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Samenvatting

Organisaties worden vandaag de dag geconfronteerd met een schijnbare tegenstel-
ling. Hoewel ze aan de ene kant veel geld gëınvesteerd hebben in de automatisering
van hun bedrijfsprocessen, lijken ze hierdoor minder in staat om een goed inzicht
te krijgen in de effectiviteit, efficiëntie, flexibiliteit, en conformiteit van deze pro-
cessen. Deze paradox kan verklaard worden door een toename in schaalgrootte
en complexiteit, die de samenwerking van steeds meer mensen vereist, mogelijks
op verschillende plaatsen en tijdstippen. Informatiesystemen kunnen dergelijke
bedrijfsprocessen automatiseren door de complexe coördinatietaken van bedrijfs-
processen te verbergen met metaforen zoals databanken, formulieren, document-
stromen, en taakvakken. Het voordeel van deze organizatie van het werk is dat
individuele actoren enkel die aspecten van bedrijfsprocessen moeten kennen die
relevant zijn voor hun rol in de organisatie. De keerzijde van automatisering is
dat organisaties hierdoor echter ook onvoldoende inzicht hebben in het volledige
bedrijfsproces. Samen met de complexiteit verbergen informatiesystemen immers
ook een hoop nuttige informatie.

Een gebrekkig inzicht in de bedrijfsprocessen bedreigt hun flexibiliteit en con-
formiteit. Flexibiliteit is belangrijk, omdat organisaties door continu wijzigende
marktomstandigheden gedwongen worden hun bedrijfsprocessen snel en soepel
aan te passen. Daarnaast moeten organisaties ook kunnen garanderen dan hun
bedrijfsvoering conform is aan de wetten, richtlijnen, en normen die hun zowel
extern als intern opgelegd worden. Zonder voldoende inzicht te hebben in de
onderliggende bedrijfsprocessen, kunnen organisaties zeer moeilijk de impact van
wijzigingen inschatten. Deze onwetendheid beperkt vaak onnodig de flexibiliteit.
Voorts is het zo dat organisaties met onvoldoende inzicht in de eigen processen,
geen enkele garantie kunnen bieden dat hun bedrijfsvoering conform is aan het
geldende beleid en regelgeving.

Schandalen zoals de recent aan het licht gekomen fraude bij de Franse bank
Société Générale tonen het belang aan van conformiteit en flexibiliteit. Door



xii Samenvatting

het afleveren van valse bewijsstukken en het omzeilen van vaste controlemomen-
ten, kon één effectenhandelaar een risicoloze arbitragehandel op prijsverschillen
in futures omtoveren tot een risicovolle, speculatieve handel in deze financiële de-
rivaten. Dit leidde tot een verlies van 4,9 miljard euro; het grootste verlies dat
door een effectenhandelaar berokkend werd aan zijn werkgever. De niet-ingedekte,
niet-geautoriseerde posities bleven lange tijd verborgen door een gebrekkige in-
terne controle, en tekortkomingen in de IT beveiliging en toegangscontrole. Om
hieraan te verhelpen, is het in de eerste plaats noodzakelijk om inzicht te ver-
krijgen in de operationele processen van de front office, middle office en back
office en de hieraan gerelateerde controleprocessen. Dit wordt aangegeven in een
actieplan dat auditor PricewaterhouseCoopers voor de bank opmaakte (Pricewa-
terhouseCoopers, 2008).

Inzicht krijgen in bedrijfsprocessen

In deze tekst behandelen we twee benaderingen die gebruikt kunnen worden om
het inzicht in de bedrijfsprocessen te verhogen: procesmodellering – process mo-
deling – en procesontginning – process mining. Procesmodellering is de manuele
constructie van een formeel model dat een relevant aspect van een bedrijfsproces
beschrijft op basis van informatie die grotendeels verworven is uit interviews. Pro-
cesontginning, daarentegen, is de automatische constructie van een procesmodel
op basis van de zogenaamde event logs uit informatiesystemen. In het onderzoek
is getracht technieken te ontwikkelen voor procesmodellering en procesontginning
die declaratief zijn.

Declaratieve Processmodellering

Procesmodellen moeten adequate informatie te verschaffen over de bedrijfspro-
cessen om zinvol te kunnen worden gebruikt bij hun ontwerp, implementatie,
uitvoering, en analyse. Declaratieve procestalen, zoals gëıntroduceerd door Pesic
and van der Aalst (2006), bevatten deze informatie omdat ze de onderliggende
bekommernissen die bedrijfsprocessen bëınvloeden, expliciet kunnen weergeven.
We argumenteren dat een expliciet bewustzijn van deze bekommernissen toelaat
om flexibiliteit en conformiteit van elkaar af te wegen, zowel tijdens het ontwerp
als tijdens de uitvoering van bedrijfsprocessen.

In de tekst karakteriseren en motiveren we declaratieve procesmodellerings-
technieken, en nemen we een aantal bestaande technieken onder de loep. Uit een
literatuurstudie concluderen we dat er reeds vele talen voor declaratieve proces-
modellering bestaan. De tekst introduceert daarom een veralgemenend raamwerk
voor declaratieve procesmodellering raamwerk waarbinnen deze bestaande talen
gepositioneerd kunnen worden. Dit raamwerk heet het EM-BrA2CE raamwerk,
en staat voor ‘Enterprise Modeling using Business Rules, Agents, Activities, Con-
cepts and Events’. Het bestaat uit een formele ontolgie en een formeel uitvoerings-
model, dat gebruikt kan worden als een informele taal voor het documenteren van



Samenvatting xiii

vele bedrijfsbekommernissen rond bedrijfsprocessen, en als een ontologische basis
om bestaande en nieuwe talen voor declaratieve procesmodellering te vergelijken
en te ontwikkelen. De formele ontolgie van de taal is gedefinieerd als uitbreiding
op de nieuwe Semantics for Business Vocabulary and Business Rules (SBVR)
specificatie (Object Management Group, 2008). Het formele uitvoeringsmodel is
gedefinieerd in termen van een Colored Petri Net. Als proof-of-concept van het
uitvoeringsmodel, werden twee declaratieve simulatiemodellen gëımplementeerd.
De publicaties over deze onderwerpen zijn:

Goedertier, S. and Vanthienen, J. (2007b). A vocabulary and execution model
for declarative service orchestration. In ter Hofstede, A. H. M., Benatallah,
B., and Paik, H.-Y., editors, Proceedings of the 2nd Workshop on Advances
in Semantics for Web services (semantics4ws’07), Business Process Ma-
nagement Workshops, volume 4928 of Lecture Notes in Computer Science,
pages 496–501. Springer

Goedertier, S. and Vanthienen, J. (2007a). Declarative process modeling with
business vocabulary and business rules. In Meersman, R., Tari, Z., and
Herrero, P., editors, OTM Workshops (1), volume 4805 of Lecture Notes in
Computer Science, pages 603–612. Springer

Het EM-BrA2CE raamwerk legt het ontologische fundament van de technie-
ken die in de verdere hoofdstukken van de tekst aan bod komen. Meer bepaald
wordt een taal besproken voor het modelleren van de vervaldagen op rechten en
plichten die ontstaan tussen de agenten in een bedrijfsproces. Deze taal heeft een
logische grondslag in de event calculus, maar zijn vocabulaire en uitvoeringsmodel
kan gesitueerd worden binnen het EM-BrA2CE raamwerk. Voor deze taal wordt
een techniek aangegeven om deze regels te visualiseren in de Business Process
Modeling Notation (BPMN). Voorts wordt ook ingegaan op een techniek voor
het modelleren van rol-gebaseerde regels voor toegangscontrole. De publicaties
over deze onderwerpen zijn ondermeer:

Goedertier, S. and Vanthienen, J. (2006d). Designing compliant business proces-
ses with obligations and permissions. In Eder, J. and Dustdar, S., editors,
Business Process Management Workshops, volume 4103 of Lecture Notes
in Computer Science, pages 5–14. Springer

Goedertier, S., Mues, C., and Vanthienen, J. (2007d). Specifying process-aware
access control rules in SBVR. In Paschke, A. and Biletskiy, Y., editors, Pro-
ceedings of the International Symposium Advances in Rule Interchange and
Applications (RuleML 2007), volume 4824 of Lecture Notes in Computer
Science, pages 39–52. Springer. (Best Paper Award)

Declaratieve Processontgining

Niet alle informatie over bedrijfsprocessen kan vergaard worden uit interviews en
bestaande documentatie. Factoren als procesautomatisering, en personeelsverloop
kunnen maken dat deze kwalitatieve bronnen van informatie inadequaat en zelfs
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inaccuraat worden. Procesmodellen leggen in wezen vast hoe de bedrijfsprocessen
er zouden moeten uitzien, maar zeggen niet met zekerheid hoe ze in werkelijkheid
plaatsvinden.

Procesontginning, of process mining, is een nieuwe, kwantitatieve manier om
na te gaan hoe de bedrijfsprocessen in werkelijkheid verlopen. Hiertoe wordt een
analyse gemaakt van de event logs van informatiesystemen. Onderstaande figuur
geeft de levenscyclus aan die verbonden is met de analyse van event logs. Vandaag
de dag worden heel wat processen door informatiesystemen in event logs geregi-
streerd. In event logs vindt men in chronologische volgorde terug wie, wanneer,
welke activiteit verricht heeft. De analyse van event logs kan een accuraat beeld
opleveren van wat er zich in werkelijkheid afspeelt binnen een organisatie. Meer
bepaald kunnen event logs gebruikt worden voor het aanvullen van bestaande
procesmodellen met additionele informatie (extensie en performantieanalyse), en
conformiteit (conformiteitsanalyse) van de bedrijfsprocessen, en voor het in kaart
brengen van bedrijfsprocessen door de geautomatiseerde constructie van proces-
modellen (ontdekkingsgebaseerde procesontginning of process discovery).

De levenscyclus van process mining (van der Aalst, 2007)

In dit doctoraat komen in de eerste plaats declaratieve technieken aan bod
voor ontdekkingsgedreven procesontginning of process discovery. Het resultaat
van deze analyse zijn formele procesmodellen. Om bruikbaar te zijn, moeten deze
procesmodellen voldoen aan criteria zoals accuraatheid, verstaanbaarheid, en jus-
tifieerbaarheid. Accuraatheid verwijst naar de mate waarin het model het gedrag
in het event log correct weergeeft. Verstaanbaarheid verwijst naar de mate waarin
eindgebruikers het ontdekte model overzichtelijk en begrijpbaar vinden. Justifi-
eerbaarheid verwijst naar de mate waarin het ontdekte model in overeenstemming
is met de voorkennis en wensen van de eindgebruiker.

Bestaande technieken voor procesontginning focussen vooral op het eerste cri-
terium: accuraatheid. Declaratieve technieken voor procesontginning richten zich
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ook op de verstaanbaarheid en justifieerbaarheid van de ontgonnen modellen.
Declaratieve technieken voor procesontginning zijn meer verstaanbaar omdat ze
pogen procesmodellen voor te stellen aan de hand van declaratieve voorstellings-
vormen. Daarenboven verhogen declaratieve technieken de justifieerbaarheid van
de ontgonnen modellen. Dit komt omdat deze technieken toelaten de apriori
kennis, inductieve bias, en taal bias van een leeralgoritme in te stellen.

Inductief logisch programmeren (ILP) is een leertechniek die inherent decla-
ratief is. Ferreira and Ferreira (2006) tonen hoe ontdekkingsgedreven procesont-
ginning voorgesteld kan worden als een eerste-orde classificatieprobleem op event
logs aangevuld met negatieve events. Dergelijke negatieve events geven weer dat
een bepaalde statusovergang niet kon plaatsvinden. Wanneer we de transitiety-
pes binnen het EM-BrA2CE raamwerk beschouwen, kunnen vele process mining
taken voorgesteld worden als een dergelijk classificatieprobleem.

In de tekst focussen we op één process mining taak in het bijzonder: pro-
cess discovery ; dit is het in kaart brengen van de volgorde beperkingen op de
activiteiten in een bedrijfsproces. Vele event logs bevatten van nature geen ne-
gatieve events die aangeven dat een bepaalde activiteit niet kon plaatsvinden. In
principe kan process discovery daarom niet voorgesteld worden als een classifica-
tieprobleem dat onderscheid maakt tussen positieve en negatieve events en kan
de techniek van Ferreira and Ferreira (2006) niet toegepast worden. Om aan dit
probleem tegemoet te komen, beschrijven we een techniek om artificiële negatieve
events te genereren, genaamd AGNEs (process discovery by Artificially Generated
Negative Events). De generatie van artificiële negatieve events komt neer op een
configureerbare inductieve bias. De AGNEs techniek is gëımplementeerd als een
mining plugin in het ProM raamwerk.

De papers omtrent AGNEs zijn onder andere:

Goedertier, S., Martens, D., Baesens, B., Haesen, R., and Vanthienen, J. (2008a).
Process Mining as First-Order Classification Learning on Logs with Ne-
gative Events. In Proceedings of the 3rd Workshop on Business Processes
Intelligence (BPI’07), volume 4928 of Lecture Notes in Computer Science.
Springer

Goedertier, S., Martens, D., Vanthienen, J., and Baesens, B. (2008c). Robust
process discovery with artificial negative events. resubmitted for review to
the Journal of Machine Learning Research on September 1, 2008

Door process discovery voor te stellen als een eerste-orde classificatieprobleem
op event logs met artificiële negatieve events, kunnen de traditionele metrieken
voor het kwantificeren van specificiteit (specificity) en volledigheid (recall) toe-
gepast worden voor het kwantificeren van de specificiteit en volledigheid van een
procesmodel ten opzicht van een event log. In de tekst stellen we twee nieu-
we metrieken voor: rp

B (behavioral recall of positive events) and sn
B (behavioral

specificity of negative events).
Deze nieuwe metrieken, in combinatie met bestaande technieken, werden ge-

bruikt voor een uitgebreide evaluatie van de AGNEs techniek voor process dis-
covery in zowel een experimentele als een praktijkopstelling. De experimentele
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opstelling is evalueert de expressiviteit, robuustheid aan ruis, en de mate waarin
het algoritme in staat is om te veralgemenen op basis van onvolledige event logs.
Een benchmarkstudie van deze omvang is nog niet verschenen in de literatuur
rond process mining. De studie toont aan dat de AGNEs techniek expressief is,
robuust is aan ruis, en in staat om te gaan met onvolledige event logs. De prak-
tijkopstelling evalueert de schaalbaarheid van de AGNEs techniek met betrekking
tot grote event logs en de mate waarin de techniek omgaat met verscheidene as-
sumpties die traditioneel gemaakt worden door process discovery technieken. De
praktijkopstelling vond plaats op event logs die geregistreerd werden bij een Eu-
ropese telecomoperator. De resultaten van de praktijkopstelling wijzen uit dat
AGNEs schaalbaar en robuust blijft, ondanks het feit dat de verkregen event log
vele assumpties overtreedt die traditioneel gemaakt worden in het domein van
process discovery. Niettemin is de AGNEs techniek voor process discovery nog
steeds vatbaar voor vele verbeteringen. Deze en andere verbeteringen worden
aangegeven in de slotconclusie van de tekst.



CHAPTER 1

Introduction

Organizations currently face an information paradox: although they automate an
increasing number of their processes, they seem less capable of gaining insight into
the effectiveness, efficiency, flexibility, and compliance of these processes. This can
be explained by an increased scale and complexity of real-life processes, which in-
volve more people who collaborate at different working hours and locations. To
automate the coordination of such complex processes, organizations have grown to
rely on information systems. Information systems hide the complexity of coordi-
nating business processes with metaphors like databases, forms, document flows,
and work queues. The advantage of this organization of work, is that individuals
only need to know these aspects of processes that are relevant to their role in the
organization. The downside of automating business process coordination, is that
organizations are left with insufficient insight into the entire, end-to-end process.
Together with complexity, information systems also hide much useful information
about business processes.

A limited insight into business processes threatens their flexibility and confor-
mance. Flexibility is important, because continuously changing conditions force
organizations to rapidly and flexibly adapt their processes. Furthermore, organi-
zations are required to guarantee compliance to regulations and policies. With
insufficient insight into the underlying processes and their business concerns, man-
agers cannot assess the impact of changes, and unnecessarily limit process flex-
ibility. Furthermore, organizations that only have a limited understanding of
their own processes have no way of guaranteeing compliance to policies and reg-
ulations. A good understanding is vital for verifying and guaranteeing business
process compliance (Sadiq et al., 2007), setting up a coherent access control policy
(Sandhu et al., 1996), and optimizing and redesigning business processes (Mansar
and Reijers, 2005).
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1.1 Gaining Insight into Business Processes

In this text, we deal with two approaches that can be used to raise an organi-
zation’s understanding of its processes: business process modeling and business
process mining. Process modeling aims at manually constructing a process
model from information that is often obtained from interviews. Process min-
ing, in contrast, is the automated collection of useful knowledge from information
system event logs. Both process modeling and process mining are important tasks
in the multi-disciplinary field of business process management (BPM). BPM com-
prises many management tasks involving the design, implementation, enactment,
and evaluation of business processes (van der Aalst et al., 2003). These tasks
can be structured in a so-called BPM life cycle (van der Aalst et al., 2003; van
der Aalst and van Hee, 2002; zur Muehlen, 2004). Figure 1.1 situates process
modeling and process mining in such a multi-disciplinary BPM life cycle.

modeling


simulation


requirement

engineering


verification


capacity

planning


architecture


model-driven

development


change

management


execution


control


adaptation


task allocation


exception

handling


performance

analysis


compliance

analysis


process

mining


optimization


EVALUATION


ENACTMENT
 IMPLEMENTATION


DESIGN


execution

mechanism


deployment


process re-

engineering


monitoring


validation


Figure 1.1: Process modeling and mining in a multi-disciplinary BPM life cycle

Process Modeling

Traditionally, practitioners have been obtaining information about processes from
interviews and existing documentation. The obtained information gives practi-
tioners an idea about the business concerns that govern business processes. From
the obtained information process models are constructed. These process mod-
els are, among others, used for the purpose of simulation, verification, and the
implementation of automated process support in information systems. Process
modeling is a qualitative technique that can provide answers to business ques-
tions such as:
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p Compliance: What are the procedures that are required in order to be
compliant with regulations and policies? How do our employees say they
carry out these procedures?

p Performance optimization and process redesign: How do the current and
redesigned processes look like?

p Access control: Which access control policy is being used? Which access
rights can be revoked without interfering with people’s work?

The way business processes take place is determined by business concerns such as
policies, regulations, time constraints, and profitability concerns. However, when
modeling business processes, the underlying business concerns often remain im-
plicit. Without properly documenting and formally modeling the underlying busi-
ness concerns, it will, at a future time point, become difficult to make changes to
processes, both during business process enactment and business process redesign.

Process Mining

Not all information about business processes can be obtained from interviews,
and existing documentation. Due to factors like business process automation,
and personnel attrition these inherently qualitative sources of information risk to
become inadequate or even inaccurate. From interviews and documentation only,
organizations cannot really know how process actually take place.

