (b) and
(c) cannot be fully specified using our approach, because—while tracing the invisible
tasks—join constructs are encountered before any other usable “footprint” task.

7.4.4 Summary

We have presented a simple, occurrence-based approach to classify process instances
also in the presence of loops, and invisible and duplicate tasks. In many situations this
works well, and in the remainder of this chapter we will describe how the approach
was realized and applied.

However, the examples discussed in this section also demonstrate that for mod-
els containing loops, and invisible and duplicate tasks it is not always sufficient to
consider the mere occurrence of activity executions in order to correctly classify the
training examples.

• Instead, it may be important that a log event X is observed after log event Y but
before log event Z.
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• Similarly, the non-occurrence of a log event can be as important as its occurrence.

Therefore, a more powerful specification language (e.g., some temporal logic)
must be used in order to express such constraints. The possibility to express non-
occurrence and temporal aspects also enables the treatment of alternative paths that
are discarded by the current approach. For example, the second branch in Figure 7.6
can be specified if we are able to say that F happened but E, C, and D did not happen.
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XOR
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C1 C2
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Fig. 7.10. Two observable process models (cf. Section 2.3) allowing for the sequences ABC
and AC, once realized without (left) and once realized with duplicate tasks (right).

Finally, it may seem as if some of the described challenges were specific to Petri
nets due to the fact that they may contain invisible tasks for routing purposes. How-
ever, the invisible tasks in Petri nets only make the problem explicit, and the same
limitations exist for other types of process models as well.

Consider for example Figure 7.10, which depicts the two models from Figure 7.7
in some non-Petri net notation. The model on the left contains an arc that directly
skips activity B without an invisible task. Nevertheless, the classification of execution
sequences following one of the two alternative branches at the highlighted XOR split
cannot be made just based on observing activity occurrences in the event log. Just
as for Petri nets, a more powerful language is needed to characterize such situations.
The same holds for duplicate tasks and loops.

7.5 Realization

We implemented the decision mining approach presented in Section 7.3 as a Deci-
sion Miner plug-in in ProM. The functionality of the Decision Miner from a user
perspective is described in Appendix A.2.1.

In this section, we focus on one critical algorithm of the Decision Miner in more
detail: The construction of decision classes at a given decision point in the model
is needed to classify the training examples for the machine learning algorithm (see



7.5 Realization 241

also Figure 7.11). A simple approach to identify these decision classes also in the
presence of invisible tasks, duplicate tasks, and loops was presented in Section 7.4
and will be formalized in the remainder of this section.

In our approach, the description of the possible decisions at a decision point
results in a family of subsets of the set of task labels L, also called a family of sets
over L. Each set in the overall collection represents one decision branch, whereas
each label within such a subset identifies a decision for that particular branch.

Algorithm 4 outlines how a decision point found in a Petri net process model can
be expressed as a set of possible decisions in terms of a family of subsets of task
labels. The starting point is a place with more than one outgoing arc, i.e., a decision
point. Then, each of the outgoing arcs is considered as an alternative branch, and thus
as a potential decision class. If the first successor transition found in such a branch is
neither invisible nor duplicate, the associated task label can be directly used to char-
acterize the corresponding decision class. In this situation, the subset representing the
decision class (i.e., currentClass) contains only the task label of this first successor
transition when it is added to the family of subsets (i.e., decisionClasses).

With respect to the example model in Figure 7.3(b) this is the case for all
three decision points. Following the described procedure, decision point p0 yields
{{B}, {C}}, p2 yields {{E}, {F}}, and p3 yields {{F}, {G}}.

Similarly, the decision point indicated in Figure 7.9(a) can be directly charac-
terized by the decision classes {{B}, {C}}. Note that the event log for the process
depicted in Figure 7.9 may contain multiple instances of the decision taken at the
choice point indicated in Figure 7.9(a).5

If, however, the first transition found in an alternative branch is an invisible or
duplicate task, it is necessary to trace the succeeding transitions until either (a) a join
construct has been encountered and the whole decision class is discarded, or (b) all
the succeeding transitions (or, recursively, all their succeeding transitions) could be
used for the specification of that class.

With respect to the decision point p1 in Figure 7.6 the described procedure yields
{{A,B}, {C,D}}. So the second and the fourth branch are not represented as a
decision class (and therefore discarded from the analysis) since a join construct was
encountered before a visible task had been reached. The first and the third branch
are described as a subset of multiple task labels within the family of decision classes,
whereas the observation of each of these labels in the event log would indicate the
occurrence of the corresponding decision class.

The decision point in Figure 7.8 results in {{D}, {C}}, i.e., the duplicate tasks
were traced further as their own labels could not be used for an unambiguous decision
class specification.

As a last example, the upper branches in the decision points depicted in Fig-
ure 7.9(b) and Figure 7.9(c) are discarded because the invisible tasks are directly
followed by a join construct. Therefore, in these cases the algorithm yields {{F}}

5 In Appendix A.2.1, we describe how our Decision Miner supports the analysis of decisions
contained in a loop in a semi-automatic way.
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Algorithm 4 Recursive method for specifying the possible decision classes at a de-
cision point in a Petri net process model.

determineDecisionClasses(p) :

Require: A place p.

1: decisionClasses← ∅
2: while successor transitions of p left do
3: currentClass← ∅
4: t← current successor transition
5: if (t 6∈ TI ) ∧ (t 6∈ TD) then
6: currentClass← currentClass ∪ l(t)
7: else
8: currentClass← traceDecisionClass(t)
9: end if

10: if currentClass 6= ∅ then
11: add currentClass to decisionClasses
12: end if
13: end while
14: return decisionClasses

traceDecisionClass(t) :

Require: A transition t.

1: decisionClass← ∅
2: while successor places of t left do
3: p← current successor place
4: if p = join construct then
5: return ∅ // (a)
6: else
7: while successor transitions of p left do
8: t← current successor transition
9: if (t 6∈ TI ) ∧ (t 6∈ TD) then

10: decisionClass← decisionClass ∪ l(t)
11: else
12: if traceDecisionClass(t) = ∅ then
13: return ∅ // (a)
14: else
15: decisionClass← decisionClass ∪ traceDecisionClass(t)
16: end if
17: end if
18: end while
19: end if
20: end while
21: return decisionClass // (b)

and {{E}} as a family of decision classes containing only a single decision class,
respectively.
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Fig. 7.11. Overview of the various steps in our decision mining approach, illustrating where
the algorithm discussed in this section fits in.

For an overview, consider Figure 7.11, which illustrates the sequence of steps
that are performed for each decision point in the model. The first step is to derive the
decision classes as discussed in this section. These classes are then used to classify
the traces in the log (“Which decision was made for them at this decision point?”).
Using both the classified log traces and the attribute selection scope (e.g., “Consider
all attributes provided before reaching the decision point”), the classification task is
then formulated. Three examples of such a classification task were provided on the
left in Figure 7.5. The resulting decision trees created by the decision tree algorithm
are shown on the right in Figure 7.5. However, other classification algorithms can be
used as well. Finally, the decision point in the original process model is enhanced by
the discovered decision rules.

7.6 Use of Decision Mining for Business Processes

In this chapter, we have concentrated on existing data attributes in the event log to
derive the decision rules for the process model. However, it is important to realize
that the potential of this technique is even greater if it is combined with other pro-
cess mining techniques. For example, other process-related meta attributes, such as
the execution time of each activity in the log, could be derived automatically (as-
suming that ‘start’ and ‘end’ events are present for each activity). If such high-level
attributes would be simply “written back” as data attributes in an enhanced event log,
this log could serve as input for decision mining (including these attributes) without
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any modification to the existing tools. This way, one could discover that, for exam-
ple, shortcuts in the process are taken especially if particular tasks in the process have
been delayed before. As a consequence, decision mining provides a powerful analy-
sis tool that can really deliver insight into the root causes of decisions in operational
processes.

Email
Inbound

Call 
Inbound

Handle
SR

Archive
SR

Call 
Outbound

Change
Code

172

801

87

523

Fig. 7.12. Example process at a call center for handling service requests.

Consider, for example, the following fictional scenario. A consumer electronics
company has outsourced their customer service process to a call center for the sup-
port of their products. The consumer electronics company wants to both save money
and increase the quality of their service request records. Therefore, their customer
service engineer applies process mining to their CRM system logs of the past month
to find opportunities for process improvement.

The main process behavior that is found using process discovery is depicted in
Figure 7.12. New service requests are created either by incoming calls (Call In-
bound), which happened 801 times, or by incoming emails if customers submit a
request via the support form in the internet (Email Inbound), which happened 172
times. Then, the request is normally handled by the agent (Handle SR). In this step,
further information about the nature of the problem is entered in the CRM system.
Finally, the request is archived (Archive SR). However, sometimes the customer is
also called back (which costs extra money). This happened 523 times in the past
month (Call Outbound). Furthermore, one can note that an activity Change Code
occurred 87 times. This is odd because it should only be needed in exceptional cases
to update a repair center code in the data.

Then, the customer service engineer applies organizational mining [247] to dis-
cover groups of people who perform similar activities in the process, and enhance
the initial event log by this additional information. They also use the Enhance Log
with History plug-in (cf. Appendix A.4.3) to add information about how often activ-
ities have occurred earlier in the process as data attributes for each audit trail entry.
For example, each audit trail entry contains the data attribute ‘Call Outbound = 0’
until an actual outbound call took place, after which the the attribute becomes ‘Call
Outbound = 1’ (if two outbound calls occurred, it becomes ‘Call Outbound = 2’ etc.).
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Afterwards, the engineer performs decision mining to gain more insight into why
certain cases deviated from the default case Email Inbound / Call Inbound −→ Han-
dle SR −→ Archive SR. As a result, two interesting rules are discovered, which are
depicted in Figure 7.13.

Call 
Outbound

#Call Inbound = 1
accuracy  99.6%

(a) Outbound calls were mainly performed
for cases that started with in inbound call

Change
Code

Group = BL special
accuracy  81.6%

(b) Repair code changes mainly
came from backliners

Fig. 7.13. Two discovered decision rules for the example process.

The first rule depicted in Figure 7.13(a) means that outbound calls were almost
always made for cases that started with an inbound call. Only 2 out of the 523 times,
an outbound call was made for cases that started with an inbound email. When the
company asked the call center to investigate this rule, they found out that the inbound
call data mask in the CRM system lacks a field that is needed later on to complete
the case. Therefore, the agents were often calling the consumers to ask for that extra
information (if they had forgotten to note it on a sheet of paper before). However,
all requests submitted by email already contained all relevant information because
the consumer is required to fill in all fields before the form can be submitted. Thus,
adding the missing field to the inbound call data mask in the CRM system can help
to reduce the outbound calls.

The second rule depicted in Figure 7.13(b) shows that repair code changes were
performed mainly for cases handled by a group of people from the backline (BL).
During the organizational mining, this group was identified to be a group mainly
consisting of specialist backliners that get calls for one type of product on a separate
phone number. Only 16 out of 87 times a repair code change was performed by
someone outside of this group. It turned out that the specialists used that code change
as a shortcut to circumvent the Handle SR activity (which is time-consuming) when
they were under too much pressure. However, for the company detailed information
about the nature of the reported problems is important, and they can instruct the call
center to prevent this practice.



246 7 Decision Mining

7.7 Case Study: Analyzing Multi-agent Behavior6

Robotic systems are growing more and more complex as they seek, for example, to be
self-reconfiguring, self-organizing, or working in teams. While their behavioral logic
is of course programmed, and, thus, in principle predictable, the more autonomous a
robot grows, or the more it adapts to its environment, the more it is true that the actual
behavior of the system cannot really be known in advance anymore. For example, in a
team of robots, the overall system behavior is determined through interaction among
multiple robots. Or, if robots interact with humans, their actions are influenced by the
actions of the human. Thus, the question whether this overall behavior corresponds
to the intended system behavior can only be answered through observation.

In this section, we use log data collected by the CMDragons team during the
international robot soccer competition ’RoboCup’ 2007 [51] to investigate the appli-
cability of decision mining to a multi-agent robotic system. In the context of robot
soccer, the motivation for analyzing log data is two-fold:

• Self-analysis: While detailed logs are recorded during the competitions, the eval-
uation of a game is carried out mostly through watching the accompanying video
recordings. A wealth of detailed data are available, but usually they are not ana-
lyzed in a structured way. We argue that a systematic and more high-level anal-
ysis of these log data can help to obtain an overall picture, and to, for example,
discover transient faulty states that—due to being held only for a short time—are
difficult to be observed by the human eye.

• Opponent analysis: Obtaining behavioral models of the opponent robots is even
more interesting as their intentions are hidden and the only way to derive knowl-
edge about their strategic behavior is through observation. We envision the ap-
plication of process mining techniques in combination with activity recognition
[253, 123], which is able to identify high-level actions (for example that a robot
is “attacking”) based on low-level behaviors (such as the robot’s position and
velocity).

Without loss of generality, we can restrict ourselves to self-analysis, since the
described techniques can be equally applied for the purpose of opponent analysis
given that appropriate activity recognition mechanisms are in place. Furthermore,
we mainly concentrate on the application of the decision mining approach presented
in this chapter.

In the remainder of this section, we first describe the domain of robot soccer,
which is used as an example of a multi-robot system (Section 7.7). Then, the log data
that are used as input for the process mining techniques are described (Section 7.7)
and some illustrative analysis results are presented (Section 7.7).

6 This research is based on joint work with S. Zickler, M. Veloso, W.M.P. van der Aalst, and
C. McMillen [233].
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Robot Soccer: A Multi-agent System

Behavioral multi-robot systems are control architectures where multiple agents co-
ordinate the execution of different individual tactical approaches, called behaviors,
typically in order to achieve a common goal. One particularly interesting behavioral
multi-agent domain, which we are going to use as the data source for our experi-
ments, is the RoboCup Small Size League. Here, the objective is to have two teams
of small robots compete in a game of miniature soccer, without human intervention.
In the Small-Size league, each team normally consists of five homogeneous, omni-
directional robots which are remotely controlled by an off-board computer. The com-
puter obtains its observations from two overhead cameras mounted above the soccer
field which are then processed to provide very accurate estimates of positions and
orientations of all the players on the field. Challenges of this domain include its very
fast pace, and its complex tactical properties. A scene from a typical robocup game
is shown in Figure 7.14.

Fig. 7.14. A scene of a RoboCup Small-Size League game.

This case study utilizes real game data collected by Carnegie Mellon Univer-
sity’s Small-Size team “CMDragons” [51]. The software architecture of the team’s
offboard control system is shown in Figure 7.15. The server component in this di-
agram performs computer vision and manages communication with the robots. The
intelligence of the system arises from the soccer component which embodies all au-
tonomous decision making processes. The heart of the soccer component is its behav-
ioral control architecture, known as “Skills, Tactics, and Plays” (STP) [50]. Within
STP, multi-agent coordination and team-based strategic decisions are performed by
chosing from a collection of “plays”.

A play is defined as a list of role assignments for multiple robots. For example,
in robot soccer, an “offensive” style of playing may be used, which assigns most
robots to be attackers, and some other robots to be defenders. The applicability of
a particular play depends on whether that play’s pre-conditions are currently met,
given the value of some variables of the domain. If multiple plays are simultanously
applicable then one of them is chosen probabilistically. The role assignment (e.g.
which particular robots become an attacker) is then performed dynamically based
on the robots’ positions and availability. Individual robot roles are called tactics and
are typically implemented as state-machines consisting of lower level navigational
functions, called skills. Examples of soccer tactics include “Attacker”, “Defender”,
and “Goalie”.
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Fig. 7.15. The general architecture of the CMDragons offboard control software.

The data set used in our experiments originates from the performance of the CM-
Dragons team at RoboCup 2007. The data was gathered over four round robin games
against teams named “Wright Eagle”, “RoboDragons”, “B-Smart”, and “Botnia”,
followed by the quarter-final, semi-final, and final games against “Eagle Knights”,
“ZJUNlict”, and “Plasma-Z”, respectively. For each game, the system has generated
a log file describing the game observations, as well as the CMDragon’s internal sys-
tem state. Log entries carry the currently executed play and tactic names of each
robot and additional globally observed variables, such as positions, and velocities of
the ball and robots. Furthermore, they include the status of so-called referee events
which indicate the change of the global game status such as, e.g., a switch from a
“game-stoppage” to a “kickoff”. Log entries are recorded at 60Hz in unison with
the system’s main processing loop, which leads to a new log entry about every 17
milliseconds.

Activity Logs

As described in Section 7.7, there are different levels of robot behavior. The high-
level actions that we want to analyze are the tactics, which are the different roles that
a robot can have, such as “mark” or “position for pass”.

Using a custom plug-in of the ProMimport framework (cf. Section 3.2), we con-
verted the data collected by the CMDragons team into MXML logs in order to an-
alyze them with ProM. As mentioned in Section 3.2, already during log conversion
different views on the process can be taken, since the definition of what is to be con-
sidered a process instance determines the scope of the process to be analyzed. For
example, in the context of a robot soccer match one could be interested in the overall
team formations over multiple games, as well as individual robot behaviors within a
single game. Thus, different conversions can be leveraged to obtain different views
on the same process.

We have created both individual robot logs and team logs. Because the overall
team behavior is globally orchestrated, we can easily get information about the cur-
rent role of all the robots in the team at each point in time, and we consider a team
formation by abstracting from which robot engages in which role. Thus, in a team
log we see an action as a set of roles. Furthermore, we abstract from the goalie (as
there is always one goalie).
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An excerpt of an event in such a team log is shown in the following MXML log
fragment. The shown audit trail entry was recorded in the context of the game against
“Plasma-Z” on 8 July 2007 at 12:57:18 according to US Eastern Time Zone, and
refers to the team formation “Mark Mark Wall Wall” while the ball was in possession
of the CMDragons. The dots indicate that the log contains further process instances,
and the process instance further events. Furthermore, the event contains more data
attributes than is shown here.

<Process id="TeamLog" description="All matches together"> ...
<ProcessInstance id="4" description="Game PlasmaZ"> ...
<AuditTrailEntry>
<Data>
<Attribute name="ball_possession_ours">1</Attribute> ...
</Data>
<WorkflowModelElement>Mark Mark Wall Wall</WorkflowModelElement>
<EventType>complete</EventType>
<Timestamp>2007-07-08T18:57:18.709+02:00</Timestamp>
</AuditTrailEntry> ...
</ProcessInstance> ...
</Process>

The complete team log contains more than half a million (624,801) events that
are distributed over 7 process instances. Because we are mainly interested in changes
of behavior, we subsequently filter out repetitions of the same team formation. This
way, we yield a much more condensed log focusing only on state changes, while
preserving information about the timing behavior through the time stamps. The fil-
tered team log now contains only 2,183 events for all the 7 games, with the shortest
process instance listing 63 and the longest 762 team formation changes. The same
can be done for individual robot logs.

Analysis and Results

Based on the team log, we use the Heuristics Miner [261] to automatically construct
a process model of the team formations in the final game against “Plasma-Z”, which
is depicted in Figure 7.16. It shows the causal dependencies between activities and
provides an overview about the actual flow of the process, whereas each rectangle
corresponds to a team formation of the CMDragons in that game (the numbers reflect
the frequencies at which the team formation changes were observed).

Consider the Petri net process model partly shown in Figure 7.17, which repre-
sents the playbook of the soccer component (cf. Figure 7.15). As described earlier,
the internal behavioral model assigns probabilities to the different plays, which are
active as soon as their pre-conditions are fulfilled. Apart from these pre-conditions,
each team formation is possible at any point in time (represented by “playing game”
in Figure 7.17). As a consequence, the known model essentially corresponds to the
“Flower model” as shown in Figure 4.5(d). This known, internal model is more gen-
eral than the discovered model in Figure 7.16, which depicts typical action flows
more closely. Thus, the discovered models can provide real insight into the process
as it took place, different games can be compared etc.

Now, we use the Petri net depicted in Figure 7.17 and apply the Decision Miner
presented in this chapter to discover under which conditions which team formation
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Fig. 7.16. Process model discovered by the Heuristics Miner based on the team log of the
final game between CMDragons against “Plasma-Z”. Each rectangle corresponds to a team
formation of the CMDragons in that game (without the goalie).

is being chosen by the system. For this, we restrict the used data attributes to those
used in the pre-conditions of the world model.
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Start playing
game

End after
game

Mark Mark
Wall Wall

DefendCircle Mark
Wall Wall

before
game

...

their_kickoff

their_freekick  AND  !their_side

Fig. 7.17. Petri net process model reflecting the world model, where each of the team forma-
tions is possible at every point in time, if certain pre-conditions are met. The discovered rules
(two examples are shown) largely coincide with the internal rules.

Looking at the results, it is interesting that we can discover the same or simi-
lar rules to a large extent. For example, the discovered rule for the decision class
(i.e., team formation) Mark Mark Wall Wall is their kickoff, which coincides with
the original one and has both precision and recall (i.e., the share of true positives
and true negatives) of 1.0. The discovered rule for the team formation DefendCircle
Mark Wall Wall is their freekick AND !their side, which is slightly more general as
the original rule was their freekick AND our side AND !our corner.

The overall accuracy of the discovered rules (using 10-fold cross validation over
the whole team log) is between 63 and 74 % (depending on the classification al-
gorithm). If there are mismatches, then this is mainly because some plays share
the same pre-conditions and are then selected randomly. If we include additional
attributes not directly used in the pre-conditions (e.g., referee status) the accuracy
exceeds even 90 %. While it is less useful to re-discover one’s own rules, this seems
directly useful in the context of analyzing the opponent’s behavior (“When do they
react how?”).

In this section, we have shown the potential of structured log analysis to gain
more high-level insight into the behavior of multi-robot systems. Furthermore, we
have demonstrated based on the robot soccer domain that it is possible to apply
decision mining to multi-agent activity logs.

7.8 Related Work

Many different classification algorithms have been described in literature. Our deci-
sion mining approach is agnostic with respect to the concrete algorithm used. How-
ever, it is important that the algorithm creates a structural knowledge description, for
example in the form of decision rules [63] or decision trees [200]. A counter example
are Neural networks [149], which—although they can also be used as a classifier—do
not yield explicit information because the knowledge is hidden in the potentially very
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complex Neural network structure itself. For similar reasons, instance-based meth-
ods such as k-nearest neighbor [72] are not suitable for decision mining purposes
either.

Existing process mining approaches have been mainly focusing on the control-
flow perspective. In contrast, the work reported in this chapter attempts to analyze
how the value of a data attribute may affect the routing of a case. It is closely related
to [112], where the authors describe the architecture of the Business Process Intel-
ligence (BPI) tool suite on top of the HP Process Manager (HPPM). Whereas they
outline the use of data mining techniques for process behavior analysis in a broader
scope, we have shown in detail how a decision point analysis can be carried out also
in the presence of duplicate tasks, invisible tasks, and (partly) for loops. Note that—
while not an issue in the context of HPPM (as the node names of the corresponding
workflow model are logged as well)—dealing with duplicate tasks is often needed
for real-life logs. Similar to [112], in [57] the authors propose methods to monitor
and predict the behavior of a workflow instance in terms of pre-defined metrics.

The work reported in [248] assumes the presence of a block-structured process
model with given input and output data for each node and aims at discovering the
earliest positions for decision points to avoid redundant activity executions and de-
crease the uncertainty. We also would like to mention [113] and [99], where the focus
is on monitoring (also in the context of HPPM) and exception handling, respectively.

In [157] decision trees are used to analyze staff assignment rules. Additional
information about the organizational structure (i.e., a given organizational model is
assumed) is incorporated to derive higher-level attributes (i.e., roles) from the actual
execution data (i.e., performers).

Finally, in [26] the authors aim at the integration of machine learning algorithms
(neural networks) into EPC process models via fuzzy events and fuzzy functions.
While this approach may be used to support specific processes (e.g., a concrete mort-
gage grant decision process), we focus on the use of machine learning techniques as
a general tool to analyze business process executions.

7.9 Conclusion

In this chapter we have presented an approach to analyze the choices that are made in
the context of business processes. Data attributes provided during process execution
were used to discover rules that explain the decisions made. While we applied exist-
ing machine learning techniques to actually solve the formulated learning problem
for each decision point, it is interesting to see that in addition to the “normal” chal-
lenges related to data mining applications in general, we also encountered challenges
specific to process mining.

“Normal” challenges relate to the evaluation of the learned models, avoiding
over-fitting, the cleaning of the input data, and so on. For example, while the decision
tree algorithm that we used for our approach is able to select those attributes that are
relevant for the actual decisions (and automatically discards less relevant attributes),
redundant attributes may impair the analysis. Furthermore, it can be the case that no
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rules can be discovered because the data does not contain attributes that are actually
relevant for the decisions made.

On the other hand, traditional challenges such as missing attributes (i.e., at-
tributes that are present in some of the learning instances but not in others) need
additional consideration when dealt with in the context of decision mining. For ex-
ample, in traditional data mining, a missing attribute can be (a) treated as a separate
value if it has a meaning that it is not there, or (b) if it is not meaningful that the
attribute is missing (but just the data is noisy), then there are different strategies pos-
sible: One can discard the whole process instance, discard the attribute, or “guess” a
value (using the most popular value), etc.

In decision mining, this consideration gets an additional, process-related perspec-
tive: In fact, data attributes may be missing both because it was not provided for a
specific task (although it should have been and usually is), and because that particu-
lar task was not executed (because it lies on an alternative path). Furthermore, data
attributes with the same name may or may not have a different meaning if they are
provided by different tasks in the process.

In this chapter, we explored the process-related challenges related to the classifi-
cation of the training examples in more detail. We have shown how invisible tasks,
duplicate tasks, and loops make it more difficult to formulate the actual learning
problem to be solved by the classification algorithm. We have presented a simple ap-
proach based on a family of sets over task labels to characterize the decision classes
at a particular choice point. This approach is able to deal with invisible tasks and
duplicate tasks by tracing ambiguous and unobservable tasks, and (partly) loops by
splitting the process instances in a semi-automatic way.

