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Abstract

A process is a series of actions performed in order to achieve a particular task or goal.
Processes are omnipresent, for example, a manufacturing process which deals with
the production of some goods, a loan application process in a bank, a hospital visit of
a patient. The human understanding of these processes is usually facilitated by repre-
senting them as intuitive graphical models. Typically a domain expert, who has a high
level overview of the end-to-end execution of a process, constructs the expected pro-
cess model. Since these modeling notations offer intuitive visualization of processes,
the resulting models have proved to be valuable artifacts to enable communication
of complex knowledge in a comprehensible way across people from dissimilar back-
grounds. The process model as described by a domain expert is the best guess, of
how a process acts, or should act. However, reality may not always conform to this
expected behavior of the process.

The execution histories of processes, called event logs, can be easily extracted from
the corresponding information systems. For example, the event logs of an adminis-
trative process can be extracted from an Enterprise Resource Planning (ERP) system,
or the event logs of a careflow process in a hospital can be extracted from the hos-
pitals Electronic Health Record (EHR) system. These event logs provide a view on
the execution of processes in reality and can thus be used to discover process models
when the process model is unknown, or to analyze the behavior of the process in
reality. This branch of science which uses event logs to analyze the process behavior
is known as process mining.

Process modeling and process mining are typically on the extreme ends of a
spectrum. On one end, we have the process mining techniques, which analyze event
logs in order to automatically deduce insights, for example discovering process mo-
dels. The user has very little influence when using such techniques, and usually, it
is not possible to incorporate the domain knowledge during process mining. On the
other end, we have the traditional process modeling tools which are completely user
driven and use no historical evidence from the event logs during process modeling. In
the manual process modeling scenario, the user may miss out on important real-life
execution information that may be present in the event logs. Whereas the automated
process mining techniques may produce results which may be inaccurate and incom-
prehensible due to noisy and/or incomplete event logs.

In this thesis, we address this gap between the traditional human-driven process
modeling world, with the data-driven process mining world, by developing techni-
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ques that enable interactive process mining. We identify and primarily address four
research goals in this thesis:

• Interactive event log repair: Addresses the issue of repairing the source of process
mining analysis, i.e., the event log, with the domain knowledge of an informed
user.

• Interactive process model construction: Addresses the issue of modeling/discove-
ring process models interactively by using both information derived from the
event log and the expertise of a user. Techniques are developed to assist the
user in decision-making by

– providing fast conformance analysis between the event log and the process
being modeled.

– providing recommendations to enable semi-automated process discovery
by combining automated and interactive approaches for process modeling.

Furthermore, we aim to provide formal guarantees for the resulting process
model. To ensure the soundness of the constructed process model, we explore
the use of liveness and boundedness preserving synthesis rules for free-choice
Petri nets.

• Interactive process model repair: Addresses the issue of interactively repairing
a pre-existing process model by using the domain knowledge and information
derived from the event log.

• Interactive process analytics: Addresses the issue of interactively exploring real-
life execution of a process based on the process model and the event log, in
order to evaluate the possible compliance and performance oriented issues.

The proposed techniques have all been implemented and evaluated using several
real-life scenarios involving real event data and/or process experts.
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Chapter 1

Introduction

In recent years, process mining has emerged as an important discipline that has its
roots in process modeling and data mining. Typically process mining approaches
are automated, with little or no influence from the user. In this thesis, we focus on
addressing this gap and providing approaches that enable interactive process mining.
In Section 1.1, we first discuss the relevance of process science and data science in a
broader sense, and the omnipresence of processes and data in everyday scenarios. In
Section 1.2, we discuss the traditional ways of process modeling, which constitute the
core of process science. In Section 1.3, we discuss how process mining approaches
process science-based questions in a data-driven way. In Section 1.4, we discuss the
missing link between process modeling based approaches and process mining based
approaches, i.e., the need for interactive capabilities in a process mining setting. We
identify four areas within process mining which serve as the four main goals of the
thesis. In Section 1.5, we discuss the outline of the thesis, and briefly discuss the
contents of the chapters that constitute to the goals discussed in Section 1.4.

1.1 Process Orientation in a Data-driven World

We live in a world where we are constantly surrounded by processes, in every aspect
of work or leisure. A process is defined as a series of steps taken, or actions performed,
in order to achieve a particular goal. We may not realize it, but we are constantly
involved in multiple processes, either actively or passively.

Consider the case of a patient visiting a hospital. Clearly, the hospital would have
some protocols, based on which, the “steps” a patient should follow in the hospital
would be known to the hospital staff. Let us consider Figure 1.1, which shows the
care-pathway of a patient in the hospital. When the patient named Pete walks into
the hospital, he reports at the reception desk, and is admitted in the hospital by a
receptionist Romy, as designated by the 1) Admission step. Next, the receptionist may
advise the patient to consult an in-house specialist in the hospital, as shown by the 2)
Consult Specialist step. The specialist Simon may request Pete to perform a couple of

1
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Figure 1.1: Care pathway of a patient in a hospital.

diagnostic tests, based on Pete’s situation. Thus, Pete undergoes 3) Diagnosis 2 and
4) Diagnosis 1 steps, which are performed by the nurses named Nicole and Natalie
from the hospital. Pete then visits a doctor for generic 5) Treatment, and is then
re-directed to the specialist for final checks. Simon performs final checks, denoted
by the step 6) Consult Specialist, and Pete is then ready for discharge. Romy at the
reception prepares the necessary medication and processes the billing, after which
Pete is discharged from the hospital, as denoted by 7) Discharge.

Figure 1.1 shows the different steps that a patient followed in the hospital, which
all form a part of the care-pathway process of the hospital. There is a staff member
responsible for performing a particular step or task of the process. It should be noted
that not all the staff members of the hospital involved in the care-pathway process,
would be aware of all the steps in the care-pathway process, for example the receptio-
nist Romy may not be aware of what should happen after 4) Diagnosis 1 is performed.
However, typically, the resources involved in the process are aware of the next step
that should be performed, immediately following the step that they were involved
in. Furthermore, it is quite obvious that not all the patients would follow the exact
same steps in the process, as shown in Figure 1.1. These steps would be dependent
on many factors, such as the symptoms of the patient, the specific conditions that a
patient may be suffering from, work load of the doctor, and so on. Therefore, the
actual underlying care-pathway process would not be linear, as some patients may
have additional steps taken, some steps skipped, some steps repeated etc.

The advent of digitization has lead to a transition from paper-based to information-
systems-based recording of data. This has lead to huge amounts of data being recor-
ded, leading to the phenomenon of “big data”. In essence, data is collected about
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anything, at any time and at any place [163]. In essence, this phenomena leads to
the so-called Internet of Events (IoE), where events may be “life events”, “machine
events” or “organization events”.

Clearly, the steps followed by a patient in the care-pathway process of the hospital
also constitute events. Each event corresponds to the actual “task” that was per-
formed, the “resource” that was responsible for performing the said task, the exact
“time” when the task was performed, the “patient” for whom the task was performed,
and so on. Such event data are typically recorded in the Hospital Information System
(HIS) of the hospital, which is the central information system across all the steps of
the care-pathway as shown in Figure 1.1.

The events from the HIS, could then be traced back to the actual care-pathway
process, which created them in the first place. Tracing such events back to the pro-
cesses could be useful in multiple ways, and facilitate better understanding of the
processes that created these events. Moreover, such event data could be analyzed
to improve these processes, for example, understanding what is going on in reality,
changing the flow of patient, to improve the overall efficiency of the care-pathway
process, and so on.

Hence, it is imperative to utilize the event data in order to understand, analyze
and improve processes. There are two classical approaches for achieving this. (i) The
process-modeling approach: which is a human-driven top-down approach. Typically,
the starting point in such an approach is a hand-made process model, which is then
used in combination with the event data to analyze, repair and improve processes.
(ii) The process mining approach: which is a data-driven bottom-up approach. These
approaches typically rely almost entirely on the event data in order to discover, ana-
lyze and enhance processes. In the next sections, we discuss these two approaches in
detail.

1.2 Process Modeling

Traditional process management starts from hand-made process models. These pro-
cess models could either be formal or informal. On one hand, the formal process
models carry semantics, and can be specified in terms of executable code in a work-
flow management system. On the other hand, the informal process models do not
have any enactable semantics, i.e., such process models are high-level process models
that cannot be executed without adding additional information. The informal process
models are typically vague and ambiguous. Hence, it is desirable to only focus on the
executable class of process models, i.e., formal process models.

As discussed in the context of the care-pathway process, the hospital staff involved
in the process, may only be aware of the steps immediately following the steps that
they are involved in. Hence, typically in order to come up with an end-to-end process
model describing the care-pathway of the hospital for all (or the majority) of the
patients, a process analyst or a designer is appointed. Such a process analyst/designer
typically interviews different resources involved in different stages of the process, and
combines the extracted domain knowledge in order to construct the process model in
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1 2

3

Figure 1.2: The conventional process modeling approach involves a process analyst that inter-
views different actors involved in the process, and consolidates all the information
in order to obtain a process model.

the most suitable way, as shown in Figure 1.2.
A prominent way of modeling formal process models is using the Petri nets no-

tation [130]. Figure 1.3 shows a simplistic example of a care-pathway process in
a hospital. The process model shows the steps followed by a patient who visits the
hospital, and is navigated from left-to-right. The first step is Admission which is repre-
sented by a transition, i.e., a rectangle. A transition is enabled, i.e., the corresponding
activity (step) can occur, if each incoming place (i.e., circle) contain a so-called to-
ken. After an activity completes, the transition is fired, resulting in the removal of
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Figure 1.3: An example process model represented by a Petri net showing a simplistic care-
pathway in a hospital.



1.2. PROCESS MODELING 5

Admission

Consult
Specialist

XReceptionist

Specialist

Nurse

Doctor

H
os

p
it
al

Diagnosis 1

Diagnosis 2

+ +

Treatment X

X

Consult
Specialist

Re-diagnose

DischargeX

X

X

+

Figure 1.4: BPMN equivalent of the process model from Figure 1.3.

one token from each of the incoming places and an addition of one token to each of
the outgoing places of the transition. In the Petri net from Figure 1.3, activity Ad-
mission is enabled, as the place i contains a token. Once the patient is admitted in
the hospital, the next step that can be performed is Consult Specialist (t2) or it can be
skipped via a silent transition (t3), i.e., the transition colored black representing no-
behavior. The next silent transition (t4) fires and results in a token each in places p3

and p4, thereby enabling both Diagnosis 1 (t5) and Diagnosis 2 (t6). Thereby, both the
transitions labeled Diagnosis 1 and Diagnosis 2 are enabled, indicating concurrency
in the process. Once both the activities are executed, i.e., transitions t5 and t6 fired,
the following silent transition (t7) synchronizes the process and results in a token in
the place p7. This enables Treatment activity (t8). After Treatment, there is a token in
place p8, and hence, the process has three choices. First, the activity Re-diagnose (t9)
can be performed, resulting in a token in the places p4 and p5 and hence, eventual
repetition of the activities Diagnosis 2 and Treatment. The second and third options
are to continue with the process, instead of looping back. In the second option, the
activity Consult Specialist (t10) is executed, and in the third option the activity Consult
Specialist is skipped by firing the silent transition (t11). This results in a token in place
p9, which would finally enable activity Discharge (t12), executing which, the process
would be terminated.

Next to Petri nets, there are other modeling notations such as BPMN, Process
Trees, UML, Activity diagrams and Statecharts, EPC etc. which can be used to repre-
sent process models. For example, Figure 1.4 shows the care-pathway process from
Figure 1.3 represented as a BPMN diagram with swim-lanes indicating the resources
responsible for the different steps in the process.

Process models can be used in various scenarios. First and foremost, such pro-
cess models are used in order to represent the control flow, i.e., ordering sequence of
activities in a process, in a graphical manner. This is particularly useful in order to
get an overview of the complete process, and facilitate discussions among stakehol-
ders. Such graphical notations are easy for interpretation, and the complexity and the
ease of understanding of the overall process model can be managed by the process
designer, while constructing the process model by hand.

Formal process models can be used for the verification of processes, i.e., to ana-
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lyze the possible errors in systems or process executions, for example, deadlocks in
processes. Furthermore, formal process models can be used to analyze the animations
of processes to play out different scenarios and thus provide feedback to the analyst.
Finally such process models are also useful to document the processes. Hence, it can
be argued that the process models play a key role in large organizations. However,
very often, the hand-made process models are disconnected from reality. That is,
there may be gaps between the expected process behavior, as depicted by a process
model, and what actually happens in reality. Therefore, even though a formally verifi-
able process model offers rigorous analysis techniques, it may still be unreliable when
compared with the actual execution of the process, and hence may not be completely
useful.

Fortunately, the real executions of processes are often recorded in the information
systems and can be extracted using the event data. Therefore, we can make use of
such event data in order to analyze process behavior in reality. Process mining aims
to do exactly this, and is discussed in detail in the next section.

1.3 Process Mining

Applications of data-science-based techniques to the field of Business Process Mana-
gement resulted in the origin of process mining. Compared to the top-down approach
of traditional process modeling, process mining techniques work in a bottom-up way.
That is, analysis are performed starting with the data recorded during the execution of
processes in reality. Figure 1.5 shows a high-level overview of various types of process
mining techniques. We now discuss the components from Figure 1.5 in detail.

Event logs are the starting point for performing any process mining analysis. Event
logs contain process oriented event data extracted from various information sour-
ces, such as Enterprise Resource Planning (ERP) systems, Electronic Medical Records
(EMR), Hospital Information Systems (HIS) and so on. An event log contains infor-
mation about events, related to a process. Table 1.1 shows an example event log.
Each event minimally indicates occurrence of an activity in the process, and is related
to a particular case (i.e., a process instance). Furthermore, the events belonging to
a single case are ordered, typically based on the timestamps of the events. Thus, a
case describes a single “run” of the process. Case 2 from the example event log of
Table 1.1 indeed corresponds to the patient journey of Pete as shown in Figure 1.1.
Event logs may additionally contain information about events, such as which resource
was responsible for performing a particular activity, corresponding to the event. Furt-
hermore, an event log may also contain additional case-level attributes, such as the
gender of the patient etc. Using such an event log, we can then perform process
mining analysis.

The first type of process mining is called process discovery. As the name suggests,
the goal of process discovery techniques is to discover a process model solely based
on the information from the event log. The α-miner was among the first process dis-
covery techniques which takes as input an event log and produces a process model,
represented by a Petri net, as the output. Most of the traditional process discovery
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Figure 1.5: Process mining overview [161].

techniques are automated in nature, and allow for limited configuration using certain
parameters. The parameters configured are either used in order to overcome short-
comings in the event log, or to specify the types of constructs and the complexity of
the process model being discovered. However, once the parameters are set, the task
of process discovery is completely automated, and the user has no influence over the
actual discovery.

The second type of process mining is conformance checking. In conformance
checking, a pre-existing process model is compared to the event log of the same pro-
cess. Conformance checking is used to check if the reality, as represented by the event
log, conforms to the model, as depicted by the process model, and vice versa. The ex-
ample event log from Table 1.1 shows two cases, i.e., case 1 and 2 that conform to the
process model shown in Figure 1.3. However, case 3 from the event log of Table 1.1
does not conform with the process model of Figure 1.3, as it has an occurrence of acti-
vity Consult Specialist before the Treatment activity which is not supported according
to the process model of Figure 1.3. Conformance analysis is useful to identify pos-
sible compliance issues in the process model. Moreover, conformance analysis could
also be useful to detect, locate and explain deviations. Furthermore, some process
discovery techniques, such as genetic algorithms (for example ETM algorithm [24])
use conformance analysis for guiding the process discovery.

The third type of process mining is enhancement. In case of enhancement, both
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Table 1.1: An example event log of a care pathway process in a hospital.

Case ID Activity TimeStamp Resource · · ·
1 Admission 1-1-2004 12:34 Romy · · ·
1 Consult Specialist 1-1-2004 12:38 Simon · · ·
1 Diagnosis 1 1-1-2004 12:45 Nicole · · ·
1 Diagnosis 2 1-1-2004 12:56 Natalie · · ·
1 Treatment 1-1-2004 13:00 Daniel · · ·
1 Re-diagnose 1-1-2004 13:34 Natasha · · ·
1 Diagnosis 2 1-1-2004 13:50 Natalie · · ·
1 Treatment 1-1-2004 14:00 Daniel · · ·
1 Discharge 1-1-2004 14:40 Romy · · ·

2 Admission 1-1-2004 12:41 Romy · · ·
2 Consult Specialist 1-1-2004 12:48 Simon · · ·
2 Diagnosis 2 1-1-2004 13:48 Nicole · · ·
2 Diagnosis 1 1-1-2004 14:19 Natalie · · ·
2 Treatment 1-1-2004 14:30 Daniel · · ·
2 Consult Specialist 1-1-2004 14:49 Simon · · ·
2 Discharge 1-1-2004 15:23 Romy · · ·

3 Admission 1-1-2004 13:11 Romy · · ·
3 Consult Specialist 1-1-2004 13:51 Simon · · ·
3 Diagnosis 2 1-1-2004 14:18 Nicole · · ·
3 Diagnosis 1 1-1-2004 15:01 Natalie · · ·
3 Consult Specialist 1-1-2004 15:40 Simon · · ·
3 Treatment 1-1-2004 15:53 Daniel · · ·
3 Discharge 1-1-2004 16:02 Romy · · ·

...
...

...
...

. . .

the process model and event log are present, and the idea is to extend or improve
a pre-existing process model with the information from the event log. One of the
types of enhancement is process model repair, which aims to repair a pre-existing
process model based on the data from the event log. In essence, information from
conformance analysis could also be used in order to identify the possible issues and
perform repair actions. Another type of enhancement is extension, where the idea is
to add a new data-driven perspective to the process model. An example of this could
be to project process performance oriented information onto a process model.

As shown, process mining techniques aim to exploit the event data in order to
analyze different aspects of processes. However, in such settings, user activity is
limited to analyzing the results that are already mined/discovered by process mining
algorithms. That is, a user’s role is limited to configuring parameters of the automated
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Figure 1.6: Steps followed to demonstrate the issues with automated process discovery techni-
ques. Model 1 (Figure 1.3) is used to simulate an event log, i.e., Log 1. Random
noise is added to this event log to obtain Log 2. Log 2 is used to automatically dis-
cover a process model using the inductive miner infrequent (IM) algorithm [110].

process mining techniques. Hence, it is not possible to allow the user to actively and
interactively influence process mining outcomes. In the next section, we discuss in
detail, the motivations for interactive process mining, and the research goals that
shape this thesis.

1.4 Incorporating User Knowledge in Process Mining

It is quite evident that both the process modeling and process mining approaches
have their pros and cons. The process modeling approaches typically miss-out on
the reality, as the process that is modeled is based entirely on the knowledge of the
process analyst. That is, the actors in the process may think they are doing something,
and hence that is how the process would be modeled. However, it is not uncommon
that in reality something completely different happens. Process mining covers the
other angle pretty well. However, in traditional process mining scenarios, there is
very limited support for a user to incorporate domain knowledge to influence process
mining outcomes. In many real-life scenarios, the extracted event log may contain
incomplete and/or noisy information. Since an event log is the primary source of
information for the process mining scenario, the end result may be highly inaccurate.

We demonstrate one of the limitations of process mining, process discovery in
particular, with the help of an example. Consider an event log generated from the
process model of Figure 1.3. In order to replicate reality, we introduced random
noise to such an event log. Usage of one of the prominent state-of-the-art discovery
techniques (inductive miner infrequent [110]) on the noisy event log results in the
process model shown in Figure 1.7. Figure 1.6 shows the set-up for obtaining the
process model from Figure 1.7.

Automated discovery techniques try to extract useful information from noisy event
data in order to discover a process model. However, discovery techniques still have
limitations. For instance, in the discovered process model of Figure 1.7, it is possible
to perform Diagnosis and Consult Specialist without performing the Admission activity.
However, this does not sound realistic. The human created process model from Fi-
gure 1.3 performs better (in terms of quality metrics such as fitness and precision) than
the automatically discovered process model from Figure 1.7 on the noisy event log
(Log 2 of Figure 1.6). Therefore, a human created process model may still outperform
a discovered model when compared with the event log using metrics like fitness, pre-
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Figure 1.7: Process model discovered using inductive miner infrequent [110] using a noisy
event log.

cision, etc. Typically, the automated discovery algorithms are black-boxes and hence,
certain decisions made by the discovery technique may often be inaccurate and/or
unclear to the end-user. Hence, even when the domain knowledge is missing/inade-
quate, it may still be advantageous to deduce process models interactively, by keeping
the human-in-the-loop.

One way of incorporating user knowledge could be by explicitly specifying the
domain knowledge, for example, via some domain-specific rules. The process mining
techniques can then include the specified domain rules, in combination with the data
from the event logs. Another way of incorporating user knowledge could be by impli-
citly including it in a human-in-the-loop setting. In such a scenario, the user would be
involved in interactively discovering the results supported by process mining techni-
ques. In such an interactive setting (i.e., implicitly considering user knowledge), the
user has more expressibility, as the restrictions imposed by the language used for re-
presenting domain rules do not apply. However, it is also very important to guarantee
certain runtime efficiencies. The argument of runtime efficiency could be relaxed
when considering the user knowledge explicitly (non-interactive setting).

In this thesis, we aim to address this gap between process modeling and process
mining, by devising techniques that enable incorporation of domain knowledge both
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explicitly and implicitly. Majority of the techniques proposed in this thesis focus on
implicit aspect of specifying domain knowledge, i.e., interactive techniques. For cer-
tain scenarios, wherein interactive techniques are not an optimal choice, we resort
to developing techniques which include domain knowledge explicitly. In particular,
we have identified four goals to address interactive process mining. In the upcoming
sections, we discuss each of these goals in detail, and briefly describe our approach
to address each goal.

1.4.1 Goal 1: Interactive Event Log Repair

The first goal of this thesis is to incorporate user knowledge in the source of process
mining analysis, i.e., the event log. Data quality issues in the event log are not un-
common in a real-life setting. Event data may have different types of noise. Noise
can be seen as (i) incorrectly logged, (ii) infrequent, or (iii) non-normative. An event
log may contain noisy information due to multiple reasons, such as incorrect manual
entry of events, incorrect processing of events, multiple data sources etc. Therefore,
it is imperative to correct the information in the event log. One of the primary ways
of fixing data quality issues could be based on user knowledge. For example, consi-
der Case 3 from the event log of Table 1.1. It might be so that the second Consult
Specialist event is misplaced and should instead be placed after the activity Treatment.
A process/data analyst may be able to identify and repair the ordering of such incor-
rectly ordered events in the event log. Hence, the first goal of this thesis is to provide
techniques to assist the user in interactively repairing event logs. A repaired event log
can then be used by any automated process mining technique.

Our Approach

To support process mining analysis, we primarily focus on the control-flow aspect of
the event data quality, i.e., (incorrect) ordering of events in the event log. In order
to enable interactive repair of an event log, we identified three subgoals. We briefly
discuss these subgoals along with the design choices made in our approach below.

• In order to repair an event log, it is first necessary to explore and detect the
presence of possible ordering-related issues in the event log. As the user is inte-
rested in repairing the event logs, we believe it is ideal to automatically detect
the possible issues that exist in the event log. Hence, in our approach, we use
statistical approaches in combination with threshold-based filtering approaches,
to automatically indicate to the user the presence of possible data quality issues
in the event log.

• Once ordering-related issues in the event log have been identified, it is im-
perative to allow the user to correct (some) of these issues using the domain
knowledge. This subgoal relates directly to the main goal of interactive event
log repair. We believe it is ideal to correct multiple ordering-related issues at
once, rather than tediously correcting issues on a case-by-case basis. Hence,
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we provide a process-fragment-based approach to correct the ordering-related
issues in the event log.

• Upon repairing the event log with the domain knowledge, the user may be
interested in exploring the impact of change between the original event log and
the repaired event log. In order to analyze the impact of the changes made
in the event log after the repair, we provide a list of aggregated statistics to
compare the original the repaired event log. The user could thus discard the
changes, or keep the changes based on the impact that the changes had on the
event log.

1.4.2 Goal 2: Interactive Process Discovery

The second research goal of this thesis aims at incorporating user knowledge in order
to interactively discover process models. The aim here is to address the short-comings
of traditional automated process discovery and hand-made process modeling.

Process discovery techniques aim to utilize the information from the event log in
order to discover process models. However, they are constrained by the representa-
tion of the process language supported by the discovery technique. Most state-of-the-
art process discovery techniques do not allow the possibility of incorporating a user in
ordering and positioning of activities. Hence, the resulting process models may des-
cribe the event log extremely well, however may still be completely incomprehensible
to the end user. Furthermore, most of the state-of-the-art process discovery techniques
are incapable in discovering multiple occurrences of the same activity. Hence, most
discovery techniques would not be able to correctly discover the process model from
Figure 1.3, as the activity Consult Specialist occurs twice. Many discovery techniques
also have difficulties in discovering constructs such as inclusive choices. Moreover,
most automated discovery techniques do not allow specification of user knowledge
during process discovery. Such domain knowledge may especially be handy when the
event log contains some noisy and/or incomplete information.

The shortcomings of automated process mining techniques can be overcome by
incorporating user knowledge during the process of process discovery. This points
towards the top-down process modeling setting. Therefore, the aim here is to ensure
that the user can have sufficient impact during the process modeling/discovery phase.
It is imperative that the process being modeled is valid, i.e., sound, and does not result
in problems, for example, deadlocks. Moreover, there needs to be an active support
for modeling the process models by the user. This needs to be derived based on the
information extracted from the event log. The feedback from the event logs, and
the guarantees about soundness of process models, should be performed in a fast-
enough way, which is suitable in an interactive setting. This is especially important,
as it is undesirable to have long waiting times. In essence, the aim is to formulate
interactive process modeling/discovery technique(s) where the bottom-up data-driven
process discovery and top-down human-driven process modeling approaches “meet-
in-the-middle”.
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Our Approach

We addressed the goal of interactive process modeling/discovery using sound free-
choice workflow nets, guided by the so-called synthesis rules for free-choice Petri nets
[58]. The choice of using sound free-choice workflow nets and synthesis rules was ba-
sed on the underlying subgoals of interactive process modeling/discovery. We briefly
discuss these subgoals below, and subsequently motivate the design choices made for
each of these subgoals.

• Broad structural representations: It is important that the class of process mo-
dels discoverable in an interactive process modeling/discovery setting, supports
basic structural constructs such as exclusive choices, concurrency and loops.
Furthermore, it is also desirable that the class of process models supported
allows for modeling of advanced operations such as inclusive choices and ar-
bitrary (non-block structured) loops [167]. Process modeling languages such
as process trees do not support construction of non-block structured processes.
Hence, in order to support such broad structural representations, we use the
class of free-choice workflow nets in our approach.

• Soundness: It is important that the process being modeled is sound. As men-
tioned already, soundness ensures important properties of the process such as
absence of deadlocks, proper termination etc. BPMN models and/or arbitrary
Petri net models can be unsound. In order to guarantee the soundness criteria,
we use the liveness and boundedness preserving synthesis rules for free-choice
Petri nets [58] in the context of free-choice workflow nets.

• Incremental and Structured editing: It is desirable to construct process models in
an incremental and structured manner [43,124]. With this as the goal, we sup-
port interactive editing of process models based on the synthesis rules, which
inherently leads to an incremental and structured way of constructing the pro-
cess model.

• Event log support: It is important that the user is provided with the information
from the event log in order to perform data-driven decision making to construct
process models. In order to address this, we take a leaf out of how some of the
automated process discovery techniques perform decisions, by using abstracted
information from the event log. We provide such abstracted information to the
user in a tabular format, as well as project it on the process models, in order to
support data-driven interactive process modeling.

• Fast Conformance analysis: For a process being modeled, the user would be in-
terested in comparing it with the event log in order to analyze the conformance
metrics such as the fitness and/or precision scores. The outcome from confor-
mance checking could be used by the user as a means to discover better process
models interactively. However, traditional conformance techniques could be too
slow in the context of an interactive setting, and hence undesirable. Therefore,
we use an abstraction-based technique to compute fast conformance analysis
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to indicate the quality of the process model in comparison with the event log.
Furthermore, we also use the underlying nature of the synthesis rules used to
model the free-choice workflow nets in order to compute conformance for only
those parts of the process model which could impact the conformance score,
thereby further optimizing the performance.

• Providing recommendations: The user may need help during process modeling,
especially when the positioning of an activity in the process model is unclear.
That is, it is ideal to pre-compute and present some relevant process models
for the user to choose from. Again, it is important that such recommendations
are computed in an efficient way, suitable in an interactive setting. In order
to address this, we use a pattern-based approach using the synthesis rules for
free-choice workflow nets in order to pre-compute process models to be recom-
mended.

1.4.3 Goal 3: Interactive Process Model Repair

The limitations of automated process discovery techniques typically also apply to au-
tomated process model repair techniques. Hence, it is imperative to include user kno-
wledge about the process, together with a pre-existing process model and an event
log, in order to repair a process model. For example, a domain expert would know
that the activity Admission should be the first activity in the automatically discove-
red process model shown in Figure 1.7. The third goal addresses this concern of
specifying a user knowledge, in order to interactively repair a process model.

Our Approach

The subgoals of interactive process modeling also apply to interactive process mo-
del repair. We address the goal of process model repair in two ways. First, we
use an approach similar to the one used to address the goal of interactive process
modeling/editing. Thereby, we also directly address all the subgoals of interactive
process modeling/discovery, in the context of interactive process model repair. This
approach has the advantage that it allows the user to intuitively consider domain
knowledge while interactively repairing the process model.

There may be scenarios, wherein the user’s domain knowledge about the process
may be limited. Hence, the user may want to specify such domain knowledge expli-
citly first, and may seek for process models which describe both the specified domain
knowledge and the information from the event log. It is preferable to show to the
user multiple process models, each of which would have a different quality, so that
the user can choose the most suitable and comprehensible model. Doing this in a com-
pletely interactive setting is far from trivial. Hence, we propose an approach which is
based on a genetic technique, which takes the process model, the event log and the
domain knowledge specified as constraints as its input, and returns (possibly many)
process models, which may have different levels of quality, in terms of the number
of constraints satisfied and the quality with respect to the event log. The user can
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then interactively explore the different process models resulting from the technique,
to select the most appropriate process model.

1.4.4 Goal 4: Interactive Process Analytics

The fourth goal of this thesis focuses on exploring information in the event log and
the corresponding process model. The user should be able to explore what went on
in the process, based on real-life execution as recorded by the event log and depicted
by the process model. The goal is to come up with a toolkit that enables the user
to interactively extract some of the common compliance and performance oriented
questions in process mining, using process mining and visual analytics.

Our Approach

The fourth goal of this thesis primarily presents techniques for compliance, perfor-
mance and data visualizations. In order to address this, we use state-of-the-art process
mining and visualizations to extend the techniques proposed in the previous goals.

1.5 Thesis Roadmap

Figure 1.8 shows an overview of the different chapters from the thesis, with the aim
of addressing the research goals discussed in the previous section. The theme of the
thesis centers around interactive process mining, hence the user is central to all the
four research goals as shown in Figure 1.8. In Chapter 2, we provide preliminaries
relevant throughout the thesis. We begin the contents of the thesis with the foundati-
onal chapters, followed by the chapters related to the four research goals.

Chapter 3 and Chapter 4 present the foundations that are used to address the goals
of the thesis. In Chapter 3, we discuss the building blocks that serve as the basis for
enabling interactive process modeling, using the synthesis rules for free-choice nets
from [58]. Primarily, this chapter discusses the applications of the synthesis rules
from [58] in the context of free-choice workflow nets, and shows that these rules can
indeed be applied to correctly deduce any possible free-choice workflow net structure.

Chapter 4 addresses the performance problems related to computing the building
blocks as proposed in Chapter 3. A brute force approach is infeasible in practice.
Therefore, an incremental approach is proposed to compute the building blocks in
a fast-enough way, suitable in an interactive setting, while preserving the properties
guaranteed in Chapter 3.

Chapter 8 focuses on addressing the first goal of this thesis. This chapter focuses
on assisting the user in addressing data quality issues in the event log. Primarily,
this chapter focuses on quality issues related to the ordering of events in the event
log. Possible data quality issues are automatically detected, and the user can perform
repairs by modeling process fragments, enabled by the foundations from Chapter 4.
Furthermore, the user is also provided with the impact of the changes performed.
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Chapter 5 focuses on addressing the second goal of this thesis. The foundations
from Chapter 4 are combined with the information from the event log in order to

Figure 1.8: Outline of the thesis.
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enable an interactive process modeling system. The user is provided with information
extracted from the event log in order to make informed decisions while modeling a
process model. Chapter 6 and Chapter 7 further improve the modeling/discovery of
process models by calculating fast conformance and providing recommendations.

Chapter 6 provides techniques to compute approximated conformance scores be-
tween the process being modeled and the event log. State-of-the-art conformance
techniques could be slow in certain circumstances. This is undesirable in an inte-
ractive setting, and hence the technique proposed in Chapter 6 trades accuracy for
speed, and is therefore fast-enough, and hence more suitable in an interactive pro-
cess modeling setting. Conformance analysis further assists the user in judging the
impact of a change based on the information from the event log.

Chapter 7 moves further towards the automated process discovery setting, by au-
tomatically providing multiple recommendations to a user to discover a process mo-
del. The recommendations are ranked based on the conformance scores computed
using Chapter 6. Moreover, the user can also switch between choosing from recom-
mendations or over-riding all the recommendations and modeling process by hand
based on the domain knowledge.

Chapter 9 focuses on addressing the third goal of the thesis, i.e., repairing pro-
cess models by specifying domain knowledge. Two approaches are proposed. First,
the foundations from Chapter 4 are used, along with some aspects from Chapter 5
in order to enable the user to interactively edit/repair a process model. Second, a
technique is proposed to pre-specify some rules that should hold in the process mo-
del. The process model is then iteratively repaired based on the specified rules and
the event log, and the user is provided with, possibly many, process models to choose
from.

The fourth goal of this thesis is addressed in Chapter 10. Conformance technique
[5] from the literature is used to compare a pre-existing process model and an event
log. Furthermore, the system is enhanced with interactive capabilities such that the
user can analyze the process model and evaluate data-attributes using visual analytic
techniques.

The implementation details of the proposed solutions are discussed in the indivi-
dual chapters. We wrap up by providing some conclusions, limitations of the proposed
solutions and some of the future research directions in Chapter 11.





Chapter 2

Preliminaries

This chapter introduces some basic definitions and background of the concepts used
throughout this book. We start with the introduction of bags and functions, followed
by event logs, Petri nets, workflow nets and free-choice nets. The definitions corre-
sponding to each type of net are sub-classified based on structural and behavioral
properties.

2.1 Bags, Functions and Sequences

A bag (also called a multiset) is used to represent the state of a Petri net and to
describe event logs, when a single trace is repeated multiple times. A bag over some
set S is a function from S to the natural numbers that assigns only to a finite number
of elements from S a positive value. For a bag B over set S and s ∈ S, B(s) denotes the
number of occurrences of s in B , often called the cardinality of s in B . Note that a
finite set of elements of S is also a bag over S, namely the function yielding 1 for every
element in the set and 0 otherwise. The set of all bags over set S is denoted B(S). We
use brackets to explicitly enumerate a bag and superscripts to denote cardinalities.
For example, B = [a2,b3,c] denotes a bag B which contains the elements a,b and c 2,
3 and 1 times respectively. Bag B is a subbag of bag B ′, denoted B ≤ B ′, if and only
if, for all s ∈ S, B(s) ≤ B ′(s). The standard set operators can be extended to bags, for
example, a ∈ B , {a}∪B = [a3,b3,c], |B |=6 etc.

A relation R ⊆ X ×Y is a set of pairs, where π1(R) = {x | (x, y) ∈ R} is the domain of
R, π2(R) = {y | (x, y) ∈ R} is the range of R, and ω(R) =π1(R)∪π2(R) are the elements of
R. For example, ω({(a,b), (b,c)}) = {a,b,c}. f ∈ X 6→ Y is a partial function with domain
dom( f ) ⊆ X and range r ng ( f ) = { f (x) | x ∈ X } ⊆ Y . f ∈ X → Y is a total function, i.e.,
dom( f ) = X .

Definition 1 (Function projection). [162] Let f ∈ X 6→ Y be a (partial) function and
Q ⊆ X . f ↓Q is the function projected on Q : dom( f ↓Q ) = dom( f )∩Q and f ↓Q (x) = f (x)
for x ∈ dom( f ↓Q ).

19
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Such a projection could also be used for bags, example, [a2,b3,c] ↓{a,c} = [a2,c].
σ = 〈x1, x2, · · · , xn〉 ∈ X ∗ denotes a sequence over X of length n. 〈〉 is the empty

sequence. Sequences are used to represent paths in a graph and traces in an event
log. σ1 ·σ2 is the concatenation of two sequences and σ ↓Q is the projection of σ on Q.

Definition 2 (Sequence projection). [162] Let X be a set and Q ⊆ X one of its subsets.
↓Q∈ X ∗ → Q∗ is a projection function and is defined recursively: (1) 〈〉 ↓Q= 〈〉 and (2)
for σ ∈ X ∗ and x ∈ X :

(〈x〉 ·σ) ↓Q=
{

σ ↓Q , if x ∉Q;
〈x〉 ·σ ↓Q , if x ∈Q

So 〈a,b, a〉 ↓{a,d} = 〈a, a〉. Functions can also be applied to sequences: if dom( f ) =
{a,d} then f (〈a,b, a〉) = 〈 f (a), f (a)〉.

2.2 Event logs

Event logs record the actual process behavior, which is typically recorded in the infor-
mation systems of an organization.

Definition 3 (Event log). [163] Let A be the set of all process activities. An event e is
the occurrence of an activity: e ∈A . A trace σ is a (possibly empty) sequence of events:
σ ∈A ∗. We denote an empty trace as 〈〉, and use 〈σ1, . . . ,σn〉 to denote a non-empty trace
σ, where n is the length of σ, that is, n = |σ|. Note that for every 1 ≤ i ≤ |σ|, σi is an
event. An event log L is a non-empty bag of traces, that is, L ∈B(A ∗)∧L 6= [].

Note that the same trace may appear multiple times in an event log. Each trace
corresponds to an execution of a process, i.e., a case. For example, consider an event
log L1 = [< a,b,c >5,< a,b,d >5,< a,b,c,d >10]. L1 contains information about 20 ca-
ses, for example a trace < a,b,c > is a sequence followed by 5 cases.

2.3 Petri Nets

We use Petri nets as a means to represent process models.

2.3.1 Structure

In this subsection, we discuss the structural properties of Petri nets. We begin with
the definition of Petri nets.

Definition 4 (Petri net). A Petri net N is a tuple (P,T,F ) such that:

– P is a finite set of places,

– T is a finite set of transitions such that P ∩T =;, and



2.3. PETRI NETS 21

– F ⊆ (P ×T )∪ (T ×P ) is the set of arcs, also called the flow relation.

Figure 2.1 shows an example of a Petri net. {i , p1, p2, · · · ,o} is a set of places and
{>, t1, t2, · · · ,⊥} is a set of transitions respectively.

For any node n ∈ P ∪T , the preset of n in N , denoted N• n, is the set of all nodes
that have an arc to n, that is, N• n = {n′|(n′,n) ∈ F }. Likewise, for any node n ∈ P ∪T ,
the postset of n in N , denoted n

N• , is the set of all nodes that have an arc from n, that
is, n

N• = {n′|(n,n′) ∈ F }.
In case the net N is clear from the context, we typically omit it from these notations

and use •n instead of N• n, etc. For example, in Figure 2.1, •p3 ={t2, t6, t8} and t5 •
= {p7, p8}. We also extend the notions of preset and postset to sets of nodes, which

results in sets of nodes. If X ⊆ P ∪T , then N• X is defined as the set union of the
respective presets, that is, N• X = ⋃

n∈X
N•n. Likewise, X

N• = ⋃
n∈X n

N• . We would like
to emphasize that in our use of notation we slightly deviate from the conventional
setting, such that we consider the preset (or postset) of a set of nodes results in a set
of nodes as the output, instead of a bag of nodes.

Definition 5 (Strongly connected Petri net). A Petri net N = (P,T,F ) is called strongly
connected if and only if ∀x,y∈P∪T (x, y) ∈ F∗, where F∗ is the reflexive transitive closure
of F .

Figure 2.1 can be turned into a strongly connected Petri net by removing the place
o and re-routing the outgoing arc from ⊥ to place i as shown in Figure 2.2a.

Definition 6 (Net projection). Let N = (P,T,F ) be a Petri net, let P ′ ⊆ P be a subset of
places, and let T ′ ⊆ T be a subset of transitions. The projection of net N on P ′ ⊆ P and
T ′ ⊆ T , denoted N ↓T ′

P ′ is defined as the net N ′ = (P ′,T ′,F ′) where F ′ = F ∩((P ′×T ′)∪(T ′×
P ′)).
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Figure 2.1: An example Petri net.
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Figure 2.2b shows the net from Figure 2.2a projected on places {i , p4, p2, p7, p3, p1}
and transitions {>, t1, t5, t2, t6, t3, t8,⊥}.

Definition 7 (S-net, S-component, S-coverability). Let N = (P,T,F ) and N ′ = (P ′,T ′,F ′)
be two Petri nets such that N ′ = N ↓T ′

P ′ . The net N ′ is called an S-net if and only if for all

t ′ ∈ T ′ it holds that | N ′
• t ′| = 1 = |t ′ N ′

• |, that is, every transition has a single place in its
preset and a single place in its postset. The S-net N ′ is called an S-component of net N

if and only if N ′ is strongly connected and for all p ′ ∈ P ′ it holds that N• p ′∪p ′N• ⊆ T ′. The
net N is called S-coverable if and only if for every place p ∈ P there exists an S-component
that contains p.

Figure 2.2b is also an example of an S-net. Furthermore, the net from Figure 2.2b
is an S-component of the net from Figure 2.2a.

Definition 8 ((Proper) Siphons and Traps). Let N = (P,T,F ) be a Petri net. A siphon is
defined as a set of places S ⊆ P , such that: •S ⊆ S• . If S is non-empty, then it is a proper
siphon. A trap is defined as a set of places S ⊆ P , such that: S•⊆•S. If S is non-empty,
then it is a proper trap.

In Figure 2.2b, the set of places {i , p1, p2, p3, p4} forms a proper siphon, whereas
the set of places {i , p1, p2, p3, p4, p7} forms a proper trap.

Definition 9 (Incidence matrix). Let N = (P,T,F ) be a Petri net. The incidence matrix
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(a) An example strongly connected net.
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(b) An example projected net.

Figure 2.2: Strongly connected net and projected net, S-net and S-component.
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Table 2.1: The incidence matrix of the net from Figure 2.2a.

> t1 t2 t3 t4 t5 t6 t7 t8 ⊥
i -1 0 0 0 0 0 0 0 0 1

p4 1 -1 0 0 0 -1 0 0 0 0
p2 0 1 -1 0 0 0 0 0 0 0
p3 0 0 1 -1 0 0 1 0 0 0
p1 0 0 0 1 0 0 0 0 0 -1
p5 0 0 0 -1 1 0 0 1 -1 0
p6 0 1 0 0 -1 0 0 0 1 0
p7 0 0 0 0 0 1 -1 0 0 0
p8 0 0 0 0 0 1 0 -1 0 0

of N , denoted N, is the matrix N : (P ×T ) → {1,0,−1} such that

N(p, t ) =


−1, if (p, t ) ∈ F and (t , p) 6∈ F ;
1, if (p, t ) 6∈ F and (t , p) ∈ F ;
0, otherwise.

The column vector t : P → {−1,0,1} of N is associated to a transition t in the net N .
Similarly, the row vector p : T → {−1,0,1} of N is associated to a place p in the net N .

Table 2.1 shows the incidence matrix of the net from Figure 2.2a.

2.3.2 Behavior

Having discussed the structural properties of Petri nets, we now discuss some behavi-
oral properties.

Definition 10 (Marking). Let N = (P,T,F ) be a Petri net. A marking M of N is a bag
over the places of N , that is, M ∈B(P ).

A marking M is represented as a collection of M(p) tokens for every place p. Remo-
ving a token from p then corresponds to removing one occurrence of p from M , and
adding a token to p corresponds to adding one occurrence of p to M . The marking of
the Petri net from Figure 2.2a is [i ] i.e., a single token in place i .

Definition 11 (Transition enabledness, firing). Let N = (P,T,F ) be a Petri net, let M
be a marking of N , and let t ∈ T be a transition of N . Transition t is enabled in M ,
denoted M

t→, if and only if • t ≤ M . An enabled transition may fire, which leads to a
new marking M1, where M1 = (M− • t )+ t • , that is, in the new marking, a token is first
removed from every place in the preset of t and a token is then added to every place in
the postset of t . This firing is denoted M

t→ M1.

In Figure 2.2a, transition > is enabled, as all the incoming places, i.e. i , is marked.
Hence, transition > can be fired, which results in the marking [p4].
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Corollary 1 (Number of tokens does not change in an S-component). Let N = (P,T,F )
be a Petri net, and let N ′ = (P ′,T ′,F ′) be an S-component of N . The accumulated number
of tokens in P ′ does not change when firing any transition from N in any marking.

Proof. This is straightforward to check, as any transition in T ′ removes one token
from P ′ and adds one token to P ′, whereas any transition in T \ T ′ does not touch
P ′.

Definition 12 (Occurrence sequences, Reachable marking). Let N = (P,T,F ) be a Petri
net and let M be a marking of N . If M

t1→ M1
t2→ M2 · · · tn→ Mn are transition occurrences,

then σ= 〈t1, t2, · · · , tn〉 is an occurrence sequence leading from the marking M to Mn , and
is denoted by M

σ→ Mn .

This also includes an empty sequence 〈〉, M
〈〉→ M for every marking M .

A marking M ′ is called reachable from marking M , denoted M
σ→ M ′, if and only if

there exists an occurrence sequence σ, such that M
σ→ M ′.

We use R(N , M) to denote the set of markings reachable from marking M in Petri
net N : R(N , M) = {M ′|M ′ ∈B(P )∧M

σ→ M ′}. The marking [p7, p8] ∈ R(N , [i ]) in the net
N of Figure 2.2a.

Definition 13 (Liveness, Deadlock-freedom, Boundedness, Safeness). Let N = (P,T,F )
be a Petri net, and let M be a marking of N . A transition t ∈ T is called live in M if
and only if for all M ′ ∈ R(N , M) there exists an M ′′ ∈ R(N , M ′) such that M ′′ t→, that is,
transition t can get enabled from any marking reachable from M . The net N is called
live in M if and only if all its transitions are live in M . The net (P,T,F ) is deadlock-
free in M if and only if for all M ′ ∈ R(N , M) there exists t ∈ T , such that M ′ t→, that
is, every reachable marking enables at least one transition. A place p ∈ P is called k-
bounded in M , where k is a natural number, if and only if for all M ′ ∈ R(N , M) it holds
that M ′(p) ≤ k, that is, place p never holds more than k tokens. A place p ∈ P is called
bounded in M if and only if there exists a natural number k such that p is k-bounded
in M . A place p ∈ P is called unbounded in M if and only if it is not bounded in M . A
place p ∈ P is called safe in M if and only if it is 1-bounded in M . The net N is called
bounded in M if and only if all its places are bounded in M , it is called unbounded in
M otherwise. The net N is called safe in M if and only if all its places are safe in M .

The Petri net from Figure 2.2a is live, bounded, deadlock-free and safe in [i ].

2.4 Workflow Nets

Having discussed Petri nets, we now discuss workflow nets, which provide a way to
represent Petri nets in terms of process models.
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2.4.1 Structure

As was the case with Petri nets, we discuss workflow net in terms of their structural
properties first, followed by their behavioral properties. We begin with the definition
of workflow net.

Definition 14 (Workflow net). A workflow net W is a tuple (P,T,F, i ,o,>,⊥) such that:

– (P,T,F ) is a Petri net,

– i ∈ P∧ •i =;, that is, i is a place with an empty preset,

– o ∈ P ∧o•=;, that is, o is a place with an empty postset,

– >∈ T ∧ i •= {>}∧ •>= {i },

– ⊥∈ T ∧⊥•= {o}∧ •o = {⊥}, and

– ∀n∈P∪T (i ,n) ∈ F∗∧ (n,o) ∈ F∗, that is, every node n is on some path from i to o.

Figure 2.3 shows the generic structure of a workflow net. Note that we build
upon the definition of workflow nets from [158], by including > and ⊥ transitions.
A workflow net (P,T,F, i ,o,>,⊥) is also a Petri net (P,T,F ). For this reason, we allow
ourselves to use a workflow net where a Petri net is expected. Figure 2.1 shows an
example of a workflow net.

Definition 15 (Short-circuited workflow net). Let W = (P,T,F, i ,o,>,⊥) be a workflow
net. The short-circuited net of W , denoted by SC (W ), is obtained by removing the place
o, and adding an arc from ⊥ to i . The set of places of a short-circuited workflow net,
denoted as SC P , is P \{o}. Therefore, SC (W ) is the Petri net (SC P ,T, (F \{(⊥,o)})∪{(⊥, i )}).

Figure 2.2a shows an example of short-circuiting a workflow net from Figure 2.1.

2.4.2 Behavior

In this section, some behavioral properties of workflow nets are discussed.

Definition 16 (Initial, final, and reachable markings [158]). Let W = (P,T,F, i ,o,>,⊥)
be a workflow net. The initial marking of W is the marking [i ], the final marking is the
marking [o], and the reachable markings of W are all markings that are reachable from
the initial marking, that is, R(W, [i ]).

i >
net

⊥ o

Figure 2.3: An example workflow net structure. Place i is the only source place and place o is
the only sink place. > and ⊥ are always the first and last transitions resp.
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As the initial marking is implicit in a workflow net, we typically write R(W ) instead
of R(W, [i ]).

Definition 17 (Soundness [168]). Let W = (P,T,F, i ,o,>,⊥) be a workflow net. W is
called sound if the following three conditions hold:

1. For every marking M ∈ R(W ) it holds that M
σ→ [o], that is, from every marking

reachable from the initial marking, the final marking can be reached.

2. For every marking M ∈ R(W ) such that [o] ≤ M it holds that [o] = M , that is, the
final marking is the only reachable marking that includes place o.

3. For every transition t ∈ T there is a marking M ∈ R(W ) such that M
t→, that is,

every transition can be fired in some reachable marking.

The workflow net from Figure 2.1 is a sound workflow net. The soundness pro-
perty of a workflow net can be related to the liveness and boundedness property of
Petri nets as shown in Theorem 1.

Theorem 1 (Soundness vs. liveness and boundedness [158] ). Let W = (P,T,F, i ,o,>,
⊥) be a workflow net. W is sound if and only if the net SC (W ) is live and bounded in [i ].