A new and promising way of acquiring insight into business processes is the
analysis of the event logs of information systems. In many organizations, event
logs conceal an untapped reservoir of knowledge about the way employees and
customers conduct every-day business transactions. Event logs are ubiquitously
available in many organizations. Popular Enterprise Resource Planning (ERP)
systems such as SAP, Oracle e-Business Suite and workflow management systems
(WfMSs) such as ARIS, TIBCO and Microsoft Biztalk already keep track of such
event logs. Acquiring information from event logs is a new, quantitative technique
that can provide answers to business questions such as:

p Compliance: How do customers or employees actually use the information
system? Is the procedure that is used in practice in compliance with the
procedure that is imposed by management or external regulations?

p Performance optimization and process redesign: Which processes have an
above-average cycle time and where is the bottleneck situated? What are
the conditions that affect routing choices at different decision points in the
process model?

p Access control: Which users have access authorizations, but rarely make
use of them? For which users groups that previously were manually granted
authorizations, new authorization rules could be put in place?

Process modeling and mining are to a large extent complementary tasks. Process
models can be verified by comparing them to the recordings in event logs or to
discovered process models. In addition, a discovered process model can be of
invaluable input to process modeling.
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In order to be useful in practice, discovered process models must be accurate,
comprehensible, and justifiable. Accuracy refers to the extent to which the in-
duced model fits the behavior in the event log and can be generalized towards
unseen behavior. Comprehensibility refers to the extent to which an induced
model is comprehensible to end-users. Justifiability refers to the extent to which
an induced model is aligned with the existing domain knowledge.

1.2 Structure and Contributions

This section outlines the main contributions of this text regarding process mod-
eling and process mining.

Techniques for Declarative Process Modeling

We start in Chapter 2 from the aforementioned requirement of making business
process concerns explicit with declarative process modeling languages. In an
exploratory study, we have a look at the declarative modeling techniques in the
literature. The contributions of this chapter include:

p A motivation for declarative process modeling.

p A characterization of declarative and procedural process modeling languages.

p An overview of existing languages for declarative process modeling.

From the literature review, it is concluded that there already exist a large number
of declarative process modeling languages. Unfortunately, these languages each
model only one specific aspect of the many concerns that exist in reality. More-
over, these languages are based on heterogeneous process ontologies (vocabularies)
and make use of very different knowledge representation paradigms. To be able
to integrate, compare, and develop new languages for declarative process model-
ing, we define in Chapter 3 a framework with a unifying ontology and execution
model for declarative process modeling. This unifying framework is called called
the EM-BrA2CE Framework. The framework provides a formal vocabulary and
an execution model, but it is not a language and does not provide model verifica-
tion techniques, nor process visualization diagrams. Instead, it can be used both
as an expressive informal language for documenting business concerns, and as an
ontological foundation to compare and develop formal declarative languages. As a
proof-of-concept, two simulation models of declarative process models were built.
The contributions of this part include:

p A vocabulary for declarative process modeling, defined in terms of the new
Semantics for Business Vocabulary and Business Rules (SBVR) specification
(Object Management Group, 2008).

p An execution model for declarative process modeling.



1.2. Structure and Contributions 5

p Sixteen patterns of declarative process modeling.

p A proof-of-concept consisting of two simulation models.

The publications about this topic are:

Goedertier, S. and Vanthienen, J. (2007b). A vocabulary and execution model
for declarative service orchestration. In ter Hofstede, A. H. M., Benatallah,
B., and Paik, H.-Y., editors, Proceedings of the 2nd Workshop on Advances
in Semantics for Web services (semantics4ws’07), Business Process Man-
agement Workshops, volume 4928 of Lecture Notes in Computer Science,
pages 496–501. Springer

Goedertier, S. and Vanthienen, J. (2007a). Declarative process modeling with
business vocabulary and business rules. In Meersman, R., Tari, Z., and
Herrero, P., editors, OTM Workshops (1), volume 4805 of Lecture Notes in
Computer Science, pages 603–612. Springer

The EM-BrA2CE Framework lays the ontological foundation for the tech-
niques discussed in the subsequent chapters of this text. In Chapter 4, for in-
stance, a language for expressing the due dates on obligations and permissions has
been developed. This language has a logical underpinning in the event calculus,
but its vocabulary and execution model can be situated within the EM-BrA2CE
Framework. The contributions of this chapter include:

p A language for modeling the due dates on obligations and permissions.

p A technique for visualizing rules about obligations and permissions in the
Business Process Modeling Notation (BPMN).

p A technique for verbalizing role-based access control rules, formalized in
defeasible logic.

The publications about these topics include:

Goedertier, S. and Vanthienen, J. (2006d). Designing compliant business pro-
cesses with obligations and permissions. In Eder, J. and Dustdar, S., ed-
itors, Business Process Management Workshops, volume 4103 of Lecture
Notes in Computer Science, pages 5–14. Springer

Goedertier, S., Mues, C., and Vanthienen, J. (2007d). Specifying process-aware
access control rules in SBVR. In Paschke, A. and Biletskiy, Y., editors, Pro-
ceedings of the International Symposium Advances in Rule Interchange and
Applications (RuleML 2007), volume 4824 of Lecture Notes in Computer
Science, pages 39–52. Springer. (Best Paper Award)

In the remainder of the text, the ontology of the EM-BrA2CE Framework is
used for designing declarative process mining techniques. The simulation models
are used to generate event logs.
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Techniques for Declarative Process Mining

In the end of Chapter 4 we characterize declarative process mining. We start out
from the requirements that process mining techniques must be accurate, compre-
hensible, and justifiable. Whereas existing process mining techniques focuss on
accuracy only, declarative process mining techniques also target the comprehen-
sibility and justifiability of the discovered knowledge. Inductive Logic Program-
ming (ILP) is a machine learning technique that is particularly suited for building
declarative process mining techniques. Ferreira and Ferreira (2006) show that pro-
cess discovery can be formulated as an ILP classification learning problem on event
logs with negative events. Negative events record when a state transition cannot
take place. Considering the transition types in the EM-BrA2CE Framework, we
identify a number of process mining learning tasks that can be represented as ILP
classification learning on event logs with negative events. The contributions of
this part include:

p A characterization of declarative process mining techniques.

p A formulation of process mining tasks as a classification problem.

For many process mining tasks, negative events are not naturally present in the
event logs.

In Chapter 5, we focus on process discovery. Event logs rarely contain negative
events to record that a particular activity could not have taken place. Without
negative events, in principle, process discovery cannot be represented as a clas-
sification problem that discriminates between positive and negative events. To
overcome the problem, we develop a configurable technique to artificially generate
negative events (AGNEs). By generating artificial negative events, a classification
learner is given a configurable completeness assumption as inductive bias. Using
an existing Inductive Logic Programming (ILP) classification learner, we have
implemented a new process discovery technique as a mining plugin in the ProM
framework. The contributions of this part include:

p A declarative technique for discovering frequent temporal constraints and
for deriving parallelism and locality information.

p A configurable algorithm to generate artificial negative events for the pur-
pose of process discovery.

p A configurable language bias specification that takes into account frequent
temporal constraints and prior knowledge.

p An algorithm to convert a set of discovered classification rules into a Petri
net representation.

This is included in the following papers:
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Goedertier, S., Martens, D., Baesens, B., Haesen, R., and Vanthienen, J. (2008a).
Process Mining as First-Order Classification Learning on Logs with Neg-
ative Events. In Proceedings of the 3rd Workshop on Business Processes
Intelligence (BPI’07), volume 4928 of Lecture Notes in Computer Science.
Springer

Goedertier, S., Martens, D., Vanthienen, J., and Baesens, B. (2008c). Robust
process discovery with artificial negative events. resubmitted for review to
the Journal of Machine Learning Research on September 1, 2008

Having represented process discovery as a classification technique and hav-
ing developed a technique for generating artificial negative events, the traditional
metrics for evaluating classification models can be applied for quantifying the re-
call and precision of a discovered process model vis-à-vis an event log. This is one
of the contributions of Chapter 6. In particular, we propose two new metrics: be-
havioral recall of positive events (rp

B), and behavioral precision of negative events
(pn

B). These metrics use simple heuristics to determine a good firing sequence of
duplicate and silent transitions. We motivate this choice with the comprehen-
sibility requirement: human end-users are unlikely to use anything more than
heuristics to determine a suitable firing sequence. As a result, the rp

B and pn
B

metrics can be calculated even for complex process models, with many empty
and duplicate transitions. Moreover, the rp

B and pn
B metrics can be calculated

during the same event log replay, further contributing to their efficiency. The
pn

B is calculated from event log supplemented with artificial negative events. We
argue that any precision metric based on the original event log makes a com-
pleteness assumption. This has its implications for the setup of cross-validation
experiments. The contributions are:

p The new rp
B and pn

B metrics for quantifying the recall and preciseness of a
process model vis-à-vis an event log, based on artificially generated negative
events.

p The consequence of the completeness assumption on the setup of cross-
validation experiments.

Using these new metrics, and some existing metrics for comparison, Chapter 6
describes an extensive evaluation of the AGNEs technique in both an experimental
and real-life setup. The experimental setup aims at evaluating the performance of
the technique in comparison to four state-of-the-art process discovery algorithms.
Experiments allow to evaluate the expressiveness, robustness to noise, and ability
to deal with incomplete events logs. A large-scale benchmark study of this kind
is the first in process discovery literature. It shows that the AGNEs technique
is expressive, robust to noise, and capable of dealing with incomplete event logs.
The real-life setup aims at evaluating the scalability of the AGNEs technique
with respect to real-life event logs, and also evaluates the extent to which AGNEs
copes with several violations of assumptions that are generally made about process
discovery event logs. The contributions are:
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p A large-scale, comparative benchmark study regarding expressiveness, ro-
bustness, and ability to generalize.

p A real-life case study.

Chapter 7 concludes the text and summarizes the outcomes of the research.
In addition, it identifies some important areas of future work.



CHAPTER 2

Declarative Process Modeling

Business process models needs to fulfill a number of requirements to be useful
when designing, implementing, enacting, and analyzing business processes. In
general, they must contribute to process flexibility, compliance, efficiency, and ef-
fectiveness, but this is a general requirement, which merely reflects the main goals
of business process management. The real challenge for business process models
consists of providing information systems with adequate information to deal with
the often conflicting requirements of flexibility and compliance. A declarative
approach to process modeling, as identified by Pesic and van der Aalst (2006), is
likely to be capable of providing adequate information. The reason is that declara-
tive process models explicitly reflect the underlying business concerns that govern
business processes. An explicit awareness of these underlying business concerns
allows to balance flexibility and compliance requirements, both at runtime and
design-time. This chapter further characterizes declarative process modeling and
provides an overview of existing languages.

2.1 Flexibility and Compliance

Business process reengineering (Davenport, 1993; Hammer and Champy, 1993)
and business process redesign (Reijers and Limam, 2005) aim at improving the
business process flexibility, compliance, efficiency, and effectiveness.

p Process flexibility is the extent to which an organization can deal with
business process change occurring both at design-time and at run-time.
Socio-economic factors like globalization, outsourcing, mergers and acquisi-
tions have made business environments more complex and prone to change.
In such a setting organizations must be able to flexibly adapt their busi-
ness policy and business processes to accommodate new market situations.
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The work of Suchman (1995) and Schmidt and Simone (1996) has sparked
the idea of flexibility as a major requirement for computer-supported col-
laborative work (CSCW). In a special issue, the CSCW journal compiles
an anthology of directions in the research on flexibility (Klein et al., 2000).
Likewise, van der Aalst and Jablonski (2000) provide a taxonomy of change,
suggest solutions, and discus open problems.

p Control over business processes is undoubtedly as important as their flex-
ibility. Process compliance is the extent to which a process is in corre-
spondence with business policy, the whole of internally defined business
constraints, and business regulation, the whole of externally imposed
business constraints. Recently organizations are confronted by an increas-
ing number of regulators imposing regulations that potentially affect every
process within their organization. The Sarbanes-Oxley Act, for instance,
not only has a substantial impact on business processes such as accounting
but also on IT processes such as access management and software release
management (O’Conor, 2005). In general, compliance to internal policies
and external regulations can be an important driver for automating business
process support.

p Process effectiveness is the extent to which a business process realizes its
business goals.

p Process efficiency is the extent to which the organization of the business
process is capable of minimizing the amount of utilized resources such as
personnel, materials, time, machine capacity.

Of the aforemention performance criteria, efficiency and effectiveness are to some
extent secondary to flexibility and compliance. When processes are flexible and
compliant, they are likely to be efficient and effective. Achieving both flexibility
and compliance is however non-trivial.

When designing information systems, it is a challenge to strike the right bal-
ance between flexibility and compliance. An information system can at first sight
make the business processes of organizations more compliant. By automating the
coordination of work, organizations have better control over the activities that
are undertaken by their employees or customers. Moreover, information systems
can help organizations in demonstrating business process compliance by restrict-
ing the activities that can be undertaken. However, the downside of restrictive
information systems is that automated business processes risk to become inflex-
ible. In particular, ill-conceived automated processes have proved to be difficult
to adapt at design time, where each changed requirement triggers a lengthy de-
velopment cycle in which it is impossible to identify and include all control and
correction steps a priori (Heinl et al., 1999). Moreover, at run time, automated
processes are often found too rigid to deal with the contingencies of real-life situa-
tions (Sadiq et al., 2005). Consequently, resolving the paradox between flexibility
and compliance is one of the major concerns of business process management.
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2.2 Design Principles

In order to strike the right balance between compliance and flexibility, information
systems must be provided with sufficient information to adequately deal with the
idiosyncracies of every-day situations. Real-life business processes are affected by
business concerns such as those enumerated in Table 2.1. Process modelers often
only implicitly think about these business concerns when they model business
processes and pay little attention to documenting why specific design choices have
been made. Instead of making these concerns explicit, they are implicitly used to
determine task control flows, information flows and work allocation schemes. In
other words these aspects remain implicit but their effects are in a way hard-coded
directly in procedural process models.

Table 2.1: Concerns that affect processes
Concern Definition
regulations Externally imposed directives such as among others legal require-

ments, standards, and contracts.
policies Internally defined directives involving among others business

strategies, tactics, and operational procedures.
benefits and costs The incurred benefits, and costs of an activity.
time constraints Concerns about concurrency, synchronization, due dates, and du-

rations.
resource constraints Capacity and availability constraints of the resources that carry

out activities.
information prerequisites The information required to make decisions.
non-functional requirements Technical requirements such as throughput, and response time.
common-sense constraints Common-sense constraints, such as the law of physics.

The paradigm shift from procedural to declarative process modeling has been
identified by Pesic and van der Aalst (2006) who introduce the ConDec lan-
guage for declarative process modeling. In this section we contrast procedural
and declarative modeling approaches. A business process model is called pro-
cedural when it contains explicit, prescriptive information about how processes
should proceed, but only implicitly keeps track of why these design choices have
been made. When modeling business processes procedurally, modelers risk to
make a number of modeling assumptions that are not present in the earlier spec-
ified requirements, this is called the assumption bias of a model. Consequently,
procedural models risk to be over-specified as they are likely to impose more re-
strictions on the control flow, information flow and work allocation in business
process models than is strictly required. A process model is declarative when it
explicitly takes into account the concerns that govern a process. Declarative mod-
eling models the minimal business concerns that exist, and leave as much freedom
as is permissible to determine a valid and suitable execution plan at execution
time. Declarative process modeling does not merely focus on how an end state
must be reached, but rather considers what is, must, ought and can be done in
order to achieve the business goals. Declarative process models are modeled with
declarative languages. Table 2.2 summarizes the differences between procedural
and declarative process modeling. They can be considered as design principles of
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declarative languages.

Table 2.2: Procedural versus declarative process modeling

Procedural modeling Declarative modeling

Business concerns implicit explicit
Rule enforcement what, when and how what
Communication what, how what
Execution scenario design-time run-time
Execution mechanism state-driven goal-driven
Model granularity process-centric activity-centric
Modality what must what must, ought and can
Assumption bias over-specified under-specified
Alteration design time design and run time
Coordinator/Worker human-machine agent
Coordination/Activity coordination 6= activity coordination = activity
Activity life cycle single event multiple life cycle events
Language procedural declarative

These differences in design principles are discussed in the subsequent sections.
However, no dichotomy is implied. Process modeling languages can combine
both procedural and declarative modeling aspects. Moreover, as both modeling
paradigms are complementary, they can potentially be used together to realize
their combined advantages. At design-time, for instance, business concerns can
be made traceable by carefully documenting them using a declarative modeling
approach, whereas at runtime business process support is implemented using a
procedural business process language. Another synergy can be realized by mod-
eling business concerns as atomic units of business logic in a declarative modeling
languages, and visualizing a subset of these concerns using a graphical model of
a procedural modeling language. The choice of modeling language also depends
on the application domain. Dynamic, human-centric, non-standardized business
process are most likely to require the run-time flexibility offered by of declara-
tive process modeling. Examples are, for instance, order processing, the handling
of distress calls in calling centers, insurance claim handling, or the coordination
of patient processes in hospitals. Static, machine-centric, standardized business
processes are most likely only to require a procedural representation of the coor-
dination work. Examples are for instance the processing of production orders or
standardized financial transactions.

Business Concerns Made Explicit

Declarative process modeling makes the underlying business concerns explicit in
the form of business vocabulary and business rules. Business rules are atomic,
formal expressions of business concerns. They are idealized as a common language
between the business-side and IT-side of organizations. Such a language allows
the business-side to formally represent models of how it operates internally and
how it can legally interact with business partners. At the same time, such a com-
mon language allows the IT-side to have Information Systems support business
processes accordingly, with as little development effort as possible. Ideally, In-
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formation System Technology must support declarative business process models
in such a way that they become human-understandable, yet machine-executable
specifications. In this way, changes to policies and regulations can be traced back
to the business processes were they are to be enforced, without any need for
translation.

Declarative Business Rule Enforcement

Procedural process languages predominantly focus on the control-flow perspective
of business processes. In such process languages it might be possible to enforce
business rules using a control-flow-based modeling construct. For instance, the
enforcement of a derivation or integrity constraint can be directly modeled in
BPEL as a calculation or input validation step. The left-hand side of Figure
2.1 represents an excerpt from a BPMN model that models the enforcement of
a discount rule as a decision shape in BPMN. Another example involves the
enforcement of authorization rules. The left-hand side of Figure 2.2 models an
authorization rule as a decision shape in BPMN. The disadvantage of procedural
process modeling is that business rules cannot be formulated independently from
the process models in which they are to be enforced. Consequently, the same
business rule is often duplicated in several procedural process models. When the
business rule changes it is likely that all process models must be reexamined.
Declarative process modeling separates business rule modeling from business rule
enforcement. In particular, it does not make use of control flow to indicate when
and how business rules are to be enforced. Instead, it is left to the execution
semantics of the declarative process models to define an execution model in which
different kinds of business rules are automatically enforced. The latter is indicated
in the right-hand side of Figures 2.1 and 2.2. This separation of business rule
specification and enforcement facilitates design-time flexibility.
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Figure 2.1: Declarative rule enforcement: derivation

Declarative Communication Logic

Procedural process models are overburdened with communication activities
intended to notify an external business partner about the occurrence of a rele-
vant business event or to transmit information. Figure 2.3 represents an excerpt
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from the BPMN specification (Object Management Group, 2006b, p. 107) that
contains the communication activities ‘receive order’ and ‘send invoice’. Such
communication activities depict communication logic in a procedural manner,
because they specify how and when business events are communicated and in-
formation is transmitted. Declarative process models are only concerned with
the ability of business agents to perceive business events and business concepts.
When an agent (for instance a business partner) can perceive a particular event,
the event becomes non-repudiable to the agent, irrespective of how the agent is
notified of the event. The execution semantics of a declarative process model
determines how events are communicated. In particular, events can be communi-
cated as messages that are sent by the producer (push model), retrieved by the
consumer (pull model), or via a publish-subscribe mechanism.