The main drawback of this approach is that it needs to discard decision branches
if they are not fully characterized before a join construct is encountered in the pro-
cess model. As a consequence, these decision branches cannot be included in the
analysis, and they are missing as “counter-classes” to determine the boundaries for
the remaining decision classes. A more expressive language including temporal op-
erators and negation is needed to fully characterize all decisions in a process model.
Furthermore, also the co-occurence of tasks needs to be captured to be able to ana-
lyze more fuzzy decisions, such as OR-splits.

We implemented our approach the Decision Miner in ProM, and we demon-
strated its applicability with a case study in the context of a multi-robot system.
While our implementation only supports one particular decision tree algorithm, we
have found it to be sufficient in most situations. Furthermore, there exists a link to
the Weka library to which the learning problems formulated by the decision miner
can be exported and further analyzed also using other algorithms available there.
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A General Model for Process Extensions1

8.1 Introduction

In the previous chapter on decision mining, we have seen how an existing process
model can be extended by adding routing conditions based on data attributes. How-
ever, there is much more process information that can be combined with the actual
control-flow of a model. Imagine, for example, the timing information that can be ex-
tracted from an event log about the activities in the process (e.g., activity durations,
or queuing times for cases), and information about resources and resource usage.

In this chapter we will see how such information can be extracted and inte-
grated using a variety of process mining techniques. Furthermore, we will discuss
how process-related information from various perspectives can be represented in a
combined way. Such a combined representation is relevant for at least three reasons:

Overview. If there are multiple aspects of a process that are related to each other,
then it is good to view them all together to have a comprehensive overview. Fur-
thermore, such a combined representation makes it possible to save the bundled
results to share them with others, or to generate a report.

Synergy. Already in the decision mining chapter we have noted that one can lever-
age previous analysis results by including derived attributes in the decision point
analysis. This does not only hold for enriched logs but also for extended models:
For example, any cost analysis is likely to be based on multiple process charac-
teristics, such as time, resource utilization, and other, perhaps domain-specific
attributes.

Simulation. Business process simulation is a powerful technique to explore process
alternatives or re-designs before putting them into practice. In order to be able
to simulate a process in a realistic manner, all relevant perspectives need to be
integrated in the simulation model (without timing information, resource infor-
mation, etc. it is impossible to simulate processes adequately).

1 This research is based on joint work with R.S. Mans, M. Song, and W.M.P. van der
Aalst [225, 226, 227].



256 8 A General Model for Process Extensions

In this thesis, the focus is on the last goal, i.e., we want to be able to generate
a simulation model for a business process. Event logs are omnipresent and widely
available, which makes process mining possible in many situations. So why con-
struct simulation models by hand based on assumptions if there is so much real data
around?

Traditionally, simulation models are created manually. We propose to use a com-
bination of process mining techniques to (semi-) automatically discover a process
model, which can then be used to explore process redesigns by simulating their ef-
fects, and to perform “what if” analyses with respect to anticipated environmental
changes such as an expected increase in workload.

Event
Log

Simulation
Model

Control-flow Discovery

Model 
Integration

Data Dependencies

Performance Characteristics

Organizational Characteristics 

...

Simulation Simulation
Results

Process Mining (ProM) Simulation (CPN Tools)

Fig. 8.1. A combination of process mining techniques is used to discover and integrate multi-
ple perspectives of a process in a comprehensive simulation model. The simulation model can
then be used to then be used to explore process redesigns by simulating their effects.

Figure 8.1 illustrates our approach [225, 226, 227]. Event logs are the starting
point for all process mining techniques. Based on the log, a control-flow model and
decision rules can be discovered (cf. Chapter 7). Furthermore, performance, orga-
nizational, and other characteristics can be discovered and integrated as well. We
realized the approach as a proof of concept using a combination of ProM and CPN
Tools.

In the remainder of this chapter, we first illustrate the discovery and integration
of different process characteristics (Section 8.2). Then, we describe a CPN represen-
tation for business processes that can be used for simulation purposes (Section 8.3).
Finally, the chapter is concluded (Section 8.4).

8.2 High-level Process Information: Beyond Control Flow

To obtain an extended view on a business process, information beyond control flow,
such as time, data, probabilities, and resource information, must be incorporated. In
the following, we first use an example scenario to motivate the need for integrating
these different perspectives (Section 8.2.1). Then, the realization of the integration
approach in ProM is described in more detail (Section 8.2.2).
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8.2.1 Example Scenario

As a running example, we use the medical examination flow in an outpatient clinic
for gynecological oncology, whereas each process instance describes the examina-
tion history of one particular patient. This is an artificial example, but it is based
on a real-life outpatient clinic process of the AMC hospital in the Netherlands. The
example has been simplified for illustration purposes.

Figure 8.2 depicts a part of an MXML event log of the outpatient clinic process.
It depicts the beginning of the first patient’s examination history. The event log starts
with the start and completion of the “First visit” to the gynecologist, and the start of a
subsequent “X ray” examination of this patient. One can see that for each of the audit
trail entries (i.e., events) the time stamp is recorded (a), and that the involved person-
nel from the outpatient clinic is registered in the originator field (b). Furthermore,
the complete event of activity “First visit” captures the “ASA”, which is a rating of
anesthetic risk ranging from 1 (low) to 5 (high), the “Diagnosis”, and the “Age” of
the patient in additional data attributes (c).

Fig. 8.2. Log fragment in MXML format. The running example reflects the examination flow
in an outpatient clinic and contains in total 1000 cases (i.e., patient histories).

Based on the example log, we will now apply a number of process mining tech-
niques to gain insight into different perspectives of the outpatient clinic process. The
aim is to extract key characteristics that can be used for the creation of a simula-
tion model. We will show that—in order to use these characteristics for simulation
purposes—the various perspectives will need to be integrated.
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Control-flow Discovery

We use the α-algorithm [24] to automatically construct the Petri net model depicted
in Figure 8.3. The discovered model shows the diagnostic process for gynaecolog-
ical oncology patients, in which a diagnosis is made for the patient and further in-
vestigated through a number of examinations. As soon as the diagnostic process is
completed, the treatment phase can be started.

A
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p1

p6 End

First 
visit

Lab
test

X ray

ECG

ECG not 
needed

Second 
visit

CT

MRI

Third 
visitB

C

D

E

p2

p3

F
p4

G

H
p5

I

ABCDFGI
ACBDFGI
ABCEFGI
ACBEFGI
ABCDFHI
ACBDFHI
ABCEFHI
ACBEFHI

Log traces

(a) Event log (b) Discovered process modelFig. 8.3. Control-flow discovery of the outpatient clinic example. A process model reflecting
the dependencies among the activities in the process is automatically created.

The diagnostic process starts with the first visit of the patient to the outpatient
clinic. During this “First visit”, a blood sample is taken from the patient, which is
tested afterwards in the lab. In parallel to the “Lab test”, the patient undergoes an “X
ray” examination, i.e., “Lab test” and “X ray” may occur in any order. After complet-
ing the “Lab test” and the “X ray”, the patient is sent to make an appointment for an
electrocardiogram, i.e., an “ECG”, if this is needed. After all these examinations, the
patient has a follow-up visit in the outpatient clinic. During this “Second visit”, the
doctor decides whether either a magnetic resonance imaging (“MRI”) examination,
or a computed tomography (“CT”) scan needs to be made. After the “MRI” or “CT”,
the diagnostic process is finished with a “Third visit” of the patient to the outpatient
clinic.

Decision Point Analysis

Now that we have discovered a process model reflecting the causal relations be-
tween the activities in the outpatient clinic process, we can apply decision mining
(cf. Chapter 7) to gain more insight into the data perspective of that process.

Based on the example log, we extract the decision rules depicted in Figure 8.4.
Each of the three discovered decision points corresponds to one of the choices in
the running example. Note that, because the choices taken at p2 and p3 are depen-
dent on each other, they yield the same rules. We can conclude that the “ECG” is
only needed for patients that are older than 60 years, or have an ASA greater than
2. Furthermore, the “CT” is only required for patients with the diagnosis “corpus
carcinoma” or “ovarium carcinoma”, while an “MRI” is needed for patients with the
diagnosis “vulva carcinoma” or “cervix carcinoma”.
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IF (Age > 60) 
OR (ASA > 2) 

IF (Age <= 60) 
AND (ASA <= 2) 

IF (Diagnosis = corpus carcinoma) 
OR (Diagnosis = ovarium carcinoma) 

IF (Diagnosis = vulva carcinoma) 
OR (Diagnosis = cervix carcinoma) 

Fig. 8.4. Example model enhanced with the data perspective. Decision rules for the choice
points in the process were derived based on data attributes provided during the “First visit” of
the patient.

Performance Analysis

In addition to analyzing data attributes, one can also use the event log to extract
performance information about the process. In the following we describe how to en-
hance the process model with information about execution times and waiting times
for the activities. The execution time is the time between the start and the comple-
tion of the activity. The waiting time is the time between the point at which the last
activity that is a direct predecessor of this activity was completed and the moment
at which the execution of the activity itself is started. Moreover, we also want to
enhance the process model with probabilities for taking alternative paths, and with
information about the case generation scheme. This scheme determines the arrival
process, e.g., how many new cases arrive per time unit (on average) at the process.

Extracting this information from the log is relatively easy because for each ‘start’
and ‘complete’ event in the event log the exact time stamp is given. Together with
the discovered Petri net we can replay2 each process instance in the Petri net so that
information about execution and waiting times is collected for the activities in the
process [130]. Furthermore, for each decision point we can derive the probabilities
of alternative paths based on how often each path was followed during log replay.
Finally, the arrival rate of cases can be easily derived from the start times of the first
activity in each process instance.

During the replay of the log several statistics can be collected for the execution
and waiting times, and for how many cases arrive at the process per time unit. These
statistics are values like minimum, maximum, mean, variance, etc. In general, we do
not know the underlying distribution for the obtained execution and waiting times,

2 We assume that each process instance can be replayed correctly in the discovered Petri net.
If, e.g. due to noise, not all instances fit the model, then the non-fitting instances can be
ignored (either completely or starting from the point of mismatch).
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or for the case generation scheme. However, there are statistical techniques avail-
able that can help in choosing the best “fitting” distributions. Here, we assume that
the execution and waiting times follow a normal distribution, and we assume a neg-
ative exponential distribution for the inter-arrival process (i.e., a so-called Poisson
arrival process). To specify the execution and waiting times in terms of a normal
distribution, we need to calculate their mean and variance values for each activity.
The intensity parameter of the exponential distribution is approximated by the mean
value of all measured inter-arrival times (i.e., the times between the start of two new
cases). All the values are measured in minutes.
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W: N(0.0, 0.0)

W: N(29.8, 4.9)
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Fig. 8.5. Example model enhanced with the performance perspective. For each activity the
execution time (E) and waiting time (W) are given as a normal distribution N(arithmetic mean,
standard deviation). Moreover, the probabilistic values for selecting an alternative path at a
decision point and the case arrival rate are provided.

The collected values for the outpatient clinic example are shown in Figure 8.5.
For example, one can see that the execution time of activity “CT” has an expected
value of 45.1 minutes, with a standard deviation of 1.7. Similarly, the waiting time
distribution of activity “CT” has a mean of 4320.4 minutes and a standard deviation
of 486.1. For the case generation scheme we have derived an intensity value of about
0.0167 new cases arriving per minute, i.e., on average one case arrives per hour.
Moreover, in Figure 8.5 one can also see the probabilistic values for selecting an
alternative path at a decision point. For example, based on the observations from the
log it seems more likely that an “ECG” is needed (72% of the cases) than that it is
not needed (only 28%).

Role Discovery

Now we move our focus onto the organizational perspective of the process. Organi-
zational mining aims at discovering both the organizational model (i.e., the relation-
ships between resources and their roles or functional units) and assignment rules (i.e.,
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the relationships between roles or functional units and activities) [247]. An organiza-
tional model usually contains organizational units (e.g., functional units), roles (e.g.,
duty), resources, and their relationships (i.e., who belongs to which functional unit,
who plays what roles, hierarchy among organizational units). By just using an event
log, it is difficult to discover the differences between all of these notions. However,
it is possible to derive resource groups in which the people execute similar activities.
From a “profile” describing how frequently individuals conduct specific activities,
we can derive groups. Such a discovered group of resources may correspond to an
organizational unit or a set of people who perform the same roles in real life. In this
thesis, we will mostly use the term “role” to refer to such a group of resources that
have a similar activity profile.

Here, we apply the metrics based on joint activities proposed in [18] to derive
roles. Metrics based on joint activities focus on the activities that resources perform.
We assume that people doing similar things are more closely linked than people
doing completely different activities. Each individual has a “profile” in the originator
by activity matrix based on how frequently it conducts specific activities. Table 8.1
shows a part of the originator by activity matrix derived from the example log.

Table 8.1. A part of the originator by activity matrix, where it is shown how often each re-
source performed each activity.

originator First Lab X ray ECG ECG not Second CT MRI Third
visit test needed visit visit

... . . . . . . . . .
Claire 0 310 0 0 0 0 0 0 0

Jan 260 0 0 0 0 239 0 0 129
Jane 0 0 154 0 0 0 47 45 0
Jo 0 349 0 0 0 0 0 0 0

Maria 0 0 158 0 0 0 40 41 0
Martin 244 0 0 0 0 248 0 0 138
Nigel 0 0 178 0 0 0 52 42 0
Ralph 0 0 188 0 0 0 46 47 0
Rose 239 0 0 0 0 250 0 0 140

... . . . . . . . . .

From this matrix, we can measure the “distance” between the profiles of different
originators by comparing the corresponding row vectors and derive clusters of people
who perform similar tasks. From the example log, five clusters are derived, namely
{Jan, Martin, Rose, Vanessa}, {Claire, Jo, Valentine}, {Fred, Wilma, Vic}, {Alex,
Eric, Jane, Maria, Nigel, Ralph}, and {Nobody}. These clusters correspond to roles.
Note that the last role ({Nobody}) is a bit artificial and stems from tasks that do not
require any resource to be executed.

Then, we assigned the clusters to activities based on an entity assignment method.
If an originator executed an activity, the activity is assigned to the cluster to which
the originator belongs. For example, according to the log fragment depicted in Fig-
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ure 8.2 Nigel executed the activity “X ray”, and, therefore, “X ray” is assigned to
the role of Nigel, i.e., “Radiology department”. Thresholds may be needed to en-
sure that activities are only assigned to relevant clusters for real-life logs containing
exceptional behavior.

ECG not 
needed

Gynaecology 
department

Clinical
chemistry

Cardiology
department

Radiology
department

First 
visit

Second 
visit

Third 
visit

Lab
test

ECG X ray CT MRI

Nobody

Vanessa

Jan

Martin

Rose Claire Jo

Valentine Fred

Wilma

Vic

Alex

Eric

NigelJane

Maria Ralph

Nobody

Fig. 8.6. Example model enhanced with the organizational perspective. The boxes represent
activities, the pentagons represent roles, and the circles represent originators.

Figure 8.6 shows the derived roles, and the relationships between roles and ac-
tivities for the outpatient clinic example. The detected clusters correspond to the
“Gynaecology department” (Jan, Martin, Rose, and Vanessa), “Clinical chemistry”
(Claire, Jo, and Valentine), “Cardiology department” (Fred, Wilma, and Vic), and
“Radiology department” (Alex, Eric, Jane, Maria, Nigel, and Ralph), respectively.
The “Gynaecology department” is involved in the “First visit”, “Second visit”, and
“Third visit” of the patient, while the “Lab test” is done by the “Clinical chemistry”.
The “Cardiology department” is in charge of the “ECG” activity, and the “Radiology
department” is related to the medical imaging activities such as “X ray”, “CT”, and
“MRI”. The cluster “Nobody” does not contain a real resource from the outpatient
clinic, but only a dummy originator that was used for activity “ECG not needed” (in
the case that activity “ECG” can be skipped).

Model Integration

Using the example of the outpatient clinic process, we have demonstrated how ad-
ditional information from the event log can be leveraged to extract useful informa-
tion beyond the pure control-flow of activities. However, so far the discovered data
dependencies (cf. Figure 8.4), performance characteristics (cf. Figure 8.5), and or-
ganizational groups (cf. Figure 8.6) stand for themselves as individual results. To be
able to use them altogether for simulation purposes, these perspectives need to be
integrated into one holistic model.

Given the existence of a suitable data structure (see Section 8.2.2), integration is
fairly easy as long as the discovered process characteristics are orthogonal to each
other (i.e., there is no conflicting information). They can be simply merged together.
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However, there may also be conflicting characteristics. Imagine, for example, two
performance analysis algorithms that fit execution time distributions in a different
way. To integrate these two results one would need to either select one of them on a
per-activity basis, or to average them etc.

In the case of the running example, the discovered characteristics are largely
orthogonal. Although the decision rules and the mined probabilities are potentially
conflicting as they both relate to the decision-making behavior of the analyzed pro-
cess, we still want to preserve them as they reside on different levels of abstraction
(i.e., the probabilities are influenced by the data value distributions) and might want
to use either of them when configuring the simulation model later on.
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Fig. 8.7. Example model with integrated data, organizational and performance view.

Figure 8.7 shows the integrated model for the example process. For example,
activity “ECG” is only needed for patients who are older than 60 or have an ASA
greater than 2, the corresponding execution time is on average 30 minutes (with
a standard deviation of 5.1), and the “Cardiology department” is in charge of the
activity.

8.2.2 Realization

When we started with the goal to generate simulation models, we realized that al-
though ProM was able to handle many different types of process models (Petri nets,
EPCs, YAWL, Protos, Heuristics nets, etc.), and could convert models from one type
to another, all information beyond the pure control-flow was either ignored or lost in
the conversion process. Similarly, all plug-ins that discovered time information, rout-
ing probabilities, organizational information, data dependencies, and so on, typically
displayed their results in an ad-hoc, graphical way, which could not be re-used in any
other context. So, there was the need to create a new data structure, which would be
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able to embed information from these different perspectives into the control flow, a
so-called ‘high-level process’ structure.

Nevertheless, many of the concepts related to time, data, resources, etc. are
generic and not bound to a particular type of process model. So, for this data struc-
ture to be as generic and re-usable as possible, it should be independent of the type
of control-flow model that might be used. Furthermore, motivated by the goal to gen-
erate simulation models, it should be possible to both manually specify the high-level
information as well as to automatically extract it, e.g., via process mining techniques.
In the remainder of this section, this new data structure in ProM is described briefly.

All classes related to the high-level process structure are located in the package
org.processmining.framework.models.hlprocess in the models part of ProM’s source
code. This package has 9 sub packages, and it contains 96 classes with 6504 lines of
code in total.

The core data structure that captures the high-level information is depicted as a
UML class diagram in Figure 8.8:

• The central class is called HLProcess, and it holds the high-level information in-
dependently of a particular process model. Particularly, it holds a list of activities
(HLActivity), choices (HLChoice), attributes (HLAttribute), groups (HLGroup),
and resources (HLResource) for the process.

• Each activity contains timing information (e.g., execution time, waiting time,
etc.), information about which group of people are allowed to perform the activ-
ity, and additional data attributes.

• Each choice contains a mapping of conditions for the enablement of particular
activities related to that choice.

• A condition can be based on a data expression (i.e., which data attributes need to
have which values to enable the activity), a probability or a frequency (i.e., how
likely or how often is this choice made for that particular activity).

• Each group holds a list of resources that belong to that group, and each resource
is characterized by the name of the person that is represented.

• Furthermore, the HLProcess class holds information that is globally relevant
for the process, and thus not linked to any particular activity, or choice etc.
(HLGlobal). This class contains information about, for example, the amount of
incoming cases in the process.

These classes represent the common elements that will be shared by all high-
level processes, regardless of whether they refer to some Petri net model, or YAWL
model, or just abstract process information.

Since the aim was to keep the data structure as generic and clean as possible to
promote further extensions and improvements to this model, we performed a formal
review according to the guidelines of the Ptolemy project at UC Berkeley [204].
Formal reviews (also known as inspections) are a technique for improving software
quality by peer review. By “formal”, it is meant that the reviews are performed in
a well-defined way, with clear goals and written results [91, 160]. In the Ptolemy
project, the software development improvement efforts are focused on the particular
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Fig. 8.8. Class diagram of the of the high-level process core data structure.
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needs of leading-edge academic research (which are are substantially different from
those in commercial software production), and we followed their methodology [204]
to perform the review3.

One of the things that were changed along the way of creating this data structure
was the introduction of an ID concept. This was necessary to manage the complex
interdependencies in the core data structure, and the resulting problems during, for
example, cloning. Now, the central managing element is the HLProcess, which is the
only class that holds real object references to HLActivity, HLAttribute, HLChoice,
HLCondition, HLGroup, and HLResource objects. If a task refers to a data attribute,
it only holds a soft link with an ID. Using this ID, it can at any time retrieve the object
from the HLProcess object. This way, it is easy to clone and replace, for example,
HLActivities in a HLProcess as during the cloning the ID remains the same. Further-
more, the Graphical User Interface (GUI) was separated from the core data structure.
For example, the class HLActivityGUI now provides a GUI view on a given HLAc-
tivity. All GUI-related classes are located in the hlprocess.gui sub package.

To actually link the nodes in a concrete process model (e.g., transitions and
places in a Petri net model) to their corresponding HLActivity and HLChoice ob-
jects in the HLProcess structure is the main purpose of the HLModel class (cf. Fig-
ure 8.9). This way, it is relatively easy for other developers to extend the high-level
models by further process model types, which already happened for Protos process
models. Currently, there are the following sub classes of HLModel: HLPetriNet,
HLYAWL, HLProtos, and HLActivitySet. All HLModel classes are located in the
hlprocess.hlmodel sub package.

HLID getActivityID(ModelGraphVertex)
HLID getChoiceID(ModelGraphVertex)
ModelGraphVertex 
findModelGraphVertexForActivity(HLID)
...

HLProcess hlProcess
ModelGraph model

HLModel

ModelGraph

PetriNet

YAWLModel

ActivityGraph

HLProcess
<<bind>>

<<bind>>

void initialize()
...

HLPetriNet

void initialize()
...

HLYAWL

void initialize()
...

HLActivitySet

ProtosModel void initialize()
...

HLProtos

Fig. 8.9. In the HLModel classes, HLProcess information is being connected to actual nodes
in the process models.

There are a number of plug-ins in ProM that have been extended or created to
provide high-level process information, and to integrate different models. The goal is
to generate a simulation model on the basis of such an integrated high-level process.
Appendix A.3 presents all these plug-ins from a user perspective. Furthermore, for

3 See http://is.tm.tue.nl/trac/prom/wiki/HighLevelProcessReview for the review notes.
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more information we refer to a tutorial for the discovery of simulation models [213]
based on the example provided in Section 8.2.1.

8.3 CPN Representation for Business Processes

As illustrated in Figure 8.1, we use CPN Tools for the actual simulation. Therefore, a
CPN representation that can capture all the aspects of a high-level process is needed.
To ensure practical applicability, the chosen CPN model must be generic and suitable
for automatic generation. At the same time it must be readable to a human analyst
to enable further evaluation and manipulation/refinement of the model. Here, the
hierarchy concept helps to create understandable components, and separate different
layers of abstraction.

We implemented a CPN Export plug-in (see Appendix A.3.6), which—based
on a given HLPetriNet object—can generate a CPN model in the representation de-
scribed in this section. In the following the different perspectives of the CPN rep-
resentation are described in isolation with the help of the insurance claim handling
example used in Chapter 7. However, these perspectives can be combined and com-
plement each other (for example, the model may contain both data and time infor-
mation).

First, we describe the general, hierarchical structure of the model (Section 8.3.1).
Then, the data (Section 8.3.2), time (Section 8.3.3), resource (Section 8.3.4), and
probability (Section 8.3.5) perspectives are described in isolation. Afterwards, the
logging and monitoring facilities are discussed (Section 8.3.6). Finally, it is shown
how the generated CPN model can be simulated in CPN Tools (Section 8.3.7).

8.3.1 Overview and General Structure

Since we want to make use of the simulation facilities of CPN Tools, we provide
the actual process model together with a simulation environment (amongst others,
to generate arriving cases and to measure performance indicators). The top-level
page in the hierarchical CPN model is shown in Figure 8.10(a). For each process
model this page will look identical; the environment generates cases and puts them
into the Start place. Finally, it consumes cases that have reached the End place (for
measurement purposes). We assume that the process—represented by the sub-page
Process—is a sound WF-net, i.e., any case that enters the sub-page via place Start
leaves the sub-page via place End.

Figure 8.10(b) depicts the simulation environment in more detail. One can ob-
serve that the CASE ID color set is used to refer to particular process instances (i.e.,
cases). To give each case a unique ID a counter is simply incremented for each gen-
erated process instance. For the data perspective, a separate token containing the case
ID and a record of case data attributes (defined via the DATA color set) is created
and initialized. The initial values represent default values for data attributes until
they are explicitly set by an activity in the process. For example, it is desirable to
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Fig. 8.10. Hierarchical structure of CPN model.

set the Status attribute initially to ‘Rejected’ so that—if for some reason the evalua-
tion activity was skipped—a claim could not be automatically approved. Depending
on the configuration of the attribute in the high-level process, the initial value can
also be sampled from a random distribution. The place Case data is modeled as a
so-called ‘fusion place’ (i.e., the same place can be shared between pages) because
activities may need to inspect or modify data attribute values on different pages in the
hierarchical model. Furthermore, the Resources fusion place contains the available
resources for the process, and therefore determines the environment from an organi-
zational perspective. Finally, each time a token is put back in the next case ID place
a time delay4 is added to it, which is used to control the generation of new cases. In
Figure 8.10(b) a constant time delay of 3 is used to realize an arrival process where
every 3 time units a new case arrives. Depending on the configuration of the case
generation scheme in the high-level process, other probability distributions can be
used as well (e.g., a negative exponential delay to realize a poisson arrival process).

Figure 8.10(c) shows the sub-page containing the actual process model, which
looks exactly like the original, low-level Petri net. Note that the tokens routed from
the Start to the End place are of type CASE ID, so that tokens belonging to different
instances are not mixed up.

Every activity on the process page has its own sub-page containing the actual
simulation information. Depending on the covered perspectives (and their config-

4 Note that in our simulation model the time delay is always attached to an arc (depending
on the token that should be delayed) rather than using the time delay of a transition to avoid
side effects on other tokens that should actually not be delayed (such as the Case data token
that should aways be available).
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uration) these activity sub-pages may look very different. The following sections
discuss how particular process characteristics can be represented in terms of a CPN
sub-page.