Proof. See [158].

2.5 Free-choice Nets

We now discuss a special class of Petri nets, called free-choice nets.

2.5.1 Structure

Definition 18 (Free-choice net). [58] Let N = (P,T,F ) be a Petri net. Petri net N is
called a free-choice net if and only if for every two places p, p ′ ∈ P either p• ∩p ′•=; or
p•= p ′• .

Historically, we can make a distinction between strong and weak free-choice nets
[58]. A strong free-choice net implies that for every place p having an arc to a tran-
sition t either:

p4 t1

p2 t2

(a) A free-choice net construct.

p4 t1

p2 t2

(b) A non-free-choice net construct.

Figure 2.4: Example of a free-choice net and a non-free-choice net construct.
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• t is the only output transition of p (which implies that t cannot be in conflict
with any other transition), or

• p is the only input place of t (which implies that there is no synchronization at
t).

Figure 2.4 shows a weak free-choice net, also known as extended free-choice net.
Since we only consider the weaker condition in our setting, we do not distinguish
between strong and weak free-choice nets.

2.5.2 Behavior

In this subsection, we first define a behavioral property of Petri nets called well-
formedness. Then we use this behavioral property, to demonstrate the relationship
between well-formedness and soundness in the context of free-choice workflow nets.

Definition 19 (Well-formedness). [58] Let N = (P,T,F ) be a free-choice net. The net
N is called well-formed if and only if a marking M ∈B(P ) exists such that N is live and
bounded in M .

Corollary 2 (Sound workflow nets correspond to well-formed nets). Let W = (P,T,F,
i ,o,>,⊥) be a sound workflow net. Then the Petri net SC (W ) is well-formed.

Proof. As W is a sound workflow net, we know that the Petri net SC (W ) is live and
bounded in [i ].

Theorem 2 (Well-formedness induces S-coverability). [58] Let N = (P,T,F ) be a well-
formed free-choice net. Then the net N is S-coverable.

Proof. See [58].

Theorem 3 (Liveness and deadlock-freedom). Let W = (P,T,F, i ,o,>,⊥) be a free-choice
workflow net and let SC (W ) be bounded. Then SC (W ) is live in [i ] if and only if it is
deadlock-free in [i ].

Proof. Follows from Theorem 4.31 in [58] and the fact that a short-circuited free-
choice workflow net is strongly connected.

Corollary 3 (Sound free-choice workflow nets are safe). Let W = (P,T,F, i ,o,>,⊥) be
a sound free-choice workflow net. Then the Petri nets SC (W ) and (P,T,F ) are safe in
marking [i ] (from Theorem 3 in [159]).

Proof. As W is a sound workflow net, we know that the Petri net SC (W ) is well-
formed, and is hence S-coverable. As the marking contains only a single token in place
i , and as every place p is covered by some S-component, place p cannot contain more
than one token in R(SC (W ), [i ]). Note that [o] ∈ R((P,T,F ), [i ]) but [o] ∈ R(SC (W ), [i ]).
Using this, we can say that R((P,T,F ), [i ]) ⊆ R(SC (W ), [i ]). Therefore, place p cannot
contain more than one token in R((P,T,F ), [i ]).
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2.6 Summary

In this chapter, we presented the concepts and definitions which form the basis for
the upcoming chapters. We first introduced bags and functions, followed by the dis-
cussion of event logs, which are central to process mining analysis. We then discussed
different classes of Petri nets and their properties. We particularly focused on free-
choice workflow nets, as this is the class of Petri nets that is used in the upcoming
chapters to represent process models.
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In this chapter, we focus on discussing and proposing an engine that enables inte-
ractive process modeling. The modeling notation used to represent a process model
is critical in any process modeling/discovery setting. Many modeling notations are
possible, for example, process trees, BPMN, UML, Petri nets. Ideally, the modeling
notation should support common process modeling constructs, such as sequences,
exclusive choices, concurrency and loops [167]. In our case, we are also interested in
complex structural representations such as inclusive choices and non-block structu-
redness that allows for constructs such as arbitrary loops. Notations such as process
tree are limited, i.e., cannot be used for representing non-block structured process
models. A work-around for this could be to duplicate activities, as shown in the
block-structured Petri net equivalent in Figure 3.1. However, this results in additional
nodes (p10 and t13) in the process model. Thus the complexity of the process model
increases, thereby deteriorating the end result [124].

Most of the high-level process modeling notations can be translated into Petri
nets. Moreover, the behavioral semantics enabled by Petri nets provide a robust way

i

Admission
t1

p1

Consult
Specialist

t2

t3

p2

t4

p3

p4

Diagnosis 1

t5

Diagnosis 2

t6
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p6 t7 p7

Treatment
t8

p8

Re-diagnose
t9p10

Diagnosis 2
t13

Consult
Specialist

t10

t11

p9
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t12 o

Figure 3.1: Converting the non-block structured care-pathway process into a block structured
care-pathway process by duplicating the activity Diagnosis 2 (transitions t6 and
t13).
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Figure 3.2: An unsound process model, obtained by removing the arc from t9 to p5 in Fi-
gure 1.3.
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in performing process mining analysis. Hence, in our approach we focus on a class of
Petri nets, called workflow nets which support both the simple and complex constructs
discussed above. The care-pathway process model (Figure 1.3) shows an example of
a workflow net.

Allowing the user to model any process model could result in an invalid (unsound)
process model. That is, the process being modeled should satisfy the soundness cri-
teria, to ensure important properties such as the absence of deadlocks in the process
model, proper termination of the process etc. Ideally, a user should only be allowed
to perform operations that result in valid process models. Consider Figure 3.2, which
shows an example of an unsound process model obtained by removing the arc from
t9 to p5 in Figure 1.3. This process model is a workflow net, but it is unsound as t7

cannot be fired after executing t9 and t6, due to a missing token at p5. In order to
avoid such a scenario, we have an additional requirement that the user should only
be allowed to model valid process models. That is, we should have some building
blocks which only lead to valid (sound) process models, as shown in Figure 3.3.

Process trees result only in sound process models, and hence can serve as such
building blocks. However, as already discussed, a major limitation of using process
trees is the difficulty in representing non-block-structured process models. Therefore,
in our approach, we use the so-called synthesis rules from [58] as the building blocks
of sound free-choice workflow nets. Since the synthesis rules were originally defined
for a class of Petri nets called free-choice nets, we focus on a sub-class of workflow
nets called free-choice workflow nets. The synthesis rules for free-choice nets are
known to preserve liveness and boundedness. We extend these rules in the context of
free-choice workflow nets, and make use of the liveness and boundedness properties
to show that the extended synthesis rules preserve soundness in free-choice workflow
nets.

In Section 3.1, we discuss the problem definition, and the context and require-
ments placed on these building blocks. In Section 3.2, we provide a solution which
uses a synthesis-rules-based approach for constructing free-choice workflow nets. In

Building 
blocks

Process 
model

Valid models

Invalid models

Figure 3.3: Building blocks are used to generate process models from a starting process model.
Ideally, the building blocks should be able to automatically identify and allow only
valid process models.
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Section 3.3.1, we show that the presented approach is correct, and in Section 3.3.2
we show that the proposed approach is complete. Next, we discuss the performance
evaluation in Section 3.4. We discuss the related work in Section 3.5, followed by
conclusions in Section 3.6.

3.1 Problem Definition: Need of Building Blocks for
Sound Workflow Nets

In order to enable interactive process modeling, we need a process editing engine as a
starting point. As discussed in Goal 2 in Chapter 1, this editing engine should support
several subgoals. Among these, the first couple of subgoals include support for com-
plex structural representations, such as non-block structured constructs and inclusive
choices, and guarantees of soundness, i.e., the modeled process model should always
be sound. As discussed previously, free-choice workflow nets in combination with the
synthesis rules could be used to address these sub-goals. Therefore, in our approach
we would like to consider free-choice workflow nets to represent process models, and
use the synthesis rules as the building blocks for these process models. With this in
mind, we aim to address the following research question in this chapter:

• How can we build a robust editing engine that provides building blocks for
enabling interactive editing of free-choice workflow nets, such that

– the building blocks can be defined for free-choice workflow nets. Origi-
nally, the synthesis rules were defined in the context of free-choice nets
[58]. As we are only interested in free-choice workflow nets, the first chal-
lenge is to port the original synthesis rules into the context of free-choice
workflow nets.

– only valid free-choice workflow nets can be generated. We know that free-
choice workflow nets support complex constructs such as non-block struc-
tured process models. However, it is also important that the free-choice
workflow nets are valid in nature, i.e., the building blocks should result
only in sound free-choice workflow nets. Therefore, it is important to show
that the extended synthesis rules in the context of free-choice workflow
nets result only in sound free-choice workflow nets.

– any valid free-choice workflow net can be constructed. That is, starting
with an initial empty free-choice workflow net, we should be able to con-
struct any sound free-choice workflow net using the editing engine based
on the building blocks of the synthesis rules.

In Section 3.2, we discuss how we can make use of the synthesis rules as the
building blocks for sound free-choice workflow nets. In Section 3.3, we discuss the
correctness and completeness of these rules in the context of sound free-choice work-
flow nets.
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3.2 Synthesis Rules as Building Blocks

Synthesis rules are a set of rules that allow synthesizing larger Petri nets using smaller
Petri nets. A synthesis rule kit contains multiple rules, such that each rule results in a
different operation on a given Petri net. A synthesis rules kit, such as the one provided
in [58] provide guarantees on the generation of any well-formed free-choice net. The
well-formedness property of these nets can also be related to the soundness property
of workflow nets. Hence, such a synthesis rule kit forms an ideal solution to the
question posed in Section 3.1. In Section 3.2.1 we discuss the original synthesis rules
kit from [58], and in Section 3.2.2 we put these rules in the context of sound free-
choice workflow nets.

3.2.1 Synthesis Rules for Well-formed Free-choice nets

In this section, we discuss the synthesis rules from [58], as they form the skeleton of
our approach. The synthesis rule kit from [58] contains three rules: (i) abstraction
rule, (ii) linearly dependent place rule, and (iii) linearly dependent transition rule.
It has been proven that these rules are complete and can be used to synthesize any
well-formed free-choice net. The synthesis rules described in [58] are valid for all
well-formed free-choice nets. The initial net for these synthesis rules is a live and
bounded atomic net containing only one place and transition as shown in Figure 3.4a.

The abstraction rule allows expansion of a net by adding a new place and a new
transition. The abstraction rule can be formally defined as:

Definition 20 (Abstraction rule ψA (derived from [58])). Let N = (P,T,F ) and N ′ =
(P ′,T ′,F ′) be two free-choice nets. N ′ is synthesized from N , i.e., (N , N ′) ∈ψA if and only
if:

– P ′ = P ∪ {p} (where p ∉ P)

– T ′ = T ∪ {t } (where t ∉ T )

– R ×S ⊆ F such that R ⊆ T , S ⊆ P and R ×S 6= ;
– F ′ = (F \ (R ×S))∪ ((R × {p}) ∪ ({p}× {t }) ∪ ({t }×S))

The free-choice net from Figure 3.4b is synthesized from the initial free-choice
net of Figure 3.4a, by adding a place p1 and a transition ⊥ using the ψA rule (R =
{>},S = {i }). Similarly, the free-choice net from Figure 3.4c is synthesized from the
free-choice net of Figure 3.4b, by adding a place p3 and a transition t3 using the ψA

rule (R = {>},S = {p1}). The opposite of the ψA synthesis rule is called the φA reduction
rule, which removes a place and a transition from the net.

Next, we discuss the two linearly dependent synthesis rules. A linearly dependent
rule allows for the introduction of a new linearly dependent place or a linearly depen-
dent transition in a free-choice net. We begin by first introducing linearly dependent
transitions and places, followed by the definitions of the rules.
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From basic linear algebra we know that a column vector c belonging to a matrix
M is linearly dependent if and only if c can be expressed as some linear combination

i

>

(a) Initial atomic free-
choice net net.

i

>

p1

⊥

(b) Adding ⊥ and p1 using
ψA .

i

> p3

t3 p1

⊥

(c) Adding t3 and p3 using ψA .
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t3 p1
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(d) Adding t1 and p4 using ψA .
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(e) Adding p5 using ψP .
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(f) Adding t2, p2 and t4,p6 using ψA .
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(g) Adding t5 using ψT .

Figure 3.4: Example usage of synthesis rules starting with initial atomic net.
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> t1 t3 ⊥
i -1 0 0 1

p1 0 0 1 -1
p3 0 1 -1 0
p4 1 -1 0 0
p5 0 1 -1 0

(a) Incidence matrix corresponding to Fi-
gure 3.4e.

> t1 t2 t3 t4 ⊥ t5

i -1 0 0 0 0 1 0
p1 0 0 0 1 0 -1 0
p2 0 1 -1 0 0 0 0
p3 0 0 1 -1 0 0 1
p4 1 -1 0 0 0 0 -1
p5 0 0 0 -1 1 0 1
p6 0 1 0 0 -1 0 0

(b) Incidence matrix corresponding to Fi-
gure 3.4g.

Figure 3.5: Incidence matrices after usage of linear dependency rules.

of the other columns in M. Using this, we define linearly dependent nodes as follows:

Definition 21 (Linearly dependent nodes (derived from [58])). Let N = (P,T,F ) be a
Petri net and N be the incidence matrix of N . Let Q be the set of all rational numbers.
A place p of N is linearly dependent if there exists a vector λ : P →Q such that λ(p) = 0
and λ ·N = p.
Similarly, a transition t of N is linearly dependent if there exists a vector µ : T →Q such
that µ(t ) = 0 and N ·µ= t.

Following the definition of linearly dependent nodes, we now discuss the two
linear dependency rules. Figure 3.5a shows an example of linearly dependent row
vector (which is a part of the incidence matrix).

Definition 22 (Linear dependent transition rule ψT (derived from [58])). Let N =
(P,T,F ) and N ′ = (P ′,T ′,F ′) be two free-choice nets. N ′ is synthesized from N , i.e.,
(N , N ′) ∈ψT if and only if:

– P ′ = P

– T ′ = T ∪ {t }, where t ∉ T

– F ′ = F ∪ F̃ , where F̃ ⊆ ((P × {t })∪ ({t }×P ))

– t is a linearly dependent transition of N ′

– N ′
• t ∪ t

N ′
• 6= ;

Definition 23 (Linear dependent place rule ψP (derived from [58])). Let N = (P,T,F )
and N ′ = (P ′,T ′,F ′) be two free-choice nets. N ′ is synthesized from N , i.e., (N , N ′) ∈ψP if
and only if:

– T ′ = T

– P ′ = P ∪ {p}, where p ∉ P
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– F ′ = F ∪ F̃ , where F̃ ⊆ (({p}×T )∪ (T × {p}))

– p is a linearly dependent place of N ′

– N ′
• p ∪p

N ′
• 6= ;

The free-choice net from Figure 3.4e is synthesized from the free-choice net of
Figure 3.4d, by adding a linearly dependent place p5 using the ψP rule. From Fi-
gure 3.5a, it is easy to see that the row vector corresponding to place p5 is the same
as the row vector corresponding to place p3, i.e., p5= p3, and hence p5 is indeed a
linearly dependent place. In Figure 3.4e, this implies that p5 and p3 have a similar
effect on the free-choice net.

The free-choice net from Figure 3.4g is synthesized from the free-choice net of
Figure 3.4f, by adding a linearly dependent transition t5 using the ψT rule. From
Figure 3.5b, we can see that the column vector corresponding to t5 has the same
overall effect as the column vectors corresponding to transitions t1, t2 and t4. That is,
t5 = t1 + t2 + t4.

The opposite of linearly dependent synthesis rules ψT and ψP are the linearly
dependent reduction rules φT and φP , which remove a linearly dependent transition
or a place from the net.

It has been shown that along with φA, these reduction rules are complete for well-
formed free-choice nets [58]. That is, any well-formed free-choice net can be reduced
to an atomic net containing only one place and one transition.

Theorem 4 (Synthesis rules preserve well-formedness [58]). Let N = (P,T,F ) and
N ′ = (P ′,T ′,F ′) be two free-choice nets such that (N , N ′) ∈ ψA ∪ψP ∪ψT . Then N ′ is
well-formed if and only if N is well-formed.

3.2.2 From Free-choice Nets to Sound Free-choice Workflow Nets

The synthesis rules from [58] are defined in the context of well-formed free-choice
nets. However, from a process mining perspective, we are interested in process mo-
dels and hence workflow nets. Therefore, in this section, we define the new rules
based on the synthesis rules from [58] for valid free-choice workflow nets. Before
we begin with the new definitions of synthesis rules, we define the initial sound free-
choice workflow net.

Definition 24 (Initial sound free-choice workflow net W0). The initial sound free-
choice workflow net is W0 = ({i , p1,o}, {>,⊥}, {(i ,>), (>, p1), (p1,⊥), (⊥,o)}, i ,o,>,⊥).

The starting net W0 for our approach is shown in Figure 3.6a. Place i is the only
source and initially marked place in the net, and place o is the only sink place in the
net. Figure 3.6b is the short-circuited version of initial free-choice workflow net. Ha-
ving defined the initial free-choice workflow net, we now describe the corresponding
synthesis rules with respect to sound free-choice workflow nets.
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Definition 25 (Abstraction rule ψW F
A for free-choice workflow nets). Let W = (P,T,

F, i ,o,>,⊥) and W ′ = (P ′,T ′,F ′, i ,o,>,⊥) be two free-choice workflow nets. W ′ can be
synthesized from W , denoted (W,W ′) ∈ψW F

A , if and only if (SC (W ),SC (W ′)) ∈ψA.

Note that the abstraction rule allows for the addition of a new place and a new
transition, between a (set of) transition(s) and place(s). However, it is not possible to
use the abstraction rule between the transition ⊥ and the sink place o, as the resulting
net would no longer be a workflow net (Definition 14).

Definition 26 (Linear dependency in sound free-choice workflow nets). Let W = (P,T,
F, i ,o,>,⊥) be a sound free-choice workflow net. Let Q be the set of all rational numbers.
Let SC P = P \ {o}. A place p ∈SC P , is called linearly dependent in W if and only if there
exists a vector λ :SC P →Q such that λ(p) = 0 and λ ·SC (W) = p.

A transition t ∈ T is called linearly dependent in W if and only if there exists a vector
µ : T →Q such that µ(t ) = 0 and SC (W) ·µ= t.

It should be noted that for row vectors, we consider a vector mapping to SC P
which is a |P |−1-dimensional vector. This is due to the fact that in a short-circuited
version of a free-choice workflow net, place o is removed. Using Definition 26, we
define the linearly dependent place and transition rules.

Definition 27 (Linearly dependent place rule ψW F
P for free-choice workflow nets).

Let W = (P,T,F, i ,o,>,⊥) and W ′ = (P ′,T ′,F ′, i ,o,>,⊥) be two free-choice workflow nets.
W ′ can be synthesized from W using ψW F

P , denoted (W,W ′) ∈ψW F
P , if and only if:

1. (SC (W ),SC (W ′)) ∈ψP and

2. All proper siphons in SC (W ′) contain i

The second requirement in Definition 27 is required to limit synthesis to only
sound free-choice workflow nets, by avoiding linearly dependent places which would
result in deadlocks. The need for this condition is elaborated later in Theorem 7.

i

>

p1

⊥

o

(a) Initial free-choice workflow net.

i

>

p1

⊥

(b) Short-circuited version of initial free-
choice workflow net.

Figure 3.6: Initial workflow net.
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Definition 28 (Linearly dependent transition ruleψW F
T for free-choice workflow nets).

Let W = (P,T,F, i ,o,>,⊥) and W ′ = (P ′,T ′,F ′, i ,o,>,⊥) be two free-choice workflow nets.
W ′ can be synthesized usingψW F

T , denoted (W,W ′) ∈ψW F
T , if and only if (SC (W ),SC (W ′)) ∈

ψT .

It should be noted that every free-choice net, other than Figure 3.4a, from Fi-
gure 3.4 can be seen as short-circuited versions of free-choice workflow nets. The-
refore, starting with Figure 3.4b as the initial short-circuited free-choice workflow
net, we can use the synthesis rules for free-choice workflow nets and synthesize the
free-choice workflow nets shown in Figure 3.4.

3.3 Synthesis Space

Having described the synthesis rules corresponding to free-choice workflow nets, we
now discuss how these can be used to enable interactive process modeling. The
concept of synthesis space is central to enable interactive process editing. Loosely
speaking, the synthesis space contains all the possible applications of ψW F

A , ψW F
P or

ψW F
T corresponding to a free-choice workflow net.

We know that a free-choice workflow net can be extended by adding one place
and/or transition at a time using the synthesis rules. In an interactive setting, a user
would typically name such a place and/or transition. In order to replicate such a
scenario, we first define an abstract function which takes a free-choice workflow net
as an input and returns a fresh place and/or a fresh transition as output.

Definition 29 (Place and transition identifier). Let W = (P,T,F, i ,o,>,⊥) be a free-
choice workflow net. Then, IP(W ) denotes an abstract function that returns a fresh place
p ∉ P . Similarly, IT(W ) denotes an abstract function that returns a fresh transition t ∉ T .

Using Definition 29, we now define the synthesis space as follows:

Definition 30 (Synthesis Space SS). Let W = (P,T,F, i ,o,>,⊥) be a sound free-choice
workflow net, and let FW N be the universe of sound free-choice workflow nets. Consider
a fresh place p = IP(W ) and a fresh transition t = IT(W ). The synthesis space SS(W ) =
SS A(W )∪SSP (W )∪SST (W ), where:

– SS A(W ) = {W ′ = (P ′,T ′,F ′, i ,o,>,⊥) ∈ FW N | (W,W ′) ∈ψW F
A ∧ {p} = P ′ \ P ∧ {t } = T ′ \

T },

– SST (W ) = {W ′ = (P ′,T ′,F ′, i ,o,>,⊥) ∈ FW N | (W,W ′) ∈ψW F
T ∧P ′ = P ∧ {t } = T ′ \ T },

– SSP (W ) = {W ′ = (P ′,T ′,F ′, i ,o,>,⊥) ∈ FW N | (W,W ′) ∈ψW F
P ∧T ′ = T ∧ {p} = P ′ \ P }

In essence, the newly added node(s) can be identified by any name as depicted
by the abstract function in Definition 29. We mainly use the abstract function to keep
the synthesis space finite. Therefore, the synthesis space contains a finite number of
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ways in which a place IP(W ) and/or a transition IT(W ) can be added to a free-choice
workflow net W using one of the synthesis rule. That is, SS A(W ), SSP (W ) and SST (W )
are all disjoint for a free-choice workflow net W . This is evident from the fact that
SS(W ) always synthesizes a net W by adding a transition IT(W ) and/or a place IP(W ).
For example, using ψW F

A leads to adding a new transition IT(W ) and a new place to
IP(W ) to W , whereas SSP (W ) and SST (W ) synthesizes the net by adding a new place
IP(W ) (using ψW F

P ) or a new transition IT(W ) (using ψW F
T ). It should be noted that the

synthesis space essentially caters to the change in structure of a free-choice workflow
net upon usage of a synthesis rule. Conceptually, the newly added place IP(W ) and/or
transition IT(W ) can then be named as desired by the user. For example, consider the
free-choice workflow net of Figure 3.4c, which is in the synthesis space of Figure 3.4b.
In this net, the newly added nodes are named as p3 and t3 resp.

Figure 3.7 shows an overview of the usage of the synthesis space to enable inte-
ractive process editing. Starting with a sound free-choice workflow net W0, any free-
choice workflow net can be selected from the initial synthesis space SS(W0). Note that
the nodes would always be named as desired. After a free-choice workflow net W ′
is chosen, the synthesis space SS(W ′) corresponding to W ′ is recomputed. This is the
‘Recompute Synthesis Space SS(W ′)’ phase from Figure 3.7. The re-computation of
synthesis space is done in a brute force way.

In the next section, we show that the synthesis rules for free-choice workflow nets
preserve soundness. Furthermore, we show that, starting with an initial atomic free-
choice workflow net, we can always deduce any sound free-choice workflow net using
the synthesis rules (i.e., selecting nets from subsequent synthesis spaces and naming
the nodes in the desired way).

3.3.1 Correctness of Synthesis Rules for Sound Free-choice Work-
flow Nets

In this section, we discuss the implications of using the synthesis rules in order to
enable interactive process discovery. We first discuss the correctness of each derived
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Figure 3.7: Synthesis space contains all the free-choice workflow nets which can be synthesized
from a particular free-choice workflow net by using either ψW F

A , ψW F
P or ψW F

T rule.
The synthesis space for the initial net is pre-computed.
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rule. As the new rules are defined in the context of free-choice workflow nets, we
know that the net derived using any rule is also a free-choice workflow net. However,
we also need to ensure that the derived net is also a sound free-choice workflow net,
when the original net is a sound free-choice workflow net. Therefore, we show, on a
case by case basis, that the application of each rule to a sound free-choice workflow
net also results in sound free-choice workflow nets, starting with the abstraction rule
(Definition 25) in Theorem 5.

Theorem 5 (ψW F
A preserves soundness). Let W = (P,T,F, i ,o,>,⊥) and W ′ = (P ′,T ′,F ′,

i ,o,>,⊥) be two free-choice workflow nets such that (W,W ′) ∈ψW F
A . Then the net W ′ is

sound if the net W is sound.

Proof. To show that W ′ is sound, we need to show that SC (W ′) is live and bounded
in [i ] (Theorem 1).

Boundedness The net W is sound, hence SC (W ) is live and bounded in [i ], hence
SC (W ) is well-formed. As (SC (W ),SC (W ′)) ∈ ψA, SC (W ′) is also well-formed,
thus making it S-coverable, and hence bounded for any marking M ′, and hence
bounded in [i ].

Liveness As SC (W ) is bounded in [i ] and strongly connected, it suffices to show that
it contains no deadlocks in [i ], which follows from the facts that (1) SC (W ) does
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(b) Place px is linearly dependent as px = p4+
p1 + i.

Figure 3.8: Linearly dependent place that results in well-formed free-choice net, but not in a
sound free-choice workflow net.
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not contain deadlocks in [i ] and (2) by construction this rule cannot introduce
new deadlocks, as the original rule (ψA) used to derive (ψW F

A ) cannot introduce
deadlocks [58].

Similar to ψW F
A , the linear dependency transition rule for free-choice workflow

nets also builds upon the linear dependency transition rules defined for free-choice
nets. Hence, in Theorem 6 we use a similar approach to show that the resulting
net remains a sound free-choice workflow net after application of ψW F

T rule (Defini-
tion 28) on a sound free-choice workflow net.

Theorem 6 (ψW F
T preserves soundness). Let W = (P,T,F, i ,o,>,⊥) and W ′ = (P ′,T ′,F ′,

i ,o,>,⊥) be two free-choice workflow nets such that (W,W ′) ∈ψW F
T . Then W ′ is sound if

the net W is sound.

Proof. To show that W ′ is sound, we need to show that SC (W ′) is live and bounded
in [i ].

Boundedness The net W is sound, hence SC (W ) is live and bounded in [i ], hence
SC (W ) is well-formed. Hence, SC (W ′) is also well-formed, hence S-coverable,
hence bounded for any marking M ′, and hence bounded in [i ].

Liveness As SC (W ′) is bounded in [i ] and strongly connected, it suffices to show that
it contains no deadlocks in [i ], which follows from the facts that (1) SC (W )
contains no deadlocks and (2) it is clear that removing a transition t ′ cannot
violate a pre-existing siphon. Hence, the introduction of a new transition t ′ can-
not result in any additional siphons in the net W ′. Since free-choice workflow
nets an unmarked proper siphon without i results in deadlocks (Theorem 7),
SC (W ′) is deadlock free. Assume that SC (W ′) is not live in [i ]. Then from [58]
(Theorem 5.8), we know that there is an S-component that is not marked in [i ].
Hence, from [58] (Theorem 5.2), we know that there is a proper siphon that
is not marked in [i ], that is, that does not contain i . As this is a contradiction
according to the second condition of Definition 27, SC (W ′) has to be live.

Unlike ψW F
A and ψW F

T which are rather straightforward extensions of ψA and ψT ,
in ψW F

P (Definition 27) there is an additional requirement of having the initially mar-
ked place i in all the proper siphons of the new net. We first demonstrate the need for
such a condition using Figure 3.8. Adding a new place px in the net from Figure 3.8
may result in deadlock in the workflow net version of the short-circuited free-choice
workflow net. Clearly, the newly added place is a linearly dependent place, and would
fit the description of ψP . It should be noted that, after adding this place, the net is
still a well-formed free-choice net. An example of an initial marking for which the
net is live and bounded is [i , px ]. However, in a free-choice workflow net the initial
marking is always [i ]. The second requirement from Definition 27 ensures that there
are no unmarked siphons in the net, and hence no deadlocks. In order to prove this
formally, we first provide Theorem 7.
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Theorem 7 (A free-choice workflow net with an unmarked proper siphon without i
contains dead transitions). Let W = (P,T,F, i ,o,>,⊥) be a sound free-choice workflow
net. Let p be a linearly dependent place that is added to W , resulting in the net W ′ = (P ′,
T ′,F ′, i ,o,>,⊥), (such that p ∉ P). If p results in a proper siphon S in SC (W ′) such that
p ∈ S ∧ i ∉ S, then SC (W ′) has dead transitions and hence W ′ is unsound.

Proof. We know that [i ] is the initial marking of W . Since the newly added place
p 6= i , it is unmarked. As the introduction of p results in a siphon S in SC (W ′), by
the definition of siphon we know that all transitions requiring tokens from S are dead
transitions in SC (W ′). As SC (W ′) is strongly connected, such transitions exist. Hence
SC (W ′) has deadlocks and hence W ′ is unsound.

Using Theorem 7, we discuss a corollary, which forbids the introduction of linearly
dependent places having the same input and output transition sets.

Corollary 4. A new place p containing the same inputs and outputs cannot be added to
a sound free-choice workflow net using ψW F

P .

Proof. If p has the same input and output transitions, then we have •p = p • . The-
refore, p forms a set which is a proper siphon •p ⊆ p • . As the siphon {p} does not
contain the initially marked place i , adding p would result in an unsound free-choice
workflow net.

Finally, using Theorem 7 and Definition 27 we discuss how ψW F
P rule preserves

soundness.

Theorem 8 (ψW F
P preserves soundness). Let W = (P,T,F, i ,o,>,⊥) and W ′ = (P ′,T ′,F ′,

i ,o,>,⊥) be two free-choice workflow nets such that (W,W ′) ∈ψW F
P . Then the net W ′ is

sound if the net W is sound.

Proof. To show that W ′ is sound, we need to show that SC (W ′) is live and bounded
in [i ].

Boundedness The net W is sound, hence SC (W ) is live and bounded in [i ], hence
SC (W ) is well-formed. Therefore, SC (W ′) is also well-formed, hence S-coverable,
hence bounded for any marking M ′, and hence bounded in [i ].

Liveness As SC (W ′) is bounded in [i ] and strongly connected, it suffices to show that
it contains no deadlocks in [i ]. The second condition of Definition 27 forbids the
introduction of unmarked proper siphons in the net. Assume that SC (W ′) is not
live in [i ]. Then from [58] (Thm 5.8), we know that there is an S-component
that is not marked in [i ]. Hence, from [58] (Thm 5.2), we know that there is a
proper siphon that is not marked in [i ], that is, that does not contain i . As this is
a contradiction according to the second condition of Definition 27, SC (W ′) has
to be live.
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After having shown that the synthesis rules for free-choice workflow nets preserve
soundness, we now show that it is possible to deduce any sound free-choice workflow
net starting with the initial free-choice workflow net.

3.3.2 Completeness of Synthesis Rules for Sound Free-choice Work-
flow Nets

In this section, we show that the synthesis rules for free-choice workflow nets are
complete to synthesize any sound free-choice workflow net. From [58] (pg. 161),
we know that any well-formed free-choice net can be synthesized using the synthesis
rules from Subsection 3.2.1, starting with an initial atomic free-choice net.

Theorem 9. Any sound free-choice workflow net W ′ can be derived from the initial net
W0 (Figure 3.6a) using the three synthesis rules ψW F

A , ψW F
P and ψW F

T .

Proof. In order to show the completeness of the proof, we use the reduction rules [58]
(reverse of synthesis rules) repeatably to obtain the initial atomic net. That is, we
argue that we can always reduce a short-circuited free-choice workflow net that is
live and bounded in [i ] to the initial short-circuited free-choice workflow net, and
finally reduce it by using the abstraction rule in reverse on the place i to obtain
the initial atomic free-choice net. We make use of the fact that the reduction rules
(reverse of synthesis rules) for well-formed free-choice nets are complete, i.e., any
well-formed free-choice net can be reduced to the initial atomic free-choice net by
using the original synthesis rules for free-choice nets in reverse [58].

The proof uses Theorem 6.17 of [58], which states that a free-choice net (N , M) is
live and bounded if, and only if (i) N is well-formed and (ii) M marks every proper
siphon of N . Assume we have a free-choice workflow net that is live and bounded
in [i ]. As the short-circuited free-choice workflow net is well-formed and live and
bounded in [i ], we know (Theorem 6.17 of [58]) that every proper siphon marks the
place i . We now need to show that after having applied a possible synthesis rule ‘in
reverse’ every siphon still marks place i , until it is no longer possible to apply any
reduction rule (synthesis rule in reverse).

– ψW F
A : For the abstraction rule this is trivial. Using the abstraction rule in reverse

would remove a place (and a transition) from the net. The siphons that included
the removed place are now siphons with that place removed, and siphons that
did not include the removed place are still siphons. Hence using abstraction
rule in reverse cannot introduce new siphons in the net.

– ψW F
P : For the linearly dependent place rule, this is also trivial, as removing a

place can only invalidate siphons, but not introduce them.

– ψW F
T : For the linearly dependent transition rule, this is more involved, as this

rule could potentially introduce siphons. Assume that this rule has removed
a transition such that a new minimal siphon was introduced. Note that every
siphon includes a minimal siphon, so we may assume a minimal siphon here.
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As removing the transition introduced the siphon, this transition adds tokens to
the siphon, but does not remove tokens from it. From Prop. 5.4 of [58], this
new minimal siphon is also a trap. As adding a transition that does not remove
tokens from a trap cannot invalidate the trap, the minimal siphon is also a trap
in the original short-circuited free-choice workflow net. As that net was live and
bounded in [i ], this trap includes the place i . Hence, the introduced minimal
siphon contains the place i .

Therefore, we can always apply some synthesis rule ‘in reverse’ on a short-circuited
free-choice workflow net that is live and bounded in [i ], and the observation that
applying the abstraction rule in reverse on the place i and transitions > and ⊥ can be
postponed until the end. Hence, we can synthesize any sound free-choice workflow
net by synthesizing the corresponding short-circuited free-choice workflow net that is
live and bounded in [i ].

3.4 Evaluation

From Section 3.3.1, we know that the proposed approach correctly synthesizes only
sound free-choice workflow nets. Furthermore, from Section 3.3.2, we know that it
is possible to synthesize any sound free-choice workflow net starting with the initial
atomic free-choice workflow net. In order to check the applicability of the approach
in an interactive setting, we evaluate the time needed to calculate the synthesis space.

First, we examine the time taken to compute the synthesis space based on the size
of a free-choice workflow net. Consider the net from Figure 3.8a, without the place
px . There are 6 transitions (>, t1, t2, t3, t4 and ⊥) in the net. In order to calculate all
the possible linearly dependent places that could be added to the net, we first have to
compute the vectors based on all the permutations of the six transitions (with the va-
lues −1,0 and 1), resulting in 120 vectors. Next, we have to compute if each of these
vectors is linearly dependent on the rows of the incidence matrix of Figure 3.8b. This
computation is non-trivial. A similar argument holds for computing the linearly de-
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Figure 3.9: Performance of brute force approach for generating synthesis space after synthesi-
zing 10 nets.
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pendent transitions using the brute-force approach. As the size of the net grows, the
time taken to compute the linear dependency rules in such a way grows exponentially
due to the combinatorial blow-up. In order to provide an intuition, we use an empiri-
cal evaluation to compute all the applications of synthesis rules using the brute-force
approach. We use a simple (non-parallelized) algorithm for computing the synthesis
space on a machine with 2.70 GHZ processor with 64-bit OS and 8 GB of RAM.

Starting with the initial atomic free-choice workflow net W0, a net W1 can be
synthesized by using any random synthesis rule. Then another random synthesis
rule can be applied on the synthesized net W1, to obtain a new net W2. This can be
repeated until the application of 10 synthesis rules. This experiment can be repeated
any number of times. Let us assume we apply 10 synthesis rules in sequence, leading
from W0,W1,W2, · · · ,W10. We repeated this experiment 100 times, to synthesize 1000
nets in total. The average of values for the time taken to compute the synthesis
space using the brute force approach at each synthesis iteration was recorded and are
plotted in Figure 3.9. As evident, the time taken for computing the synthesis space
grows exponentially with the brute-force approach. This is clearly not acceptable in
an interactive setting, where the response times should be minimal [127]. In the next
chapter, we show how we can improve on this.

3.5 Related Work

In this section, we discuss the approaches from the literature similar to our approach.
In particular, we discuss other synthesis kits which could have been used as building
blocks for creating the interactive process modeling engine. Synthesis rules are basi-
cally reverse applications of the so-called reduction rules. The idea of reduction rules
is to start with a bigger net, and iteratively use one of the rules from a reduction
rule kit. Reduction rules are well-researched in literature, with [18,19,57,83] among
the early contributors. Primarily, reduction techniques were used for verification of
presence of certain properties in the nets, depending on how much a net could be re-
duced using a reduction rules kit, for example, [172,179]. An alternative to the usage
of building blocks, and hence to synthesis rules, could have been an approach based
on post-verification. That is, allowing any action to change a given workflow net, and
checking the soundness of the modeled workflow net a posteriori using for example
the reduction rules. [76] provides verification of several industrial business process
models within milliseconds using [156,176,179,192]. However, such a solution in an
interactive setting is not ideal, as it could first allow synthesis of unsound workflow
nets, which would later be classified as unsound. However, by using synthesis rules
as the building blocks, we guarantee that we are always within the realm of sound
workflow nets.

In [72], authors propose a reduction rule kit, which is correct and complete to
reduce any colored free-choice workflow net. These have later been extended to the
probabilistic case in [75]. In theory, these rules can be used in reverse, in order to
synthesize any sound free-choice workflow net, starting with an atomic net. More-
over, unlike the rules discussed in this chapter which are devised from [58], all the
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rules from [72] are local, i.e., it is not necessary to analyze the entire net to check
the applicability of a rule. Therefore, these rules could be computed faster. However,
we argue that these rules are not directly suitable for use in an interactive setting.
We demonstrate this intuitively with an example using Figure 3.10. As shown, the
reduction rules from [72] can be used to reduce the net from Figure 3.10a to the net
of Figure 3.10c. In order to synthesize a net, the user has to proceed in the oppo-
site direction. That is, in order to add b to the net from Figure 3.10c to derive the
net from Figure 3.10a, the user first has to create an intermediate net by adding a
self-loop transition, to derive the net from Figure 3.10b, and then use another rule
to convert the self-loop to a loop. Hence, the rules from [72] are very involved, es-
pecially when it comes to the usage of the so-called shortcut rule. The user has to
model intermediate structures in order to derive the desired nets, which can be tedi-
ous, especially when a user is interactively constructing a process model. Therefore,
we argue that the rules derived based on [58] that are discussed in this chapter are
straight-forward and hence are easier to understand for the user, making them suit-
able in an interactive setting. Using the ψW F

T rule, the user can directly add b to the
net from Figure 3.10c to derive the net of Figure 3.10a, without the need of any inter-
mediate net. Therefore, even though the rules from [72] can be computed in a faster
way, they are not very intuitive and hence unsuitable for applications in an interactive
setting.

The technique of synthesizing large Petri nets from smaller Petri nets is not new
and has been well-researched for over two decades [11, 49, 71, 74, 152]. In general,
Petri net synthesis techniques have found tremendous applications in certain dom-
ains, such as automated manufacturing systems [37, 39, 102] and embedded soft-
ware [101,146]. Our main focus is not to suggest new synthesis rules, but to develop
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an approach that allows the possibility of using synthesis rules in an interactive way in
the context of building a process modeling engine. The state-based region theory tool
in [16] provides a way of synthesizing Petri nets. However, this approach does not
allow user interaction, and it does not guarantee soundness of the discovered Petri
net. The work in [36] provides a way of interactively synthesizing live and bounded
Petri nets using a knitting technique. However, the completeness and soundness of
these rules in the context of workflow nets is not guaranteed. Our use of the synthesis
rule kit from [58, 73] is two-fold. First, as we have shown, these rules can be easily
translated to be used in our context of free-choice workflow nets. Second, these rules
guarantee that any sound free-choice workflow net can be synthesized from an initial
atomic net.

3.6 Conclusion

In order to enable interactive process modeling, we first identified a need for building
blocks which can be used to generate process models. The class of process models
chosen was required to support simple representations such as sequences, concur-
rency and exclusive choices in a process, as well as complex structural representations
such as inclusive choices and arbitrary loops. Another important factor taken into con-
sideration was that the process models generated must always be sound. In order to
ensure this, we proposed an approach of using the synthesis rules kit from [58], which
serves as the building blocks for well-formed free-choice nets. Next, we mapped these
synthesis rules from well-formed free-choice nets to sound free-choice workflow nets.
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Using the guarantees from [58], we were able to show that the synthesis rules in the
context of free-choice workflow nets are correct and complete in order to synthesize
any sound free-choice workflow net.

A limitation of using using a free-choice workflow net as the modeling notation is
the difficulty in expressing long-term dependencies in a process. For example, con-
sider the variation of the care-pathway process of Figure 1.3, shown in Figure 3.11.
The process model from Figure 3.11 places the condition that the second ‘Consult
Specialist’ can be executed if and only if the first ‘Consult Specialist’ activity was exe-
cuted. Clearly, the net from Figure 3.11 is not a free-choice net. In order to express
long-term dependencies using free-choice net, we would have to duplicate activities,
thereby increasing the size of the process model and making it more complicated.
However, a similar problem is faced by block-structured notations such as process
trees. Therefore, we argue that the advantages of using a free-choice workflow net in
combination with synthesis rules such as simple and complex structural representati-
ons and guarantee on soundness, outweigh the limitation of difficulty in expressing
long-term dependencies.

Using the synthesis rules as the building blocks, we have implemented a robust
engine to enable interactive process modeling. This implementation uses a brute force
approach to find out all the possible applications of different synthesis rules, with
respect to a free-choice workflow net. However, based on the evaluations performed,
this approach would be inefficient in an interactive setting, as it took more than 10
milliseconds after 10 synthesis operations. Hence, there is a clear need to compute
this synthesis space in a more efficient way, to improve the performance of the system.
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This chapter is based on the publication [69].
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The approach presented in the previous chapter aimed at providing an “engine” to
create a synthesis space for sound free-choice workflow nets that can be used to ena-
ble interactive process model construction. Eventually, such a system would be used
by an end user for modeling/discovering process models in an interactive fashion. Ho-
wever, as already discussed in the evaluation of Chapter 3, the time taken to compute
the synthesis space in a brute-force manner could be very long, and hence undesirable
in an interactive setting. In this chapter, we address this concern of computing the
synthesis space in a fast-enough way. In order to determine what is fast-enough, we
consider the following aspects: (i) the desired size (number of nodes) that should be
supported in the process model, and (ii) the maximum acceptable response time.

In order to analyze the first aspect, we refer to the “7 Process Modeling Guidelines
discussed” discussed in [124]. In particular, we look at guideline G1 and G7, which
both deal with the size of a process model. G1 recommends usage of as few elements
as possible, whereas G7 recommends decomposing a process model if it contains more
than 50 elements. Typically, when the size of a process model increases, the number
of errors increase too [125,138,175] and the comprehensibility of the process model
decreases [123,126]. Hence, it is in the interest of the modeler to keep the size of the
process model of around 50 elements.

In order to analyze the second aspect, we focus on the fields of human-computer-
interaction and usability engineering, wherein the effect of response times in the
usability of a system have been well researched. [127] provides one of the first
works in analyzing the performance issue of an interactive system. Multiple stu-
dies [47,87,88,131,147] have shown that lengthy response times have a detrimental
effect on a user’s performance and can lead to decreased user productivity. [127,147]
recommend that the ideal response time should be around 2 seconds in an interactive
setting. [131] supports this, and further states that a response time of around 1 se-
cond keeps a user’s flow of thought uninterrupted. Furthermore, [131] suggests that
longer response times of about 10 seconds are the limit for keeping a user’s attention
focused on the task at hand. Finally, response times over 12 seconds are considered
disruptive [127, 131, 147] and not recommended. Therefore, it is desirable that the
interactive system ideally has response times of around 2 seconds, and does not have
response times of more than 12 seconds.

Using the two aspects discussed above, we present an approach to fine-tune the
engine discussed in Chapter 3, in order to calculate the synthesis space in an efficient
way. In particular, we provide an incremental way of computing the synthesis space.
Moreover, we show that the incremental method for computing the synthesis space
can be used to correctly compute the complete synthesis space corresponding to a
free-choice workflow net.

The outline of the rest of this chapter is as follows. In Section 4.1 we discuss the
main problem addressed. In Section 4.2 we present an overview of the approach.
In Section 4.3, Section 4.4 and Section 4.5 we provide the details of the proposed
approach. In Section 4.6, we compare the incremental approach with the brute-force
approach. We conclude this chapter in Section 4.7.
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4.1 Problem Definition: Limitations of Brute-force Ap-
proach in an Interactive Setting

The synthesis engine recommended in Chapter 3, computes the synthesis space in a
brute-force manner. The brute-force approach can take a very long time to compute
the synthesis space, even for small-sized nets. Therefore, there is a clear need for
fine-tuning the proposed engine, in order to compute the synthesis space in a fast-
enough way that is suitable in an interactive setting. Furthermore, the new engine
should ensure that the properties of the original engine are still valid. In particular,
the new engine should guarantee that precisely all sound free-choice workflow nets
can be generated. Using this, we devise the following goal for this chapter:

• How can the engine for generating the building blocks (i.e., the synthesis space)
be tuned, such that:

– process models of reasonable size can be constructed within acceptable
response times. Typically, process models containing up to 50 elements
are considered optimal [124]. The response time in an interactive setting
should be below 10 seconds, and ideally about 2 seconds [127]. Therefore,
to be on the higher end, it would be desired that the new engine takes
about 2 seconds for computing synthesis space for free-choice workflow
nets containing upto 100 nodes.

– any sound free-choice workflow net can be generated. That is, the synthe-
sis space computed by the new engine should be complete to deduce any
sound free-choice workflow net.

– only sound free-choice workflow net can be generated. That is, the synt-
hesis space computed by the new engine should result only in sound free-
choice workflow nets.

In order to address the above goal, we propose an approach to incrementally
compute the synthesis space, which is presented in Section 4.2.

4.2 Fast Incremental Computation of the Synthesis Space

The research goal posed in Section 4.1 has three conditions. First, the calculation of
the synthesis space in a fast-enough way. Second, a guarantee that any sound free-
choice workflow net can be generated. Third, a guarantee that only sound free-choice
workflow nets can be generated.

The synthesis space, in a way, directly address the latter two conditions. That
is, by the definition of the synthesis space, it contains precisely all sound free-choice
workflow nets.

If we take a step back, then we can observe that, to a large extent, SS(W ′) equals
SS(W ). We will exploit this fact in our approach by saving the computation time on
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Figure 4.1: Rectangles indicate objects, whereas rounded-rectangles indicate actions. The In-
cremental Synthesis Structure (ISS) corresponding to the initial net is calculated in
a brute-force way. ISS contains all the possible linear dependencies that could be
added to a net resulting in sound free-choice workflow nets, among others. The
linear dependencies that result in sound free-choice workflow nets are extracted to
populate the synthesis space. Upon selecting a net from the synthesis space, the
ISS is updated corresponding to the selected net.

the part where both coincide, and only explore the differences between them. The
synthesis space, is generated from the synthesis rules.

In order to address the first condition posed in the research question, we investi-
gate the synthesis rules. Informally speaking, the synthesis rules can be categorized
into two categories, local rules and non-local rules.

A rule is considered local if, in order to check the conditions of its application,
only the neighborhood of the intended point of application needs to be examined.
ψW F

A is an example of a local rule, as in order to add a new (non-existing) transition
t and a new (non-existing) place p to a sound free-choice workflow net W = (P,T,F, i ,
o,>,⊥), it suffices to check for a non-empty set of transitions R and a non-empty set
of places S which satisfy the condition R ×S ⊆ F . It is quite straight-forward to note
that the applicability of such local rules can be checked online (fast enough way) in
an interactive setting, i.e., by checking the neighbors for the presence of arcs between
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the set of transitions R and the set of places S.
On the contrary, a rule is considered non-local if it requires an analysis of the

complete free-choice workflow net in order to check its applicability. ψW F
P and ψW F

T
are examples of non-local rules. For example, in order to check if a new place can
be added to a sound free-choice workflow net, we need to find if the place is linearly
dependent on the entire free-choice workflow net. In other words, it is not (always)
possible to check if a rule is applicable by just looking at its neighbors.

Intuitively, it is evident that the synthesis space of local rules can be computed in
an efficient way. However, the computation of the synthesis space for non-local rules
can be time-consuming. In essence, for every candidate place (transition), we have
to check its linear dependence on the entire free-choice workflow net.

In a brute-force approach, we do the following:

• Generate all possible place (transition) candidates.

• Check for the linear dependence of each place (transition) on the free-choice
workflow net.

Clearly, it is computationally expensive to compute the synthesis space from scra-
tch, especially for non-local rules (i.e., linearly dependent rules). In order to over-
come this limitation of the brute-force, we introduce an intermediary structure, called
the Incremental Synthesis Structure, which is used to extract the synthesis space for
the non-local rules. After choosing any net from the synthesis space, the incremen-
tal synthesis structure is updated (instead of computing from scratch) to contain the
information required to extract the synthesis space corresponding to the new net.

Figure 4.1 provides an overview of our approach. Incremental Synthesis Struc-
ture, Extract Synthesis Space and Calculate I SS(W ) from Figure 4.1 are the main
focus areas of this chapter, which essentially replace the phase of recomputing the
synthesis space in a brute-force approach. We begin by discussing and formally defi-
ning the incremental synthesis structure in Section 4.3. This is followed by the discus-
sion and proof that given an incremental synthesis structure corresponding to a sound
free-choice workflow net, we can extract the synthesis space from it in Section 4.4.
We then show how the incremental synthesis structure can be updated after choo-
sing a net from the synthesis space, in order to derive the new incremental synthesis
structure corresponding to the newly synthesized net in Section 4.5. It should be no-
ted that by showing that the incremental synthesis structure is correct and complete
corresponding to the newly synthesized net, using Section 4.4 it can also be shown
that the synthesis space can be extracted from the incremental synthesis structure
corresponding to the newly synthesized net.