Figure 2.3: Separating communication logic from process models (Object
Management Group, 2006b, p. 107)

Dynamic, Goal-driven Execution

Unlike procedural process modeling, declarative process modeling does not involve
the pre-computation of task control flows, information flows and work allocation
schemes. Whereas procedural process models inherently contain pre-computed
activity dependencies, these activity dependencies remain implicit in declarative
process models. An explicit enumeration of all activity dependencies is often
not required – and often even difficult to obtain (Heinl et al., 1999). For model
checking (verification) purposes, execution trajectories can still be obtained from
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implicit process models. During the execution of a declarative process model, a
suitable execution scenario is constructed (either by a human or machine coordi-
nator) that realizes the business goals of the process model. The latter is called
goal-driven execution and its automation is akin to planning in the domain of
Artificial Intelligence (Nau et al., 2004). In contrast, the execution mechanism of
procedural process modeling languages is called state-driven.

Activity-level Granularity

Declarative process models also have a more fine-grained model granularity
than procedural process models. Whereas procedural process languages are pro-
cess centric in that they model business processes, declarative process languages
are activity centric, as they model the business concerns related to a set of activ-
ity types. Business process models are composed of activity types, but the same
activity type can occur in multiple business process models. In addition, many
business concerns range over activity types and are not specific to one business
process model in particular. Therefore activity-centric models have the advantage
that these governing aspects are not a-priori straitjacketed into a particular busi-
ness process model. For instance, the regulation that a purchase order must never
be paid prior to the reception of an invoice, can possibly be relevant in different
business processes. To allow the reuse of this regulation, it must be specified
across the boundaries of artificially delineated business process models. Although
the process-oriented view on organizations has lead to a better understanding of
the value chain (Davenport, 1993; Porter, 1985) and has improved business pro-
cess redesign, there is little motivation in letting this process-centricity set the
granularity for process modeling. When required, a process-centric model can be
obtained from an activity-centric model, the converse is not generally true.

Differentiation by Modality

Another point of difference is the modality that is attached to the information in
process models. Procedural process models inherently have the necessity modality
(what must) attached, whereas procedural process languages allow to differenti-
ate by attaching different modalities like intention (what ought), advice (what
should), possibility (what can) and factuality (what is) to parts of the process
model. These modalities offer run-time flexibility. In particular, they allow to dis-
tinguish between what is strictly required (hard constraint) and what is merely
desirable (soft constraint) behavior in a business process. This can help the co-
ordinator of a business process to come up with a suitable yet valid execution
plan.

The idea of different modalities is related to the research of Suchman (1995),
Schmidt and Simone (1996) and Ross (2003). Suchman (1995) points out that
business process models can never fully represent cooperative work in all its facets.
In any organization, representations of work are required to create a common
understanding of the work and thus facilitate coordination. However, workers may
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and should have conflicting views on the work. Suchman warns that a normative,
prescriptive account of how the work gets done might severely differ from specific
working practices. Although representations of work are a useful tool to reason
about work and to steer activities, they risk to become useless when used outside
the context of the work. According to the seminal work of Suchman (1987)
representations of work need to be under-specified such that they are plans for
situated action, in which the worker uses a plan as a guideline to go about but also
determines the most suitable activity to undertake by himself from the context
of the process in situ. To emphasize her point Suchman uses the metaphor of a
map. “Just as it would seem absurd to claim that a map in some strong sense
controlled the travelers movements through the world, it is wrong to imagine plans
as controlling actions. On the other hand, the question of how a map is produced
for specific purposes, how in any actual instance it is interpreted vis-à-vis the
world, and how its use is a resource for traversing the world, is a reasonable and
productive one.”

The situated action perspective on process models implies that there is lit-
tle benefit in the automation of work coordination. However, this implication is
not in congruence with the empirical evidence of many successful BPM systems
and similar implementations found in contemporary organizations. Regrettably,
the outcome of Suchman’s work resulted in a decreased interest of some CSCW
researchers in workflow management systems (WfMS) (van der Aalst, 2007). It
is likely that Suchman’s view on the use of process models and workflow man-
agement systems (WfMS) needs to be refined. Schmidt and Simone (1996) and
Schmidt (1999) distinguish between two, according to them equally possible, ac-
counts of process models by contrasting the metaphor of process models as scripts
with Suchman’s metaphor (1987) of process models as maps. A business process
model can play the role of a script when it contains explicit, prescriptive infor-
mation about how processes should proceed by making pre-computations of task
dependencies. “A script offers a limited selection of safe, secure, legal, valid,
advisable, efficient or otherwise prescribed moves while excluding moves that gen-
erally would be considered unsafe, etc” The application of a script can relieve the
worker of computing “a myriad of task interdependencies” and optimization con-
cerns. Conversely, a business process model can play the role of a map when it
contains a codified set of functional requirements that provide a heuristic frame-
work for distributed decision making. It is important that in the vision of Schmidt
and Simone a same process model can be either a script or a map, depending on
whether the context of the process conforms to relevant, pre-defined task inter-
dependencies or not.

An even more refined view of Schmidt and Simone’s dichotomy is to acknowl-
edge that a process model can be used as a script and a map within the same
execution context. Interestingly this combined view corresponds to the relation-
ship between business process models and business rules depicted by (Ross, 2003).
In Ross’ view, process models consist of a set of pre-computed task dependencies,
effectively called scripts, that can be supplemented with business rules that are
either a number of strict rules that must be observed at all times or a number of
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heuristic guidelines that can just as easily be discarded. In terms of Suchman’s
traveler metaphor this would suggest the existence of a series of predefined sub-
trajectories, scripts, that control a traveler’s movements and a number of strict
rules and guidelines that give direction to a travelers’s movements, but leave the
traveler with some freedom in choosing his or her own destination and trajectory.

Assumption Bias

The business rules in declarative process models can be traced back to an original
business concern. Consequently, declarative process models are likely only to
contain a minimum of constraints regarding a particular business process. This is
not generally the case for procedural process models. Because procedural process
models are the result of an implicit pre-computation of task dependencies, it is not
generally guaranteed that procedural process models do not include a number of
additional assumptions that overly specify the underlying business process. The
claim that procedural process models are often over specified was first made by
Pesic and van der Aalst (2006).

Runtime Alteration

The declarative information about a business process allows a coordinator to rea-
son about the effect of run-time alteration of the execution plan. Such adaption
can be seen as deviating from the outlined soft constraints to better fit the id-
iosyncracies and contingencies of real-life situations. Procedural process models
do not allow this form of reasoning. In procedural process models all control flows,
information flows and work allocation policies have been pre-computed. Without
information about the strict business rules (hard constraints) and guidelines (soft
constraints) that have led to a particular process model, it is difficult to reason
about the effect of a run-time alteration.

No Human-Machine Distinction

Information systems and machinery have lead to an extensive automation of both
work and coordination work. But not all activities in every business process can
be fully automated. Likewise, not every business process lends itself to the same
degree of automated coordination. In many cases, some of the (coordination) work
is performed by machines and some of it by humans. Ideally, declarative process
models make abstraction from the differences between humans and machines in
performing (coordination) work. Rather than making an ontological distinction
between concepts like humans and machines, both concepts are unified through
the use of the agent metaphor (Woolridge and Wooldridge, 2001). Agents can
be entire organizations, organizational units or individual workers and machines.
In many cases, individual agents – whether humans, machines or a combination
of both – act on behalf of the organization to which they pertain. For example, a
transport activity might require the scheduling of a driver, truck, and trailer that
act as an ad-hoc group of agents.
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Coordination Work is Work

Business process management is about the coordination of work (Schmidt and
Simone, 1996). Procedural process models are often an explicit specification of
the coordination work. In contrast, declarative process models make no difference
between coordination work and regular work. What may appear as work to an
external agent, may very well be coordination work to another agent. For instance,
a sales representative may instruct the expedition department to ship an order
by a particular due date, but this activity may conceal the coordination of many
other activities within the expedition department.

Multi-state Activities

Procedural process models do not explicitly consider the life cycle of the activities
within a business process, but represent activities as actions that happen instan-
taneously. This is, for instance, the case for workflow nets (Eshuis and Dehnert,
2003; van der Aalst et al., 1994). Whereas this simplifying representation might
be a useful abstraction for process visualization or verification purposes, it does
not take into account the fact that activities have a life cycle of their own that
consists of creation, planning, execution, and exception handling events. Declara-
tive process models, in contrast, consider other events in the life cycle of activities
such as the creation, scheduling, assignment, start, fact manipulation, completion,
skipping, cancelation and redoing of an activity.

Third-person Perspective

The growing popularity of the Internet based on new IP-based communication
protocols and technologies such as XML, has given rise to the requirement of
automated coordination of business processes across the boundaries of individ-
ual organizations. As a consequence, it is not always technically or economically
viable to have processes coordinated centrally. Another consequence of distri-
bution is that it is unlikely that process designers can come up with only one
representation of work. In many cases all business partners that participate in a
cooperation might have different representations of the cooperative work. These
representations are to be kept in part private from other process business partners.

Declarative business process models must take into account these disparate
perspectives on processes. When modeling behavior it is proposed to adopt a
third-person perspective – what will an actor with a particular role do in response
to what others do? – rather than a first-person perspective – what will I do
in response to what others do? In a third-person perspective all roles, actors
and organization structures are named without the modeler adopting a partic-
ular viewpoint. A third-person modeling perspective has the advantage that it
is possible to distinguish multiple interacting actors within a single organization.
Another advantage is that business rules can be more easily shared in a business
community when they are expressed from a third-person perspective. The model-
ing perspective distinction is, for instance, present in the literature about process
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orchestration and choreography (Bussler, 2001; Peltz, 2003) or in the distinction
between internal and external Agent-Object-Relationship models (Wagner, 2003).

2.3 Existing Languages

A common idea of declarative business process modeling is that a process is seen
as a trajectory in a state space and that declarative constraints are used to de-
fine the valid movements in that state space. The differences between declarative
process languages can in part be brought back to a different perception of state
space, transition types, and transition constraints. Table 2.3 provides a summary
of a number of declarative process modeling languages in the literature, and enu-
merates the state space composition, transition types, and transition constraints
for these languages.

Table 2.3: A chronological overview of declarative process modeling languages
Reference State Space Summary
ADEPT(flex)
(Reichert and Dadam,
1998)

data object state,
activity state

� The freedom of choice to change the process model of the
process instance at runtime, while preserving control flow and
data flow consistency regarding the addition, deletion and
movement of tasks.

case handling
(van der Aalst et al.,
2005)

data object state,
activity state

� The freedom of choice to complete, skip, and redo activities
within a number of preconditions and postconditions (hard
constraints) involving the completion of preceding activities
and the data object state.

OWL-S
(The OWL Services
Coalition, 2004)

concept state � The description of web services in terms of their inputs,
outputs, preconditions, and effects (IOPEs).

WSMO
(Roman et al., 2005)

concept state � The description of web services in terms of their inputs,
outputs, preconditions, and effects (IOPEs).

constraint
specification
(Sadiq et al., 2005)

activity trace � A constraint specification framework with order, fork, serial,
exclusion, and inclusion constraints (hard constraints) over a
state space composed of activity traces that can occur within
a sub-process (a pocket of flexibility).

(Ferreira and Ferreira,
2006)

proposition state � An integrated life cycle of the planning, user-feedback, and
automated learning of the process logic of activities, repre-
sented in terms of their preconditions, and effects on case
data with first-order logic.

ConDec
(Pesic and van der
Aalst, 2006)

event history � A template language for Linear Temporal Logic (LTL) that
describes the temporal relationships that must be observed
(hard constraints) by the activities in a process.

PENELOPE
(Goedertier and Van-
thienen, 2006d)

event history,
time

� Allows the modeling of the obligations and permissions
that arise from (not) performing activities within specific due
dates.

Artifact-centric
modeling
(Bhattacharya et al.,
2007)

artifact state � The modeling of the preconditions and effects on artifacts
by executing services and the specification of business rules
that specify when particular services are to be invoked.

Reichert and Dadam (1998) describe the rationale of the ADEPT(flex) work-
flow management system (WfMS) in which end-users can change the process
model of the process instance at runtime. ADEPT(flex) provides extensive user
support to prevent non-permissible structural changes. In particular ADEPT(flex)
preserves control flow and data flow consistency regarding the addition, deletion
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and movement of tasks.
van der Aalst et al. (2005) describe the formal semantics of the case handling

paradigm. Case handling is one of the few declarative modeling approaches that
originates from commercial workflow management systems (WfMSs), in particu-
lar, the FLOWer WfMS of Pallas Athena. It provides the user with the freedom of
choice to complete, skip, and redo activities within a number of constraints based
on availability of case data and the executed activities. The state space of the
case-handling paradigm comprises the state of case data objects and activities.
Furthermore, the system consists of data transition types (such as define, and
confirm) and and activity transitions types (such as complete, skip, and redo).
Although there is still a preferred or normal control-flow defined between the ac-
tivities, much of the semantics of a case handling model resides in the mandatory
constraint. For each activity definition, a modeler must indicate whether partic-
ular data objects are mandatory in order to be able to complete the activity.

In the constraint specification framework of Sadiq et al. (2005), order, fork,
serialism, exclusion, and inclusion constraints can be specified in a state space
composed of activity traces. The authors also show how it can be advantageous
to combine both declarative and procedural aspects in process models. They
present a foundation set of constraints for partial process modeling. A process
model can contain, in addition to pre-defined activities and control flow, several
so-called pockets of flexibility. Such pockets consist of activities, sub-processes
and so-called order and inclusion constraints. Each time during enactment when
a pocket of flexibility is encountered, the elicitation of the work within the pocket
is done by a human end-user through a so-called “build” activity. During this
build activity, the end-user constructs an instance template, a process specifica-
tion, that satisfies the constraints set of the pocket of flexibility. The authors de-
scribe verification techniques for detecting redundant and conflicting constraints
in the constraint set. The language has been implemented as a part of the WfMS
prototype Chameleon.

The semantic web community also has produced a number of specifications
that contain aspects of declarative process modeling. The largest initiatives can
be situated within the the frameworks of the OWL-based Web Service Ontology
(OWL-S) (The OWL Services Coalition, 2004) and the Web Service Modeling On-
tology (WSMO) (Roman et al., 2005) ontologies. Although OWL-S and WSMO
propose different sets of languages for expressing logical conditions, they both
intend to describe the interface of semantic web services in terms of their inputs,
outputs, preconditions, and effects (IOPEs). The state space of a semantic web
service consists of the concepts, attributes of concepts, and relationships of con-
cepts. WSMO allows service requesters to define a goal state, and the execution
model is to select and invoke the web service that best satisfies this goal. The
transition type can be considered to be the binding of a goal to web services, and
the act of invoking a web service. The preconditions of a web service are tran-
sition constraints that determine whether a particular web service can provide
the service, given the provided inputs and the state of the system. Using goals,
preconditions, and effects, AI planning techniques can be used to plan a suitable
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invocation sequence of web services (Kopecký et al., 2006). In summary, semantic
web services provide the freedom of choice to select web service and to determine
a suitable invocation plan.

Ferreira and Ferreira (2005, 2006) consider an approach that aims at the run-
time learning and planning of process models, rather than the design-time mod-
eling. The state of a process consists of propositions about concepts. Performing
an activity transforms the system from one particular state to another, so the
transition type in the language is the act of performing an activity. The language
allows to specify the preconditions of activities in terms of first-order logic. Pre-
conditions are transitions constraints within the language: an activity can only be
performed when its preconditions are satisfied. Furthermore, the effects of per-
forming an activity can be described in terms of first-order literals that describe
the sets of propositions that are either added (add-list) or removed (remove-lists)
from the previous state. Rather than requiring the design-time specification of
the preconditions and effects of activities, the authors propose the use of induc-
tive logic programming techniques to discover these specifications at run-time. A
partial-order planner is used to suggest possible execution plans, based on the
current knowledge about preconditions and effects, that can either be accepted or
rejected by the end-user. The flexibility of the approach stems from the fact that
it does not require the design-time specification of an overly restrictive process
model, and the run-time suggestion of alternative execution plans.

Pesic et al. (2007b); Pesic and van der Aalst (2006) propose a declarative
language for modeling, enacting, and verifying declarative process specifications.
Enacting a ConDec process model generates a trace of events, called the event
history. The state space of the language can be seen as the set of all possible
event histories. Each time an activity is performed, this is recorded as an event in
the event history, so performing activities is the transition type considered by the
ConDec language. The language allows specifying twenty constraint types that
are defined as constraint templates in Linear Temporal Logic (LTL). Three classes
of constraint types are included: existence constraints, relation constraints, and
negation constraints. Existence constraints are activity cardinality constraints
that specify how many times an activity of a particular type can be executed
in a given process instance. Relation constraints are activity order constraints
that specify the ordering between activity types and their existence dependen-
cies. Negation constraints are activity exclusion constraints that specify that the
occurrence of activities of some activity type exclude others. Some constraint
types must be satisfied prior to the execution of a particular activity, whereas
other constraints must only be satisfied upon termination of the process instance.
A ConDec process model is a combination of LTL expressions that can be con-
verted into a Buchi automaton, useful for the enactment and verification of the
system. A ConDec process model can be verified by checking whether the model
contains dead activities or conflicting constraints. The ConDec language is part
of the DECLARE WfMS prototype (Pesic et al., 2007a).

Several authors describe languages for intelligent agents to reason about con-
tract state (Governatori, 2005; Knottenbelt and Clark, 2004; Maŕın and Sartor,
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1999; Paschke and Bichler, 2005; Yolum and Singh, 2004). Contracts represent
regulations and are important business concern governing business processes.
Contract modeling is akin to declarative process modeling. In Goedertier and
Vanthienen (2006d) we define a language for modeling a contract in terms of a set
of so-called temporal deontic assignment rules. This language is the PENELOPE
language. The properties of this language are discussed in detail in Section 4.2.
In the language, temporal deontic assignments are obligations and permissions
of agents to perform a particular activity within an indicated deadline. The ex-
istence of temporal deontic assignments depends on earlier performed activities
and the system time. Therefore, the state space of the PENELOPE language
consists of the event history and the system time. The language considers two
transition types: performing activities and deadline violations. Transitions in
the language are constrained by the requirement that obligations and permissions
should not be violated (soft constraint). The specification of a set of temporal de-
ontic rules can quickly become incomprehensible. Therefore, it is indicated how,
under a number of limitations, a set of temporal deontic rules can be visualized
in a graph-oriented process modeling language. Furthermore, it is indicated how
verification of temporal deontic assignments could be performed.