8.3.2 Data

Taking the enhanced model from Figure 7.4 as the starting point, we now want to in-
corporate the discovered data dependencies in the simulation model. The discovered
decision rules are based on attributes provided by activity Register claim and Evalu-
ate claim respectively. Since the attribute CustomerID is not involved in the discov-
ered rules, we assume that it was discarded from the high-level process and gener-
ate process-specific data types for each of the remaining attributes (i.e., AMOUNT,
POLICYTYPE, and STATUS).

Fig. 8.11. Writing data attributes using random values.

Figure 8.11 shows how the provision of case data can be simulated using random
values. While a random value for a nominal attribute can be generated by applying
the ran() function directly to the color set5, a dedicated random function is needed to
simulate numeric and boolean attributes in such a way that the random distribution
can be changed in a single place. (However, also nominal attribute values must be
provided by a dedicated function if the possible values have different probabilities.)
In Figure 8.11(a), one can see that in the action part of transition Register claim
complete the function POLICYTYPE.ran() is used to randomly select the Policy type
(‘Normal’ or ‘Premium’). Furthermore, a function randomAmount() is invoked to
generate a random Amount based on the distribution given in the corresponding high-
level process attribute. The modified data values are stored in the corresponding Case
data token (manipulating the corresponding entries using the set functions on the
DATA record color set).
5 Note that—for performance reasons—the ran() function can only be used for enumerated

color sets with less than 100 elements.
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Fig. 8.12. Modeling data dependencies using transition guards.

Figure 8.12 shows how the given data dependencies can then be modeled with the
help of transition guards. If the transition is enabled from a control-flow perspective,
it additionally needs to satisfy the guard condition to be fired. Note that the sub-page
of activity Archive claim is not depicted here as it neither provides nor depends on
any data attribute.
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8.3.3 Time

To explain the time perspective we assume that the full check activity needs between
9 and 17 time units to complete. Furthermore, the time between the point where the
activity could have been started (i.e., all required previous activities were completed)
and the point where someone actually starts working on it may vary from 3 to 5 time
units.

In the sub-page shown in Figure 8.12(a) the activity Check all has been mod-
eled in an atomic way. To incorporate information about the timing of this activity,
we now choose to distinguish between schedule, start, and complete transitions to
incorporate the waiting time and execution time of this activity. As illustrated in Sec-
tion 8.2.1, information about the execution time and waiting time distributions can
be extracted from the event log (given that timed schedule, start, and complete events
are present in the log).

Figure 8.13 shows three possible ways to model timing behavior for activity
Check all.

Fig. 8.13. Different variants of modeling time on sub-page Check all.

In Figure 8.13(a) only the execution time of the activity is modeled. When transi-
tion Check all start is fired, a token is produced with the indicated time delay. Similar
to the case generation scheme in Figure 8.10(b), the token will remain between 9 and
17 time units in place E (i.e., the activity is in the state Executing) before transition
Check all complete will fire.

In Figure 8.13(b) both the execution time and the waiting time are explicitly mod-
eled. Analogously to the execution time, the waiting time is realized by a time delay
that forces the token to reside in place W (i.e., the activity is in the state Waiting)
between 3 and 5 time units before transition Check all start will fire. The waiting
time in a business process may stem from from the unavailability of resources, a
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low priority of the work item, and many other factors. Because in reality active tasks
are rarely started immediately, it is important to be able to capture these delays in a
simulation model as well.

In Figure 8.13(c) the sum of the waiting time and the execution time is modeled.
So, here the waiting time is incorporated but the actual start of the activity execution
is not modeled separately.

8.3.4 Resources

To incorporate the organizational perspective, we assume that—according to our
high-level process description—the activity Evaluate claim requires some Manager
role, whereas all the remaining activities can be performed by people having a Clerk
role. The only exception is activity Issue payment, which requires a resource from the
Finance department of the insurance company. Furthermore, there are three groups
of resources, namely Finance = {Howard, Vincent}, Manager = {Fred, Linda}, and
Clerk = {Fred, Linda, John, Robert, Mona}. As illustrated in Section 8.2.1, such
groups of people can be discovered from the event log as well.

FinanceFinance

c (c,Finance)

(c,Finance)@+round(uniform(11.0,28.0))

cIssue_payment
start

Issue_payment
complete

["Howard","Fred","Mona", 
"Vincent","Robert","Linda",  
"John"]

RESOURCE

E

CASE_IDxFINANCE

p4
Out

CASE_ID

p2
In

CASE_ID
In Out

Resources

ResourcesResources

Fig. 8.14. Sub-page Issue Payment including resource modeling.

A simple way to incorporate resource information in our simulation model is to
create a data type for each of these groups, and to specify for each activity which kind
of resource is required. Figure 8.14 depicts how the fact that activity Issue Payment
requires the role Finance is modeled in the corresponding CPN model. The role
is modeled as a separate color set FINANCE, which contains only “Howard” and
“Vincent”. Because the variable Finance is of type FINANCE, only the resource
token “Howard” or “Vincent” can be consumed by transition Issue payment start.
As soon as transition Issue payment start is fired, the corresponding resource token
resides in the place E (i.e., it is not available for concurrent executions of further
activities) until transition Issue payment complete fires and puts the token back.

In Figure 8.14, the time dimension is modeled according to the variant depicted
in Figure 8.13(a), i.e., only the execution time of the activity is specified. Because
waiting times (i.e., the delay to actually perform an activity that is ready to be started)
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emerge from the unavailability of resources, one could think that the explicit mod-
eling of waiting times is only needed if resource modeling is not included in the
simulation model.

However, because waiting times do not only result from the unavailability of
resources, ignoring these delays often leads to unrealistic simulation models. (We
discuss this problem later in Section 9.2, where the quality of generated simulation
models will be evaluated.) On the other hand, it is often desirable to explicitly include
the resource perspective in the simulation model (and not only rely on a waiting time
distribution) because one might want to explore the effect on the process performance
under the “what if” scenario that more or less people are available. Moreover, waiting
times are typically not mutually independent: If a work item queues for a long time
then the work item just before and after are also likely to wait longer.6

So, it must be possible to combine both explicit resource modeling and waiting
times (to reflect other delays) to yield useful and realistic simulation results.

CASE_ID CASE_ID

Issue_payment
start

(c,Finance)

["Howard","Fred","Mona", 
"Vincent","Robert","Linda",  
"John"]

CASE_IDxFINANCE

c

CASE_ID

Finance

RESOURCE

Issue_payment
schedulep2

InIn

(c)@+round(uniform(30.0,2800.0)*0.9)

E Issue_payment
complete

Finance

p4
OutOut

c
W

(c)
(c,Finance)@+round(uniform(11.0,28.0))

Resources

ResourcesResources

Fig. 8.15. Sub-page Issue Payment in a configuration that includes both explicit waiting time
and resource modeling.

Figure 8.15 illustrates such a combination for activity Issue Payment, where the
start of the activity is delayed by an explicit waiting time distribution, but in addition
may be delayed due to an unavailability of a suitable resource (“Howard” and “Vin-
cent”). In the CPN Export plug-in in ProM it is possible to assign a percentage of the
total measured (waiting time) delays for such a situation.

For example, in Figure 8.15 the waiting time is modeled by a uniform distribu-
tion, ranging from 30 to 2800 time units. However, due to the combination with the
explicit resource modeling only 90% of the sampled value will be added for the ac-
tual delay of the token in place W (i.e., the value is multiplied by 0.9). The “right”
percentage can be found via a validation step, which will be discussed in more detail
with the evaluation of the simulation model quality in Section 9.2.

6 Note that it is not possible to model queuing behavior in a distribution. Because waiting
times are not independent, sampling them from some distribution may lead to lower flow
times and less variance.
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8.3.5 Probabilities and Frequencies

Closely related to the modeling of time aspects is the likelihood of taking a spe-
cific path. Both may be of a stochastic nature, i.e., a time duration may be sam-
pled from some probability distribution, and similarly, the selection of an alternative
branch may be selected randomly (if there are no data attributes clearly influencing
the choice). Hence, the probabilistic selection of a path also needs to be incorporated
in the CPN model. Figure 8.16 shows how often each arc in the model has been used,
determined through the log replay analysis carried out by the Conformance Checker
in ProM7. Looking at the first choice it becomes clear that activity Check policy only
has been executed 7 (out of 10) times and activity Check all was performed only
3 times. Similarly, activity Send rejection letter happened for 4 (out of 10) cases,
while in 6 cases both activity Send approval letter and activity Issue payment were
executed.

Fig. 8.16. Frequencies of alternative paths in the example model.

To reflect frequencies of alternative paths in the simulation model we use two
different approaches, depending on the nature of the choice.

Simple choice The first choice construct in the example model is considered to be
a so-called simple choice as it is only represented by a single place and multiple
output transitions that do not synchronize. We can model such a simple choice
using a probability token that is shared among all the activities involved in this
choice via a fusion place.

Figure 8.17 shows this solution for the choice at place p0. Both sub-pages Check
all and Check policy only contain a fusion place p0 Probability that initially contains
a token with a random value between 0 and 99. After each firing of either transition
Check all start or transition Check policy only start a new random value between 0
and 99 is generated. Because of the guard condition, the decision at the place p0 is
then determined for each case according to the current value of the token in place
p0 Probability. For example, the transition Check all start needs to bind the variable
prob to a value greater than or equal to 70 to be enabled, which will only happen in
30% of the cases.

7 Note that the place names and the markup of the choices have been added to the diagnostic
picture obtained from ProM for explanation purposes.
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Fig. 8.17. Using a probability token for simple choices.

Dependent choices The second choice construct in the example model actually con-
sists of two dependent choices. This means that the choices represented by places
p2 and p3) cannot be considered in isolation; they need to be coordinated to con-
sistently either approve or reject a claim. Therefore, it is clear that two dependent
choices cannot be controlled properly by two independently generated probabil-
ity tokens, because the CPN model will deadlock as soon as the values of the
probability tokens indicate conflicting decisions (e.g., the probability token in
p2 indicates a reject while the other probability token in p3 suggests to approve
the claim).

Figure 8.18 shows a solution for modeling the dependent choices at place p2
and p3. The idea is to increase the likelihood of choosing a certain activity through
activity duplication (using the fact that during simulation in CPN Tools all enabled
transitions will be fired with an equal probability). The activity duplication is real-
ized on an intermediate sub-page (between process and activity page), which points
to multiple instances of the actual activity sub-page (i.e., the activity sub-page is
only modeled once). This way, the observed relative frequency8 of the transitions
involved in the dependent choices can be incorporated in the simulation model (i.e.,
the more likely an activity is, the more instances of that activity are contained on its
intermediate sub-page).

Figure 8.18(a) depicts an intermediate sub-page for activity Issue payment, where
three substitution transitions Issue payment point to different instances of the same
8 To obtain the relative frequency, the absolute frequency is divided by the greatest common

divisor (i.e., 6/2 = 3 and 4/2 = 2).



276 8 A General Model for Process Extensions

sub-page Issue payment. For example, each of the 3 transitions shown Figure 8.18(a)
would point to, for example, the activity sub-page depicted in Figure 8.13(b). Fig-
ures 8.18(b) and (c) show similar intermediate sub-pages for the activities Send
approval letter (also duplicated three times) and Send rejection letter (duplicated
twice).

Fig. 8.18. Modeling dependent choices via activity duplication.

More advanced (and better scalable) solutions may seek to detect dependencies
between choices, and coordinate them, e.g., via a shared probability token.

8.3.6 Logging and Monitoring Simulation Runs

The CPN models described in this section deal with time, resources, and data. When
running a simulation in CPN Tools we are interested in statistics (e.g. average, vari-
ance, minimum, and maximum) related to (a) the utilization of resources and (b) the
throughput times of cases during the simulation run. This information can be auto-
matically obtained (see also Section 8.3.7) via data collector monitors as described
in the following.

(a) Resource utilization. If resources have been specified for the process, all the
available resources are contained in a Resources fusion place, which is located on the
Environment page and on every activity sub-page. For obtaining statistics about the
resource utilization during the simulation we can define a marking size monitor [68]
for this Resources fusion place, which records the number of available resources plus
the current time (and step) as soon as a resource becomes (un-)available.

(b) Throughput time. If the time perspective is covered, tokens are created with
a time stamp. We record the time stamp of each case’s creation together with the
case ID token that is routed through the process. This way, we can determine the
throughput time of a case by defining a data collector monitor [68] for the Clean up
transition on the Environment page (cf. Figure 8.10(b)), which simply calculates the
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difference between the current model time and the start time of a case9, and records
the throughput time, the end time and end step for each case.

Note that these are only two examples of possible measures that can be interest-
ing. For example, the current run time of a case could be easily determined at any
stage in the process via adding some custom monitor.

Moreover, we want to generate process execution logs for the business process
in the CPN model. This can be very useful for, e.g., the creation of artificial logs that
are needed to evaluate the performance of process mining algorithms. Furthermore,
these logs can also be used to evaluate the quality of the simulation model itself as
the simulated process can be analyzed based on its simulation logs in ProM (see
Chapter 9).

For each firing of a transition on an activity sub-page an event is logged, which
includes case ID, the type of transition (i.e., schedule, start, or complete), current
time stamp, originator, and additional data (if available). For generating these pro-
cess execution logs we use the logging functions that have been described in [162].
However, in contrast to [162]—where the code segments of transitions have to be
modified to invoke these logging functions—we decided to use user defined moni-
tors [68] to clearly separate the logging from the rest of the simulation model. These
logging monitors are automatically generated by the CPN Export plug-in in ProM.
During the simulation of a model including these logging monitors MXML frag-
ments are created for each simulated case, which can then easily be combined into
one log using the ProMimport plug-in for CPN Tools.

8.3.7 Simulation in CPN Tools

To illustrate what can be done with a generated CPN model, this section briefly
highlights the simulation capabilities offered by CPN Tools. Although it is possible
to do a state space analysis of the model using CPN Tools, this is not tractable in
most practical settings. Therefore, we exploit the fact that CPN Tools also allows
for performance analysis based on simulation [137]. Monitors can be used to collect
data in log files, create simulation reports, and even generate Gnuplot scripts that
visualize the collected data from different simulation runs.

We take a CPN model that was automatically generated by ProM as the starting
point. The model already contains a simulation environment that generates new cases
according to a certain distribution. Let us assume that the case generation scheme of
our insurance claim handling example process follows an exponential distribution
with the intensity value 0.01. This corresponds to a mean inter-arrival time of 100
time units (which we here interpret as minutes). For simplicity, we further assume
that each activity in the process has a constant waiting and execution time of 30

9 Because the type of the current model time must be of type infinite integer in CPN Tools
(and we do not want to lose precision when calculating the difference between the current
model time and the start time of a case), the model time is mapped onto a STRING value,
i.e., color set START TIME is of type STRING and is used to encode infinite integers.
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Fig. 8.19. Running automatic simulation replications in CPN Tools using the ML function
CPN’Replications.nreplications n.

minutes. The only exception is activity Check all, which has a (constant) execution
time of 60 minutes.10

Figure 8.19 depicts a screenshot of the environment page of the CPN model
loaded in CPN Tools. For example, one can see that all 7 resource tokens are available
in the Resources place. This model can be readily simulated in CPN Tools for an
arbitrary number of steps, both automatically and by manually stepping through the
model to observe how the process behaves. In the meantime, numerical data about
the resources utilization, throughput times, and work load is automatically extracted
from the model and recorded in log files. From this, a performance report indicating
statistical measures such as minimum, maximum, and average values is generated,
and confidence intervals can be used to indicate how precise these estimates of a
performance measure are.

However, for statistical validity, independent and identically distributed (iid) es-
timates of the performance measures must be collected. It is clear that, for exam-
ple the throughput time of a case is influenced by other cases in the process as
they compete for the same resources. Therefore, measures collected from a sin-
gle simulation run are not independent. CPN Tools provides support for perfor-
mance analysis using simulation replications of independent, terminating simula-
tions, and Figure 8.19 shows (cf. top-right corner) how such simulation replications
can be automatically run using an auxiliary text field containing the ML function
CPN’Replications.nreplications n, whereas n determines the number of

10 Note that constant time distributions are usually not useful and have been chosen here only
for illustration purposes. Later in Chapter 9 more realistic simulation experiments will be
performed.
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replications (here n = 2). Note that to let each simulation run terminate, we limited
the number of cases to be generated (cf. the guard of transition Init in Figure 8.19).

The generated CPN model already contains two monitors for measuring resource
utilization and throughput time as described in Section 8.3.6. However, it is easy to
add further monitoring components. For example, we additionally want to measure
the number of cases in the process (i.e., the current work load). For this, we simply
select the pre-defined marking size monitor tool and apply it to the Case data place,
which holds one token for each case that is currently handled by the process.

If we run replicated simulations, CPN Tools automatically generates Gnuplot
scripts that can be used to visualize the data collected by the three monitors for each
of the runs. For example, the graph in Figure 8.20 visualizes the number of cases in
the process over time for two simulation runs. One can see that in the first quarter of
the second simulation run there were up to 10 cases in the system at the same time.
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Fig. 8.20. Gnuplot scripts are automatically generated by CPN Tools. Here, the number of
cases in the process over time for two simulation runs are shown.

While this gives an idea of the developments within a single simulation run, we
are also interested in making firm statements about the performance, e.g., about the
throughput times of cases including confidence intervals. For this, we need a larger
data basis and, therefore, we run 100 simulations with each 200 cases being handled
by the process. Figure 8.21(a) shows a screenshot of the performance output options
in CPN Tools, where one can select the measures to be calculated.

After the simulation has finished, a replication performance report as depicted in
Figure 8.21(b) is automatically generated by CPN Tools. For example, from the data



280 8 A General Model for Process Extensions

Fig. 8.21. Performance reports are automatically generated by CPN Tools.

collected by the throughput time monitor, the average minimum (min iid), maxi-
mum (max iid), accumulated (sum iid), and average (avrg iid) values are calcu-
lated for the 100 simulation runs. The number of samples taken (count iid) is equal
for all the replicated simulations as 200 cases are the stop criteria to finish a simula-
tion run.

The replication performance report reflects the precision of a performance mea-
sure over the different simulation runs using confidence intervals. For example, Fig-
ure 8.21 highlights the 90%, 95%, and 99% confidence intervals for the average
throughput time, e.g., [309.96, 310.39] is the 90% confidence interval. This indicates
very little variation, which is caused by the constant execution and waiting times in
this simple example. For a real simulation experiment, one would obviously rather
use a time distribution sampled from the time information in the event log that was
used to discover the simulation model.

In addition to the performance report, which provides an overview of the perfor-
mance measures from the replicated simulations, CPN Tools also records the statis-
tics for each of the simulation runs in log files. Based on these log files, custom gnu-
plots can be plotted relatively easily. For example, the graph in Figure 8.22 demon-
strates the effect of the number of replications (here 3, 5, 10, 50, and 100 replications
were run during a simulation) on both the estimate of the performance measure (here
average throughput time) as well as the confidence intervals. The confidence inter-
vals show that the estimated performance measures become more accurate with an
increasing number of replications. So, it is advisable to run a larger number of repli-
cations for better results.
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Fig. 8.22. Custom gnuplot graphs can be plotted based on log files written by data collector
monitors in CPN Tools. Here, the 95% confidence intervals of the average process throughput
time for different numbers of replications are shown.

Finally, one last remark needs to be made: Simulation-based performance anal-
ysis as discussed in this section can be used to explore “what if” scenarios. For
example, one could predict the flow times for alternative configurations (e.g., less
specialists for a certain task), or explore re-designs of the process under considera-
tion. However, it is important to be aware of the fact that, this way, we seek to to
analyze the long-term behavior of a system (steady-state behavior analysis) [137]:
Think of the insurance claim handling process as a non-terminating process, which
continuously handles incoming cases.

Let us consider again Figure 8.20, which depicts the total number of insurance
claims in the system throughout the whole simulation for two different runs. The
overall simulation time had been restricted by the number of cases. Because only 20
cases were simulated per run, the simulated process spans less than 2500 minutes (ca.
40 hours). Can this be enough to investigate the long-term behavior of the process?
This is very unlikely. Furthermore, one can observe that the simulation starts with 0
cases in the system (i.e., there is a “warm-up” phase) and that it ends with 0 cases in
the system (i.e., there is a “cool-down” phase). So, the beginning and the end of the
simulation do not actually reflect the steady-state behavior of the process at all.

As a consequence, two aspects should be considered to derive valid performance
measurements for the steady-state behavior of a process:
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1. Use very long simulation runs for every replication to make sure that the (non-
representative) measurements from the warm-up phase do not affect the overall
performance measurements.

2. Avoid the cool-down phase by using other stop-criteria than simulating a fixed
number of cases. For example, one can stop the simulation using a monitor that
is based on model time (e.g., after 6 months have been simulated).

In fact, in many situations, it would be more interesting to analyze the short-term
behavior of a process (transient behavior analysis) [137]. This would include ques-
tions which are relevant for the operational decision making (rather than long-term
redesign considerations). A example question concerning the short-term behavior of
the process would be “Given our current work load and the expected staff availability,
can we meet the important deadline in two weeks?”. In Section 9.3, we will extend
our approach to also allow for transient analysis.

8.4 Conclusion

In this chapter, a model for process information beyond the control-flow perspective
has been defined, with the goal of enabling business process simulation based on
process mining results. We have demonstrated how mined models can be further
extended by simulation-relevant characteristics discovered from an event log using
process mining techniques. Furthermore, we presented a CPN representation that can
be used to capture and simulate such an extended process model.

While the purpose of the presented high-level process structure is mostly to be
able to capture simulation-relevant information about a business process, it can be
extended to capture additional process aspects. For example, conformance analysis
results could be incorporated as well. One major benefit of such a combined repre-
sentation including time, data, and resource information is that analysis techniques
can be built on top of each other (i.e., there are synergy effects). For example, a cost
analysis could be performed based on different aspects of the process.

The presented high-level process structure has been implemented and is sup-
ported by a number of plug-ins in ProM. Appendix A.3 provides an overview about
these plug-ins, among which there are the following:

• The Edit / View High-level Information plug-in (cf. Appendix A.3.2) that can be
used to inspect and modify the extended process model in a graphical way.

• The Merge Simulation Models plug-in (cf. Appendix A.3.4) allows to integrate
different extended models into one model.

• The CPN Export plug-in (cf. Appendix A.3.6) can transform any Petri net-based
high-level model into a CPN in the presented representation.

In the future, it would be useful to also (a) define a file format for storing a high-
level process, and (b) to be able to generate a report that summarizes the combined
information.
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Finally, while the presented high-level process structure can be mostly seen as an
extension of the control-flow perspective, it would also be possible to extend other
types of models with additional information. For example, social networks could
be enhanced by all kinds of performance information to gain more insight into the
underlying interactions.

In the next chapter, we focus on two aspects. First, we evaluate the quality of
discovered simulation models as presented in this chapter, both based on artificial
and based on real-life data. Second, we extend our approach to allow for transient
analysis also known as “short-term simulation”.
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Using Process Mining Results for Simulation

9.1 Introduction

Computer simulation is a useful and versatile tool to gain insight into the operation
of systems. Next to, for instance, natural systems also human systems can be subject
to simulation. The idea is that a model that represents certain key characteristics or
behaviors of the system is analyzed with the goal to show the eventual real effects
of alternative conditions and courses of action. The strength of simulation is that it
enables precisely this “what if” analysis, i.e., it allows to “look into the future” under
certain assumptions.

In the context of business processes, simulation could be hugely beneficial by
projecting the expected performance improvement from a process change before
committing the resources needed to make that change. For example, it can help to
estimate the benefit of an anticipated process redesign, or to predict flow times for an
increasing number of incoming cases, a reduced number of specialists for a certain
task etc.

Unfortunately, the simulation functionality in existing BPM tools is often con-
sidered a “toy for managers and consultants” or “fake feature” both by scholars [17]
and practitioners [244]. The reasons why simulation is not truly useful in practice
can be seen on two levels:

Missing characteristics. The simulation environment itself may not be expressive
enough to actually approximate reality in a sufficiently good way. For exam-
ple, the separation of active time (time to perform the task) and lag time (time
to actually start the task) parameters for an activity is one of many real-world
requirements ignored by many simulation tools [244]. If important process char-
acteristics are missing in the simulation model, then the simulation results bear
no relationship to the results to be expected in reality.

How to get parameters. Even if the simulation environment would be able to cap-
ture all relevant process characteristics, it is a huge problem to come up with the
right parameters to properly configure the simulation model. Since most sim-
ulation tools are completely disconnected from the actual operational process
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environments [17], these parameters must be filled in by the analyst manually.
Again, if the provided simulation parameters bear no relationship with the ac-
tual process characteristics, the simulation results will be misleading, and thus
not useful.

In this chapter, we will address these two issues in the following way. In Chap-
ter 8 we presented an approach to automatically create a simulation model filled
with parameters based on process mining techniques. The idea was simulation pa-
rameters can be extracted from observed process executions, which will help us to
create more realistic simulation models. But is this actually the case? In this chapter,
the quality of the generated simulation models is evaluated based on the analysis of
simulation logs (Section 9.2). Then, we demonstrate the importance of a particular
process characteristic that is typically missing in simulation tools: Instead of start-
ing the simulation from an empty initial state, we pre-populate the simulation model
with the current state of the process (e.g., current backlogs in the system), which is a
prerequisite to use simulation for operational decision support (Section 9.3). Finally,
related work is reviewed (Section 9.4) and the chapter is concluded (Section 9.5).

9.2 Evaluating the Quality of Discovered Simulation Models1

Traditionally, simulation models are created manually. Documentation, interviews
and close observation help to get an understanding of the real-world process of inter-
est. This is a time-consuming activity, which is likely to be error-prone as it is based
on human perception of reality rather than on reality itself. In Chapter 8, we there-
fore proposed to use process mining techniques to (semi-) automatically discover a
simulation model based on historical information that was recorded during process
enactment.