4.3 Incremental Synthesis Structure

Before discussing the incremental synthesis structure formally, we first give an intui-
tion of what it contains, and how it functions. In essence, the incremental synthesis
structure is used to extract the synthesis space corresponding to a given net, as well
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Figure 4.2: Examples demonstrating candidates of incremental synthesis structure.

as to extract the synthesis spaces of possible future nets derived from the current net.
An incremental synthesis structure contains sets TT and PP, wherein TT contains all
the possible applications of ψW F

T rule and PP contains all the possible applications of
ψW F

P rule corresponding to a sound free-choice workflow net. Furthermore, both TT
and PP contain some additional information which may not be useful imminently. TT
and PP are divided into two parts as follows:

TT = t ta t tb PP = ppa ppb
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The first part ppa (t ta) of the incremental synthesis structure contains the infor-
mation for extracting possible candidates that result in free-choice constructs only.
Loosely speaking, ppa (t ta) contains the information to extract all the candidate no-
des which can be added to a sound free-choice workflow net using ψW F

P (ψW F
T ). For

example, Figure 4.2a and Figure 4.2b show nodes r1 and c1, which belong to ppa and
t ta resp. It is clear that both r1 and c1 result in free-choice constructs.

The second part of incremental synthesis structure, i.e., ppb and t tb , contain the
information about the candidates which may result in non-free-choice net constructs.
Loosely speaking, ppb and t tb contain the information for extracting the nodes which
are not applicable directly, but are required for extracting the applications of ψW F

P
and ψW F

T rules in the future, after the possible usage of the ψW F
A rule. The intuition

behind this mechanism is shown in Figure 4.3. The transition t n and the place pn

cannot be used directly as they result in non-free-choice constructs. However, after
the application of ψW F

A rule to add pa and ta , we can use t n and pn to derive t n+1

and pn+1, which result in free-choice constructs. Consider the transition c2 from
Figure 4.2c. Clearly, adding c2 would result in a non-free-choice net. However, it
should be noted that it is possible to use ψW F

A rule between a set of transitions ({t1})
and all the inputs of c2 ({p2, p6}). The resulting net after using such a ψW F

A rule is
shown in Figure 4.2d. After using such a ψW F

A rule, we can then use c2 to extract
a new possible candidate c ′2 corresponding to the newly synthesized net. Clearly, c ′2
results in a free-choice construct, and hence can be added using ψW F

T rule.
Figure 4.4b shows an example candidate c3 which is not a part of either t ta or

t tb . This is because c3 results in non-free-choice net construct. Furthermore, it is also
not possible to use the ψW F

A between any set of transitions and the inputs of c3, i.e.,
{p2, p5}.

We now define the incremental synthesis structure formally. By re-visiting the de-
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Figure 4.3: How the abstraction rule can be used to extract ‘free-choice’ candidates from ‘non-
free-choice’ candidates. ta and pa are the newly added nodes using ψW F

A . The
candidates tn and pn that resulted in non-free-choice net constructs, can be used
to extract free-choice net candidates tn+1 and pn+1 after the usage of ψW F

A . In
other words, we need tn (pn) to incrementally derive tn+1 (pn+1), i.e., without the
former, we do not have the latter.
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Figure 4.4: Example showing how a single vector can result in multiple candidates in the in-
cremental synthesis structure, and an invalid vector that cannot be a part of the
incremental synthesis structure.

finition of linearly dependent nodes (Definition 26), we know that a node is linearly
dependent on a free-choice workflow net, if its corresponding vector representation is
linearly dependent on the incidence matrix of the short-circuited free-choice workflow
net. In the incremental synthesis structure, instead of dealing directly with candidate
places or transitions, we deal with candidate place vectors and candidate transition
vectors. These vectors can then be used to generate the candidate place and tran-
sition nodes respectively. In essence, the candidate vector indicates the input and
output nodes of the candidate node in a free-choice workflow net. We now define the
approach to extract a set of pairs from a vector, where each pair contain a set of input
nodes and a set of output nodes, of a possible candidate node.

Definition 31 (Input/output node sets from a vector). Let W = (P,T,F, i ,o,>,⊥) be a
free-choice workflow net, and let c :SC P → {−1,0,1} be a |SC P |-dimensional vector (Defi-
nition 27). Let P k = {s ∈ P | c(s) = k}. Then the set of input/output places for c, denoted
as N(c), is defined as follows:

N(c) = {(PI ,PO) | PI = P−1 ∪X ∧PO = P 1 ∪X ∧X ⊆ P 0}.
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Basically, if we would have a linearly dependent candidate transition t such that • t =
PI and t •= PO , then t = c. Thus, N(c) gives us all possible matching combinations of pre-
sets and postsets, as P−1 =•t \ t • ,P 1 = t • \ •t ,P 0 =•t ∩ t • . Similarly, let r : T → {−1,0,1}
be a |T |-dimensional vector. Let T k = {q ∈ T | r(q) = k}. Then the sets of input/output
transitions for r, denoted as N(r), is defined as follows:

N(r) = {(TI ,TO) | TI = T 1 ∪X ∧TO = T −1 ∪X ∧X ⊆ T 0}.

In Definition 31 a single vector can result in multiple pairs of input and output
node sets, depending on the number of zero’s.

For example, consider a vector c2 from Figure 4.5. Let us ignore the background

i
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t1
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p6

t2

t4

p3

p5

t3 p1

⊥

> t1 t2 t3 t4 ⊥ c0 c1 c2 c3 · · ·
i -1 0 0 0 0 1 0 0 0 0 · · ·

p1 0 0 0 1 0 -1 0 1 1 1 · · ·
p2 0 1 -1 0 0 0 0 0 -1 -1 · · ·
p3 0 0 1 -1 0 0 0 -1 0 0 · · ·
p4 1 -1 0 0 0 0 0 0 0 0 · · ·
p5 0 0 0 -1 1 0 0 -1 0 -1 · · ·
p6 0 1 0 0 -1 0 0 0 -1 0 · · ·

r1 0 1 0 -1 0 0
...

...
...

...
...

...
...

Figure 4.5: Example short-circuited free-choice workflow net and corresponding incidence ma-
trix. c0, c1, c2 and r1 are valid ISS vectors, whereas c3 is not a valid ISS vector (see
Figure 4.2)
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color of each pair for the time being. From Definition 31, we have

N(c2) =



({p2, p6}, {p1}) ,

({p2, p6, i }, {p1, i }) ,

({p2, p6, p4}, {p1, p4}) ,

({p2, p6, p3}, {p1, p3}) ,

({p2, p6, p5}, {p1, p5}) ,

({p2, p6, i , p4}, {p1, i , p4}) ,

({p2, p6, i , p3}, {p1, i , p3}) ,

. . .



.

Basically, for t ta we are interested in those (PI ,PO) ∈N(c2) for which some tran-
sition t exists, such that • t = PI (to ensure that the net remains free-choice). For
t tb , something similar holds (see Definition 32). Similarly, for the vector r1 from
Figure 4.5, we have

N(r1) =



({t1}, {t3}) ,

({t1,>}, {t3,>}) ,

({t1, t2}, {t3, t2}) ,

({t1, t4}, {t3, t4}) ,

({t1, t5}, {t3, t5}) ,

({t1,⊥}, {t3,⊥}) ,
. . .


.

For a single candidate vector, there might be multiple input and output nodes
possible, which result in free-choice constructs. For example, Figure 4.4a shows the
different possible candidate nodes extracted from the vector c0 of Figure 4.5. Having
linked the vectors to possible input and output node sets, we now define the so-called
valid ISS vector.

Definition 32 (Valid ISS vectors). Let W = (P,T,F, i ,o,>,⊥) be a sound free-choice work-
flow net. A |SC P |-dimensional vector c :SC P →Z is called a valid ISS column vector in W
iff

1. c :SC P → {−1,0,1} and c is linearly dependent on the columns of SC(W), where
SC(W) is the incidence matrix of SC (W ), and

2. ∃(PI ,PO) ∈N(c)∧ i ∉ PI ∪PO , such that either,

(a) ∃q∈T •q = PI ∧PI ,PO 6= ;, cf. t ta or

(b) ∃R⊆T R ×PI ⊆ F ∧R 6= ; cf. t tb

Similarly, a |T |-dimensional vector r : T →Z is called a valid ISS row vector in W , iff

1. r : T → {−1,0,1} and r is linearly dependent on the rows of SC(W),
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2. ∃(TI ,TO) ∈N(r) such that either,

(a) ∃s∈P s•= TO ∧TI ,TO 6= ; cf. ppa or

(b) ∃S⊆P TO ×S ⊆ F ∧S 6= ; cf. ppb

The condition (2)(a) of valid ISS vectors from the definition above ensures that
the candidate results in free-choice net constructs cf. t ta and ppa , whereas condition
(2)(b) of valid ISS vectors above ensures that it is possible to use ψW F

A rule cf. t tb and
ppb , and thereby the candidate can come into picture at a later point. Furthermore,
since we consider the short-circuited version of the net, place o is excluded from the
condition (2) of valid ISS column vector above.

Let us look at a couple of examples to demonstrate Definition 32. Consider the
vector r1 from Figure 4.5. Let us compare this vector with the conditions from Defi-
nition 32:

1. r1 is linearly dependent on the incidence matrix as shown in Figure 4.5, as r1 =
p2 + p3. Hence r1 satisfies the condition (1) of Definition 32.

2. Consider the first pair of sets in N(r1), TI = {t1}, TO = {t3}. Furthermore,

(a) p3 ∈ P , p3•= TO = {t3}. Hence condition (2)(a) of Definition 32 is satisfied.

As r1 satisfies condition (1) and (2)(a) of Definition 32, r1 is a valid ISS row vector.
Similarly, consider the vector c2 from Figure 4.5. Let us again compare this vector

with the conditions from Definition 32:

1. c2 is linearly dependent on the incidence matrix as shown in Figure 4.5, as c2

= t2 + t3 + t4. Hence c2 satisfies the condition (1) of Definition 32.

2. Consider the first pair of sets in N(c2), PI = {p2, p6}, PO = {p1}.

(a) There does not exist any transition which has both p2 and p6 as the input.
Hence, condition (2)(a) of Definition 32 is violated by c2.

i

>

p1

⊥

(a) Short-circuited version of initial free-
choice workflow net.

> ⊥ c1
1 c1

2 c1
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i -1 1 0 -1 1
p1 1 -1 0 1 -1

r1
1 0 0

r1
2 1 -1

r1
3 -1 1

(b) Incidence matrix and the incremen-
tal synthesis structure corresponding
to initial free-choice workflow net.

Figure 4.6: Initial free-choice workflow net and its corresponding incremental synthesis struc-
ture.
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Figure 4.7: Candidate places and transitions corresponding to initial valid ISS vectors.

(b) R = {t1} ⊆ T ∧R ×PI ⊆ F ∧R 6= ;. Hence, condition (2)(b) of Definition 32 is
satisfied by c2.

As c2 satisfies condition (1) and condition (2)(b) of Definition 32, c2 is a valid ISS
column vector.

Having defined valid ISS vectors, we now define the incremental synthesis struc-
ture.

Definition 33 (Incremental Synthesis Structure (ISS)). Let W = (P,T,F, i ,o,>,⊥) be a
sound free-choice workflow net. The incremental synthesis structure is a tuple I SS(W ) =
(TT,PP), where:

1. TT is a set of vectors, such that c ∈ TT iff c is a valid ISS column vector in W .

2. PP is a set of vectors, such that r ∈ PP iff r is a valid ISS row vector in W .

It should be noted that all the valid ISS vectors are a part of the incremental
synthesis structure, according to Definition 33.

We now discuss the valid ISS vectors corresponding to the initial free-choice work-
flow net. The valid ISS vectors corresponding to the initial free-choice workflow net
are shown in Figure 4.6b. It can be trivially verified that valid ISS vectors of the
initial free-choice workflow net are correct and complete according to Definition 33.
Figure 4.7 shows the possible applications of candidate places and transitions derived
using Definition 31 based on the vectors from Figure 4.6b.

Having discussed the incremental synthesis structure, Section 4.4 discusses how it
can be used to extract the synthesis space.
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4.4 Extracting the Synthesis Space from the Incremen-
tal Synthesis Structure

In this section, we discuss how the incremental synthesis structure can be used to
extract the synthesis space of a sound free-choice workflow net.

Lemma 1. Let W = (P,T,F, i ,o,>,⊥) be a sound free-choice workflow net, let I SS(W ) =
(TT,PP) and let W ′ = (P ′,T ′,F ′, i ,o,>,⊥) be such that (W,W ′) ∈ ψW F

T and T ′ \ T = {t }.
Then t ∈ TT.

Similarly, let W = (P,T,F, i ,o,>,⊥) be a sound free-choice workflow net, let I SS(W ) =
(TT,PP) and let W ′ = (P ′′,T ′′,F ′′, i ,o,>,⊥) be such that (W,W ′′) ∈ψW F

P and P ′′ \ P = {p}.
Then p ∈ PP.

Proof. We need to show that t is a valid ISS column vector in W . By construction of
ψW F

T , we know that:

1. t → {−1,0,1} and t is linearly dependent on the columns of SC(W). Therefore t
satisfies the condition (1) of valid ISS column vector in W .

2. Let PI =W ′
• t ∧PO = t

W ′
• . As SC (W ′) is a short-circuited version of a sound free-

choice workflow net, it is strongly connected. Hence, PI ,PO 6= ;. Moreover,
since PI ⊆ P,P ′ and W and W ′ are free-choice nets, ∃q ∈ T

W• q = PI . Further-
more, using Definition 31, we know that (PI ,PO) ∈N(t). Therefore, t satisfies
the condition (2)(a) of valid ISS column vector in W .

Since t satisfies conditions (1) and (2)(a) of valid ISS column vector in W , it must
be already present in TT. Thus, using the vector t from TT, we can extract a part
(PI ,PO), which can be used to add the transition t in the net W to obtain W ′.

The proof for the ψW F
P rule is symmetrical. However, it should be noted that in

the case of ψW F
P rule, there is an additional check required to verify the absence of

siphons in a free-choice workflow net. In essence, PP also contains candidates that
could result in unsound free-choice workflow nets due to the introduction of siphons;
these are the candidates which result in well-formed free-choice nets, but not sound
free-choice workflow nets. Hence, during the extraction of the synthesis space we
need to consider only those candidates which do not result in siphons (without i) in
the sound free-choice workflow net.

From Lemma 1, it can thus be shown that the synthesis space spanned by the ψW F
P

and ψW F
T rules can be extracted using the incremental synthesis structure. It should

be noted that a single valid ISS vector can result in multiple valid candidate nodes in
the net, and hence can result in multiple applications of a rule. This is evident from
Definition 31. For example, consider the valid ISS column vector c1

1 from Figure 4.6b.
There can be two transitions corresponding to c1

1 as shown in Figure 4.7a. However,
it should be noted that the candidates which have the place i as its input or output,
would not be used, as the resulting construct would not be a workflow net. We
primarily keep such vectors (along with the vectors which result in siphons in the
case of a valid ISS row vector), to keep TT and PP symmetrical.
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Note that the aim is to derive SST (W ) and SSP (W ) from I SS(W ) in an efficient
way, such that response times are minimized during editing. In most practical ci-
rcumstances, we can investigate the net in order to extract only those candidates
from TT (PP), which could result in free-choice constructs. That is, while populating
N(c) corresponding to a vector c, we consider only those nodes that would result in
free-choice constructs, as non-free-choice constructs would not be a part of SST (W )
(SSP (W )). In other words, we would only explore the t ta (ppa) candidates from TT
(PP), thereby speeding-up the process of extracting valid candidates.

We argue that the incremental synthesis structure can be incrementally updated
after usage of a synthesis rule, which can then be used to obtain the synthesis space
corresponding to the synthesized free-choice workflow net. The incremental synthesis
structure corresponding to the initial net W0 from Figure 4.6a is shown in Figure 4.6b.
In the following sections we discuss how the incremental synthesis structure is upda-
ted after the usage of each synthesis rule.

4.5 Updates to the Incremental Synthesis Structure

In the following sections, we discuss the changes to the incremental synthesis struc-
ture after selecting a net (application of a rule) from the synthesis space. Further-
more, we prove that the changes made are necessary and sufficient to derive the new
incremental synthesis structure corresponding to the new net.

In Section 4.4 it was already shown that we can efficiently compute the synt-
hesis space by using the incremental synthesis structure corresponding to a sound
free-choice workflow net. Hence, in this section, we only show that the incremental
synthesis structure updated after selecting a net from the synthesis space is correct
and complete according to Definition 33, and can be done efficiently for nets above
100 nodes or so.

We know that choosing a free-choice workflow net from the synthesis space links
to the application of a synthesis rule to a free-choice workflow net. The usage of a
synthesis rule on a free-choice workflow net leads to the addition of a new transition
and/or new place to the free-choice workflow net. Since the incidence matrix is ex-
tended after the application of a synthesis rule, we need to extend the corresponding
vectors from the incremental synthesis structure with one dimension corresponding
to the newly added node. In order to do so, we first define extending a vector as
follows.

Definition 34 (Vector extension v|e := k). Let v : A → Q be an n-dimensional vector,
such that e ∉ A∧|A| = n. Then v|e := k : A∪ {e} →Q is an (n +1)-dimensional vector such
that:

v|e := k(a) =
{

v(a), if a ∈ A;
k, otherwise (i.e., a = e)

We now discuss the updates to the incremental synthesis structure, after the ap-
plication of each type of synthesis rule. We argue that starting with the initial incre-
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mental synthesis structure, we can incrementally update the incremental synthesis
structure corresponding to any synthesized net.

4.5.1 Updates after the Linearly Dependent Place and Transition
Rules

In this section, we discuss the updates in the incremental synthesis structure after the
usage of linearly dependent rules. We begin with the ψW F

P rule. We first define an
intermediary structure denoted by I SSP (W ′), followed by the proof that I SSP (W ′) =
I SS(W ′).

Definition 35 (I SSP (W )). Let W = (P,T,F, i ,o,>,⊥) and W ′ = (P ′,T ′,F ′, i ,o,>,⊥) be
two sound free-choice workflow nets, where (W,W ′) ∈ ψW F

P and {p} = P ′ \ P . Let λ be
such that λ ·SC (W) = p. As (W,W ′) ∈ ψW F

P , such a λ exists. Let I SS (W ) = (TT,PP) be
the incremental synthesis structure of W . Then we can extract a structure I SSP (W ) =
(PPP ,TTP ) as follows:

– PPP = PP

– TTP =⋃
c∈TT ft (c) where,

ft (c) =
{

{c|p :=λ ·c}, if c|p :=λ ·c is a valid ISS column vector in W ′
;, otherwise

We now show that the intermediary structure defined in Definition 35 is the same
as the incremental synthesis structure of the newly synthesized net.

Theorem 10 (Incremental Synthesis Structure after ψW F
P ). Let W = (P,T,F, i ,o,>,⊥)

and W ′ = (P ′,T ′,F ′, i ,o,>,⊥) be two sound free-choice workflow nets, where (W,W ′) ∈
ψW F

P and {p} = P ′ \ P . Let λ be such that λ · SC (W) = p. As (W,W ′) ∈ ψW F
P , such a

λ exists. Let I SS (W ) = (TT,PP) be the incremental synthesis structure of W and let
I SSP (W ) = (PPP ,TTP ) be intermediary structure as defined in Definition 35. Then, the
incremental synthesis structure of W ′ I SS (W ′) = (TT′,PP′) = I SSP (W ), i.e., PP′ = PPP

and TT′ = TTP .

Proof. We show that Definition 35 is correct and complete separately for PP′ = PPP

and TT′ = TTP .

PP′ Since p is linearly dependent on the rows of SC(W), the ranks of SC(W) and
SC(W′) are the same. Since the rank is unchanged, there cannot be any new
linear combinations possible. Since, there are no new transitions added, it can
be trivially verified that all the elements of PP are valid as-is in the new net W ′,
i.e., PP = PPP = PP′ .

TT′ As p is linearly dependent on the rows of SC(W), the rank is not changed, and no
new linear combinations are possible. However, since there is a newly added
row, all the vectors from TT need to be extended corresponding to the row of
the newly added place p. In Definition 35, for a vector c this value is chosen to
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i

>

p1

⊥

p

(a) Short-circuited version of initial free-
choice workflow net net, with the ne-
wly added place p using ψW F

P .

> ⊥ c1
1 c1

2 c1
3

i -1 1 0 -1 1
p1 1 -1 0 1 -1
p 1 -1 0 1 -1

r1
1 0 0

r1
2 1 -1

r1
3 -1 1

(b) Incidence matrix SC (W) and the incre-
mental synthesis structure correspon-
ding to 4.8a.

Figure 4.8: Theorem 10 in action after using ψW F
P to add a place p. For example, λ ·SC (W) = p,

such that λ(i ) = 0∧λ(p4) = 1 .

be λ·c (or that vector is discarded). We now show that this is indeed the correct
value. Without loss of generality, let us assume that p is the last row of SC(W′):

SC (W′) =
(

SC (W)
λ ·SC (W)

)
as p =λ ·SC (W) (4.1)

Let c ∈ TT. We know that c is linearly dependent on the columns of SC(W), i.e.,
for some µ it holds that c = SC (W) ·µ
We can obtain a corresponding vector which is linearly dependent on the co-
lumns of SC(W′) as: SC (W′) ·µ. If we extend SC(W′) with such a vector as the
last column, then we get

(
SC (W′) SC (W′) ·µ)

. From Equation 4.1, we have

(
SC (W) SC (W) ·µ
λ ·SC (W) λ ·SC (W) ·µ

)
=

(
SC (W) c
λ ·SC (W) λ ·c

)
, as we know that SC (W) ·µ= c

Therefore, for c to be linearly dependent in SC(W′) the value of the row cor-
responding to the newly added place should be λ · c. This is exactly what is
done in Definition 35. This is irrespective of the λ chosen. For instance, consi-
der two vectors λ1 and λ2 such that λ1 ·SC (W) = p = λ2 ·SC (W)∧λ1 6= λ2. Then
λ1 · tt =λ2 ·c :λ1 ·c =λ1 ·SC (W) ·µ= p ·µ=λ2 ·SC (W) ·µ=λ2 ·c.

Figure 4.8 shows the updates to the initial free-choice workflow net and its inci-
dence matrix after adding a new linearly dependent place p using ψW F

P . This newly
added place corresponds to the vector r1

2 as highlighted in Figure 4.8b. As evident,
there are no new valid ISS row vectors possible. Furthermore, the valid ISS column
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vectors now contain a value corresponding to the newly added place. Figure 4.8b
shows the values corresponding to the newly added place based on Definition 35 and
Theorem 10. All the possible nodes based on the incremental synthesis structure of
Figure 4.8b are shown in Figure 4.9.

In a similar fashion, the incremental synthesis structure can be updated after the
usage of ψW F

T . We first define an intermediary structure I SST (W ) as follows.

Definition 36 (I SST (W )). Let W = (P,T,F, i ,o,>,⊥) and W ′ = (P ′,T ′,F ′, i ,o,>,⊥) be two
sound free-choice workflow nets, where (W,W ′) ∈ψW F

T , where {t } = T ′ \ T . Let µ be such
that SC (W) ·µ = t. As (W,W ′) ∈ ψW F

T , such a µ exists. Let I SS(W ) = (TT,PP) be the
incremental synthesis structure corresponding to the net W . Then we can extract an
intermediary structure I SST (W ) = (PPT ,TTT ), where:

– TTT = TT

– PPT =⋃
r∈PP fp (r) where,

fp (r) =
{

r|t := r ·µ, if r|t := r ·µ is a valid ISS column vector in W ′
;, otherwise

We now show that the incremental synthesis structure corresponding to the newly
synthesized net after the usage of ψW F

T rule is the same as the intermediary structure
of Definition 36.

Theorem 11 (Incremental Synthesis Structure after ψW F
T ). Let W = (P,T,F, i ,o,>,⊥)

and W ′ = (P ′,T ′,F ′, i ,o,>,⊥) be two sound free-choice workflow nets, where (W,W ′) ∈

i

>

p1

⊥

p

1c1
1

2c1
1

c1
2 c1

3

3c1
1 4c1

1

(a) Transitions derived from possible valid
ISS column vectors of Figure 4.8.

i

>

p1

⊥

p

r 1
2

r 1
3

1r 1
12r 1

1

(b) Places derived from possible valid ISS
row vectors of Figure 4.8.

Figure 4.9: Candidate places and transitions corresponding to Figure 4.8. Note that although
we now have more candidate nodes, the number of valid ISS vectors did not incre-
ase.



4.5. UPDATES TO THE INCREMENTAL SYNTHESIS STRUCTURE 69

ψW F
T . Let I SS (W ) and I SS (W ′) be the incremental synthesis structures corresponding to

W and W ′ resp. Let I SST (W ) be the intermediary structure extracted using Definition 36.
Then I SST (W ) = I SS (W ′).

Proof. The proof is symmetrical to the proof of Theorem 10.

Theorem 10 and Theorem 11 show that the incremental synthesis structure (De-
finition 33) can be correctly and completely computed after the usage of ψW F

P and
ψW F

T rules. Therefore, using Section 4.4 we can also say that the synthesis space can
be correctly and completely extracted after the usage of ψW F

P and ψW F
T rules.

It should be noted that, the incremental synthesis structure can not increase in
size (i.e., only reduce or stay the same), after the usage of ψW F

P and ψW F
T rules. That

is, no new candidate vectors are added to the incremental synthesis structure after
the usage of ψW F

P and ψW F
T rules. In the next sub-section, we discuss the updates to

the incremental synthesis structure after the usage of ψW F
A rule.

4.5.2 Updates after the Abstraction Rule

Following the updates to the incremental synthesis structure after the usage of ψW F
P

and ψW F
T rules, we now discuss the approach used for extracting the incremental

synthesis structure after the usage of ψW F
A rule.

Before that, we present a few lemmata, which are used to support the theorem
for extracting the incremental synthesis structure after the usage of ψW F

A . We begin
by discussing the effect on linear dependencies of valid ISS vectors after the usage of
the ψW F

A rule.

Lemma 2. Let W = (P,T,F, i ,o,>,⊥) and W ′ = (P ′,T ′,F ′, i ,o,>,⊥) be two sound free-
choice workflow nets, such that (W,W ′) ∈ψW F

A , {p} = P ′ \P and {t } = T ′ \T . Let a vector c′
be linearly dependent on the columns of SC(W′), such that c′(p) = 0. Consider a vector
c, such that c′ = c|p := 0. Then c is linearly dependent on the columns of SC(W) iff c′ is
linearly dependent on the columns of SC(W′).

Proof. Without loss of generality, if we assume that the last row of SC(W′) corresponds
to p and the last column of SC(W′) corresponds to t , then from [58] (pg. 139), SC(W′)
can be decomposed such that: SC (W′) = Ñ · A−1 where

Ñ =
(
SC (W) B
0. . .0 −1

)
where

(
B
−1

)
is the last column of SC(W′)

and A−1 is a T ×T matrix, such that: A−1[u, v] =


1 if u = v

−1 if u = t ∧ v ∈W ′
• p

0 otherwise

=> If c′ is linearly dependent, we have c′ = SC (W′) ·µ. Therefore, c′ = Ñ · A−1 ·µ= Ñ ·γ,
where γ= A−1 ·µ . We can re-write this as:(

c′′
0

)
=

(
SC (W) B
0. . .0 −1

)
·
(

Y
γ(p)

)
where γ=

(
Y

γ(p)

)
∧c′ =

(
c′′
0

)
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From above, we have γ(p) = 0. Since γ(p) = 0 and c′(p) = 0 we have:

c′′ = SC (W) ·Y

Hence, the vector c′′ = c is linearly dependent on the columns of SC(W).

<= Similarly, by following the steps above in reverse, we can show that if c is linearly
dependent on the columns of SC(W), then c|p := 0 is linearly dependent on the
columns of SC(W′).

A similar argument can be made about the valid ISS row vectors, using Lemma 2
symmetrically. Figure 4.10 shows a demonstration of Lemma 2. In Figure 4.10a, we
have c2 = t2+t3+t4. After applying the ψW F

A rule in Figure 4.10b, it is easy to see that
c2 remains a valid ISS column vector, as c2 = t2 + t3 + t4.

i

>

p4

t1

p2

p6

t2

t4

p3

p5

t3 p1

⊥

c2

> t1 t2 t3 t4 ⊥ c2

i -1 0 0 0 0 1 0
p4 1 -1 0 0 0 0 0
p2 0 1 -1 0 0 0 -1
p3 0 0 1 -1 0 0 0
p1 0 0 0 1 0 -1 1
p5 0 0 0 -1 1 0 0
p6 0 1 0 0 -1 0 -1

(a) Example of a sound free-choice work-
flow net and corresponding incidence
matrix. c2 is a valid ISS column vector.

i

>

p4

t1 p t

p2

p6

t2

t4

p3

p5

t3 p1

⊥

c2

> t1 t2 t3 t4 ⊥ t c2

i -1 0 0 0 0 1 0 0
p4 1 -1 0 0 0 0 0 0
p2 0 0 -1 0 0 0 1 -1
p3 0 0 1 -1 0 0 0 0
p1 0 0 0 1 0 -1 0 1
p5 0 0 0 -1 1 0 0 0
p6 0 0 0 0 -1 0 1 -1
p 0 1 0 0 0 0 -1 0

(b) After using ψW F
A . The extended version

of c2 remains a valid ISS column vector,
such that the value corresponding to ne-
wly added place p is 0.

Figure 4.10: Example of Lemma 2, after application of ψW F
A rule.
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We now show how free-choice constructs from valid ISS vectors (cf. t ta and ppa)
can be extracted using the non-free-choice constructs of valid ISS vectors (cf. t tb and
ppb) after usage of the ψW F

A rule.

Lemma 3. Let W be a sound free-choice workflow net, let c be a valid ISS column vector
in W satisfying condition (1) of Definition 32. Let (PI ,PO) ∈N(c), and let R ⊆ T be such

that R ×PI ⊆ F ∧R 6= ;. Let (W,W ′) ∈ψW F
A , such that {t } = T ′ \ T ∧ {p} = P ′ \ P ∧ t

W ′
• = PI .

Then c|p := 0+t is a valid ISS column vector in W ′, and the pair ({p},PO) ∈N(c|p := 0+ t)
satisfies the condition (2)(a) of Definition 32.

Proof. By construction of ψW F
A , we know the values of the column vector correspon-

ding to t in SC(W′) are: t(s) =


−1, if s = p
1, if s ∈ PI

0, otherwise
As c is linearly dependent on the columns of SC (W), from Lemma 2, we know that

a vector c|p := 0 is linearly dependent on the columns of SC (W′), and hence a vector
c′ = c|p := 0+ t is also linearly dependent on columns of SC (W′). The values of such a
vector c′ are as follows:

c′(s) =


0, when s ∈ PI \ PO as c|p := 0s =−1 ∧ t(s) = 1
1, when s ∈ PO \ PI as c|p := 0s = 1 ∧ t(s) = 0
1, when s ∈ PI ∩PO as c|p := 0s = 0 ∧ t(s) = 1

−1, when s = p as c|p := 0s = 0 ∧ t(s) =−1
0, otherwise as c|p := 0s = 0 ∧ t(s) = 0

i

>

p4

t1 p t

p2

p6

t2

t4

p3

p5

t3 p1

⊥

c2

c ′2

> t1 t2 t3 t4 ⊥ t c2 c′2
i -1 0 0 0 0 1 0 0 0

p4 1 -1 0 0 0 0 0 0 0
p2 0 0 -1 0 0 0 1 -1 0
p3 0 0 1 -1 0 0 0 0 0
p1 0 0 0 1 0 -1 0 1 1
p5 0 0 0 -1 1 0 0 0 0
p6 0 0 0 0 -1 0 1 -1 0
p 0 1 0 0 0 0 -1 0 -1

Figure 4.11: Example illustrating Lemma 3. c2 is a valid ISS row vector in the net before using
ψW F

A (i.e., Figure 4.10a), and ({p2, p6}, {p1}) ∈N(c2). c ′2 is a valid ISS row vector,
where c′2 = c2 + t and ({p}, {p1}) ∈N(c′2).
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As c′ :SC P ′ → {−1,0,1} and c′ is linearly dependent on the columns of SC (W′), it satisfies
condition (1) of Definition 32. We have a pair (P̃I , P̃O) ∈N(c′), such that P̃I = {p} and

P̃O = PO . Since W ′
• t = P̃I , c′ is valid according to condition (2)(a) of Definition 32 for

the pair ({p},PO).

A similar argument can be made about a row vector which is valid according to
condition (2)(b) of Definition 32. Figure 4.11 shows an example of Lemma 3.

Lemma 4. Let W = (P,T,F, i ,o,>,⊥) be a sound free-choice workflow net. Let (W,W ′) ∈
ψW F

A such that {p} = P ′ \ P ∧ {t } = T ′ \ T , and let W ′
• p = R ∧ t

W ′
• = S. Let c′ be a valid ISS

column vector in the net W ′. Let (PI ,PO) ∈N(c′) which satisfies either condition (2)(a)
or (2)(b) of Definition 32. Then, p ∈ PI =⇒ S ∩PI =;, and p ∈ PO =⇒ S ∩PO =;.

Proof. The crux of this proof lies in the fact that well-formedness implies S-coverability
in a short-circuited well-formed free-choice workflow net. As a result, all synthesis
rules preserve S-coverability. For both condition (2)(a) and condition (2)(b) (with
Lemma 3) from Definition 32, it can be shown that any S-component covering a place

p1

p2

p3

q1

q2

q3

s1

s2

s3

t1

t2

t3

(a) Fragment of a sound free-choice workflow
net. ψW F

A can be used between {q1, q2, q3}
and {s1, s2}.

p1

p2

p3

q1

q2

q3

pa ta
s2

s1

s3

t1

t2

t3

(b) Fragment from 4.12a after using ψW F
A to

add pa and ta .

p1

p2

p3

q1

q2

q3

pa ta
s2

s1

s3

t1

t2

t3

t ′

(c) Fragment of 4.12b after using ψW F
T to add

t ′ with some input, and output {pa , s2}. No
S-component covers s2.

Figure 4.12: Example demonstrating Lemma 4.
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s ∈ S also has to cover the place p. Adding a transition which has both s and p as
inputs (outputs), would necessarily break all S-components involving the place s, le-
aving s uncovered. As a result, if p is an input (output) of a transition to be added,
then s can not be an input (output) of this transition as well (see Figure 4.12).

Using T-coverability, we can prove a similar theorem for R and t . Lemmata 2-
4 which are related to the usage of ψW F

A and the discussions on the impact of the
incremental synthesis structure allows us to formulate the theorem for updating the
prior elements and creating new elements in the incremental synthesis structure after
the usage of ψW F

A .
We begin by first defining an intermediary structure I SS A (W ).

Definition 37 (I SS A (W )). Let W = (P,T,F, i ,o,>,⊥) and W ′ = (P ′,T ′,F ′, i ,o,>,⊥) be two
sound free-choice workflow nets, such that (W,W ′) ∈ψW F

A . Let {p} = P ′ \ P ∧ {t } = T ′ \ T .

Let W ′
• p = R ∧ t

W ′
• = S. Let I SS(W ) = (TT,PP) be the incremental synthesis structure cor-

responding to W . Then we can extract an intermediary structure I SS A (W ) = (PPA ,TTA),
where

– TTA =⋃
c∈TT fa(c) where,

fa(c) =
{c|p := 0 | c|p := 0 is a valid ISS column vector in W ′ } ∪
{c|p := 0+ t | c|p := 0+ t is a valid ISS column vector in W ′ } ∪
{c|p := 0− t | c|p := 0− t is a valid ISS column vector in W ′ }

– PPA =⋃
r∈PP fa(r) where,

fa(r) =
{r|t := 0 | r|t := 0 is a valid ISS row vector in W ′ } ∪
{r|t := 0+p | r|t := 0+p is a valid ISS row vector in W ′ } ∪
{r|t := 0−p | r|t := 0−p is a valid ISS row vector in W ′ }

We now show that the incremental synthesis structure corresponding to the newly
synthesized net is the same as the intermediary structure from Definition 37.

Theorem 12 (Incremental Synthesis Structure after ψA). Let W = (P,T,F, i ,o,>,⊥) be
a sound free-choice workflow net and let I SS(W ) = (TT,PP) be its incremental synthesis
structure. Let W ′ = (P ′,T ′,F ′, i ,o,>,⊥) be a sound free-choice workflow net, such that

(W,W ′) ∈ ψW F
A . Let {p} = P ′ \ P ∧ {t } = T ′ \ T . Let W ′

• p = R ∧ t
W ′
• = S. Let I SS A (W ) =

(PPA ,TTA) be the intermediary structure extracted using Definition 37 and let I SS (W ′) =
(PP′,TT′) be the incremental synthesis structure of W ′. Then I SS (W ′) = I SS A (W ), i.e.,
PP′ = PPA and TT′ = TTA.

Proof. We assume that TT and PP are correct and complete, and by induction, show
that TTA and PPA are then correct and complete corresponding to W ′. Definition 37 is
correct by construction as only the valid ISS vectors are added to TTA and PPA. The-
refore, we only need to show that Definition 37 is complete according to Definition 33
for W ′.
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Table 4.1: Values corresponding to an arbitrary place s.

s = p s ∈ P̃I s ∈ P̃O s ∈ S t c′1 c′2 c′3 c′4
3 -1 0 -1 1 0

3 1 0 0 0 0
3 0 1 1 1 1

3 0 -1 -1 -1 -1
3 3 0 7 1 7 1

3 3 0 7 7 -1 -1
3 3 0 0 0 0 0
3 3 3 0 7 7 7 0

0 0 0 0 0

It is trivial to check the presence of the zero vector in the incremental synthesis
structure of W ′. For non-zero vectors, we take an arbitrary valid ISS column vector
c′ ∈ TT′, and show that we can obtain it from some vector c ∈ TT in Definition 37.
Since c′ is a valid ISS column vector in the incremental synthesis structure of W ′, we
know that there exists a pair (PI ,PO) ∈N(c′), which satisfies either condition (2)(a) or
condition (2)(b) of Definition 32. We prove the completeness based on the presence
(or absence) of the newly added place p in PI and PO . We can have four cases: (i)
p ∈ PI ∧p ∈ PO , in this case, we refer to the vector as c′1, (ii) p ∈ PI ∧p ∉ PO , in this
case, we refer to the vector as c′2, (iii) p ∉ PI ∧ p ∈ PO , in this case, we refer to the
vector as c′3, and (iv) p ∉ PI ∧p ∉ PO , in this case, we refer to the vector as c′4.

Let P̃I = PI \ {p} and P̃O = PO \ {p}. The value corresponding to an arbitrary place s
in the vectors c′1,c′2,c′3,c′4 and t is shown in Table 4.1. For example, for a place s, such
that s 6= p ∧ s ∈ P̃I ∧ s ∈ S ∧ s ∉ P̃O the value of c′3(s) is −1, according to Table 4.1. The
values for some of the elements are not present. These are the impossible cases which
would otherwise violate Lemma 4. For example, for c′2, the value corresponding to
s 6= p ∧ s ∈ P̃I ∧ s ∈ S ∧ s ∉ P̃O is empty. This is because in the case (ii) corresponding to
c′2, p ∈ PI . Hence S ∩ P̃I =;. We now show the proof of completeness on a case basis:

(i) p ∈ PI ∧p ∈ PO (c′1) Consider a vector c, such that c′1 = c|p := 0. Using Lemma 2,
we can say that c satisfies the condition (1) of Definition 32 in W . For all places
except p, c has the same values as c′1. Hence from Table 4.1, we know that
(S ∪ P̃I ,S ∪ P̃O) ∈N(c) in W . We show that this pair satisfies the condition (2)(b)
of Definition 32 in W , and thus c should be present in TT, using which we can
get c′1. Since c′1 is a valid ISS column vector, we have two cases:

c′1 satisfies condition (2)(a) Then there exists a q ∈ T ′ such that W ′
• q = PI .

From the construction of ψW F
A , we know that W ′

• t = {p}. As p ∈ PI and the
net is free-choice net, we conclude that PI = {p}. Hence, we have P̃I = ;
(see Figure 4.13). Hence the set of input places is only S. However, by
the construction of ψW F

A , R ×S ⊆ F in W . Hence (S ∪ P̃I ,S ∪ P̃O) satisfies the
condition (2)(b) of Definition 32 in the net W .
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p1

p2

p3

q1

q2

q3

pa ta
s2

s1

s3

t1

t2

t3

c ′1

×

Figure 4.13: Fragment from Figure 4.12b after the application of ψW F
A . If c ′1 is extracted from a

valid ISS column vector which satisfies condition (1) and (2)(a) of Definition 32,
then if pa ∈ PI , implies that PI = {pa }.

c′1 satisfies condition (2)(b) Then there exists a R ′ ⊆ T ′ such that R ′×PI ⊆ F ′,
i.e., R ′× ({p}∪ P̃I ) ⊆ F ′. As R ′× {p} ⊆ F ′, we know that R ′ ⊆ R. Hence, by
the construction of ψW F

A , we know that in the net W , R ′× (P̃I ∪S) ⊆ F (see
Figure 4.14a and Figure 4.14b). Hence (S∪P̃I ,S∪P̃O) satisfies the condition
(2)(b) of Definition 32 in the net W . This is demonstrated in Figure 4.14

(ii) p ∈ PI ∧p ∉ PO (c′2) Consider a vector c, such that c′′2 = c|p := 0. Using Lemma 2,
we know that c satisfies condition (1) of Definition 32 in W . For all the places
except p, c has the same values as c′′2. Hence from Table 4.1, we can get a pair
(P ′

I ∪S,PO) ∈N(c) in W . We show that this pair is valid according to condition
(2)(b) in Definition 32, and thus using c we can get c′′2, from which we can get

p1

p2

p3

q1

q2

q3

pa ta
s2

s1

s3

t1

t2

t3

R ′ PIP ′
I

(a) Fragment of Figure 4.12b. A pair (PI ,PO )
that satisfies the condition (2)(b) of Defi-
nition 32.

p1

p2

p3

q1

q2

q3

s1

s2

s3

t1

t2

t3

R

R ′

S

P ′
I

(b) Fragment from 4.14a in the original net
before using ψW F

A , such that R ′ ⊆ R ∧ S =
{s1, s2}∧P ′

I = {s3}.

Figure 4.14: Demonstration for c ′1 which satisfies condition (2)(b) of Definition 32.
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c′2. Since c′2 is a valid ISS column vector, we have two cases:

c′2 is valid according to (2)(a) Then there exists a r ∈ T ′ such that W ′
• r = PI .

From the construction of ψW F
A , we know that W ′

• r = {p}. As p ∈ PI and the
net is free-choice, we conclude that PI = {p}. Hence, P ′

I =;. Since R×S ⊆ F ,
the pair (P ′

I ∪S,PO) ∈N(c) satisfies the condition (2)(b) of Definition 32 in
W .

c′2 is valid according to (2)(b) Then there exists a R ′ ⊆ T ′ such that R ′×PI ⊆ F ′,
i.e., R ′ × ({p} ∪ P ′

I ) ⊆ F ′. As R ′ × {p} ⊆ F ′, we know that R ′ ⊆ R. By the
construction of ψW F

A , we know that R ′×P ′
I ⊆ F , if R ′×P ′

I ⊆ F ′. Hence the
pair (P ′

I ∪S,PO) ∈N(c) satisfies the condition (2)(b) of Definition 32, in the
net W .

(iii) p ∉ PI ∧p ∈ PO (c′3) Consider a vector c, such that c′′3 = c|p := 0. Using Lemma 2,
we know that c satisfies the condition (1) of Definition 32. For all the places
except p, c has the same values as c′′3. Hence, from Table 4.1, we can get a pair
(P ′

I ,P ′
O ∪S) ∈N(c) in W . We have, PI = P ′

I and (PI ,PO) satisfies either condition
(2)(a) or (2)(b) from Definition 32 in W ′. By the construction of ψW F

A , we can
say that (PI ,P ′

O ∪S) is also valid in W , as the input of both pairs is the same.
Hence c is a valid ISS column vector in W . Using c, we can get c′′3 from which
we can get c′3.

(iv) p 6∈ PI ∧p 6∈ PO (c′4) Consider a vector c, such that c′′4 = c|p := 0. Using Lemma 2,
we can say that c valid according to condition (1) of Definition 32. Furthermore,
if (PI ,PO) is valid according to either (2)(a) or (2)(b) from Definition 32 in W ′,
then it is also valid in W by the construction of ψW F

A . Therefore, c is a valid ISS
column vector in W . Thus using c we can get c′4.

The correctness and completeness of PP is similar and can also be proven incre-
mentally.

4.5.3 Example of Synthesizing Free-choice Workflow Nets using
the Incremental Synthesis Structure

In this section, we show the changes to the incremental synthesis structure upon the
usage of ψW F

A , ψW F
P and ψW F

T rules: starting with the initial net and the corresponding
incremental synthesis structure as shown in Figure 4.15. Consecutively each figure
shows the rule used, changes in the net and the incremental synthesis structure in
yellow, or red - if the corresponding change results in invalid candidates. Further-
more, each valid ISS vector follows the following naming convention: mk

j , where k

indicates the sequence of net, starting with the initial free-choice workflow net which
has a sequence of 1. The value of j is used to link valid ISS vector across different
sequences.
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i

>

p1

⊥

(a) Short-circuited version of initial free-
choice workflow net net.

> ⊥ c1
1

i -1 1 0
p1 1 -1 0

r1
1 0 0

r1
2 1 -1

r1
3 -1 1

(b) Incidence matrix and the incremen-
tal synthesis structure corresponding
to initial free-choice workflow net. For
the sake of convenience we do not
show any valid ISS column vectors
which have i in its input (−1) or out-
put (1).

Figure 4.15: Initial free-choice workflow net and its corresponding incremental synthesis struc-
ture.
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i

> p3

t3 p1

⊥

> ⊥ t3 c2
1 =

c1
1|p3 := 0

c2
2 =

c1
1|p3 := 0
+t3

c2
3 =

c1
1|p3 := 0
−t3

i -1 1 0 0 0 0
p1 0 -1 1 0 -1 1
p3 1 0 -1 0 1 -1

r2
1 = r1

1|t3 := 0 0 0 0
r2

2 = r1
2|t3 := 0 1 -1 0

r2
3 = r1

3|t3 := 0 -1 1 0
r2

4 = r1
1|t3 := 0 +p3 1 0 -1

r2
5 = r1

1|t3 := 0 −p3 -1 0 1
r2

6 = r1
2|t3 := 0 +p3 2 -1 -1

r2
7 = r1

2|t3 := 0 −p3 0 -1 1
r2

8 = r1
3|t3 := 0 +p3 0 1 -1

r2
9 = r1

3|t3 := 0 −p3 -2 1 1

Figure 4.16: After adding a place p3 and a transition t3 using ψW F
A . The changes in incremental

synthesis structure are shown using Theorem 12. The yellow row and column
indicate the newly added place and transition. The red colored cells indicate that
the newly derived vector is not a valid ISS vector.
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i

>

p4

t1

p3

t3 p1

⊥

> ⊥ t3 t1 c3
1 c3

2 c3
3 c3

4 c3
5 c3

6 c3
7 c3

8 c3
9

i -1 1 0 0 0 0 0 0 0 0 0 0 0
p1 0 -1 1 0 0 1 -1 0 0 1 1 -1 -1
p3 0 0 -1 1 0 -1 1 1 -1 0 -2 2 0
p4 1 0 0 -1 0 0 0 -1 1 -1 1 -1 1

r3
1 0 0 0 0

r3
2 1 -1 0 0

r3
3 -1 1 0 0

r3
4 1 0 -1 0

r3
5 -1 0 1 0

r3
7 0 -1 1 0

r3
8 0 1 -1 0

r3
10 1 0 0 -1

r3
11 -1 0 0 1

r3
12 2 0 -1 -1

r3
13 0 0 -1 1

r3
14 0 0 1 -1

r3
15 -2 0 1 1

r3
16 2 -1 0 -1

r3
17 0 -1 0 1

r3
18 1 -1 1 -1

r3
19 -1 -1 1 1

r3
20 0 1 0 -1

r3
21 -2 1 0 1

r3
22 1 1 -1 -1

r3
23 -1 1 -1 1

Figure 4.17: After adding a place p4 and a transition t1 using ψW F
A . Vectors such as r3

18 and
r3

22 are not valid ISS row vectors, because neither do they result in free-choice
constructs, nor could the transitions with the corresponding value −1 be used to
apply theψW F

A rule. Hence, both the conditions (2)(a) and (b) of Definition 32 are
violated. The newly derived vectors are as follows: c3

1 = c2
1|p4 := 0, c3

2 = c2
2|p4 := 0,

c3
3 = c2

3|p4 := 0, c3
4 = c2

1|p4 := 0+ t1, c3
5 = c2

1|p4 := 0− t1, c3
6 = c2

2|p4 := 0+ t1 and so on.
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i

>

p4

t1

p3

t3

p5

p1

⊥

> ⊥ t3 t1 c4
1 c4

2 c4
3 c4

4 c4
5 c4

6 c4
9

i -1 1 0 0 0 0 0 0 0 0 0
p1 0 -1 1 0 0 1 -1 0 0 1 -1
p3 0 0 -1 1 0 -1 1 1 -1 0 0
p4 1 0 0 -1 0 0 0 -1 1 -1 1
p5 0 0 -1 1 0 -1 1 1 -1 0 0

r4
1 0 0 0 0

r4
2 1 -1 0 0

r4
3 -1 1 0 0

r4
4 1 0 -1 0

r4
5 -1 0 1 0

r4
7 0 -1 1 0

r4
8 0 1 -1 0

r4
10 1 0 0 -1

r4
11 -1 0 0 1

r4
13 0 0 -1 1

r4
14 0 0 1 -1

r4
17 0 -1 0 1

r4
20 0 1 0 -1

Figure 4.18: After adding a place p5 using ψW F
P . This place is extracted from r 4

13 (r 3
13 in the

previous incremental synthesis structure). Since a new place is introduced, there
are no new valid ISS row vectors possible. Hence all the prior valid ISS row vectors
from Figure 4.17 are also present here. Similarly, no new valid ISS column vectors
are possible either. However, prior valid ISS column vectors need to be updated,
corresponding to the newly added place p5, as highlighted in yellow based on
Theorem 10.
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i

>

p4

t1

p3

t3

p5

p1

⊥
t5

> ⊥ t3 t1 t5 c5
1 c5

2 c5
3 c5

4 c5
5 c5

6 c5
9

i -1 1 0 0 0 0 0 0 0 0 0 0
p1 0 -1 1 0 0 0 1 -1 0 0 1 -1
p3 0 0 -1 1 1 0 -1 1 1 -1 0 0
p4 1 0 0 -1 -1 0 0 0 -1 1 -1 1
p5 0 0 -1 1 1 0 -1 1 1 -1 0 0

r5
1 0 0 0 0 0

r5
2 1 -1 0 0 0

r5
3 -1 1 0 0 0

r5
4 1 0 -1 0 0

r5
5 -1 0 1 0 0

r5
7 0 -1 1 0 0

r5
8 0 1 -1 0 0

r5
10 1 0 0 -1 -1

r5
11 -1 0 0 1 1

r5
13 0 0 -1 1 1

r5
14 0 0 1 -1 -1

r5
17 0 -1 0 1 1

r5
20 0 1 0 -1 -1

Figure 4.19: After adding a transition t4 using ψW F
T . This transition is extracted from c5

4 (c4
4

in the previous incremental synthesis structure). Since a new linearly dependent
transitions is added to the net, no new valid ISS vectors are possible. However,
the prior valid ISS row vectors may be needed to be updated, based on the value
corresponding to the newly added transition t5, as highlighted in yellow based on
Theorem 11.