Bhattacharya et al. (2007) formally describe a so-called artifact-centric process
modeling approach, that allows to model processes in terms of the preconditions
and effects of services. The state space of their language consists of artifacts.
Artifacts are object-oriented data structures with attributes and states. The
transition type in the language is the act of invoking a service. Services can
create or destroy artifacts and can read and write their attributes. In order
to invoke a service on a set of artifacts, the preconditions of the service must
be fulfilled. In the spirit of OWL-S and WSMO, artifact-centric modeling also
provides for the specification of the effects of services, but the authors do not
propose a planning mechanism that reasons about the effect of invoking service
in order to obtain a particular goal state. Instead, the system is given dynamism
by means of business rules. These business rules are production rules that can
either determine the conditions under which an artifact can change its state, or
the conditions under which a particular service must be invoked. In addition to
business rules, users can also directly invoke services. The modeling approach is
in spirit similar to previous languages, but interestingly, the authors also present
a number of complexity results concerning reachability of an end state for an
artifact class, dead-lock detection, and the detection of redundant attributes.

The idea of declarative business process modeling is also related to the business
rules approach (Kardasis and Loucopoulos, 2005; Ross, 2003). By documenting
and formalizing business rules, it is hoped that changes to these rules will no
longer result in an avalanche of required information system updates and will thus
reduce the IT bottleneck when bringing about business changes. Consequently
there is a vivid interest among practitioners (Debevoise, 2005) and commercial
software vendors in the confluence of business rules and business process modeling.
ILOG, for example offers ILOG JRules integration solutions for several existing
BPM products and Microsoft has added business rules functionality to BizTalk.
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In general, commercial approaches integrate production rule specification with
imperative business process modeling. The integration is realized by including
explicit calls to a rule engine in the business process model. In BizTalk, for
example, such a call is represented as a so-called decision shape. On the basis
of the information that a process gets back from the rule engine, the process is
carried further. Because it is required to specify when and how business rules must
be enforced, these these approaches do not belong to the category of declarative
process modeling languages characterized in Section 2.2.

2.4 Conclusion

It is a challenge to design information systems that provide flexible, yet compli-
ant support for business processes. Flexibility and compliance require making a
tradeoff both at design-time and execution time. To balance flexibility and com-
pliance, the business concerns that govern business process must be made explicit
in declarative process models. In this chapter we have given an overview of vari-
ous characteristics that distinguish between declarative and procedural modeling
approaches. Furthermore, we have given an overview of existing languages for
declarative process modeling.

Although there already exist many languages for declarative process modeling,
these languages all are fundamentally different. They differ in that they can
represent different business concerns, and consequently consider different state
spaces, transition types, and transition constraints. Furthermore, these language
have a different vocabulary, are expressed with different ontology languages, and
have different execution semantics.

p Different business concerns. Each of these languages only allows to
model a subset of the many real-life business concerns that exist in reality.
For instance, the ConDec language and the PENELOPE language only allow
to express business rules about sequence and timing constraints, i.e. the
control flow aspects (Jablonski and Bussler, 1996). Semantic Web Service
languages such as OWL-S (The OWL Services Coalition, 2006) and WSMO
(Roman et al., 2005), on the other hand, also include some organizational
and data model aspects.

p Different state space. Because existing languages model different busi-
ness concerns, they have different conceptions about the state space of a
business process. Approaches such as artifact-centric process modeling and
semantic web services consider the facts about business concepts to be the
only discriminant of process states. The case handling considers both the
data object state and the current activity state. The ConDec language per-
ceives the event history (the trace of executed transitions), whereas PENE-
LOPE also includes the system time, in order to take into account due
dates.
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p Different transition types. The aforementioned languages have different
usage contexts, such as service-oriented design or a WfMS process model.
Therefore they appear to consider very different transition types. However,
many of these transition types are different in name only. For instance,
there is no real conceptual difference between binding a service request to a
web service, and assigning an activity to an agent or worker. Likewise, there
is little difference between invoking a service on a web service and starting
to perform an activity. A closer look to the considered transition types
reveals that in most of the languages only the performance of an activity is
considered to be an activity type. As mentioned, declarative languages must
consider activities to have a rich life cycle, with many different transition
types.

p Different constraints types. Even when languages consider a similar
state space and transition types, they have different ways of expressing
transition constraints. The ConDec language for instance, expresses tem-
poral constraints that (eventually) must hold between activities in a trace,
whereas the PENELOPE language discusses the existence of temporal de-
ontic assignments.

p Different knowledge representation and reasoning paradigms. Fi-
nally, every language uses a different ontology, different ontology language,
and different languages for expressing constraints. For instance, the Con-
Dec language of makes use of Linear Temporal Logic (LTL) as underlying
paradigm whereas the PENELOPE language makes use of the Event Cal-
culus.

In conclusion, there exist many languages for declarative process modeling,
but none of these languages is by itself really suitable for capturing all the afore-
mentioned business concerns. In the next chapter, we introduce a framework for
declarative process modeling within which it is possible to position each individual
language for declarative process modeling. This framework lays the ontological
foundation for the techniques for declarative process modeling and mining dis-
cussed in the remaining chapters in this text.



CHAPTER 3

EM-BrA2CE: Unifying Framework
for Declarative Process Modeling

From the previous chapter, it can be concluded that there already exist a large
number of formal languages that can be identified as declarative approaches to
process modeling. Unfortunately, these languages each model only one specific
aspect of the many concerns that exist in reality. Moreover, these languages are
based on heterogeneous process ontologies (vocabularies) and make use of very
different knowledge representation paradigms.

This chapter takes a different approach to declarative process modeling. Rather
than defining one formal language, we define a unifying framework for declara-
tive process modeling, within which it is possible to position the aforementioned
languages. The framework is called the EM-BrA2CE Framework. EM-BrA2CE
stands for ‘Enterprise Modeling using Business Rules, Agents, Activities, Con-
cepts and Events’. It consists of a formal vocabulary and an execution model,
but it is not one language and does not provide model verification techniques,
nor process visualization diagrams. Instead, it can be used both as an expres-
sive informal language for documenting business concerns, and as an ontological
foundation to compare and develop formal declarative languages. In addition,
the framework lays the ontological foundation of the techniques for declarative
modeling and mining that are part of the subsequent chapters in this text. The
framework adopts the design principles for declarative process modeling, outlined
in Section 2.2 of the previous chapter. It is a unifying approach, not a unified
approach, hereby not claiming to cover all concepts in every process modeling
language.

This chapter is structured as follows. Section 3.1 provides an overview of the
framework and points out its design principles. Section 3.2 presents the EM-
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BrA2CE Vocabulary. This vocabulary is defined as an extension of the SBVR
and allows to declaratively refer to the state of a business process. In Section 3.3
an execution model is provided by modeling the dynamics of an activity life cycle
through the use of Colored Petri Nets.

3.1 Overview

In this section, we give a brief overview of the EM-BrA2CE Framework by de-
scribing its state space, and transition types. Furthermore, we introduce the
“payment-after-shipment” order process that is used as a running example in the
remainder of this chapter.

3.1.1 State and State Space

Within the framework the concepts ‘activity type’ and ‘activity’ have a central
position. These concepts relate to each other on a type-instance basis. An ac-
tivity type corresponds to a process model, whereas an activity corresponds to a
process instance. This correspondence honors the design principle that stipulates:
“coordination work is work”. In particular, the framework does not distinguish
between the act of coordinating a process, and the act of performing an atomic
activity. Consequently, process instances are considered to be activities in their
own right that in turn consist of sub-activities that are to be coordinated.

It is meaningful to associate a state space to an activity type and a particular
state to an individual activity. At any moment, an activity is in a particular
state that is composed of facts (propositions) about instance-level concepts such
as activities, agents, business concepts, and events. These are defined as follows.

p Activities (or services) are individual concepts that represent a unit of
(coordination) work to be performed by an agent.

p Agents (or service providers) are individual concepts that represent an
actor or a group of actors who can perform activities.

p Business concepts are individual concepts of which the facts can be ma-
nipulated in the context of performing activities.

p Events are individual concepts that correspond to an instantaneous, dis-
crete state change of a concept in the world.

The EM-BrA2CE Vocabulary, defined in section 3.2, provides a detailed definition
of these concepts, their concept types, and fact types.

3.1.2 Transition Types

An activity state transition brings about a state change by changing some of
the facts about activities, agents, business concepts, and events of which the
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current state of the activity is composed. There are twelve activity state transi-
tions: create, schedule, assign, revoke, start , addFact , removeFact , updateFact ,
complete, abort , skip, and redo. Each state transition type describes a life cycle
event of an activity. The create, schedule, assign, and revoke transitions repre-
sent coordination work that is to be executed by a coordinator agent as part of
constructing an execution plan. The start , addFact , removeFact and updateFact
transitions represent the actual work that is to be executed by a worker agent.
The skip, abort and redo transitions represent the coordination work related to
exception handling. The framework associates two event type to each transition
type: a positive event type that indicates that the transition has taken place, and
a negative event type that indicates that a transition was prevented from taking
place. The transition types are defined as follows:

p create(A,AT,B, P,Coordinator): the request to create a new activity A
of type AT with business identifiers B, parent activity P by an agent
Coordinator . Activity event types: created , createRejected .

p schedule(A,DueDate,Coordinator): the request to set the due date of activ-
ity A to DueDate by an agent Coordinator . Activity event types: scheduled ,
scheduleRejected .

p assign(A,Agent ,Coordinator), revoke(A,Agent ,Coordinator): the request
to assign or revoke the activity A to an agent Agent by an agent Coordinator .
Activity event types: assigned , assignRejected , revoke, revokeRejected .

p start(A,Worker): requests an activity A to start by an agent Worker . Ac-
tivity event types: started , startRejected .

p addFact(A,F,Worker), removeFact(A,F,Worker), updateFact(A,F1, F2,
Worker): the request to add, or remove business fact F or update a business
fact F1 by F2 within the context of activity A by an agent Worker . Ac-
tivity event types: factAdded , factUpdated , factRemoved , addFactRejected ,
updateFactRejected , removeFactRejected .

p complete(A,Worker): the request to complete an activity A by an agent
Worker . Activity event types: completed , completeRejected . Upon comple-
tion of an activity, all business fact manipulations are committed to change
the globally visible business facts.

p skip(A,Coordinator), abort(A,Coordinator), redo(A,Coordinator): the re-
quest to skip, abort or redo an activity A by an agent Coordinator . Ac-
tivity event types: skipped , skipRejected , aborted , abortRejected , redone,
redoRejected .

Because they are generic, these twelve activity state transitions provide a means
of defining an execution model. This is done in section 3.3. The current
state of an activity determines which state transitions can occur. These state
transitions might be subject to business and non-business concerns. The Petri
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net of Figure 3.1 models the allowable sequences of transitions in the activity life
cycle as imposed by non-business concerns.

The only way an agent (or service provider) can change the state of the world
is by invoking one of these twelve state transitions on an activity (or service). An
agent must be assigned to an activity, in order to be able to invoke a transition
on this activity. Likewise, agents (or service providers) can only perceive facts
when assigned to an activity. Only after starting an activity, the business facts
that pertain to its state can be manipulated. Only after completing an activity,
these manipulations are propagated to the outside world.

Business concerns can also constrain the possible trajectories within the state
space of an activity type. Informally, it suffices to check prior to the occurrence
of a state transition of a particular type whether a number of particular business
concerns will be violated or not. When no business concern is violated, the state
transition can take place. When, on the other hand, the transition would lead
to an intolerable violation of a business concern, the state transition is prevented
from taking place. At this point, a negative event might be recorded.

3.1.3 Running Example

To illustrate declarative process modeling, an order business process will be used
as a running example throughout the text. The order process depicts a “payment-
after-shipment” trade policy and is represented using the Business Process Mod-
eling Notation (BPMN) Object Management Group (2006b) in Figure 3.2. The
process can be declaratively modeled as follows:

p state space: the state space of the order-to-cash process is described by
facts about

– roles: buyer and seller.
– composite activity types: coordinate purchase order, coordinate

sales order.
– atomic activity types: Coordinate purchase order can consist of

place order and pay activities. Coordinate sales order can consist of
accept order, reject order, and ship activities.

– activity event types: created, assigned, started, completed
– event types: timeout, obligation violated
– business concepts: order, order line
– business fact types: order has order line, order is critical, order

has due date, order has discount, order has customer, customer is
loyal customer, customer is corporate customer,... Place order can
manipulate the business fact types ‘order has order line’ and ‘order
has due date’,...

p rules:

– “Initially a buyer has the permission to perform a place order activity.”
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– “When a buyer completes a place order activity, the seller has the
obligation to perform a accept order activity or a reject order activity
within 2 time units.”

– “When the buyer completes a place order activity, the buyer has the
obligation to perform a pay activity within 2 time units after the seller
completes the ship activity.”

– “When the seller completes a accept order activity, the seller has the
obligation to perform a ship activity within 2 time units.”

– “ There exists exactly one place order activity that has parent a handle
purchase order activity.”

– “There exists at most one accept order activity that has parent a handle
sales order activity.”

– “Activities that have type place order, accept order, reject order and
ship order must not be performed in parallel.”

– “Accept order and reject order activities are mutually exclusive.”
– “Accept order and ship activities are mutually inclusive.”
– “After the start of a ship activity, the order lines of the order can no

longer be changed.”
– “Each order has at least one order line.”
– “The agreed price of a sales item is less or equal to the standard price

of the sales item.”
– “An order has a 10 percent discount if the order is from a loyal cus-

tomer.”
– “An agent that has age less than 18 years can not perform a place

order activity.”
– “An agent that has function junior sales representative can not perform

an accept order or reject order activity that is identified by an order
that has an amount larger than 2000 euro.”

– “Coordinate purchase order can make visible the business fact type
‘order has rejection notice.” “It is necessary that a rejection notice is
only visible to an agent that is a corporate customer.”

– “A buyer can subscribe to completed in the context of ship.” “It is not
possible that an agent that has role buyer perceives an event that is
about a ship activity for an order that has a total amount of less than
2000 euro.”

3.2 The EM-BrA2CE Vocabulary

In this section, we define a unifying foundational vocabulary for declarative pro-
cess modeling. Foundational vocabularies provide the conceptual building blocks
upon which domain-specific vocabularies are built. In general, one can distin-
guish a layered hierarchy of modeling levels, such as the one displayed in Ta-
ble 3.1. The displayed hierarchy distinguishes between real-world concepts, data
instances, domain-specific vocabularies, foundational vocabularies, and ontology
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Figure 3.2: Payment-after-shipment

languages. In the top-four layers in this meta-modeling infrastructure there exists
instantiation-classification relationships between the concepts of subsequent lay-
ers, although there can also exist instantiation-classification relationships within
a single modeling layer (Atkinson and Kühne, 2003).

Table 3.1: Traditional layering of ontologies
modeling level definition and example
meta-metamodel or
ontology language

A language to represent ontologies. For example, OWL, MOF/UML, the
SBVR Meaning and Representation Vocabulary.

metamodel or
foundational vocabulary

The conceptual building blocks upon which domain-specific vocabularies
are built. For example, the UML, the SBVR Vocabulary for Describing
Business Vocabularies.

model or
domain-specific vocabulary

A domain model of real-world concepts. For example a UML class dia-
gram or an SBVR business vocabulary.

data or instance A logical representation of a real-world concept. For example, purchase
order data.

real-world concept For example, a purchase order.

Foundational vocabularies for process modeling provide conceptual building
blocks for modeling business processes. In the literature there are many foun-
dational vocabularies for process modeling and enterprise modeling. These are
all different, but they share a common tradition of conceptual modeling. In this
section, we define a new foundational vocabulary for declarative process modeling
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that is called the EM-BrA2CE Vocabulary. EM-BrA2CE stands for ‘Enterprise
Modeling with Business Rules, Agents, Activities, Concepts and Events’. The
acronym indicates the main building blocks of the language. To a large extent,
these building blocks also appear as synonyms or homonyms in many other foun-
dational ontologies for process modeling. In particular, the EM-BrA2CE Vocabu-
lary adopts a selection of concepts within the following foundational vocabularies:

p The reference model and workflow glossary of the Workflow Management
Coalition (WfMC) (1995, 1999).

p The Semantics of Business Vocabulary and Rules (SBVR) initiative for con-
ceptual modeling and business modeling issued as an Object Management
Group (2008) standard.

p The Web Service Modeling Ontology (WSMO) (Roman et al., 2005) which
is a foundational ontology for representing semantic web services developed
by the Digital Enterprise Research Institute (DERI).

p The Role-Based Access Control (RBAC) which is a flexible access con-
trol model developed by Ferraiolo et al. (2001); Sandhu et al. (1996) and
standardized with the InterNational Committee for Information Technology
Standards (INCITS) (2004).

p The Agent-Object-Relationship (AOR) modeling approach of Wagner (2003)
that distinguishes agents as entities that can have deontic assignments and
that can consist of other agents.

In the definitions of the EM-BrA2CE Vocabulary, we make reference to the origin
of adopted concepts and indicate potential differences. The aim of the vocabulary
is to have a maximal expressiveness while introducing only a minimal number of
concepts. Therefore, we have attempted not to differentiate too much by intro-
ducing too many specializations of concepts.

This section is structured as follows. First, we motivate why the SBVR was
chosen as ontology language. Subsequently, an introduction to the SBVR Meaning
and Representation Vocabulary is provided. In the next section, the EM-BrA2CE
Vocabulary is defined that extends the SBVR Meaning and Representation Vo-
cabulary. In particular, building blocks such as business concept, activity, state,
agent, event, and deontic assignment are defined.

3.2.1 Candidate Ontology Languages

There exist several candidate ontology languages that can be used to define a foun-
dational vocabulary for declarative process modeling. Among the most prominent
candidates are first-order logic, the tandem Meta Object Facility(MOF) / Unified
Modeling Language (UML) (Object Management Group, 2006c), and the Web
Ontology Language (OWL). From these candidates we choose to model the meta-
model in terms of the vocabularies provided by the Semantics of Business Rules
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and Vocabulary (SBVR) language (Chapin, 2005; Object Management Group,
2008). The SBVR was chosen because it possesses many desired properties:

p Model granularity. Information models can use different levels of granu-
larity to represent concepts in the world. In the last decade two paradigms
have emerged: object-level and fact-level granularity. Fact-orientation per-
ceives the world in terms of facts rather than in terms of objects, attributes
and relationships. Fact types have a finer granularity compared to object
types. This facilitates the expression of business rules (Halpin, 2000) and
postpones implementation decisions about grouping attribute and relation-
ship types into object types (Halpin, 1991; Leung and Nijssen, 1988).

p Local Closure. In knowledge representation one has to deal with incom-
plete knowledge of the world. In SBVR it is possible to indicate the pred-
icates (fact types) over which the model has complete knowledge. Such a
construct is called local closure and it is possible to indicate local closure
in SBVR. In general, two assumptions are possible: an open-world and a
closed-word assumption (Brachman and Levesque, 2004). Under an open-
world assumption (OWA) it is accepted that a model incompletely repre-
sents the world. Under a closed-world assumption (CWA) it is assumed
that the model completely represents the world. Both assumptions lead to
a different semantics, for instance when reasoning with negation (Wagner,
1991). In the SBVR, it is possible to indicate the concepts and fact types
over which the model represents complete information, thus enabling local
closure.

p Business rules as natural language expressions. As business rules are
most often formulated as (natural) language statements, the SBVR con-
tains an English vocabulary for describing vocabularies and stating rules
and a vocabulary to express the meaning of (natural) language expressions
in terms of formal logic. The processing of natural language pertains to
the Artificial Intelligence domain of Natural Language Processing (NLP). It
involves on the one hand the understanding of natural language statements
in terms of semantic formulations (Baisley et al., 2005), and on the other
hand the verbalization of semantic formulations into natural language state-
ments. To date, two SBVR natural language parsers have been developed:
the Unisys Rules Modeler (Baisley, 2005; Unisys, 2005) and SBeaVeR (Dig-
ital Business Ecosystem (DBE), 2007). These parsers analyze the meaning
of natural language expressions in terms of semantic formulations.

p Rule modality. One of the characteristics of declarative process models is
that they make a distinction between business rules that cannot be violated,
rules that can be violated and guidelines. The current SBVR specification
requires business rules to be either a necessity, an obligation, a prohibition
or a possibility.
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p Reification. The SBVR allows propositions to be treated as concepts in
their own right. As such, propositions can be made about other proposi-
tions. This is called ‘objectification’ in the standard. Objectification is, for
instance, useful to represent that a particular business fact has been asserted
or retracted in the context of a given activity.