In this way, we can much quicker arrive at a first simulation model (to be further
evaluated and potentially modified) than with the traditional approach. In addition,
it is likely to better represent reality as it is based on objective information. Note
that good knowledge of the observed operational process is inevitable for drawing
conclusions from a simulation run and, therefore, such a generated model does not
make domain and modeling expertise obsolete. However, no modeling efforts are
needed to generate an initial model2. Furthermore, this can be easily repeated in an
iterative manner as soon as the process changes.

Our premise is that business process simulation can be beneficial, for example,
to explore process re-designs before implementing them in reality. So, here we do
not focus on actually carrying out simulation experiments. Instead, we focus on the
validation of the discovered simulation models, because such simulation experiments
are only useful if the model captures the real process in a sufficient way.

1 This research is based on joint work with R.S. Mans, M. Song, and W.M.P. van der
Aalst [227].

2 We realized our proof-of-concept implementation using a number of different steps, but it
would be possible to fully automate this approach
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The remainder of this section is organized as follows. First, we give an overview
about our evaluation approach, which is based on analyzing the simulation logs (Sec-
tion 9.2.1). Two case studies based on real-life log data are then presented, whereas
the quality of the generated simulation models is evaluated using the proposed ap-
proach (Section 9.2.2). Finally, we discuss the results and implications of this evalu-
ation (Section 9.2.3).

9.2.1 Evaluation Approach

As discussed in the beginning of this chapter, it is clear that the value of a simulation-
based analysis largely depends on the quality and validity of the simulation out-
comes. The validity of the representation of the selected key characteristics is one
important aspect that needs to be ensured when approximating a real-life process by
a simulation model. Therefore, we want to evaluate how good a discovered simula-
tion model captures these process characteristics. Other aspects, such as the validity
of the recorded log data (which is used as input for the described process discovery
techniques), are beyond the scope of this thesis, and we assume that the event log
contains a representative subset of the behavior of the original process.

In Chapter 8, we presented a CPN representation for business processes that can
be generated from a discovered high-level process structure in ProM. As explained
in Section 8.3.6, these CPN models contain logging monitors that create simulation
logs in the same format (MXML) as the event logs initially used to discover the
simulation model.

Process Mining 
Analysis (ProM)

MXML 
Log

HL
Process

Simulation
(CPN Tools)

MXML 
Log

Process Mining 
Analysis (ProM)

(cf. Chapter 8) Log Generation

"Second Pass"Same Results?

Simulation Model 
Generation (ProM)

CPN 
Model

(cf. Chapter 8)

HL
Process

Fig. 9.1. Overview about the evaluation approach: The simulation logs are analyzed in a “sec-
ond pass”, and the results of this “second pass” analysis are compared to the process mining
results of the original event logs.

Figure 9.1 illustrates how we use these simulation logs in our evaluation ap-
proach: Process mining techniques are used to analyze the simulation logs in the
same way as the initial event logs had been analyzed to create the simulation model.
In this way, we can compare the results and find out whether the considered process
characteristics of the original and the simulated process differ or not.

We applied this approach to the example scenario discussed in Section 8.2.1.
So, based on the integrated high-level model shown in Figure 8.7, we performed the
following steps:
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1. A CPN model including the discovered data, performance, and resource char-
acteristics was generated based on the initial event log using the techniques de-
scribed in Chapter 8.

2. A simulation was run for 1000 cases, and the resulting simulation log fragments
were combined into an MXML log file using the CPN Tools plug-in of the
ProMimport framework.

3. The simulation log was analyzed with the same process mining algorithms that
had been used before to discover the control-flow, data, performance and re-
source perspective (“second pass”).

The results obtained for the control-flow, data, and resource perspective are ex-
actly the same as in the previous analysis. This means that—based on the simulation
log—the same models as shown in Figure 8.3, Figure 8.4, and Figure 8.6 are redis-
covered.

The results obtained for the performance perspective are also very similar. In the
second pass, we have an intensity of about 0.0163 (instead of 0.0167) new cases
arriving per minute (on average), and we get the same probability values for the
alternative branches. Figure 9.2(a) depicts the execution time and Figure 9.2(b-1)
and Figure 9.2(b-2) depict the waiting time3 values obtained from both the original
log (OL) and the second pass (SP), which are almost identical.

With regard to our artificial example, the discovered CPN model coincides with
the original model, i.e., it is possible to completely rediscover the model from the
event logs. This serves as a proof-of-concept, i.e., it is possible to discover simulation
models. In the next section, we will investigate this further by evaluating the quality
of the generated simulation models for two real-life examples.

9.2.2 Case Studies

To validate the presented simulation model discovery approach in a real-life situa-
tion, we have performed two case studies. They are based on process logs from two
different municipalities in the Netherlands. Also in these case studies we focus on the
quality of the simulation models rather than on the discovered process characteristics.
Similar to the running example, we first perform process mining to discover several
perspectives (control-flow, data, performance, and organizational), and generate a
CPN from the integrated model. Then, an event log is generated during simulation
in CPN Tools, and re-analyzed with ProM to compare the results of this second pass
with the initial analysis results. We also investigate the results according to different
simulation configurations.

Case Study I

The case study is conducted based on real-life logs from a municipality in the Nether-
lands. The municipality uses a workflow system developed using the “Eastman Soft-
3 Note that the waiting time graphs have been split for better readability because the waiting

times for the different activities vary from several minutes up to several thousand minutes.
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Fig. 9.2. Execution time and waiting time results obtained for the original log (OL) and the
second pass (SP) of the running example. One can see that both the arithmetic mean (mean)
and the standard deviation (std) of first and second pass are very close. In fact, it is difficult to
distinguish the lines relating to OL and SP because they coincide in each of the three graphs.

ware Workflow for NT”. This systems is, among others, used to handle complaints.
We obtained a log from this workflow system for the complaint handling process,
which we converted to the MXML format via a plug-in in the ProMimport frame-
work [116]. When the municipality receives a complaint, they first initiate a process
instance. Then it is prepared (the case is investigated) and assigned to a suitable ac-
tivity out of four actual complaint handling activities. Then, the case is moved to the
assigned activity and, after it has been handled, the process is finished.

The particular event log we use in this section contains 363 cases. The number of
total events is 1,817, and the log has five different activities. Each activity is recorded
by logging ‘start’ and ‘complete’ events. 13 employees participated in the process
execution, and the log contains 15 different data elements such as the ID of the case,
queue of activities in the workflow engine, priority of the task, etc.

Figure 9.3 shows some screenshots of the mining results. We used the Alpha
miner in ProM to discover the process model. The resulting process model has 100%
fitness. According to the Performance Analysis with Petri net plug-in, the average
waiting time of activities in this complaint handling process is 45.7 hours, while the
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(a) Performance values of the process and activities are discovered

(b) Decision rules: the choice is performed based on “queue” value

(c) Organizational model: the 6 roles and 13 originators are discovered

Fig. 9.3. Mining results: (a) performance values, (b) decision rules, and (c) organizational
model.

average execution time of activities is only 5.1 hours. The overall processing time
is 72.6 hours, and a new case is generated every 12.4 hours (on average). The De-
cision Point Analysis result shows that the choice is based on the value of the data
attribute “queue” (which determines the activity that is scheduled next in the work-
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flow engine). From the discovered rules, it seems as if the most frequent branch
“AG08 GBA afnemer”4, which is executed in 88% of the cases, is also the default
branch if none of the four complaint handling activities has been explicitly scheduled
(in this case the “queue” still contains one of the previous activities). The Organiza-
tional Miner derives 6 roles and 13 originators are assigned to clusters based on the
execution history in the log.5

Table 9.1. Configurations of the three simulation models.

M0 M1 M2

Control flow include include include

Organizational model include include include

Decision rule data attribute data attribute probability

Performance info execution time execution time execution time
no waiting time 95% waiting time 95% waiting time

From the mining results, three models are generated with different configurations
regarding decision rules and waiting time. Table 9.1 summarizes the configurations
of the three models. The first model (M0) and the second model (M1) combine all
the four mining results and use the data perspective from the decision miner for the
decision rule. In contrast, the third model (M2) uses probabilities (i.e., a stochas-
tic approximation) to make the choice of the subsequent activity. Furthermore, the
waiting time is determined only by resources in M0 (if all resources of a certain
type are occupied, an activity might have to wait until a resource becomes available
again and it can be started). In contrast, M1 and M2 contain extra waiting time (95%
of the observed waiting time) in addition to the waiting time that results from the
unavailability of resources.

Note that waiting time may result from competing for resources with other
cases inside the same process and competition between processes. For example,
an employee may be involved in multiple processes that are all competing for the
employee’s attention [17]. Although the CPN model only considers the complaint
handling process, the employees of the municipality also work on other processes.
Therefore, it is necessary to add waiting time in addition to the simulated queueing
time resulting from the competition with other complaints. Since the total waiting
time is measured by ProM, it is only natural to add part of this time. Therefore, we
added 95% of the observed waiting time to M1 and M2. We find the right degree of
external waiting time by experimenting and evaluating the results of the second pass
as described in this chapter. That is, we try to match the simulated results with the

4 Note that, because there is no need to understand the process in detail, we did not translate
the Dutch activity names.

5 Note that in Figure 9.3(c) and Figure 9.6(c) the names of the originators were erased to
ensure confidentiality and privacy.
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original ones to find out to which degree the waiting time stems from competition
within the process according to our model (here, this was approx. 5%) and to which
degree it is influenced by other factors (95%).

We perform simulations and analyze the generated process logs; each of them
contains 400 cases. We obtain the same process models and organizational models
from the simulation logs as from the original event logs. Furthermore, the same de-
cision rules are derived from the logs from M0 and M1 (since M2 does not contain
the data perspective, it has no information about data). Figure 9.4 shows the perfor-
mance analysis results including the performance values from the original log (OL).
Figure 9.4(a) shows the execution times of the activities. The values for all the three
models are comparable to each other. Figure 9.4(b) shows the waiting times. The
values from M0 are much smaller than the others. In the real world, resources deal
with several activities in the organization and perform their work based on their own
schedule. However, since we handle not all processes but only one process, we can-
not take this situation into account. Thus, the number of resources obtained from
process logs is generally large enough to immediately execute activities. To compen-
sate this, we introduce extra waiting time. If we add an additional delay of 95% of
the observed waiting time (M1, M2), waiting times are similar to the values from the
original log.

Fig. 9.4. Performance analysis results based on the original log (OL) and the three discovered
simulation models.

Figure 9.5 shows the probability values for choosing a particular path when visit-
ing the decision point shown in Figure 9.3(b). The names on the horizontal axis refer
to the activities following the decision point. When we use probabilities to make a
decision (M2), the resulting probability values are almost identical to the original
values. However, we can see that if we use decision rules based on data attributes
(M0, M1), the results are different. This is not desirable since the probability of an
alternative branch can, for example, influence the throughput time of the process
(e.g., through the increase of the probability of executing an activity which has a
long execution time, or because one branch has more steps to be executed than the
other).
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Fig. 9.5. Probabilities for the decision point shown in Figure 9.3(b).

We found out that the differences stem from the fact that the values of the (nom-
inal) decision variable “queue” were randomly generated by the model, rather than
being sampled from the actual data value range distribution. Note that in the running
example the probabilities did match because we generated the log with decisions
based on randomly distributed (nominal) data in the first place. However, in this sec-
tion we use a real-life log where this is not the case, which enabled us to detect this
flaw. This demonstrates the value of performing experiments based on real-life data.

Case Study II

The second case study deals with a log that we obtained from the Urban Manage-
ment Service of a local municipality of 90,000 citizens, situated in the northern part
of the Netherlands. They have implemented their own custom-made workflow sys-
tem. From the workflow system, we extracted process logs and converted them into
the MXML format. Here, we use a log with events related to the handling of in-
voices in 2005. The log data contains 570 cases. The number of total events is 6,616.
The process consists of 10 activities, and 110 employees participated in the process
execution. For the first activity only ‘complete’ events are recorded, but the other
activities record both ‘start’ and ‘complete’ events.

The general procedure is that an invoice is scanned and subsequently sent by the
workflow management system to the central financial department. A clerk registers
the invoice, after that it is sent to the proper local financial office. Depending on the
kind of invoice, there are various checks that need to take place: the person respon-
sible for the budget that is used for the purchase must approve (the budget keeper);
the fit between the purchase with the supplier’s contract (if any) must be established;
various managers may be required to authorize the invoice depending on the amount
of money involved etc. Eventually, a purchase must be paid by the central financial
office.

From the process logs we derived a model for the control-flow perspective and
extended the model with characteristics from the performance and organizational
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perspectives. Note that, since the original log does not contain any data attributes,
we cannot perform the decision point analysis and need to resort to probabilities
to model choices. After integrating the discovered models, we generate simulation
models with different configurations of the waiting time.

Figure 9.6 shows the mining results. We generate the process model with the
Heuristic miner in ProM. Figure 9.6(a) shows the generated model as a Petri net.
The generated model has 100% fitness with respect to the log (i.e., it completely
captures the behavior from the log). To calculate performance information such as
execution time and waiting time, we create a Petri net model including start and
complete tasks and use the Performance analysis with Petri net plug-in. Figure 9.6(b)
shows the results of this performance analysis. At the bottom one can see statistics of
the timing behavior for the selected activity ROUTEFEZ. Furthermore, the measured
arrival rate is ca. 1.4 cases per hour, which means that a new case was started every 50
minutes, on average. Finally, the overall processing time averages 182 hours, which
is about a week (not shown in the screenshot). We also generate an organizational
model using the Organizational miner as shown in Figure 9.6(c). 10 roles are derived
and the 110 employees are assigned to the roles.

Table 9.2 shows the performance analysis results for the five major activities in
the process. Similar to the previous case study, one can observe that the waiting times
are much longer than the execution times in the process. This is very typical for a
real-life process. The table also shows organizational mining results. It shows the
number of resources who are involved in the execution of each activity.

Table 9.2. Organizational mining and performance analysis results for the five main activities
in the process.

Activity Execution time (minutes) Waiting time (hours) No. of resources

CODFCTBF 3.71 29.7 76

CONTRUIF 1.75 17.9 3

ROUTEFEZ 5.05 39.7 25

CONTRCOD 2.71 22 24

FBCONCOD 2.85 66.5 7

From the mining results, two models are generated with different configurations
on the waiting time. In the first model (M0), the waiting time is determined only
by resources, while the second model (M1) assigns extra waiting time (100% of the
observed waiting time) to the queuing for resources. Figure 9.7 shows the generated
simulation model (M0) in CPN Tools.

With each simulation model, we generate 600 cases and analyze the generated
process logs with ProM. In each of the two scenarios (M0 and M1), the process
model discovered by the Heuristic miner from the simulated process log equals to
the original model in Figure 9.6(a). The organizational model is also re-discovered.
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(a) Control flow: 10 tasks and their dependencies are discovered

(b) Performance values of the process and activities are discovered

(c) Organizational model: the 10 roles and 110 originators are discovered

Fig. 9.6. Mining results: (a) control flow, (b) performance values, and (c) organizational model.

Figure 9.8 shows the performance analysis results. Figure 9.8(a) shows the execu-
tion times of the main activities. As before, the results are very similar. Figure 9.8(b)
shows the waiting times. In M0, no waiting times are observed due to the small ex-
ecution times, and the big number of available resources.6 Again, one reason is that
we observe the process in isolation, i.e., we do not see the activities that resources
perform for other processes. Hence, utilization of resources is low and there is hardly
any queueing due to competition between cases. Since the processing times are neg-
ligible compared to the observed waiting times, we add an extra delay of 100% of
the observed waiting time (M1). As a result of this intervention, the waiting times
are similar to the values from the original log.

6 In fact, the data points for M0 in Figure 9.8(b) are hardly visible because they coincide
with the x-axis.
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Fig. 9.7. Generated simulation model in CPN Tools.

Fig. 9.8. Performance analysis results for the original log (OL) and the two discovered models
(M0 and M1).

In the two case studies presented in this section, we have generated simulation
models from real-life process logs with the method proposed in this Chapter 8. We
have also investigated the quality of the simulation models by analyzing the gen-
erated process logs and comparing the results with the original mining results. The
results are very promising as they demonstrate that it is indeed possible to automati-
cally construct simulation models based on real-life event logs. Furthermore, with the
proper configuration these models could accurately reflect the real situation for all
the covered perspectives. However, the results also highlight a number of challenges
that must be addressed in the future. They are summarized in the next section.

9.2.3 Discussion

The goal is to derive a simulation model that reflects the real process as precisely as
possible. However, instead of trying to “capture the whole world” (which obviously
is an unachievable goal) we must find simplifying but suitable approximations for the
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desired key characteristics and behaviors. Process mining can help to automatically
extract the information that we need for these approximations from log data.

Clearly, the level of detail (e.g., the number of covered perspectives) of a simula-
tion model has an impact on the usefulness of a simulation model. For example, we
can approximate the routing behavior at a decision point in the process by probabil-
ities. However, this will not allow us to directly investigate the effect to be expected
by an increased proportion of cases with certain characteristics (assuming that these
characteristics affect the routing behavior). Similarly, solely modeling the waiting
time for an activity is a way to approximate all kinds of delays that prevent the im-
mediate execution of the activity (including the availability of suitable resources).
However, with such a coarse approximation we are not able to predict the eventual
real effects of an increased case load, or the allocation of more resources to the pro-
cess. Therefore, a simulation model needs to cover different perspectives, such as
control-flow, data, resources, and time.

The organizational perspective is a very important and challenging aspect to be
covered in a simulation model. Note that in the case studies people were only work-
ing part-time on the processes at hand. As a result, we had to add additional waiting
time to the models based on an analysis of the log. However, this is not satisfac-
tory since it does not really capture the way that people actually work. In fact, the
high degree of additional waiting time needed to fit the real-life processes shows the
relevance of getting more insight into the actual root causes for these delays. Numer-
ous simulation studies, where, e.g., master students model the business processes
of organizations, have shown that initial simulation results are typically very opti-
mistic because the resources in the model are too “eager” and dedicated to a single
process. For example, people work only part-time, or are involved in multiple pro-
cesses. However, even if we can correctly capture the availability of a person, it does
not mean that in reality she would start working on a task as soon as it is possible. For
example, certain tasks may be continuously delayed due to prioritization issues. As
a consequence, we need to find better ways to characterize human behavior without
“imitating” the (very complex) reality [17].

During our experiments we have also identified potential points of improvement
for our mining plug-ins and the used high-level data structure. For example, we re-
alized that we need to capture data value range statistics from the execution log not
only for numeric but also nominal attributes. This has been addressed by recording
frequency statistics with respect to the different data values, and by including the cor-
responding random value generators in the CPN models. Furthermore, it would be
good to find ways to extract performance characteristics and decision rules without
the need of a (mined) process model as input because this often implies conformance
problems (i.e., if not all cases comply with the given process model, we might not be
able to use the data from these cases).
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9.3 Workflow Simulation for Operational Decision Support7

So far, we have seen how process mining can be used to automatically calibrate the
parameters of a simulation model. Furthermore, it has been shown that analyzing
simulation logs can be a way to evaluate the quality of the simulation model rep-
resentation. In this section, we focus on another problem shared by contemporary
simulation tools: they usually focus on strategic decision making while simulation
may be more interesting for operational decision support.

As discussed in Section 8.3.7, the simulation of a process that starts from an
empty state has a “warm-up” phase, which should be “thrown away” or neutralized
in some way to analyze the steady-state behavior of the process. However, for tran-
sient analysis precisely this early simulation phase is of interest to answer short-term
questions (e.g., “What is happening tomorrow?”) that enable the support of opera-
tional decisions. As a consequence, one cannot start the simulation from an empty
state.

To be able to answer operational questions, different sources of simulation-
relevant information need to be leveraged. In this section, we present a new way
of creating a simulation model for a business process supported by a workflow man-
agement system, in which we integrate design, historical, and state information.

Figure 9.9 illustrates our approach [230, 232, 231]. We consider the setting of
a workflow system that supports some real-world process based on a workflow and
organizational model. Note that the workflow and organizational models have been
designed before enactment and are used for the configuration of the workflow system.
During the enactment of the process, the performed activities are recorded in event
logs.

The right-hand side of Figure 9.9 is concerned with enactment using a workflow
system while the left-hand side focuses on analysis using simulation. In order to
link enactment and simulation we use three types of information readily available in
workflow systems to create and initialize the simulation model.

• Design information. The workflow system has been configured based on an ex-
plicit process model describing control flow and data flow. Moreover, the work-
flow system uses organizational data, e.g., information about users, roles, groups,
etc.

• Historical information. The workflow system records all events that take place in
‘event logs’ from which the complete history of the process can be reconstructed.
By analyzing historical data, probability distributions for workflow events and
their timing can be extracted.

• State information. At any point in time, the workflow process is in a particular
state. The current state of each process instance is known and can be used to
initialize the simulation model. Note that this current state information includes
the control-flow state (i.e., ‘tokens’ in the process model), case data, and resource
data (e.g., resource availability).

7 This research is based on joint work with M.T. Wynn, W.M.P. van der Aalst, A.H.M. ter
Hofstede, and C.J. Fidge [230, 232, 231].
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Fig. 9.9. Overview of our integrated workflow management (right) and simulation (left) sys-
tem.

By merging the above information into a simulation model, it is possible to
construct an accurate model based on observed behavior rather than a manually-
constructed model which approximates the workflow’s anticipated behavior. More-
over, the state information supports a ‘fast forward’ capability, in which simulation
can be used to explore different scenarios with respect to their effect in the near
future. In this way, simulation can be used for operational decision making.

Based on this approach, the system design in Figure 9.9 allows different simu-
lation experiments to be conducted. For the ‘as-is’ situation, the simulated and real-
world processes should overlap as much as possible, i.e., the two process ‘clouds’
in Figure 9.9 need to coincide. For the ‘to-be’ situation, the observed differences
between the simulated and real-world processes can be explored and quantified. As
mentioned earlier, in our implementation we ensure that the simulation logs have the
same format as the event logs recorded by the workflow system. In this way we can
use the same tools to analyze both simulated and real-world processes. To demon-
strate the applicability of our approach, we have implemented the system shown in
Figure 9.9 using ProM and YAWL.

The remainder of this section is organized as follows. First, we describe the pro-
posed approach in more detail (Section 9.3.1). Afterwards, an example scenario is
presented (Section 9.3.2), which is then used to explain the implementation realized
using YAWL and ProM (Section 9.3.3). Finally, we elaborate on our approach to in-
corporate state information and present a new XML file format for workflow states
(Section 9.3.4).
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9.3.1 Overview Approach

A crucial element of the approach in Figure 9.9 is that the design, historical and state
information provided by the workflow system are used as the basis for simulation.
Table 9.3 describes this information in more detail.

Table 9.3. Process characteristics and the data sources from which they are obtained.

Design information Historical information State information
(obtained from the workflow
and organization model used
to configure the workflow
system)

(extracted from event logs
containing information on the
actual execution of cases)

(based on information about
cases currently being enacted
using the workflow system)

• control and data flow
(activities and causalities)

• data value range
distributions

• progress state of cases (state
markers)

• organizational model (roles,
resources, etc.)

• execution time distributions • data values for running
cases

• initial data values • case arrival rate • busy resources
• roles per task • availability patterns of

resources
• run times for cases

The design information is static, i.e., this is the specification of the process and
supporting organization that is provided at design time. This information is used to
create the structure of the simulation model. The historical and state information
are dynamic, i.e., each event adds to the history of the process and changes the cur-
rent state. Historical information is aggregated and is used to set parameters in the
simulation model. For instance, the arrival rate and processing times are derived by
aggregating historical data, e.g., the (weighted) average over the last 100 cases is
used to fit a probability distribution. Typically, these simulation parameters are not
very sensitive to individual changes. For example, the average processing time typi-
cally changes only gradually over a long period. The current state, however, is highly
sensitive to change. Individual events directly influence the current state and must be
directly incorporated into the initial state of the simulation. Therefore, design infor-
mation can be treated as static, while historical information evolves gradually, and
state information is highly dynamic.

To realize the approach illustrated in Figure 9.9 we need to merge design, histor-
ical and state information into a single simulation model. The design information is
used to construct the structure of the simulation model. The historical information is
used to set parameters of the model (e.g., fit distributions). The state information is
used to initialize the simulation model. Following this, traditional simulation tech-
niques can be used. For example, using a random value generator and replication,
an arbitrary number of independent simulation experiments can be conducted. Then
statistical methods can be employed to estimate different performance indicators and
compute confidence intervals for these estimates.

By modifying the simulation model, various ‘what-if’ scenarios can be investi-
gated. For example, one can add or remove resources, skip activities, etc. and see
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what the effect is. Because the simulation experiments for these scenarios start from
the current state of the actual system, they provide a kind of ‘fast-forward button’
showing what will happen in the near future, to support operational decision making.
Note that the ‘fast-forward button’ is used to perform transient analysis rather than
classical steady-state analysis. For instance, based on the predicted system behavior,
a manager may decide to hire more personnel or stop accepting new cases.

Importantly, the simulations yield simulation logs in the same format as the event
logs. This allows process mining techniques to be used to view the real-world pro-
cesses and the simulated processes in a unified way. Moreover, both can be compared
to highlight deviations, etc.

9.3.2 Running Example

To illustrate the approach let us consider a credit card application process. The corre-
sponding YAWL workflow model is shown in Figure 9.10. The process starts when
an applicant submits an application. Upon receiving an application, a credit clerk
checks whether it is complete. If not, the clerk requests additional information and
waits until this information is received before proceeding. For a complete applica-
tion, the clerk performs further checks to validate the applicant’s income and credit
history. Different checks are performed depending on whether the requested loan is
large (e.g., greater than $500) or small. The validated application is then passed on
to a manager to decide whether to accept or reject the application. In the case of
acceptance, the applicant is notified of the decision and a credit card is produced and
delivered to the applicant. For a rejected application, the applicant is notified of the
decision and the process ends.

Fig. 9.10. A credit application process modeled in YAWL.