82 CHAPTER 4. INCREMENTAL COMPUTATION OF SYNTHESIS RULES

Start N0

Apply ψA or
ψP or ψT rand-
omly to current
net

Record the time
taken to com-
pute synthesis
space using ISS
and BF appro-
ach

250 nets
synthesi-
zed?

End
no yes

Figure 4.20: The experimental setup to test the performance of incremental synthesis structure
(ISS) based approach vs Brute-force (BF) approach (repeated 30 times in total).

4.6 Evaluation

In this section, we evaluate the usage of incremental synthesis structure (ISS) to
compute the synthesis space for a given net. Unlike the brute-force (BF) approach,
the time taken to compute the synthesis space using the ISS approach is not always
exponential in the number of nodes in the net. Under certain conditions, the number
of linearly dependent rules that could be added to the net could be exponential, and
hence the time taken to compute ISS could be exponential too. Figure 4.21 shows
an example of such a net. Suppose we would like to add a new place using the
ψW F

P rule. We can do so by selecting any combination of transitions from each path,
i.e., t1 or t2, and t3 or t4, and t5 or t6 as the input transitions, and ⊥ as the output
transition for the newly added place. This clearly shows the number of applications
of the linear dependency rules could be exponential based on the size of the net.
That is, if we consider the number of paths to be n, and the number of transitions
in each path to be m, then the total number of linearly dependent places that could
be added is mn . However, we argue that in practical circumstances, it suffices to use
ISS to compute the synthesis space, as it is generally much faster than the brute-force
approach. More importantly, in a brute-force approach we have to check the existence

i > p1 t3

t1

t5

p2

p4

p4

t2

t4

t6

p5 ⊥ o

Figure 4.21: An example demonstrating how the number of linearly dependent places that
could be added to the net can be exponential to the size of the net.
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of linear dependency for each of the vectors, which has an added complexity. Whereas
in the ISS approach, the linear dependency is already guaranteed by the inherent
mechanism used to compute the vectors incrementally.

We now compare the time taken to compute the synthesis spaces by ISS and BF
approaches under the same conditions and machine, by using the same solver. In
order to do so, starting with the initial net W0, a random sound free-choice workflow
net was synthesized by using a random synthesis rule. Another random synthesis
rule was applied on the synthesized net, to obtain a new random sound free-choice
workflow net. This was repeated until 250 random synthesis rules were applied.
At any point, each of the three synthesis rules (ψW F

A ,ψW F
P ,ψW F

T ) had equal chance
of being chosen. This essentially relates to choosing a random sound free-choice
workflow net from the synthesis space.

Figure 4.20 shows the experimental set-up. After applying a synthesis rule, the
time taken for computing the synthesis space using the brute-force approach and
the incremental synthesis structure-based approach were recorded. In an interactive
setting, for example, for editing business process models, the response times of the
system should be as short as possible. Hence calculating the synthesis space was abor-
ted if the time taken to compute the synthesis space exceeded 20,000 milliseconds.
This only concerned the brute-force, as for the incremental synthesis structure-based
approach, the computation times were always below 20000 milliseconds. This expe-
riment was repeated 30 times in total. That is, starting with the initial net, random
synthesis rules were applied 250 times, for a total of 30 times.

The average time taken to compute the synthesis space using the brute-force ap-
proach and the incremental synthesis structure-based approach at each synthesis ite-
ration is plotted in Figure 4.22a. It should be noted that the time scale is logarithmic.
In order to compare the brute-force approach and the incremental synthesis structure-
based approach effectively, only time averages below 1000 ms are plotted.

For the brute-force approach, the time taken to compute the synthesis space rises
quickly and exponentially. Just after 10 synthesis iterations, the average time taken
to compute the synthesis space using the brute-force approach is more than 5000 mil-
liseconds. The high computation times for the brute-force approach can be attributed
to the following factors:

1. As the number of nodes grows with each synthesis iteration, the number of pos-
sible permutations grows exponentially. In the brute-force approach, calculating
all the possible applications of ψW F

T and ψW F
P rules requires a full exploration of

all possible vector permutations, in order to generate all the possible candidates.

2. For each of the generated candidates, it is verified if the net would remain a free-
choice net. That is, it is verified if there exists at least one pair in Definition 31,
using which the net would remain a free-choice net. All the candidates that
violate this condition are removed.

3. For each of the remaining candidates, it is verified if the candidate is linearly
dependent on the incidence matrix of the net.
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(a) Average time taken for brute-force (BF)
vs incremental synthesis structure (ISS)
based approach after 250 random synthe-
sis iterations (repeated 30 times). Brute-
force computation was stopped after 10
synthesis iterations as it took longer than
5000 ms.
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Figure 4.22: Performance analysis of the brute-force approach and the incremental synthesis
structure approach.

Figure 4.23: One of the sound free-choice workflow nets synthesized after 250 synthesis itera-
tions. This example illustrates that it is not practical to look at such large models.
Hence the response times of our approach are acceptable under real-life circum-
stances.
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Clearly, as the number of nodes grows, the number of permutations grows too.
Moreover, validating the linear dependence of multiple vectors becomes inefficient
rather quickly.

Compared to this, the incremental synthesis structure-based approach proposed
in this chapter is still exponential but much faster. This can be attributed to the fact
that, unlike the brute-force approach, in the incremental synthesis structure-based
approach, we do not have to compute all the possible permutations for any given
net. More importantly, the third step for the verification of linear dependence is
not required in the incremental synthesis structure-based approach. This is due to
the fact that the incremental synthesis structure results only in linearly dependent
vectors after the usage of ψW F

A , ψW F
P and ψW F

T rules. Therefore, the incremental
synthesis structure-based approach mainly deals only with the non-expensive step 2,
when compared to the brute-force approach.

The extraction of all the valid ψW F
T and ψW F

P rules from the incremental synthesis
structure is rather trivial. Practically, for any non-zero valid ISS column vector in
TT to result in ψW F

T ; it can be quickly verified if the places that have a value of −1
corresponding to them can result in a free-choice node (along with some possible
places which have a value of 0 corresponding to them). A similar argument can be
made for the row vectors from PP.

When computing the synthesis space for the incremental synthesis structure-based
approach, times are highly variable. This is due to the fact that depending on the type
of rule used, the computation times of the incremental synthesis structure vary, as
shown in Figure 4.22b. For example, if a ψW F

A rule is used, then additional candidates
are generated, each of which needs to be validated according to Definition 32. It
should be noted that, the linear dependence condition of these candidate vectors is
valid by construction.

Compared to ψW F
A , after the usage of ψW F

P and ψW F
T rules, no new candidates are

generated. On the contrary, prior candidates are updated and invalid candidates may
be removed. Hence, the computation of the synthesis space after usage of ψW F

P and
ψW F

T rules is much faster compared to the computation of the synthesis rules after the
usage of the ψW F

A rule. It should be noted that in Figure 4.22b we plot the averages
corresponding to each type of synthesis rule. Contrary to this, in Figure 4.22a we plot
the averages across all the rules.

As illustrated by Figure 4.22a, the time taken for computing the synthesis space
grows exponentially with the brute-force approach. The time taken to compute the
synthesis space using the incremental synthesis structure-based approach also grows
exponentially, however this growth is more gradual and acceptable for our applica-
tion scenario. For example, while synthesizing larger nets, the incremental synthesis
structure-based approach took, on an average, less than 1 second even after 250 ite-
rations, i.e., after applying 250 synthesis rules starting with the initial net W0. It can
be argued that in practical circumstances, the free-choice workflow nets of sizes over
250 nodes may already be too complicated for the user to comprehend, as shown in
Figure 4.23. It is clear that the proposed approach is much faster and outperforms
the brute-force approach, and hence is suited for synthesizing very large sound free-
choice workflow nets in an interactive way (i.e., by having good response times).
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4.7 Conclusion

In this chapter, we introduced a way to compute the synthesis space in an efficient
way. The proposed approach is based on a meta-structure called the incremental synt-
hesis structure, which can be used to extract the synthesis space corresponding to any
sound free-choice workflow net. The incremental synthesis structure is updated incre-
mentally upon using a synthesis rule. We have shown that the incremental synthesis
structure contains sufficient information to extract all the elements of the synthesis
space. Furthermore, it was shown that the updates performed to the incremental
synthesis structure after the usage of a synthesis rule are correct and complete.

In order to test the scalability of the system, very large sound free-choice workflow
nets, more than four times the size of a regular sound free-choice workflow net, were
synthesized. It was observed that the incremental synthesis structure-based approach
was able to compute the synthesis space within a second for free-choice workflow nets
which are twice as big as a regular sound free-choice workflow net containing more
than 100 nodes. These response times are clearly acceptable in an interactive setting,
as initially discussed in Section 4.1. Overall, the incremental synthesis structure-based
approach was clearly able to outperform the brute-force approach for computing the
synthesis space.
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This chapter is based on the publication [67].
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Traditionally, process discovery is a phase in the BPM lifecycle wherein an analyst
first interviews different actors involved in a process, and then combines the domain
knowledge along with the information extracted through interviews, in order to ma-
nually model an end-to-end process model. However, in such settings, the process
analyst may miss out on the real behavior of the process. The actors involved in the
process may think they perform tasks in a certain way or in a certain order, but in
reality may do something else.

With the advent of digitization, the execution histories of processes are recorded
by information systems and can be extracted as event logs. Using these event logs,
the phase of process discovery can be automated using process mining techniques, in
particular process discovery algorithms, in order to discover process models.

Most process discovery algorithms aim to discover process models automatically
by learning certain patterns from an event log, hence bypassing the analyst. Automa-
ted process discovery algorithms work well in a setting where the event log contains
all the necessary information (for example, noise-free, complete), required by the
discovery algorithm, and the language of the underlying process model is about the
same as the language of the process models discovered by the discovery algorithm.
However, in many real-world scenarios this is not the case.

Thus, in a practical setting, automated process discovery algorithms typically suf-
fer from the following issues:

1. The process models discovered by the automated discovery algorithms are con-
strained by the vocabulary of the language used for representing the model,
i.e., the representational bias [160]. Most of the automated process discovery
techniques cannot discover duplicate activities in a process model (i.e., activi-
ties that occur more than once). Some of the process discovery algorithms, such
as the α algorithm [169], cannot discover silent activities (i.e., skippable activi-
ties). Discovery techniques such as the inductive miner [110] can only discover
block-structured process models. As already mentioned in Chapter 1, it is vital
that the language used for representing a process model can support represen-
tation of sequences, inclusive and exclusive choices, silent activities, duplicate
activities, loops and non-block-structured constructs.

2. Many discovery algorithms may discover process models which are unsound. As
discussed previously in Chapter 2, a sound process model guarantees an option
to execute each activity in the process at least once and the ability to reach
the final state (thereby terminating the process) from any valid reachable state.
In practical settings, unsound process models are often not interesting to the
analyst and hence are discarded. Ideally, the discovery algorithm should limit
the search space to only sound process models. However, for many discovery
algorithms such as the heuristic miner [185], or the split miner [9], this is not
the case, and the discovered process model can be unsound.

3. The process model discovered by an automated process discovery technique
may explain the event logs extremely well, but may still be completely incom-
prehensible to the end user. Therefore, it is imperative to enable the analyst
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to have control over the process model being discovered, and thereby also ena-
bling incorporation of domain knowledge during process discovery. In order to
discover comprehensible process models, it is desirable to follow an incremental
and structured approach of process modeling [43, 124], which is normally not
the case in automated process discovery techniques.

In order to address the limitations of automated process discovery techniques and
manual process modeling, we propose an approach for interactively constructing a
process model, by bridging the gap between manual and automated process discovery.
The first and the second limitation of the automated process discovery techniques
discussed above are already addressed by the use of free-choice workflow nets and
synthesis rules, as shown in Chapter 3 and Chapter 4. The third limitation discussed
above deals with a user’s comprehensibility of a process model. This also links back
to the traditional method of modeling a process model based on domain knowledge.
Hence, in this chapter, we focus on enabling interactive process modeling by allowing
the user to make informed decisions using the information from the event logs.

Figure 5.1 shows an overview of the approach proposed in this chapter. In this
chapter, we particularly address the following two sub-goals of Goal 2 in Chapter 1:

• First, how can the feedback from the event log be used in order to assist the

Figure 5.1: Visual depiction of an interactive editing process. The user can edit/discover sound
process models based on the editing engine described in Chapter 3 and Chapter 4.
guided by the information from the event log. The editing engine is based on the
synthesis rules from Chapter 3, and the synthesis rules are computed incrementally
using the approach suggested in Chapter 4.
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user in decision-making. This subgoal caters to the process mining aspect of
interactive process modeling. It can be further divided as follows:

– Extracting information from the event log: This is similar to the way au-
tomated process discovery extracts patterns from the event log in order to
make decisions. In our case, we would like to abstract information from
the event log, which can be used by a user, instead of an automated process
discovery technique, to construct a process model.

– Presenting the information from the event log to the user: The information
extracted from the event log should be presented to a user in a meaningful
way, so that the user can effectively combine the domain knowledge with
the information from the event log to construct a process model.

• Second, enabling the interactive editing of process models in an incremental
and structured manner. In order to address this, we use the synthesis rules
based synthesis engine proposed in Chapter 3 and Chapter 4 as the interactive
editing engine.

The remainder of the chapter is structured as follows. In Section 5.1, we discuss
how sound free-choice workflow nets can be used to model the control-flow aspect
of process models. In Section 5.2, we provide details for addressing the first subgoal
of extracting the information from the event log and presenting it to the user. In
Section 5.3, we discuss the second subgoal of enabling structured and incremental
interaction using the synthesis engine. In Section 5.4, we evaluate our approach in an
objective and subjective way. In Section 5.5, we discuss related techniques described
in the literature, followed by conclusions in Section 5.6.

5.1 Labeled Free-choice Workflow Nets

As discussed in Chapter 3 and Chapter 4, the class of free-choice workflow nets is
used in our approach as it supports broad structural representations and guarantee
soundness when used with the synthesis rules. In order to model the control-flow
aspect of business processes, the process models should contain activity labels. To
address this, we define the so-called labeled free-choice workflow nets.

Definition 38 (Labeled free-choice workflow net). Let A be the set of all activity
names. A labeled free-choice workflow net LW = (W, l ), where (P,T,F, i ,o,>,⊥) is a free-
choice workflow net and l ∈ T 6→A is a labeling function which maps a subset of transi-
tions to activities.

Labeled free-choice workflow nets are essentially free-choice workflow nets, where
some of the transitions are labeled with an activity name. Some transitions may be
unlabeled, and represent no behavior (silent activities) in the process. It is also clear
that the activities from the labeled free-choice workflow net can be mapped to the
activities from the event logs.
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Figure 5.2a shows an example of a labeled free-choice workflow net which has
some transitions that are labeled with activity names. This labeled free-choice work-
flow net corresponds to the running example free-choice workflow net from Figure 2.1.
Transition t1 is labeled with activity b, transition t2 is labeled with activity d , and so
on. Transition t8 is not labeled, i.e., represents a silent transition, and does not exhibit
any behavior. It should be noted that, in a labeled free-choice workflow net, multiple
transitions can be labeled with the same activity name. For example, in Figure 5.2a,
transitions t5 and t6 are both labeled with activity a. Figure 5.2b shows an example
event log. Every trace from Figure 5.2b can be replayed on the labeled free-choice
workflow net in Figure 5.2a.

In the next section, we address the goal of extracting the relevant information
from the event log and presenting it to the user in a meaningful way.

5.2 Event Log Information Abstraction and Presenta-
tion

In this section, we discuss how the event data can be used to guide the user in mo-
deling a labeled free-choice workflow net. The event logs are central for making
decisions in all the automated process discovery techniques. Motivated by the usage
of event logs in state-of-the-art process discovery techniques, we derive some statis-
tics from the event logs, which are used to guide the user in decision-making during
process model construction. We first discuss how information is extracted from the
event log in Section 5.2.1 and Section 5.2.2. Next, we discuss how the extracted
information is presented to the user in Section 5.2.3.
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(a) An example of a labeled free-choice
workflow net.

Trace Freq

〈a, a, f ,c〉 8
〈a, f , a,e,c〉 1
〈a, f , a,e,e,c〉 1
〈b,d ,e,c〉 4
〈b,d ,e,e,c〉 1
〈b,e,d ,e,c〉 4
〈a, a, f ,e,e,e,c〉 1

(b) An example of an event log.

Figure 5.2: An example of labeled free-choice workflow net and event log.
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Table 5.1: Activity-specific information aggregated and presented to the user.

Activity Information Description

Maximum occurrence Maximum number of times the selected activity is
repeated for any case in the event log

Minimum occurrence Minimum number of times the selected activity
occurs for any case in the event log (can be 0)

Average occurrence Average number of times the selected activity occurs,
averaged over all the cases in which the selected acti-
vity happens at least once

% of cases Percentage of cases in the event log in which the se-
lected activity occurs at least once

5.2.1 Activity-specific Information

From the three synthesis rules, we know that the labeled free-choice workflow net
under construction expands one transition (ψW F

A and ψW F
T ) and/or one place (ψW F

A
and ψW F

P ) at a time. The user labels a newly added transition in the labeled free-
choice workflow net with either an activity name from the event log, or the transition
does not represent any activity, i.e., leaves the transition silent. Hence, the user can
add only one activity at a time while modeling the labeled free-choice workflow net.
For a chosen activity to be added to the labeled free-choice workflow net, the user is
provided with the aggregated information about the activity as described in Table 5.1.

Table 5.2: Information regarding acti-
vity a from Figure 5.2b

Activity Information Value

Maximum occurrence 2
Minimum occurrence 0
Average occurrence 2
% of cases 55%

The activity-specific information from Ta-
ble 5.1 is useful for gaining insights about the
activity such as: is the activity prevalent in the
event log?, should the activity be placed in a
loop?, should the activity be duplicated?, etc.
For example, in the event log from Figure 5.2b,
the activity-specific information for activity a
is shown in Table 5.2. By looking at the in-
formation presented, it is clear that activity a
is skipped in 45% of the cases. Furthermore,
whenever a happens in a case it always hap-
pens twice, providing a strong indication that a must be duplicated, instead of placing
it in a loop.

5.2.2 Contextual Information for Selected Activity

Activity-specific information is useful to analyze the frequency-oriented information
about an activity. However, it does not provide indicators about the context in which
the activity occurs and hence where to place an activity in the process model. In
order to assist the user in effectively modeling a labeled free-choice workflow net, we



94 CHAPTER 5. INTERACTIVE PROCESS MODELING USING THE SYNTHESIS ENGINE

Table 5.3: The co-occurrence values for the example event log from Figure 5.2b.

C (↓,→) a b c d e f

a 1 0 1 0 3/11 1
b 0 1 1 1 1 0
c 11/20 9/20 1 9/20 3/5 11/20
d 0 1 1 1 1 0
e 1/4 3/4 1 3/4 1 1/4
f 1 0 1 0 3/11 1

also provide contextual information about a selected activity with respect to the other
activities that are already present in the labeled free-choice workflow net.

The information from the event log is aggregated in a pairwise manner between
the activity selected by the user to be added to the net and other activities from
the labeled free-choice workflow net, i.e., the activities represented by the visible
transitions. This assists the user in positioning the selected activity in the net. The
pairwise information could be presented in a tabular form to the user, or could be
projected directly on the current labeled free-choice workflow net.

The first kind of statistic that we define is the co-occurs value between two activi-
ties. This is useful in order to identify activities which (do not) occur together, which
is useful in circumstances when a user has to add a certain activity as a choice with
respect to some other pre exiting activities in the labeled free-choice workflow net.

Definition 39 (Co-occurs). Let LW = (W, l ) be a labeled free-choice workflow net, such
that W = (P,T,F, i ,o,>,⊥) and l ∈ T 6→ A . Let L be an event log corresponding to LW .
Consider two activities a,b ∈A . The co-occurs value of (a,b), denoted by CL(a,b), is:

CL(a,b) = |[σ ∈ L | a ∈σ∧b ∈σ]|
|[σ ∈ L | a ∈σ]|

For a pair of activities a,b, if the co-occurs value is 0, then a and b do not occur
together, whereas if the co-occurs value is 1 then b occurs if a occurs. It should be
noted that, the co-occurs value is not commutative. This is because, the co-occurs
value is calculated using the absolute occurrence of first activity in the denominator.
Table 5.3 shows the co-occurs value corresponding to the event log from Figure 5.2b.

Next, we define the eventually follows value, which indicates the number of times
an activity is eventually followed by another activity. This value indicates where an
activity should be positioned, compared to all the activities already present in the
labeled free-choice workflow net. Note that the co-occurs value only indicates if two
activities co-occur together, whereas an eventually follows value indicates whether,
and to what extent, an activity is eventually followed (preceded) by another activity.

Definition 40 (Eventually follows). Let LW = (W, l ) be a labeled free-choice workflow
net, such that W = (P,T,F, i ,o,>,⊥) and l ∈ T 6→A . Let L be an event log corresponding
to LW . Consider an activity a ∈A .
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Table 5.4: The eventually follows values for the trace 〈b,e,d ,e,c〉 in Figure 5.2b, assuming all
the activities are present in the labeled free-choice workflow net.

EF〈a,a, f ,e,e,e,c〉(↓,→) a b c d e f

a − 0 0 0 0 0
b 0 − 1 1 1 0
c 0 0 − 0 0 0
d 0 0 1 − 1/2 0
e 0 0 1 1/2 − 0
f 0 0 0 0 0 −

Then, for a trace σ ∈ L, and an activity b ∈A (b 6= a), let #a >σ b indicate the number
of occurrences of b after the first occurrence of a in σ. The eventually follows relationship
between a and b for a trace σ, denoted EFσ(a,b), is:

EFσ(a,b) =


#a >σ b

#a >σ b +#b >σ a , if #a >σ b 6= 0

0 , otherwise.

The eventually follows relationship between a and b for the entire event log L, denoted
EFL(a,b), is defined as:

EFL(a,b) =


∑
σ∈L

EFσ(a,b)

|[σ ∈ L | a ∈σ∧b ∈σ]| , if |[σ ∈ L | a ∈σ∧b ∈σ]| > 0

0 , otherwise.

If EFL(a,b) = 1, then a and b co-occur, but a never occurs after a b, which hints
that b should (eventually) be following a. Table 5.4 shows eventually follows values
corresponding to one of the traces from Figure 5.2b. Similarly, eventually precedes
value is also calculated, such that the sum of eventually follows and precedes values
for a pair is either 1 or 0.

The next statistic derived is the directly follows relation between a pair of activi-
ties. This statistic only considers the directly following/preceding occurrences of an
activity with respect to the activities present in the labeled free-choice workflow net.
The directly follows relation for two activities a and b is calculated as follows:

Definition 41 (Directly follows (DF(X ,a,b))). Let LW = (W, l ) be a labeled free-choice
workflow net, such that W = (P,T,F, i ,o,>,⊥) and l ∈ T 6→ A . Let L be an event log and
let X ⊆A , such that X = {l (t ) | t ∈ dom(l )}. Consider an activity a, let L′ = L ↓X∪{a}, where
L ↓X∪{a} is the projected event log such that every trace from L′ is projected on X ∪ {a}.
Then, for a trace σ ∈ L′, and an activity b ∈ X (b 6= a), let #a >d

σ b indicate the number of
times a is directly followed by b in σ. The directly follows relationship between a and b
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Figure 5.3: Screen-shot of our tool, showing how the abstracted information is presented to
the user, based on the selected activity.

.

for a trace σ, denoted DFσ(X , a,b), is:

DFσ(X , a,b) =


#a >d

σ b

#a >d
σ b +#b >d

σ a
, if #a >d

σ b 6= 0

0 , otherwise.

The directly follows relationship between a and b for the entire event log L, denoted
DFL(X , a,b), is defined as:

DFL(X , a,b) =



∑
σ∈L′

DFσ(X , a,b)

|[σ ∈ L′ | a ∈σ∧b ∈σ]| , if |[σ ∈ L′ | a ∈σ∧b ∈σ]| > 0

0 , otherwise.

We can compute directly precedes relation, such that the sum of directly follows
and precedes values for a pair is either 1 or 0. Consider a sequence 〈b,e,d ,e,c〉 in
Figure 5.2b. Let activities b,d and c already be added in the labeled free-choice work-
flow net (as shown in Figure 5.4). Then the directly follows values corresponding to
e according to Definition 41 are as follows: DF〈b,e,d ,e,c〉(e,b) = 0, DF〈b,e,d ,e,c〉(e,d) = 0.5,
DF〈b,e,d ,e,c〉(e,c) = 1, DF〈b,e,d ,e,c〉(b,e) = 1, DF〈b,e,d ,e,c〉(d ,e) = 0.5, DF〈b,e,d ,e,c〉(c,e) = 0.

We now discuss how the extracted information is presented to the user.

5.2.3 Event Log Information Presentation

In this section, we discuss how the information from the event log is presented to
the user. Figure 5.3 shows the screenshot of our tool. The abstracted information
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calculated in the above sections is presented in the raw format to the user based on the
selected activity. Whenever a user selects an activity, the activity-specific information
is presented below the name of the selected activity. Furthermore, for the contextual
information, the pair-wise values between the activity selected and the activities from
the net are converted to percentages and presented in the form of tables for each of
the metrics discussed in Section 5.2.2.

The contextual information is also projected on the net, in order to visually assist
the user in decision-making. We now discuss the strategy used for projecting the in-
formation from the event log on the labeled free-choice workflow net. As a first step,
the user selects an activity from the event log that should be added to the labeled
free-choice workflow net. Depending on the activity selected by the user, the coloring
of the activities currently present in the labeled free-choice workflow net is updated.
The colors indicate which activities (and to what extent) from the labeled free-choice
workflow net occur before and/or after the selected activity. The projected informa-
tion can be based either on the eventually follows (precedes) relation, or the directly
follows (precedes) relation as desired by the user. The opacity of the colors indicate
the co-occurrence of the two activities. As discussed above, all the information from
the event logs is also presented in a tabular format to the user. Thereby, in situations
where the projected visualizations seem vague, the user can use the information from
the tables for making an informed decision.

Figure 5.4a shows the projection on transitions when an activity e is selected by
the user. The degree of purple (yellow) color in a transition indicates that the selected
activity occurs after (before) the activity represented by the transition. As transition t1

is completely colored purple, we know that activity e occurs after activity b. Likewise,
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(a) Activity selected: e. The pairwise rela-
tions between activities are: EFL(b,e) =
1,EFL(e,d) = 2/9,EFL(e,c) = 1,C(e,d) =
3/4,C(e,b) = 3/4 and C(e,c) = 1. Upon ad-
ding e and selecting e again, we would
get the exact same projections. Moreover,
e would be colored white, as e happens
only once per case in the event log of Fi-
gure 5.2b.
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(b) Activity selected: a. The pairwise relati-
ons between activities are: EFL(a,c) = 1,
EFL(a,e) = 1, C(a,b) = 0, C(a,d) = 0,C(a,c) =
1 and C(a,e) = 3/11. Activity c is colo-
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Figure 5.4: Eventually follows/precedes projections on Figure 5.2b. The purple (yellow) color
indicates the degree to which selected activity occurs after (before) the activity
represented by the transition.
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as transition t3 is completely colored yellow, we know that activity e occurs before
activity c. In contrast, as transition t2 is colored both purple and yellow we know that
activity e occurs both before and after activity d (more often after d). The opacity of
the coloring indicates the co-occurrence values of the activity chosen and the activities
represented by the transitions. Based on these insights, it is clear that activity e must
be added in parallel to d , before c and after b, i.e., by using the abstraction rule
(ψW F

A ) between {t1} and {p5}.
Figure 5.4b shows the projection on the net when activity a is selected. If a transi-

tion is colored white, it implies that the activity selected and the activity represented
by the transition never co-occur together. Since transitions t1 and t2 are colored com-
pletely white, we can say that whenever the selected activity a occurs neither activity
b nor d occurs. Multiple transitions having the same label would all have the same co-
loring. Hence, if both the a’s are added to the process model as shown in Figure 5.2a,
they would both have identical coloring, depending on the activity selected. Since
both t3 and t4 are colored yellow, we know that the selected activity a always hap-
pens before the activities c and e. Moreover, since transition t3 is colored darker than
transition t5, we know that activity a co-occurs more often with activity c than with
activity e.

Having discussed the projection of statistics on the labeled free-choice workflow
net, we now discuss the interaction capabilities of our tool. That is, the way in which
synthesis rules are used based on the proposed synthesis engine, in order to enable
interactive process modeling.

5.3 Interaction using the Synthesis Engine

Following the projection of the information from the event log, we now focus on the
actual user interaction in order to edit and build a labeled free-choice workflow net,
using the synthesis engine proposed in Chapter 4. At any given point, the user is not
provided with all the candidates from the synthesis space explicitly. Doing so would
be overwhelming for the user as the number of candidates in the synthesis space rises
quickly when the size of the net increases. Instead, we make use of the fact that the
candidates from the synthesis space can be tracked back to the corresponding synthe-
sis rule. The user interacts with a labeled free-choice workflow net, in order to deduce
new nets, by applying one of the synthesis rules, and thus generating the correspon-
ding candidate net from the synthesis space. This synthesis rule based interaction
guarantees that all the labeled free-choice workflow nets from the synthesis space are
implicitly available to the user. The user chooses a single application of one of the
rules, in order to synthesize a net. We begin by discussing the interactive application
of the ψW F

A rule followed by the interactive application of ψW F
P and ψW F

T rules.

5.3.1 Interactive Application of the ψW F
A rule

The usage of abstraction rule is rather straightforward. In order to use the ψW F
A rule,

the user clicks on a (set of) arc(s), and presses enter. The selected arcs are highlighted
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in green. The abstraction rule allows the addition of a new place and a new transition
in between a set of transitions and a set of places. The (optional) activity label of the
new transition is preselected by the user, after which the rule is applied. Depending
on the label chosen, appropriate colors of the transitions in the net are populated as
discussed in Section 5.2. Since this rule can be locally checked, a new place and a
new transition are added to the net only if the user has selected the valid arcs, that
result in the correct application of the ψW F

A .
Figure 5.5 shows the interaction mechanism behind theψW F

A rule. We now discuss
the interaction mechanism for the ψW F

P and ψW F
T rules.

5.3.2 Interactive Application of the ψW F
P and ψW F

T Rules

In the case of linear dependency rules, all the possible applications of a rule are
projected on the labeled free-choice workflow net based on the user interaction. We
know that the ψW F

T (ψW F
P ) rule allows addition of a linearly dependent transition

(place) to a labeled free-choice workflow net. We first explain the central idea that
enables interaction based on the synthesis space using the ψW F

T rule, followed by a
couple of examples.

All the candidate applications of the ψW F
T are precomputed using the incremental

synthesis structure based approach. This set of candidate transitions is finite, and
independent of the activity label chosen by the user. Whenever a user navigates on a
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(b) A new transition t4 and a new place p6
are added between {t1} and {p5} using the
ψW F

A rule in 5.5a.

Figure 5.5: Interactively adding activity e using the ψW F
A rule.
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place, all the candidate transitions are explored and only those candidate transitions
are presented which have the navigated place as an input place. For all such candidate
transitions, the output places (and possible additional input places) are projected on
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(a) Interactive application of ψW F
P rule. Upon

navigating on transition t1, all the possi-
ble applications of the ψW F

P rule are pro-
jected which have t1 in its input. The user
can select t1 as the input node which is
colored red, and select one of the possi-
ble output nodes colored in green. Upon
selecting t1 as the input and t3 as the out-
put, a new place is added, resulting in a
net shown in Figure 5.5a.
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the labeled free-choice workflow net, using color coding. The user first selects the
desired input places of the candidate transition. The candidate transitions are filtered
based on the selected input places, and the output places of the filtered candidate
transitions are highlighted. Next, the user chooses the output places. In case of
multiple output places for a candidate transition, the user clicks on one of the desired
multiple output places. The candidate transitions are further filtered based on the
output places chosen. When a user has selected enough input and output places to
pinpoint a single candidate transition, the selected candidate transition is added to
the labeled free-choice workflow net. In case of multiple input/output places, the
number of possible options are eliminated depending on the user’s selection. The
newly added transition is labeled with the preselected activity by the user. A similar
approach is followed for the ψW F

P rule.
In order to demonstrate the usage of ψW F

P rule, we use Figure 5.6a. Since ψW F
P

introduces a new place in the net, selection of activity is not required. When transition
t1 is navigated upon, the net is projected with the possible applications of ψW F

P rules,
having t1 as the input. Since the transitions t2, t3 and ⊥ are all colored green, it is
possible to add a new place using either of the three transitions as the output.

Figure 5.6b demonstrates the interactive application of ψW F
T rule. Assume that

the user has selected activity a to be added to the labeled free-choice workflow net.
For the sake of convenience, we do not show the event log projections discussed in
Section 5.2.3. Upon selecting p4 as the input and p3 as one of the outputs, some of
the prior candidate transitions are filtered out, as evident in Figure 5.6c. Selecting
p5 as another output pinpoints to a candidate transition, and hence a new linearly
dependent transition t5 is added to the net as shown in Figure 5.6d.

5.4 Implementation and Evaluation

The proposed approach is supported by the nightly build version of ProM [171], in
the InteractiveProcessMiningLite 6.9.13 package, under the plug-in “Petri net editor
with log heuristics information”. This plug-in requires an event log in XES [3] format
as its input.

In order to evaluate our approach of interactive process modeling, we present two
types of evaluations: (i) an objective comparison with traditional process discovery
approaches, and (ii) a subjective validation via a case study using a dataset from a
Dutch hospital.

5.4.1 Objective Evaluation : Process Discovery Contest

As a part of an objective evaluation of the proposed approach, we use our winning
entry from the annual process discovery contest [2], organized at the BPI workshop at
the Business Process Management conference 2017. The aim of the process discovery
contest is to evaluate tools and techniques which are able to discover process models
from incomplete, infrequent event logs. In total, there were 10 process models that
had to be discovered from 10 corresponding event logs. Every model could contain
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Table 5.5: Process models and their corresponding optional characteristics.

Model Characteristic 1 Characteristic 2 Incomplete event log

2 Optional activities Loops Yes
7 Duplicate activities Inclusive Choices No
10 Optional activities Duplicate activities Yes

sequences, choices and concurrent activities. Furthermore, the organizers provided
participants with some additional information about each process model, such as the
presence of duplication, loops, skippable (optional) activities, inclusive choices and
long-term dependencies. We considered this additional information as the domain
knowledge in our approach. In order to improve the accuracy of discovered process
models, the organizers provided two feedback loops of small test event logs to be
evaluated by the participants on their models. The process models were evaluated
based on the number of correctly classified traces. That is, the traces which completely
fit the process model v/s the traces that do not fit the model. Furthermore, the process
models were also evaluated by a jury composed of BPM practitioners for simplicity
and understandability.

In this section, we present the outcomes of three event logs (2, 7 and 10) for
discovering process models using our approach, as well as state-of-the-art process
discovery approaches. The characteristics of the three selected models are shown in
Table 5.5. The information from Table 5.5 is used along with directly follows pro-
jections, eventually follows projections and other extracted information from the event

before
after

Figure 5.7: Model 7. Activity selected: n. The projections indicate directly follows relations
between all the activities in the net and the chosen activity n.
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logs, to construct the process models. Figure 5.7 - Figure 5.12 show the screens-
hots of some of the steps followed in order to discover the process models using our
approach.

Figure 5.7 demonstrates a way in which duplicate activities were identified and
added to the process model corresponding to event log 7 using our approach based
on directly follows/precedes relation. From the activity specific information we knew
that n could happen a maximum of two times for any case. Furthermore, according
to Table 5.5, model 7 does not contain any loops. Hence, n must be duplicated and
added twice, once before activities f , l and j , and once after activity p, as indicated
by the projections on the net.

Figure 5.8 shows a way in which a choice constraint was added to the net. The
projections indicate eventually follows relations between all the activities in the labe-
led free-choice workflow net and the chosen activity h. Clearly h and e never co-occur
together - as evident by the white coloring of activity e. Moreover, h occurs (eventu-
ally) after all the other activities from the labeled free-choice workflow net. Hence h
is added as a choice to activity e. The result after adding h (and j and i) is shown in
Figure 5.9.

Figure 5.9 also shows the way in which concurrency was identified and introduced
in a net. For the selected activity k, and eventually follows/precedes relations, acti-
vity d is colored fifty-fifty, indicating that k happens sometimes before, and sometimes
after d . Moreover, the coloring of other activities indicate that k should happen con-
currently to d . Hence, we first added a place using the ψW F

P rule with input as the
transition labeled a and the output as the transition labeled b and the silent transition
(in choice with b). Next, k was added using the ψW F

A rule between a and the newly
added place, thereby in parallel to b. Figure 5.10 shows the net obtained after using
both ψW F

P and ψW F
A to introduce k.

before
never

Figure 5.8: Model 2. Activity selected: h. Eventually follows relation indicates indicate that h
occurs in choice with e.
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before
after

Figure 5.9: Model 2: Selecting activity k to be added to the labeled free-choice workflow net.

Figure 5.10 also shows the way in which sequential construct was identified and
added to the net. The eventually follows/precedes relation indicates that the selected
activity m happens after a but before all the other activities. Hence m was added in
sequence using the ψW F

A rule based on the selected green arcs. The resulting net is
shown in Figure 5.11, also containing the activity l .

before
after

Figure 5.10: Model 2. Activity selected: m.

Figure 5.11 also shows one of the limitations of using the synthesis rules for con-
structing process models. Clearly the selected activity o should happen after both a
and n, but before l (and all other activities). However, no rule allows this. Note that
the ψW F

A cannot be used here, as the output places of a and n are not the same. A
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workaround for this is to first re-name the transition labeled l with the label o. This
is possible as any transition could be (re-)labeled with any activity in our approach.
After re-naming l with o as shown in Figure 5.12, we could re-add activity l (after o
using the ψW F

A rule) to the net.

before
after

Figure 5.11: Model 2. Activity selected o. No rule allows adding o after both a and n, but
before l .

before
after

Figure 5.12: Model 2. Activity selected: l , which can now be re-added after o and before m.

A similar approach was followed for deducing the remaining process models. In
some scenarios, when the projected and tabular data did not portray sufficient infor-
mation for decision making, simple log visualizers presented in [171] were also used
to assist decision making.
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Figure 5.13: Fitness and precision scores computed using the alignment based conformance
analysis [5,128] on the training event log and models. (IM: Inductive Miner, IMc:
Inductive Miner incompleteness, IMf: Inductive Miner infrequent, IPD: Interactive
Process Discovery - proposed technique).

All the three process models (2, 7 and 10) had 100% accuracy in classification
during both the intermediary test event logs used for the feedback, as well as the test
event logs used for the final evaluation.

In Figure 5.13 we compare the fitness and the precision scores of the training
event log used to discover a process model, with the process model discovered, using
alignment based conformance technique [5,128]. We do not consider other automa-
ted approaches such as the ILP miner [170] or the Heuristics miner [185] as they
could discover process models which are unsound and/or unbounded, for which me-
trics such as fitness and precision cannot be computed. Both the fitness and precision
values are calculated on a scale from 0-to-1. Fitness score indicates how well an event
log fits a process model. Inductive miner by default guarantees perfect fitness. Hence,
in all three models discovered by the Inductive miner, the fitness score is a perfect 1.
Other variants of inductive miner also have a respectable fitness score, above 0.8, in
all three cases. The precision score indicates how much extra behavior is allowed by
a process model, that is not observed in the event log. Clearly, the inductive miner
variants struggle with producing precise models, and end up discovering process mo-
dels which are too generic. On the contrary, the process models discovered using the
interactive approach have high fitness as well as high precision scores.

The original process models (so-called system nets) which were used to generate
the event logs were also made available at the end of the competition. We also used
these original process models as a benchmark, and compared it with the process mo-
dels discovered using various discovery techniques, including our technique. In order
to compare two models, we used the Projected Conformance Checking (PCC) techni-
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Figure 5.14: Comparison of the original model used to generate the event log with the discove-
red models. The comparison is done in terms of fitness and precision values using
the PCC framework [112]. (IM : Inductive Miner, IMc: Inductive Miner incomple-
teness, IMf: Inductive Miner infrequent, IPD: Interactive Process Discovery - this
paper).

que [112]. Exploring the complete state space would of course be time consuming,
and infeasible with limited resources. Instead of comparing the complete state space
of the two models, the PCC framework approximates the recall (also known as fitness)
and precision values by comparing the state space of smaller process models and then
aggregates the scores. We used a value of k=2, to project a process model on a subset
of 2 activities iteratively in order to compute the recall and precision scores.

The recall value indicates the part of the behavior of the original process model
that is captured by the discovered process model. The precision value on the other
hand captures the part of the behavior of the discovered process model that is also
present in the original process model. The results for these are shown in Figure 5.14.

As evident from Figure 5.13 and Figure 5.14, our approach can outperform the
automated process discovery techniques. By using the characteristics of the processes
as prior knowledge, we were able to interactively discover process models which were
strikingly similar to the original process models. Moreover, we could easily convert
the discovered process models into BPMN format which were simple and easy to
understand as judged by the jury of the contest. As an example for demonstrating the
simplicity of the discovered process models, Figure 5.15 shows the process model for
model 10 discovered using our approach.

All three process models discovered were able to replicate all the behavior from
the test event logs. Furthermore, overall the 10 models, we achieved an accuracy of
98.5% with respect to the test event logs, i.e., of the 200 test traces we had to classify,
we classified 197 correctly.
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Figure 5.15: Model 10 of the process discovery contest discovered using our approach.

5.4.2 Case Study

In this section, we evaluate the usefulness of the proposed approach in a qualitative
way. A real-life labeled free-choice workflow net is modeled with the proposed ap-
proach by using domain knowledge along with the information from the event log.
The case study is performed in collaboration with a local healthcare practitioner who
served as the domain expert, by using data on the treatment process of 2 years for a
specific type of cancer. The main objectives of the case study were: (i) discovery of
the overall process; (ii) analysis of issues in the execution of the process as depicted
by the event log.

Process Discovery Phase

We started off by trying out several automated process discovery techniques using
only the event log. Although, in theory, the process should be rather straightforward,
the usage of automated process discovery techniques resulted in extremely complex
and unreadable spaghetti-like process models or highly imprecise flower-like models,
which allowed for any behavior. All the process models discovered by the traditional
process discovery techniques were either incomprehensible and/or very far off from
reality according to the domain expert. Therefore, the interactive process discovery
approach was used to try to structure the process data by using domain knowledge to
discover a process model.

The model discovered using our technique is shown in Figure 5.16. As the process
structure in the event log was highly ambiguous, we relied on the inputs of the dom-
ain experts in order to come to a process model. The domain expert had complete
control about the modeling of the process. It is worthwhile to note that, on several
occasions, the domain expert also took assistance from insights of the event log, that
were presented in the tool. For example, the domain expert was not entirely sure if
activity LvPA should be placed before or after MDO. However, after gaining insights
from the data, as projected and shown in Figure 5.17a, the domain expert decided to
add LvPA before MDO. On some occasions, the domain expert chose to ignore the in-
formation from the data, deeming it inappropriate and/or inadequate. For example,
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as evident in Figure 5.17b, the data presented showed that activity Pathologie often
happened more than once for several cases. However, as evident in Figure 5.16, the
domain expert chose to overrule this information. It should be noted that during the
study, the tool had a slightly different look-and-feel, compared to the present version
of the tool.

Finally, using the information from the event log and some background knowledge
about the process, the domain expert was able to discover, and was content with, a
very structured process model.

Comparing Logs and Models Phase

Conformance analysis [5] was performed on the process model discovered using our
approach and the event log, to find how well the event log fits the discovered model.
The fitness score for the complete event log and the process model was 0.45. The

Figure 5.16: Real-life process model for cancer patients in a Dutch hospital as discovered by
domain expert using our tool.

(a) Activity selected : LvPA. The color code of
MDO is mostly (around 80%) yellow. This
helped the domain expert in positioning
LvPA before MDO.

(b) Activity selected : Pathologie. Average
number of times Pathologie happens for a
case is more than 4 times.

Figure 5.17: Screenshots showing some steps in the interactive discovery of the healthcare
process.
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process model was discovered primarily by the inputs of the domain expert, and is
correct according to the domain expert. Hence, a low fitness score of 0.45 indicates at
one or both of the following:

– the protocols and the process in place are not strictly followed in the hospital,
and/or

– there are data quality issues which lead to incorrect logging of data

Discussion

Upon investigating the causes for the low fitness with the domain expert, the primary
conclusion was that there were serious data quality issues in the event log, rather
than non-compliance of protocols. There were many events which appeared out of
sync with the process and happened sporadically. One of the major causes for this
was that many events were recorded to have happened multiple times in the process.
Even though, according to the process model, these events should happen only once
per case. The probable cause for this issue could be the fact that these events were
not extracted correctly, leading to duplication. Another issue, that may have caused
many events to appear out of sync in the process could be the fact that many events
had no timestamp information associated with them.

Data quality problems are often the reason why all the automated discovery al-
gorithms fail to discover a structured process model. However in our case, by not
relying completely on an event log for process discovery, and using knowledge from a
domain expert, a structured process model was discovered. Furthermore, it should be
noted that even though the process model has a very low fitness score, the model is
extremely precise according to the expertise of the domain specialist. Moreover, since
the domain expert was directly involved in process modeling/discovery, the simplicity
and generalization dimensions of the process model [5], were implicitly taken into
account. Clearly, using the interactive process modeling approach led to the discovery
of a process model, and brought to the attention of the domain expert various data
quality issues which needed to be addressed.

5.5 Related Work

In this section, we compare the relevant techniques from the literature with our ap-
proach. We first review the state-of-the-art automated process discovery techniques
followed by the user-guided process mining techniques.

5.5.1 Automated Process Discovery

One of the first automated process discovery algorithms proposed was the α mi-
ner [169]. The α miner discovers process models, represented by Petri nets, using
the directly follows relation in the event log. The original α miner could not disco-
ver constructs such as short-loops, long-distance relations, non-free choice constructs
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and silent transitions. However, these concerns have been subsequently addressed
in [54,96,187–190]. These techniques however cannot guarantee discovery of sound
process models and are sensitive to noise. The Flexible Heuristics miner [185] and the
Split miner [9] can cope with noise well, and can discover non-trivial constructs such
as long-distance dependencies. The Flexible Heuristic miner discovers ‘causal nets’
and the Split miner discovers BPMN models using probabilities based on the directly
follows (precedes) and eventually follows (precedes) relations extracted from the
event log. These causal nets and BPMN models can then be converted into Petri nets.
Fodina [157] extends the original Heuristic miner [186] to support the discovery of
constructs such as duplicate activities and long-distance dependencies. Furthermore,
Fodina also supports multiple configuration options, and thereby allows the end user
to have more control over process discovery. However, Fodina, the Split miner and
the Heuristic miner do not guarantee discovery of sound process models.

Approaches based on the state-based region theory, obtain a state space from the
event log [166], and then this state space is used to generate a Petri net [33,46]. Ho-
wever, the computation times of such techniques could be very long, and such techni-
ques do not deal very well with noisy data. Divide-and-conquer strategies based on
state-based region theory were proposed in order to address the lengthy computation
times [30, 32, 148]. In language-based region theory, a Petri net is discovered which
contains the smallest possible behavior while describing the ‘language’ given by the
event log [14,15]. Approaches such as the ILP miner first add all the activities (tran-
sitions) and then add places that do no prohibit any trace from the event log [170].
These approaches typically do not guarantee classic soundness, have difficulties in
dealing with noisy data and discovering silent or duplicate activities.

Genetic discovery techniques such as [24] can discover constructs such as silent
and duplicate activities, and provide guarantees with regards to soundness. Howe-
ver, such techniques typically have excessive run times and cannot discover non-
block structured constructs. The Constructs Competition Miner and the Inductive
miner [110] can discover block-structured process models and provide guarantees
with regards to soundness of the discovered process model. However, such techniques
cannot discover duplicate activities and non-block-structured constructs. Techniques
such as [44] focus on discovering complex process models represented as BPMN mo-
dels containing sub-processes and events, but do not provide any guarantees with
regards to the soundness of the discovered process model. Discovery techniques such
as [13, 22, 40] discover either constraints based declarative models, or probabilistic
models, and not an end-to-end process model.

Our approach differs from all these automated process discovery techniques in
multiple ways (see Table 5.6 for an overview). The process models generated by
our approach are always sound, since we use the synthesis space based on synthesis
rules which guarantees soundness. In our approach, the user has control over the
discovery (modeling) process, therefore the addition of constructs such as duplicate
activities, silent activities, (self-)loops etc. are all allowed as deemed appropriate by
the user. Also, noisy (incomplete) information could be ignored (overcome) based
on the extracted information from the event log presented to an informed user. A
user who is a domain expert can use the domain knowledge in order to overcome an
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Table 5.6: Representational bias of various process discovery and repair algorithms.

α

[169]

HM/SM
[9,
185]

ILP
[170]

SBR
[46]

LBR
[14]

ETM
[24]

IM
[110]

MBR
[77]

IPD

Duplicate
activities

- - - + - + - - +

Silent
activities

- + - + - + + + +

Self loop
activities

- + + + + + + + +

Non
block
structu-
red

+ + + + + - - + +

Classic
soundness∗ - - + - - + + - +

α : Alpha miner, HM: Heuristic Miner, SM: Split Miner, ILP: ILP miner, SBR:
State-based regions, LBR: Language-based regions, ETM: Evolutionary Tree Miner,
IM: Inductive Miner, MBR: Model-based Repair, IPD: Interactive Process Discovery

(this paper)
Classic soundness∗ [168] is defined for the class of workflow nets

incomplete event log.