The SBVR has many features that make it an attractive languages for declarative
process modeling. Nonetheless the SBVR does also have its shortcomings.

p No temporal logic. The semantics of SBVR expressions is underpinned
by first-order logic, Simple Deontic Logic, restricted Higher-Order logic and
reification. Although Structured English provides two linguistic techniques
to express temporal relationships: objectification and intensional roles (Ob-
ject Management Group, 2008, p. 47, p. 243), it lacks a temporal logic to
represent and reason about temporal relationships. The inclusion of tempo-
ral logic is deferred to a later version of SBVR (Object Management Group,
2008, p. 108). In a dynamic world of business processes, such knowledge
representation and reasoning mechanisms are required to reason about prop-
erties qualified in terms of time or the effect of activities on the state of the
world.

p No default logic. Furthermore, the SBVR lacks the semantics to model
business rules in terms of a number of general rules and exceptions. Such a
means for representing and reasoning with default knowledge is, for instance,
provided by defeasible logic (Antoniou et al., 2001; Nute, 1994). This way of
knowledge representation is valuable, because it facilitates the incremental
specification of business rules (Grosof et al., 1999): new rules can be added
without the conditions of previous rules need to be reconsidered. Normal,
non-defeasible rules, in contrast, require a complete, encyclopedic knowledge
of all rules to be updated or decided upon.

p Complexity of natural language formulations. The current SBVR
specification imposes a restricted grammar to natural language formulations
that often turn out to be less understandable than a logical expression in a
common first-order syntax.

3.2.2 SBVR as Ontology Language

The Semantics of Business Vocabulary and Business Rules (SBVR) provides a
number of conceptual vocabularies for modeling any domain – including itself
– in the form of a vocabulary and a set of rules. As the EM-BrA2CE vocabu-
lary extends the conceptual vocabularies of the SBVR, these vocabularies will be
discussed in the remainder of this section.

In SBVR, meaning is kept separate from expression. As a consequence, the
same meaning can be expressed in different ways. In real-life, meaning is more
often expressed in textual form than in diagrams as statements provide more flex-
ibility in defining vocabulary and expressing rules. For these reasons, the SBVR
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specification defines a structured, English vocabulary for describing vocabular-
ies and verbalizing rules, called SBVR Structured English (Object Management
Group, 2008, p. 237). One of the techniques used by SBVR structured English
are font styles to designate statements with formal meaning. In particular,

p the term font is used to designate a noun concept.

p the name font designates an individual concept.

p the verb font is used for designation for a verb concept.

p the keyword font is used for linguistic particles that are used to construct
statements.

The definitions and examples in the remainder of the text use these SBVR Struc-
tured English font styles.

In SBVR a vocabulary and a set of rules make up a so called conceptual
schema. A conceptual schema with an additional set of facts that adheres to
the schema is called a conceptual model. Figure 3.3 depicts the relationship
of a conceptual schema and a conceptual model to some of the core building
blocks in SBVR. These core building blocks are part of the SBVR Meaning and
Representation Vocabulary. This vocabulary contains among others the following
definitions (Object Management Group, 2008, p. 37):

A conceptual schema is a combination of concepts and facts (with seman-
tic formulations that define them) of what is possible, necessary, permis-
sible, and obligatory in each possible world.
A conceptual model or fact model is a combination of a conceptual schema
and, for one possible world, a set of facts (defined by semantic formula-
tions using only the concepts of the conceptual schema).

The facts in a conceptual model may cover any period of time. Changing the facts
in a conceptual model creates a new and different conceptual model. In this way
the SBVR gives conceptual models a monotonic semantics (Object Management
Group, 2008, p. 91).

Informally speaking, the nouns and verbs that occur within a particular vo-
cabulary can be related to noun concepts (or object types) and verb concepts
(or fact types). In natural language, the grammar of a basic sentence can be
seen as a subject-verb-object triple. Just as verbs can have the roles of subject
and object in a sentence, verb concepts can have roles that refer to noun concepts
playing a part, assuming a function or being used in some situation. In the SBVR
Meaning and Representation Vocabulary, depicted in Figure 3.4, these concepts
are formally defined as follows.

A meaning represents what is meant by a word, sign, statement, or de-
scription; what someone intends to express or what someone understands.
A concept is a meaning that represents a unit of knowledge created by a
unique combination of characteristics.
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SBVR:ConceptualSchema

SBVR:ConceptualModel

SBVR:VerbConcept

SBVR:Concept

SBVR:Factis in
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is closed in

is semi-closed in

is in includes

is internally closed in

underlies

is based on

fact type has fact in conceptual model 

Figure 3.3: A MOF/UML representation of SBVR conceptual schema and model
(Object Management Group, 2008)

A verb concept or fact type is a concept whose instances are all actuali-
ties and that is a basis for atomic formulation, having at least one role.
Concept type: concept type.
A noun concept is a concept that is not a verb concept. Concept type:
concept type.
An individual concept is a concept that corresponds to only one thing.
General concept: noun concept. Concept type: concept type.
A role is a noun concept that corresponds to things based on their playing
a part, assuming a function or being used in some situation. Necessity:
each role is of at most one fact type. ‘Verb concept has role’ is an ab-
straction of a thing playing a part in instances of the fact type. Concept
type: concept type.
A concept type is a noun concept that specializes the concept ‘concept’.
‘Concept1 specializes concept2’ the concept1 incorporates each character-
istic incorporated into the concept2 plus at least one differentiator. This
represents the specialization-generalization relationship.
An SBVR:proposition is a meaning that is asserted when a sentence is
uttered or inscribed and which is true or false.
An SBVR:fact is a proposition that is taken as true.

Although concepts have a particular meaning, by themselves they do not con-
stitute any statement about what is true, possible, necessary, permissible, and
obligatory in a possible world. Such statements can be expressed by means of
rules. The SBVR Vocabulary for Describing Business Rules, depicted in Figure
3.5, contains among others the following abbreviated definitions.

A business policy is a directive that is not actionable whose purpose is
to guide an enterprise.
A rule is an actionable directive that introduces an obligation or a necessity.
A business rule is a rule that is under business jurisdiction. ‘business rule
is derived from business policy’ represents the business policy from which
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SBVR:IndividualConceptSBVR:ConceptType

SBVR:NounConcept SBVR:VerbConcept

SBVR:Proposition

SBVR:Meaning

SBVR:Concept

SBVR:Role

SBVR:Fact
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1..*

1

*
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*

Figure 3.4: A MOF/UML representation of the SBVR Meaning and Representation
Vocabulary

a business rule originates.
A structural (business) rule is a (business) rule that is intended as a def-
initional criterion. A structural rule expresses a necessity that cannot be
violated.
An operative business rule is a business rule that is intended to produce
an appropriate or designed effect. An operative business rule expresses
an obligation that can be violated.
A level of enforcement is something that represents a position in a graded
or ordered scale of values that specifies the severity of action imposed
in order to put or keep an operative business rule in force. ‘operative
business rule has level of enforcement’ the level of enforcement that a
particular operative business rules has.

The SBVR defines a business rule as a rule under business jurisdiction that is
derived from a business policy. This definition can be seen as too limited because
very often rules are imposed on organizations by a third party. On the other
hand, imposed rules always have to be internalized and in that regard the defi-
nition remains useful. A salient feature is to assign a level of enforcement to an
operative business rule expressing an obligation or a prohibition. In this way a
less crisp distinction can be made between strict business rules (hard constraints)
and guidelines (soft constraints).

In SBVR, meaning remains separate from expression. The SBVR provides a
vocabulary called the Logical Formulation of Semantics Vocabulary to describe
the structure and the meaning of vocabulary and business rules in terms of for-
malized statements about the meaning. Such formalized statements are semantic
formulations (Baisley et al., 2005). Besides these fundamental vocabularies, the
SBVR provides a discussion of its semantics in terms of existing, well-established
formal logics such as first-order logic, deontic logic, and higher-order logic.

3.2.3 The EM-BrA2CE Vocabulary

Although the SBVR provides extensive vocabularies for expressing business vo-
cabularies and business rules, the current SBVR specification (Object Manage-
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Figure 3.5: A MOF/UML representation of the SBVR Vocabulary for Describing
Business Rules

ment Group, 2008) does not have a built-in vocabulary for expressing process-
related concepts such as agent, activity, event, or deontic assignment. These
concepts are introduced by the EM-BrA2CE Vocabulary.

The EM-BrA2CE Vocabulary defines instance-level concepts that are meant
for describing the state of a business process instance. In addition, it defines type-
level concepts that are meant for describing the state space of a business process
model. In conceptual modeling, it often occurs that instances of types that are
types themselves (Atkinson and Kühne, 2003; Halpin, 2004). This paradigm is
known as higher-order typing. In UML, higher-order typing can be obtained us-
ing the UML stereotype mechanism (Atkinson and Kühne, 2003) or using UML
powertypes (Object Management Group, 2005). Figure 3.6(a) is a MOF/UML
class diagram representation of the instance-level concepts in the vocabulary.
Likewise Figure 3.6(b) represents the type-level concepts. Whereas all instance-
level concepts extend SBVR:individual concept, all type-level concepts extend
SBVR:concept type. To each instance-level individual concept a particular type-
level concept type corresponds. In the following paragraphs these type-instance
pairs are defined.

Business Concept – business concept type

The flexibility of declarative business process modeling comes, among others,
from the under-specification of process models and the use of guidelines (soft con-
straints). It does, however, not come from run-time adaptability of the process
model. Therefore, the vocabulary distinguishes fact types that can be manip-
ulated in the context of an activity, called business fact types. The following
definitions apply.

A business concept type is an SBVR:concept type that specializes the
individual concept ‘individual business concept’ and that classifies an
individual business concept. Example: the business concept type ‘purchase
order’.
An individual business concept is an SBVR:individual concept of which
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the facts can be manipulated in the context of an activity. Concept type:
business concept type.
‘individual business concept is a business concept type’ is an SBVR:assort-
ment fact type that categorizes a business concept as being of a partic-
ular business concept type. Example: the individual business concept
‘anOrderX’, the fact ‘anOrderX is a purchase order’.
A business fact type is an SBVR:fact type that has only business concept
types as SBVR:role.
Example: the business fact type ‘purchase order has due date time point’.
A business fact is an SBVR:fact that is the basis for an atomic formula-
tion of which every role binding is bound to a business concept. Concept
type: business fact type.
Example: the business fact ‘anOrderX has due date July 2007’.

As mentioned earlier, the vocabulary contains both type-level concepts and
instance-level concepts. A business concept type, for instance, is a type-level
concept. It is a classification type of individual business concepts. This means
that every instance of a business concept type is a sub-class of individual business
concept. In the semantics of UML 2.0, business concept type can be thought of
as a powertype. This is represented in Figure 3.7.

anOrderX : Purchase Order

has due date = "July  2007"

Purchase Order

has due date : time point

Order Line

Business
Concept

Type

Individual
Business
Concept

: Bussiness 
Concept Type
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1
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Figure 3.7: A UML 2.0 powertype representation of business concept type

Activity – activity type

The pair activity – activity type represents two of the most central concepts in
the vocabulary. The following definitions apply:

An activity type or service capability is an SBVR:concept type that spe-
cializes the individual concept ‘activity’ and that classifies an activity.
Example: the activity type ‘place order’.
An activity or service instance is an SBVR:individual concept that repre-
sents a unit of (coordination) work to be performed by an agent. Example:
the activity ‘anActivityX’.
‘activity has type activity type’ is an SBVR:assortment fact type that
categorizes an activity as being of a given activity type. Necessity: each
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activity has type exactly one activity type. Example: anActivityX has
type coordinate purchase order.

The design principle “coordination work is work” is recognized in the definitions
of activity: an activity can either represent the act of performing an atomic unit of
work or the act of coordinating a set of sub-activities. The former activity is called
an atomic activity whereas the latter activity is called a composite activity. The
fact types ‘can consist of ’ and ‘is parent of ’ indicate the activities a composite
activity can consist of.

‘Activity type1 can consist of activity type2’ is an SBVR:partitive fact
type that represents that an activity of activity type1 involves the coor-
dination of activities of activity type2.
‘Activity1 is parent of activity2’ is an SBVR:partitive fact type that rep-
resents an activity2 being composed of an activity1. Example: the fact
‘anActivityX is parent of anActivityY’.
A composite activity type is an activity type that describes a category of
composite activities. Example: the composite activity type ‘coordinate
purchase order’. Necessity: A composite activity type can consist of at
least one activity type.
An atomic activity type is an activity type that describes a category of
atomic activities. Example: the atomic activity type ‘place order’, the
fact type ‘coordinate purchase order can consist of place order’.
A composite activity is an activity that represents the coordination of a
number of activities.
An atomic activity is an activity that is not a composite activity and that
represents an elementary unit of work. Necessity: an atomic activity is
not parent of an activity.

When performing coordination work an agent can create an execution plan that
consists of a number of sub-activities. In that case, the agent is identified as the
coordinator of the created sub-activities. This is expressed by the has coordinator
verb concept. The coordinator can schedule each activity in the execution plan
for a particular due date, as expressed by the has scheduled due date fact type.
The has coordinator fact type, is set by the coordinator when he assigns a given
activity in the execution plan to a particular agent.

‘Activity has coordinator agent’ is an SBVR:associative fact type that
represents an agent coordinating an activity.
‘Activity has scheduled due date time point’ is an SBVR:is-property-of
fact type that represents the scheduled due date of an activity.
‘Activity has performer agent’ is an SBVR:associative fact type that rep-
resents an agent performing an activity. Necessity: an activity has per-
former exactly one agent. Note: The latter constraint is not restrictive,
since agents can form (ad-hoc) groups that are also agents.

An activity is uniquely identified by a set of business concepts. For example, a
business concept of business concept type purchase order uniquely identifies an
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activity of type coordinate purchase order. This is expressed by the has business
ID fact type. Another way of looking at business identifies is that they are the
object on which an agent performs an activity. Consequently, the has object fact
type is a synonym for the has business ID fact type and sets the business context
of a given activity.

‘Activity type has business ID type business concept type’ is an SBVR:as-
sociative fact type that represents the business concept types that can
identify an activity type. Example: coordinate purchase order has busi-
ness ID type purchase order.
‘Activity has business ID business concept’ is an SBVR:associative fact
type that represents an activity being (partially) identified by the business
concept. Synonym: ‘Activity has object business concept type’ Exam-
ple: anActivityX has business ID anOrderX or anActivityX has object
anOrderX.

When performing an activity of a particular activity type, an agent can manip-
ulate business facts of particular business fact types. This is expressed by the
‘activity type can manipulate business fact type’ fact type. Additionally, agents
can retrieve information about particular business fact types when performing
activities. The business fact types that are visible are indicated by the ‘Activity
type can make visible business fact type’ fact type.

‘Activity type can manipulate business fact type’ is an SBVR:associative
fact type that represents that a business fact of type business fact type
can be asserted or retracted during the performance of an activity of type
activity type. Example: place order can manipulate the business fact
type ‘purchase order has due date time point’.
‘Activity type can make visible business fact type’ is an SBVR:associative
fact type that represents the business fact types that can be made vis-
ible in the context of activities of activity type. Note: visibility can be
restricted by a visibility constraint. Example: coordinate purchase order
can make visible the business fact type ‘purchase order has due date time
point’.

Within the context of an activity, a worker can perceive and manipulate only
those business facts in which the business ID has a role. When an agent does
business fact manipulations during the performance of an activity, the result of
these manipulatations is temporarily reflected by the asserts and retracts verb
concepts. Only upon completion of the activity, the concept manipulations are
committed to the entire system, i.e. the outside world. Section 3.3 explains the
EM-BrA2CE execution model and discusses this mechanism in detail.

‘Activity asserts business fact’ is an SBVR:associative fact type that
represents a business fact has been asserted in the context of the activity.
Example: anActivityY asserts the business fact ‘anOrderX has due date
Juli 2007’.
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‘Activity retracts business fact’ is an SBVR:associative fact type that
represents a business fact has been retracted in the context of the activity.

State – state space

An activity type (business process model) can be modeled by describing a state
space and a set of business rules that constrain the possible transitions in this state
space. Consequently, an activity (business process instance) has a particular state
that corresponds to a specific set of facts that are true in this state.

A state space is an SBVR:conceptual schema that includes the SBVR:con-
cepts that describe a set of discrete states of an activity type. Necessity:
a state space can only contain concepts that are instances of the concepts
defined in the EM-BrA2CE Vocabulary.
‘activity type has state space’ is an SBVR:associative fact type that rep-
resents the state space of an activity. Necessity: an activity type has
exactly one state space.
A state is an SBVR:conceptual model that includes facts about the
concepts in the state space, that corresponds to a specific situation of
an activity and that is based on the state space of an activity type.
‘activity has state’ is an SBVR:associative fact type that represents the
state of an activity. Necessity: an activity has exactly one state.

State space is a specialization of an SBVR:conceptual schema, as depicted in Fig-
ure 3.8. Like a conceptual schema, a state space is described by the concepts,
fact types and facts that adhere to the state space. As such, a state space de-
scribes a potentially infinite number of states. Likewise, state is a specialization
of SBVR:conceptual model. Each state is based on a state space and contains a
number of facts that adhere to the fact types in that state space.

In natural language, state is most often a relative notion that consists of
a subgroup of states. For example, when defining the goal state of a business
process, it is useful to consider the notion of an abstract state. Goal state is a
concept that also occurs in WSMO.

An abstract state is a set of states that conform to the abstract state and
that is based on the state space of an activity type.
‘state conforms to abstract state’ is an SBVR:associative fact type that
a state corresponds to an abstract state.
‘state space has goal state abstract state’ is an SBVR:associative fact
type that represents an abstract state being a goal or end state of a state
space.
‘state space has start state abstract state’ is an SBVR:associative fact
type that represents an abstract state being the start state of a state
space.

An SBVR:business rule can be seen as a statement about an abstract state being
either a necessity, an obligation, a prohibition or a possibility.
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Figure 3.8: A MOF/UML representation of state and state space in the EM-BrA2CE
Vocabulary

A logic system is called monotonic when the set of ground facts and logi-
cal formula in the system can produce a set of consequences that monotonically
increases, even when new logical axioms are added. Logics with this property,
namely that a derived fact cannot be invalidated by the addition of a logical for-
mula that is consistent with this fact, are called monotonic logics. Conversely,
a logic is non-monotonic when the addition of a logical formula can produce a
reduction of the set of consequences that can be derived from it (Brachman and
Levesque, 2004). A classical example of a non-monotonic system is Prolog, as
its negation-as-failure entails that the addition of a fact might entail falsity of a
previously derived fact.