Here we assume that this example workflow has been running for a while. In
YAWL (but also any other workflow system) the following runtime statistics can be
gathered about the long-term behavior of this process:

• Case arrival rate: 100 applications per week
• Throughput time: 4 working days on average

With respect to resources, there are eight members of staff available, which include
three capable of acting as ‘managers’ and seven capable of acting as ‘clerks’. (One
person can have multiple roles.)
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Further assume that due to a successful Christmas promotion advertised in
November, the number of credit card applications per week has temporarily dou-
bled to 200. The promotion period is now over and we expect the rate to decrease to
100 applications per week again. However, as a result of the increased interest, the
system now has a backlog of 150 applications in various stages of processing, some
of which have been in the system for more than a week. Since it is essential that
most applications are processed before the holiday season, which begins in a fort-
night from now (the ‘time horizon’ of interest), management would like to perform
simulation experiments from the current state (‘fast forward’) to determine whether
or not the backlog can be cleared in time.

9.3.3 Realization through YAWL and ProM

We now use the example introduced in Section 9.3.2 to describe our proof-of-concept
implementation supporting the approach depicted in Figure 9.9. The realization is
based on the YAWL workflow environment and the process mining framework ProM.
For the actual simulation experiments we use CPN Tools.

In this section, we first provide an overview about how YAWL, ProM and CPN
Tools have been integrated to realize our approach. Then we focus on the new ca-
pabilities that have been added to these systems, and briefly explain the main steps
that need to be performed to extract simulation-relevant information from YAWL,
create a simulation model based on this data in ProM, load an initial state into this
simulation model, and to analyze the simulation runs.

Architecture

Consider Figure 9.11, which shows an overview of the tools and data sources that
are involved in the realization of our approach.

The YAWL system enacts the business process and provides design information
(YAWL’s workflow specification and organizational model), historical information
(workflow log file in MXML format), and state information (workflow state in our
newly defined WFState format). The design and historical information are used to
create and configure the simulation model, which is output as a Coloured Petri net
(CPN) file. The generated CPN file is accompanied by an SML file (a CPN input
file), which represents the (empty) initial state. This initial state can be repeatedly
replaced by the actual current workflow state without changing the simulation model.
Finally, CPN tools generates various output files from a simulation run. Among these
simulation logs are MXML files, which can be loaded in ProM and analyzed in the
same way as the actual workflow logs.

A detailed step-by-step description of how to generate a simulation model in-
cluding operational decision support is provided in our tutorial and technical re-
port [214, 231] (see also Appendix A.3).

Note that through the use of standardized interfaces—the OrgModel format for
organizational models, MXML for event logs, and the newly defined WFState format
presented in this chapter—it is very easy to extend our toolset for other environments
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Fig. 9.11. Overall architecture of the realized system (the dotted area is shown in more detail
in Figure 9.13).

(e.g., YAWL can be replaced by another workflow management system). To apply
our approach to another type of workflow system, the same file formats can be used
and only an import facility for the new type of workflow specification (plus poten-
tially a conversion of the new type of process model into a Petri net) needs to be
provided.

Extracting Simulation-Relevant Information

As illustrated in Figure 9.11, the information contained in the YAWL workflow
specification (WorkFlowSpec) is supplemented with historical data obtained from
the event logs (WorkFlowLog) and data from the organizational model database
(OrgModel). Furthermore, the current workflow state can be exported, which is not
used to create the simulation model, but loaded afterwards to initialize the simulation
model (InitialState in Figure 9.11).

The workflow engine of YAWL was extended to export historical data to ProM.
In the YAWL workflow system, entries in the event log are created whenever an
activity is enabled, started, completed or cancelled, together with the time when this
event occurred and with the actor who was involved. Logs are also kept for data
values that have been entered and used throughout the system. Therefore, we can
retrieve historical data about process instances that have finished execution. In this
work we assume that the simulation experiments are being carried out on ‘as-is’
process models for which historical data is available. A function has been created
which extracts the historical data for a specification from the workflow engine and
exports audit trail entries in the Mining XML (MXML) log format. Some sample data
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for the credit application example is shown in Figure 9.12(a). This historical data is
used for mining information about case arrival rates and distribution functions for
the data values used in future simulation experiments.

<Process>
       <ProcessInstance id="5">
              <AuditTrailEntry>
                  <Data>
                      <Attribute name="loanAmt">550</Attribute>
                  </Data>
                  <WorkflowModelElement>

              receive_application_3
                  </WorkflowModelElement>
                  <EventType>complete</EventType>
                  <Timestamp>

              2008-02-29T15:20:01.050+01:00
                  </Timestamp>
                  <Originator>MoeW</Originator>
              </AuditTrailEntry>

...
       </ProcessInstance>

...
</Process>

(a) A log entry for the completion of activ-
ity ‘receive application’ carried out by re-
source MoeW with loan amount $550

<OrgModel>       
       <OrgEntity>
      <EntityID>1</EntityID> 
      <EntityName>manager</EntityName> 
      <EntityType>Role</EntityType> 
       </OrgEntity>
       <OrgEntity>
      <EntityID>2</EntityID> 
      <EntityName>clerk</EntityName> 
      <EntityType>Role</EntityType> 
       </OrgEntity>
    ...
       <Resource>
    <ResourceID>PA-529f00b8-0339</ResourceID> 
      <ResourceName>JonesA</ResourceName> 
      <HasEntity>2</HasEntity> 
       </Resource>

...
</OrgModel>

(b) An excerpt from an organizational
model with roles and resources, where re-
source JonesA has role ‘clerk’

Fig. 9.12. Part of the historical data (a) and organizational model (b) extracted from the work-
flow engine.

Similarly, the YAWL workflow system gives access to the organizational model
through a function which extracts all available role and resource data in an organiza-
tion and exports this information in the OrgModel XML format that is used by ProM.
Some sample data with the roles of clerk and manager is shown in Figure 9.12(b).
This information is used to identify available roles and resources that are relevant for
a given specification.

Finally, a function has been created to extract the current workflow state from
YAWL in the WFState XML format, which we introduce and explain in more detail
later in this chapter.

Generating the Simulation Model

From (1) the extracted workflow specification, (2) the newly extracted organizational
model, and (3) the event log file, we can now generate a simulation model that reflects
the process as it is currently enacted. The direct use of design information avoids
mistakes that are likely to be introduced when models are constructed manually, and
the automated extraction of data from event logs allows the calibration of the model
based on actually observed parameters.

To capture simulation-relevant information independently of a concrete workflow
language (e.g., YAWL) we leverage the generic ‘high-level process’ data structure
presented in Section 8.2. Figure 9.13 shows the data structures that are produced by
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Fig. 9.13. A generic data structure in ProM captures simulation-relevant information in a
language-independent way.

each step in the simulation model creation process. Extra information elements that
are attached to activities or decision points in the process are visualized as “clouds”,
while global process information is listed textually at the bottom of each high-level
structure. As explained in Section 8.2, this extra information is orthogonal to the
actual control-flow. It is thus separated so that different types of process models can
be enriched with high-level information.

Figure 9.13 illustrates how the different pieces of simulation-relevant information
are integrated and transformed to create the simulation model. For example, while
the YAWL 2.0 Import produces a YAWL-based high-level process including informa-
tion about link conditions, data, and roles, the Log Analysis step produces a set of
activities with associated time information but no concrete control flow model (i.e.,
no information about the causal activities between activities in the process). After
integrating the YAWL-based high-level process with the information obtained from
the OrgModel Import and the Log Analysis as illustrated by the Merge operation in
Figure 9.13, the control flow model is translated into a Petri net (the Convert opera-
tion in Figure 9.13), which then yields a Petri net-based high-level process that can
be used as input for the CPN Export.

In summary, four basic steps need to be performed within ProM to generate the
simulation model for a running YAWL process:
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Step 1: The workflow, the organizational model and the event log are imported from
the YAWL workflow system and analyzed.

• The information that we can get from the workflow specification covers a
YAWL process model including roles associated with tasks, data flows, and
link conditions at choice points in the process.

• From the workflow log we can extract information about the case arrival rate,
value range distributions for data attributes, and observed execution times at
tasks in the process.

• The OrgModel file provides information about the relationship between all
roles and resources in the whole organization.

Step 2: Simulation-relevant information from the organizational model and log
analysis are integrated into the YAWL model.

Step 3: The YAWL model is converted8 into a Petri net model (because our simu-
lation tool is based on Coloured Petri Nets), wherein we preserve all the extra
information (e.g., time and data) that is relevant for the simulation model.

Step 4: Finally, the integrated and converted model is exported as a CPN model.

We can then use the CPN Tools system (cf. Section 3.4 and Section 8.3.7) to
simulate the generated model. However, to produce useful results we do not want to
start from an empty initial state. Instead we load the current state of the actual YAWL
system into the CPN Tools for simulation.

Loading the Current State

To carry out simulation experiments for operational decision making purposes (the
‘fast forward’ approach), it is essential to include the current state of the workflow
system. This allows us to make use of the data values for the current cases as well
as the status of the work items for current cases within the simulation experiments.
A new function has been created to extract current state information of a running
workflow from the YAWL system and to export this information as a CPN Tools
input file (InitialState node in Figure 9.11).

The following information is obtained about the current state and is introduced
as the initial state of a simulation run.

• All the running cases of a given workflow and their marking.
• All the data values associated with each case.
• Information about enabled work items.
• Information about executing work items and the resources used.
• The date and time at which the current state file is generated.

8 Note that some advanced YAWL constructs such as cancellation regions and OR-joins are
not supported. A detailed list of the limitations can be found in our technical report [231].
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When the empty initial state file of the generated simulation model is replaced
with the SML file as depicted in Figure 9.11, tokens are created in the CPN model
that reflect the current system status (see Figure 9.14). For example, we can see that
there are three tokens in the Case data place, which each correspond to a credit card
application being processed. We will go into more detail about the CPN representa-
tion and the SML input file in Section 9.3.4.

Fig. 9.14. The generated CPN model after loading the current state file.

We now experiment with the various scenarios described in Section 9.3.2. Recall
that due to the Christmas promotion 150 cases are in the system. We load the state file
containing these 150 cases into the model and perform simulation experiments for
the coming two weeks assuming no changes in terms of resource availability. We also
add more resources to the model and observe how this influences the backlog and the
throughput times for processing credit card applications within this time horizon.

Analyzing the Simulation Logs

We simulate the process from the generated CPN model for four different scenarios.

1. An empty initial state (‘empty’ in Figure 9.15). Note that this scenario illustrates
the warm-up effect in traditional simulation without an explicit initial state.

2. After loading the current state file with the 150 applications that are currently in
the system and no modifications to the model, i.e., the ‘as-is’ situation (‘as is’ in
Figure 9.15).

3. After loading the current state file but adding four extra resources (two having the
role ‘manager’ and three having the role ‘clerk’), i.e., a possible ‘to-be’ situation
to help clear the backlog more quickly (‘to be A’ in Figure 9.15).
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4. After loading the current state file and adding eight extra resources. Of these
eight additional resources four have the role ‘manager’ and six have the role
‘clerk’ (‘to be B’ in Figure 9.15).
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Fig. 9.15. The graph shows the number of applications in the simulated process for the differ-
ent scenarios at different points in time. While the scenario with the empty state has initially
0 applications, the other scenarios are initialized by loading 150 applications from the current
state file. (Note that these are just sample runs. See Figure 9.16 for confidence intervals.)

We can see the difference among these four scenarios in Figure 9.15, which de-
picts the development of the number of cases (i.e., applications) in the workflow
system over the coming two weeks for an example simulation run per scenario. In
the case of Scenario 1 the simulation starts with having 0 credit card applications in
the system. This neither reflects the normal situation nor does it capture our current
backlog of cases. Note that after a while (the “warm-up period”) this simulation sta-
bilizes to normal behavior of the credit card application process (i.e., with ca. 100
applications arriving per week). The other three scenarios load a defined initial state,
which contains the 150 applications that we assume to be currently in the system.
Furthermore, one can observe that in the scenarios where we add extra resources to
the process, the case load decreases more quickly to a normal level than without fur-
ther intervention. However, the scenario ‘to be B’ does not seem to perform much
better than the scenario ‘to be A’ although twice as many resources have been added.
This way, we can assess the effect of possible measures to address the problem at
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hand, i.e., we can compare different ‘what-if’ scenarios in terms of their estimated
real effects.

As explained in Section 8.3.7, CPN Tools has powerful simulation capabilities,
which we can leverage. For example, it is possible to automatically replicate simu-
lation experiments to enable statistical analyses, such as calculating confidence in-
tervals for specific process characteristics. For instance, Figure 9.16 depicts the 95%
confidence intervals of the average case throughput times based on 50 replicated sim-
ulations for each of the four simulation scenarios over a time horizon of two weeks.
One can observe that the estimated throughput time for the ‘empty’ scenario is ca.
4 days, while the expected throughput time for the ‘as is’ scenario (i.e., actually
expected based on the current backlog situation) is almost 6 days.

While CPN Tools already provides powerful logging facilities and even generates
gnuplot scripts that can be used to plot certain properties of the simulated process,
we also generate MXML event log fragments during simulation, similar to the one
shown in Figure 9.12(a) for the workflow log. These fragments can then be com-
bined using the CPN Tools filter of the ProMimport framework, which facilitates the
conversion of event logs from various systems into the MXML format that is read by
ProM.

The ability to use the same toolset for analyzing the simulation logs and ana-
lyzing the actual workflow logs constitutes a big advantage because the simulation
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Fig. 9.17. The generated simulation logs can be analyzed with the same tool set as the initial
workflow logs.

analysis results can be more easily related to the initial properties of the process. In
particular, since we support the loading of current cases into the initial state at the be-
ginning of the simulation, we can easily combine the real process execution log (‘up
to now’) and the simulation log (which simulates the future ‘from now on’) and look
at the process in a unified manner (with the possibility of tracking both the history
and the future of particular cases that are in the system at this point in time).

Figure 9.17 shows a screenshot of ProM while analyzing the simulation logs gen-
erated by CPN Tools. Various plug-ins can be used to gain more insight into the sim-
ulated process. For example, in Figure 9.17 the Log Dashboard (top left), the Basic
Statistics plug-in (bottom left), the Performance Analysis plug-in (bottom right), and
the LTL Checker (top right) are shown. The former two provide a general overview
about the cases and activities in the process, whereas the Performance Analysis plug-
in can be used to find bottlenecks (e.g., in Figure 9.17 a bottleneck for starting the
activity ‘Make decision’ is highlighted), and the LTL Checker can be used to verify
specific properties of interest (e.g., “How many cases could be processed until they
are in the stage where a decision can be made in under 3 days?”).

9.3.4 The Current State

Having demonstrated the importance of incorporating an initial state into the sim-
ulation model, we now want to explain in more detail how the state of a workflow
system can be specified and incorporated. In this section, we describe how a work-
flow state can be exported from the YAWL engine using a generic Workflow State
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XML schema format and how this could be translated into a CPN input file for sim-
ulation purposes using the running example.

From Workflow State-XML to SML File

Figure 9.18 depicts the structure of the WFState format as a UML class diagram.
The key elements of interest for simulation purposes are as follows:

WorkflowState

Source Process

ProcessInstance
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ElementRecord

Data
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WFModel
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Fig. 9.18. An illustration of the WFState XML Schema definition (schema available via
http://www.yawlfoundation.org/yawlschema/WorkFlowState.xsd).

• WorkFlowState: This is the root element of the schema and contains information
about the workflow state, including among others, the time at which this snapshot
is taken. In addition, it contains a set of Process elements which represents the
set of active YAWL specifications.

• Process: Each process element may contain a set of data attributes and values
as well as a set of running cases of a YAWL specification (ProcessInstance ele-
ments).

• ProcessInstance: Each process instance element may contain a set of data at-
tributes and values as well as the identifier of a parent process instance in the
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<WorkFlowState>
<Source program="YAWL Current State Export"/>
<Timestamp>2008-09-24T14:05:16.252+10:00</Timestamp>
<Process id="CreditApp.ywl" description="Credit card application process.">

<ProcessInstance id="39" description="Application 39">
<Data>

<Attribute name="loanAmt">500</Attribute>
<Attribute name="completeApp">false</Attribute>
<Attribute name="decideApp">false</Attribute>

</Data>
<Timestamp>2008-08-27T12:03:40.301+10:00</Timestamp>
<WFModelElementRecord id="1">

<WFModelElement type=”COND”>c2_15</WFModelElement>
<Status>marked</Status>

</WFModelElementRecord>
</ProcessInstance>
<ProcessInstance id="40" description="Application 40">

<Data>
<Attribute name="loanAmt">0</Attribute>
<Attribute name="completeApp">false</Attribute>
<Attribute name="decideApp">false</Attribute>

</Data>
<Timestamp>2008-09-24T14:02:16.252+10:00</Timestamp>
<WFModelElementRecord id="3">

<WFModelElement type=”COND”>InputCondition_1</WFModelElement>
<Status>marked</Status>

</WFModelElementRecord>
</ProcessInstance>
<ProcessInstance id="41" description="Application 41">

<Data>
<Attribute name="loanAmt">1500</Attribute>
<Attribute name="completeApp">false</Attribute>
<Attribute name="decideApp">false</Attribute>

</Data>
<Timestamp>2008-09-24T14:02:16.252+10:00</Timestamp>
<WFModelElementRecord id="5">

<WFModelElement type=”TASK”>check_for_completeness_4<WFModelElement>
<Status>executing</Status>
<Timestamp>2008-09-24T14:02:36.416+10:00</Timestamp>
<Originator>JonesA</Originator>

</WFModelElementRecord>
</ProcessInstance>

</Process>
</WorkFlowState>

Fig. 9.19. The WFState XML file for the running example.

case of hierarchical models. In addition, it contains the start time of a particu-
lar case (Timestamp) and a set of currently executing YAWL tasks and enabled
YAWL conditions (WFModelElementRecord elements).

• WFModelElementRecord: Each WFModelElementRecord element may contain a
set of data attributes and values. In addition, it contains information either about a
task or a condition (WFModelElement). Conditions have the status marked if they
are enabled. Tasks that are currently being performed have the status executing.
For a currently executing task also the start time (Timestamp) and information
about who has started the activity (Originator) can be recorded.

An example WFState XML file is given in Figure 9.19 for the running exam-
ple. For the credit card application process, three currently running process instances
(39, 40, and 41) with their respective values for the three data attributes (‘loanAmt’,
‘completeApp’, and ‘decideApp’) are shown. You can see that for process instance
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fun getInitialCaseData() = [(41, {loanAmt = 1500,completeApp = false,decideApp = false}),

(40, {loanAmt = 0,completeApp = false,decideApp = false}),

(39, {loanAmt = 500,completeApp = false,decideApp = false})];

fun getNextCaseID() = 42;

fun getInitialTokensExePlace(pname:STRING) = case pname of 

"TASK_check_for_completeness_4`E"=>[(41,"-154","JonesA")] | _ => empty;

fun getInitialTokens(pname:STRING) = case pname of 

"Process`COND_c2_15"=>[(39,"-43200")] | "Overview`Start"=>[(40,"-155")] | _ => empty;

fun getBusyResources() = ["JonesA"];

fun getCurrentTimeStamp() = “1205203218”;

fun getTimeUnit() = “Sec”;

Fig. 9.20. CPN Tools input file with initial state information. Several cases are in different
states in the system. For example, application No. 41 is currently being checked by JonesA
for completeness, and has a run time of 154 sec, i.e., ca. 2.57 min.

39, condition ‘c2’ is enabled, and the input condition is enabled for process instance
40. For process instance 41, it shows that the ‘Check for completeness’ task is cur-
rently being worked on by ‘JonesA’. All the timestamps are represented as instances
of the dateTime datatype.

A ProM plug-in has been implemented to translate this information into a CPN
Tools input file for the initial state. The corresponding SML file is shown in Fig-
ure 9.20. Later, we will explain the functions in this SML file and their role in linking
the current state to the simulation model.

Incorporating the Current State in CPN Representation

To create a simulation model that can be initialized with a non-empty start-up state,
we leverage the CPN representation for business processes presented in Section 8.3.
Here, we describe in detail how we modified this CPN representation to dynamically
load an initial state into the simulation model.

A model is distributed over several modules called pages, and next to the de-
picted decomposition relationships these pages may be linked by shared places (so-
called fusion places). For example, in Figure 9.14 one can see that the data attributes
(‘loanAmt’, ‘completeApp’, and ‘decideApp’) for each newly created case are stored
in a separate token in the Case data place. The same Case data place can be accessed
on a sub page to test or modify the value, like, for example, shown in Figure 9.21
for activity ‘Check for completeness’, where the outcome of the check activity is
randomly determined and stored in the corresponding case data token.

Furthermore, the concept of time allows us to delay the progress of tokens in
the process, which we used to model the time between the start and the end of an
activity in the business process. For example, in Figure 9.21 the execution of activity
‘Check for completeness’ takes on average 1800 seconds (i.e., 30 minutes) and the
actual delay during simulation is randomly determined based on a normal distribu-
tion with a variance of 519.42. Finally, a resource that is currently performing an
activity (cf. resource ‘JonesA’ in Figure 9.21) is not available for the execution of
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concurrently enabled activities, i.e., it is not available in the global Resources place,
where available resources reside.

Fig. 9.21. Sub page for task ‘Check for completeness’ of the simulation model with loaded
current state.

Now we explain how the SML functions depicted in Figure 9.20 for the running
example are used by the parameterized simulation model to dynamically load tokens
for executing cases, busy resources, etc.

The functions that are defined in the SML file are included in the CPN model
by the declaration use "creditApp.sml"; shown in the following CPN dec-
laration fragment. After this declaration clause, the SML functions defined in the
external file can be used as if they were defined within the CPN itself and, thus,
dynamically changed.

...
colset slist = list STRING;
use "creditApp.sml";
val busy:slist = getBusyResources();
fun freeResources i = not (mem busy i);
colset FREE = subset ANYBODY by freeResources;
...

Figure 9.14 shows the environment page of the CPN model where the simulation
parameters are set up and the information from the initial state data is loaded. One can
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see that the Case data place makes use of the getInitialCaseData() function, which
is defined in the SML file depicted in Figure 9.20, as the initial marking function to
generate three tokens with case data for current cases.

Similarly, the next case ID place makes use of the getNextCaseID() function to
generate a token with ‘42’ as the starting case ID. The function getBusyResources()
is used to identify available resources by removing busy resources from all resources
(which were previously obtained from the OrgModel file and are defined elsewhere
by the ANYBODY data type) to create a subset of FREE resources (see also CPN
declaration fragment above). This set of free resources is then used to populate the
initial tokens for the Resources place before starting the simulation.

Figure 9.21 shows the actual process status after loading the SML file. The fig-
ure depicts the subpage for task ‘Check for completeness’ where the executing place
of that task (E) contains a token. Here we use the the getInitialTokensExePlace()
function in the SML file to initialise the values of the token9. Similarly, the getIni-
tialTokens() function is used to initialise all those places in the CPN model with an
appropriate number of tokens that mark the progress of a case but that do not repre-
sent a currently ongoing action.

Finally, the functions getCurrentTimeStamp() and getTimeUnit() are used to
translate the CPN model’s time into the actual process time. This is needed to cre-
ate simulation logs with time stamps that can be related to the real process and the
simulated time horizon.

9.4 Related Work

Simulation has been used for the analysis of business processes since the seven-
ties [241]. In fact, the simulation language SIMULA was developed in the sixties and
influenced the development of general purpose programming languages [71]. While
the initial focus was on programming languages extended with simulation capabil-
ities, gradually more and more simulation packages became available that offered
some graphical environment to design business processes. These languages provide
simulation building blocks that can be composed graphically (e.g. Arena [141]). Fur-
thermore, most business process modeling tools provide some form of simulation (cf.
Protos and Aris). Nevertheless, the created models are disconnected from the opera-
tional environment, and thus quickly outdated. Moreover, the more mature workflow
management systems also provide simulation capabilities [120, 135]. Examples are
FileNet, FLOWer, WebSphere, and COSA. These systems offer only basic simula-
tion functions, e.g., they do not have any learning capabilities and focus on strate-
9 Note that for a running activity we calculate the remaining run time by sampling a value

from the execution time distribution of the activity and dividing it by 2. This is realized
by the time delay ‘round(normal(1800.0,519.42)) div 2’ added to the token created by the
getInitialTokensExePlace() function in Figure 9.21. Looking at an arbitrary point in time,
half the time is the best estimate. This could be improved further by using the passed run
time of the activity from the WFState file, but would require a more refined analysis of the
probability distribution function.
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gic steady-state analysis. Moreover, prominent literature on workflow management
[88, 153, 266] typically focuses on enactment, and research on workflow analysis
usually focuses on verification, rather than simulation.

In parallel to the development of simulation tools and embedding simulation ca-
pabilities in larger systems, the analysis of simulation data and the setting up of
experiments was investigated in detail [143, 152, 194, 212, 241]. In some cases it is
possible to use analytical models [54], however, in most cases one needs to resort
to simulation [144]. Publications on simulation typically concentrate on statistical
aspects [143, 212, 151] or on a specific simulation language [141]. The use of sim-
ulation was also stimulated by management approaches such as Business Process
Reengineering [122, 74], Business Process Improvement [124], and Business Pro-
cess Intelligence [112]. Several authors have used simulation or queuing techniques
to address business process redesign questions [33, 207]. When reengineering a pro-
cess from scratch or when improving an existing process design, simulation has been
shown to be very valuable [33].

None of the existing systems [128] uses historical and state information to learn
from the past and to enable operational decision making. We are not aware of any
toolset that is able to extract the current state from an operational workflow man-
agement system and use this as the starting point for transient analysis. The notion
of using historical and state information to construct and calibrate simulation mod-
els was first introduced in [208]. Here, a prototype based on Protos, ExSpect, and
COSA was used to realize the concept of short-term simulation. However, this re-
search did not produce a practical publicly available implementation and did not use
process mining techniques. In [269] a similar approach was proposed without any
implementation.

Developing a simulation model separately from the original workflow model is
both time-consuming and error prone [134]. Therefore, it is interesting to use existing
artifacts such as workflow models, organizational models, and event logs as we have
done. In [159] process mining was used to perform simulation experiments based on
the discovered models for several real cases. However, the actual simulation mod-
els were created manually. In [106], the authors present an automatic translation of
Protos simulation models to CPN Tools. In addition, configuration features enabling
the dynamic elimination of unnecessary parts of the process model are generated.
Besides the work in [106], we are not aware of further attempts to export business
process models to CPN Tools. The work reported in this chapter has a different start-
ing point as it is not limited by the simulation information present in a Protos model,
but aims at discovering relevant process characteristics to be simulated from the event
logs of real process executions.