5.5.2 User-guided Approaches

There has been an interest in using domain knowledge, along with the event logs, for
process discovery [10,116,139]. [90,91] allow the user to input domain knowledge,
in terms of precedence constraints. Causal relations are encoded from the event log
and combined with the precedence constraints over the topology of the resulting pro-
cess models represented as causal nets. However, in such techniques the domain
knowledge is represented by some pre-defined constructs or some sort of rules which
are used as input during the process discovery. The language used to represent the
domain knowledge severely limits the expressiveness of the domain expert. In our ap-
proach, the user has total control over the discovery phase and can intuitively use the
domain knowledge, along with the event logs, to interactively visualize and discovery
a process model. In [122], the authors provide a way for the user to include domain
expertise in the α miner. However, this approach is tied to the underlying α algorithm,
and thereby includes all the limitations of the α algorithm. Essentially, [122] provides
a way of introducing domain knowledge specific to an activity which is then used by
the α algorithm, rather than an interactive exploration of the process model. In [98],
the authors describe some of the requirements for an interactive workflow mining
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system, and address the needs for layout of workflows to enable interaction as well
as provide techniques for preliminary validation of workflow models based on the
event log. These techniques have a different scope compared to interactive process
discovery as addressed in this chapter. We discuss the (user-driven) process model
repair techniques from the literature such as [8,78] in the Related Work (Section 9.5)
of Chapter 9.

5.6 Conclusion

In this chapter, we presented the concept of interactive modeling of a process mo-
del based on the proposed synthesis engine proposed in Chapter 3 and Chapter 4.
This approach exploits the fact that the synthesis engine guarantees soundness of the
discovered process models. Furthermore, the information from the event log is ex-
tracted and presented to the user to assist the user in decision making. Giving users
complete control over the discovery approach supported by the information from the
event log enables critical decision making. This is true especially when all the infor-
mation needed by the discovery algorithms is not present in the event log; which is
often the case in many real-life event logs as apparent from the case study presen-
ted. The automated discovery algorithms fail to cope with insufficient information
in the event log, and could produce process models which are incomprehensible an-
d/or inaccurate. Moreover, the proposed approach for interactively modeling process
models was able to discover constructs such as non-block-structured representations,
duplicate activities, inclusive choices, and silent activities, that cannot be discovered
by many state-of-the-art techniques. As a next step, it would be ideal to give the user
an indication about the goodness-of-fit between an event log and the corresponding
process model, while the user is interactively modeling the process model.
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This chapter is based on the publications [62] and [68].
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In Chapter 5, we discussed a strategy to enable interactive process modeling using
an engine based on the synthesis rules presented in Chapter 3 and Chapter 4. Furt-
hermore, we discussed a way of projecting the information from event logs to assist
an analyst in modeling/discovering process models. However, the analyst also needs
to be provided with indications about the impact of a change in the process model.
That is, the analyst is provided with no indication about the quality of the process
being modeled. It is desirable to have process models which are correct according to
the analyst, but these process models should ideally also have high quality as per the
event log.

Typically, the quality of a process model is assessed using the four quality dimen-
sions of process mining (fitness, precision, generalization and simplicity [26]). These
dimensions could be used as the guiding principle for discovering high quality pro-
cess models. The fitness dimension determines how much behavior from the event
log is allowed by a process model. The precision dimension, on the other hand, de-
termines how much extra behavior does a process model allow which is not present
in the event log. The generalization dimension evaluates the degree to which the dis-
covered model is generic, i.e., the extent to which it is coherent with some unseen
future behavior. Finally, the simplicity dimension addresses the comprehensibility of
the discovered process model. There is no real consensus on the best way to measure
generalization and simplicity, and multiple viewpoints are possible. However, it could
be argued that the fitness and precision dimensions could be computed entirely based
on the event log and the process model. To calculate the fitness and precision of a

Figure 6.1: Interactive process modeling/discovery enhanced with conformance results.
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process model corresponding to an event log, we can use conformance analysis [163].
In an interactive setting, such conformance information could further assist the user
in modeling/discovering better process models, by providing a feedback mechanism,
as shown in Figure 6.1.

Traditionally, conformance analysis techniques analyze how well a pre-existing
process model conforms to the reality as depicted by the event log. Hence, much
emphasis is put on the accuracy of the results. These conformance results can then be
used to perform analysis such as compliance issues in the process behavior. Further-
more, conformance results can also be used to analyze the performance of the process
in reality, for example, to find out where the possible bottlenecks in the process are.

Figure 6.2 shows the times taken for computing conformance scores using some
state-of-the-art conformance analysis techniques based on six real-life event logs and
the corresponding process models. These publicly available event logs contain broad
representations of data. For example, the number of cases vary from 700 to 100,000,
whereas the number of events vary from 12,500 to 450,000 across all the event logs.
Moreover, the corresponding process models also cover broad representations such
as duplicate activities, loops etc. More information about these event logs could be
found in the evaluation section (Section 6.4) of this chapter.

Clearly, the time taken to compute conformance scores by the state-of-the-art con-
formance analysis techniques could be well over 20 seconds, for some of the real-life
event logs. As discussed in Chapter 4, it is vital to limit the waiting times suffered by
the user to a minimum in an interactive setting. That is, it is undesirable for the user
to wait for a long time to get the conformance scores upon making a change in the
process model. In the case of interactive process discovery, the in-depth analysis offe-
red by conformance techniques is often not very relevant. Moreover, it can be argued
that the accuracy of the conformance analysis may be lower if it is compensated by
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Figure 6.2: Average, minimum, and maximum time taken for computing conformance (fitness
and/or precision) using various state-of-the-art techniques (P - PCC framework (k =
2), D - Decomposed Replay, R - Recomposed Replay, A - Alignment-based replay, E
- ETC 1-align precision.), based on 6 real-life event logs and their corresponding
discovered process models.
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improved response times.
Hence, in this chapter, we address the subgoal of computing conformance scores

suitable in an interactive process modeling setting, as described in Goal 2 of Chap-
ter 1. In particular, this subgoal is comprised of the following.

• The conformance analysis technique should provide a global and a local, acti-
vity specific, measure to (approximately) indicate the fitness and precision of a
process model and the event log.

• More importantly, the conformance analysis should be computed in an efficient
way, without impacting the interactive capabilities of the system.

Loosely speaking, the complexity of computing conformance scores can be linked
to two factors. First, the size and the structural complexity of the process model.
The complexity of some conformance analysis algorithms increases upon increase in
structural constructs such as loops in the process model. Second, the size of the
event log. Typically, the conformance analysis algorithms compute the conformance
on a case-by-case basis. Hence an increase in the number of cases and the number
of events in the event log could have a detrimental effect in the performance of the
algorithm.

In the literature, several techniques have been proposed in order to address the
issues related to the complexity and the size of the process model. Typically, such
techniques use a divide-and-conquer strategy by dividing the computation of confor-
mance on one large complex net, into several smaller simpler nets [112, 162]. Even
though, these techniques address the first factor of process model complexity, they
could still suffer from the latter problem related to the size of the event log. These
techniques compute conformance of each case in the event log with the process mo-
del. Hence, the performance could still be impacted when an event log contains a
large number of cases or events. Therefore, these techniques are not directly suitable
in an interactive setting.

In this chapter, we address the goal of computing conformance scores in an ap-
proximated way, suitable in an interactive setting. We propose strategies to compute
conformance scores which address both the factors discussed above. First, we use a
divide-and-conquer strategy to split one big conformance problem into several smaller
problems, similar to [112]. Next, we also propose a way of abstracting the informa-
tion from the event log, and using the abstracted information to compute the con-
formance score, instead of revisiting the event log again and again in an interactive
setting. Furthermore, since we deal with the class of free-choice workflow nets synt-
hesized using the synthesis rules, we propose a way to compute the conformance in
an incremental way using the underlying nature of the synthesis rules.

The remainder of the chapter is structured as follows. In Section 6.1 we provide an
overview of the proposed approach to address the problem of computing conformance
in a speedy way. In Section 6.2 and Section 6.3 we provide a particular solution based
on the proposed approach. In Section 6.4 we discuss the implementation details
and evaluate the proposed solution in terms of speed and accuracy, compared with
the state-of-the-art approaches. In Section 6.5, we discuss the techniques from the
literature related to our approach, followed by conclusions in Section 6.6.
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6.1 Projected and Incremental Conformance Analysis

In order to address the issues pertaining to the usage of conformance analysis in the
context of interactive process discovery, we propose a novel incremental approach
based on event log abstraction and projections for conformance checking. Before
diving into a particular solution, we begin by providing a generic approach, which
can be instantiated in multiple ways. The approach is centered around two aspects,
which are discussed in the following sub-sections.

6.1.1 Project and Aggregate

The central idea behind our approach is motivated by the various divide-and-conquer
strategies which were introduced to speed-up conformance calculations. The top part
of Figure 6.3 shows a high-level overview of how these techniques typically work
[32, 162]. To speed-up the conformance analysis approach, these techniques split
up one big conformance problem into several smaller problems. That is, instead
of checking the conformance of the complete process model in one go, the process

Figure 6.3: The information from the event log is abstracted only once, and used throughout
the interactive modeling process. Individual conformance is computed for each of
the fragments M ′, and M ′′ that together constitute M1. The individual conformance
scores can then be aggregated to get the overall conformance of the Model M1.
Model M2 is interactively modeled from M1. The behavior in the fragment of M ′
is unchanged in M2, hence there is no need to re-compute the conformance of
M ′. The behavior of M ′′ is changed in M2 compared M1, whereas M ′′′ is newly
introduced in M2. Hence, the conformance needs to be computed only for M ′′
and M ′′′. The aggregated conformance scores of M ′, M ′′ and M ′′′ provide the
conformance of the interactively modeled Model M2.
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model is split up into several smaller fragments. Next, the event log is also split
up corresponding to each of these fragments. Then, the fragments from the process
model are compared with the smaller event logs in order to calculate the conformance
per fragment.

The traditional divide-and-conquer-based conformance techniques can offer suffi-
cient speed-up when conformance needs to be calculated only once. However, in our
case, the conformance scores have to be calculated several times when the process
model is interactively changed. It should be noted that in an interactive process dis-
covery setting, the event log remains unchanged. Hence, in our approach, instead of
splitting the event log into several smaller logs based on each fragment, we propose
to pre-compute abstractions on the event log which can be used to compute confor-
mance, as shown in Figure 6.3. We refer to these abstractions as patterns. These
patterns are then used to calculate the conformance score by comparing them with
similar patterns extracted from process models. The patterns from the event log are
computed only once, and hence while calculating the conformance, the time spent on
processing of the event log is saved. For example, the abstracted part of event log L′′′
is pre-computed but unused in the top-part of Figure 6.3. However, this comes into
effect when the process model M2 is derived from M1.

A global measure for quality of a process model compared with the event log
can be obtained by aggregating the individual conformance across all the process
fragments. Moreover, by aggregating the projections for all the fragments containing
a particular activity, we can also get a local activity specific conformance estimate.

6.1.2 Incremental Computation

The second aspect of our approach deals with incrementally computing the confor-
mance scores, based on the changes in the process model. In an interactive process
modeling scenario, the changes to a process model are limited in each interactive
step. Hence, most of the prior connections from the prior model remain intact. In the
second part of the proposed approach, we exploit this fact in order to compute the
conformance scores only for those parts of the process model which may have chan-
ged (or newly introduced). This is shown in the bottom part of Figure 6.3. It can be
seen that the decomposed fragment of the process model M2 contains M ′′′ which was
not present in the process model M1. Hence, there is a need to compute conformance
score for such fragments of the process model. Moreover, even though the fragment
M ′′, is present in both M1 and M2, the conformance score for such fragments needs
to be recomputed, as the behavior between the activities present in such fragments
may have changed after interactively modeling M2 from M1. However, the fragment
M ′ is present in both M1 and M2, and the behavior between activities of this fragment
is unchanged. Hence, the conformance scores calculated for M ′ in M1 remains valid
for M2 too. Therefore, by keeping track of the changes in the process model, we can
compute the projected conformance scores incrementally, and thereby re-use some of
the prior conformance scores.

In the next section, we discuss the way in which the proposed approach has been
realized. As discussed in Chapter 3 to 5, we use the class of labeled free-choice
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workflow nets in combination with the synthesis rules in order to enable interactive
process modeling. Hence, our solution for computing conformance is naturally tailo-
red towards using the characteristics of free-choice workflow nets and the synthesis
rules.

6.2 Projecting Labeled Free-choice Workflow Nets and
Event Logs

In this section, we discuss the first aspect of our approach for computing conformance
scores. We begin by discussing how we extract patterns from the event log, followed
by extracting patterns from a labeled free-choice workflow net. Finally, we discuss
a technique to compare the patterns extracted from the event log and the labeled
free-choice workflow net in order to compute quantifiable conformance scores.

6.2.1 Extracting Patterns from Event Logs

The information from the event logs can be abstracted in multiple ways. In our ap-
proach, we calculate the so-called footprint patterns from the event log. The footprint
patterns of an event log are composed of two types: (i) unary footprint patterns and
(ii) binary footprint patterns.

Unary footprint patterns for an event log are obtained by projecting an event log
on a single activity. A unary footprint pattern is a bag of projected traces on an
activity.

Definition 42 (Unary footprint patterns in an event log). Let L be an event log
and let x ∈A . Then the unary footprint pattern of activity x in L is the projection
of activity x in L, i.e., L ↓{x}.

x y

σ1 = x

σn = x

σi ,σi+1 = x

σi = y,σi+1 = x

σi = x,σi+1 = y

σi ,σi+1 = y

σ1 = y

σn = y

Figure 6.4: Binary footprint calculation mechanism for a trace σ.
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Trace Freq

〈a, a, f ,c〉 8
〈a, f , a,e,c〉 1
〈a, f , a,e,e,c〉 1
〈b,d ,e,c〉 4
〈b,d ,e,e,c〉 1
〈b,e,d ,e,c〉 4
〈a, a, f ,e,e,e,c〉 1

(a) An example of an event
log.

Binary footprint pattern Frequency

b e×× 8

e b× 3

b e 4

b e
5

(b) Bag of footprint patterns for the complete log for the
pair (b,e) from Figure 6.5a. The pair (b,e) is unorde-
red.

Figure 6.5: Example event log and binary footprint patterns corresponding to (b,e).

We can project an event log on an activity by removing all the other activities
from the event log. For example, the bag of unary footprint patterns of an
activity e in the event log of Figure 6.5a is [〈〉8,〈e〉5,〈e,e〉6,〈e,e,e〉]. The unary
footprint pattern thus considers how often an activity is repeated a particular
number of times.

Binary footprint patterns for an event log are used to calculate the relations bet-
ween activities in a (unordered) pair-wise manner, for a given trace in the event
log. We first discuss computation of binary footprint patterns for a trace.

Definition 43 (Binary footprint patterns in a trace). Let L be an event log and
let x, y ∈A . Let L′ = L ↓{{x,y}}. Then the binary footprint pattern for the unordered
pair (x, y) in a trace σ ∈ L′ is a graph ({x, y},S,E ,F ), where

– x and y are the nodes of the graph

– S =σ1 |σ 6= 〈〉
– E =σ|σ| |σ 6= 〈〉
– F = (a,b) | ∃1≤i≤|σ|σi = a ∧σi+1 = b

We introduce this using an example. Consider an unordered pair of activities
(x, y) and a trace σ= 〈σ1,σ2, ...,σn〉, such that ∀1≤i≤n(σi = x ∨σi = y). Then, for
any i , the binary footprint pattern of σ is calculated as shown in Figure 6.4.
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An arc from the binary footprint pattern is removed, if the condition mentioned
on the arc is not satisfied. The first activity of the trace σ can either be x or

x y××

(a) 〈〉

x y×

(b) 〈x〉, 〈x, x〉 · · ·

x y

(c) 〈x, y〉

x y

(d) 〈x, y, x〉, 〈x, y, x, y, x〉 · · ·

x y

(e) 〈x, y, x, y〉, 〈x, y, x, y, x, y〉
· · ·

x y

(f) 〈x, x, y〉, 〈x, x, x, y〉 · · ·

x y

(g) 〈x, x, y, x〉,
〈x, x, y, x, x, y, x〉 · · ·

x y

(h) 〈x, x, y, x, y〉,
〈x, x, y, x, x, y〉 · · ·

x y

(i) 〈x, y, y〉, 〈x, y, y, y〉 · · ·

x y

(j) 〈x, y, y, x〉, 〈x, y, y, x, y, x〉
· · ·

x y

(k) 〈x, y, y, x, y〉,
〈x, y, y, x, y, y, x, y〉 · · ·

x y

(l) 〈x, x, y, y〉, 〈x, x, x, y, y〉 · · ·

x y

(m) 〈x, x, y, y, x〉,
〈x, x, x, y, y, x, x, y, y, x〉
· · ·

x y

(n) 〈x, x, y, y, x, y〉,
〈x, x, x, y, y, x, x, y, y〉
· · ·

Figure 6.6: Binary footprint patterns when the traces start with x, except for the empty trace
(6.6a) or when the trace contains only y ’s and no x ’s. For the latter, the pattern
would be y-equivalent of 6.6b
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y . Similarly, the last activity can either be x or y . Hence, for any given trace,
there could only be two dashed arcs, one (incoming arc) related to the first
activity, and one (outgoing arc) related to the last activity of the trace. The only
exception to this is an empty trace, in which case no such arcs exists.

Figure 6.6 shows all the possible footprint patterns with some example traces,
when the first activity of the trace is fixed to x, i.e., σ1 = x, except for the empty
trace (Figure 6.6a), or a trace which contains only y ’s. Note that for a given
activity sequence we use the footprint pattern with the smallest number of arcs.
For example, consider a trace 〈x, x, y〉, even though the footprint patterns shown
in Figure 6.6l or Figure 6.6n are valid for such a trace sequence, Figure 6.6f is
chosen as the appropriate footprint pattern as it contains the lowest number of
arcs.

Unlike the unary footprint patterns, which record the number of times an acti-
vity is repeated, the binary footprint patterns do not record the number of times
an activity is repeated. Also, when only one activity occurs in a trace sequence
(Figure 6.6b), then the repetition of the activity is considered irrelevant for a bi-
nary footprint pattern. This is partly because, the repetitions of a single activity
are already accounted for in the unary footprint patterns. We can thus obtain
binary footprint patterns for all the unordered pairs of activities in the event
log, by projecting the event log on pairs of activities.

In order to project an event log on a pair of activities, we simply remove all
those activities from the event log which are not a part of the pair. Using such
a projected event log, we can then compute the binary footprint patterns for all
the activity pairs of the entire event log. Binary footprint patterns for the entire
event log are constructed as a bag of binary footprint patterns. For example,
consider a pair (b,e) from the event log of Figure 6.5a. The projected event
log for the pair (b,e) is [〈〉8,〈e〉,〈e,e〉,〈e,e,e〉,〈b,e〉4,〈b,e,e〉5]. The bag of binary
footprint patterns of the pair (b,e) over the projected event log is shown in
Figure 6.5b.

The footprint patterns of the event log are calculated only once. Now, we discuss
how the footprint patterns are calculated in a labeled free-choice workflow net.

6.2.2 Extraction of Patterns from Labeled Free-choice Workflow
Nets

We now discuss the computation of unary and binary footprint patterns in the context
of labeled free-choice workflow nets.

Unary footprint patterns for models In a labeled free-choice workflow net, the unary
footprint pattern corresponding to an activity x, is a pair of values (M mi n

x , M max
x ).

M mi n
x indicates the minimum number of times an activity x can occur in the pro-

cess model, whereas M max
x indicates the maximum number of times x can occur

in the process model. M mi n
x and M max

x are calculated as follows:
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1. Project a labeled free-choice workflow net on x. This is done by making all
the activities other than x invisible.

2. Consider a trace σ= 〈x, · · · , x〉, where |σ| = m. Then we denote such a trace
by σm .

3. Check whether it is possible to replay, i.e., reaching the accepting state of
the labeled free-choice workflow net, using an empty trace σ0 =〈〉 on the
net. If it is possible, then set M mi n

x = 0. Otherwise, check if the replay of
σ1 = 〈x〉 is possible on the projected net. If yes, then set M mi n

x = 1, and so
on.

4. Next, count the number of visible transitions labeled with the activity x.
Let this number be n. Check if any of the traces in {σn+1 · · ·σn+n} can be
replayed on the projected net. If it is possible, then set M max

x =∞. This
is because, at least one of the transitions labeled x appears twice, (as the
net is free-choice), and hence it must be in a loop. Otherwise, check if
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(a) Example labeled free-choice
workflow net.
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(b) Making e loop-able using ψW F
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(c) Adding choice transition t5 using
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T .
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t5

b
t1
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p6
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t6

d
t2

e t4

f
t7

p3

p5

c

t3t8
p1

⊥

o

(d) Re-labeling t5 as a and adding a duplicate
a and f using ψW F

A twice.

Figure 6.7: Example synthesis of labeled free-choice workflow net corresponding to the event
log from Figure 6.5a.
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the replay of σn is possible on the projected net. If it is possible, then set
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>

p4

b

t1

p2 t2
p3

p6

e

t4

p5
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p1

⊥

o
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(a) Net projection and binary footprint pair
corresponding to Figure 6.7a.
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e

t4

p5

t3

p1

⊥

o

t8

b e b e

(b) Net projection and binary footprint pair
corresponding to Figure 6.7b. Transition
t2 and place p2 are removed using ψW F

A
in reverse. Furthermore, place p3 is re-
moved by using ψW F

P in reverse.
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b

t1

p6

e

t4

p5

t3

p1
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o

t8

b e b e e b×
b e××

(c) Net projection and binary footprint pair corresponding to Figure 6.7c (and also Fi-
gure 6.7d). In Figure 6.7c, transition t2 and place p2 is removed using ψW F

A in reverse.
Place p3 is removed by using ψW F

P in reverse. In Figure 6.7d, transitions t6, t7 and places
p7 and p8 were additionally removed using the reverse of ψW F

A twice.

Figure 6.8: Set of binary footprint patterns corresponding to the activity pair (b,e). Note that
the order of activities in the pair does not matter.
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M max
x = n, and so-on for n −1,n −2, · · · .

The unary footprint pair for the labeled free-choice workflow net of Figure 6.7a
corresponding to activity e is (1,1) and the unary footprint pair corresponding
to activity b is (1,1) too. Whereas the unary footprint pairs for the labeled free-
choice workflow net of Figure 6.7c corresponding to activity e is (0,∞) and the
unary footprint pair corresponding to the activity b is (0,1).

Binary footprint patterns for models are computed based on pairs of activity com-
binations, for all the activities present in the labeled free-choice workflow net.
For any pair of activities, we calculate a set of binary footprint patterns allowed
by a labeled free-choice workflow net. In order to calculate this set, we use the
following steps:

1. Project the pair of selected activities on the labeled free-choice workflow
net. This is done by making all the transitions which are not part of the
activity pair invisible. For example, Figure 6.8a shows the projection for
activity pair (b,e), on the labeled free-choice workflow net of Figure 6.7a.
We can further use language preserving reduction rules, to reduce a labeled
free-choice workflow net in order to remove unnecessary nodes [58].

2. Again, we use some minimal traces corresponding to each binary footprint
pattern, and try to align them on the projected labeled free-choice work-
flow net. For example, in order to verify if the binary footprint pattern
of Figure 6.6b holds for a labeled free-choice workflow net, a trace 〈x〉 is
run over the labeled free-choice workflow net. If the process completes
successfully, i.e., the end state is reached, then the binary footprint pattern
as shown in Figure 6.6b is added to the set of binary footprint patterns for
a pair. These minimal traces for each binary footprint pattern are the first
traces of the corresponding binary footprint pattern from Figure 6.6.

The sets of binary footprint patterns for the activity pair (b,e) and the labe-
led free-choice workflow nets from Figure 6.7a, Figure 6.7b, Figure 6.7c and
Figure 6.7d are shown in Figure 6.8. It should be noted that, we use a simple
token-based replay approach for calculating the set of binary patterns that could
be applicable in the net. This may not always yield a complete and/or correct
set of patterns for all the free-choice workflow nets, which would require state-
space exploration. However, we argue that in most circumstances the simple
token-based approach suffices, especially when we consider the importance of
time aspect in an interactive setting.

6.2.3 Comparing Labeled Free-choice Workflow Nets and Event
Logs

We compare the footprint patterns of event logs and labeled free-choice workflow
nets in order to calculate the conformance of an event log with a labeled free-choice
workflow net, based on two metrics: fitness and precision. It should be noted that, in
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Table 6.1: Fitness and precision scores for activity e based on the unary footprint patterns of the
event log from Figure 6.5a and labeled free-choice workflow nets from Figure 6.7.

Net L1
e M 1

e f 1
e p1

max(e) p1
mi n(e) p1

e

Figure 6.7a [〈〉8,〈e〉5,〈e,e〉6,〈e,e,e〉] (1,1) 1/4 3/3 1/2 0.75
Figure 6.7b [〈〉8,〈e〉5,〈e,e〉6,〈e,e,e〉] (1,∞) 3/5 3/4 1/2 0.625
Figure 6.7c [〈〉8,〈e〉5,〈e,e〉6,〈e,e,e〉] (0,∞) 1 3/4 1 0.875
Figure 6.7d [〈〉8,〈e〉5,〈e,e〉6,〈e,e,e〉] (0,∞) 1 3/4 1 0.875

the case of event logs, the footprint patterns are computed in terms of bags, whereas
in the case of labeled free-choice workflow nets, the footprint patterns are computed
in terms of sets (for binary footprints) or pairs (for unary footprints, i.e., a minimum
and a maximum value for each activity).

Fitness

The fitness score reflects how much behavior from the event log is represented by the
labeled free-choice workflow net. In our case, we first calculate the individual fitness
of each activity based on the unary footprint patterns, as well as the fitness of activity
pairs using the binary footprint patterns for all the activity combinations, and then
aggregate the results to calculate the overall global fitness. It should be noted that,
the fitness is computed only with respect to the activities which are already added in
the labeled free-choice workflow net.

Fitness based on unary footprint patterns Let x be an activity from an event log
which is added to the labeled free-choice workflow net. Let L1

x be the bag
of unary footprint patterns from the event log for the activity x. Let M 1

x =
(M mi n

x , M max
x ) be the unary footprint pattern from the labeled free-choice work-

flow net for the activity x. Then the fitness f 1
x of the activity x based on unary

footprint patterns is calculated as follows:

f 1
x =

Σσ∈L1
x∧M mi n

x ≤|σ|≤M max
x

L1
x (σ)

Σσ∈L1
x

L1
x (σ)

Using this, the fitness scores based on unary footprint patterns corresponding
to activity e from Figure 6.5a and the labeled free-choice workflow nets of Fi-
gure 6.7 are computed as shown in Table 6.1.

Fitness based on binary footprint patterns Let (x, y) be an activity pair in the event
log which is also present in the labeled free-choice workflow net. Let L2

(x,y) be
the bag of binary footprint patterns from the event log for the activity pair (x, y).
Let M 2

(x,y) be the set of binary footprint patterns from the labeled free-choice
workflow net for the pair (x, y). Then the fitness f 2

(x,y) of the activity pair (x, y)
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Table 6.2: Averaged fitness scores based on the unary and binary footprint patterns of the event
log from Figure 6.5a and the labeled free-choice workflow nets from Figure 6.7a,
Figure 6.7b and Figure 6.7c.

Activity (pair) Figure 6.7a Figure 6.7b Figure 6.7c

b 9/20 9/20 20/20
c 20/20 20/20 20/20
d 9/20 9/20 20/20
e 5/20 12/20 20/20

(b,c) 9/20 9/20 20/20
(b,d) 9/20 9/20 20/20
(b,e) 4/20 9/20 20/20
(c,d) 9/20 9/20 20/20
(c,e) 5/20 12/20 20/20
(d ,e) 4/20 9/20 20/20

Average Fitness 0.415 0.535 1

based on binary footprint patterns is calculated as follows:

f 2
(x,y) =

Σσ∈L2
(x,y)∧σ∈M 2

(x,y)
L2

(x,y)(σ)

Σσ∈L2
(x,y)

L2
(x,y)(σ)

Using this, the fitness score f 2
(b,e), for the activity pair (b,e) based on the binary

footprint patterns of Figure 6.5b and labeled free-choice workflow nets from
Figure 6.8a, Figure 6.8b, and Figure 6.8c are 1/5, 9/20 and 1 resp.

The fitness of the entire event log is calculated as the average of all the individual
fitnesses for all the pairs of activity combinations (in the case of binary footprint
patterns) as well as all the activities (in the case of unary footprint patterns). It
should be noted that the fitness is computed only with respect to the activities that
are present in the labeled free-choice workflow net. Table 6.2 shows the fitness scores
for the nets from Figure 6.7a, Figure 6.7b and Figure 6.7c. As evident, when activity e
cannot be repeated according to Figure 6.7a, the averaged fitness score is the lowest.
When activity e can be repeated in Figure 6.7b, the fitness score is higher, however is
not 1, as there exists no provision to skip activities b and d . However, in Figure 6.7c,
when it is possible to skip both b and d , the averaged fitness is a perfect score of 1.

Precision

The precision score reflects how much extra behavior is allowed by a labeled free-
choice workflow net, when compared with the event log. Similar to the fitness scores,
we first compute the precision value of every activity and every activity pair by com-
paring the unary footprint patterns and the binary footprint patterns as follows:
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Precision based on unary footprint patterns Let x be an activity from an event log.
Let L1

x be the bag of unary footprint patterns from the event log corresponding
to the activity x. Let M 1

x = (M mi n
x , M max

x ) be the unary footprint pattern from
the labeled free-choice workflow net for the activity x. We compute precision
based on two values, maximum occurrences of x allowed by the model, and
minimum occurrences of x allowed by the model. p1

max(x) denotes the precision
for maximum occurrences of activity x allowed by the model, and is calculated
as follows:

p1
max(x) =

Lmax

Mm

where, Lmax is the length of longest trace in L1
x , i.e., Lmax = |P | s.t. P ∈ L1

x ∧
∀P ′∈L1

x
|P ′| ≤ |P | and

Mm =


Lmax if Lm ≥ M max
x

Lmax +1 if M max
x =∞

M max
x otherwise

In order to avoid division by ∞, we use an upper bound for Mm , as Lmax +
1, when M max

x = ∞. This also penalizes shorter loops observations from the
event log, when compared to longer loop observations. However, there is also a
drawback of the proposed solution. Consider two process models corresponding
to the same event log. Let us assume that the value of Lmax = 5 for a particular
activity. Let us assume that the value of M max

x = 50 for the first model and the
value of M max

x =∞ for the second model. Based on the proposed solution, the
value for the precision of the second model would be better than the value for
the precision of the first model, which is incorrect. In our case, however, we
are not interested in comparing the precision between process models. We are
mainly interested in providing an approximate indication of the precision value.
We re-visit this limitation in the evaluation section (Section 6.4.3).

The precision for minimum occurrences of x in the model is denoted by p1
mi n(x),

and is calculated as follows:

p1
mi n(x) =

{
1 if Lmi n ≤ M mi n

x
Lmi n+1
M mi n

x +1
otherwise

where, Lmi n is the length of shortest trace in L1
x , i.e., Lmi n = |P | s.t. P ∈ L1

x ∧
∀P ′∈L1

x
|P ′| ≥ |P |.

The overall unary precision for activity x is thus the average of the minimum
and maximum precisions, denoted by p1

x and calculated as follows

p1
x =

p1
max(x) +p1

mi n(x)

2

The precision scores corresponding to the activity e from the event log of Fi-
gure 6.5a and the labeled free-choice workflow nets from Figure 6.7 are shown
in Table 6.1.
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Table 6.3: Averaged precision scores based on the unary and the binary footprint patterns of
the event log from Figure 6.5a and the labeled free-choice workflow nets from Fi-
gure 6.7a, Figure 6.7b and Figure 6.7c.

Activity (pair) Figure 6.7a Figure 6.7b Figure 6.7c

b 0.75 0.75 1
c 1 1 1
d 0.75 0.75 1
e 0.75 0.625 0.875

(b,c) 1 1 1
(b,d) 1 1 1
(b,e) 1 1 1
(c,d) 1 1 1
(c,e) 1 1 1
(d ,e) 1 1 1

Average Precision 0.925 0.913 0.988

Precision based on binary footprint patterns Let (x, y) be an activity pair. Let L2
(x,y)

be the bag of footprint patterns from the event log for the activity pair (x, y).
Let M 2

(x,y) be the set of footprint patterns from the labeled free-choice workflow
net for the activity pair (x, y). Then the precision p2

(x,y) of the activity pair (x, y)

is calculated as follows:

p2
(x,y) =

∑
P∈M 2

(x,y)∧P∈L2
(x,y)

1

|M 2
(x,y)|

Using this, the precision score p2
(b,e), for the activity pair (b,e) based on the

binary footprint patterns of Figure 6.5b and labeled free-choice workflow nets
from Figure 6.8a, Figure 6.8b, and Figure 6.8c are all equal to 1.

The precision of the overall labeled free-choice workflow net with a given event
log is then computed as the average of all the individual precision scores (like with
fitness). Table 6.3 shows the precision scores for the event log from Figure 6.5a and
the labeled free-choice workflow nets from Figure 6.7a, Figure 6.7b and Figure 6.7c
respectively.

It should be noted that in the binary patterns for labeled free-choice workflow
nets, our approach does not consider duplicate occurrences of activities. That is, by
considering minimal traces in order to extract binary footprint patterns, the approach
ignores the possible duplication of activities in the labeled free-choice workflow net.
However, to a certain extent, we address this by using unary patterns for single acti-
vities, which consider frequencies from the event log, as well as the minimum and
maximum possible occurrences from the labeled free-choice workflow net.
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6.3 Incremental Tracking of Changes in Labeled Free-
Choice Workflow Nets

Section 6.2 provides a way to calculate fast approximate conformance analysis, given
a labeled free-choice workflow net and an event log. However, in an interactive pro-
cess discovery setting, a labeled free-choice workflow net is expanded incrementally.
In the second part of our solution, we make use of this principle in order to incremen-
tally calculate the conformance using the projected conformance of the prior labeled
free-choice workflow net. This aspect deals only with the comparison of binary foot-
print patterns of conformance analysis. Instead of recalculating the projected confor-
mance of all the activity pairs, we calculate the projected conformance of only those
activity pairs which are necessary, and re-use the previously computed projected con-
formance for all the other activity pairs.

Before introducing incremental conformance, we introduce the concept of beha-
vioral equivalence in two models. Two labeled free-choice workflow nets M1 and M2

are said to be behaviorally equivalent, represented as M1 ≈ M2 if and only if all the be-
havior of M1 is exhibited by M2, and vice versa. Similarly, behavioral in-equivalence
of two labeled free-choice workflow nets is denoted by M1 6≈ M2. Suppose a labe-
led free-choice workflow net Mi+1 is interactively derived from a labeled free-choice
workflow net Mi . Let Ci+1 and Ci correspond to all the activity pairs of Mi+1 and Mi .
Let Mi ↓(x,y) denote projection of activity pair (x,y) on the model Mi . Then, we can
distinguish two cases:

1. Set of same activity pairs CS ⊆Ci+1 whose projected behavior is the same in the
models Mi and Mi+1, that is ∀c∈CS Mi ↓c≈ Mi+1 ↓c .

2. Set of different activity pairs CD ⊆Ci+1 whose projected behavior is different in
the models Mi and Mi+1, that is ∀c∈CD Mi ↓c 6≈ Mi+1 ↓c .

There is no need to calculate the conformance values for those activity pairs which
exhibit the same projected behavior in Mi and Mi+1 (CS). However, there is a need
to calculate the conformance values for the activity pairs CD whose projected beha-
vior is not the same. Therefore, in an interactive setting, we improve the projected
conformance calculation times, by calculating conformance for only the activity pairs
from the set CD . It should be noted that, if a new activity is added to the model in-
teractively, then new activity pairs could be introduced, which would all be a part of
CD . The amount of time needed for the calculation of conformance for activity pairs
CS is saved by using an incremental way of calculating the conformance values.

Based on the type of synthesis rule used for interactive labeled free-choice work-
flow net construction at each iteration, we identify the set of pairs of activities (CS)
whose projected behavior does not change. For all the other activity pairs (CD), the
conformance is recalculated. We now describe the incremental way of calculating the
set of activity pairs CS and CD , in the context of interactive process discovery based
on each of the synthesis rules.
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Figure 6.9: Adding a new place to the net from Figure 6.7a using ψW F
P rule. The result is that

t2 (d) and t4 (b) are now in sequence (that is, d is followed by b).

6.3.1 Addition of a New Place (ψW F
P )

Adding a new place using the ψW F
P rule to a net allows the possibility of introducing

concurrency in the net. An introduction of a place does not result in any new activity
in the model, and hence no new activity pairs are possible. There exists a set of bags
of places Pset in the labeled free-choice workflow net, which has the same effect as
the newly added place. This can be extracted from the linear dependence condition
of the ψW F

P rule (and the λ vector). Loosely speaking, this means that every bag of
places from Pset collectively has the same input and output as the newly added place.
This set corresponding to the place p5 is {[p2, p3]} in the net of Figure 6.10a before
using ψW F

A to add p6 and t4. Typically, all the activity combinations are added to
CS , as the projected behavior of the activity pairs remains unchanged. However, in
very few cases the projected behavior of the activity pairs might have changed, if at
least one of the bags in Pset contains the place i of the labeled free-choice workflow
net. For example, in Figure 6.9, Pset corresponding to the newly added place p7 is
{[p3, p, i , p1, p6]}. Since Pset contains i , no activity pairs are added to CS . This is also
because the projected behavior between some activities has indeed changed as shown
in Figure 6.9 (for example, t2 and t4 changed from parallel to a sequential construct).

6.3.2 Addition of a New Transition (ψW F
T )

The addition of a new transition using the ψW F
T rule usually results in the introduction

of a choice or a loop in the labeled free-choice workflow net. There exists a set of bags
of transitions Tset , which have the same effect on the labeled free-choice workflow
net, as the newly added transition. For example, in Figure 6.7c, this set is [{t1, t2, t4}]
corresponding to the linearly dependent transition t5. Similarly, in Figure 6.10, this
set corresponding to linearly dependent transition t ′ is [{t2}]. We use this information
to calculate the set of activity combinations CS whose projected behavior does not
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change. No elements are added to CS , if any bag from Tset contains > or ⊥. The
reasons for this are similar to Section 6.3.1. The second scenario is when none of the
bags from Tset contain > or ⊥, i.e., ∀E∈Tset >,⊥ ∉ E . Let TL be the set of all the labels
represented by the transitions in Tset . An activity combination for a subset of activities
As (such that the label of newly added transition is not in As) is added to CS if
As ∩TL =;. Consider the labeled free-choice workflow net from Figure 6.10a derived
from Figure 6.7a by adding a new transition t ′, which is also labeled t ′ (TL = {t ′}). The
pair of activities (b,d), (c,d) and (e,d) are not added to CS . For example, consider the
projection of activities {b,d} as shown in Figure 6.10b. In the new net projected (and
reduced) on activities (b,d), there is a possibility to skip the activity d , via t ′. Hence
there is additional behavior introduced corresponding to the activity d which was not
present in the prior projected net. Hence such activity pairs are not added to CS ,
and are candidates for recalculation. As a counter-example, it is easy to see that the
previous activity pair of (b,e) has the same projected behavior, after the introduction
of t ′, and hence this activity combination is added to CS .

6.3.3 Addition of a New Transition and a New Place (ψW F
A )

Adding a new transition and a new place using the ψW F
A rule results in a new sequence

in the model. If the newly added transition is labeled with an activity which is not
already present in the labeled free-choice workflow net, then all the activity pairs
from the previous net are behaviorally equivalent in the newly synthesized net. That
is, if the newly added transition is made silent, then the net would be behaviorally
equivalent to the previous net. Hence all the activity pairs from the prior net are
added to CS . In case the newly added transition is labeled with an activity which
was already present in the prior net, then the conformance is computed only for the
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(a) An example application of the ψW F
T rule

to add t ′ to the net from Figure 6.7a.
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(b) Net projected on activity pair (b,d)..

Figure 6.10: An example of the ψW F
T rule and the usage of incremental conformance calcula-

tion.
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Table 6.4: Characteristics of the real-life event logs chosen for evaluation.

Event log Number of cases Number of events Number of activity classes

Sepsis 1050 15214 16
BPI-2012A 13087 60849 10
BPI-2012O 5015 31244 7
BPI-2015 696 12559 25

Hospital billing 100000 451359 18
BPI-2018 15364 25142 10

activity pairs corresponding to the activity of the newly added transition.

6.4 Implementation and Evaluation

The proposed approach is implemented as a plug-in to extend the capabilities of inte-
ractive process modeling proposed in Chapter 5. The user is provided with the fitness
and precision scores, which are indicated on a scale from 0 to 1. The plug-in is avai-
lable in the nightly build version of ProM [171], in the InteractiveProcessMiningLite
6.9.13 package, under the plug-in “Petri net editor with conformance”. This plug-in
requires an event log in XES [3] format as input along with another object called AHL
(Aggregated Log Heuristics), which contains information about unary and binary pat-
terns of the event log. The AHL object can be obtained by using the plug-in “Log to
Aggregated Log Heuristics for fast conformance checking” which requires an event
log in XES format as an input.

Another stand-alone version of the proposed conformance approach is also avai-
lable in the plug-in “Log-Model comparison using patterns”. This plug-in requires an
event log in XES [3] format and a Petri net as input.

The stand-alone version of the proposed approach has been evaluated based on
performance aspect and accuracy aspect, by comparing it with the relevant state-of-
the-art approaches. The techniques used for comparing fitness scores are: the decom-
posed replay technique [180], the recomposed replay technique [178], the projected
conformance checking [112] framework (with k = 2), and the alignment-based con-
formance technique [5]. The techniques used for comparing precision scores are:
the projected conformance checking [112] framework (with k = 2), and the escaping
edges based ETC 1-align precision [128]. We performed the evaluation using six pu-
blicly available real-life event logs: (i) the Sepsis event log1 containing the workflow
data for roughly 1000 patients suffering from Sepsis in a hospital, (ii) the BPIC 2012-
A2 event log and (iii) the BPIC 2012-O3 event log which correspond to the application
and the offer sub-logs respectively of a loan application process in a Dutch financial

1https://data.4tu.nl/repository/uuid:915d2bfb-7e84-49ad-a286-dc35f063a460
2https://doi.org/10.4121/uuid:3926db30-f712-4394-aebc-75976070e91f
3https://doi.org/10.4121/uuid:3926db30-f712-4394-aebc-75976070e91f
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institute, (iv) the BPIC 20154 filtered event log, which contains top 25 activities of
a building permit application for one of the municipalities in the Netherlands, (v)
the hospital billing5 event log, containing data from the financial modules of the ERP
system of a regional hospital, and (vi) the BPIC 20186 event log, containing 10%
of the data about the process for direct payments for German farmers. We used the
inductive miner-infrequent algorithm [110], in order to discover labeled free-choice
workflow nets from these event logs. By default, discovery techniques such as the
inductive miner and the ILP miner [170] aim at discovering fully fitting labeled free-
choice workflow nets, i.e., nets which have a fitness value of 1. As we are interested in
comparing the fitness and precision values across different conformance algorithms,
we configured the inductive miner infrequent algorithm to be used in three settings:
(i) ind0: a setting assuming 0 noise, which guarantees a fitness of 1, (ii) ind5: a
setting with noise threshold set at 50% noise, and (iii) ind10: a setting with noise
threshold set at 100%. It should be noted that inductive miner discovers constructs
such as loops, choices, concurrency and silent activities. However, the inductive miner
cannot discover duplicate activities in a labeled free-choice workflow net.

6.4.1 Performance

The primary objective of the approach proposed in this paper is to enable faster con-
formance analysis which would be useful in an interactive process discovery setting.
The extraction of footprint patterns (unary and binary) from the event logs would
serve as an input to the conformance checking during interactive process discovery,
and is required to be done only once. Hence, we did not use this processing step du-
ring comparison. This initial step took in between 10ms to 2500ms, depending on the
type of event log. Contrary to this, other conformance techniques require the usage of
the complete event log during each step of interactive process discovery. Figure 6.11
shows the performance of different approaches, in milliseconds. Note that the scale is
logarithmic. The computation time for the PCC framework [112] and our approach
includes the calculation time for both the fitness and precision scores. The decom-
posed replay, recomposed replay and alignment-based replay are used to calculate
only the fitness value. The ETC 1-align technique is used to calculate the precision
value. It should be noted that, the ETC 1-align technique requires an alignment as
an input for calculating the precision value. However, the plots of Figure 6.11 do
not show the time taken for computing alignments in the case of ETC 1-align. It is
easy to see that our approach is able to outperform most of the techniques for calcu-
lating faster conformance, for both fitness and precision scores. The PCC framework
is the closest in terms of computation time compared to our approach, and it can
be argued that both our approach and the PCC framework scale similarly. Waiting
times of most state-of-the-art techniques can be greater than 10 seconds, and hence
become unacceptable. Compared to this, our approach works much faster, and hence
is suitable in an interactive process discovery setting.

4https://doi.org/10.4121/uuid:a0addfda-2044-4541-a450-fdcc9fe16d17
5https://doi.org/10.4121/uuid:76c46b83-c930-4798-a1c9-4be94dfeb741
6https://data.4tu.nl/repository/uuid:3301445f-95e8-4ff0-98a4-901f1f204972
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6.4.2 Fitness and Precision Comparison

In this sub-section, we compare the outcome of our result, in terms of fitness and pre-
cision scores, by comparing it with other approaches. All the techniques considered in
this evaluation, calculate the fitness and precision scores in the (inclusive) range of 0-
to-1. Higher scores indicate better fitness/precision. Hence, a fitness/precision score
of 1 would indicate a perfect fitness/precision. Moreover, the decomposed and recom-
posed replay techniques do not give a singular value for fitness scores, but instead give
a lower bound and higher bound for fitness. The comparison outcome of fitness and
precision scores of all the techniques is shown in Figure 6.12 and Figure 6.13 resp.
As discussed earlier, we considered three labeled free-choice workflow nets for each
type of event log discovered using the inductive miner infrequent at various settings.
The inductive miner infrequent guarantees that a labeled free-choice workflow net
discovered with a setting of no noise (i.e., noise threshold set to 0), are perfectly fit-
ting with the event log. This is also evident in all the fitness scores of all the labeled
free-choice workflow nets. As the noise threshold is increased, the inductive miner
allows models that explain just the common part of the log. Hence while increasing
the noise threshold the fitness should drop. This is indeed the trend that is observed
across the fitness measures for all the techniques (including ours). Moreover, it can be
seen that for most of the scenarios, the fitness scores of our technique are extremely
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(f) BPIC 2018.

Figure 6.11: Time (logarithmic) comparison for various approaches: F - Footprint-based Con-
formance Technique - proposed in this chapter, P - PCC framework (k = 2), D -
Decomposed Replay, R - Recomposed Replay, A - Alignment-based replay, E - ETC
1-align precision.
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Figure 6.12: Fitness values comparison of: F - Footprint-based Conformance Technique - pro-
posed in this chapter, A - Alignment-based replay, P - PCC framework (k = 2), DL
- Decomposed Replay Lower Bound, DH - Decomposed Replay Higher Bound, RL
- Recomposed Replay Lower Bound, RH - Recomposed Replay Higher Bound. The
legends indicate the labeled free-choice workflow nets considered for calculating
fitness, discovered using the inductive miner infrequent technique, such that: (i)
i0 - noise threshold set to 0, (ii) i50 - noise threshold set to 50% (iii) i100 - noise
threshold set to 100%.

close to the alignment-based replay technique, which can be considered as a baseline
for fitness scores. In a similar way, it is quite intuitive to note that as the labeled
free-choice workflow nets become more restricted (with higher noise threshold), the
precision of the labeled free-choice workflow net increases. The PCC framework and
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Figure 6.13: Precision values comparison of: F - Footprint-based Conformance Technique - pro-
posed in this chapter, P - PCC framework (k = 2), E - ETC 1-align. The legends
indicate the labeled free-choice workflow nets considered for calculating preci-
sion, discovered using the inductive miner infrequent technique, such that: (i) i0
- noise threshold set to 0, (ii) i50 - noise threshold set to 50% (iii) i100 - noise
threshold set to 100%.

our approach typically have a similar precision value, as shown in Figure 6.13, This
is due to the similarity of the two approaches in terms of calculating the precision
scores. It can be argued that there is no single baseline available when it comes to
precision scores. However, it can be observed that all three approaches follow a si-
milar trend in precision scores. Hence, in a practical scenario, our approach is useful
as it provides an approximated, yet acceptable, indication of the precision and the
fitness scores.

6.4.3 Discussion

The solution proposed in this chapter is suitable for the computation of the confor-
mance scores in an interactive setting. However, the proposed solution has some
limitations, which could be improved in the future. In this section, we discuss some
of the possible issues with the proposed solution. Note that it is not the intention
here to compare the proposed solution with the works from the literature, which are
addressed in Section 6.5.
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First, our solution faces difficulties when dealing with duplicate occurrences of
activities in a process model. In particular, we do not consider duplicate occurren-
ces when using the binary footprint patterns for computing fitness or precision. For
example, consider the process model from Figure 6.14a, containing duplicate occur-
rences of activities a and b. Clearly the correct binary pattern for this process model is
shown in Figure 6.14b. However, the binary pattern extracted using a minimal trace-
based approach (〈a,b〉) would be the one shown in Figure 6.14c. Since the extracted
pattern is incorrect, this may affect the overall fitness and precision scores. A way
to address the issues created by using the minimal trace-based approach, would be
to compute the complete state-space of the projected model. However, exploring the
complete state-space would eventually have a negative effect on the performance of
the system. Another consequence of not distinguishing duplicate occurrences would
be that multiple occurrences of activities within the process model would have iden-
tical fitness and precision values. We argue that, to a certain extent, the duplicate
occurrences are addressed while computing the fitness and precision values using the
unary footprint patterns.

Another possible issue in our approach is the computation of possibly incorrect
precision scores as discussed in Section 6.2.3. This could also be the reason for re-
latively higher differences in the precision scores computed using our solution and
the state-of-the-art, as shown in Figure 6.13. In the process mining community, the
computation of precision scores has been an issue of much interest of late. However,
in our case, we are only interested in providing an indication of the precision, and do
not claim any guarantees with respect to the computed precision value. More impor-
tantly, we focus on the performance aspect, to compute the conformance scores in a
speedy way.

Overall, even though the results were approximated in the proposed solution, the
fitness and precision scores computed using our solution still provided a good indica-
tion in comparison to the fitness and precision scores as computed by other approa-
ches. Moreover, by abstracting the event log using the footprint patterns, our solution
was able to compute these results in a much faster way, and hence is better suited in
an interactive setting. Nonetheless, it would be ideal to explore further avenues using
the proposed approach, to improve some of the limitations in the proposed solution.
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Figure 6.14: Extracting binary footprint patterns from the process model containing duplicate
activities.
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6.5 Related Work

The work presented in this chapter centers around proposing faster conformance ana-
lysis in order to enable conformance analysis in an interactive process discovery set-
ting. Since the scope is conformance analysis rather than process discovery itself, in
this section we discuss techniques from literature which propose conformance ana-
lysis in the context of process mining, that are comparable to our technique. Con-
formance checking techniques typically match the behavior of event logs with the
behavior as depicted by process models. For a general overview on conformance
analysis in process mining, we refer to [34].