In the EM-BrA2CE Framework (composite) activities represent the (coordi-
nation) work that occurs in the context of business processes. When an activity
state transition occurs, a business process instance enters a new state and the
transition is recorded by an activity event. Furthermore, agents can manipulate
business facts in the context of an activity. Such a system that allows the ma-
nipulation of business facts could be interpreted as non-monotonic. However, the
solution of the SBVR can be adopted that considers each conceptual model, con-
sisting of a conceptual schema and collection of facts, as a logical system in its
own right. Each time the facts in a conceptual model are changed, this creates
a new and different conceptual model. In this way conceptual models are given
a monotonic semantics (Object Management Group, 2008, p. 77). This solution
also conserves monotonicity when using negation-as-failure.

Figure 3.9 illustrates a number of state transitions that occur to a place order
activity a1. Each state transition results in a new set of concepts and ground
facts, and thus a new state, that is partially represented in the columns of the
figure. As each new activity state is considered to be a new SBVR:conceptual
model, deductive reasoning can use a monotonic reasoning paradigm (Object
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Management Group, 2008, p. 77).
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Figure 3.9: An illustration of the state transitions of a place order activity a1

Agent – role

Business Process Management Systems (BPMSs) must support business processes
in which both humans and machines perform (coordination) work. To this end
it is useful make abstraction from the differences between humans and machines
through the use of the agent metaphor. This agent metaphor is present in many
other ontologies for business modeling (Guizzardi and Wagner, 2005; Wagner,
2003). In the vocabulary, the agent concept in the vocabulary does not only
represent individual workers or machines, but also ad-hoc groups of agents, such
as for instance an entire department or company. This is expressed with the
pertains to fact type. This construct is grounded in the holonic agent metaphor
of holonic muli-agent systems (holoMAS) (Weiss, 1999).

An agent or service provider is an SBVR:individual concept that repre-
sents an actor or a group of actors who can perform activities. Example:
the agents ‘workerX’, ‘purchase department’, ‘buyer inc.’.
‘Agent1 pertains to agent2’ is an SBVR:partitive fact type that represents
organizational structure and ad-hoc groups of agents. Example: the facts
‘workerX pertains to purchase department’,‘purchase department pertains
to buyer inc.’. Note: the ‘pertains to’ fact type is transitive.

In the context of a business process an agent can fulfill a particular role that repre-
sents an authorization to perform a number of activities. This conception of role is
consistent with the Role Based Access Control (RBAC) standard (Ferraiolo et al.,
2001; InterNational Committee for Information Technology Standards (INCITS),
2004; Sandhu et al., 1996). In the vocabulary the following definition applies:

A role is an SBVR:individual concept that represents a set of authoriza-
tions with regard to the performance of activities of given activity types.

Agents that have a particular role in the context of a business process have the
authorization to perform a particular activity. This authorization is expressed
by the ‘Role can perform activity type’ fact type. When performing an activity
of a particular activity type, an agent can manipulate business facts of particu-
lar business fact types. This is expressed by the ‘activity type can manipulate
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business fact type’ fact type. Additionally, agents can retrieve information about
particular business fact types when performing activities. The business fact types
that are visible are indicated by the ‘activity type can make visible business fact
type’ fact type. Business rules can constrain the ability of agents to perceive or
manipulate business facts, in spite of their role assignments. This is discussed in
section 4.1.

‘Role can perform activity type’ is an SBVR:associative fact type that
represents that an agent that has a given role can perform an activity of
a particular activity type.
‘Role can coordinate activity type’ is an SBVR:associative fact type that
represents the authorization that an agent of a particular role can coor-
dinate an activity of a particular activity type.
‘Agent can have role role’ is an SBVR:associative fact type that repre-
sents that an agent can assume a particular role.
‘Agent has role role in the context of activity’ is an SBVR:associative
fact type that represents that an agent assumes a particular role in the
context of an activity. Note: These authorizations can be restricted by
an activity authorization constraint.

The EM-BrA2CE execution model distinguishes activity state transitions related
to coordination (create, schedule, assign, revoke) and state transitions related
to performing actual work (start , addFact , removeFact , updateFact , complete).
Consequently, the vocabulary makes a distinction between the coordinator and
the performer of an activity. The activity hierarchy determines whether an agent
can coordinate an activity. In particular, when an agent has the authorization to
perform a particular composite activity, he has the authorization to coordinate
the activities of which the composite activity is parent. This is expressed by the
following business rules.

It is necessary that a role can coordinate an activity type1, if an activity
type2 can consist of the activity type1 and role can perform activity
type2.
It is necessary that an activity1 has coordinator an agent, if the activity1

has parent an activity2 and activity2 has performer the agent.

The activities that are performed by a subsidiary agent, are performed by the
agents to which the agent pertains.

Event – event type

In the last decades, events have been actively investigated in research communities
such as the Knowledge Representation domain, Active Database domain, the
architecture description domain. But even within these domains there exist quite
distinct notions of the concept ‘event’. A substantial distinction is whether these
events are considered volatile or non-volatile. Volatile events are perdurants
that are immediately consumed (removed) after detection. In the Active Database
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community event definition languages and event detection prototypes such as
for example SAMOS (Gatziu and Dittrich, 1993) and Snoop (Chakravarthy and
Mishra, 1994) have this conception of event. Non-volatile events, on the other
hand, are endurants that are never removed but are considered to persist. In the
Event Calculus (Kowalski and Sergot, 1986), for instance, events are considered
to persist. In active database systems, volatile events have been used to model
reactive behavior. Each time when an event is detected, it is reacted upon and
the event is removed from the model. The disadvantage of such an event removal
policy, however, is that it does not allow for detecting so-called composite events.
Composite events represent situations that correspond to the (non-)occurrence
of several (atomic) events. To detect composite events, events need to non-volatile
or they must at least be retained in the system during some time. Unlike atomic
events, which occur at a particular point in time, composite events occur over
a time interval that spans at least the occurrence times of each involved atomic
event. Many event detection languages, among which SAMOS and Snoop, do
not incorporate this interval logic and Galton and Augusto (2002) report on the
unintended semantics of some composite event operators in these languages.

In the EM-BrA2CE framework, the state of an activity (or service instance)
includes the event history of the activity or its sub-activities. Consequently, events
are given a non-volatile semantics. Although composite events are not considered
explicitly by the vocabulary, composite events can still be included in business
rules expressions.

An event is an SBVR:individual concept that corresponds to an instan-
taneous, discrete state change of a concept in the world.
A negative event is an SBVR:individual concept that records at at a given
moment a particular state change was requested, but could not take place.
‘Event is about SBVR:concept’ is an SBVR:associative fact type that rep-
resents the concept whose state change is reported by the event.
An event type is an SBVR:concept type that specializes the individual
concept ‘event’ and that classifies an event.
‘event type is type of event’ is an SBVR:assortment fact type that cat-
egorizes an event as being of a particular event type. Necessity: it is
necessary that an event has type exactly one event type.
‘event occurs at time’ is an SBVR:is-property-of fact type that represents
the time at which an event occurs.

Events report a state change of a concept in the world. Ferreira and Ferreira
(2006) show that it also can be useful to keep track of negative events. Negative
events report that a state change was requested, but that it was prevented from
taking place. Negative events provide information about disallowed transitions,
and are for instance useful for the purpose of process mining. For instance, when
an agent is not authorized to be assigned to perform a particular activity, this
can be recorded as a negative event of the event type assignRejected.

Unlike many ontologies for business modeling, such as for instance the Agent-
Object-Relationship (AOR) (Wagner, 2003) or Unified Foundational Ontology
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(UFO) (Guizzardi and Wagner, 2005), a distinction is made between activities
and events. Activities are performed by agents and have a particular duration
whereas events occur instantaneously and represent a state change in the world.
Changes to the life cycle of an activity are reflected by means of activity events.
The framework considers twelve generic activity state transitions that correspond
to twelve activity life cycle events.

An activity event type is an event type that describes a category of
activity state changes. Example: the activity event types ‘created’, ‘scheduled’,
‘assigned’, ‘revoked’, ‘started’, ‘factAdded’, ‘factRemoved’, ‘factUpdated’,
‘aborted’, ‘skipped’, ‘completed’ and ‘redone’.
An activity event is an event that corresponds to the state change of an
activity. Necessity: it is necessary that an activity event is about ex-
actly one activity. Necessity: it is necessary that an activity event has
exactly one activity event type. Example: anEventX, anEventX has type
scheduled, anEventX is about anActivityX.
A business fact event is an event that involves the state change of a
business fact. Necessity: a business fact event is about exactly one
business fact.

The distinction between activity and event allows for reactive behavior. At each
point during execution the history of a business process instance might be in-
spected through the use of an event query language. When an external event
is added to the current state of an activity, that activity enters a new state. In
this new state, the activity can undergo an additional transition as a reaction to
the external event. Because this second transition is also recorded as an activity
event, the system keeps track of its own state, reflecting the external (composite)
events that have been reacted upon. The latter prevents the system from reacting
twice to the same event.

The fact type ‘role can subscribe to event type in context of activity type’
expresses the visibility of events to agents in the context of an activity. It does
not express how agents are notified of the event, which can generally occur us-
ing either a pull, a push or a publish-subscribe mechanism (Bailey et al., 2005).
Furthermore, it is possible that the visibility is constrained by so-called event
subscription constraint business rules. All this is in accordance with the “declar-
ative communication logic” design principle.

‘role can subscribe to event type in context of activity type’ is an SBVR:as-
sociative fact type that expresses that an agent with a particular role can
subscribe to an event of event type in the context of an activity of activity
type. Example: seller can subscribe to completed in the context of ship.
‘agent perceives event’ is an SBVR:associative fact type that expresses
that an event is non-repudiable to a particular agent. Example: anAgentX
perceives anEventY.
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Deontic Assignment

In the literature, there are many languages to reason about the permissions, obli-
gations, and prohibitions of agents with respect to performing particular activities
(Goedertier and Vanthienen, 2006d; Governatori, 2005; Knottenbelt and Clark,
2004; Maŕın and Sartor, 1999; Paschke and Bichler, 2005; Yolum and Singh, 2004).
Such deontic concepts are called deontic assignments in the vocabulary (Wagner,
2003). A deontic assignment represents among others the obligation or permission
of an agent to perform a particular activity by a particular due date.

A deontic assignment is an individual concept that represents an obligation,
prohibition, permission, conditional obligation or conditional permission
of an agent towards another agent (beneficiary) regarding the performance
of an activity with respect to a given due date.
‘deontic assignment has due date’
‘deontic assignment involves activity’
‘deontic assignment has performer agent’
‘deontic assignment has beneficiary agent’
An obligation is a deontic assignment that represents the obligation of
an agent to perform a particular activity by a particular due date.
A permission is a deontic assignment that represents the permission of
an agent to perform a particular activity before a particular due date.

A deontic assignment can also be expressed conditionally. When an agent per-
forms a given activity, a conditional deontic assignment may result from it. For
instance, in the shipment-after-payment process model visualized in Figure 3.2 a
buyer makes a conditional commitment when he places an order. In particular,
a buyer has the conditional obligation to pay the seller if the seller accepts the
order. If the seller rejects the order, no obligation results from it. The following
definitions are included in the vocabulary:

An conditional obligation is a conditional deontic assignment that rep-
resents the conditional obligation that rests on an agent to perform a
particular activity before a given due date, after – and on the condition
that – a particular agent has done a particular activity within a particular
due date.
An conditional permission is a deontic assignment that represents the
conditional permission of an agent to perform a particular activity before
a particular due date, after – and on the condition that – a particular
agent has done a particular activity within a given due date.
‘conditional deontic assignment has conditional due date date’
‘conditional deontic assignment involves conditional activity’
‘conditional deontic assignment has conditional performer agent’
‘conditional deontic assignment has conditional beneficiary agent’

The existence of deontic assignments is entirely defined by temporal deontic rules
and is dependent on the historic behavior of agents playing a particular role in
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the context of a composite activity. Deontic assignments should not be confused
with the deontic propositions of the SBVR. The Deontic propositions in SBVR
resemble those of Standard Deontic Logic (SDL) (Føllesdal and Hilpinen, 1971)
and express that a particular state of affairs is permissible, necessary, obligatory
or prohibited. Like SDL the SBVR expresses the obligation to bring about a
certain proposition in an impersonal way: it cannot express the agent to whom
a particular obligation or permission applies. Another difference with deontic
assignments is that deontic propositions are static; they cannot represent deontic
properties that come into effect and cease to hold because of timeouts on deadlines
or other events. Finally, the SBVR is not able to express so called contrary-to-
duty obligations (Governatori and Rotolo, 2002), reparative obligations that come
into existence as the result of the violation of an obligation. For instance, after a
due date on an obligation to pay has passed, a violation event occurs.

A violation event is an event that occurs when an agent does not perform
an obligation within the due date of that obligation.
Necessity: Each violation event is about exactly one obligation.

Many deontic logics are closed such that, for instance, prohibition can be derived
from the lack of either an obligation or a permission deontic assignment. It would
however be unfair to assume that a process modeler must specify deontic assign-
ment rules for each activity type that occurs within a process model. Therefore
it is useful to indicate the activities for which explicit deontic assignments must
be derived in order to perform them (Segerberg, 1982). This is expressed by the
is-property-of fact type ‘activity type is deontically closed in state space’.

‘activity type is deontically closed in state space’ is a fact type that
expresses that in each state based on the state space, the entire extension
of every deontic assignment that involves an activity of the activity type
is given in the facts included in the state.

When an activity type is deontically closed in a state space, prohibition is derived
from the absence of permission or obligation. When, in contrast, this is not the
case, no deontic assignment can be derived from the absence of information.

Non-functional, Quality-of-service Concerns

Given its origin in telecommunication, the term ‘quality of Service’ (QoS) at
first sight has little ado with business modeling. However, in the academic re-
search involving web services, the term quality of service refers to a number of
non-functional quality requirements such as availability, robustness, scalability,
security and trust information (Roman et al., 2005). QoS concerns are also busi-
ness concerns that can be specified in a language that the business understands.
The vocabulary considers the following QoS concerns.

Spatial availability is a quality of service specification that determines the
location from which activities of a given activity type can be performed
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or that business facts of a given business fact type can be accessed.
Temporal availability is a quality of service specification that determines
the amount of time during a time period that activities of a given activity
type can be performed or that business facts of a given business fact type
can be accessed.
Response time is a quality of service specification that determines the
maximum time period it may take to perform a state transition on an
activity of given activity type or on a business fact of a given business
fact type.
Throughput is a quality of service specification that determines the ratio
of activity state transitions or business fact accesses per unit of time.
Historic window is a quality of service specification that determines the
time period during which historic information about activity events or
business concept manipulations must be stored.
Latency is a quality of service specification that determines the maximum
delay by which concept modifications are propagated.
Security is a quality of service specification that determines the identity,
privacy, alteration and repudiation facets related to performing activities
or consulting information.

Quality of service specifications can be imposed both on fact types (information)
and activity types (processes). QoS concerns must be both information- and
process-aware rather than exclusively information- or process-driven. This entails
that Quality of Service (QoS) specifications on information access should contain
information about the activity (or service) context in which information is re-
trieved. This is particularly important when the same information (or facts) is
required in the context of different activities with different QoS requirements. For
example, when verifying whether a customer is a high-volume customer, it is not
so important to have zero latency on the historic sales records that are consulted.
In contrast, when determining the total amount of outstanding debt with a cus-
tomer, it is likely that sales records must be consulted without latency. Clearly
the activity context in which information (facts) are retrieved is an important
differentiator of QoS specifications. This is reflected in the vocabulary:

‘Fact type must have temporal availability in the context of activity type’
‘Fact type must have spatial availability in the context of activity type’
‘Fact type must have response time in the context of activity type’
‘Fact type must have throughput in the context of activity type’
‘Fact type must have historic window in the context of activity type’
‘Fact type must have latency in the context of activity type’
‘Fact type must have security in the context of activity type’

QoS specifications on information (or fact types) must be process aware. This
relation also holds in the opposite sense: QoS specification on processes (or activ-
ity types) must be information aware. The latter is particularly important when
strict QoS specifications on business processes are disproportionate with less strict
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QoS specifications on information. The fact types ‘activity type can manipulate
business fact type’ and ‘activity type can make visible business fact type’ keep
track of the business fact types that are accessed by activities of a given activity
type. It can be used to determine whether activity type QoS specifications are
aligned with fact type QoS specifications.

‘Activity type must have spatial availability’
‘Activity type must have temporal availability’
‘Activity type must have response time’
‘Activity type must have throughput’
‘Activity type must have historic window’
‘Activity type must have latency’
‘Activity type must have security’

Cost and Time Concerns

Cost and time concerns affect the coordination of activities (or services). For
example, in an order acceptation process, a sales representative will not include
an expensive ‘review creditworthiness’ activity that is disproportionate with the
insignificant amount of the order. Likewise, a sales representative would not
schedule a slow, time-consuming shipment for a rush order of an important cus-
tomer.

The performance of an activity (or service) inadvertently has financial impli-
cations. When activities are performed among agents of different organizations,
the financial implication is called a price. When activities are performed among
agents that pertain to the same organization, the financial implication is called
a cost. O’Sullivan et al. (2002) discuss different techniques for agents (or service
providers) to charge money for providing their services and to settle payment.
Within organizations cost accounting techniques are usually put in place to deter-
mine the internally incurred cost of the activities (or services) that are performed
and corresponding incentive-compatible cost allocation models. The EM-BrA2CE
Vocabulary does not provide a vocabulary to express charging styles, settlement
models, or allocation schemes. Instead, it provides a single cost measure that in-
forms the coordinator of an activity about the expected financial impact of having
the activity performed.

Cost of performance is the cost that is incurred when performing a given
activity.
‘Activity has an expected cost of cost of performance’ is an SBVR:is-pro-
perty-of fact type that represents the cost of performance that is expected
to be incurred prior to the start of the activity. Example: anActivityY
has an expected cost of 4.5 euro.

Derivation rules can specify the fact type ‘activity has an expected cost of cost of
performance’ based on the properties of the activity such as the activity type, the
agent assigned to perform the activity, the object (or business id) of the activity
and the scheduled due date of the activity.
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The performance of an activity (or service) inadvertently takes time. When
performing a coordination activity, a coordinating agent must take into account
the scheduled due date of the coordination activity. In particular, all required sub-
activities in the execution plan of the coordination activity must be completed
prior to the completion of the coordination activity. For instance, when a sales
representative coordinates the processing of a sales order, the order acceptation
and shipment sub-activities must be completed before the due date imposed on the
coordination activity. Many non-functional properties influence the time required
for a service provider to perform an activity: capacity, throughput, arrival rates.
The EM-BrA2CE Vocabulary does not provide a vocabulary to express these
concerns. Instead, it provides a time measure that informs the coordinator of an
activity about the expected duration of performing an activity.