Finally, the results of simulation must, of course, be interpreted with care—the
outcomes produced always contain a significant degree of uncertainty and users of
business process simulation tools need to understand their limitations [62]. Indeed,
recent research is focusing on ways of validating the ‘correctness’ of such simulation
models, although this remains a significant challenge since each simulation model is
unique [237]. In this chapter, we presented a validation approach, where process
characteristics extracted from the simulation logs were compared to the characteris-
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tics obtained from the original process logs. From the results of our validation we
concluded that especially the modeling of human resources is a weak spot and needs
to be improved to yield realistic simulation models. This problem has been tackled
recently by a new approach to approximate resource availabilities, and thus process
wait times, based on a flexibility parameter called ‘chunk size’ [17]. Furthermore,
simulation models can be made more realistic by accounting for workload-dependent
behavior [180].

9.5 Conclusion

In this chapter we demonstrated that it is possible to automatically construct simu-
lation models based on event logs. These simulation models need to cover different
perspectives: control-flow, data, resources, time, etc. Therefore, we showed that each
of these perspectives can be discovered using existing process mining techniques and
that all these mining results can be merged into a single simulation model. Further-
more, if available, we can use existing artifacts such as workflow specifications and
organizational models to create a direct link to the operational environment. Using
existing artifacts and estimating simulation parameters based on historical data helps
enormously to both yield more faithful simulation models and speed up their creation
(by automation).

In the following, we want to take the perspective of a practitioner [243] to eval-
uate our simulation system. Bruce Silver is an independent business process ana-
lyst, and in his blog post ‘Making Simulation Useful’ he describes seven important
features that according to his experience are often missing in existing simulation
tools [244]:

1. Distinction between active time, which consumes the assigned resource, and wait
(or lag) time, which does not. He observes that in most simulation use cases the
goal is business process improvement (e.g., in terms of cycle time) based on
changing the flow of process activities. However, the problem is that—because
the resource that is assigned to an activity is not fully dedicated to that activity—
“the active time to perform the task bears no relationship to the actual time to
complete it” [244].

2. Event probability and time of occurrence. It is necessary to specify probabilities
and mean time of occurrence for events in a process model, since, for example,
exceptions are usually the root of performance problems in real processes.

3. Repeating activities. Parameters are needed to model the number of iterations in
process loops.

4. Instance properties. He observes that in real-world processes the probabilities at
choice points in the process are usually not uncorrelated. In fact, certain classes
of instances tend to take longer, or tend to take specific paths. These correlations
should be defined as an expression of one or more instance properties.

5. Contingent resource assignment. Most simulation tools allow to assign tasks to
roles with some defined cost-per-hour or cost-per-use parameter, but not many
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allow to assign to role A as the primary resource, but then assign to role B if no
member of role A is available.

6. Pre-population of backlogs. Because simulation models generally start empty
(i.e., with no instances in the system), they do not allow for the application in
resource optimization use cases when they are really needed, namely when there
is a backlog of running process instances and various alternatives need to be
evaluated for working out of it.

7. Access to raw output. Pre-built metrics and charts in simulation tools rarely pro-
vide the detail that is needed for real analysis. Raw output is needed (i.e., records
for each performed activity and for each instance) in order to perform an in-depth
analysis that is more than “eye candy”.

Of course, this list represents the shortcomings of today’s simulation tools from
the viewpoint of just one practitioner. However, it provides evidence that problems
such as the pre-population of backlogs, access to raw output, the inclusion of discov-
ered probabilities and correlations in instance properties, and the modeling of waiting
times, which we have addressed in this chapter, are real and relevant for practical use
of simulation as a tool for business process improvement.

Many more challenges lie ahead as (a) to specify simulation models with the
right process characteristics (e.g., how to model human behavior, or capture more
complex correlations also with respect to runtime-based instance properties), (b) to
automatically come up with the correct model parameters (e.g., for human behavior),
and (c) to better integrate the operational, mining, and simulation environments.

In any case, process mining—and in particular the integration of various mining
results as it is the goal of the class of extension techniques in process mining—is
the key to closing the gap between real-life operational processes and meaningful
simulation: Process mining algorithms can support the extraction of process charac-
teristics from the operational process to create truly faithful simulation models.
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Conclusion

Business processes are in the heads of many people. Often they span over multiple
departments, or even different enterprises. At the same time, processes are tightly
coupled to the information systems supporting them: For example, a ticket is con-
sidered booked only if it is in the system (in the extreme case a paper ticket might
not help you at all if your ticket is not registered in the IT system). The close link
between processes and supporting infrastructures enables a fast-growing availability
of historical data about processes (so-called logs). These data provide an objective
basis for what is actually happening (as opposed to what people think is happening).
Process mining uses these data to visualize actual process flows, measure the com-
pliance of the real process with respect to regulations and business rules, or highlight
performance bottlenecks.

Next to traditional business IT systems, also more and more deployed applica-
tions (products that are being sold and eventually operated by end users in the mar-
ket) are being monitored. There is an increased need to gain insight into how end
users actually operate a product, since the competitive edge of products lies more
than ever in the fit with the way customers want to use them. At the same time,
especially for highly innovative products there is a high uncertainty about the way
customers will apply this new technology. Process mining can help to understand
user behavior based on log data extracted from instrumented products. This way, the
real usage patterns can be discovered, and the conformance of the real user behavior
to the envisioned (idealized) usage sequences can be determined.

While previous process mining research has mainly focused on discovery tech-
niques (i.e., on the construction of models based on logs), this thesis focused on the
other two classes of process mining: conformance and extension. In this last chapter,
we first summarize the contributions of this thesis for conformance (Section 10.1)
and extension (Section 10.2). Then, we point out limitations of our work and provide
suggestions for future research (Section 10.3). Finally, we offer a personal outlook
on the process mining field as a whole (Section 10.4).
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10.1 Conformance

In the following, we provide a summary (Section 10.1.1) and a list of the main con-
tributions (Section 10.1.2) in the area of conformance.

10.1.1 Summary

The question of conformance arises from the presence of both an event log and a
process model (cf. Figure 10.1). Models exist because most organizations document
their processes in some form (e.g., forced by regulations such as Sarbanes-Oxley).
However, these models may not be followed or updated properly. Therefore, it is
highly relevant to be able to automatically check the consistency of a process model
and the reality, and to measure and locate potential deviations. Furthermore, process
discovery algorithms rarely construct models that fully capture real-life processes of
a certain complexity. As a consequence, it is necessary to be able to measure how
representative such a discovered model actually is for the process at hand before
drawing any further conclusions.
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Fig. 10.1. Conformance is concerned with the question how valid an existing or discovered
process model is with respect to reality, whereas reality is represented by the event log.

In this thesis, we analyzed relevant dimensions and requirements for confor-
mance, defined and implemented several conformance checking methods, and also
investigated the applicability of typical data mining model validation techniques for
process model evaluation. A detailed list of the main contributions is provided in the
next section.

10.1.2 Contributions

In Chapter 4, we took Petri net process models as a starting point and approached
conformance in the following way:
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• We identified evaluation dimensions (fitness, precision/generalization, and struc-
ture) that need to be taken into account when evaluating the conformance of a
process model and an event log.

• Conformance metrics for each of these dimensions were defined for Petri net
process models. For the behavioral analysis, a log replay-based approach has
been developed that is more efficient than typical state-based approaches.

• A Conformance Checker has been implemented to realize the Petri net-based
conformance approach. Its applicability was demonstrated based on several case
studies, ranging from municipal processes and web service behavior to product
usage processes and test processes.

• Other existing quality metrics from the process mining domain have been re-
viewed, and a Control Flow Benchmark plug-in has been implemented to make
these metrics more accessible for comparing process models.

Because model evaluation is an important and well-studied topic in the data min-
ing domain, in Chapter 5 we investigated the applicability of typical data mining
model validation techniques for process model evaluation:

• We identified general similarities and differences between process mining and
data mining approaches. In this comparison, particularly the lack of negative
examples is discussed as a problem for process model evaluation.

• Separating training and test data is essential in machine learning and data mining.
A first application of the 10-fold cross validation method to a simple process
mining example was performed and evaluated.

• A new approach based on the Minimum Description Length (MDL) principle
was developed for the process mining domain. For this, encoding methods for
the event log and the process model were defined, implemented, and tested on
some examples.

• Hidden Markov Models (HMMs) were investigated as a formalism to represent
and evaluate process models. Using new HMM-based quality metrics, and us-
ing two artificial noise generation approaches, we revealed an evaluation bias of
existing process mining metrics for sequential (i.e., non-parallel) models.

In Chapter 6, the most dominant conformance dimension (fitness) was investi-
gated further:

• We analyzed different log replay strategies from literature. Based on the lessons
learned from our previous research, a number of challenges related to applica-
bility, metric quality, and unification were identified that need to be addressed to
turn fitness-based conformance analysis in common practice.

• We then presented a flexible conformance method (not based on Petri nets) that
illustrates the spectrum of design choices that emerge in a log replay-based ap-
proach, and which have been implicitly made in existing approaches.

• A set of generic fitness metrics was proposed to cover different types of fitness
in a structured and exhaustive way. This way, an informed decision can be made
as for which aspect of fitness should be measured.
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• Using the flexible conformance approach and some of these metrics, we then
demonstrated that for sequential process models the previously encountered eval-
uation bias can be avoided by using “token expiration”.

10.2 Extension

In the following, we provide a summary (Section 10.2.1) and a list of the main con-
tributions (Section 10.2.2) in the area of extension.

10.2.1 Summary

Once a valid model has been confirmed or constructed, the extension by other per-
spectives such as timing information, organizational aspects, and dataflows is needed
to improve a process (cf. Figure 10.2). Moreover, these perspectives must be inte-
grated to obtain a comprehensive picture. Using such an integrated model it is pos-
sible to automatically generate a simulation model. Traditionally, simulation models
are created manually to explore and evaluate possible improvement scenarios or re-
designs. By automatically generating a simulation model, the goal is (a) develop
simulation models in a shortened time span with less effort, and (b) to improve the
validity of the simulation models themselves (since the generated model is based on
factual information that stems from the process to be simulated).
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Fig. 10.2. Extension is concerned with the question how different perspectives can be inte-
grated in a given model to obtain a more comprehensive picture of the overall process.

In this thesis, we presented an extension approach for enhancing process models
by discovered decision rules. Furthermore, we demonstrated that an integrated model
including data, time and resource information can be discovered automatically from
an event log. Finally, we developed a simulation approach that allows for operational
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decision support (i.e., short-term simulation scenarios that answer questions about
the near future). A detailed list of the main contributions is provided in the next
section.

10.2.2 Contributions

In Chapter 7, a so-called decision mining approach for the extension of a process
model by decision rules was presented:

• Using typical classification algorithms from the data mining domain, we devel-
oped an approach to analyze decision points in a process model and derive rules
for when which of the alternative paths has been taken based on the data attributes
in the event log.

• We highlighted the challenges of decision mining in the presence of invisible
tasks, duplicate tasks, and loops. We also presented a simple approach based
on tracing activity occurrences (for invisible and duplicate tasks) and log trace
splitting (for loops) that partially addresses these challenges.

• The proposed decision mining approach has been implemented as a Decision
Miner in ProM, and it has been evaluated using event logs from the multi-agent
domain.

In Chapter 8, we presented an approach to discover and integrate multiple pro-
cess extensions, whereas we focused on the use case of automatic simulation model
generation:

• Using an example, we demonstrated how not only decision rules but also per-
formance and organizational process characteristics can be discovered from an
event log, and how they can be integrated.

• A so-called high-level model was designed and implemented to capture these
process characteristics from different perspectives. Eight plug-ins in ProM have
been created or extended to support this data structure.

• We presented a CPN representation that can be used to simulate a business pro-
cess in CPN Tools. We also realized a CPN Export that is able to export a given
(e.g., discovered and integrated) high-level model to this representation for sim-
ulation purposes.

In Chapter 9, we evaluated the quality of the discovered simulation models and
presented an approach that allows for short-term simulation:

• We identified two main reasons why simulation approaches may not be success-
ful in a real business context. One problem is that the model does not capture
essential features of a process. Another problem is the gathering of data to ade-
quately configure the simulation model.

• An approach to evaluate the quality of a simulation model based on creating
event logs during simulation (and comparing the simulation log with the original
process log) was presented.
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• Using this simulation log-based validation method, we evaluated the quality of
the simulation models obtained by our simulation model discovery approach for
both artificial and real-life examples.

• We demonstrated that the pre-population of a simulation with current backlogs
in the system is a prerequisite for operational decision support, and we presented
such a short-term simulation approach based on an implementation in YAWL,
ProM, and CPN tools.

10.3 Limitations and Future Challenges

Conformance checking of process models and event logs is a non-trivial problem,
and several challenges remain. In our flexible conformance checking approach we
proposed to use a log replay-based approach for measuring the fitness of local behav-
ior efficiently, and leaving the checking of global constraints to a declarative method.
However, to make this work in practice a number of issues remain to be addressed:

• We showed how token expiration can be used to obtain better log replay results
for purely sequential models. However, more research is needed to deal with
models that also contain parallelism.

• Conversion methods must be developed to translate process models from existing
languages into a flexible process model plus a set of constraints.

• Constraint-based conformance metrics must be developed, since the current
methods (e.g., LTL) provide a yes/no answer but constraints may be violated
multiple times for a process instance.

• The replay-based and constraint-based fitness results must be integrated to pro-
vide an overall fitness quantification. Furthermore, in reality not all violations are
equally severe—so a flexible weighing of possible problems is needed in prac-
tice.

• Intuitive visualizations of conformance violations (preferably embedded in the
original process model) must be developed to provide qualitative feedback from
the conformance check.

While fitness analysis is mostly sufficient to check compliance of real processes
with respect to existing models and business rules, the quality of discovered pro-
cess models must be evaluated also in the dimensions of precision/generalization
and structure. Furthermore, there is the need for a concrete framework that enables
process mining researchers to compare the performance of their algorithms:

• While we identified ingredients of such a process mining evaluation framework,
there is the need for a clear, goal-driven methodology for how (method) to eval-
uate what types of models (scope) in which situations (context).

• We developed two HMM-based noise generation approaches, but also logs with
dedicated levels of completeness can be created using HMMs. In general, struc-
tured log generation according to controlled criteria is an important component
in such an evaluation framework.
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• On the other hand, real-life benchmark data sets need to be made accessible
for the community to enable researchers to compare the performance of their
algorithms in practical settings.

• To deal with the lack of negative examples, the evaluation of the precision/gen-
eralization dimension (regardless of whether addressed by artificially generated
negative examples or by explicit metrics) should be linked to the desired level of
abstraction during mining.

• Effective precision metrics that neither depend on a given reference model, which
is not available in a practical setting, nor require a costly exploration of the state
space of the model are yet to be developed.

• Further research is needed to investigate the applicability of, e.g., the 10-fold
cross validation method for process mining, particularly dealing with the correct
sampling (stratification) of examples.

• The plethora of existing modeling languages remains a challenge in the pro-
cess mining field. To compare algorithms that discover different types of process
models, one needs to find ways to effectively bridge these different modeling
languages.

• As a practical aspect to support comparisons in different configurations it should
be possible to set up complex experiments as scientific workflows. The next gen-
eration of the ProM framework (which is currently being developed) will enable
such user-defined experimental set-ups by a so-called “chaining” functionality.

Our decision mining approach is a first step to enrich a given process model
by gaining insight into the data perspective. To broaden the applicability of this ap-
proach, the following points need to be addressed:

• We tackled the challenges of invisible tasks, duplicate tasks, and loops using a
simple activity occurrence-based approach. However, to fully master these chal-
lenges a more expressive (e.g., LTL-based) formalism needs to be used to classify
the decisions made in past process instances.

• Further research is needed to enable decision mining for process modeling lan-
guages that allow for more fuzzy choice situations (e.g., OR-splits).

• For decision mining but also other extension approaches it is important to find
ways to deal with conformance mismatches between process model and event
log. Simply omitting non-fitting instances does not work for more complex pro-
cesses because too many mismatches emerge with respect to models that have a
reasonable degree of abstraction.

• A generalization of the approach would be valuable for the analysis of other pro-
cess characteristics than just decision branches. For example, correlations could
be found between certain decisions in the process and the impact on throughput
time or quality of the process result.

Our work on using process mining techniques for the creation of simulation mod-
els can be developed further in several ways:
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• The organizational perspective of our simulation models is very simple. As a
consequence we had to use artificial waiting times to approximate the process
behavior. To obtain truly realistic simulation models, however, a better modeling
(and mining) of human behavior is inevitable.

• In our proof-of-concept implementation there are several limitations. For exam-
ple, distribution fitting could be used to find the best value range distributions,
one could incorporate the likelihood of a decision based on the history of the
simulation run, and more advanced control-flow constructs could be supported.

• The short-term simulation approach should be evaluated in more realistic case
studies.

• A tighter integration of the workflow, mining, and simulation components is
needed to make the technique fit for practical use.

Finally, an interesting question regarding short-term simulation is how long this
“short-term” can actually be. In general, the time horizon of interest depends on the
questions that people have. However, assuming that a business process owner has a
short-term simulation tool at hand, one also needs to consider the delay of decisions,
or the delay of the realization of decisions, which has an impact on the estimated
values in the predicted interval.

10.4 Outlook

When process mining research started about 10 years ago, people were doubting
that there would be enough data to apply process discovery techniques in practice.
Since then, there has been a data explosion and now data are available in areas where
we would not have imagined. For example, think of Radio-frequency Identification
(RFID) tags that can be used to track all kinds of objects, e.g., in logistics, but also
for passports, clothes, or in public transport.

A second pre-condition for applying process mining is to have representative
data. So, here the question is whether the data in the IT systems of an organization
actually reflect the reality of their processes. The representativeness of the data is
reduced, for example, if errors occur while a human manually enters information.
However, organizations rely on IT systems to automatically support their business
processes in an ever-widening scope, and they increasingly recognize the need to
ensure high-quality data to be able to perform automated analyses.

This wealth of data that is available today has fueled an enormous growth of data
mining applications in all kinds of areas, and it can be expected that process mining
applications will become more common-place as well. Just like in data mining, the
automated analysis of huge amounts of data by process mining techniques enables
insights that have not been possible before. This has ethical implications, in partic-
ular when analyzing data about people, because, for example, the performance of
employees can be measured more easily.
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Witten and Frank [267] write about data mining and ethics that practitioners of
data mining techniques must act responsibly by taking into account (a) who is per-
mitted to access the data, (b) for which purpose they are collected, and (c) what kind
of conclusion is legitimate to draw. Just like data mining is a tool that needs to be
used responsibly, process mining techniques cannot resolve the ethical and societal
implications they entail. The technology itself is agnostic with respect to the way it
is utilized.

For example, data mining-based basket analysis in the supermarket can be used
to place items that are frequently bought together either close to another (to make
shopping more convenient) or further apart (to maximize the chance that some un-
intentional purchases are made on the way). Similarly, also process mining could be
used to either recognize and learn from best practices, or to justify the firing of non-
performing employees. Furthermore, even a seemingly unethical application such as
the measuring of employee performance might be actually welcomed by individu-
als as they feel that their efforts should be recognized (fairness). Finally, one needs
to be careful when interpreting process mining results. For example, a person that
seems to be very central in the social network of a company might just be offloading
work to others. These examples illustrate that the application, interpretation, and uti-
lization of process mining techniques are highly contextual and need to be handled
responsively.

The instrumentation of deployed applications to observe usage processes of, e.g.,
software or consumer electronics also poses challenges with respect to privacy issues.
Product monitoring approaches will need to be very transparent about the data they
collect from their consumers (and allow individuals to opt out) in order to be suc-
cessful. Conversely, employees have limited influence on the data collection policies
of their companies and need a certain amount of protection. However, while business
processes almost always involve people, and thus involve the collection of potentially
sensitive data, it is usually easy to abstract from individuals or anonymize the data
before applying process mining analysis. This way, process mining techniques can
be fit into any legislative framework.

Given the increased process orientation in organizations (evident from, e.g.,
process-oriented management strategies such as Six Sigma), it is clear that process
mining can add a lot of value. Business processes matter because they fundamentally
determine how value is delivered in an organization. Process mining techniques can
help to understand these processes when they are not yet managed by sophisticated
tools (e.g., workflow systems), and they can help to monitor and improve the more
mature, IT-managed processes in a continuous manner. With the creation of profes-
sional process mining tools, we can expect an increased uptake of this technology
among process consultants, internal process experts, and auditors over the coming
years.

Specifically, the following developments can be foreseen in the area of process
mining both from a scientific and a practical point of view:

Design for Observation. While the results that can be obtained from existing log
data that were mostly recorded for debug or archiving purposes are impressive,
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some of today’s information systems (e.g., SAP R/3) are inherently difficult to
mine due to a lack of process-oriented logging. Future IT systems will be “built
for analysis” right from the start. This trend can also be expected for consumer
products where an understanding of the actual usage behavior of customers is
crucial to succeed in the competitive market place. Conversely, organizations
will invest in mining these data like they invest in modeling today.

“Semantics”. Ontologies and taxonomies are machine-readable structures that can
be used to organize knowledge about a domain into hierarchies. The use of such
structures can help to apply process mining in situations where the recorded logs
are too complex and too technical to be mined directly. By annotating events in
the log with pointers to concepts in an ontology, process models can be discov-
ered on different levels of abstraction. For example, a complex ERP workflow
involving 150 activities may be reduced to a process flow with 30 and then with
10 activities. Today, these ontologies need to be created manually, but one can
envision that future systems automatically link log data to ontology-like meta
information in a smart way. Furthermore, best practice hierarchies may emerge
that can be reused within a domain.

From Offline to Online Mining. In a world where most of the systems in an organi-
zation are connected 24/7, it is an imperative to be able to analyze and moni-
tor processes “as they happen”. Process mining often focuses on the techniques
themselves in an offline manner. So, their expected input is a snapshot of data
(e.g., the logs of process X collected over the past year). In principle, this is
not a limitation as they could be used iteratively on run-time data. However, at
the same time it is clear that the practical applicability of offline techniques in
a real-time manner may be very challenging from a performance point of view.
Furthermore, scoping problems may occur. For example, is the data collected
five years ago still relevant for my process mining analysis today? Dedicated
online mining techniques will address these challenges.

Revival of Simulation. Most BPM systems contain a simulation component, and
there has been a hype about the possibilities of simulation that has led to dis-
appointment among the users of these BPM systems. While many systems claim
to include a so-called “round-trip optimization” feature that captures operational
metrics from actual process instances, in fact these metrics are very limited and
many assumptions need to be made. As a consequence, lots of effort is needed
to create these models and the quality is poor or uncertain. With the further ad-
vancement of process mining technology in the field of simulation one could
rebuild the damaged reputation by delivering simulation systems that use exist-
ing artifacts to estimate model parameters in a smart way, provide operational
decision support, and evaluate the quality of their predictions on the way.

The risk to be picked up as a buzz word by vendors who overpromise is also real
for process mining. As a consequence, it is vital to get “true” commercial process
mining tools into the market, which has already started to happen. In return, it is
crucial for the research community to be able to work on (and publish) practical
case studies to stay in touch with the challenges faced in practice. In the light of the
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difficulties that researchers experience today when attempting to publish case study
papers that are broader than the validation of a single, novel technique, it may be
advisable to look for new publication formats that stimulate cooperations between
research and industry.
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A

Developed ProM and ProMimport Plug-ins

In the context of the work presented in this thesis, many new ProM plug-ins have
been developed. They are described in more detail in this appendix. Some of the
plug-ins have appeared already in earlier chapters of this thesis, others have not.
Almost all plug-ins have an online help page at the ProM website, which is provided
for further reference. Often, there are example files that have been made available
for download on these pages.

All of the presented plug-ins have been created in projects connected to this the-
sis. But in many of these projects collaborating researchers have contributed to the
implementation. Without their help, these tools would not be available today in their
current form. To give them the credit they deserve, the authors of the corresponding
plug-in are listed at the beginning of each section.

The ProM plug-ins are organized into the following categories: conformance
(Section A.1), extension (Section A.2), simulation (Section A.3), and other (Sec-
tion A.4). Finally, a list of the developed ProMimport plug-ins is provided (Sec-
tion A.5).

A.1 Conformance plug-ins

The following conformance plug-ins are described in the following: Conformance
Checker (Section A.1.1), Control Flow Benchmark (Section A.1.2), Minimum De-
scription Length (Section A.1.3), HMM Analysis (Section A.1.4), and Trace Diff
Analysis (Section A.1.5).

A.1.1 Conformance Checker1

Author: A. Rozinat

1 Help page available at: http://prom.win.tue.nl/research/wiki/online/
conformance_checker.

http://prom.win.tue.nl/research/wiki/online/conformance_checker
http://prom.win.tue.nl/research/wiki/online/conformance_checker
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The Conformance Checker realizes the Petri net-based conformance checking ap-
proach presented in Chapter 4. Before starting the tool, a settings screen allows the
user to select which of the following metrics should be calculated: The token-based
fitness metric f (taking the number of process instances for each log trace into ac-
count), the precision metrics aB and a′B , and the structure metrics aS and a′S .

(a) The Model view highlights places in the model where problems occurred

(b) The Log view shows where replay problems occurred in the log

Fig. A.1. Screenshot of the of the Fitness tab in the Conformance Checker.

Figure A.1(a) depicts the Model view of the Fitness tab of the Conformance
Checker. Next to the actual fitness measurement, there are a number of options,
which can be used to enhance the visualization of the process model:

Token Counter. Visualizes the number of missing and remaining tokens during log
replay for each place.



A.1 Conformance plug-ins 353

Failed Tasks. Visualizes the transitions that were not enabled during log replay and
therefore could not be successfully executed.

Remaining Tasks. Visualizes the transitions that remained enabled after log replay,
which indicates an improper completion of the process.

Path Coverage. Visualizes the transitions that were executed during log replay of
the selected traces (enables to see which paths have been followed).