6.5.1 Token-based Replay

[55, 142] proposed conformance checking in the context of process mining using
the token-based replay in Petri nets. Every trace from the event log is replayed on
the Petri net, such that whenever there are insufficient tokens to execute an event,
it is recorded as a missing token and the event is executed anyway. When the trace
terminates, the number of missing tokens and remaining tokens from the net are used
to compute fitness and precision scores. The originally proposed token-based replay
techniques had difficulties in handling silent and duplicate activities. A couple of
closely related approaches, [174,182] overcome such drawbacks and improve the fit-
ness, precision and generalization scores by introducing negative events in the event
log. These approaches could however have long running times. In all these approa-
ches, the complete event log needs to be compared with the process model in order
to compute the conformance score. Even though token-based replay technique are
fast, for very large event logs, the compute times could still be high. In our propo-
sed solution, we use a minimal trace based replay approach, to compute the binary
footprint patterns of the process model, which is similar to the token-based replay
approach. However, we stop the execution if the next event cannot be replayed, and
do not have the notion of missing and remaining tokens. If the token-based replay
technique could work with some abstracted version of the event logs, then it could
possibly be used with the generic approach proposed in Section 6.1.

6.5.2 Alignment-based Conformance

Alignment-based conformance checking techniques such as [4,5,31,38,50] have been
proposed that aim to optimally align the behavior of traces from the event log and
the possible process model execution traces. Multiple techniques have been proposed
to improve the proposed alignment approach, by translating the alignment problem
into a planning problem [53], or assuming partially ordered input data [114], or
constructing cost function for alignments based on attribute data [7]. However, the
main focus of most of these techniques is to provide accurate conformance results.
And hence, there is not a lot of emphasis on the performance of the technique itself.
Furthermore, these techniques require scanning of the complete event log in order to
perform conformance analysis. This is not ideal in a process discovery setting which
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is interactive in nature and would require conformance checking after each step, as
the performance of the overall system could be drastically impacted depending on
the size of the event log and the complexity of the labeled free-choice workflow net
being modeled. There have been specialized strategies proposed to incrementally
repair alignments in the context of Evolutionary Tree Miner (ETM) algorithm [177].
However, the class of process models supported is limited to block-structured process
models (process trees).

6.5.3 Divide-and-conquer

There are also techniques proposed in order to improve the performance of calcu-
lating conformance of a process model and an event log. Many of these techniques
use the so-called divide-and-conquer strategy [63, 129, 155, 162, 178, 180]. The idea
behind these techniques is to decompose a process model into various sub-models
based on a specific decomposition strategy, and then to compute alignments on the
smaller model (and a corresponding smaller event log) and aggregate the informa-
tion across all the models. Another strategy to improve the computation time of
conformance analysis is by using the Projected Conformance Checking (PCC) techni-
que [112], which projects process models and event logs onto a subset of activities,
and aggregates the results over all combinations of activity subsets. Unlike the PCC
technique, we first abstract the information from the event logs, and then use this ab-
stracted information in order to calculate conformance on a set of projected activity
combinations. We argue that our approach is faster by not having to scan through the
entire event log during every stage (step) of the interactive process discovery. This
distinguishes our approach considerably from most of the other approaches too. Com-
puting conformance scores using the abstractions on the process model and the event
log have also been proposed in the literature. For example, [143] uses behavioral
appropriates and footprint matrices to compare directly following and eventually fol-
lowing graphs. However, this could be infeasible in practice, as it requires exploration
of the full state-space. [183, 184] propose computing the process compliance based
on behavioral profiles, by comparing behavioral constraints in pairs of activities in
the process model and the event logs, thereby overcoming the problems of exploring
state-spaces in order to compute conformance. Hence, this approach is also closely
related to our approach. Both our approach and the behavioral-profiles-based appro-
ach face difficulties in dealing with duplicate occurrences of activities in the process
model. In essence, we argue that the behavioral constraints taken into account by the
behavioral-profiles-based approach are a subset of the footprint patterns proposed by
us. Another distinguishing factor of our approach is the calculation of conformance
scores in an incremental fashion, by considering only those parts of the labeled free-
choice workflow net which are changed, which can be derived based on the type of
the synthesis rule used. However, the generic approach proposed in Section 6.1, could
possibly be combined with any other approach from the literature which could work
with abstracted event logs.
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6.5.4 Other Techniques

Rule-based conformance checking techniques, such as [12,35,115,136], verify if cer-
tain pre-specified rules were satisfied in reality, on a rule-by-rule basis. Our approach
uses a similar principle. In essence, we abstract patterns, similar to rules, from both
the event logs and the process models, and then incrementally compare them when
a process model is interactively changed to compute the conformance scores. Some
techniques address conformance checking from other perspectives such as natural
language processing, formal methods, real time setting etc. [6, 154, 173]. Similarly,
certain visualization driven approaches, allow the user to search the event log through
visual interfaces by using approaches such as time-interval based queries and regular
expressions [29, 107, 194]. The outcome of the search results could be used to ana-
lyze any compliance issues in the event logs. However, the goal of these techniques is
different compared to our technique, as we are interested in computing conformance
scores for procedural models (labeled free-choice workflow nets) in an efficient way.

6.6 Conclusion and Future Work

In this chapter, we presented an approach to enable fast conformance analysis by ab-
stracting the information from the event logs using footprint patterns. Furthermore,
we presented a way to extract similar footprint patterns from the process models,
and also presented a way to compare the footprint patterns from the event logs with
the footprint patterns from the process models, in order to deduce the fitness and
precision scores. We also presented a technique to incrementally keep track of the
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Figure 6.15: Average, minimum, and maximum time taken for computing conformance (fitness
and/or precision) using various state-of-the-art techniques (P - PCC framework
(k = 2), D - Decomposed Replay, R - Recomposed Replay, A - Alignment-based
replay, E - ETC 1-align precision, F - Footprint-based Conformance Technique -
proposed in this chapter.), based on the six real-life event logs and their corre-
sponding discovered process models discussed in Section 6.4.
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changes in the process model to further improve the efficiency of conformance ana-
lysis. As shown in Section 6.4, by reusing the precalculated footprint patterns of the
event log in an incremental way, we were able to improve the performance times
of calculating the conformance between a process model and the event log. Furt-
hermore, the approximated conformance results calculated using our technique are
comparable to many state-of-the-art techniques. Hence, we argue that our technique
is much more suited for computing conformance in the context of process discovery
techniques which are interactive in nature, wherein the event log remains unchanged
in different steps/stages of the process discovery. The benefits of the proposed solu-
tion are clearly evident upon revising Figure 6.2, by including the solution proposed
in this chapter as shown in Figure 6.15. Since the proposed solution can compute
conformance scores in a much faster way (less than 500 milliseconds on an average),
it is well suited in an interactive setting. However, the proposed solution also has
some limitations, as shown in Section 6.4.3.

In the future, we would like to extend our approach in order to consider the fre-
quencies of loops in binary footprint patterns directly. Furthermore, it would also be
desirable to explore solutions that deal better with duplicate occurrences of activi-
ties in the process model. In the current solution, duplicate occurrences of activities
and loops in the process model could result in the computation of incorrect fitness
and precision scores. Currently, we trade the accuracy of our results in lieu of bet-
ter performance. However, in the future it would be ideal to explore avenues that
can improve the accuracy of the result, without impacting the performance of the
system. It would also be desirable to give certain guarantees with respect to the fit-
ness and precision scores. Another future direction could be, to allow the user to add
or remove footprint patterns, in order to influence the conformance computation, by
incorporating domain knowledge.
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This chapter is based on the publication [59].
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As discussed previously, automated process discovery and process modeling form two
ends of a spectrum. On one end of the spectrum, automated process discovery techni-
ques discover a process model directly from the event log with very limited user input.
The user has very little influence over the actual discovery algorithm, and it is usually
not possible to incorporate domain knowledge during process discovery. Moreover,
the resulting process models might be incomprehensible for the end user. On the ot-
her end of the spectrum, we have the editor-based process modeling tools which are
completely user-driven and use no historical evidence from the event logs to create
the process model. We have minimized this gap in Chapter 5, by allowing the users to
interactively construct process models, guided by the information from the event logs
as projected on the process model. Moreover, in Chapter 6 we have further assisted
the user in effective process modeling by performing real-time conformance analysis
to indicate the usefulness of a change in the process model.

However, in the approaches proposed in Chapter 5 and Chapter 6, the user has
to first determine the positioning of activities in a process model, based on the event
log projections and/or domain knowledge, and then model the process model accor-

Figure 7.1: Recommendations-based interactive process discovery. Recommendations are ge-
nerated to position an activity in a process model based on the event log. The
user may then choose one of the suggested recommendations, or can ignore all the
recommendations to manually position the activity in question.
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dingly. In certain situations, the user may be unsure of where to position a particular
activity in the process model. This is especially true when the user’s knowledge about
the activity in the process is limited. Moreover, there may be scenarios in which the
information from the event log seems unclear for interpretation or decision making.
Hence, it would be ideal to automatically discover process models on behalf of the
user. This points back to the world of automated process discovery. However, the
drawback of automated process discovery techniques is that they are typically black
boxes, and allow for very limited user influence. That is, in an automated process dis-
covery setting, the user is typically provided with one final process model. However,
in our case, we would like the user to actively influence the discovery process, and be
provided with multiple options to choose from. Hence, there is a need for providing
smart recommendations to mitigate the burden of decision making from the user. In
this chapter, we focus on addressing this issue by further reducing the gap between
process modeling and automated process discovery. Figure 7.1 provides an overview
of recommendations-based process modeling. The main contributions of this chapter
are:

• A seamless integration of user-driven and data-driven approaches for process
discovery, by providing recommendations to the user about the possible positi-
ons in a process model where an activity could be placed. Furthermore, it is also
desirable to analyze the impact of adding the activity at the specified location
in the process model.

• The possibility of an auto-complete: to switch efficiently between interactive
discovery and automated discovery of a process model.

We begin by defining the problem in Section 7.1. We discuss the key aspects of
the solution in Section 7.2, followed by the interface and interaction component of
the system in Section 7.3. In Section 7.4 we evaluate the proposed approach to judge
the quality of the recommendations based on a user study. Finally, we provide the
conclusions in Section 7.5.

7.1 Problem Definition: Auto-pilot Mode in Interactive
Process Modeling

In Chapter 1, we described Goal 2 of interactive process modeling/discovery, using
several challenges/subgoals associated with it. The subgoals dealing with structural
representations of process models, and guarantees regarding soundness were addres-
sed in Chapter 3 and Chapter 4 by using free-choice workflow nets and synthesis
rules. Furthermore, in Chapter 5 and Chapter 6 we addressed the subgoals to enable
interactive modeling of labeled free-choice workflow nets, supported by the infor-
mation from the event log, using projections and fast conformance analysis. In this
chapter, the focus is to move further towards automated discovery of process models,
by keeping the human-in-the-loop, i.e., to address the subgoal of providing recom-
mendations. With this as the aim, we address the following problem in this chapter:
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• How can we assist the user in semi-automated interactive process discovery,
such that:

– multiple recommendations for positioning an activity in a process model
can be automatically generated and presented to the user. Until now, the
user had to manually add an activity at the desired location in the process
model. However, it would be desirable to automatically place an activity
in a process model. Moreover, the user should ideally be able to choose
from multiple (automatically generated) recommendations for positioning
an activity in the process model. Suggesting the position of an activity in a
process model without overwhelming the user with too much information
is one of the foremost challenges of human-in-the-loop process discovery
techniques. The selected activity could be placed at multiple positions
within the process model. Therefore, it is vital to recommend to the user
the most relevant locations where a particular activity can be placed in the
process model. Eventually, the user needs to judge the appropriateness of a
particular recommendation based on the comprehensibility of the process
model for a given recommendation, along with other quality metrics. Mo-
reover, it would also be ideal to provide the user with the insights into each
recommendation, i.e., how does the recommended positioning of an activity
compare with the information from the event log. Ideally, the recommen-
dations should be ranked automatically based on the quality dimensions
computed from the event log, in order to assist the user in decision ma-
king. Therefore, there is a clear need to automatically calculate multiple
recommendations for adding a particular activity to a process model, and
to automatically rank these recommendations, to assist the user in decision
making.

– the recommendations about the next activity that should be added to the
model can be automatically generated and presented to the user. There
should be a certain intuitive flow of choosing the activities during the pro-
cess of process model construction. Since the process model is expanded
incrementally by adding one activity at a time, there should be a logical
order in which the activities are added to the net. That is, there should be
a way to decide the order, or decide which activities belong together. For
example, from a user’s perspective, it would be easier to get recommen-
dations of all the related activities together (or following one another),
rather than getting ad-hoc recommendations of unrelated activities. Furt-
hermore, at any given point during process discovery, the user should be
able to alter the logic in which the next possible activity recommendation
is generated.

– the user can switch between manual process modeling and automated pro-
cess discovery. It is important to allow the user to switch effortlessly bet-
ween automated discovery and interactive discovery. The user may decide
to build a process model until a certain point, and then wish to hand it
over to a discovery algorithm to automatically complete the rest of the
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process model. That is, a user’s focus may be to exhaustively discover a
process model by using the available domain knowledge first, and then
let an automated technique take over. Alternatively, the user may want to
delegate some discovery tasks to an automated discovery algorithm, and
then resume interactive process discovery when the so-called quality of the
process model falls below acceptable levels.

In the next section, we discuss the proposed solution to address the problems
stated above. In particular, we address the problems discussed above in the context
of labeled free-choice workflow nets, as it is the class of process models that we have
used in to enable interactive process modeling as shown in Chapter 3 to 5.

7.2 Enabling Semi-automated Process Discovery

In this section, we discuss how we can address the goals discussed above, in order to
enable semi-automated process discovery. The design choices of the system have been
inspired from [43]. Figure 7.2 shows the high level overview of the main components
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Figure 7.2: Components diagram of the proposed solution. Thick lines indicate the usual flow
and interactions between the various components. Dashed lines indicate alternative
flow and interactions between components. A dotted line between two components
from A to B indicates that component A uses component B.
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of the proposed solution. The usual flow and interactions between the components
of Figure 7.2 is as follows: the user selects one (or skips all) recommendation(s)
from the list of recommendations 1 , the process model is updated based on the
recommendation chosen by the user and the next candidate activities are selected
2 depending on the policy chosen 7 . The information from the event log x is

used by a recommendation algorithm y to come up with different recommendations
for the newly selected activity/activities 3 . The quality of each recommendation is
calculated 4 by using the event log x which is then presented to the user along with
ranking information 5 . At any point of time, the user can change the policy used
to predict the next activity/activities 6 . Similarly, the user can decide to hand over
the discovery task to the automated discovery technique at any point of time 8 and
9 . The auto-complete mechanism recursively adds activities to the process model by

using the recommendation algorithm y by selecting the top ranked recommendation
until some termination condition is met. The flow resumes with Get/select the next
activity 2 after performing 6 and 7 or 8 and 9 . In the following sections, we
discuss the way in which the proposed solution has been realized.

7.2.1 Next Possible Activity Recommendation

In this section, we discuss the strategies to decide the next activity that could be
added to a labeled free-choice workflow net. Since process discovery in our approach
is incremental in nature, the order in which the activities are added to the labeled
free-choice workflow net is important. There are a couple of reasons for this. Firstly,
having a logical flow of adding activities incrementally may assist the user in better
decision making. For example, adding all the semantically similar activities one after
the other may help the user in structuring the overall labeled free-choice workflow net
better than adding unrelated activities in random order. Secondly, by following a strict
order, it may become possible to discover a certain structure of labeled free-choice
workflow net which may otherwise become unreachable because of prior discovery
decisions when adding activities randomly. The policy is a pluggable component and
there could be many policies used to decide the next possible activities that are added
to a labeled free-choice workflow net. At any given point, the user can switch between
the policies by updating the policy using component 6 of Figure 7.2. Here we present
two policies which suggest a single next activity for a labeled free-choice workflow net.

Alphabetical

The alphabetical policy, as the name suggests, orders activities purely based on their
alphabetical ordering. At any point, if a user decides to skip an activity, then the
next activity based on the alphabetical ordering is chosen. As evident, in the case
of alphabetical ordering, only one activity is selected at a time. Even though this is
a very simple policy, it can still be useful as the user knows which activity to expect
next.
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Log Heuristics

The Log heuristics based policy orders activities based on the information extracted
from the event log. The idea is that the user starts constructing the labeled free-choice
workflow net with the most common starting activities across all the cases from the
event log, and ending it with the most common ending activities across all cases in the
event log. The activities in-between are also ordered according to their occurrences
across the cases in the event log. This policy is described in more detail below, but in
order to do so, we first introduce and revisit some notations. In essence, we assume
that a user would typically construct process models in a sequential way, starting with
the most common first activity across all the cases, and proceeding towards the most
common end activity across all the cases.

Let L denote an event log. We know that a case is a sequence of activities. It
should be noted that the same activity can be repeated multiple times in a case, and
hence can be present at multiple positions in the activity sequence of a case.

Let A denote the set of all the activities from the event log L. Then for any
activity a ∈ A , let #i (a) denote the total number of cases for which the activity at the
i th position is a.

In order to compute the policy of log heuristics, we introduce a function max(act ).
max(act ) returns “the” position where activity act occurs most frequently across all
the cases from the event log. In case there are multiple positions with the highest
frequency, then the lowest position is chosen. Let a,b ∈ A be two activities, then we
define a partial order a ≤ b as:

a ≤ b ≡ max(a) < max(b) or
(max(a) = max(b)∧#max(a)(a) ≥ #max(b)(b))

a ≤ b defines a partial order. In case a ≤ b ∧b ≤ a, then this order is defined rand-
omly between a and b. The partial order can be made total to form a sequence. This
sequence forms the policy of log heuristics, that suggests the position of an activity
based on the information from the event log, across all the cases and compared to all
the other activities.

Clearly, more policies could be devised based on various other factors. For ex-
ample, the user may be interested in adding activities in reverse sequence. That is,
the user may be interested in starting with the most common final activity, and gra-
dually move towards the starting activities in a process model. Such a policy would
essentially present the activities in reverse of the log heuristics policy proposed above.
Another interesting variant of the policy could be to use the most frequent activities
in the event log first, in order to model the so-called backbone of the process model.
And then eventually add infrequent activities one-by-one. The policy component in
itself is expendable, and can thus be extended with more such policies.

7.2.2 Generating and Evaluating Recommendations

The recommendations component provides a list of possible edits that can be made
to the current labeled free-choice workflow net, to incorporate the next activity as
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suggested by the policy. We use an approach based on synthesis rule patterns for
populating possible ways of adding an activity to a labeled free-choice workflow net.
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Figure 7.3: Example of patterns based on multiple applications of synthesis rules in order to
develop recommendations to add an activity b (which is directly preceded by a).
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Essentially, this results in multiple candidate labeled free-choice workflow nets, of
which each labeled free-choice workflow net contains a different way of positioning
the desired activity. The procedure followed for populating the candidate labeled
free-choice workflow nets is as follows:

1. For a given labeled free-choice workflow net and an activity b chosen to be
added next, find out the activities from the labeled free-choice workflow net
which happen directly before the activity to be added next, according to the
filtered event log. The event log is filtered to contain only those activities which
are present in the labeled free-choice workflow net and the activity to be added
next.

2. For each activity a from the labeled free-choice workflow net satisfying the
above condition (i.e., directly occurring before b), use all the patterns from
Figure 7.3, to add the activity to be added next. Usage of each pattern results in
a different labeled free-choice workflow net, which could serve as a recommen-
dation. In case multiple transitions in the labeled free-choice workflow net are
labeled with activity a, then use the patterns from Figure 7.3 corresponding to
each such transition. Furthermore, the patterns from Figure 7.3 are also used
corresponding to each silent transition from the labeled free-choice workflow
net.

It should be noted that we do not claim that the patterns from Figure 7.3 are
complete. At any given point, the structure of the labeled free-choice workflow net
dictates the types of labeled free-choice workflow nets discoverable using Figure 7.3.
Hence, depending on the sequence in which activities are added, and the prior decisi-
ons made (patterns chosen), it may no longer be possible to deduce certain structures.
For example, consider the care-pathway process from Figure 7.4. Let us assume that
this is a labeled free-choice workflow net (can be easily done by adding two silent
transitions (>,⊥) and two places after i and before o). Suppose we have to add an
activity Re-Diagnose in the loop, before the activity Diagnosis 2 (t13), to obtain the
process model similar to the one shown Figure 3.1. However, none of the patterns
from Figure 7.3 would support this structure. In such circumstances, the user may
want to switch to manually editing the labeled free-choice workflow net using the
approach from Chapter 5 in order to first rename t13 with Re-Diagnose, and then add
Diagnosis 2 in sequence.

For every possible position of the activity in the process model, we then compute
the fitness and precision scores in the changed labeled free-choice workflow net and
the event log, using the conformance technique discussed in Chapter 6. Each recom-
mendation has its own fitness and precision score and hence indicates the goodness
of positioning an activity at various locations in the process model. It should be no-
ted that the fitness and precision values are calculated with respect to the activities
present in the labeled free-choice workflow net. It is clear that the newly added acti-
vity can be added in multiple ways. Therefore, the precision or fitness scores would
vary depending on the different ways in which the new activity is added. The re-
commendations are ranked based on a ranking criterion, consisting of a weighted
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average of fitness and precision values. By default the precision and fitness values are
weighted equally, but these weights can also be determined by the user at any given
point. To avoid an overload of information, the user can also set filters to only show
recommendations above a certain threshold.

7.2.3 Mix and Match - Auto Discovery and Interactive Discovery

The auto-discovery component enables the possibility of using automated process dis-
covery along with interactive process modeling. This component allows the user to
pass the control to the recommender component. The user provides some input to
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Figure 7.4: An example process model from Figure 3.1, without the Re-Diagnose Activity.

Figure 7.5: User interface of the proposed approach: the process model view (A) shows the
labeled free-choice workflow net interactively discovered by the user, the recom-
mendations table (B) shows the ranked recommendations in a tabular form, the
policy and activity selection view (C) shows the activities that can be added to the
process model, and the information abstracted from the event log on the right side
(from Chapter 5).
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the algorithm, similar to a traditional automated discovery technique which requires
some pre-configuration. The user sets a threshold for minimum fitness and precision
values. The user can also update the weights for fitness and precision scores used
for ranking the recommendations. Once these parameters are set, the auto-discovery
feature iteratively adds activities to the labeled free-choice workflow net, while the
thresholds are met, by choosing the first ranked labeled free-choice workflow net from
the list of recommendations. The labeled free-choice workflow nets of the activities
which did not satisfy the threshold criteria are skipped. Finally, the user can resume
the interactive process discovery. This component allows the user to switch between
automated and interactive discovery and can be utilized in multiple ways. For exam-
ple, the user may let the algorithm discover a high-level labeled free-choice workflow
net that is clearly evident from the data and then add the intricate details based on
the domain knowledge. Alternatively, the user may interactively discover the labeled
free-choice workflow net up until a certain point and then delegate the discovery of
the remaining activities to be computed automatically.

Figure 7.6: Based on the recommendation chosen from the recommendations table, the labeled
free-choice workflow net is updated temporarily to display the change in the labeled
free-choice workflow net.
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7.3 Interface and Interaction

The proposed solution is composed of three primary display and interaction panels as
shown in Figure 7.5. In this section, we describe the user interface of each panel, and
the type of interactions possible that enable human-in-the-loop process discovery.

7.3.1 Process Model Panel

The process model panel is the panel A from Figure 7.5. Whenever a user chooses
a recommendation, the labeled free-choice workflow net in this panel is updated
by placing the new activity in the net based on the recommendation. Along with the
process model view, there is an option to undo a previously selected recommendation,
thereby allowing the user to revert the changes made. Of course, the user always
has the option of directly editing the labeled free-choice workflow net based on the
synthesis engine as shown in Chapter 5.

7.3.2 Recommendations Panel

The recommendations panel shows the recommendations of possible edits to the la-
beled free-choice workflow net based on the chosen activity. This is a tabular panel,
corresponding to panel B from Figure 7.5. Each row in the table corresponds to a
unique way of adding an activity to the current process model. The table has three
columns: rank, fitness and precision, that guide the user through the impact of each
recommendation. Figure 7.6 shows the primary user interaction of the proposed ap-
proach. Based on the ranking, fitness and precision scores, the user selects one row
from the recommendations table. The change is animated and projected on top of
the current view of the labeled free-choice workflow net. The layout is changed mini-
mally, and the new nodes added to the labeled free-choice workflow net are colored
differently, so that the user can easily spot the part of the net that has changed. By
navigating through different rows (that is recommendations) the user can readily see
the impact of each change. If a user is satisfied with a particular recommendation,
then that recommendation can be made permanent by clicking Use model and select
next activity button. This button finalizes a recommendation, chooses the next activity
based on the policy and generates new recommendations based on the next activity
chosen. Alternatively, the user may click the Clear projection button to clear the cur-
rent recommended projection from the labeled free-choice workflow net or click the
Skip current recommendations button to skip all of the given recommendations, choose
a next activity based on the policy and generate new recommendations based on the
newly chosen activity.

7.3.3 Policy Panel

The policy panel, as shown in Figure 7.7, corresponds to panel C from Figure 7.5.
This panel provides the user with options for choosing or updating the policy to select
the next activity. The policy panel contains a policy selection box which contains all



160 CHAPTER 7. RECOMMENDATIONS FOR INTERACTIVE PROCESS DISCOVERY

Figure 7.7: Panel showing the chosen policy, Auto-complete button and activities.

the available policies. The policy panel also contains a list box for activities which
contains the activities from the event log. The user can scroll through the activities.
The current activity as chosen by the policy is highlighted. Furthermore, the activities
in the activity list are sorted according to the chosen policy. This provides an easy way
for the user to find out the sequence of activities as suggested by the policy. The user
can also interact and select any activity from the activity box. This action overrides
the policy and gives the user more control over the sequence in which activities should
be added to the labeled free-choice workflow net.

Whenever a new activity is chosen, either automatically by a policy, or manually
by the user, the recommendations are recalculated for the newly selected activity.
The policy panel also has the Auto-complete! button. As discussed previously, the
auto-complete functionality lets the user switch between interactive discovery and
automated discovery. Upon clicking the auto-complete button, the user is provided
with a dialog box to set the thresholds for minimum fitness and minimum precision
values, as well as the weights for fitness and precision values that should be used for
ranking.

7.3.4 Design Evolution

The overall design of the system went through a number of iterations. Finally, the sy-
stem ended up with the three primary sub-components influenced by various methods
from the literature, as discussed earlier. The idea behind designing the tool decompo-
sed into three main sub-components is to clearly separate the steps of the workflow in
the usage of the system. The process model is the core component of process discovery
and hence is the largest component and is placed centrally. The recommendations pa-
nel contains the possible recommendations for changes in the process model. This is
the first step of the workflow, wherein the user goes through the recommendations
and chooses one. Since it is natural to navigate (or read through) a workflow from
left-to-right, this panel is placed on the left-hand side of the tool. The policy panel
shows all the activities and highlights the next activity that is chosen. It should be
noted that the next activity is typically automatically chosen and highlighted based
on the policy chosen. Hence this is typically the second step of the workflow, and so
this panel is placed on the right-side of the recommendations panel.

Having discussed the idea behind the overall design, and positioning of various
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panels, we now briefly discuss the design decisions made within some of the panels.
The policy panel (panel C from Figure 7.5) shows the activities as a list. The idea
behind this is to let the user freely navigate through different activities, and check
the natural sequence of following or preceding activities based on the chosen policy.
The design of the recommendations panel underwent multiple changes. Initially, the
recommendations panel was designed as tabs, wherein each tab contained a new pro-
cess model based on the recommendation. However, it was difficult for the user to
comprehend the impact of a change in the process model. Hence, after exploring
multiple design ideas, it was decided to show the changes in the process model pro-
jected on the current process model. Also, by using different colors, the user can
easily view the impact and the change in the process model. Furthermore, it was
decided to provide the recommendations in a tabular format. The tabular design was
chosen to provide a holistic view that is easy to sort and navigate, showing all the
recommendations and their corresponding quality scores.

7.4 Implementation and User Study

The proposed approach is supported by the nightly build version of ProM [171], in the
InteractiveProcessMiningLite 6.9.13 package, under the plug-in “Petri net editor with
predictor view (ProDiGy)”. Of course, this plug-in also contains the functionality
discussed in Chapter 5 and Chapter 6. This plug-in requires an event log in XES [3]
format and an AHL (AggregatedLogHeuristics) object of the event log as input. The
screenshot of the tool is shown in Figure 7.5.

In order to understand the usage, behavior and implications of the proposed so-
lution we performed a user study wherein domain experts explored the system based
on some tasks using a synthetic data set.

The overall goal of the study was to understand the usability of the proposed
system and to gain insights through user feedback. The final output generated by
the users using the system were also evaluated and compared with the traditional
automated process discovery techniques.

The user study was conducted in the context of oncology patient flow in a hospi-
tal based on simulated data. We used Figure 2 in [181], as recreated in Figure 7.8,
as our reference process model. This process model contains the expected workflow
of patients suffering from three types of cancer: prostate, bladder and kidney. This
process model was used to simulate the data of 850 patients: 250 each of prostate
and kidney cancer, and 350 of bladder cancer. Furthermore, in order to replicate the
reality, noise was introduced in the data by removing 3% of random activity occur-
rences from random locations and adding 3% random activity occurrences at random
locations in the event log. This ‘noisy’ event log was used throughout the user study.
Three industry based health-care researchers participated in this study. As a first step,
all the participants were provided with a brief introduction of the tool. Next, the
participants were asked to perform a task of discovering an end-to-end process model
for all the patients using the entire (noisy) event log. The above task was used to
guide the domain experts in exploration of the proposed system, and their feedback
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was actively registered during the usage of the tool via unstructured interviews. Furt-
hermore, after their usage of the tool, the users were presented with a questionnaire
to analyze the things that could be improved, were interesting and missing.
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Figure 7.8: Example of an oncology patient workflow (Original model).
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Figure 7.9: Process model discovered using our approach by participant P1. This model is
almost similar to the original model from Figure 7.8. However, here the activity
Digital rectal exam. is mandatory, whereas in the original model it could be skipped.
Also, in the original model, both the activities C T and Contr ol can occur. However,
in this process model, only one of these two activities can occur.
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Figure 7.10: Process model discovered using our approach by participant P2. This model has
some differences compared to the original model. For example, in the original
model, the activities Anamnesis and exam., Digital rectal exam. and Ultrasound are
all in sequence, whereas in this model, they are in parallel.
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Figure 7.11: Process model discovered using our approach by participant P3. This model has a
lot of differences compared to the original model. In general, this model contains
many activities which are placed in parallel, compared to the original model.
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7.4.1 Results

In this section, we discuss the key findings of the user evaluation. For convenience,
the participants are labeled as P1, P2 and P3. The process models discovered by the
three participants are shown in Figure 7.9, Figure 7.10 and Figure 7.11 respectively.

7.4.2 Usage Patterns

Even though every expert was given a standard introduction to the tool, there were
differences in the way the tool was used. P1 relied almost entirely on the ranking in-
formation noting that he “trusts the data more”, and therefore he always chose either
the first or second ranked recommendation from the recommendations list. Contrary
to this, P2 used his domain knowledge most of the time, and relied on the recom-
mendations when he was “unsure what to do, or where to add an activity”. P3 added
the activities he was familiar with first, and then relied on the recommendations to
decide the fate of unfamiliar activities. The users were satisfied with the features and
the workflow of the tool, and they deemed the system easy to learn. There were sug-
gestions made by the participants based on their specific way of discovering a process
model. For example, P2 who relied more on his domain knowledge, navigated back
throughout the interactive process discovery session using the undo button, and said
that he “misses a redo button” to navigate forward. Similarly, P1 who relied more on
the information from the event log noted that “the recommendations helped in guiding
the process discovery, however sometimes the ranking difference between recommendati-
ons was hard to spot due to a very small difference in fitness and precision values”. In
most of the intermediary steps, the participants chose one of the top-3 recommendati-
ons. Also, none of the participants selected a recommendation ranked lower than 5 at
any given point. The proposed system supported both the types of users sufficiently:
the ones relying on using the domain knowledge as well as the ones relying on using
the information from the event logs for process discovery, thereby supporting multiple
ways of discovering process models.

7.4.3 Quality of the Discovered Models

All three participants were satisfied with the process models discovered by them using
our tool. The comparison of fitness and precision scores for the process models dis-
covered by the participants, the original model, and some automatically discovered
process models is shown in Figure 7.12. In Figure 7.12, we are interested in prima-
rily comparing the overall quality of process models given by a combination of fitness
and precision scores. Clearly, there are some notable differences between the origi-
nal process model and the process models discovered by the three participants. For
example, the process model modeled by P1 does not allow skipping of the activity
Digital rectal exam. The drop in the fitness and precision values between the noisy
event log and the original event log could thus be attributed to such differences in
the process models. However, in most of the cases, the process models discovered
by the experts performed better than the automated process discovery techniques.
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In general, the process models discovered by the experts were deemed simpler to
understand and/or more appropriate by the respective experts, compared to the pro-
cess models discovered by the automated techniques. As P1 responded about one of
the process models discovered automatically, “it is extremely complicated and doesn’t
make much sense, the interactively discovered process model is easier to interpret”. All
the participants agreed that the proposed system enabled them to have more control
over process discovery and suggested that the interactive process discovery techni-
que enabled discovery of substantially better process models, especially in terms of
intelligibility, compared to the traditional automated process discovery techniques.
An interesting observation here was that even though the three participants started
off with the same initial labeled free-choice workflow net and with the same event
log, there were notable structural differences in the final labeled free-choice workflow
nets. Partly this could be attributed to the usage patterns. However, another reason
for these differences could be the fact that each participant had specific preferences
to certain structural constructs in the labeled free-choice workflow nets over the ot-
hers. For example, P1 preferred sequential constructs over concurrency, whereas P2
and P3 had no such preference. This is also reflected in Figure 7.12, in which the
labeled free-choice workflow nets discovered by almost all the participants have a
similar fitness score, however, there is a notable difference in the precision score of
each labeled free-choice workflow net. In essence, the process models discovered by
the three participants are comparable with the baseline.

O P1 P2 P3
IM IM

f
IL

P
H
M

0

0.5

1

1.5

2

algorithm

fi
tn

es
s

+
p
re

ci
si

on

fitness
precision

(a) Process models evaluated against noisy
event log, i.e., the one which was used to
discover the process model.
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(b) Process models evaluated against the
original noise-free event log.

Figure 7.12: Fitness and precision scores of the process models discovered from the noisy event
log by three participants (P1, P2, P3) along with the automated discovery algo-
rithms: Inductive miner (IM), Inductive miner infrequent (IMf), ILP Miner (ILP),
Heuristics miner (HM). The original model (O) serves as the baseline.
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7.4.4 Experts Gained Insights during Process Discovery

The strength of the traditional process discovery techniques lies in understanding the
data to make certain decisions. But the decisions made during process discovery are
not visible to the end user. Since our tool enables active user involvement in process
discovery, it also leads to exploring intermediary patterns, which may otherwise re-
main unexplored or hidden. For example, the information about the link between the
activities which might not be directly connected directly in the final process model.
However, such activities may be directly connected during the intermediate steps of
interactive process discovery. Hence, by encouraging the users to interactively dis-
cover a process model, the proposed system helped in gathering insights during the
process of process discovery, as noted by P3: “the system is surprisingly good for explo-
ratory purposes”.

7.4.5 Limitations of Our Study

The overall feedback by all three participants was positive and led to a lot of sugges-
tions and possibilities for improvements. Nevertheless, we are aware that the user
study has some limitations. Firstly, even though the participants had more than 50
years of health-care experience between them, the number of participants is limited
and hence the results may be biased. Due to the sample size of the study, we did not
conduct structural interviews and statistical analysis of the results. The participants
from the current study also had some basic exposure to the field of process mining,
whereas additional training may be needed for other populations.

7.5 Conclusion and Future Work

In this chapter, we presented a novel approach for providing recommendations to
guide interactive process modeling. We first identified the key challenges of recom-
mendations based interactive process discovery and proposed solutions in order to
address these challenges. The solutions proposed were designed and implemented as
a plug-in in ProM, and was evaluated by users from the health-care domain. Our eva-
luation demonstrates that the proposed system can outperform traditional automated
process discovery techniques. Furthermore, the user study also demonstrated that
the tool is easy to learn and the visual analytics techniques incorporated in the tool
are intuitive. We have improved the usability of the system based on the feedback
given by the participants of the user study. For example, we have added a new button
that allows the users to “redo” a change. Furthermore, we have also added a new
metric called log coverage, which provides the information about the percentage of
the log covered. This metric complements the metric of fitness and precision, so that
the users can have a better understanding of the prominent activities in the event log,
compared to the infrequent activities.

Finally, we would like to provide some future directions in order to improve the
proposed system. As noted already, the users may find it difficult to distinguish bet-
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ween different recommendations purely based on the fitness and precision values. It
would therefore be ideal to include a collection of new metrics to guide the user in
further distinguishing the recommendations suggested, especially when the differen-
ces between the fitness and/or precision scores are not significant. Furthermore, a
domain specialist may find the metrics of fitness and precision to be very technical.
Hence, it would also be interesting to include some domain specific metrics (such
as certain protocols that must be followed), that assist the user in choosing better
process models from the list of recommendations.

One more future direction could be to change the way in which process models
are constructed. In our approach, the process models are constructed by adding one
activity at a time, by using simple patterns based on the synthesis rules. However,
some users may prefer adding several activities at once. Hence, it would be ideal if the
recommendation system can support recommendations of process model constructs
by adding multiple activities at once.

Another interesting future direction could be constructing user profiles in order to
build a recommendation system based on a user’s background and preferences. The
information from these user profiles could be used directly in the recommendation al-
gorithm in order to populate only those process model structures, which are preferred
by the user.
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This chapter is based on the publication [66].
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The event log is central to all the process mining analysis techniques [163]. We
know that each event is minimally characterized by attributes identifying the process
instance to which it belongs (case id), the process step that was carried out (activity)
and its timestamp. Events may optionally contain other attributes such as the person
or machine that carried out the process step (resource).

As with other forms of data analysis, poor (event) data quality leads to poor ana-
lysis results (garbage-in, garbage-out). Most process mining tools are data-quality
indifferent. That is, so long as the data can be parsed by the tool, its algorithm will
process the data and generate output, thus requiring the analyst to conduct appro-
priate “reasonableness checks" when interpreting the results. While it is important
to critically review analysis outcomes, systematically identifying and correcting data
quality issues prior to analysis can increase the quality of the event log.

As discussed in Chapter 1, process mining techniques can be broadly categori-
zed into process discovery, conformance analysis and performance analysis (enhance-
ment). Process discovery aims to discover process models using the information from
the event logs, either automatically, or by involving human-in-the-loop as discussed
in Chapter 3–Chapter 7. Hence, it is vital to correctly sequence the activities within
a case in order to discover accurate process models. Conformance analysis aim to
determine whether activities as depicted in the event log were carried out in accor-
dance with the organizational expectations as depicted by a process model, whereas
performance analysis aim to determine whether activities and cases were executed
differently. Hence, the ordering of events in an event log is central to all process
mining analysis.

Timestamps are the principal means for ordering activities within cases and for cal-
culating process execution milestones and performance. Hence, the quality of process
mining analysis is highly contingent on the quality of timestamp data. For instance,

Figure 8.1: The effects on process discovery and performance analysis of inaccurate times-
tamps.
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consider a situation, where activities in an event log are drawn from two different
information systems, one of which records timestamps at only day level granularity,
while the other records timestamps with millisecond accuracy (see Figure 8.1 for an
example). The effects on process mining analysis, which can be quite dramatic, in-
clude discovered process models which do not reflect actual behavior and erroneous
or misleading performance analyses.

In this chapter, we focus on addressing this concern of repairing timestamp issues
in event logs by using domain knowledge. The remainder of this chapter is structured
as follows. In Section 8.1, we discuss the main problem addressed in this chapter.
In Section 8.2, we describe the “symptoms" of event ordering imperfection in event
logs. In Section 8.3 we outline our approach to detect and repair timestamp quality
issues, followed by details of detection, repair and impact of repair in Section 8.4,
Section 8.5 and Section 8.6 respectively. We evaluate the proposed approach using
two real-life event logs in Section 8.7. We compare our approach with the state-of-
the-art in Section 8.8, and, finally, conclude in Section 8.9.

8.1 Problem Definition: Ordering Issues in an Event
Log

The importance of timestamps in process mining analysis is well recognized [165]
and a variety of authors have identified data quality issues affecting time-oriented
data [93] and timestamps that impact on process mining analysis [21, 151], and
others have suggested ways of characterizing the quality of available timestamp data.
For instance, [120] characterize timestamps according to granularity, directness of
registration and correctness. There exist tools for automated and user-driven detection
and repair of time-oriented data, for example, TimeCleanser [92]. However, there are
no techniques which provide consolidated detection and repair mechanisms to assist
a user in dealing with time-ordering data quality issues in event logs in the context of
process mining. This relates to Goal 1 from Chapter 1, which deals with interactive
event log repair. Based on the three subgoals related to interactive event log repair
discussed in Chapter 1, we formulate the following problem.

• How can we enable interactive event log repair to fix timestamp related issues
using domain knowledge, such that:

– a list of possible ordering-related data quality issues can be automatically
generated and presented to the user. In order to repair an event log, the
user must first be aware of the possible issues in the event log. The existing
techniques from the literature [103, 153] typically provide a holistic view
on the overall quality of the event log, by providing some global metric
such as structuredness. However, in our case, we are interested only in the
timestamp related issues in the event log. In particular, we are interested
in finding out which activities possibly suffer from timestamp issues. Mo-
reover, it would also be ideal to find out the type of timestamp issue that
an activity is suffering from.
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– the ordering-related data quality issues can be repaired by the user ba-
sed on the domain knowledge. The simplest way of repairing timestamps
of events could be using an excel like functionality, and repairing the ti-
mestamp related issues on a case by case basis. However, this is clearly
not feasible in a practical scenario when the size of the event log and the
number of events with timestamp issues is very high. Hence, it is desira-
ble to allow the user to repair multiple instances of incorrect timestamps
at once. In the literature, there exist techniques which automatically re-
pair timestamps in an event log based on a pre-existing end-to-end process
model [140, 141]. However, in reality, such a process model may not al-
ways exist. Instead, the user may only be aware of certain fragments of
the process model. Hence, it would be ideal to effectively use the domain
knowledge of the user in order to repair timestamps.

– an overview can be provided to the user to indicate the impact of the repair.
That is, the technique should quantify the impact of repair actions on the
event log so that the user can either decide keep the changes made or
discard the changes made, where no significant benefit accrues through
the repair.

In the next section, we set the scene by discussing what might cause ordering
related issues in the event logs. This is followed by our approach to discuss detection
and interactive repair of ordering quality issues in event logs.

8.2 Indicators of Event Ordering Imperfections

The approach proposed in this chapter aims to enable domain experts to detect and
interactively repair event-ordering imperfections that arise due to timestamp-related
issues. As a first step, we need to be able to locate exactly where timestamp issues
may exist in an event log by recognizing characteristics commonly associated with
event ordering imperfection. From existing literature that describes data quality is-
sues in event logs [21, 119, 151, 163, 165] in particular, and time-oriented data in
general [93], we abstract three classes of indicators that may be used to locate event
ordering issues. It is not the intention here to provide a comprehensive list of indica-
tors of event ordering imperfection; rather, our aim here is to highlight the importance
of recognizing the various indicators of event ordering imperfections from an event
log as a starting point for our event log repair approach.

8.2.1 Granularity

One of the indicators of event ordering imperfections is the existence of either coarse
timestamp granularity (for example, imprecise timestamp [119,163]) or mixed times-
tamp value granularity (for example, an event log that includes events from multiple
systems where each system records timestamps differently [93, 165]). The mixture
of varying timestamp granularity may result in events being ordered incorrectly. For
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example, an event ‘Seen by Doctor’ may be recorded at day-level granularity, for ex-
ample, ‘05 Dec 2017 00:00:00’. Within the same case, another event ‘Register Patient’
may have second-level granularity, for example, ‘05 Dec 2017 19:45:23’. The orde-
ring of these two events will be ‘Seen by Doctor’ followed by ‘Register Patient’, which
is incorrect as it should have been the other way around. There are techniques for
dealing with partially ordered event data, but we assume events to be totally ordered.
Hence, the approach proposed in this chapter seeks to detect those activities/events
with potential timestamp granularity issues to assist domain experts in making a well-
targeted event log repair procedure.

8.2.2 Order Anomaly

Locating events affected by ordering imperfections can also be performed by identi-
fying events exhibiting unusual temporal ordering, consider for example the duplicate
entry of exactly the same event [93]. Given an activity a1 that was recorded twice
(due to a user mistakenly double-clicking a button on his/her screen), we may ob-
serve an unusual (incorrect) directly-followed temporal order a1 → a1, highlighting a
potential event ordering imperfection. Issues related to missing events [21,119,163]
and incorrect timestamps due to events being recorded post-mortem [163] or due
to manual entry [119] can also be detected by learning if there exist other forms of
unusual temporal orderings between activities. The existence of infrequent temporal
orderings between activities does not automatically mean that the event log has ti-
mestamp quality issues. However, the ability to highlight those activities will assist
domain experts in deciding the best repair actions, if necessary.

8.2.3 Statistical Anomaly

Extracting more generic statistical anomalies, such as learning the temporal position
of a particular activity in the context of other activities, or the distribution of times-
tamp values of all events in an event log, may indicate the existence of timestamp-
related problems. For example, when an event log is comprised of events from mul-
tiple systems, there may be more than one way in which timestamps are formatted,
which may lead to the ‘misfielded’ or ‘unanchored’ timestamp problem [93, 151],
whereby timestamp values are interpreted incorrectly. A common situation is when
timestamp values formatted as DD/MM/YYYY are interpreted as MM/DD/YYYY. In this
situation, one may see imbalance distribution of the ‘day of the month’ values of all
events in the event log whereby all events will have the date value between 1–12
only, and none for 13–31. There are other indicators of event ordering problems that
can be detected by observing statistical anomalies, such as the use of batch proces-
sing [93,151] and multiple timezone problem [93].
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8.3 Approach

In this section, we provide a high-level overview of the proposed approach. We start
with an event log and adopt an iterative approach to addressing event order imper-
fection. Figure 8.2 shows the steps involved in the process of event log repair.

As a first step, we perform automated, indicator-based issue detection in the event
log. The way in which we detect potential event ordering imperfections is informed
by the symptoms of the imperfection as described in Section 8.2. Based on the issues
detected, a user, typically a domain expert, performs changes on the event log in order
to correct some of the detected issues. The user is then provided with the impact of
change made. Finally, the user may decide to keep the changes (i.e., replace the
existing event log), or ignore the changes (i.e., go back to the prior event log). The
cycle is repeated until the user is content with the quality of the event log.

In the sections to follow, we show through examples, how our indicators are used
to detect potential event-order issues, how identified issues are repaired, using dom-
ain knowledge captured via process-fragments, and an alignment strategy. Finally,
we describe a set of metrics for assessing the impact of the repair actions on the log
which can guide the user in accepting or rejecting the repairs.

8.4 Detection

Having discussed the approach on a high level, we now focus on the first compo-
nent of our system, i.e., automatically detecting time-oriented quality problems in
the event log. Most of the techniques from the literature provide an aggregated me-
asure of the quality of an event log, without pinpointing at the exact problems. In
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DetectAnalyze Impact

Ignore
Changes

Replace
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Indicators

Figure 8.2: Approach to detecting and repairing event ordering imperfection
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our approach, the user is presented with a consolidated list of possible time-related
data quality issues, describing the possible problem, the affected activity (activities)
and the number of instances affected. Also, unlike some of the traditional detection
strategies, our technique doesn’t require an end-to-end process model as an input for
detection and the detection of issues is solely based on the information from the event
log. In this section, we discuss the three detection strategies employed in our tool to
detect the three symptoms presented earlier in Section 8.2.

8.4.1 Granularity-based Detection

The first detection mechanism deals with identifying the issues with the granularity
of timestamps in the event log. In order to achieve this, we employ the most basic, yet
quite powerful form of detection, i.e., inspecting the timestamp value of each event
in the event log.

A table is maintained whose rows correspond to activities from the event log and
columns corresponds to the granularity of timestamps. Thus each cell in the table
represents the number of times the particular activity was recorded at the correspon-
ding (highest) granularity in the event log. For example, if an event has the timestamp
of ‘05 Dec 2017 19:45:00’, then its granularity would be minute level, whereas if an
event has the timestamp of ‘05 Dec 2017 19:45:13’, then its granularity would be
second level. We then identify the possible granularity issues for an activity by inves-
tigating the distributions over different granularities in the event log. Table 8.1 gives
an example of such a table, which clearly indicates that activity b is usually recorded
at a lower granularity (Hour) compared to the other activities.

8.4.2 Ordering-based Detection

The next detection mechanism deals with the ordering of events in the event log.
Inspecting the log gives indications about possible granularity related issues in the
event log. However, it does not provide much information about the ordering of
activities within the event log.

Since there is no ground truth (process model) available, determining the correct
order of activities is a challenging task. In a way, this task is exactly similar to the

Table 8.1: An example granularity table populated by scanning an event log.

Activity Year Month Day Hour Minute Second

a 0 0 0 1 11 489
b 0 0 0 450 20 0
c 0 0 0 0 5 350
d 0 0 0 2 7 448
...

...
...

...
...

...
...
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Table 8.2: An example follows relations table snapshot (left) and precedes relations table snaps-
hot (right).

→ a b c d e f ;
...

...
...

...
...

...
...

...
c 3 50 0 100 200 25 0
...

...
...

...
...

...
...

...

← a b c d e f ;
a 0 3 3 450 0 0 0
...

...
...

...
...

...
...

...
f 0 0 25 0 0 0 0

challenge faced by the process discovery techniques, which try to deduce the correct
order of activities using an event log.

Inspired by how process discovery algorithms typically work [185], we use pair-
wise causal relations between activities to guess the correct order of activities based
on frequency thresholds. In order to achieve this, we populate two tables: one con-
taining the directly follows relations and the other containing the directly precedes
relations between the activities in the event log. Each cell contains the number of
times an activity from a corresponding row, was directly followed (preceded) by an
activity from the corresponding column in the event log. For example, in the follows
relations of Table 8.2, activity c is followed by activities a, d , e and f : 25, 150, 200
and 3 times respectively.