Duration of performance is the duration that is required to perform an
activity.
‘Activity has an expected duration of duration of performance’ is an
SBVR:is-property-of fact type that represents the expected time needed
to complete a particular activity. Example: anActivityY has an expected
duration of three working days.

Derivation rules can define the fact type ‘activity has an expected duration of
duration of performance’ based on the properties of the activity such as the agent
assigned to perform the activity and the object (or business id) of the activity .

3.3 Execution Semantics

Albeit a unifying framework for declarative process modeling, the EM-BrA2CE
Framework can still benefit from a specific and formal execution model. A spe-
cific execution model further clarifies the meaning of the concepts defined in the
vocabulary. Furthermore, given a formal execution model, it becomes possible
to enact process models that have been modeled using concepts in the frame-
work, potentially supplemented with specific business rules expressed in existing
languages for declarative process modeling. In Section 4.3, for instance, we use
the EM-BrA2CE execution model for building two declarative simulation models.
The execution model can be used to build a declarative workflow management
system prototype, such as Pesic et al. (2007a) have done for DECLARE, which
incorporates the ConDec language.

In the literature, there exist many process modeling languages that all have
their specific execution semantics. It seems not possible to include the execution
semantics of all these languages in one unified execution model without intro-
ducing contradictions. Every execution model necessarily makes design choices.
Whilst avoiding being over-specific, the EM-BrA2CE Framework aims at incorpo-
rating the activity life cycles of a number of important languages and paradigms
that have appeared in the literature. In particular, the execution model is influ-
enced by the activity life cycles involved in the case handling paradigm (van der
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Aalst et al., 2005), the dynamic discovery and invocation of web services (W3C,
2004b), the choreography and orchestration of semantic web services, such as by
the Web Service Execution Environment (WSMX) (M. Zaremba, 2005), and the
state transitions considered by the Mining eXtensible Markup Language (MXML)
format for event logs (van Dongen and van der Aalst, 2005a).

3.3.1 Colored Petri Nets

Günther and van der Aalst (2005) show how it is possible to represent the exe-
cution semantics of the case-handling paradigm in terms of a Colored Petri Net
(CP-Net). This approach can be generalized towards the state space and state
transition types considered by the the EM-BrA2CE Framework.

There are several reasons for choosing CP-Nets. First of all, CP-Nets have
a formal semantics (Jensen, 1993, 1996). Furthermore CP-Nets represent an ex-
pressive, high-level modeling language that portrays more modeling convenience
compared to, for instance, classical Petri nets. Although each CP-net can be
translated into a classical Petri net and vice versa, this does not guarantee the
suitability of Petri Nets for modeling in practice (Jensen, 1993). In particular,
it is difficult to model data manipulations with classical Petri nets, not allowing
for token colors. Another reason for using CP-Nets is that CP-Net models can
be simulated, making CP-Nets suitable for rapid prototyping process models and
for generating artificial data sets of event logs that can later be used to evaluate
the performance of process mining algorithms (Alves de Medeiros and Günther,
2005). Additionally, CP-Nets allow for formal state space analysis that would,
in theory, allow for directly analyzing the state space of individual declarative
business process models. However, the inclusion of fact-oriented case data and
event history into the state space of process models can be expected to result in
too large a state space for analyzing realistic models.

Jensen (1996) provides an extensive introduction to the semantics and analysis
methods of CP-Nets. Throughout this section the semantics of CP-Nets in terms
of their differences to classical Petri nets will be informally discussed whenever a
new language construct is encountered.

3.3.2 Places and Color Sets

Just like in classical Petri nets, the state or marking of a CP-Net is represented
by the tokens that reside in each of the places of the CP-Net at a particular
moment. Unlike classical Petri nets, however, CP-Nets allow to associate a data
type, called a token color, to each place in the CP-Net such that only tokens
of an indicated token color may reside in that place. It is possible for places to
contain tokens prior to the occurrence of any state transition in the net. Such a
start state or initial marking can be defined in terms of initialization expressions
for a particular place. The state space of an EM-BrA2CE process model can be
modeled using four places, depicted in Figure 3.10:
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Figure 3.10: The CP-Net places that span the EM-BrA2CE state space

p an agent place of token color AGENT of which the tokens represent the agents
that can coordinate or perform activities. A domain specific function init-
Agents() can be used to define the agents that are initially present. During
the execution of a business process, agents can come into existence or cease
to exist. Agents can also form ad hoc groups of agents (holonic agents) that
perform an activity as a whole.

p an activity place of token color ACTIVTY of which the tokens represent the
(composite) activities that are coordinated or performed by agents. The
initial marking this place consists of a so-called rootActivity, that is parent
to all other activity instances.

p a businessfacts place of token color FACTLIST that holds one list token
representing a list of business facts that can be manipulated by performing
activities. A domain specific function initFacts() can be used to define the
initial business facts, such as properties of agents, that are present in the
system.

p an eventhistory place of token color EVENTLIST that holds one list token rep-
resenting an ordered list of historic events that have taken place throughout
the life cycle of individual activity instances. This place contains the empty
list [] as initial marking.

This representation depicts how state in the EM-BrA2CE is constituted of a
current state of affairs represented by the agent, activity, and businessfacts

places and a history of past business events, represented by the eventhistory

place. There is some redundancy in this conception of business process state:
the current state of affairs can always be obtained by “replaying” the history of
past business events. However, this redundancy can be introduced without loss
of generality. Moreover, not having to calculate the current state of the process
model facilitates process modeling and improves efficiency of simulations.

In the source code below this paragraph, the above token colors are defined in
terms of Standard ML (Milner et al., 1990), a functional programming language
with compile-time type checking and type inference. The fact-oriented metamodel
of the EM-BrA2CE Vocabulary is translated into the color sets FACT, CONCEPT and
AGENT, which are here treated as synonyms. These color sets represent a quadruple
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consisting of a statement identifier (for reification purposes), a subject identifier,
a predicate representing one of the fact types and a value. For instance, the fact
that a worker workerX belongs to department departmentY is now represented as
a quadruple (statementZ,workerX,fromDepartment,departmentY). To express the
existence of an individual concept workerX of concept type agent the following
quadruple can be constructed: (statementZZ,workerX,has as type,agent). This
form of knowledge representations corresponds to RDF with reification (W3C,
2004a), one of the foundation languages of the Semantic Web. Notice treating
FACT and CONCEPT as synonyms is a simplification of the SBVR ontology language.
However, the simplification is only a limitation in the context of higher-order
typing. The idea of representing agents as tokens in a CP-Net is, among other,
present in van der Aalst’s (1998) representation of workflow.

colset CONCEPTid = int with cL..cU;

colset VALUE = union nb:INT + st:STRING + id:CONCEPTid;

colset NOUNCONCEPTTYPE = subset STRING with [...];

colset VERBCONCEPTTYPE = subset STRING with [...];

colset FACTTYPE = union nount:NOUNCONCEPTTYPE + verbt:VERBCONCEPTTYPE;

colset FACT = product (*the statement id*) CONCEPTid *

(*the subject id*) CONCEPTid *

(*the predicate*) FACTTYPE *

(*the object/value*) VALUE;

colset FACTLIST = list FACT;

colset CONCEPT = FACT;

colset AGENT = CONCEPT;

The ACTIVITY color set is a septuple composed of an integer that denotes the
non-business activity identifier, an activity type, a business id that is a list of
business concepts that uniquely identify the activity, an activity identifier that
denotes the immediate parent activity, an agent identifier that denotes agent
that is currently assigned as the coordinator or performer of the activity, a time
indication that denotes the due date by which the activity is to be performed, an
event list that keeps track of the concept manipulation events that have occurred
within the context of the activity. Furthermore, activity is defined as a timed
token. This allows to model time evolution. The idea of representing individual
activities as tokens in a CP-Net is based on Günther and van der Aalst’s (2005)
representation of Case Handling in CP-Nets.

colset ACTIVITYid = int with aL..aU;

colset ACTIVITYTYPE = subset STRING with [...];

colset ACTIVITY = product (*the activity id*) ACTIVITYid *

(*the activity type*) ACTIVITYTYPE *

(*the business id*) FACTLIST *

(*the parent id*) ACTIVITYid *

(*the coordinator/worker*) AGENTid *

(*the due date*) TIMESTAMP *

(*transaction events*) EVENTLIST

(*timed token*) timed;
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The EVENT color represents the activity events that have occurred. It is a
septuple represented as the cardinal product of an activity identifier, an activity
type, a business id that is a list of business concepts that uniquely identify an
activity, an event type denoting the nature of the activity state transition, an agent
identifier that denotes the agent who has brought about the state transition, a
list of facts that specify the event and a time indication that denotes the time at
which the state transition has occurred. The idea of incorporating history into
an event history token stems from van Hee et al. (2006), Although the authors do
not propose to incorporate activity events but rather propose to incorporate the
consumption and production of tokens in each input and output place as events.

colset EVENTTYPE = subset STRING with [ "created","createRejected",

"scheduled","scheduleRejected",

"assigned","assignRejected",

...,

"completed","completeRejected"];

colset EVENT = product (*the activity id*) ACTIVITYid *

(*the activity type*) ACTIVITYTYPE *

(*the business id*) FACTLIST *

(*the event type*) EVENTTYPE *

(*the coordinator/worker*) AGENTid *

(*event parameters*) FACTLIST *

(*the time of occurrence*) TIMESTAMP;

colset EVENTLIST =list EVENT;

Because each place in a CP-Net can contain multiple tokens, possibly of the
same token color, the content of a place can be represented as a multi-set.
This might raise the question why both the businessfacts and the eventhistory

place consist of exactly one list token containing an ordered list of tokens. The
reason for this modeling feature, is that it cannot be foreseen at design-time how
many tokens will actually be required in order to fire a transition. For instance,
it is not possible to foresee which and how many tokens representing business
concepts, business facts and events actually need to be inspected when deciding
upon assigning an agent to a particular activity. In addition, to trigger a transition
upon the non-presence of a token without using inhibitor arcs also requires this
modeling feature (Mulyar and van der Aalst, 2005). To overcome this problem,
it is required to take all business concept, business fact and event tokens into
consideration by removing a list with all tokens from both places, querying this
list and returning a potentially updated list of tokens upon termination of a
transition.

3.3.3 Transitions

As in classical Petri nets, the dynamics of CP-Nets come from transitions (rep-
resented as rectangles). Places in CP-Nets are linked to transitions via input
and output arcs. Input arcs indicate that a particular transition may remove
(consume) tokens from a particular place, whereas a output arcs indicate that a
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Figure 3.11: A CP-Net model of the Create transition

transition may add (produce) tokens to a particular place. Informally, a CP-Net
transition may fire (fire rule) when on each input place a required number of
tokens can be found that together satisfy the guard condition of that transition.
As a result of firing, a transition consumes a number of tokens on each input place
and produces a number of tokens on each output place. The value and amount
of tokens consumed and produced in place can be manipulated through the use
of arc expressions.

The Create Transition

The Create transition, depicted in Figure 3.11, is one of the most complex tran-
sitions in an activity life cycle as it involves many aspects:

p the determination of the activity type

p the determination of the activity identifiers

p the determination of the parent activity

p the determination of the agent who coordinates the activity

p establishing whether the activity can be created

p logging the creation of an activity as an event in the event history

In the remainder of this section these aspects are discussed consecutively.
The determination of the activity type of the activity that is about to be

created can be modeled by consuming and producing an ACTIVITYTYPE token from
the activitytype place and binding it to the variable at. As the same token is
consumed and produced by the create transition, the incoming and outgoing arc
are replaced by a bidirectional arc, that is both an input and an output arc.
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Because the ACTIVITYTYPE token is not timed, it can be consumed at the same
modeling time for the creation of other activities. This pattern applies to the
whole CP-Net, such that it allows for the desired behavior that activity state
transitions can occur concurrently.

In the EM-BrA2CE Vocabulary activities have two identifiers: a non-business
identifier and a business identifier. The determination of a non-business iden-
tifier is modeled using the “ID Manager” Pattern (Mulyar and van der Aalst,
2005). Initially the activityID place stores one token with an integer value de-
termined by initActivityID(). Each time the Create transition fires, the token is
consumed and used as an identifier for the activity to be created. In addition, the
incremented integer value is produced on the output arc. By incrementing and
memorizing the last identifier value, the uniqueness of the non-business identifier
can be guaranteed.

The determination of an activity business identifier is more complex as
it involves real-world business concepts. In some cases, the creation of a ac-
tivity will (in part) involve the creation of a new business concept whilst in
other cases the creation of an activity only involves the identification of exist-
ing business concepts. For instance, when a customer applies for credit, the
activity applyForCredit might be identified by a new business concept of type
creditApplication representing the new credit application. In contrast, when
a customer wants to modify the requested duration of the credit, the activ-
ity requestChange might be identified by the already existing creditApplication

business concept. This complexity is encapsulated within the guard condition
businessIDs(at,cs,cid)= SOME(bidcs,newcs,newcid). The function businessIDs

(at,cs,cid) takes as input the variable at, a list of existing business concepts,
bound to the variable cs and a unique identifier for new business concepts to
be created, bound to variable cid. On its output the businessIDs either re-
turns NONE when it fails to determine suitable business identifiers or a triple
SOME(bidcs,newcs,newcid) with respectively the existing and newly generated
business concepts and newcid with a properly incremented value of cid.

Some activities can exist only within the life cycle of a (composite) parent
activity, whereas other activities can also be created independently from a parent
activity. The latter activities have rootActivity as their immediate parent. The
logic of determining a proper parent for an activity to be created is encapsulated
in the isParent(parent,at,bidcs,cs) guard condition. The input variable parent

is bound to an ACTIVITY token from the activity place. Additionally, for a child
activity to be created, it required that the coordinating parent activity has already
started. This is expressed with the started(parent) guard condition.

Upon creation of an activity is is unclear who will eventually perform the
activity until an activity is assigned to a particular agent. Until that period,
the accountability for an activity can be attributed to the coordinating agent
(human or system) who has created the activity. In order to determine the co-
ordinating agent an AGENT token is consumed and produced from the agent place
and bound to the coordinator variable. When activities are created within the
context of a parent activity, the agent assigned to the parent activity is also the
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coordinator of the new child activity. For instance, when agentX has been as-
signed to the parent activity handleCreditApplication he is also identified as the
coordinator of a newly created child activity reviewCredit. When, in contrast,
an activity has the rootActivity as parent, an agent can only create an activity
when it has to role of an agent who can coordinate the particular activity. This
logic is concealed in the canCoordinate(coordinator,a,parent) guard condition.

Additionally, a set of domain-specific business rules might determine whether
the specified activity can be created or not. The guard condition

requestCreate(aid,at,bidcs,newcs,parent,coordinator,cs,eh)=SOME(a,e::es)

is a hook that allows for the evaluation of business rules to check whether an ac-
tivity with the specified features can be created. The creation of an activity might
depend on the evaluation of strict business rules (hard constraints) and upon the
freedom of choice of agents not to follow general guidelines (soft constraints) with
regard to the creation of a particular activity. When no activity is to be created
the function returns either NONE resulting in a failure of the guard condition or
SOME(a,e::[]) for which e is bound to an event of type createRejected. When
on the contrary an event must be created the function returns SOME(a,e::es). In
this case a is bound to a new activity token that is produced in place activity.
In addition, e is bound to an event of type created and es represents a list of
events that represents the newly created business concept identifiers (if any). The
arc expression 1‘parent ++ create(a,e) returns the parent token and, in the case
of a successful created event, a new activity token a. This activity token also
receives a token time that indicates the earliest time at which another activity
state transition can occur. In this way, time can be incorporated into the model.
The events es are added as transaction events to the newly created activity. Only
when the activity completes these transaction events are committed and affect
the list of business concepts and facts cs.

Via the arc expression logs(e::es,eh) multiple events related to the Create

transition are incorporated in the event history, bound to the variable eh. The
event e is of the event type created or createRejected. Additionally, the events
es, related to the newly created identifying business concepts also need to be
added to the event history.

The Schedule Transition

Time aspects are often an important aspect in the coordination of activities. An
important timing aspect is the time point at which an activity is expected to
be completed. In the EM-BrA2CE Vocabulary this moment is called the due
date of an activity. Due dates on activities originate from (informal) service-level
agreements, legal requirements or in-house timing policies and strategic plans.
When it becomes clear that an activity is not going to be fulfilled before due
date, coordinating agents must make alternative arrangements to speed up the
processing of the activity or the minimize the consequences of tardiness. Making
these arrangements is called deadline-based escalation by van der Aalst et al.
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Figure 3.12: A CP-Net model of the Schedule transition

(2007b). The authors classify a number of escalation mechanisms that can be put
in place and evaluate these mechanisms by means of simulation.

Figure 3.12 depicts the Schedule transition. In this transition the following
aspects are contained:

p the identification of the parent activity

p the identification of an agent who can coordinate the activity

p establishing whether the specified schedule does not violate any business
constraints or guidelines

p logging the scheduling of an activity as an event in the event history

In the remainder of this section these aspects are discussed consecutively.
In general, the life cycle of child activities is contained within the life cycle

of a parent activity. This means that activities are created only when their
immediate parent activity has already started. Furthermore, a child activity
must be completed prior to the completion of its parent activity. This conception
of composite activities has an important consequence for scheduling activities:
an activity cannot be scheduled with a due date later than the due date of its
parent. Both the activity to be scheduled a and its parent activity parent are
consumed from the activity place. Guard condition hasParent(a,parent) ensures
that parent is bound to the parent activity of a. Furthermore, guard condition
d <= dueDate(parent) ensures that the chosen due date d occurs before the due
date of the parent activity.

The agent who will schedule the activity, the coordinator, is identified via
the guard condition canCoordinate(coordinator,a,parent).

To check whether the chosen due date d does not violate any hard busi-
ness constraints and to model the freedom of choice with respect to observ-
ing soft business guidelines regarding deadlines, the Schedule transition has a
requestSchedule(a,parent,coordinator,cs,eh,d) = SOME(e) guard condition. Only
when the function requestSchedule(a,parent,agent,cs,eh,d) returns a scheduled
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event, the arc expression 1‘parent++schedule(a,e,d) will produce a parent to-
ken and an activity token with updated due date. When the function returns
a scheduleRejected event, the activity token a will not be updated. When the
function returns NONE, the transition will not take place.

When the state transition occurs, either a scheduled or a scheduleRejected

event is to be incorporated within the event history. For optimization purposes,
it can still be possible to leave out some of the activities in the event history.
These considerations are however, not relevant to the discussion of the semantics
of EM-BrA2CE.

The Assign and Revoke Transition

The coordination of activities also requires a coordinating agent to assign the
activity to an agent who will perform the activity. Conversely, when an agent can
no longer perform an activity as planned, the assignment must be withdrawn.
This is modeled in the CP-Net by means of the Assign and, its counterpart, the
Revoke transition depicted in Figure 3.13. The following aspects are contained:

p the identification of the coordinating agent and the agent who will be as-
signed to the activity

p checking whether the assignment or revocation does not violate any business
constraints or guidelines

p logging the assignment of an activity as an event in the event history

In the remainder of this section these aspects are discussed consecutively.
For an agent to be assigned to an activity, the activity must not yet been

assigned. Conversely, for an assignment to be revoked, the activity must have
been assigned to an agent. This is respectively expressed by the not(assigned(a))

and assigned(a) guard conditions.
To identify an agent that can coordinate the assignment or revocation of a

worker to a activity, an AGENT token must be bound to the coordinator variable
that satisfies the guard condition canCoordinate(coordinator,a,parent). To iden-
tify a worker agent, an AGENT token must be bound to the worker variable in the
assign transition.