Passed Edges. Indicates for each of the edges how often it was followed during the
replay of the selected process instances.

Figure A.1(b) depicts the The Log view of the Fitness tab. It allows to highlight
the failed events in the log visualization, but also provides the following additional
fitness metrics:

Successful Execution. The fraction of process instances where no token was miss-
ing during log replay.

Proper Completion. The fraction of process instances where no token was remain-
ing at the end of the log replay.

Finally, all fitting (or non-fitting) process instances can be automatically selected
and exported. It is also possible to automatically select, for example, the 80% most
frequent traces, and to view the conformance results only with respect to those.

Fig. A.2. Analysis of the precision of a model allows to detect overgeneral parts.

Figure A.2 depicts the Precision tab of the Conformance Checker. Besides the
two precision measurements one can see visualization options that highlight when
two activities always or never preceded (or followed) each other in the whole log,
while the model would actually allow for this behavior. Furthermore, the degree
of ‘model flexibility’ indicates how much variability is contained in the model in
the first place. It ranges from 0.0 (for a model that only allows for one particular
sequence of steps) to 1.0 (for the flower model that allows arbitrary combinations of
all tasks).
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Fig. A.3. Structural analysis detects duplicate task that list alternative behavior and redundant
invisible tasks.

Finally, Figure A.3 shows the Structure tab of the Conformance Checker. It pro-
vides the two structure measurements and enables the visualization of alternative
duplicate and redundant invisible tasks. The pictures of all the diagnostic visualiza-
tions can be exported by the Conformance Checker, e.g., to be put in a report.

A.1.2 Control Flow Benchmark2

Authors: C.W. Günther, A.K. Alves de Medeiros, A. Rozinat

To directly support the evaluation and comparison of (discovered) process mod-
els in ProM, we implemented a Control Flow Benchmark plug-in that computes
some of the metrics presented and reviewed in Chapter 4, and provides an inte-
grated view on the results. Note that this plug-in can be easily extended: only the
BenchmarkMetric interface needs to be implemented and the new metric can be
added.

Figure A.4 depicts a screenshot of the Control Flow Benchmark settings. The
plug-in accepts a reference log, a reference model, and an arbitrary number of bench-
mark items (e.g., discovered process models) as a Petri net. Furthermore, the user can
select the metrics to be calculated. In Figure A.4 the four models from Figure 4.5
were added as benchmark items3: Figure 4.5(b) as “Good model”, Figure 4.5(c) as
“Non-fitting”, Figure 4.5(d) as “Overly general”, and Figure 4.5(e) as “Bad struc-
ture”. Furthermore, the log shown in Figure 4.5(a) is used as the reference log, and
the model from Figure 4.5(b) is used as the reference model.

2 Help page available at: http://prom.win.tue.nl/research/wiki/online/
controlflowbenchmark.

3 In fact, the models and the log depicted in Figure 4.5 were slightly changed because many
of the metrics have problems with duplicate tasks and could otherwise not be applied to
any of the models. While in the original example the last task/event is again an A (there is
already an A in the beginning), this second A was changed here into a new task/event I.

http://prom.win.tue.nl/research/wiki/online/controlflowbenchmark
http://prom.win.tue.nl/research/wiki/online/controlflowbenchmark


A.1 Conformance plug-ins 355

Fig. A.4. Screenshot of the Control Flow Benchmark settings. A set of models can be selected
to be compared with respect to a log and/or a reference model based on a number of different
metrics.

As discussed in Chapter 4, some metrics require a reference model to be present
while others do not. Similarly, there are metrics that only compare the benchmark
items to the reference model, and, therefore, do not need a reference log. If the in-
put needed for a certain metric is not provided, the metric will remain disabled. Upon
pressing the start benchmark button, the plug-in will transparently establish the map-
ping between the tasks in a model and the events in the log, potentially convert the
Petri net to another modeling formalism, calculate the selected metrics, and present
the user with the results. All the benchmark metrics return values between 0 (inter-
preted as the “worst” value) and 1 (interpreted as the “best” value). Furthermore,
each metric is expected to check its assumptions and to indicate the result being
“invalid” if pre-conditions are not met.

The first result view is the Bar Profile view (see screenshot in Figure A.5). It
visualizes the calculated values along a so-called bar profile in a fixed order. Green
and wide segments resemble “good” values while red and narrow segments resemble
“problematic” values according to the corresponding metric. Invalid values are left
out (i.e., the bar profile will have a gap at this place). This view is intended to provide
a graphical overview that makes it easy to spot problematic areas, which can be
subsequently inspected in further detail.

For the extreme models from Figure 4.5 we can clearly see some differences. The
“Good model” shows a consistently green and wide profile, while the “Non-fitting”
model has a reduced fitness (although the three fitness values PM, f , and PFcomplete
are still relatively high because the most frequent trace is correctly captured) and
less behavior and less connections than the reference model (cf. Causal Footprint
and Structural Recall SR). The “Overly general” model exhibits extra behavior (cf.
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Fig. A.5. Screenshot of the Bar Profile view in the Control Flow Benchmark plug-in in ProM.
The visualization of the metric values provides an overview, and makes it easy to spot prob-
lems.

Behavioral Appropriateness a′B , Behavioral Recall BR, and Causal Footprint) and
has more connections than the reference model (cf. Structural Precision SP ). Finally,
the model with the “Bad structure” shows a reduced Structural Appropriateness a′S
as it has many unnecessary duplicate tasks. Similarly, the Duplicates Precision DP

is low.

Fig. A.6. Screenshot of the Table view in the Control Flow Benchmark plug-in in ProM. The
concrete metric values can be inspected in detail and exported to a CSV file.
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The view can be changed to Table view (see screenshot in Figure A.6) for in-
specting the detailed results. The exact values are shown for each benchmark item,
or “invalid” is given if it could not be computed for a certain case (for example, the
Causal Footprint metric cannot deal with the duplicate tasks in the model with the
“Bad Structure”). Finally, the results can be exported as Comma Separated Values
(CSV) and analyzed/visualized using other analysis tools.

A.1.3 Minimum Description Length4

Authors: A. Rozinat, C.W. Günther

The Minimum Description Length plug-in implements the model evaluation ap-
proach described in Section 5.3. When the plug-in is started, first the desired log
compression and model complexity encodings can be chosen. The encodings pre-
sented in Section 5.3 are selected per default. Other encodings can be easily added
to the plug-in.

Fig. A.7. The Minimum Description Length plug-in calculates the log compression and model
complexity based on the chosen encoding. The encoding costs are then related to the encoding
costs of the extreme ERM and FRM models to derive an absolute quality measure.

Then, the encoding cost in bits are displayed for the evaluated model and the log
compression with respect to the evaluated model (see Figure A.7). Furthermore, the
encoding cost for the reference models are calculated (these reference models are
automatically created based on the event log). Finally, the absolute complexity and

4 Help page available at: http://prom.win.tue.nl/research/wiki/online/
mdl.

http://prom.win.tue.nl/research/wiki/online/mdl
http://prom.win.tue.nl/research/wiki/online/mdl
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compression measures and the overall MDL metric are displayed. The results can be
exported as a CSV file.

A.1.4 HMM Analysis5

Author: A. Rozinat

The HMM Experimenter plug-in in ProM (see Figure A.8) realizes the approach
described in Section 5.4, and offers a number of parameters to configure the experi-
ment. More precisely, the following parameters are availble:

No. of Noise Levels The number of different noise levels to be generated. Being al-
ways distributed from 0% to 100%, the number of noise levels affects the gran-
ularity, or noise step size. For example, 10 noise levels result in logs generated
with 10%, 20%, ..., 100% noise.

No. of Traces The number of traces to be generated for each log.
Maximum No. of Events The maximum number of events to be generated for each

trace. This is needed since some models may allow for infinitely long sequences.
Note that this is only an upper bound, and (depending on the model) the log
traces can also be much shorter.

No. of Replications If replications are desired, then this is the number of logs to be
generated for each noise level.

Fig. A.8. Screenshot of the HMM Experimenter in ProM.

5 Help page available at: http://prom.win.tue.nl/research/wiki/online/
hmm.

http://prom.win.tue.nl/research/wiki/online/hmm
http://prom.win.tue.nl/research/wiki/online/hmm
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A.1.5 Trace Diff Analysis6

Author: A. Rozinat

Another type of conformance analysis that was not further discussed in this thesis
is to compare two traces for their similarity. This is particularly interesting if there
is a purely sequential reference model (i.e., really a sequence of steps) to which
the behavior in the log should be compared to. While the analysis of all traces in a
process model is typically avoided (because the number of these traces can grow very
fast and is often infinite), sometimes the reference model is indeed just a reference
scenario (like, e.g., in Section 4.5.3).

Differences in two traces can then be analyzed using the well-known ‘longest
common subsequence’ analysis that is employed to create diffs in versioning sys-
tems etc. From the perspective of one trace, the other trace can be then segmented
into subsequences that are equal, different, have been added, or deleted. Besides mea-
suring the number and severity of these differences, one can also provide qualitative
feedback (i.e., the differences can be located).

Fig. A.9. Screenshot of the Trace Diff Analysis settings. An arbitrary pair of traces can be
selected from the log for the comparison.

The Trace Diff Analysis plug-in in ProM provides such a qualitative analysis by
visualizing the differences between two traces based on the common diff algorithm.
Figure A.9–A.10 depict screenshots of this plug-in. First, any two traces from the
event log can be selected for the comparison. Then the diff result is visualized graph-

6 Help page available at: http://prom.win.tue.nl/research/wiki/online/
tracediff.

http://prom.win.tue.nl/research/wiki/online/tracediff
http://prom.win.tue.nl/research/wiki/online/tracediff
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Fig. A.10. The diff result is visualized graphically, and one can jump from difference to dif-
ference using the “previous” and “next” buttons.

ically. For the diff analysis, it is assumed that two events are equal if their name and
type coincide. (Filtering can be used pre-process the log.)

The plug-in was created in the context of a collaboration with Philips Health-
care [119]. Philips has created their own log analysis tools based on ProM and is
regularly analyzing the event logs that it receives from their x-ray machines all over
the world to improve the reliability and the usability of these systems.

This trace-diff conformance analysis tool helps them to compare “baseline” log
traces from development systems to later log traces of these systems for specific test
scenarios. For example, suppose there is an automatic test batch A that simulates
a certain usage scenario for the x-ray machine. Then, a test run is made and logs
are recorded during that test. The test run is carefully analyzed, and the engineers
know exactly which kinds of errors have appeared and why. While the development
of the system proceeds the test batch A will be run many more times. However, this
time the engineers are only interested in how the log trace has changed compared
to the baseline test at the beginning. Have new errors occurred? Did other errors
disappear? This way, they get a clearer idea of the reliability progress over time and
are less likely to be lost in the wealth of data.

A.2 Extension plug-ins

The following two extension plug-ins are described in the following: Decision Miner
(Section A.2.1) and Basic Log Statistics plug-in (Section A.2.2). Extension plug-ins
in ProM that can be specifically used for simulation are described in Appendix A.3.
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A.2.1 Decision Miner7

Author: A. Rozinat

The Decision Miner realizes the decision mining approach presented in Chapter 7.
The plug-in in ProM expects a Petri net process model and an event log with a map-
ping between the task and log event labels. It then determines the decision points
contained in the Petri net model, and it specifies the possible decisions while be-
ing able to deal with invisible and duplicate tasks as described in Section 7.4 and
Section 7.5.

Figures A.11–A.13 depict screenshots of the plug-in for the example from Sec-
tion 7.2. The detected decision points are displayed in the upper left corner of the
application window. Furthermore, a number of views are accessible via the different
tabs of the plug-in:

Model view The model view shown in Figure A.11(a) provides a visualization of
each decision point with respect to the given process model. The corresponding
decision classes and the current attribute selection scope can be highlighted.

Log view The log view shown in Figure A.11(b) provides a means to manually in-
spect the process instances categorized with respect to the decisions made at
each decision point in the model.

Attributes view The attributes view shown in Figure A.11(c) allows for the selec-
tion of attributes that should be included in the analysis of each decision point.
By default, all data attributes in the log are included, and the scope is limited
to attributes that were provided before the decision point was reached for the
particular process instance.

Algorithm view While the Decision Miner formulates the learning problem, the ac-
tual analysis is carried out with the help of a classical decision tree algorithm.
The algorithm view shown in Figure A.12(a) provides all tuning parameters
that are available for the used algorithm. Currently, only the decision tree al-
gorithm J48, which is the Weka [267] implementation of an algorithm known as
C4.5 [200] is supported. However, the learning problem for each decision point
can be exported as an .arff file and directly loaded in Weka to be analyzed
further by alternative classification algorithms.

Decision Tree view The decision tree view shown in Figure A.12(b) visualizes the
decision tree result obtained from the Weka library for each decision point.

Evaluation view The evaluation view shown in Figure A.12(c) indicates how many
decisions were correctly (or incorrectly) captured by the mined decision tree.
Therefore, it provides an indication of the accuracy of the discovered rules.

Result view The discovered decision rules (and the selected data attributes) are vi-
sualized in the context of the process model in the result view as shown in Fig-
ure A.13.

7 Help page available at: http://prom.win.tue.nl/research/wiki/online/
decisionmining.

http://prom.win.tue.nl/research/wiki/online/decisionmining
http://prom.win.tue.nl/research/wiki/online/decisionmining
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(a) Model view visualizes decision points in the process model

(b) Log view allows browsing of the classified traces

(c) Attribute selection scope for decision point p0

Fig. A.11. Screenshots of the Decision Miner while analyzing the example from Section 7.2.
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(a) Parameter settings for the decision tree algorithm

(b) Evaluation of the decision tree result for decision point p0

(c) Decision tree result for decision point p0

Fig. A.12. Screenshots of the Decision Miner while analyzing the example from Section 7.2.
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Fig. A.13. Decision rule visualization for decision points p2 and p3.

To deal with simple loops, there is one button in the lower left corner of the
application window with the label “Split loops”, which allows to export a new log
file while splitting up process instances that contain several decisions with respect
to the currently selected decision point. As explained in Section 7.4.3, if there is a
decision point contained in a loop, there may be multiple instances of this decision
within a single process instance. Because the Decision Miner always interprets the
last value of an attribute within the scope, these loop-split process instances can serve
as multiple learning instances. By exporting and re-importing the loop-split log, the
corresponding decision point can thus be analyzed while taking all decision instances
(stemming from multiple executions of the loop) into account.

A.2.2 Basic Log Statistics8

Author: A. Rozinat

The Basic Log Statistics plug-in contains three tabs, which provide basic statistics
about the overall activity execution times, the activity execution times per process
instance, and the attribute values in the whole log, respectively. The results can be
displayed either in a graphical way as shown in Figure A.14(a), which can be ex-
ported as a PNG file, or in a textual overview as shown in Figure A.14(b), which can
be exported as an HTML or CSV file.

In the graphical view, one can determine according to which column the results
should be sorted, and what the time unit should be for each column. Furthermore,
one can view the results for the whole log (Global Activity Statistics) as well for
each individual process instance (Instance-wise Activity Statistics).

8 Help page available at: http://prom.win.tue.nl/research/wiki/online/
logstatistics.

http://prom.win.tue.nl/research/wiki/online/logstatistics
http://prom.win.tue.nl/research/wiki/online/logstatistics
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(a) Graphical result view

(b) Textual result view

(c) Attribute value statistics

Fig. A.14. Screenshots of the Basic Log Statistics.
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Finally, also the values of data attributes are evaluated. Simple measures such
frequencies of nominal values, or minimum and maximum numeric values are cal-
culated, as shown in Figure A.14(c).

A.3 Simulation Model plug-ins9

One important topic in this thesis is the use of extended process models for business
process simulation. To realize this, a high-level process structure has been designed
and implemented in ProM (see also Section 8.2).

A number of plug-ins use this data structure to either create, transform, or inte-
grate high-level process models that can be used for simulation. Two detailed tutori-
als (including example files to follow the steps) exist for the

• discovery of a simulation model from an event log alone [213], and the
• creation of a simulation model including operational decision support for an ex-

isting YAWL-based workflow [214].

In a nutshell, the following plug-ins either deal with, or produce, high-level struc-
tures that can be used to generate simulation models.

The Decision Miner and Basic Log Statistics plug-in described in the previous
section provide such a high-level process model to the framework for further inte-
gration. Also other, existing plug-ins have been extended to provide their results as
a high-level process model for simulation: the Organizational Miner (written and
extended by M. Song), the Performance Analysis with Petri net (written by P.T.G.
Hornix and extended by M. Song), and the OrgModel Import (written and extended
by M. Song). Furthermore, M. Netjes has implemented her work on step-by-step
redesign support for process models [183, 182, 181] on top of our HLProcess and
simulation model generation infrastructure.

In the following, all plug-ins that have been newly created for the realization of
our simulation approaches are described in more detail: As an alternative to discov-
ering additional information about a process from the event log (such as the De-
cision Miner), the New YAWL Import extracts not only control-flow but also data
and resource information from an existing YAWL specification (Section A.3.1). The
View/Edit High-level Process plug-in can be used to assess and modify high-level
process models (Section A.3.2). The Combine Low-level Activities plug-in is needed
as a pre-processing step in some situations before a simulation model can be cre-
ated (Section A.3.3), and the Merge Simulation Models plug-in integrates process in-
formation from different perspectives (Section A.3.4). The HLYAWL to HLPetriNet
conversion plug-in translates a YAWL-based high-level process model into a Petri
net-based high-level process model by preserving all the simulation-relevant infor-
mation (Section A.3.5). The CPN Export then generates a CPN model from any Petri

9 An overview page about all simulation model plug-ins can be found at: http://prom.
win.tue.nl/research/wiki/online/simulationmodels.

http://prom.win.tue.nl/research/wiki/online/simulationmodels
http://prom.win.tue.nl/research/wiki/online/simulationmodels
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net-based high-level process model (Section A.3.6). Finally, the WorkflowState Im-
port plug-in translates a current state file from the XML-based standard format into
the CPN file needed for simulation (Section A.3.7).

A.3.1 New YAWL Import10

Author: A. Rozinat

Unlike the original YAWL Import, which only evaluates the control-flow structure,
this plug-in reads additional information about data and role assignments from the
YAWL engine file. As depicted in Figure A.15, the resulting HLYawl object is di-
rectly displayed using the View/Edit High-level Process plug-in (see next section).

Fig. A.15. Screen after loading a YAWL model using the New Yawl Import plug-in.

The plug-in only considers the top-most component in hierarchical models, and
advanced control-flow constructs such as cancellation regions, OR joins, and multi-
ple instances are ignored in further processing. See our technical report [231] for a
detailed discussion of the limitations.

A.3.2 View/Edit High-level Process11

Author: A. Rozinat

10 Help page available at: http://prom.win.tue.nl/research/wiki/online/
newyawlimport.

11 Help page available at: http://prom.win.tue.nl/research/wiki/online/
edithlprocess.

http://prom.win.tue.nl/research/wiki/online/newyawlimport
http://prom.win.tue.nl/research/wiki/online/newyawlimport
http://prom.win.tue.nl/research/wiki/online/edithlprocess
http://prom.win.tue.nl/research/wiki/online/edithlprocess
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The View/Edit High-level Process plug-in in ProM uses the GUI classes described in
Section 8.2.2 to provide an editing interface to the high-level information. This can
be done regardless of the underlying process model type, since associations between
high-level process elements (e.g., data attributes) and actual graph nodes (e.g., a
transition in a Petri net that corresponds to the task that provides this data attribute)
can be established through the HLModel class in a generic way.

In the following, screenshots of the different tabs in the View/Edit High-level
Process plug-in are shown, and the functionality is explained from a user perspective.

Global

On the ‘Global’ tab depicted in Figure A.16(a) all process-wide settings can be ad-
justed. For example, the Case generation scheme specifies the distribution at which
new cases arrive in this process. Typically this is a negative exponential distribu-
tion, parameterized by the mean time between two arrivals. The Time unit indicates a
global time unit that applies to all time-related parameters in the high-level process.

Attributes

The ‘Attributes’ tab depicted in Figure A.16(b) allows to modify or delete existing
and create further data attributes. Each attribute can have the following parameters:

• Name. The name of the data attribute.
• Type. Attributes can be of the type ‘nominal’, ‘numeric’, or ‘boolean’. For ex-

ample, a ‘nominal’ attribute could have the possible values “red”, “green”, and
“orange”, while a ‘numeric’ attributes might range over real numbers (e.g., 0,
−5, 5.3, etc.). Finally, a ‘boolean’ attribute can be either “true” or “false”.

• Use initial value. Determines whether there should be an initial value used in the
first place. If yes, the actual initial value can be specified. If not, the attribute will
be initialized with a random value from the possible values during simulation.
This is useful for global case data attributes, which are used for decision making
(see also Choice Settings) but never modified by any activity.

• Initial value. Specifies the actual initial value, if used.
• Possible values. Defines the range of possible attribute values, depending on the

attribute type.

Double-clicking an attribute in the list will bring up the current parameters as
well as highlight all those activities in the visualization below that provide this at-
tribute (see also Activity Settings).

Resources

The ‘Resources’ tab depicted in Figure A.16(c) allows to provide information about
organizational entities (groups) and individual resources belonging to one or more of
these groups. That is, organizational models can be directly imported (see OrgModel
Import plug-in) or manually specified. These groups can then be used to define re-
quired roles for activities (see also Activity Settings).
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Fig. A.16. From the top: (a) global settings, (b) attribute settings, and (c) resource settings in
View/Edit High-level Process plug-in.
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Fig. A.17. From the top: (a) choice settings with data attributes configuration (b) choice set-
tings with with probabilities configuration.

Choices

In the ‘Choices’ tab depicted in Figure A.17 decision points in the process model
are automatically detected and displayed in the list to the left (and highlighted in the
process model at the bottom). For each of these choices, the following options exist:

• Unguided (random). No conditions are specified for this choice. In a simulation
setting, there would be a random choice between the possible branches.

• Data attributes. Based on logical expressions over data attributes pre-conditions
can be formulated (see also Attribute Settings). Figure A.17(a) depicts an ex-
ample view on this configuration option, where the choice after task ‘Check for
completeness’ is being made based on the data attribute ‘completeApp’: If the
application documents are complete the ‘Check loan amount’ task is executed,
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otherwise the missing information is requested from the applicant (‘Get more
info’ task). Currently, these rules can be discovered (Decision Miner) or im-
ported (New YAWL Import) but not yet manually provided. So, the fields cannot
be edited.

• Probabilities. A probability can be assigned to each of the alternative branches.
Figure A.17(b) depicts depicts an example of this configuration option, where
the same decision point as in Figure A.17(a) is selected (i.e., after task ‘Check
for completeness’). Here, with a probability of 80% the process continues nor-
mally (‘Check loan amount’), and additional information is requested (‘Get more
info’) in 20% of the decisions (but independent of the actual attribute value). This
configuration can be used if there is no information about attributes, or decision
rules, available.

• Frequencies. If choices are not independent of each other, then simple proba-
bilities cannot be used for simulation without risking deadlocks (see also Sec-
tion 8.3.5 for further details). In these situations, relative frequencies can deter-
mine how often each of the branches is chosen relative to the others.

Activities

The ‘Activities’ tab depicted in Figure A.18 holds information for each activity in
the process. Double-clicking an activity in the list brings up the activity settings, and
it highlights the corresponding node in the graphical model at the bottom. For each
activity the following parameters can be specified:

• Data attributes. Output data items, i.e., data that is provided by this activity, can
be specified based on the existing data attributes. When an attribute in this view
is selected, it can be chosen to be either resampled (new value is generated during
simulation based on value range distribution) or re-used (value is not changed but
attribute will be logged with execution of this activity).

• Group. A group can be chosen from the list of organizational entities. Further-
more, an activity can be chosen to be executable by ‘nobody’ (automatic task, no
resource is required) or ‘anybody’ (any available resource will do).

For the simulation of the timing behavior of activities in a business process, there
are multiple possibilities. Section 8.3.3 describes how the execution and waiting
times of activities can be specified in our CPN representation. Depending on the
configuration of the simulation model (see also Section A.3.6), either (a) only exe-
cution time, (b) execution time and waiting time, or (c) sojourn time can be used.

• Execution time. A distribution can be specified for the actual execution of this
activity (i.e., from start to completion).

• Waiting time. A distribution of the time after becoming enabled but before actu-
ally starting the activity can be specified (i.e., from scheduling to start).
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Fig. A.18. The activity settings in View/Edit High-level Process plug-in.

• Sojourn time. The sojourn time is the execution time + waiting time for an activity
(i.e., from scheduling to completion). This can be useful, for example, if the
timing behavior is discovered from a log that did not contain information about
the actual start events of activities (this is common for, e.g., Staffware logs).

A.3.3 Combine Low-level Activities12

Author: R.S. Mans

When a process model is discovered from an event log that includes start and com-
plete events, the resulting model includes separate tasks referring to the beginning
and completion of an activity. However, because the high-level information is linked

12 Help page available at: http://prom.win.tue.nl/research/wiki/online/
eventmodelmerge.

http://prom.win.tue.nl/research/wiki/online/eventmodelmerge
http://prom.win.tue.nl/research/wiki/online/eventmodelmerge
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to activities as a whole (and ‘schedule’, ‘start’ and ‘end’ transitions may be gener-
ated per activity based on the given configuration), these low-level tasks that belong
to one activity must be combined into a single activity in the Petri net model before
a simulation model can be created.

A.3.4 Merge Simulation Models13

Authors: R.S. Mans, A. Rozinat

Multiple plug-ins may be used to obtain different parts of simulation-relevant infor-
mation. Therefore, it is necessary to merge these parts into one model (to create a
simulation model that contains all the information at once).

As a first step, one needs to choose one of the given input simulation models to
be the reference model (that is, a template model) for the merged output (cf. Fig-
ure A.19). This means that the underlying control-flow model of the merged high-
level process will be the same as the underlying control-flow model of the chosen
reference model (e.g., a Petri net or YAWL model).

Fig. A.19. A reference model must be chosen for the merging.

Then, the activities of the remaining simulation models must be mapped to the
activities in the reference model. This is necessary in order to ensure that the correct
aggregate information is accessed for each activity. If the activities have exactly the
same name, the suggested default mapping can be simply accepted. Otherwise, one
needs to choose the right activity to be mapped on each of the reference model’s
activities.