Having populated the follows/precedes relations tables, the next step is to analyze
the discrepancies in the ordering with respect to each activity. We demonstrate this
with the help of an example.

Consider the activity c in Table 8.2 and a (user-defined) threshold value of 0.8.
The first step is to filter out the fewest activities (with descending frequencies) which
are directly followed by c resulting in at least 80% of the total occurrences of c. In
the follows table of Table 8.2, these are activities b,d and e. Next, for every non zero
remaining activities (a and f ) of the filtered Table 8.2, we check the corresponding
precedes relations table with the threshold values. The precedes relations table is
again filtered (with the threshold of 80%) to keep only the infrequent (non zero)
activity relations. In the case of activity a, these would be activities c and b. Now,
since both the directly follows relation c → a is infrequent, and the directly precedes
relation a ← c is infrequent, we conclude that there is an issue in ordering between
activities a and c. On the other hand, for activity f , the activity c is within the
threshold, that is, all the occurrences of f in the event log are preceded by c. Since
activity f itself is highly infrequent (compared to c), the ordering between c and f is
assumed to be correct.

Considering both the directly follows and precedes relations, we detect only those
infrequencies that are ordering related. Similarly, eventually follows and precedes
relations are used to explore long-term infrequent ordering relations. The eventually
follows and precedes also result in two tables, similar to Table 8.2. The eventually
follows value is first computed at the level of traces. The number of times activity x
is eventually followed by activity y , is thus the total number of occurrences of y after
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the first occurrence of activity x in the trace. Hence, in the eventually follows table,
each cell contains the total number of times an activity from a corresponding row is
eventually followed by an activity from the corresponding column across all the traces
in the event log. The eventually precedes value is also computed at the level of traces.
The number of times an activity x is eventually preceded by an activity y , is thus the
total number of occurrences of y before the last occurrence of activity x in the trace.
Again, aggregating the trace level information results in an eventually precedes table
as shown in Table 8.2. These two tables are used in a similar way to directly follows
and directly precedes ordering relations, in order to compute the possible long-term
ordering issues in the event log.

8.4.3 Statistical

The last group of detection mechanisms relates to statistical anomalies. Admittedly,
there are many forms of statistical anomaly that one could use to detect event orde-
ring imperfection. In this chapter, we investigated one type of statistical anomaly that
can be used to detect event ordering issues due to misfielding (see Section 8.2).

For instance, due to incorrect extraction of the data, the MM/DD/YY from the
system might be incorrectly processed as the DD/MM/YY format in the event log. In
this scenario, the highest day timestamp value for all affected events would be ‘12’.
Chances are, if the highest day would be ‘12’, the highest month would be ≥ ’12’. In
order to evaluate such issues, we employ a directional statistical technique- Kuipers
test [106].

Kuipers test is used to test whether a given distribution is contradicted by evidence
from a sample of the data. Kuipers test is especially useful in the scenarios when the
data is circular as it provides cyclic invariance. That is, while analyzing the hourly
distribution of activity distribution, timestamp values 23:59 hours, and 00:01 would
be considered closer. For more details about the Kuipers test we refer the reader
to [121] (pg. 99).

We employ Kuipers test to compare the timestamp distribution of each activity
with all the other activities in the event log, at 6 levels: second of the minute, minute
of the hour, hour of the day, day of the week, day of the month and month of the
year. For example, we look at the distribution of an activity at the level of day of the
month, and compare it with the distribution of all the other activities from the event
log at the level of day of the month. The activities whose distribution is statistically
significantly (p<0.05) different compared to all the other activities, would then show
up in the detection list. An assumption here is that all the timestamps related to a
single activity use the same format.

8.5 Repair

The insights gained from the detection phase are coupled with the domain knowledge
in order to repair the event log. In the event log, we repair a single activity at a
time. The repair workflow consists of four steps as shown in Figure 8.3. The first
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Figure 8.3: Approach for repairing event ordering imperfections.

three steps of Figure 8.3 are described in the subsections that follow. The last step is
explained in the following section (Section 8.6). The idea is that, the user first models
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(a) The expected (unknown) workflow.

Case Activity TimeStamp

1 e 1-1-2018 08:00
1 b 1-1-2018 09:00
1 d 1-1-2018 10:30
1 c 1-1-2018 11:00
2 a 2-1-2018 10:00
2 c 2-1-2018 11:00
2 e 2-1-2018 12:00
3 b 4-1-2018 09:00
3 d 4-1-2018 10:00
3 e 4-1-2018 10:10
3 e 4-1-2018 11:10
3 c 4-1-2018 12:00
4 b 5-1-2018 09:00
4 d 5-1-2018 10:00
4 c 5-1-2018 12:00

(b) Event log representing what really happe-
ned. Activity e is mispositioned or missing
in some of the cases.

Figure 8.4: Expected process model and the real execution of the process depicted by the event
log. Let us assume that the user is unaware of the expected process model.
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a process model fragment, based on his/her domain knowledge, which contains the
activity to be repaired along with some other activities. Next, the user configures
some repair actions, in order to specify the timestamp value for the misaligned activity
from the process model. Based on the chosen repair action, the timestamp value of
the misaligned event is changed. Finally, the user is provided with an overview of the
impact of the changes performed.

We use Figure 8.4 as the running example in order to explain the concepts discus-
sed in this section. Let the process model from Figure 8.4a indicate the expected work-
flow. Clearly, the event log corresponding to this process model, shown in Figure 8.4b,
has some ordering-related issues. Let us assume that the user is unaware and unfami-
lar with the complete end-to-end process shown in Figure 8.4a, and that the detection
mechanism from Section 8.4 has indicated an timestamp ordering-related issue with
activity e.

8.5.1 Modeling Process Fragments

The process of event log repair begins with the user specifying domain knowledge
in terms of a labeled free-choice workflow net fragment using the interactive labeled
free-choice workflow net editor discussed in Chapter 5.

Minimally, the labeled free-choice workflow net contains only the activity which
should be repaired. The user can additionally add “other activities" to the labeled
free-choice workflow net with respect to which the activity should be repaired. For
example, consider that the expected model of Figure 8.4a is unknown. However,
based on the insights gained from the approach in Section 8.4, the user knows that
there is a possible issue in the ordering of activity e in the event log of Figure 8.4b.
Let us assume that the user is aware of the relation between the activities b,c and e,
and has modeled a process fragment shown in Figure 8.5.

It should be noted that in many real-life scenarios, the event log contains multiple
activities and the user may not know the relation between all the activities. Hence
it is ideal to allow the user to model partial (even long-term) fragments of labeled
free-choice workflow nets, explicitly specifying the relations between activities that
the user is aware of.

Modeling via labeled free-choice workflow net allows the possibility to include
complex graphical fragments such as concurrency, choices, loops, duplications and
introducing silent activities. Duplicate activities in the labeled free-choice workflow
net are uniquely numbered. After modeling the labeled free-choice workflow net

i > p1

b

t1 p1

e

t2 p3

c

t3

t4

p4 ⊥ o

Figure 8.5: Fragment modeled by the user based on the available domain knowledge.
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fragment, the next step is the configuration of the repair options.

8.5.2 Repair Configuration

Having designed a labeled free-choice workflow net fragment containing the activity
to be repaired (among other activities), the user can then configure how the repair
must be performed. The repair configuration allows the user to specify the settings for
correcting the ordering of a particular activity, and is made of: (i) the repair activity
configuration, and (ii) the repair action configuration.

The repair activity configuration deals with the activity to be repaired and is as
follows:

– Activity to repair: Specify the activity to be repaired from the labeled free-
choice workflow net fragment. For duplicate occurrences in the Petri net, select
the (uniquely numbered) activity instance.

– Add events?: Specify if new activities should be artificially inserted in the event
log. If set to true, the technique may insert artificial events (corresponding to
the activity to be repaired) in the event log.

– Remove events?: Specify if activities should be removed from the event log.
If set to true, the technique may remove existing events (corresponding to the
activity to be repaired) from the event log.

The repair activity configuration is specified only once. For the example from
Figure 8.5, let the repair activity configuration be as follows:

– Activity to repair: e (t2)

– Add events?: True.

– Remove events?: True.

The repair action configurations describe multiple contexts for correcting the or-
dering of the activity, and consists of:

– Anchor: One activity from the labeled free-choice workflow net in relation to
which the ordering should be corrected. This activity cannot be the same as the
activity to be repaired. Alternatively, the anchor could also be the start of a case
(first activity in the case) or the end of a case (last activity in the case).

– Position : Select whether the activity to be repaired should occur before the
anchor or after the anchor.

– Value : Specify the value of the new timestamp of the activity to be repaired
in relation to the anchor. This could either be an absolute value (for example
4 hrs), or a mean or a median value of all the conforming relations from the
event log between the anchor activity and the activity to be repaired according
to the modeled labeled free-choice workflow net fragment. The conforming
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Table 8.3: Repair actions for correcting ordering of activity e of the event log from Figure 8.4b
using Figure 8.5.

Repair action Anchor Position Value
1 b (t1) after 45 minutes
2 c (t3) before 45 minutes

relations are computed using alignments [5]. An absolute value is necessary in
cases wherein the modeled fragment cannot be aligned with any of the traces
containing the anchor activity and the activity to be repaired.

A repair action thus consists of an anchor activity from the modeled process fragment,
the position, and the value. Multiple repair actions can be specified for repairing an
activity for the same process fragment. The order of repair actions determines the
sequence in which repairs are performed in the event log, such that if the first action
fails, the second one is applied and so on. Table 8.3 shows an example of the repair
actions for the example from Figure 8.5.

In the next section, we discuss the actual procedure followed to change the event
log based on the configurations specified in this section.

8.5.3 Perform Repairs

The actual repair is performed using the outcome from the alignments based confor-
mance technique [5]. An alignment is a sequence of moves. A move is a pair with an
event or >> as first element and an activity or >> as second element. A projection of
an alignment on its first elements (abstracting any >> away) yields the trace. A pro-
jection on an alignments second elements (abstracting any >> away) yields a visible
execution path in the process model.

Aligning events belonging to a trace with a process model can result in three types
of so called moves - synchronous move, move on model and move on log.

• Synchronous move (Sm): The occurrence of the next event in the trace is
matched by an occurrence of a corresponding activity in the process model.

• Move on model (Mm): The occurrence of an activity in the process model is not
matched by the next event in the trace. The move on model is harmless if the
activity in the process model represents no behavior, i.e., it is a silent transition.

• Move on log (Ml ): The occurrence of the next event in the trace is not matched
by a corresponding activity in the process model.

Typically, costs are associated with Mm and Lm , while Sm and silent transitions
have no associated costs. The cost of an alignment is thus the sum of all the costs of
moves. An alignment is optimal if and only if the costs are minimal. Figure 8.7 shows
the usage of alignments.
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Table 8.4: The filtered event log from Figure 8.4 containing the activities b,c and e.

Case Activity TimeStamp

1 e 1-1-2018 08:00
1 b 1-1-2018 09:00
1 c 1-1-2018 11:00
2 c 2-1-2018 11:00
2 e 2-1-2018 12:00
3 b 4-1-2018 09:00
3 e 4-1-2018 10:10
3 e 4-1-2018 11:10
3 c 4-1-2018 12:00
4 b 5-1-2018 09:00
4 c 5-1-2018 12:00

Having provided an overview of alignments, we now demonstrate the use of alig-
nments strategy to perform the actual repair of the event log with the help of the
example shown in Figure 8.4b.

For each misaligned trace, all the repair actions are exhaustively applied, until the
ordering is corrected, or there are no more repair actions remaining. The workflow
followed for performing repairs is shown in Figure 8.6. For each repair action, the
ordering of events could be changed in case of misaligned events, using the specified
repair action (Change ordering in Figure 8.6). Moreover, in cases where there is extra
behavior, some of the events could be removed (Remove events in Figure 8.6), or
new events could be artificially introduced (Add events in Figure 8.6). The ordering
information for the newly introduced event is based on the current repair action.

For each
repair 
action

Change
ordering

Add 
events

Ordering 
corrected?

For each 
misaligned
case in the 
event log

Remove
events

Yes

No

Figure 8.6: Approach for performing repairs of event ordering imperfections. Dotted arcs indi-
cate optional steps.
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Finally, the changed trace is re-evaluated against the labeled free-choice workflow
net fragment. If the current repair action fixes the ordering within the trace, then
we replace the original trace in the event log with the changed trace. By fixing the
order, we mean that the trace and the model can be perfectly aligned, i.e., without
having any log moves or (non-silent) model moves. If the repair action does not fix
the ordering according to the specified labeled free-choice workflow net fragment,
then we move on to the next repair action. This is repeated until all the repair actions
are evaluated. If none of the repair actions fix the ordering, then the trace remains
incorrectly ordered in the event log. This is repeated for all the traces of the event
log.

Let us revisit our running example from Figure 8.4. Let the fragment from Fi-
gure 8.5 be the fragment modeled by the user, and let e be the activity set to be
repaired. Furthermore, let us assume that the user allows for the addition of or remo-
val of events as per the repair configuration. Let Table 8.3 denote the repair actions.
Using this, the following steps are followed for each misaligned case in the event log:

Case # 1: We begin with the first repair action. In order to perform the Change ordering
step from Figure 8.6, we begin by forming pairs between move on model of e and
move on log of e, starting from the left-most side of the alignments of Figure 8.7,
which results in a single pair of (step 1, step 3) for case # 1. For each pair, we
find the closest synchronous occurrence of anchor activity corresponding to the
move on log of e. The closest synchronous occurrence of the anchor activity is
searched for on the left-side of move on model of e, if the position of repair action
is set to after, and is on the right-side otherwise. In our case, the anchor happens
to be step # 2. Now, we get the corresponding event from the trace in the event
log that corresponds to the step 2. Next, we change the timestamp from the
move on model element of the pair, by adding 45 minutes to the timestamp
of the anchor event (b). Hence, the new timestamp of event e in case # 1
becomes “1-1-2018 09:45". Since there are no extra move on model or move
on log of activity e, the steps add events and remove events are skipped. Upon
aligning the changed trace and the labeled free-choice workflow net, we get a

step number 1 2 3 4
log sequence e b >> c
model sequence >> b e c

(a) Case # 1.

step number 1 2 3 4
log sequence >> >> c e
model sequence b e c >>

(b) Case # 2.
step number 1 2 3 4
log sequence b e e c
model sequence b e e c

(c) Case # 3.

step number 1 2 3
log sequence b >> c
model sequence b e c

(d) Case # 4.

Figure 8.7: The alignment outcomes of the cases in the event log shown in Table 8.4, corre-
sponding to the model from Figure 8.5. For the sake of convenience, we do not
show the move on models for the silent transitions (t4,> and ⊥) here.
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Table 8.5: Event log after performing the repair actions.

Case Activity TimeStamp

1 b 1-1-2018 09:00
1 e 1-1-2018 09:45
1 d 1-1-2018 10:30
1 c 1-1-2018 11:00
2 a 2-1-2018 10:00
2 c 2-1-2018 11:00
2 e 2-1-2018 12:00
3 b 4-1-2018 09:00
3 d 4-1-2018 10:00
3 e 4-1-2018 10:10
3 e 4-1-2018 11:10
3 c 4-1-2018 12:00
4 b 5-1-2018 09:00
4 e 5-1-2018 09:45
4 d 5-1-2018 10:00
4 c 5-1-2018 12:00

perfect alignment, thereby correcting the ordering of events in case # 1. Hence,
the next repair action is skipped, and we move to the next case.

Case # 2: Case # 2 does not have an occurrence of activity b at all. Since activity b is
mandatory according to the fragment of Figure 8.5, no matter what changes
are made to the timestamps of event e, the repaired trace would always be
misaligned with the process fragment (due to the absence of b). Hence case #
2 will be uncorrected.

Case # 4: Since Case # 4 does not have the mandatory occurrence of event e, it could
easily be introduced by using the first repair action and adding a new event.
The value of the timestamp corresponding to the newly added event will be
“5-1-2018 09:45". Hence, the repaired trace would be perfectly aligned in the
process fragment of Figure 8.5, thus the next repair actions would be skipped.

The repaired event log is shown in Table 8.5. In the repaired event log, the value of
the timestamps of the event e corresponding to Cases 1, 3 and 4 are correct. However,
the value of the timestamp corresponding to Case # 2 is still incorrect. The user may
thus decide to model a different fragment and/or specify different repair actions, in
order to correct more such issues.

Having performed the changes to the event log, the user is then informed about
the impact of the change, as discussed in the next section.
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8.6 Impact Analysis

In this section, we discuss the impact of changes made to the event log, by comparing
it to the prior event log (before the changes were made). Based on the impact of
repair, the user can then choose to keep the changes in the event log, or revert back
to the prior version of the event log (i.e., ignore the changes). The whole process of
repair can now be repeated for the replaced event log and corresponding to the new
problems detected. The metrics presented to the user to analyze the impact are as
follows:

– Edit distance: Levenshtein distance between the repaired event log and the
original event log.

– Fitness [5] of the original filtered event log and the repaired filtered event log
for the activities from the labeled free-choice workflow net fragment.

– The total number of cases impacted, i.e., the total number of cases for which at
least one repair action resulted in the correct ordering of events.

– The total number of events added.

– The total number of events removed.

– The total number of events with changed timestamp value.

8.7 User Interface and Evaluation

The proposed approach is also supported by the package in the nightly build version of
ProM [171] in the InteractiveProcessMining 6.8.56 package, under the plug-in “Data-
quality”. This plug-in requires an event log in XES [3] format as its input. This plug-
in should ideally be used before performing any process mining analysis, in order to
analyze and correct the possible issues in the event data. After correcting the possible
data quality issues in the event log, we can then interactively discover process models
using the approach discussed in Chapter 5–8.

Figure 8.8 shows the detection tab of our tool. The user is presented with all the
detected quality issues (along with their description, frequencies etc.) in a tabular
format (panel A). Upon selecting an issue from the detection table, the user is pro-
vided with the filtered event log (panel B) which contains only the events from the
selected issue. Furthermore, the user is also provided with an aggregated histogram
(panel C) showing the distribution of all the affected events based on the type of the
detected issue.

Figure 8.9 shows the repair screen of our tool, which is the second tab of the same
plug-in. The user models a labeled free-choice workflow net interactively by adding
one activity at a time (panel A). This labeled free-choice workflow net specifies the
relation between the activity to be repaired with other activities. The activity to
be repaired is selected from a dropdown box by the user. The user specifies the
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repair strategy in repair configuration view (panel B). Upon performing the repair,
the impact is presented to the user (panel C) which can be used for the decision
making of either keeping or ignoring the changes.

The approach presented in this chapter is evaluated using two publicly available
real-life event logs. Detecting event ordering anomalies and fixing them essentially
addresses the re-structuring of the event log to correct the control-flow aspect (of the
underlying process model). Hence for each event log, we demonstrate the detectabi-

Figure 8.8: The detection tab showing the three detection panels: A) the list of detected issues,
B) the event log view, and C) the graph view showing the distributions for the
selected issue.

Figure 8.9: The repair tab showing the three repair panels: A) the Petri net modeled interacti-
vely by the user, B) the repair configuration view, and C) the impact of a (sequence
of) repair(s).
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lity of ordering related issues in the event log, followed by repairing the event logs
using the insights from the detection phase along with the domain knowledge. The
final outcome is evaluated based on the process models discovered using the repaired
event log.

The event logs used are (i) the Sepsis event log [117]- wherein the process mo-
del discovered from a repaired event log is compared with the ground truth process
model (available at [117]), (ii) the BPIC 2015 event log - wherein the outcomes of
automated process discovery techniques are compared before and after the event log
repair.

8.7.1 Sepsis

The Sepsis event log described in [117] contains the Sepsis treatment process of pa-
tients of a Dutch hospital. In total, the event log contains data of 1050 patients and
16 activities.

The authors from [117] designed a process model by hand with the guidance of
domain experts which resulted in a process model as shown in Figure 8.10. However,
as noted by the authors in [117], in order to come up with a final process model
they had to undergo multiple iterations to find a balance between considering the
reality depicted by the data and the protocols according to the domain expert. At
each iteration, the authors manually modeled a process model using insights from
the domain experts, and performed alignments to understand the correctness of the
process model. That is, the authors tried to manually find the best fit between the data
and the domain expert, by modeling an end-to-end process model at each iteration.
However, the comprehensibility of a process model reduces upon increasing the size
of the process model. Hence, evaluating the complete end-to-end process model in
each iteration with expensive resources such as doctors in a hospital is both a time
consuming and a costly affair.

In this chapter, we first identify the plausible issues in the event log, fix them with
the help of domain knowledge and hand over the actual discovery task to discovery

Figure 8.10: Original Sepsis model for the event log as modeled in [117].
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IV LiquidER Sepsis Triage

(a) Relationship between the activities ER
Sepsis Triage and IV Liquid.

IV Antibiotics

IV Liquid
Admission NC

(b) Relationship between the activities IV An-
tibiotics, IV Liquid and Admissions NC.

Figure 8.11: Process fragments modeled to repair the Sepsis event log.

algorithms. In our case, the users model their domain knowledge through process
fragments instead of analyzing the complete end-to-end process model.

In total, the timestamp ordering of six activities was corrected. During the cor-
rection phase, mostly the default settings were used. The only exception was to allow
the possibility of removing extra events, which is not the case by default.

Here, we give an example of the steps followed to repair one of the activities.
The detection outcome of our tool indicated that there were quite a lot of ordering
related issues in the original event log. Among them, almost 50% (14 out of 28) of
the ordering problems had at least one of the three activities: IV Antibiotics, IV Liquid

Figure 8.12: Sepsis model discovered from the original event log using the inductive miner-
incomplete discovery algorithm.

Figure 8.13: Sepsis model discovered from the repaired event log using the inductive miner-
incomplete discovery algorithm.
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Table 8.6: The steps followed in order to repair the Sepsis event log, and its impact compared
to the original event log.

Activity Repaired Edit distance % traces impacted

ER Triage 15 0.9
ER Sepsis Triage 46 2.3
IV Liquid 124 6.2
IV Antibiotics 22 1.1
Admission NC 407 32.3
Admission IC 17 1.2

and/or Admissions NC, which hinted at a possible ordering problem with regards to
these activities.

There are certain protocols which must be followed in a Sepsis treatment process.
We used the process models from [117] to identify a few such protocols that must
be followed in a Sepsis treatment process, which served as our ‘domain knowledge’
for this evaluation. These protocols were then translated into Petri net fragments as
shown in Figure 8.11. Figure 8.11 shows two of the fragments designed in order
to repair the activities Admissions NC and IV Liquid, based on the insights gathered.
Figure 8.11a was used to correct the timestamps of IV Liquid in the event log, in
relation to ER Sepsis Triage. A single repair action was used to configure IV Liquid to be
after (the mean duration of all the fitting cases) ER Sepsis Triage. A similar fragment
and repair action was used, by replacing IV Liquid with IV Antibiotics, in order to
correct the timestamps of IV Antibiotics with respect to ER Sepsis Triage. A similar
approach was used to correct the ordering of ER Sepsis Triage to be after ER Triage,
and ER Triage to be after ER Registration. In order to repair the activity Admissions
NC, the position of Admissions NC was configured to be after (the mean duration of
all the fitting cases) IV Antibiotics or IV Liquids for the misaligned cases, by using two
repair actions, one corresponding to IV Antibiotics and another one corresponding to
IV Liquid as the anchor event. A similar process fragment was obtained by replacing
Admission NC with Admission IC, and similar repair actions were applied to repair the
incorrect occurrences of the activity Admission IC in the event log.

Table 8.6 shows the impact of performing the changes. Almost 30% of the cases
were impacted by the activity Admission NC. This is also in keeping with the alig-
nments which were performed using the original event log and the original process
model from Figure 8.10, which resulted in about 30% of the cases having either move
on log with respect to the activity Admissions NC.

After repairing the time values (and removing the duplicates) of the 6 activities,
the final repaired event log was used to automatically discover a process model. Given
the incomplete nature of the log we chose the Inductive miner incomplete [110]
discovery algorithm to discover a model which was closest to the original process
model. The result is shown in Figure 8.13.

It should be noted that using the original event log (before repair) to discover a
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process model using inductive miner incomplete resulted in a process model wherein
almost all the activities could occur multiple times (self-loops) and in parallel with
other activities as shown in Figure 8.12. Upon comparing the process models in
Figure 8.10 and 8.13, it is quite evident that by using our tool to repair the event
log in just 6 steps, we were able to come very close to the original process model as
discovered manually by the authors of [117].

It could be argued that similar results could be obtained by using conformance
checking techniques, and correcting the misaligned events, such as the one proposed
in [140]. Such techniques could of course be used in order to automatically repair
an event log when a complete end-to-end process model is available. However, the
fundamental difference is that we assume that we do not know the complete end-
to-end model beforehand. Instead, we merely use some of the fragments in order
to improve the quality of the event log, and ultimately improve the quality of the
complete end-to-end model discovered by automated process discovery techniques.

8.7.2 BPIC 2015

The second event log that we use to evaluate our approach is from the BPI Challenge
2015 [65] which contains five event logs corresponding to the building permit appli-
cations of five municipalities in the Netherlands. We use the event log from one of
the municipalities (municipality 1) which contains almost 400 activities. In order to
make the results comprehensible, we filtered the log and selected the top-22 frequent
activities belonging to the main application process. Also, we focus only on those
cases which are closed, which results in a total of almost 700 cases.

Upon loading the filtered event log in our tool, the detection technique hinted at
a possible problem in the granularity of events in the event log: with more than 10
activities having multi-granular timestamp values across the event log as shown in
Figure 8.14. It is quite noticeable that several activities have many events registered
at hourly granularity. This is very suspicious and thus resulted in the loss of ordering
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Figure 8.14: The distribution of the number of events of an activity having hourly granularity
vs second level granularity.
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information in the event log. Therefore, we try to repair the event log in order to
manually correct the ordering of activities.

All the activities in the event log have the following naming structure: 01_-
HOOFD_###. Some activities also have an additional _## at the end. We know that
typically the last three digits from 01_HOOFD_### denote the ordering sequence
of activities (however this may not always be the case). We use this information as
our domain knowledge in order to repair the positioning of activities which have high
number of events with hourly granularity, in relation to the activities which have high
number of events with seconds granularity. Upon doing this repeatedly, we increased
the granularity of almost 45% of the events which initially had hourly granularity.

Contrary to the Sepsis event log, in the case of BPIC 2015, we do not have a
ground truth process model for comparison. Hence, we use the process mining quality
dimensions of fitness and precision to evaluate the results.

We discovered process models using two state-of-the-art process discovery algo-
rithms (the Heuristic miner [185] and the inductive miner [110]) using the original
(non-repaired) event log at default settings. Next, we used the same algorithms to
discover process models using the repaired event log.

All four discovered process models are evaluated against the original (non-repaired)
and repaired event logs in order to assess them based on fitness [5] and preci-
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(b) The fitness and precision values evaluated
against the repaired event log.

Figure 8.15: Comparing fitness and precision scores. IM and HM denote the Inductive miner
infrequent and the Heuristic miner discovery algorithms resp. The leading -R and
-O denote the event logs (repaired and original resp.) used for discovery.
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sion [128] dimensions. The results are shown in Figure 8.15. It should be noted
that, there is typically a trade-off between fitness and precision of a process model. In
Figure 8.15b, we compare the process models against the repaired event log. Unsur-
prisingly, we see that the process models discovered using repaired event logs perform
better than the process models discovered using the original event logs. However, in
Figure 8.15a when the process models are compared against the original event log,
we see that the process models discovered using the repaired event log have a much
higher precision even when evaluated against the original event log, as compared to
the process models which were discovered using the original event log. Furthermore,
there is a negligible difference in the fitness scores. This indicates that the process mo-
dels discovered using the repaired event log are of much higher quality, irrespective of
the event logs that they are evaluated against. This is significant because the user may
decide to discover an accurate process model based on the repaired event log. Howe-
ver, may decide to perform further analysis, for example, conformance/performance
analysis, based on the original event log.

Similar results could possibly be obtained by using some automated filtering-based
techniques from the literature, such as [45], which remove noisy behavior from the
event logs. However, in our approach, the user is central to decision-making. This
is especially important as the user can use the domain knowledge in order to correct
the timestamp ordering of events, and not rely on some black-box technique to make
decisions. Moreover, by involving the user directly in the process of event log repair,
we allow the user to have more control over the overall repair process. That is, in
automated techniques, the user has very little intuition of what was changed in the
event log. However, in our approach, the user is involved in each step of repairing
the event log, and is provided with the feedback about the impact of changes made
in the event log.

In the next section, we discuss pre-existing approaches described in the literature
which are relevant for this chapter.

8.8 Related Work

The manifestation of data quality problems in event logs in the context of process
mining has been well researched in literature, and is summarized in Section 8.2. [21]
was one of the first approaches which characterizes data quality issues in the event
log. This was later extended in [113] and [163]. [113] also introduces the quality
issues in a healthcare setting. In [151], the authors explore and manifest the typical
event data quality issues. Our work does not propose new data quality issues, but
instead focuses on detecting and interactively repairing the time related event log
quality issues. Hence, in this section, we compare our technique with the techniques
from the literature which allow (i) detection and/or (ii) repair of event order related
data quality issues in the event log.
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8.8.1 Detection of Quality Issues

Detection of possible quality issues in the event log, is a well-researched topic, both
within the process mining community, and outside it.

Process Mining

Many process mining techniques implicitly detect quality issues in the event log. For
example, conformance checking technique discussed in [5] matches expectation as
modeled by a Petri net with reality represented by an event log, to detect conforming
and deviating behavior. Thus the order related data quality issues would surface as
deviating behavior. However such techniques require a process model (either proce-
dural or declarative) to begin the analysis with. Our approach on the other hand does
not require ground truth during the detection phase.

Many process discovery algorithms (for example, [95, 110, 185]) implicitly try
to detect noise in the event log, which can sometimes be attributed to event orde-
ring imperfections. However, the decisions and detections made during the discovery
phase are implicitly incorporated in the discovered process model, but not explicitly
presented to the user. Our approach explicitly presents the user with the individual
anomalies related to event ordering imperfections.

Other Approaches

Techniques such as [193], allow users to visually explore sequences of events by pro-
viding an overview of the events using various visualization techniques [70], such
as state diagrams, icicle plots etc. Some of these techniques particularly focus on
identifying anomalies such as anomalous events in computer networks [27, 28, 133]
or in healthcare domains [17]. The user can perform interactive operations such
as, search, filter, group sequences etc. in order to visually explore event sequences
and patterns [89, 109]. The insights gained from such interactive explorations could
then be combined with the domain knowledge in order to visually identify possible
ordering-related data quality issues in the event log. However, these techniques ty-
pically show what has happened in the event log, and the onus is upon the user to
identify any possible data quality issues in the event log. Some techniques from the
literature automatically quantify the quality of an event log. [153] is a package in R
which provides aggregated information about the structuredness and behavioralness
of an event log. [20] provides a technique for interactively assessing data quality, and
using customizable metrics to quantify the quality issues. Similarly [103] discusses
various metrics to quantify the overall quality of the event log and [48] suggests se-
veral data quality metrics and data cleaning strategies. However, these techniques
typically provide a global measure of data quality and do not pin-point the exact list
of issues within the event log. Our approach focuses on providing the user with a list
of time-related quality issues in the event log.
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8.8.2 Event Log Repair

Unlike process discovery and performance analysis, repair of data quality issues in
event logs is fairly unexplored territory in the domain of process mining. The aut-
hors of [140, 141] describe techniques to correct the positioning of events based on
(timed) Petri nets and probabilities derived from alignments information. Similarly,
in [150] the authors describe a Petri net decomposition-based heuristic repair strategy
for efficient event log repair. However, in reality, a de-facto standard process model
is seldom available. Compared to these approaches which assume the presence of a
process model, our approach does not require an end-to-end process model for event
log repair.

In [41] and [149], the authors describe a denial-constraint-based approach and a
temporal-constraint-based approach to automatically repair the timestamps of events
in the event log. Again, these approaches require the users to pre-specify the con-
straints, whereas in our case the user can first analyze the detected issues, and then
choose to act upon them.

In [92] a visual-guided approach for repairing time related issues in event log
is discussed. Contrary to both constraint-based approaches and visualizations dri-
ven approaches to event log repair, our approach allows the user to flexibly specify
the domain knowledge using graphical process fragments, which typically are more
intuitive and allow specification of complex process behavior such as concurrency,
loops, choices, duplication of activities etc. It could be an idea to combine the re-
pair approach proposed by us, with the constraint-based repair approach and the
visualization-driven repair approach, to support broader repair strategies.

In [45, 79, 80], techniques are proposed to automatically remove/fix the “noisy"
behavior from the event log without any user involvement. However, in our case
we present such probable issues to the user, instead of automatically removing them
from the event log. The user can temporarily repair the issues, analyze the impact and
optionally make the changes permanent. Thus, our system provides an integrated de-
tection and repair mechanism that allows the user to interactively and incrementally
repair event logs.

8.9 Conclusion and Future Work

In this chapter, we presented an integrated technique for first detecting imperfecti-
ons in event ordering in the event log, followed by an interactive repair strategy to
correct the ordering. Based on a literature review, the symptoms of event ordering
imperfections were discussed followed by a comprehensive strategy to detect such
symptoms. The proposed repair approach allows the user to develop a global truth
(designed as a process fragment), which can be enforced locally on each case in the
event log. This makes our repair approach easier compared to a case-by-case repair
strategy. Furthermore, intuitive graphical process models can be interactively desig-
ned based on the strategies discussed in Chapter 5–Chapter 9, for easy incorporation
of domain knowledge, without the need of working with a non-trivial end-to-end
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process model.
We applied our detection and repair techniques on two real-life event logs, and

showed that we can detect anomalies in the event log related to event ordering imper-
fections, and re-structure the event log to repair these anomalies. Process discovery
techniques benefit greatly by fixing the data quality issues in the event logs, as we
were able to repair the source of the problem.

Finally, we would like to propose some future directions. In the detection phase,
the user is presented with a host of detected issues. However, it might be the case
that the number of detected issues is too high. Even though we allow the user to sort
and search through the detected issues, in the future, it would be ideal to smartly
filter some of the irrelevant or over-lapping issues before presenting them to the user.
Another future direction could be to allow the user to semi-automatically repair the
event log. In the current version, we depend entirely on the user to repair the event
log. However, in cases when an end-to-end process model is available, it may be
ideal to use the outcome of conformance analysis and semi-automatically repair the
incorrectly ordered events. That is, the user may want to use the insights from confor-
mance analysis, in combination with the domain knowledge, in order to decide which
events should be repaired based on the control-flow of the end-to-end process model.
Another interesting future direction could be to dive deeper into the performance and
compliance perspective. Currently, we only look at the control-flow aspect of an event
log. An event log may additionally contain many more event-level and case-level at-
tributes. Hence, in the future, it would also be ideal to interactively explore and repair
other data quality (non-control flow) issues in process mining. Finally, it would also
be desirable to provide indicators about the root cause, i.e., smart detection mecha-
nisms to further assist the user in exploring what might cause possible issues in the
event log.
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This chapter is based on the publications [60] and [61].
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In this chapter, we discuss strategies to repair a pre-existing process model. The pre-
existing process model could either be drawn by hand by interviewing different actors
involved in the different stages of the process. Alternatively, the process model could
be discovered automatically using information from the event log with an automated
process discovery technique. The strategy used for repairing the process models could
be based on the way in which the process model was constructed in first place.

On one end, consider a process model which is drawn by hand, using the traditi-
onal approach of process model construction with interviews. When the event data
is recorded by the information systems, the hand-drawn process model can be com-
pared with the event logs to firstly detect the points in the process where the process
model might deviate. Next, the process model could be changed in order to repair the
observed deviations.

On the other end, consider a process model which is discovered using an automa-
ted process discovery technique. In such a case, the reality as depicted by event logs
is already taken into account by the discovery techniques. However, as discussed pre-
viously in Chapter 8, there may be unsolved data quality issues in the event log which
may lead to discovery of incorrect process models. Furthermore, the representational
biases of discovery techniques may limit the types of process models discoverable.
Moreover, the discovered process model may be too difficult to understand for the
end user. Hence, in such cases, the user should be able to repair the process model as
per the user’s domain knowledge.

The focus of this chapter is to discuss strategies to repair pre-existing process mo-
dels using information from the event logs and domain knowledge. The remainder
of the chapter is structured as follows. In Section 9.1, we discuss the main problem
addressed in this chapter. In Section 9.2, and Section 9.3, we provide approaches to
address the problems discussed in Section 9.1. In Section 9.4 we discuss the imple-
mentation details and evaluate the proposed approach using a synthetic and real-life
event log. In Section 9.5, we discuss some related work, followed by conclusions in
Section 9.6.

9.1 Problem Definition: Process Model Repair based
on Domain Knowledge

Goal 1 from Chapter 1 dealt with enabling interactive repair of event logs and Goal
2 from Chapter 1 dealt with interactive process modeling. However, there may be
cases wherein a process model already exists, and such a process model needs to be
repaired based on the insights from the real-executions recorded in the event log, or
purely based on the domain knowledge. The problem of process model repair is not
new, and has been well researched in the literature. However, most of the techniques
focus on correcting the process models solely based on the information from the event
logs. In our case, we would also like the user to have a larger influence in repairing
the process models. This chapter aims to address Goal 3 from Chapter 1, to enable
interactive repair of preexisting process models using domain knowledge along with



202 CHAPTER 9. USER-GUIDED PROCESS MODEL REPAIR

the information from the event logs.

• How can we enable interactive process model repair, such that:

– domain knowledge can be implicitly added to repair a process model. Typi-
cally, in such scenarios, a process model is discovered automatically using
some automated process discovery technique. Hence, the user has very
little influence over the actual discovery of the process model. However,
after the discovery, the user may want to edit such a process model in order
to correct some of the possible issues. Hence, it is vital that the technique
supports editing of preexisting process models. Moreover, all the require-
ments introduced in interactive process modeling scenario, such as broad
structural representations, soundness etc., also hold true in the interactive
process model repair scenario.

– domain knowledge can be explicitly added to repair a process model. In
such cases, a process model may already exist, but the user may want
to ensure that it can also support the insights gained from the event log.
However, relying completely on the event logs in order to repair process
models, could lead to unanticipated and drastic changes in the process
models. Hence, the user may want to ensure that certain constraints/rules
are taken into account, when the process model is being repaired based on
the information from the event log. Therefore it is vital that the technique
proposed can find a balance between the provided domain knowledge and
the information from the event logs in order to repair a process model.

In Section 9.2, we focus on the first aspect while using domain knowledge impli-
citly to interactively repair a process model. In Section 9.3, we focus on the second
aspect, based on explicitly specified domain knowledge user specifies domain know-
ledge in terms of constraints, which are then used in combination with the event log
to automatically generate repaired process models.

9.2 Interactively Repairing Process Models

In this section, we discuss an approach for interactively repairing pre-existing process
models. It should be noted that the process models could be drawn by hand, or
discovered automatically using any of the process discovery techniques. Given the
advantages of free-choice workflow nets and synthesis rules, such as broad structural
representations and guaranteed soundness, we use sound free-choice workflow nets
in this section too.

In order to enable interactive editing of process models, we use the aspects of
synthesis engine, labeled free-choice workflow net editing and conformance checking
as described in previous chapters. The way in which the items from Chapter 5 and
Chapter 6 are utilized is quite straight-forward and is shown in Figure 9.1.

The details of performing interactive repair, as shown in Figure 9.1 are as follows:
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1. A process model, represented by a sound labeled free-choice workflow net is
reduced into an atomic net by using reduction rules. Reduction rules, as dis-
cussed in Chapter 3, are the reverse of synthesis rules. Hence, a sound labeled
free-choice workflow net can always be reduced to an atomic net, by using the
reduction rules iteratively.

2. At each reduction iteration, track the changes made, using the so-called re-
duction tracker. That is, the type of reduction rule used, the label of the transi-
tion which is reduced (in case a transition is reduced), and the sequence number
of reduction rule.

3. After reducing the sound labeled free-choice workflow net to the initial net,
use the synthesis rules to synthesize the sound labeled free-choice workflow net
using the synthesis engine. The sequence, type of rules, and activity labeling
is extracted from the reduction tracker of the above step. The sequence of
synthesis rule applications followed is the reverse of the reduction procedure of
the above step. That is, starting with the atomic net, we now use the reduction
rules in reverse (i.e., the synthesis rules) as tracked by the reduction tracker in
reverse, in order to get the original labeled free-choice workflow net that we
started with. The primary aim of steps 1-3 is to make the labeled free-choice
workflow net editable in our synthesis engine which was proposed in Chapter 4.

4. Perform conformance analysis on the synthesized net. The results from confor-
mance analysis indicate possible issues in the process model.

Figure 9.1: Interactive repair enabled by sound labeled free-choice workflow net editing based
on synthesis rule engine.
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(b) Process model discovered using an automated process discovery algorithms. Many auto-
mated process discovery techniques cannot discover duplicate occurrences of activities.

Figure 9.2: Expected and automatically discovered process models.

5. A user analyzes the issues in the sound labeled free-choice workflow net ba-
sed on conformance analysis. The user can then iteratively edit the labeled
free-choice workflow net by using synthesis rules as shown in Chapter 5 and
conformance results as shown in Chapter 6 in order to interactively repair the
process model. Furthermore, the user may remove parts of the net, based on
the reduction rules (i.e., the reverse of synthesis rules). Upon using a reduction
rule, steps 1–4 need to be recomputed, by populating a new reduction tracker.
When a synthesis rule is used to expand the net, there is no need to recompute
steps 1–4. We explain the approach presented in this section with an example.

Let us assume that the labeled free-choice workflow net shown in Figure 9.2a
is the expected labeled free-choice workflow net. Let us assume that some discovery
algorithm discovered the labeled free-choice workflow net shown in Figure 9.2b based
on the information from the event log. Clearly in the automatically discovered process
model, activity b can happen more than two times, whereas in the expected process
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Figure 9.3: Reduction steps involved in repairing an automatically discovered labeled free-
choice workflow net.

model, this activity happens exactly twice.
In order to repair the automatically discovered process model, to represent the

expected process model, the user first has to remove the incorrectly placed loop from
the process model. In order to do this, the user can use the synthesis rules in reverse,
i.e., the reduction rules. Figure 9.3 shows these reduction steps. After using ψW F

T ,
ψW F

A and ψW F
P rule in reverse, we end up with the process model as shown in Fi-

gure 9.3c. The user can then use two applications of the ψW F
A rule (between {>} and
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{p1} and {t9} and {p9}), in order to add two instances of activity b in the labeled free-
choice workflow net, in order to repair and model the expected labeled free-choice
workflow net.

In the next section, we discuss an approach to automatically repair process models
using domain knowledge.

9.3 Automated Process Model Repair based on Con-
straints

The interactive process model repair approach discussed in the previous section al-
lows the user to interactively repair process models using the insights from the event
logs, while incorporating the domain knowledge implicitly during process model re-
pair. However, in certain scenarios, it would be ideal for the user to specify domain
knowledge explicitly as some business rules, which could then be used to automati-
cally repair a process model. It is necessary that the user can specify certain business
rules that should hold in the process model, as letting an automated technique make
the decisions entirely based on the event log could result in process models which are
perfect based on the event log, however, may not satisfy any of the business rules.

An automatically repaired process model may satisfy all the constraints and may
be correct according to the information from the event log. However, the user may
find the repaired model to be too complex, or uninterpretable, as the comprehensi-
bility of a process model is subjective in nature. Hence, it is vital that the user can
choose a process model from multiple such repaired process models, which satisfy the
constraints and the information from the event log to varying degrees.

Repairing process models in an exhaustive way would be too inefficient, and
hence, not feasible in a practical scenario. Hence, we propose an approach to geneti-
cally create candidate process models. An overview of genetic approach is presented
in Figure 9.4. A population of process models are created and evaluated against the

Initiate Evaluate

Change

Stop? ResultSelect

Elite

Figure 9.4: Different phases of genetic algorithm [24].
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Figure 9.5: Input and outputs of genetic algorithm based repair approach.

quality dimensions compared to the event log based on conformance analysis, as well
as based on the number of constraints (business rules) satisfied. The models from
the populations are randomly changed using the so-called genetic operators. These
models are re-evaluated until the stopping criteria is met. Finally, the user is provided
with multiple process models, each having different qualities, based on the confor-
mance scores and the number of constraints satisfied.

The input and output of the proposed approach are as shown in Figure 9.5. An
event log, a process model and a set of constraints serve as the input to the technique.
After the genetic approach terminates, the user is provided with a Pareto front of
dominating process models.

In the upcoming sections we provide details of different components from Fi-
gure 9.5. We start by discussing the use of Declare constraints, which provides a way
to specify domain knowledge in our approach. We then discuss the process modeling
notation used in our approach, and provide motivation for the same. We then briefly
discuss the genetic approach used as well as the outcome of the approach, i.e., the
Pareto front.

9.3.1 Declare Constraints to Incorporate Domain Knowledge

In this section, we discuss a way of providing domain knowledge. Sometimes, the
user may not be aware of the actual control flow between activities, and hence cannot
directly incorporate domain knowledge to interactively repair process models. In such
cases, the user may be aware of certain business rules (or constraints) that should
hold in the process model. Declarative constraints provide a handy way for modeling
of such constraints. A declarative model is defined by using constraints specified by
a set of templates [134]. We use a subset of Declare templates as a way to input
domain knowledge.

Table 9.1 provides an overview and interpretation of the Declare constraints that
we consider [116, 134]. Binary templates provide ways to specify dependency (po-
sitive and negative) between two activities. For example, response(a,b) specifies that
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Table 9.1: Declare constraints and their graphical and textual interpretations

Template Name
Graphical

Representation Interpretation

response(a,b) a b Activity b should (always)
eventually occur after
activity a

precedence(a,b) a b Activity b can (eventually)
occur only after the occur-
rence of activity a

chain− response(a,b) a b Activity b should (always)
immediately occur after
activity a

chain−precedence(a,b) a b Activity b should (always)
immediately be preceded
by activity a

coexistence(a,b) a b Activity a implies the pre-
sence of activity b (and
vice versa)

responded−existence(a,b) a b Activity a implies the pre-
sence of activity b

not − coexistence(a,b) a b Activity a implies the ab-
sence of activity b (and
vice versa)

not − succession(a,b) a b Activity a should never be
followed by activity b

activity a has to be eventually followed by activity b somewhere in the process. Six
of the primary binary constraints considered are shown in Table 9.1. This subset of
declare templates have been chosen to cover both positive and negative dependencies
between activities. This set could later be extended using other declare templates as
desirable.

9.3.2 Process Modeling Notation for Genetic Setting

Clearly, genetic algorithms are the ideal choice for repairing process models based on
both the event log information as well as the number of constraints satisfied. The
key step of genetic algorithms is to modify (Change step in Figure 9.4) certain aspects
of existing process models in order to derive new candidate process models. It is
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vital that the steps involved in the modification stage are not too time consuming.
Furthermore, since we are interested in exploring process model space, it is ideal to
change large parts of a process model at once.

The modification should also guarantee that only sound process models are cre-
ated (the soundness subgoal of Goal 2 from Chapter 1). One way could be to use
free-choice workflow nets, along with the synthesis rules, in order to ensure that only
sound process models are generated. In Chapter 4, we have optimized the way in
which the synthesis space is computed for a free-choice workflow net, based on the
incremental synthesis structure. The incremental synthesis structure works well when
we are interactively exploring a single process model. However, in a genetic setting,
we are interested in exploring a lot of process models. Thereby, each such candidate
process model would have its own incremental synthesis structure. This could lead to
inefficiencies especially when the number of process models grows.

It is not ideal to randomly modify free-choice workflow nets (i.e., not based on
synthesis rules), as it could lead to the construction of unsound process models. In
order to overcome the drawbacks of using free-choice workflow nets in combination
with synthesis rules in a genetic approach, we propose using process trees as the
modeling notation, as process trees are sound by construction. We first introduce
process trees, followed by the advantages of using process trees in a genetic setting,
and finally discuss some of the limitations.

Process trees provide a way to represent process models in a hierarchically structu-
red way containing operators (parent nodes) and activities (leaf nodes). The operator
nodes specify the control-flow constructs in the process tree. Figure 9.6a shows an
example process tree, corresponding to the labeled free-choice workflow net of Fi-
gure 9.2b. A process tree is traversed from left to right and top to bottom.

The order of child nodes is not important for the and (∧), and exclusive-or (×)
operators, unlike the sequence (→) and Xor-loop (�), where the order is significant.
In the process tree from Figure 9.6a, the child nodes � and → are in parallel, as
denoted by the ∧ operator. Activity b is in loop, and can occur multiple times. The
middle node is the re-do part of the loop and the right node of the loop is the exit node
and it is executed exactly once. Hence, in the first child of the sequence operator →,
activity a can be repeated multiple times by performing activity f . After exiting the
loop operator, activities e and c can occur in any order. Finally the process terminates
after activity z is performed.

The usage of process trees in a genetic setting is motivated primarily by the fact
that process trees are sound by definition. Hence, irrespective of the modifications
performed, we would always end up with sound process models, which is desirable.
That is, with process trees, we do not have to carry the unnecessary baggage of the
incremental synthesis structure in a genetic setting, to guarantee soundness.

Of course, the use of process trees compared to the free-choice workflow nets
has some limitations, as already discussed in Chapter 3. For example, process trees
can only produce block-structured process models. Hence, discovering non-block-
structured constructs, such as arbitrary loops, is difficult using process trees. However,
we argue that the advantages of using process trees in a genetic setting outweigh the
disadvantages. Moreover, by construction, any process tree can be easily translated
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into a labeled free-choice workflow net [163]. However, it should be noted that the
opposite could be cumbersome.

In the next section, we discuss the usage of genetic algorithm and the way in
which constraints are verified in a process tree.

9.3.3 Genetic Algorithm

In order to repair the process tree to incorporate the user specified domain know-
ledge, we make use of a pre-existing genetic approach. We extend the genetic algo-
rithm for process trees discussed in [25].

By default, the approach from [25] genetically produces process trees, which are
then evaluated against the four standard quality dimensions of process mining, i.e.,
simplicity, generalization, fitness and precision. From Chapter 6, we know the intui-
tion behind fitness and precision dimensions. The approach from [25] uses [5] for
calculating these two dimensions. The simplicity dimension takes into account the
complexity of the discovered process tree and the generalization dimension considers
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(a) Example Process tree showing sequence (→), and (∧), and Xor-loop (�) operators. This
process tree corresponds to the labeled free-choice workflow net from Figure 9.2b (wit-
hout > and ⊥ transitions).
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(b) The process tree after removing the left-most � node of the process tree from 9.6a. ∧
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(c) The process tree after adding two instances of activity b.

Figure 9.6: Modifying process tree to obtain the process tree equivalent of the expected labeled
free-choice workflow net from Figure 9.2a.
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the amount of unseen possible future behavior that is allowed by a process tree.
We extend the approach from [25] to include an additional evaluator “number of

constraints specified”, along with the four standard quality dimensions. This evalua-
tor considers the number of Declare constraints that are satisfied by a process tree.

We provide an intuition about how Declare constraints are verified using couple
of examples. Consider two constraints, chain-response(b,a) and chain-response(z,b)
corresponding to the process tree from Figure 9.6a. The constraint chain-response
implies that the first activity is immediately followed by the second activity of the
constraint. The common root operator between b and a is ∧. This implies that b can
happen both before a or after a. In other words, it cannot be guaranteed that a always
happens immediately after b. A similar argument holds for the activities b and z and
the constraint chain-response(z,b) in Figure 9.6a. Now, if we use the same constraints
in the context of the process tree from Figure 9.6c, we see that the first b (left-most
node) is guaranteed to happen immediately before the first a, as the common parent
between a and b is sequence (→), which is order preserving. Similarly, the second b is
guaranteed to happen immediately after z. Hence the constraints chain-response(b,a)
and chain-response(z,b) are satisfied in the process tree shown in Figure 9.6c.

A number of factors such as crossover and mutation probabilities, number of
random trees in each generation etc. determine the variation of process trees in each
generation. The tree modification process is guided to balance between the standard
quality dimensions (determined by the event log) and the number of constraints sa-
tisfied. The genetic generation of process trees is stopped when the stopping criteria
of the genetic algorithm are met. Stopping criteria could be the maximum number of
generations, maximum time taken, minimum number of constraints satisfied etc.

The end result is a Pareto front. The general idea of a Pareto front is that all
models are mutually non-dominating: a model is dominating with respect to another
model, if for all measurement dimensions it is at least equal or better and for one
strictly better. Using the five dimensions, a Pareto front is presented to the user which
contains the set of dominating process trees.

9.4 Implementation and Evaluation

The first proposed technique (Section 9.2) for process model repair based on the
engine from Chapter 5 is also available in the package InteractiveProcessMiningLite
6.9.13 under the name “Reduce and synthesize Petri net with alignment and pre-
dictor view” supported by the nightly build version of of ProM [171]. This plug-in
requires an event log in XES [3] format and a Petri net as its input. The second pro-
posed approach (Section 9.3) is supported by the sand-box version of the package
PrabhakarDixit under the plug-in “Genetic Modification with user constraints”. This
plug-in requires an event log in XES [3] format and a process tree as input.

We restrict the evaluation to the automated approach, as the interactive process
model repair approach based on synthesis engine, is derived from, and hence is simi-
lar to, the interactive process discovery of Chapter 5.

The automated process model repair approach is evaluated based on a synthetic
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∧
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(a) Original process tree as discovered by
Inductive Miner infrequent.

∧

→

a b

→

c d

(b) One of the modified process trees in
the Pareto front satisfying all the con-
straints .

∧

a b →

c d

(c) One of the modified process trees
in the Pareto front satisfying only
two constraints (response(c,d),
precedence(c,d)).

∧

→

a b

c d

(d) One of the modified process trees
in the Pareto front satisfying only
two constraints (response(a,b),
precedence(a,b)).

Figure 9.7: Original and modified process trees for event log L.

event log and a real-life event log. Since we use the modified ETM algorithm as
the genetic algorithm, some of the issues related to the ETM approach, such as long
waiting times, also apply to our approach. We begin with the synthetic event log
which essentially provides an intuition of things that may go wrong with automated
process discovery techniques, and how these things can be corrected automatically by
specifying domain knowledge using constraints.

9.4.1 Synthetic Event Log

We use a synthetic event log to demonstrate how our approach could improve an
incorrect model discovered due to algorithm bias or noisy event log. For the event
log L = [ 〈a,b,c,d〉90, 〈a,c,b,d〉90, 〈a,c,d ,b〉90, 〈c, a,d ,b〉90, 〈c, a,b,d〉90, 〈c,d , a,b〉90,
〈c,d ,b, a〉6, 〈c,b, a,d〉6, 〈d , a,c,b〉6], the Inductive Miner infrequent (IMi) [110] with
default settings generates the process tree with all four activities in parallel as shown
in Figure 9.7a.

From the highly frequent traces of the log we can deduce simple rules such as
activity a is always eventually followed by activity b; and activity b is always preceded
by activity a. Similar relationship holds for activities c and d .

We use this information to deduce the following four constraints: response(a,b),
precedence(a,b), response(c,d) and precedence(c,d). We use these constraints, the pro-
cess tree from Figure 9.7a discovered using IMi [110] and the synthetic log (L) as our
input and perform the experiment with the genetic modification approach. We set the
stopping condition of maximum generations to 500 generations. The population size
in each generation is set to 100. Along with this, we add some additional conditions
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restricting duplicate labels and guaranteeing a minimum number of nodes. All the
other settings are kept as default as in the ETM miner of [25].

The modified process tree from Figure 9.7b satisfies all the four constraints. The
tree from Figure 9.7b also has a higher precision value of 1, and a considerably high
replay fitness score, compared to other process trees from the Pareto front. This pro-
cess tree is highly precise, thereby explaining the high frequent traces of the event log
much better and ignoring the infrequent noisy traces. Hence, if the user is interested
the most in precision, then this is the process tree that would be chosen. However, if
the user is flexible with respect to precision, then process trees from Figure 9.7c and
Figure 9.7d might be interesting. These process trees have a very high precision score
along with very high fitness scores, outperforming the originally discovered process
tree. However, only half of the constraints specified are present in these process trees.
Hence, if the user decides that some constraint(s) can be relaxed/ignored, then these
process trees could be chosen by the user. Based on user’s preferences, the Pareto
front could be navigated to select the most interesting process models.

9.4.2 Real-life Event Log

During automated process discovery, exceptional cases may dominate the normal ca-
ses, thereby leading to a process model that is over-fitting the data or that is too
general to be of any value. This process model could however be improved by incor-
porating domain knowledge. In order to evaluate such a scenario, we use the follo-
wing steps on a real-life event log containing the road traffic fine management process
with 11 activities and 150,370 cases described in and publicly available at [52]:

Figure 9.8: Workflow net mined using inductive miner infrequent [110] with filtered log con-
taining infrequent traces only.
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Figure 9.9: Labeled free-choice workflow net equivalent of one of the process trees repaired
using the approach from Section 9.3.

1. Learn some domain rules that should hold in the process model, based on the
insights from [52].

2. Filter the event log to select exceptionally deviating cases. That is, we filtered
out the most common sequences of traces, and kept only those traces which are
uncommon.

3. Create a process tree based on the filtered log using inductive miner algorithm
[110]. For the ease of understanding, we show the labeled free-choice workflow
net equivalent of this process tree in Figure 9.8.

4. Use the domain rules learned in step 1, the process tree from the filtered log
of step 3, in combination with the complete event log as the input to the ETM
genetic process discovery technique [24].

We deduced 1 precedence, 1 response, 1 responded-existence and 1 not-succession
rule based on the insights from [52]. In the genetic modification approach, we set the
stopping condition of maximum generations to 500 generations with the population
size set to 100. All the other settings are kept as default from the ETM miner of [25].
Therefore, in total a maximum of 50000 trees are evaluated.

In order to evaluate the repair approach, we take one of the process trees dis-
covered by the genetic approach with balanced quality dimensions satisfying all the
constraints. The labeled free-choice workflow net equivalent of this process tree is
shown in Figure 9.9. The chosen process model has a fitness score of 0.82 and a
precision score of 0.74, when compared with the original (unfiltered) event log. Ho-
wever, the fitness and precision scores of the original process model, discovered using
the filtered event log, was 0.72 and 0.54 respectively. Clearly, the repaired process
model has a considerably higher quality score than the starting process model. More-
over, the repaired process model also satisfies all the constraints. It can be argued that
similar results could have been achieved by tweaking some of the process discovery
algorithms, such as the ILP algorithm [170], in order to include the domain know-
ledge. However, such techniques would only produce a single output process model.
The genetic approach on the other hand, gives multiple such process models as the
output. Therefore, the user can choose the most effective process model, in terms of
the quality criteria and constraints satisfied, as well as in terms of comprehensibility.
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9.5 Related Work

Conformance techniques in process mining such as [4,5,50] replay event logs on the
process model to check compliance, detect deviations and bottlenecks in the model.
These techniques focus on verifying the conformance of event logs with a process mo-
del, but do not provide any way of incorporating domain knowledge to interactively
repair or improve the process model.

[136] provides a backward compliance checking technique using alignments whe-
rein the user provides compliance rules as Petri nets. The focus is on using Petri net
rules for diagnostic analysis on the event log, rather than discovering a new process
model with compliance rules.

The conformance-based repair technique suggested by [78] takes a process model
and an event log as input, and outputs a repaired process model based on the event
log. This is similar to the automated approach proposed by us. However, our ap-
proach also allows the user to specify domain knowledge as a set of constraints, and
this is included while repairing the process models. Moreover, the outcome of our
approach could be more than one process model, where each process model would
have different quality scores.

[8] presents an approach to interactively and incrementally repair a process mo-
del, based on the information from the event log. This is similar to the interactive
approach proposed by us for repairing process models. However, our approach gua-
rantees that the process models discovered are always sound, whereas [8] does not
provide any such guarantees.

[84] and [144] propose approaches to verify the presence/absence of constraints
in the process model. However, these approaches do not provide a way to modify the
process models with respect to the constraints. In [116], the authors provide a way
to mine declarative rules and models in terms of LTL formulas based on event logs.
Similarly, [42] uses Declare taxonomy of constraints for defining artful processes ex-
pressed through regular expressions. [108] uses event logs to discover process models
using Inductive Logic Programming represented in terms of a sub-set of SCIFF [6] lan-
guage, used to classify a trace as compliant or non-compliant. In [40], the authors
extend this work to express the discovered model in terms of Declare model. Howe-
ver, these approaches focus on discovering rules/constraints from event log without
allowing the users to introduce domain knowledge during discovery/repair.

In [139], authors suggest an approach to discover a control flow model based on
event logs and prior knowledge specified in terms of augmented Information Control
Nets (ICN). Our approach mainly differs in the aspect of gathering domain know-
ledge. Although declarative templates can also be used to construct a network of
related activities (similar to ICN), it can also be used to provide a set of independent
pairwise constraints. [191] proposes a discovery algorithm using Integer Linear Pro-
gramming based on the theory of regions, which can be extended with a limited set of
user-specified constraints during process discovery. In [86], the authors introduce a
process discovery technique presented as a multi-relational classification problem on
event logs. Their approach is supplemented by Artificially Generated Negative Events
(AGNEs), with a possibility to include prior knowledge (for example, causal depen-
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dencies, parallelism) during discovery. The authors of [90] incorporate both positive
and negative constraints during process discovery to discover C-net models. Compa-
red to [86], [90], and [191], our approach differs mainly in the fact that we do not
propose a new process discovery algorithm, but provide a generic approach to post
process an already discovered process model, either interactively or automatically.

9.6 Conclusion and Future Work

In this chapter we introduced a way to incorporate the domain knowledge of the
expert to repair a process model. We primarily introduced two types of techniques:
(i) the first technique allows interactive process model repair by intuitively consi-
dering domain knowledge; (ii) the second technique allows specification of domain
knowledge with the help of constraints, which are used (along with event logs) to
genetically discover multiple process models. The outcome of the second approach
is a Pareto front of process models, balancing different quality dimensions of process
mining along with the number of constraints satisfied.

For the first approach, it would be ideal to provide the user with smart recom-
mendations in order to semi-automatically repair a process model. This relates to the
approach discussed in Chapter 7. In Chapter 7, we provided recommendations which
resulted in expansion of process models. However, in order to provide recommen-
dations for interactive process model repair, we would also like to reduce a process
model, and then subsequently expand it. Hence, in the future, it would be ideal to de-
vise techniques that provide smart recommendations to assist the user in interactive
process model repair.

For the second approach, we used process trees as the modeling notation to ge-
netically modify and repair process models, owing to the structural properties of the
process tree. In the future, it would be ideal to explore ways in which sound free-
choice workflow nets could be used in a genetic setting, to overcome the limitations
of process trees. Furthermore, the genetic approach could have very long waiting
times, depending on the configuration of the system. Hence, it would also be viable
to explore other heuristic-based approaches that could efficiently result in multiple
process models as the output.
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This chapter is based on the publication [64].
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The execution histories of processes are recorded in information systems, and can be
extracted using event logs. The extracted event data may contain some timestamp-
oriented data quality issues, which can be overcome with the help of domain know-
ledge, using the interactive event log repair approach discussed in Chapter 8. Once
an event log is deemed suitable for process mining analysis, one may interactively
discover a process model based on the interactive process discovery techniques pro-
posed in Chapter 3–Chapter 7. In cases when a process model already exists, it can be
repaired to match with the reality as depicted by the event log using the interactive
process model repair technique proposed in Chapter 9.

As discussed already, we use labeled free-choice workflow nets in combination
with synthesis rules for representing process models, due to the advantages it offers,
such as broad structural representations and guaranteed soundness. If the (possibly
repaired) event logs extracted from the information systems are considered to be an
accurate depiction of the reality, and if the (possibly discovered/repaired) labeled
free-choice workflow net defines the ideal process flow, then the analysis performed
by the conformance techniques can provide valuable insights about what went right
and what went wrong in the process. Furthermore, the source of event logs, i.e.,
the information systems, may also record other useful information about a particular
event and the corresponding case. That is, each event may contain additional event
specific data attributes, for example, the resource which performed the particular acti-
vity represented by the event. Similarly, each case may have case-level data attributes.
Table 10.1 shows an example of an event log with such attributes. Hence, the user
can use the outcomes of Chapter 3–Chapter 9, to interactively explore the expected
behavior of a process as depicted by the labeled free-choice workflow net with the
reality as depicted by the event log, based on the conformance analysis.

In Chapter 6, we introduced a technique to speed-up conformance checking to
support interactive process discovery. However, traditional conformance analysis
techniques can be used to analyze the actual behavior of the process in reality, es-
pecially with an emphasis on local deviations and bottlenecks. Conformance analysis
can be used to gain insights about the compliance aspect of the process, such as
understanding where the deviations occur in a process [5, 129]. As there is a time
notion associated with every step in a process, the conformance analysis could also
be used in order to investigate the performance aspect of the process, for example,
understanding where the bottlenecks occur in a process. In essence, the outcomes of
conformance analysis could be combined with additional case and event-level data
attributes, to interactively explore and analyze the health of a process in reality.

Commercial process mining tools, such as Fluxicon Disco [94] and Celonis Process
Mining [1], allow interactive exploration of event logs and process models. Such com-
mercial tools are especially useful for enhancing the event logs and process models
with case and event-level attribute data. Furthermore, such tools allow easy filtering
possibilities, and slider-based process model exploration, to easily discover different
variants of process models. However, the semantics used for representing the process
models are not always clear. Hence, it is not possible to perform conformance analysis
on such process models, as the class of process models does not give any guarantees
with regards to soundness.
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Table 10.1: Example event log with attributes in a hospital setting.

CaseID Activity OrderDt Module Goals Met? Age

182192 ZZOGLV1 2015-06-01 Module optimalisatie Yes 70
182192 ZZOGLV1 2015-07-13 Module optimalisatie Yes 70
182192 ZZOGLV2 2015-07-13 Module optimalisatie Yes 70
182192 ZZOGLD2 2015-07-13 Module optimalisatie Yes 70
182192 ZZOGLV2 2015-08-25 Module optimalisatie Yes 70
182192 ZZOGLD2 2015-08-25 Module optimalisatie Yes 70
182192 ZZOGLD4 2015-09-26 Module optimalisatie Yes 70
182192 ZZOGLV4 2015-09-26 Module optimalisatie Yes 70
182192 ZZOGLV5 2015-09-26 Module optimalisatie Yes 70
182192 ZZOGLD5 2015-10-01 Module optimalisatie Yes 70
182192 ZZOGLD4 2015-10-01 Module optimalisatie Yes 70
198283 ZZOVA1 2015-01-22 Module overname NA 40
198283 ZZOVV2 2015-01-22 Module overname NA 40
198283 ZZOVD3 2015-02-11 Module overname NA 40
198283 ZZOVA4 2015-03-12 Module overname NA 40
198283 ZZOGLV1 2015-04-29 Module optimalisatie NA 40
198283 ZZOGLD2 2015-04-29 Module optimalisatie NA 40
198283 ZZOGLV2 2015-05-09 Module optimalisatie NA 40
...

...
...

...
...

On the other hand, in an academic setting, the applicability of visual analytics in
process mining has been explored in [105,118,164]. Most of these visualizations dis-
play the conformance results in their entirety. From a user’s perspective, analyzing the
conformance results on a big and complicated process model with many nodes may
turn out be too daunting. Moreover, most of the current techniques are standalone
techniques and do not support effective combinations of inter-disciplinary analysis.
Furthermore, investigation of the satisfaction of specific protocols and/or KPIs in the
process is usually only possible through data-specific analysis [111]. That is, it is
not possible to interactively perform various compliance and performance analysis
directly on a process model.

In this chapter, we discuss ways to enable interactive process analytics, by using
the outcomes of Chapter 3–Chapter 9. As opposed to traditional approaches, which
usually provide metrics represented by some numbers which may be difficult for the
user to comprehend, in this chapter we focus on the following types of enhancements
[145]:

• Helicopter views: To enable users to gain a global perspective, the information
from the event logs can be projected on the process model based on the outcome
of alignment-based conformance technique, in order to provide insights such as
frequencies of activities in the process etc.
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• Compliance analysis: An aim of the analysis might be to identify if some of
the protocols were followed in reality. Therefore, we provide a way for the user
to interact with the process model to intuitively explore some of the possible
compliance-oriented issues.

• Root-cause analysis: Case and event-level attributes could be used to possibly
explain why certain deviations or bottlenecks occur in the process. That is, the
user can visualize and quantify the information with the help of graphs, that
can be used to answer some questions based on data attributes.

• Concept drift analysis: The user may be interested in finding out if there have
been any changes in the process over time. In order to enable this, we provide a
graph-based approach that can be used to explore (any possible) patterns over
time.

In Section 10.1, we discuss the overview of the proposed system, and also show
the application of helicopter views. In Section 10.1.2, we discuss the interactive as-
pect of the proposed system in detail, in order to enable compliance analysis, root-
cause analysis and concept drift analysis. We discuss the conclusion and future rese-
arch directions in Section 10.2.

10.1 Process Analytics

The proposed approach is supported by the nightly build version of ProM [171], in
the ProcessAnalytics package, under the plug-in “Process Analytics”. This plug-in re-
quires an event log in XES [3] format and a labeled free-choice workflow net as its
input. Furthermore, an alignment between the event log and the labeled free-choice
workflow net is pre-computed based on an alignment-based conformance checking
technique [5]. Figure 10.1 shows the snapshot of our tool, indicating the three main
components.

Before discussing the overview of the system, we provide an overview of a running
example used throughout this chapter. The event log used for analysis is a real-
life dataset from a diabetes treatment care process, provided by a Dutch hospital.
In order to better structure the diabetes treatment process [81], the hospital had
proposed and rolled-out six specialized modules as a part of its diabetes treatment
plan process. Each module can be viewed as a separate process, each consisting of
a series of appointments, some of which may be skipped and some of which may
occur in any order. Table 10.1 shows a snapshot of the event log. The event log
contains data of over 2.5 years, and involves almost 300 cases (patients). Rather
than splitting the event log into sublogs corresponding to each module type, we use
the complete event log and used the interactive approach proposed in Chapter 7 to
discover a process model, containing all the modules together.

We begin by discussing the process view, followed by the graph view. We discuss
and show the usage of the configuration view in Section 10.1.2, in order to perform
interactive compliance analysis, root-cause analysis and concept drift analysis.
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10.1.1 Process View

In this section, we describe the first part of the interface, the so-called process view.
As the name suggests, the process view is used to visualize the labeled free-choice
workflow net. Furthermore, the labeled free-choice workflow net is projected with
information from the event log, based on the outcome of the conformance analysis.
In essence, the information projected could result in three types of helicopter views on
the process. The user can switch between these three types using the radio-buttons,
as shown in Figure 10.2. We now discuss each type of the helicopter view in detail.

Frequency View

Frequency view allows the user to get an overview of the actual occurrence frequen-
cies of the overall process (for example, Figure 10.3). The frequencies of occurrence
of an activity are obtained from the alignments projected on the process model. The
frequency view encodes the frequency of occurrence of activities in the shades of
blue, as projected on the synchronous moves in the alignments. Darker blue and
lighter blue colors represent extremely frequent activities and infrequent activities
respectively.

The user can easily identify the common and uncommon activities or fragments
in the process, based on the background color of the activities in the process model.
The following options are available to configure the view on frequencies, which can
be chosen using the left-most drop-down menu shown in Figure 10.2.

• Absolute View: Calculates the frequencies, based on the absolute numbers.

Figure 10.1: A snapshot of our interface. The top-most panel is dedicated to the process views.
The user can directly interact with the process model. The visualizations (called
graph view), in the bottom-most panel, are triggered by user interaction based on
the configuration settings present in the panel on the right-hand side.
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Figure 10.2: Radio-buttons for choosing helicopter views. The drop-down menu (left-side)
becomes activated upon selecting frequency view.

For example, the color of an activity is determined by the absolute number of
synchronous moves. The activity with most number of synchronous moves is
colored the darkest. This view is similar to the default view of the inductive
visual miner [111].

• Average Occurrence per Case View: Calculates the frequencies, based on the
average occurrences per case. The color of the activity is determined by the
number of times the activity has a synchronous move in a case, normalized over
the event log. Hence, in case of a loop, if the activity has many synchronous
moves within a trace, for many cases in the event log, then this activity would
be colored the darkest. Similarly, if an activity has no synchronous moves (i.e.,
no corresponding event in the event log), then it would be colored the lightest.

• Number of Cases: Calculates the frequencies based on the number of cases for
which the synchronous move occurred. The color of an activity is determined
by the ratio of the number of cases for which synchronous moves occurred over
the total number of cases in the event log.

Figure 10.3: An example of frequency view of the process model. The more frequent activities
could be easily visualized in the model.
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Synchronous-Model-Log Moves View

The synchronous-model-log moves view is derived based on the synchronous and mo-
del moves, along with the log moves in the process model. This view represents the
fitness of the event log and the process model. The activities are colored in the shades
of green. The actual color of an activity is dependent on the ratio of:

#Synchr onous moves

#Model Moves +#Synchr onous moves +#Log moves

Hence, a darker shade of green for an activity in a model implies that the particular
activity had more synchronous moves than model moves, i.e., it is described very well
according to the model. The process view in Figure 10.1 shows an example of the
synchronous-model-log moves view.

Performance View

The performance view allows the user to investigate the stages of the process where
bottlenecks occur, or where there is room for improvement. In the performance view,
the activities are colored in shades of red. The shade depends on the execution time
between the immediate previous synchronous activity and the current synchronous
activity for every case. A darker shade of red implies that the corresponding activity
was executed after a long delay since the completion of the previous activity.

10.1.2 Graph View

Figure 10.4: Settings for
configuring the
content of the
graph view.

In this section, we discuss the so-called graph view. This
view is represented in the bottom-half of the snapshot of
the tool shown in Figure 10.1. The contents of the graph
view are based on the settings made, through the right-
most panel of the tool as shown in Figure 10.1. The event
data can be visualized in terms of stacked area charts and
stacked bar charts, chosen via the Chart Type drop-down
menu in the settings menu, as shown in Figure 10.4. We
chose this representation because it makes comparisons
more natural for the user and allows rapid discovery of
outliers. We now discuss the contents of the settings pa-
nel, in order to obtain different graph views.

The X-axis (domain axis) of the graph view typically
describes the time distribution and the Y-axis describes
the frequency of occurrence. The X-axis can be sorted
and configured using the Process View drop-down menu of
the Chart Display settings panel as shown in Figure 10.4.
Process View contains three choices, (i) Case Start, where
the distribution of events is plotted in comparison to the start of a case, i.e., the first
event of a case, (ii) Normal, where the distribution of events is plotted in comparison
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Figure 10.5: Graph view to compare the distribution of activities with respect to a selected
activity. A single activity from the process view is chosen by the user as the base
activity, followed by a number of activities which should be compared with the
base activity. The histogram shows the time distribution and the number of times
the selected activities to be compared occur, before or after the base activity. The
color of each bar in the histogram corresponds to each selected activity from the
process, except the base activity. It should be noted that the base activity always
occurs at time 0 and is not shown in the histogram view.

to the first event in the event log, (iii) Activity, where the distribution of events is
plotted in comparison to the occurrence of an activity selected in the process model
by the user.

Furthermore, it is possible to abstract the absolute timescale into categories such
as: the day of the week when the event occurred, or the month of the year when
the event occurred etc. using the Time View drop-down menu from the Chart Display
panel as shown in Figure 10.4.

The X-axis of the graph view represents the configurable absolute or relative ti-
mescales for the user. The Y-axis, i.e., the frequency axis is also configurable. The
user can choose from plotting only synchronous moves, only log moves, or both the
synchronous and log moves from the alignment. Viewing both synchronous and log
moves essentially shows the information from the complete event log. This choice
is configurable using the Data to Consider drop-down menu from the Chart Display
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panel as shown in Figure 10.4. In the next sections, we show how these settings could
be configured in order to interactively address the enhancement tasks of performing
compliance analysis, root-cause analysis and concept drift analysis.

10.1.3 Compliance Analysis

In this section, we discuss how we can perform generic compliance analysis using
the interactive capabilities of the system to detect possible compliance issues that
might exist in the process. For more sophisticated compliance analysis, we refer to
specific techniques by [104, 137]. The performance view allows the user to easily
investigate the overall time between activities and/or where the bottlenecks may be
in the process. However, there could be some time-critical KPI analysis that the user
might be interested in. For example, a certain activity ‘B’ should be performed within
x-hours after executing an activity ‘A’. The user can select the activity ‘A’, and activity
‘B’ (among others if needed), to visualize the time span of occurrence distributions of
‘B’ with respect to ‘A’.

Figure 10.5 shows an example of performing such type of conformance analysis.
The chosen activity (i.e., the appointment code ZZIPV13), should ideally be comple-
ted within 9-10 weeks after the appointment ZZIPV11. Similarly, the appointment
ZZIPV14 should also be completed within 9-10 weeks after completion of the ap-
pointment ZZIPV13. Clearly, both these protocols are followed in reality according to
the event log, as shown in Figure 10.5.

10.1.4 Root-cause analysis

The Synchronous-model-log moves view provides a good overview of how well the data
and model fit, and where the possible deviations are located in the process. The next
step would be to investigate what causes deviations in the process. For example,
suppose that the conformance analysis indicates that a particular task is sometimes

Figure 10.6: The top-three-ranked attribute classifiers for the classification analysis based on
the answers to the question Were the personal goals met? The top-ranked attribute
classifier based on the ranking algorithm was zorgpad (i.e., module type).
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skipped (move on model) in the process. This could be explained by the attributes
associated with the case, for example, the resources performing the task.

Figure 10.7: Classify panel
to configure
the classifica-
tion options.

In order to investigate what or who causes deviati-
ons in the process, classification analysis is used. Tradi-
tionally, classification techniques in process mining con-
text are used to perform tasks such as abstracting event
logs, identifying bottlenecks, understanding and mo-
deling guards in data-aware process models, performing
correlation analysis, annotating and clustering cohorts by
splitting event logs into sublogs etc. [23, 51, 85, 135]. In
our approach, we use classification techniques from [97]
in order to perform root-cause analysis. In particular, we
support the use of pre-existing feature selection techni-
ques, which use data attribute values (either case-level
attributes or event-level attributes) in order to classify based on the desired output.
Furthermore, well-known ranking techniques are used to determine the rank of each
attribute based on the ability of an attribute to classify based on the desired output.
The classification settings are also present in the Settings panel. The user can select
the number of attributes n to be considered, and the type of classifier to be used in the
Classify panel, as shown in Figure 10.7. Based on this, the top-n ranked attributes are
shown to the user which best classify the desired output. The desired output could be
an activity from the process model, or a case-level attribute.

For our running example, at the end of each module, the patients are asked to fill
in a questionnaire, evaluating the patient-treatment plan, understanding and satis-
faction of the module. We consider one such question: Were the personal goals met?.

Figure 10.8: Zoomed in version showing responses for Yes and No, for the top ranked classifier
zorgpad (module type) based on the answer to the question Were the personal goals
met?.
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The possible outcomes of this question (Yes, No or NA) are modeled as the optional en-
ding activities the process model. Note that all the patients have at least one of these
values for this questions, and therefore at least one synchronous move for the three
optionally modeled activities. Next, we performed feature selection analysis with the
Information gain classifier, and synchronous moves to the answers to question (Yes,
No or NA) as the output, as shown in Table 10.1. The top-three ranked attributes
which best classify the output are shown in Figure 10.6. It is however important to
note that module overname is a basic module (to meet diabetic team members) and
hence the majority of the patients from such modules have not reached their goals
yet, thereby having the corresponding value of NA, as shown in Figure 10.6.

We selected the top-ranked attribute classifier, found to be the module type. For the
majority of patients, no value was recorded for this question (value of NA). However,
for the patients who did fill in the survey, one prominent outcome, as evident from
Figure 10.8 was that for the module Optimalisatie glucoseregulatie, almost twice the
amount of patients did not meet their goals fully. This suggests that another module
might have been more suitable or calls for improvement in the module to better
manage the patient expectation.

10.1.5 Concept-drift Analysis

Our tool also supports ways of exploring possible concept drift issues. For our running
example, by plotting the data for all the events, of all the modules, its easy to visualize
the patterns of changes in the types of module over time. The domain axis was
configured to indicate the Normal timescale (i.e., the absolute timescale starting from
the first event to the last event in the event log), represented in terms of months.

From Figure 10.9, it can be easily concluded that for the first few months (approx-
imately until 7 months), only one module existed, as all the activities within this time
span belong to the same module type. From Figure 10.9 it can also be seen that this
module still persisted over time, but was gradually replaced by the other modules.

One more interesting pattern that could be observed from Figure 10.9, is the de-
crease in the number of events towards the end of the timeline. A logical explanation
for this pattern could be that since the appointments (events) for modules are usually
scheduled in the future, a more distant future has fewer number of appointments.

10.2 Conclusion

In this chapter, we introduced techniques for enabling interactive process-oriented
data analysis. The proposed techniques build upon and bring together existing techni-
ques from process mining, data mining and visual analytics field, to enable interactive
process analysis. It supports exploratory analysis through different helicopter views on
the process. In contrast to existing approaches, it is highly interactive. Furthermore,
the tool supports possibilities to intuitively perform compliance analysis, root-cause
analysis and concept drift analysis.
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Figure 10.9: Graph showing the concept drift and changes among different modules in the
LUMC dataset. The colors in the graph correspond to an activity belonging to a
particular module. For the first 7 months, all the activities belonged to one module
type. There is a steep fall in the module usage towards year end and a peak in the
module usage in year 2.

As a part of future work, drill-down and roll-up analysis could be introduced,
to support more data-oriented tasks, by keeping the labeled free-choice workflow
nets at the core. The application of root-cause analysis could be further improved
by considering the combined impact of multiple attributes on the output variable for
classification, as currently we only considered one attribute at a time. Here, statistical
analysis would also be a beneficial addition.





Chapter 11

Conclusion

This chapter concludes the thesis. We begin by summarizing the main contributions
of this thesis (Section 11.1), followed by a reflection on the limitations (Section 11.2)
and a discussion on future research directions (Section 11.3).

11.1 Contributions

In this thesis, the focus has been on the intersection of the traditional human-driven
process modeling setting and data-driven process mining setting. With this as the aim,
we introduced four research goals, which provide techniques that enable human-in-
the-loop process mining, as shown in the overview in Figure 11.1.

11.1.1 Foundations

Before addressing the four goals of interactive process mining, we first discussed the
foundations that were required to enable these goals. In particular, we looked at Goal
2, i.e., interactive process discovery, and the subgoals as discussed in Section 1.4.2 of
Chapter 1. The first subgoal of Goal 2 required that the modeling notation used to
represent the process models should represent both the simple and complex structu-
ral constructs, such as sequences, choices, loops, concurrency, arbitrary choices and
non-block-structuredness. In order to address this subgoal, we chose the class of
free-choice workflow nets in our approach, as it could be used to represent broad
structural constructs. The second subgoal required a guarantee that any process mo-
del discovered by the user should be a sound process model. In order to address this,
we used the synthesis rules proposed in [58], in the context of free-choice workflow
nets.

In Chapter 3, we built upon the synthesis rules for free-choice nets [58] in order to
deduce synthesis rules for free-choice workflow nets. Furthermore, we showed that
the derived rules for free-choice workflow nets preserve soundness [168] property of
workflow nets, if we start with a sound atomic free-choice workflow net. We ended
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Chapter 3 by showing that even though the synthesis rules for free-choice workflow
nets could serve as the basis for a synthesis engine, it is inefficient to compute all the
applications synthesis rules for a free-choice workflow net in a brute-force way.

The brute-force technique proposed in Chapter 3 was inefficient and hence im-

Figure 11.1: Overview of the thesis.
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practical in an interactive setting [127]. In Chapter 4, we addressed the challenge
posed in Chapter 3 for computing all the possible applications of synthesis rules for
a free-choice workflow net in an efficient way. In particular, we proposed an in-
cremental way of computing synthesis rules. Starting with an atomic net, and an
intermediary structure, we proposed an approach to incrementally compute all the
possible applications of synthesis rules using the intermediary structure. The inter-
mediary structure could then be updated based on the synthesis rule used, in order to
obtain the information which could be used for computing all the applicable synthesis
rules corresponding to the newly synthesized net. Furthermore, we showed that the
approach for calculating the synthesis rules from the intermediary structure is cor-
rect, i.e., it is possible to correctly extract only possible applications of synthesis rules.
Moreover, we also showed that the approach is complete, i.e., by using the approach
it is possible to deduce any possible sound free-choice workflow net starting with an
atomic net by using the synthesis rules derived from the intermediary structures.

11.1.2 Interactive Process Modeling

The foundations discussed in Chapter 3 and Chapter 4 resulted in a synthesis engine,
which could be used to synthesize any sound free-choice workflow net. The next
subgoal of interactive process modeling/discovery, dealt with building an interactive
editing engine which allowed editing of process models in an incremental and structu-
red manner [43]. In Chapter 5, we first introduced the concept of labeled free-choice
workflow nets in order to label the transitions from the free-choice workflow nets with
activity names. Next, we proposed a way to use the synthesis rules (from the synthesis
engine), in order to interactively construct a labeled free-choice workflow net, star-
ting from the initial atomic net, thereby addressing the subgoal of incremental and
structured editing of process models. The next subgoal required a way to extract and
present the information from the event logs to the user for better decision-making.
We used an approach similar to the one used by some of the automated process dis-
covery techniques by abstracting the event log information, and presenting it to the
user in raw format, as well as by projecting it on the labeled free-choice workflow net
based on the activity selected. The proposed approach was evaluated using a case
study and an objective evaluation based on the process discovery contest.

In Chapter 6, we discussed strategies to support the subgoal of conformance ana-
lysis. The idea here was to improve the data support for providing the users with an
intuition about the impact of a change made to a process model, by providing active
conformance support. As the traditional conformance approaches were deemed too
slow in certain scenarios, we came up with a technique to compute approximated con-
formance scores in a fast-enough way, that is suitable in an interactive setting. Thus,
the user is provided with an indication about an impact of a change made to a process
model. The proposed conformance technique was evaluated against multiple real-life
event logs to show the effectiveness, both in terms of speed and accuracy, compared
to the state-of-the-art conformance analysis techniques.

In Chapter 7, we moved towards automating process modeling tasks on behalf of
the user, i.e., semi-automated process discovery. This chapter mainly addressed the
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subgoal of providing recommendations to the user. The main challenge here was to
provide meaningful recommendations but in fast-enough way, acceptable in an in-
teractive setting [127]. The proposed technique uses some pre-existing patterns to
automatically provide recommendations for positioning of activities within a process
model. The recommendations are ranked based on the conformance results intro-
duced in Chapter 6. Moreover, the process model is changed minimally in order to
display the positioning of the newly added activity. The user could thus decide on
the desired level of complexity, and could incrementally and interactively discover
process models. The proposed technique was evaluated via a user study.

11.1.3 Interactive Event Log Repair

In Chapter 8, we provided a one-stop solution to infuse user knowledge to correct
data quality issues in the event log. Since the timestamp is central to all process
mining analysis, we focused only on the ordering-related issues in the event log.
We first identified three subgoals vital for enabling interactive event log repair, in a
process mining setting, discussed in Section 1.4.1 of Chapter 1. The first subgoal
dealt with identifying the possible issues in the event log. As the main aim is to repair
the event log, we provided some automated techniques to detect possible ordering-
related issues in the event log. The second subgoal was to interactively repair the
event log. Since it is ideal to repair many instances of incorrect events at once, rather
than on a case-by-base basis, we proposed a process fragments based approach for
performing the event log repair. The process fragments were constructed based on
the editor from Chapter 5. The third subgoal was concerned with providing an impact
of the changes in the original (before repair) and the repaired event log. In order
to address this, we calculated and presented the user with several statistics. The
proposed techniques were evaluated using two real-life event logs.

11.1.4 Interactive Process Model Repair

In Chapter 9, we provided two approaches to interactively repair a pre-existing pro-
cess model using the inputs from an event log, guided by the user. This relates to
Goal 3 (Section 1.4.3) from Chapter 1. We first identified two ways in which user
knowledge could be included in the process model, i.e., implicit or explicit. Hence,
we proposed two approaches, to support both the ways sufficiently. The first approach
used Chapter 5 and Chapter 6 as the basis in order to enable the user to interactively
edit/repair a process model. In such cases, the domain knowledge would be impli-
citly considered by the user. The second approach allowed the user to specify domain
knowledge in terms of certain constraints. The user-specified constraints were then
combined with the information from the event log in order to genetically generate
multiple process models for the user to choose from.
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11.1.5 Interactive Process Analytics

Chapter 10 is essentially a tool paper, which combines the works of Chapter 3–
Chapter 9, to interactively explore the execution of process in reality, by combining
visual analytics with process mining. We proposed a system to interactively explore
any conformance and/or performance issues in the process, in order to analyze the
health of the process.

11.2 Limitations and Open Issues

We have provided techniques to enable interactive process mining at various levels.
In this section, we discuss the main limitations of the proposed techniques and some
of the open issues.

11.2.1 Representational Bias

One of the primary contributions of this thesis is enabling interactive process mo-
deling/discovery. The synthesis rules used in the background guarantee that the user
stays inside the realm of sound labeled free-choice workflow nets, and it is possible to
discover any sound labeled free-choice workflow net starting with an atomic labeled
free-choice workflow net. However, the sequence in which activities are added to the
process model is extremely important. As the user is allowed to edit a process model
in a certain way (guided by the synthesis rules), prior decisions made during process
modeling could limit the construction of desired process models. That is, the decisi-
ons made in the past could severely restrict the possible process models discoverable
in the future using the synthesis rules. A workaround this could be to go back and
then forward again, i.e., use a combination of the reduction rules and the synthesis
rules.

Next, only one activity can be added at a time to a process model. Moreover,
complex constructs such as hierarchical process models are not supported by the tool.
Another point of concern is that the synthesis rules used can only deduce free-choice
constructs. Thereby, long-term dependencies that can be modeled easily using non-
free-choice constructs can only be modeled by using duplicate activities in the process
model. Having multiple occurrences of the same activity in the process model would
increase the number of nodes in the graph, and hence eventually make the process
model more complicated. A way to deal with this could be to post-process a free-
choice net, to model the long-term dependencies as soft constrains.

11.2.2 Limited Data Usage

For the interactive process modeling/discovery, the user is supported with data from
the event logs concerning the control-flow aspect only. However, the user may also
be interested in using other data attributes while making decisions during the phase
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of process modeling/discovery. Other data attributes are currently not supported in
data projection and conformance analysis proposed in Chapter 5 and Chapter 6.

Similarly, for the goal of interactive event log repair, only part of the data is con-
sidered. The proposed approach focuses only on a single aspect, i.e., correcting the
ordering of events in the event log. This mainly deals with the timestamps of events
in the event log. However, as has been noted in the literature [151, 163], there are
many more data quality issues that may exist in the event log, which are not necessa-
rily ordering-related.

11.2.3 Lack of Guarantees

The recommendations proposed for semi-automated process discovery in Chapter 7
allow the users to switch between automated and manual process discovery. Howe-
ver, the automated component is constrained by some predefined patterns that are
used to construct process models. These patterns are not complete, and do not give
any guarantees with regards to the search space explored. Moreover, when multiple
process models have similar conformance scores, it could be difficult to analyze the
differences in the process models by merely looking at the conformance scores.

The proposed conformance framework is clearly beneficial in an interactive set-
ting over traditional conformance analysis, especially in terms of computation times.
However, as already indicated in Chapter 6, one of the primary limitations of the
proposed approach is that it cannot distinguish the duplicate occurrences of activities
in the process model. Thereby, when an activity is repeated in a process model, it is
impossible to detect if a certain instance of activity in the process model is more con-
forming than the other. Clearly, such insights would be beneficial in providing local
diagnostics. Moreover, duplicate activities can also lead to computation of incorrect
fitness and precision scores, and hence give incorrect diagnostics.

11.2.4 Lack of User Evaluation

One of the more generic, yet prominent limitations, throughout this thesis is the lack
of extensive user evaluations. As the thesis discusses techniques for adding interactive
capabilities in process mining scenarios, it seems natural to perform thorough user
evaluations. To this end, we have only performed a user study in Chapter 7 which
uses an informal interview based approach at analyzing and detailing user behavior.
However, since the number of users was limited to three users, we did not perform
any statistical analysis.

11.3 Future Directions

In this section, we discuss some of the most promising future research ideas, based
on the works presented in this thesis.
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11.3.1 Improve Process Editing Engine

Since the approach proposed for interactive process modeling/discovery uses synthe-
sis rules for free-choice nets as the basis, it has a limited expressiveness. Moreover,
the usage of synthesis rules as a process modeling engine may result in scenarios
where the user can no longer discover certain structures, due to some of the prior
decisions made during process modeling. The workaround of going back and coming
forward using a combination of reduction rules and synthesis rules could do the trick.
However, this may be inconvenient, especially when the process model is large, and
it is needed to navigate back to the initial few synthesis steps. Therefore, it would be
ideal to build an engine that allows the construction of a broader class of process mo-
dels, i.e., not restricted to free-choice constructs, while guaranteeing properties such
as soundness. It is also imperative that the process editing engine also allows flexibi-
lity for the user to deduce any structure of the process model, from any given process
model. Moreover, the process engine should also enable adding multiple activities at
once and/or constructing hierarchical process models.

11.3.2 Enhance Data Usage

An event log contains a lot of information, in addition to the control-flow perspective.
Many times, the additional information may be useful to the user while modeling
process models. Hence, one future direction could be to combine and present addi-
tional information about event-level and case-level attributes, during the process of
interactive process discovery/repair. Another future direction could be to repair the
non-ordering related data quality issues in the event log. Therefore, it would be desi-
rable to come up with techniques that enable interactive repair of event logs beyond
timestamp ordering of events, for example, re-naming activities, abstracting activities
and so on.

11.3.3 Improve Support

As noted in Chapter 6, using the current conformance analysis, it is not possible to
distinguish between duplicate occurrences of activities in the process model. Hence,
one future direction could be to address this in order to provide a more accurate
localized indication when duplicates are present in the process model. Another future
direction with regards to conformance could be to allow the users to specify certain
constraints/rules that should hold in the process model. Thereby, active conformance
analysis could be performed based on the pre-specified rules as well as the event log
corresponding to the process that is being modeled interactively.

Another future direction could be to improve the recommendation support for as-
sisting in semi-automated process discovery. Currently, the patterns used for deducing
process models are not complete. Hence in the future, it would be ideal to provide
a robust recommendation engine, that can provide guarantees regarding the class of
discoverable models. Moreover, it would also be ideal to come up with additional
metrics, other than fitness and precision values, that provide better intuition about
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different recommendations in order to differentiate similarly ranked recommendati-
ons.

11.3.4 Getting User Feedback

The goal of the proposed interactive process mining techniques is to gain insights,
for example, by discovering a graphical process model from an event log. However,
defining and measuring insights is a challenging task which requires consideration
of various parameters [132]. For example, in the BPM discipline there are multiple
notations possible for representing process models. Hence users preferences for a
particular notation can easily interfere while evaluating the interactivity in interactive
process mining. In general, in this thesis, we primarily evaluated the advantages that
interactivity brings when we have an expert user in the loop, compared to automated
process mining techniques, in an objective way. Therefore, in the future, it would
be interesting to explore different subjective parameters that affect interactivity, from
different perspectives. The feedback could then be used to evolve and improve the
proposed techniques.

11.3.5 Use Different Modeling Notations

In this thesis, we used free-choice workflow nets in combination with synthesis rules,
in order to represent the process models. The motivation for choosing free-choice
workflow nets and its advantages has already been discussed. However, in the future,
it could also be ideal to use some other process modeling notations. For example,
process trees are sound by construction, and can also discover many structural repre-
sentations that a free-choice workflow net can. Clearly, there are notable differences
between using process trees as the modeling notation and free-choice workflow nets
with synthesis rules as the modeling notation in an interactive setting. For example, it
would be possible to remove multiple nodes at once, by removing the root node from
the process tree. However, in a free-choice workflow net, only a single place and/or
a single transition could be removed (using the reduction rules). Hence, it could be
ideal to use other modeling notations, such as process trees, in an interactive edi-
ting system, and compare the approaches. However, it should be noted that, some of
the limitations of free-choice workflow nets, such as difficulty in handling long-term
dependencies, also applies to process trees.

11.3.6 Online Setting

The techniques proposed in this thesis focused on enabling interactive process mining.
However, the proposed techniques could easily be extended to other areas, such as
online process mining. In such settings, an event log is not available beforehand.
Instead, streams of events are made available, as they happen in reality. The amount
of data generated could be too high to be stored locally. We could adapt some of the
techniques proposed in this thesis to be applicable in an online setting. For example,
consider the approach proposed for computing conformance in Chapter 6. If we have
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a preexisting process model in an online setting, then the roles would be reversed.
That is, in Chapter 6, we assumed that an event log remains the same, and the process
model is changing. However, in an online setting, the process model would remain
the same, and the event log would keep changing. Hence, we could compute new
footprint patterns based on the incoming events, and compute the conformance on-
the-go.

11.3.7 Robotic Process Automation

Another possible future direction could be to use interactive process mining appro-
aches proposed in this thesis, in order to assist the deployment of Robotic Process
Automation (RPA). In a nutshell, RPA allows automated execution of process orien-
ted tasks, based on a pre-defined configuration by the user. In order to deploy an RPA
solution, to automate a process, it is first necessary to know what goes on in the pro-
cess. The interactive process discovery approach, presented in Chapter 5–Chapter 7,
could thus be used in order to discover the process that needs to be automated. Furt-
hermore, the process analytics system, proposed in Chapter 10, could be used to
understand and improve the possible limitations of the process.

11.3.8 Assist Automated Process Discovery

Another generic future direction could be, to combine the approaches proposed in
this thesis, with some preexisting automated process discovery techniques. For exam-
ple, the conformance checking algorithm proposed in Chapter 6, is built around the
assumption that the event log remains the same, while the process model changes.
Genetic process discovery approaches have a similar setting. These techniques create
hundreds of process models in each generation. Each of these process models have
to be evaluated against the event log in order to get the conformance score of the
process model. Since the event log is unchanged, we could also use the approach
proposed in Chapter 6 to compute conformance scores in an efficient way in a genetic
process discovery setting. Similarly, the constraints-based repair technique proposed
in Chapter 9, could also be extended to other automated process discovery settings,
for example the ILP miner. Pre-specifying the domain knowledge as constraints could
assist the automated process discovery techniques in discovering better process mo-
dels.
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Summary

Interactive Process Mining
A process is a series of actions performed in order to achieve a particular task or

goal. Processes are omnipresent, for example, a manufacturing process which deals
with the production of some goods, a loan application process in a bank, a hospital
visit of a patient. The human understanding of these processes is usually facilita-
ted by representing them as intuitive graphical models. Typically a domain expert,
who has a high level overview of the end-to-end execution of a process, constructs
the expected process model. Since these modeling notations offer intuitive visualiza-
tion of processes, the resulting models have proved to be valuable artifacts to enable
communication of complex knowledge in a comprehensible way across people from
dissimilar backgrounds. The process model as described by a domain expert is the
best guess, of how a process acts, or should act. However, reality may not always
conform to this expected behavior of the process.

The execution histories of processes, called event logs, can be easily extracted
from the corresponding information systems. These event logs provide a view on
the execution of processes in reality and can thus be used to discover process models
when the process model is unknown, or to analyze the behavior of the process in
reality. This branch of science which uses event logs to analyze the process behavior
is known as process mining.

Process modeling and process mining are typically on the extreme ends of a
spectrum. On one end, we have the process mining techniques, which analyze event
logs in order to automatically deduce insights, for example discovering process mo-
dels. The user has very little influence when using such techniques, and usually, it
is not possible to incorporate the domain knowledge during process mining. On the
other end, we have the traditional process modeling tools which are completely user
driven and use no historical evidence from the event logs during process modeling. In
the manual process modeling scenario, the user may miss out on important real-life
execution information that may be present in the event logs. Whereas the automated
process mining techniques may produce results which may be inaccurate and incom-
prehensible due to noisy and/or incomplete event logs.

In this thesis, we addressed this gap between the traditional human-driven process
modeling world, with the data-driven process mining world, by developing techniques
that enable interactive process mining. We identified and addressed four research
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goals:

• Interactive event log repair: Addressed the issue of repairing the source of pro-
cess mining analysis, i.e., the event log, with available domain knowledge of an
informed user.

• Interactive process model construction: Addressed the issue of modeling/disco-
vering process models interactively by using both information derived from the
event log and the expertise of a user. Techniques were developed to assist the
user in decision-making by

– providing fast conformance analysis between the event log and the process
being modeled.

– providing recommendations to enable semi-automated process discovery
by combining automated and interactive approaches for process modeling.

Furthermore, we provided formal guarantees for the resulting process model.
To ensure the soundness of the constructed process model, we used liveness and
boundedness preserving synthesis rules for free-choice Petri nets.

• Interactive process model repair: Addressed the issue of interactively repairing
a pre-existing process model by using the domain knowledge and information
derived from the event log.

• Interactive process analytics: Addressed the issue of interactively exploring real-
life execution of a process based on the process model and the event log, in
order to evaluate the possible compliance and performance oriented issues.

The proposed techniques were implemented and evaluated using several real-life
scenarios with real event data and/or process experts.
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