The Merge Simulation Model plug-in then automatically merges the different
models together based on the type of information they provide. Usually, this is suf-
ficient and the merged model can be directly used. However, if two models provide
information for the same perspective (such as performance information), one might
want to change the way the merging is done per default and determine from which
of the (conflicting) input models the information should be included.

Figure A.20 depicts the Merge Simulation Model view for the execution time
information.
13 Help page available at: http://prom.win.tue.nl/research/wiki/online/

mergesimmodels.

http://prom.win.tue.nl/research/wiki/online/mergesimmodels
http://prom.win.tue.nl/research/wiki/online/mergesimmodels
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Fig. A.20. Screenshot of the Merge Simulation Model plug-in in ProM.

A.3.5 HLYAWL to HLPetriNet14

Authors: A. Rozinat, H.M.W. Verbeek

The HLYAWL to HLPetriNet plug-in converts a HLYAWL model (as, e.g., obtained
from the New YAWL Import) into a HLPetriNet while preserving all the extra infor-
mation about data, time, and resources.

The actual control-flow model conversion is done transparently by applying a
number of other plug-ins implemented by H.M.W. Verbeek, namely:

• Flatten YAWL model. In this step, potential hierarchical layers in the YAWL
model are removed.

• Add implicit conditions. As opposed to Petri nets, YAWL allows the connection
of two task without a place (called ‘condition’ in YAWL) in between. This is re-
alized by a so-called implicit condition (which is assumed if no explicit condition
is there). This step makes all implicit conditions in the YAWL model explicit for
an easier conversion.

• Convert YAWL model to EPC. This conversion step is based on the algorithm
described in [256].

• Convert EPC to PetriNet. As a last step, the existing EPC-to-Petri net conversion
in ProM is invoked.

14 Help page available at: http://prom.win.tue.nl/research/wiki/online/
hlyawltohlpn.

http://prom.win.tue.nl/research/wiki/online/hlyawltohlpn
http://prom.win.tue.nl/research/wiki/online/hlyawltohlpn
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The result is directly displayed using the View/Edit HLProcess plug-in and can
now be exported to CPN Tools (remember that the CPN Export expects a Petri-net
based model).

A.3.6 CPN Export15

Authors: A. Rozinat, R.S. Mans

To generate CPN models in the representation presented in Section 8.3 (i.e., includ-
ing simulation environment and the described monitors) we created the Export to
CPN Tools 2.0 plug-in (also called CPN Export) in ProM. It accepts a Petri net-based
high-level process model filled with all simulation-relevant process characteristics
(see Section 8.2 for an example scenario of how to obtain such a high-level process
based on an event log). Alternatively, a simple low-level Petri net can be provided (in
this case all information must be provided manually). Before the actual export takes
place, the CPN Export plug-in allows for the manipulation and configuration of the
simulation information in the model. The user can choose which dimensions should
be included in the generated CPN model. This way, it is easy to play with different
configurations of the same simulation model.

Fig. A.21. Screenshot of the CPN Export plug-in in ProM.

Figure A.21 depicts a screenshot of the CPN Export plug-in in ProM. The fol-
lowing perspectives can be configured:

15 Help page available at: http://prom.win.tue.nl/research/wiki/online/
cpnexport.

http://prom.win.tue.nl/research/wiki/online/cpnexport
http://prom.win.tue.nl/research/wiki/online/cpnexport
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Data Perspective Includes case data attributes and data-based decision rules in the
generated CPN. If this option is not selected, data attributes will be ignored even
if they are specified in the high-level process.

Time Perspective Generates a timed model including information on case genera-
tion times, and on execution and waiting times according to the configuration (cf.
Figure 8.13 for the three time configuration options). Again, all time information
present in the high-level process will be ignored if this option is not selected.

Resource Perspective Includes explicit resource modeling in the generated CPN
according to the specification in the high-level process. As explained in Sec-
tion 8.3.4, a percentage of the overall activity waiting time can be chosen in
combination with explicit resource modeling to simulate the real process more
closely.

Furthermore, the CPN Export plug-in includes an extra option to generate a sim-
ulation model including Current state support. This way, it is possible to start up the
simulation from a non-empty initial state. In Section 9.3, this concept was explained
in more detail. Finally, the monitors described in Section 8.3.6 are automatically
generated if the MXML logging, Throughput time monitor, or Resource availability
monitor option are selected.

A.3.7 WorkflowState Import16

Authors: M. Wynn, A. Rozinat

In Section 9.3.4 we presented an XML-based WorkflowState format for the current
state of workflow system. This import plug-in reads a given WorkflowState file and
converts it into a CPN input file that can be used together with a generated CPN
model.

A.4 Other Plug-ins

Four auxiliary plug-ins were created in the context of this thesis. In the following, we
briefly describe the Flower Model Miner (Section A.4.1), the Explicit Model Miner
(Section A.4.2), the Enhance Log with History plug-in (Section A.4.3), and the Log
Splitting plug-in (Section A.4.4).

A.4.1 Flower Model Miner

Author: A. Rozinat

Builds a so-called “flower” model for the given event log. This model is the most
general model one can think of as it allows for any sequence of the observed activities
(cf. Figure A.22, which depicts the flower model for event log L1 in Chapter 4).
16 Help page available at: http://prom.win.tue.nl/research/wiki/online/

workflowstateimport.

http://prom.win.tue.nl/research/wiki/online/workflowstateimport
http://prom.win.tue.nl/research/wiki/online/workflowstateimport
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Fig. A.22. Flower model miner result when applied to the event log L1 in Figure 4.4(a).

This can be useful as a helper model if no real model is available but a model is
needed for some analysis technique (e.g., the Decision Miner). Furthermore, we use
this extreme model as a reference model in our MDL approach (see Section 5.3).

A.4.2 Explicit Model Miner

Author: A. Rozinat

Builds a trivial process model that lists all different event sequences from the event
log as an alternative path. This model is the most precise model one can think of as
it only allows for the sequences that have been observed in the log (cf. Figure A.22,
which depicts the explicit model for event log L1 in Chapter 4). We also use this
miner to create a reference model in our MDL approach (see Section 5.3).

A.4.3 Enhance Log with History

Author: A. Rozinat

The Enhance Log with History plug-in adds counting measures to the data part of
each audit trail entry, which reflect the history of a case in each stage as a bag of
actions. For example, if a log trace contains the sequence ABAC, then there will be
a new data attribute “#A” = “1”, “#B” = “0”, and “#C” = “0” for log event B, data
attributes “#A” = “1”, “#B” = “1”, and “#C” = “0” for the second log event A, and
the data attributes “#A” = “2”, “#B” = “1”, and “#C” = “0” for log event C etc. So,
the history is captured in a simplified way without including the current log event
itself.

The purpose of this plugin is to enable the analysis of the history via data mining
techniques, e.g., in the Decision Miner.
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Fig. A.23. Explicit model miner result when applied to the event log L1 in Figure 4.4(a).

A.4.4 Log Splitting

Author: A.K. Alves de Medeiros

The Log Splitting plug-in splits each process instance in the input log into multi-
ple (potentially much smaller) new process instances. The splitting is based on the
the observation of particular events and potentially a time interval before this event
(discarding other events that happened outside of the given time interval).

The plug-in was created in the context of a case study [94, 95] with the D’PUIS
product usage monitoring prototype (cf. Section 3.1.2) in order to analyze sub pro-
cesses that lead to a particular observation event (i.e., “What were the users doing
before?”).

A.5 ProMimport Plug-ins

Finally, a number of ProMimport plug-ins (cf. Section 3.2) were created to convert
event logs into the MXML format needed for analysis with ProM. In the following,
a brief description is given for each of the data sources and the context in which the
conversion was needed.

• Noldus (by C.W. Günther). Log data created by the Noldus Observer software
(described in Section 3.1.2) were used to analyze usability tests performed for a
television. The case study results are described in Section 4.5.3.

• ASML (by C.W. Günther). Logs from the test process of ASML’s wafer steppers
were used for the case study described in Section 4.5.4.
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• Cognos/Siebel (by A. Rozinat). Call center logs were extracted from the BI sys-
tem Cognos (which in turn extracts these data on a daily basis from the CRM
system Siebel). The process of service requests being handled by the call center
were analyzed in a case study not further discussed in this thesis.

• D’PUIS (by A.K. Alves de Medeiros). Data collected via the D’PUIS product
usage monitoring system had to be extracted from a central data base and con-
verted to enable an analysis of the usage process for a case study with an IPTV
prototype [94, 95].

• Robot Logs (by A. Rozinat). Log data collected by the CMDragons team during
the international robot soccer competition RoboCup 2007 was used for the case
study described in Section 7.7.

• YAWL (by M. Wynn). Event logs registered by the YAWL workflow engine dur-
ing process execution can be converted to MXML using this plug-in to support
the generation of simulation models for YAWL as described in Section 9.3.3.
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Acronyms

AIC . . . . . . . . . . . . . . . . . Akaike Information Criterion

BAM . . . . . . . . . . . . . . . . . Business Activity Monitoring
BIC . . . . . . . . . . . . . . . . . Bayesian Information Criterion
BOM . . . . . . . . . . . . . . . . . Business Operations Management
BPEL . . . . . . . . . . . . . . . . . Business Process Execution Language
BPI . . . . . . . . . . . . . . . . . . Business Process Intelligence
BPM . . . . . . . . . . . . . . . . . Business Process Management
BPMN . . . . . . . . . . . . . . . . Business Process Modeling Notation

CAD . . . . . . . . . . . . . . . . . Computer-aided Design
CPN . . . . . . . . . . . . . . . . . Colored Petri Net
CRM . . . . . . . . . . . . . . . . . Customer Relationship Management
CV . . . . . . . . . . . . . . . . . . Cross Validation

D’PUIS . . . . . . . . . . . . . . . . Dynamic Product Usage Information Sys-
tem

DTD . . . . . . . . . . . . . . . . . Document Type Definition

EPC . . . . . . . . . . . . . . . . . Event-driven Process Chain
ERM . . . . . . . . . . . . . . . . . Explicit Reference Model
ERP . . . . . . . . . . . . . . . . . Enterprise Resource Planning

FRM . . . . . . . . . . . . . . . . . Flower Reference Model
FSM . . . . . . . . . . . . . . . . . Finite State Machine

GUI . . . . . . . . . . . . . . . . . Graphical User Interface
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HIPAA . . . . . . . . . . . . . . . . Health Insurance Portability and Account-
ability Act

HMM . . . . . . . . . . . . . . . . Hidden Markov Model

IPTV . . . . . . . . . . . . . . . . . Internet Protocol Television
ISO . . . . . . . . . . . . . . . . . . International Organization for Standard-

ization
IT . . . . . . . . . . . . . . . . . . Information Technology

LGPL . . . . . . . . . . . . . . . . GNU Lesser General Public License
LTL . . . . . . . . . . . . . . . . . Linear Temporal Logic

MDL . . . . . . . . . . . . . . . . . Minimum Description Length
MXML . . . . . . . . . . . . . . . . Mining XML

NPS . . . . . . . . . . . . . . . . . Net Promotor Score

PDM . . . . . . . . . . . . . . . . . Product Data Management
PPM . . . . . . . . . . . . . . . . . Process Performance Manager

REACH . . . . . . . . . . . . . . . Registration, Evaluation, Authorisation
and Restriction of Chemicals

RFID . . . . . . . . . . . . . . . . . Radio-frequency Identification

SA-MXML . . . . . . . . . . . . . . Semantic Annotated MXML
SCM . . . . . . . . . . . . . . . . . Supply Chain Management
SML . . . . . . . . . . . . . . . . . Standard ML
SOAP . . . . . . . . . . . . . . . . Simple Object Access Protocol
SOX . . . . . . . . . . . . . . . . . Sarbanes-Oxley
SR . . . . . . . . . . . . . . . . . . Service Request

UML . . . . . . . . . . . . . . . . . Unified Modeling Language

WF-net . . . . . . . . . . . . . . . . Workflow net
WFM . . . . . . . . . . . . . . . . . Workflow Management

XES . . . . . . . . . . . . . . . . . Extensible Event Stream

YAWL . . . . . . . . . . . . . . . . Yet Another Workflow Language



Summary

Today’s business processes are realized by a complex sequence of tasks that are
performed throughout an organization, often involving people from different depart-
ments and multiple IT systems. For example, an insurance company has a process
to handle insurance claims for their clients, and a hospital has processes to diagnose
and treat patients. Because there are many activities performed by different people
throughout the organization, there is a lack of transparency about how exactly these
processes are executed. However, understanding the process reality (the “as is” pro-
cess) is the first necessary step to save cost, increase quality, or ensure compliance.

The field of process mining aims to assist in creating process transparency by
automatically analyzing processes based on existing IT data. Most processes are sup-
ported by IT systems nowadays. For example, Enterprise Resource Planning (ERP)
systems such as SAP log all transaction information, and Customer Relationship
Management (CRM) systems are used to keep track of all interactions with cus-
tomers. Process mining techniques use these low-level log data (so-called event logs)
to automatically generate process maps that visualize the process reality from differ-
ent perspectives. For example, it is possible to automatically create process models
that describe the causal dependencies between activities in the process.

So far, process mining research has mostly focused on the discovery aspect (i.e.,
the extraction of models from event logs). This dissertation broadens the field of
process mining to include the aspect of conformance and extension. Conformance
aims at the detection of deviations from documented procedures by comparing the
real process (as recorded in the event log) with an existing model that describes the
assumed or intended process. Conformance is relevant for two reasons:

1. Most organizations document their processes in some form. For example, pro-
cess models are created manually to understand and improve the process, comply
with regulations, or for certification purposes. In the presence of existing mod-
els, it is often more important to point out the deviations from these existing
models than to discover completely new models. Discrepancies emerge because
business processes change, or because the models did not accurately reflect the
real process in the first place (due to the manual and subjective creation of these
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models). If the existing models do not correspond to the actual processes, then
they have little value.

2. Automatically discovered process models typically do not completely “fit” the
event logs from which they were created. These discrepancies are due to noise
and/or limitations of the used discovery techniques. Furthermore, in the context
of complex and diverse process environments the discovered models often need
to be simplified to obtain useful insights. Therefore, it is crucial to be able to
check how much a discovered process model actually represents the real pro-
cess. Conformance techniques can be used to quantify the representativeness of
a mined model before drawing further conclusions. They thus constitute an im-
portant quality measurement to effectively use process discovery techniques in
a practical setting.

Once one is confident in the quality of an existing or discovered model, extension
aims at the enrichment of these models by the integration of additional characteristics
such as time, cost, or resource utilization. By extracting additional information from
an event log and projecting it onto an existing model, bottlenecks can be highlighted
and correlations with other process perspectives can be identified. Such an integrated
view on the process is needed to understand root causes for potential problems and
actually make process improvements. Furthermore, extension techniques can be used
to create integrated simulation models from event logs that resemble the real process
more closely than manually created simulation models.

After an introduction (Part I), we provide a comprehensive framework for the
conformance checking of process models in Part II of this thesis.
First, we identify the evaluation dimensions fitness, precision/generalization, and
structure as the relevant conformance dimensions. We develop several Petri-net based
approaches to measure conformance in these dimensions and describe five case stud-
ies in which we successfully applied these conformance checking techniques to real
and artificial examples. Furthermore, we provide a detailed literature review of re-
lated conformance measurement approaches (Chapter 4).
Then, we study existing model evaluation approaches from the field of data mining.
We develop three data mining-inspired evaluation approaches for discovered process
models, one based on Cross Validation (CV), one based on the Minimal Description
Length (MDL) principle, and one using methods based on Hidden Markov Mod-
els (HMMs). We conclude that process model evaluation faces similar yet different
challenges compared to traditional data mining. Additional challenges emerge from
the sequential nature of the data and the higher-level process models, which include
concurrent dynamic behavior (Chapter 5).
Finally, we point out current shortcomings and identify general challenges for con-
formance checking techniques. These challenges relate to the applicability of the
conformance metric, the metric quality, and the bridging of different process model-
ing languages. We develop a flexible, language-independent conformance checking
approach that provides a starting point to effectively address these challenges (Chap-
ter 6).
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In Part III, we develop a concrete extension approach, provide a general model
for process extensions, and apply our approach for the creation of simulation models.
First, we develop a Petri-net based decision mining approach that aims at the discov-
ery of decision rules at process choice points based on data attributes in the event
log. While we leverage classification techniques from the data mining domain to ac-
tually infer the rules, we identify the challenges that relate to the initial formulation
of the learning problem from a process perspective. We develop a simple approach
to partially overcome these challenges, and we apply it in a case study (Chapter 7).
Then, we develop a general model for process extensions to create integrated models
including process, data, time, and resource perspective. We develop a concrete repre-
sentation based on Coloured Petri-nets (CPNs) to implement and deploy this model
for simulation purposes (Chapter 8).
Finally, we evaluate the quality of automatically discovered simulation models in two
case studies and extend our approach to allow for operational decision making by in-
corporating the current process state as a non-empty starting point in the simulation
(Chapter 9).

Chapter 10 concludes this thesis with a detailed summary of the contributions
and a list of limitations and future challenges.

The work presented in this dissertation is supported and accompanied by concrete
implementations, which have been integrated in the ProM and ProMimport frame-
works17. Appendix A provides a comprehensive overview about the functionality
of the developed software. The results presented in this dissertation have been pre-
sented in more than twenty peer-reviewed scientific publications, including several
high-quality journals.

17 Binaries and source code are available at prom.sf.net and promimport.sf.net.





Samenvatting

De huidige bedrijfsprocessen worden gerealiseerd door een complexe opeenvolging
van taken die worden uitgevoerd in een organisatie, vaak met mensen uit verschil-
lende afdelingen en meerdere IT-systemen. Een verzekeringsmaatschappij heeft bij-
voorbeeld een proces om schadeclaims voor hun cliënten te behandelen, en een
ziekenhuis heeft processen om patiënten te diagnostiseren en te behandelen. Om-
dat er vele activiteiten door verschillende mensen over de gehele organisatie worden
uitgevoerd, is er een gebrek aan transparantie over hoe deze processen precies wor-
den uitgevoerd. Echter, begrip van het werkelijke proces (het “as is” proces) is de
eerste noodzakelijke stap om kosten te besparen, kwaliteit te verhogen, of naleving
te verzekeren.

Het gebied van process mining probeert de procestransparantie te verbeteren door
het automatisch analyseren van processen op basis van bestaande IT-gegevens. De
meeste processen worden tegenwoordig ondersteund door IT-systemen. Enterprise
Resource Planning (ERP) systemen zoals SAP bijvoorbeeld, registreren alle trans-
actieinformatie, en Customer Relationship Management (CRM) systemen worden
gebruikt om alle interacties met klanten bij te houden. Process mining technieken
gebruiken deze gedetailleerde loggegevens (zogenaamde event logs) voor het au-
tomatisch genereren van proceskaarten die het werkelijke proces vanuit verschil-
lende invalshoeken visualiseren. Het is bijvoorbeeld mogelijk om automatisch pro-
cesmodellen te maken die de oorzakelijke afhankelijkheden tussen de activiteiten in
het proces beschrijven.

Tot dusver heeft het process mining onderzoek zich met name geconcentreerd
op het discovery aspect (d.w.z., de ontdekking van modellen uit event logs). Dit
proefschrift verbreedt het gebied van process mining om het aspect van confor-
mance en extension. Conformance is gericht op het opsporen van afwijkingen van
gedocumenteerde procedures door het vergelijken van het werkelijke proces (zoals
geregistreerd in een event log) met een bestaand model dat het veronderstelde of
voorgenomen proces beschrijft. Conformance is relevant om twee redenen:

1. De meeste organisaties documenteren hun processen op enige manier. Proces-
modellen worden bijvoorbeeld met de hand gemaakt om het proces te begrijpen
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en te verbeteren, regels na te leven, of om als basis voor certificering te dienen.
Met bestaande modellen is het vaak belangrijker om op de afwijkingen van deze
bestaande modellen te wijzen dan om volledig nieuwe modellen te ontdekken.
Verschillen ontstaan doordat bedrijfsprocessen veranderen, of omdat de model-
len nooit een juiste weergave van het werkelijke proces waren (als gevolg van
de handmatige en subjectieve creatie van deze modellen). Als de bestaande mo-
dellen niet overeenstemmen met de werkelijke processen, dan hebben ze weinig
waarde.

2. Automatisch ontdekte procesmodellen “passen” meestal niet helemaal op de
event logs waaruit zij werden gemaakt. Dit verschil is toe te schrijven aan
ruis en/of beperkingen van de gebruikte ontdekkingstechnieken. In het kader
van complexe en diverse procesmilieus moeten bovendien de ontdekte model-
len vaak worden vereenvoudigd om nuttige inzichten te verkrijgen. Daarom is
het cruciaal om te kunnen controleren in welke mate een ontdekt procesmodel
eigenlijk het werkelijke proces vertegenwoordigt. Conformance technieken kun-
nen worden gebruikt om de representativiteit van een ontdekt model te kwantifi-
ceren alvorens verdere conclusies te trekken. Zij vormen dus een belangrijke
kwaliteitsmeting om process discovery technieken effectief te gebruiken in een
praktische setting.

Zodra men vertrouwen in de kwaliteit van een bestaand of ontdekt model heeft, is
extension gericht op de verrijking van deze modellen door de integratie van extra
kenmerken zoals tijd, kosten, of gebruik van middelen. Door het onttrekken van
aanvullende informatie uit een event log en te projecteren op een bestaand model,
kunnen knelpunten worden gesignaleerd en de correlaties met andere procesperspec-
tieven kunnen worden geı̈dentificeerd. Een dergelijk geı̈ntegreerd zicht op het proces
is nodig om onderliggende oorzaken voor mogelijke problemen te begrijpen en echte
procesverbeteringen te maken. Extension technieken kunnen bovendien worden ge-
bruikt om geı̈ntegreerde simulatiemodellen uit event logs te maken die beter op het
werkelijke proces lijken dan met-de-hand gemaakte modellen.

Na een inleiding (deel I) verstrekken wij in deel II van dit proefschrift een uitge-
breid framework om de conformance van procesmodellen te controleren.
In de eerste plaats identificeren we de evaluatiedimensies fitness, precisie/general-
isatie, en de structuur als de relevante dimensies voor conformance. We ontwikkelen
een aantal Petri-net gebaseerde benaderingen om conformance in deze dimensies
te meten en beschrijven vijf case studies waarin wij met succes deze conformance
checking technieken op echte en kunstmatige voorbeelden toe hebben gepast. Boven-
dien bieden we een gedetailleerd literatuuroverzicht van verwante benaderingen van
het meten van conformance (hoofdstuk 4). Vervolgens bestuderen we de bestaande
model evaluatie benaderingen uit het gebied van data mining. We ontwikkelen drie
op data mining-geı̈nspireerde benaderingen voor de evaluatie van ontdekte proces-
modellen, één gebaseerd op Cross Validation (CV), één op basis van het Minimal De-
scription Length (MDL) principe, en één met behulp van methodes op basis van Hid-
den Markov Modellen (HMMs). We concluderen dat procesmodel-evaluatie soort-
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gelijke maar ook verschillende uitdagingen in vergelijking met de traditionele data
mining oplevert. Extra uitdagingen komen uit de sequentiële aard van de gegevens
en het hogere niveau van procesmodellen die dynamisch gedrag kunnen vertegen-
woordigen (hoofdstuk 5). Tot slot wijzen wij tekortkomingen aan in huidige be-
naderingen en identificeren we algemene uitdagingen voor conformance checking
technieken. Deze uitdagingen hebben betrekking op de toepasbaarheid van confor-
mance metrieken, de kwaliteit van de metriek, en het overbruggen van verschillende
procesmodelleringstalen. Wij ontwikkelen een flexibele, taal-onafhankelijke confor-
mance checking aanpak die een uitgangspunt verstrekt om effectief op deze uitdagin-
gen in te gaan (hoofdstuk 6).

In deel III ontwikkelen we een concrete extension aanpak, verstrekken we een al-
gemeen model voor proces extensions, en passen we onze aanpak toe voor het maken
van simulatiemodellen.
Op de eerste plaats ontwikkelen we een Petri-net-gebaseerde benadering van de-
cision mining die besluitregels op de proceskeuzepunten op basis van gegevensat-
tributen ontdekt. Terwijl we classificatie-technieken uit de data mining domein ex-
ploiteren om de daadwerkelijke regels af te leiden, identificeren we de uitdagingen
die gerelateerd zijn aan de aanvankelijke formulering van het classificatie-probleem
uit een procesperspectief. We ontwikkelen een eenvoudige benadering om deze
uitdagingen gedeeltelijk te overwinnen, en we passen het in een case-studie toe
(hoofdstuk 7). Daarna ontwikkelen we een algemeen model voor process extensions
om geı̈ntegreerde modellen met proces-, attribuut-, tijd-, en middelperspectief tot
stand te brengen. We ontwikkelen een concreet geval van dit model op basis van
Gekleurde Petri-netten (CPNs) en gebruiken het voor simulatie doeleinden (hoofd-
stuk 8).
Ten slotte evalueren we de kwaliteit van de automatisch ontdekte simulatiemodellen
in twee case studies en breiden onze benadering uit om de operationele besluitvorm-
ing te ondersteunen (hoofdstuk 9). Hierbij wordt de huidige procestoestand als een
niet-leeg uitgangspunt voor de simulatie gebruikt.

Hoofdstuk 10 besluit dit proefschrift met een gedetailleerd overzicht van de bij-
dragen en een lijst van beperkingen en toekomstige uitdagingen.

Het werk beschreven in dit proefschrift wordt ondersteund en begeleid door
concrete implementaties, die zijn geı̈ntegreerd in de ProM and ProMimport frame-
works18. Bijlage A bevat een uitgebreid overzicht over de functionaliteit van de on-
twikkelde software. De resultaten die in dit proefschrift worden voorgesteld zijn ge-
presenteerd in meer dan twintig wetenschappelijke publicaties, waaronder een aantal
in tijdschriften van hoge kwaliteit.

18 Binaries en broncode zijn beschikbaar op prom.sf.net and promimport.sf.net.
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