To check whether an assignment or revocation does not violate any business
constraints or guidelines, respectively the

requestAssign(a,worker,coordinator,cs,eh)=SOME(e)

and

requestRevoke(a,coordinator,cs,eh)=SOME(e)

have been conceived. The variable e is bound to an event of type assign, assign-
Rejected or a revoked, revokeRejected respectively. In function of the event type,
the assign(a,e,worker) and revoke(a,e) arc expressions update the state of the
activity bound to a or make no activity state update.
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Figure 3.13: A CP-Net model of the Assign and Revoke transition
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Figure 3.14: A CP-Net model of the Start transition

The Start Transition

Once an activity has been assigned to a worker agent, the activity can finally
start. This start of an activity marks the moment from which a worker can ac-
tually perform operations that affect the environment or that collect information
about the environment. Figure 3.14 represents the logic of the Start transition.
As expressed by the not(started(a)) guard condition, an activity can only start
if it has not yet started. Moreover, the worker who triggers the start transi-
tion must be a worker that has been previously assigned to to the activity, as
expressed by the assignedTo(worker,a) guard condition. The guard condition
requestStart(a,worker,cs,eh)=SOME(e) is once again used to check whether
the starting of an activity violates any existing business rules.

The Fact Manipulation Transitions

During the performance of an activity a worker can bring about some changes
in the environment (the physical world) or retrieve some information from the
environment. These changes are reflected in the manipulation (the addition,
removal or update) of business concepts and facts that pertain to the state
space of an activity. Business concepts and facts, however, can be shared among
multiple activities that reside within the (information) system. Therefore such
manipulations can be treated in two different ways: a stateless and a stateful ap-
proach. In a stateless approach each manipulation is immediately proliferated
to the entire system to alter the state of all other concurrent activities. Because
the state of activities does not differ from the state of the information system,
this is called a stateless approach. In a stateful approach manipulations imme-
diately affect the state of the activity, but manipulations are only carried through
(committed) once the activity has completed. Case handling, for instance, uses a
stateless approach (van der Aalst et al., 2005), whereas BPEL4WS uses a stateful
approach (Curbera et al., 2003). Although both approaches are equally meaning-
ful, only the more complex stateful approach is modeled in the CP-Net model of
the data manipulation transitions.

Many different transaction handling mechanisms can be put in place to guaran-
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tee the integrity of data manipulations, for example expressed in terms of “ACID
properties” (however it is not always clear whether each ACID property is mean-
ingful in a collaborative environment (Dumas et al., 2005)). A solution based
on locking, for instance, is the distributed Two-Phase Commit (2PC) protocol
(Bernstein and Goodman, 1981). Case handling tools such a FLOWer implement
a 2PC transaction handling protocol. However, the required locking of business
facts during the long-running active part of an activity life cycle is often seen
as too restricting, inhibiting the concurrency of activities within business pro-
cesses. A solution to the concurrency problem is, for instance, offered by the
Tentative Hold Protocol (Roberts and et al., 2001). This protocol allows for
tentative, non-blocking holds or reservations to be requested when starting an
activity. When a worker has manipulated a business concept or fact in the con-
texts of performing an activity, other workers that have taken reservations on this
business concept are signaled that their reservations do no longer hold and arisen
conflicts are solved. Although transaction handling is a necessary requirement,
for reasons of clarity it has been left out of the CP-Net model of the EM-BrA2CE
activity life cycle.

Figure 3.15 represents a CP-Net model of the AddFact, RemoveFact and UpdateFact

state transitions. The following aspects are contained in the model and are con-
secutively discussed in the remaining paragraphs of this section:

p determining a unique concept identifier (statement id) in the case of addition

p identifying the business concept whose property is being manipulated (sub-
ject id)

p identifying the concept type of the fact to be manipulated (predicate)

p identifying the new value of the concept to be manipulated (concept value)

p identifying the worker as the worker that is assigned to the activity

p checking whether the manipulation does not violate any business rules

p logging the manipulation event and supplementing it to the activity trans-
action list (stateful approach)

When a new concept or fact is added during the performance of an activity,
this concept or fact must be asserted to the system using a globally unique iden-
tifier identifying the concept or fact as a reified statement (a statement id). The
determination of such a unique concept identifier is modeled using the “ID Man-
ager” Pattern (Mulyar and van der Aalst, 2005) and involves place conceptid, that
forms a fusion place that shares the same tokens with the previously discussed
businessID place. In principle another globally unique identifier is required when
adding a noun concept. However, without loss of generality, it can be assumed
that a noun concept identifier is equivalent to the identifier of the statement that
asserts its existence.
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Figure 3.15: A CP-Net model of the fact manipulation transitions
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The addition, removal or update of a business concept or fact requires the
identification of the fact type of the fact that is being manipulated. This is
modeled with the facttype place, from which a FACTTYPE token is taken and bound
to the ct variable. In the EM-BrA2CE Vocabulary, facts can only be manipulated
by an activity of a particular activity type when activity is of an activity type
that can manipulate the fact types of the fact. These concerns are captured by
the canModifyFactType(activityType(a),ct) guard conditions.

When adding or updating a concept or fact, a new value is to be generated.
Such a value of type VALUE can either be a number, a string or an identifier.
Two non-business requirements can be formulated for concept values. First, both
string and number values must pertain to the domain of the concept type. In
addition, values that refer to the business id (subject id) of other business con-
cepts must guarantee referential integrity. These concerns are present within the
generateFact(businessID:CONCEPTLIST,vcid:CONCEPTid,ct:FACTTYPE)
function.

The manipulation of business facts might lead to the violation of hard and soft
business constraints that are specified on these business facts. For instance, dur-
ing a requestChange activity, a registered customer might remove earlier provided
collateral information involving an open creditApplication. This might trigger a
warning message (soft or hard business constraint) that a creditApplication busi-
ness concept is incomplete without collateral information. By implementing func-
tions such as requestAddFact(a,worker,cs,eh,c), requestRemoveFact(a,worker,cs,
eh,c), and requestUpdateFact(a,worker,cs,eh,c1,c2) compliance to such business
rules can be enforced.

The arc expression log(e,eh) logs the data manipulations as activity events
in the event history. Nonetheless, data manipulations are not yet forwarded to
affect the business facts and concepts visible in the context of other activities.
Instead data manipulations are only carried through once the involved activity
has properly completed (stateful approach). Meanwhile every data manipula-
tion event e is added to the transaction list of an activity a by the functions
addFact(a,c,e), removeFact(a,c,e) and updateFact(a,c1,c2,e). This transaction
list is modeled as a list of data manipulation events and is included in the color
set of the ACTIVITY token. Upon completion of the activity, the transaction list is
committed to affect the globally visible business concepts and facts.

The Complete Transition

When a worker completes an activity, the work represented by the activity is con-
sidered to be completed and all data manipulations are proliferated to the entire
system. After completion, it is no longer possible for a worker to do supplemental
business fact or concept manipulations without reopening the activity instance
(modeled as a Redo transition). Figure 3.16 represents a CP-Net model of the
Complete transition. The following aspects are addressed:

p identifying the worker as the worker that is assigned to the activity
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p verifying that the activity has no active child activities

p verifying whether the completion of the activity does not violate any hard
or soft business constraints

p committing the business fact manipulation transaction list to update the
system’s state accordingly

p logging the completion event and removing any activity events from the
event history that are not able to affect the life cycle of other activities
(event garbage collection).

An activity can only complete if it has been previously started. This is ex-
pressed with the started(a) guard condition. The worker who decides upon com-
pleting an activity must be a worker that has been previously assigned to to the
activity, as expressed by the assignedTo(worker,a) guard condition. The guard
condition requestComplete(a,worker,cs,eh)= SOME(e) is once again used to check
whether the starting of an activity violates any existing business rules.

The work of coordinating a number of activities within a business process
is modeled as a (composite) parent activity. Consequently, for a child activ-
ity to be created, it required that the coordinating parent activity has already
started. Conversely, for an activity to complete it is required that the coordi-
nating parent activity is still active. The latter requirement is verified with the
noActiveChildren(a,eh) guard condition.

As discussed in the previous section, the CP-Net model contained in this
text models the stateful approach with respect to business fact manipulation.
During the execution of an activity each business fact manipulation is added to a
transaction list, modeled as a list of data manipulation events included in the color
set of the ACTIVITY token. Only upon completion of an activity the transaction
list is committed to affect the globally visible business facts. This operation is
modeled with the commit(cs,a,e) arc inscription.

The completion of an activity can trigger the creation or start of subsequent
activities that are temporally dependent upon the activity. In that case the com-
pletion of the activity is a valuable event that needs to be retained in the event
history. Other activity events (such as events of type created or scheduled) are
perhaps less valuable, because it is detected that there exist no business rules that
involve these activity events in relationship to life cycle events of other activity
types. As such events are not able to affect the life cycle of other activities it is
possible to remove them from the event history without side effects. This is called
event garbage collection. These concerns are concealed in the log(e,eh) arc
inscription.

The Abort, Skip and Redo Transitions

In addition to creating, scheduling and assigning an activity, coordinating an
activity could also involve the canceling, the imperfect (incomplete) termination
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Figure 3.16: A CP-Net model of the Complete transition

and reopening of an activity. The latter activity life cycle events are respectively
modeled as Abort, Skip and Redo transitions, depicted in Figure 3.17.

Sometimes it is necessary for a coordinating agent to cancel or abort an ac-
tive activity or even an entire group of activities. Such cancelation might be part
of natural behavior of activities in other cases it might be required to abort an
activity when an unforeseen exception occurs (Russell et al., 2006). For instance,
in a purchase process it might be required to request a price quote with a min-
imum number of suppliers. When a required number of proposals are received
from suppliers a purchase decision is made. At that moment any remaining ac-
tive request for quote activities can naturally be canceled out. When, on the
other hand, an external event would render the ongoing purchase unwanted, an
exception has occurred and all activities within the purchase process must be
aborted. An activity can only be canceled when it is in an active state, as mod-
eled with the active(a) guard condition. Furthermore, a parent (composite)
activity cannot be canceled when it still has active children, as modeled with the
noActiveChildren(a,eh) guard condition. The semantics of a “cascading abort”,
in which all active children of a composite activity are aborted, cannot be directly
modeled within the current CP-Net, as it cannot be foreseen how many activity
tokens (children) need to be consumed from the activity place. However, such
a “cascading abort” can be seen as the occurrence of multiple abort transitions
within the CP-Net. Likewise, the CP-Net does not model so-called compensat-
ing activities. Compensation can be obtained by a combination of an Abort and
Create transition. Unlike the Complete transition, the Abort transition does not
commit the business fact manipulation events that pertain to the activity.

Skipping an activity is a form of imperfect completion of an activity, as it
is not required that all postconditions are fulfilled when skipping an activity.
Unlike the Abort transition, the Skip transition does commit every business fact
manipulation event that has occurred during the life cycle of an activity. This
is modeled with the commit(cs,a,e) arc inscription. The possibility of skipping
an activity stems from the case handling paradigm (van der Aalst et al., 2005)
and allows a coordinator to by-pass an activity when it is no longer deemed
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Figure 3.17: A CP-Net model of the Abort, Skip and Redo transition
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required. In the case handling case, however, skipping means stepping over the
entire activity without any case data being manipulated. Here skipping an activity
can still involve the partial manipulation of business facts. Skipping provides a
lot of flexibility as it enables a business process to bypass standard behavior as
required without such a possibility being explicitly defined in the process model.
For instance, when a customer requests information and preliminary, non-binding
about a credit rate, it might be useful to perform a makeProposal activity without
the customer even having identified himself. Such functionality could be provided,
when a bank clerk can skip over a number of activities in the credit approval
process.

After completing, aborting of skipping an activity, an activity can under some
conditions be reactivated by performing a Redo operation. This transition has the
effect that any previously committed business events are undone, this is modeled
by the rollback(cs,a,e) arc expression. All previously committed business fact
manipulation event that pertains to an activity’s transaction list are retained.
In this way, a worker can decide which data manipulation can be retained from
previous executions and which require alteration. After alteration, a new list
of business fact manipulation events can be committed upon completion of the
activity. In the case handling paradigm redoing an activity changes the state of
added case data from ‘defined’ to ‘unconfirmed’. Although differently encoded, the
semantics of the Redo transition closely resembles redoing an activity within the
case handling paradigm. In addition to business rules constraining the redoing of
an activity, an activity cannot be redone when any subsequent related activities
have been using information that is being retracted from the system via the
rollback operation. This is expressed in the noSubsequentActivities(a,eh) guard
condition. When such subsequent activities are present, all of them need to be
redone before the activity in question can be redone.

3.3.4 Unspecified semantics

Although the proposed CP-Net models a large proportion of the intended se-
mantics of EM-BrA2CE, not all aspects have been fully specified. For reasons of
generality, or due to inherent limitations of CP-Nets a number of aspects have
been consciously omitted. In this section these omitted aspects are briefly dis-
cussed.

Central–Decentral Coordination

The execution semantics do not specify whether the coordination of an activity
happens centrally, or decentrally. A central coordination presupposes a central
coordinator that is aware of all underlying business and transition constraints, and
controls whether a particular transition can take place or not. Typical examples
of central coordination are Workflow Management Systems (WfMS). A decentral
coordination allows the coordination of activities (services) by different agents
(service providers). The logic of the underlying business concerns is distributed
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and resides with multiple agents (service providers). A typical example are dis-
tributed, independently interacting web services. Whereas decentral coordina-
tion corresponds to the architectural requirements of a networked, service-based
economy (Goethals et al., 2007), it also requires the distributed agents (service
providers) the synchronize about whether a state transition can take place or not.
Lemahieu et al. (2003) and Snoeck et al. (2004) describe a two-phase coordina-
tion protocol, to determine whether a state transition can take place or not in
a distributed setting. These concerns are purposefully left out of consideration
in the framework. Choosing for a particular coordination setting, would not in
keeping of the framework to be a unifying framework for declarative process mod-
eling. Notice that this coordination concern is orthogonal to the design principle
of declarative process modeling, to model business concerns from a third-person
perspective, as identified in section 2.2 of the previous chapter.

Direct–Indirect Communication

In general, coordination can take place through direct or indirect communication.
Direct communication involves the actors in a business process to directly com-
municate with one another. Indirect communication can be understood as com-
munication by the manipulation of an artifact in the environment. For instance,
when an invoice is distributed to the desk of an employee this might trigger a
process of verifying, paying and booking the invoice in the general ledger in which
the invoice becomes the artifact of indirect communication. Another example
of indirect communication is, for instance, the KanBan system for automobile
production that was invented by Toyota (Ohno, 1988). The KanBan system is
a signaling protocol that signals demand for goods in the supply chain. In the
research domain of Multi-Agent Systems (Hadeli et al., 2004) this form of indirect
coordination is called stigmergy. An important design principle of declarative
process modeling approaches, as identified in section 2.2 of the previous chapter,
is that they are communication-agnostic. This entails that it is modeled what
events and facts about business concepts agents can perceive, not how this is
communicated.

Reactive Behavior

A disadvantage of CP-Nets is that it lacks the reactive behavior of an open
system (Eshuis and Dehnert, 2003). In a CP-Net every state transition occurs
within the model, whereas in reality state transitions occur on the initiative of an
agent that resides in the environment of the modeled system. To synchronize state
information both system and environment communicate by means of exchanging
events. In reality, it is possible for reactive systems not being able to respond
to their environment in a timely fashion. Since an information system is also a
reactive system that runs in parallel with its environment, it also risks to loose
synchrony with its environment.

The consequences of the lacking reactive behavior of CP-Nets should however
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be put into the right perspective. First of all the possibility that an information
system can go out of sync with its environment is a possibility that can be left
out of consideration in specifying a semantics for EM-BrA2CE. It is acceptable
to include a number of events that would normally take place in the environment
(such as the actions of external agents) within the boundaries of the CP-Net.
Nonetheless, timeout events, an important category of events, cannot be incor-
porated within the closed system of a timed CP-Net. The reason is that model
time is exogenous to the CP-Net and it cannot be used to conditionally fire a tran-
sition without provoking undesired side effects. Time-triggered activity life cycle
operations such as deadline escalation can therefore not be explicitly included in
the execution semantics.

Transaction Handling

Evidently, activities can take place concurrently in the execution semantics. Like
any other concurrent system, this entails that a mechanism must be put in place to
maintain the ACID properties of state (composite) transitions. Such transaction
handling can be added by keeping track of the locks or reservations that have
been requested on particular (business) facts. Although it is possible to include
a transaction handling mechanism such as a Two-Phase Commit or Tentative
Hold protocol, such a mechanism is not included. It can be seen as a separate
concern.

Composite State Transitions

Another part of intended semantics that has been left unspecified in the CP-Net
is the presence of composite state transitions. Composite state transitions are
state transitions that occur for a particular group of activities at the same time.
“cascaded abort” and “cascaded redo” transition, for instance, are composite state
transitions that represent the automatic aborting or redoing of all child activities
when a composite activity is is being aborted or redone. A “delegate” transition,
for instance, is the combination of a revoke and assign transition and represent
the coordinating activity of a worker assigning an activity to another worker (Li
et al., 2003; Wainer et al., 2007; Zhang et al., 2003). These transitions, however,
can be omitted from the CP-Net without loss of meaning as they can be simulated
by performing a number of subsequent atomic state transitions at the same model
time.

3.4 Conclusion

The EM-BrA2CE Framework is a unifying approach, that integrates many works
on enterprise modeling, declarative process modeling, service modeling, semantic
web services, process mining, and access control. It is a concise synthesis, that
aims at maximal expressiveness while introducing only a minimum number of con-
cepts. It has been devised in accordance to the design principles for declarative
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process modeling outlined in the previous chapter. The framework is intended to
be a foundation in integrating and developing existing and new forms of declar-
ative business process modeling. In the remainder of this text, the definitions
and execution semantics of the framework serve as an ontological foundation for
a number of declarative techniques for modeling and mining business processes.



CHAPTER 4

Modeling and Mining within the
EM-BrA2CE Framework

In the previous chapter, we have presented the EM-BrA2CE Framework as a
unifying framework for declarative process modeling. It consists of a foundational
vocabulary and a specific execution semantics. It can be seen as an attempt to
bring structure to a number of foundational vocabularies and execution models
that exist in the literature.

In this chapter, we introduce a number of declarative techniques for modeling
and mining business processes within this framework. In Section 4.1 we show how
business concerns relate to business rules. To this end, we propose a classification
of sixteen business rule types and discuss related work. In Section 4.2, we indicate
how one such business rule type, namely temporal deontic rules, can be formalized.
To this end, we introduce a formal language for expressing and reasoning about
temporal deontic rules. We also indicate how it is possible to visualize and verify
a set of rules in this language. In Section 4.3, we provide a proof-of-concept of
the EM-BrA2CE execution model, by including two simulation models. Section
4.4 enumerates a number of process mining tasks that can be identified within
the framework and introduces the concept of declarative process mining.

4.1 Documenting Business Concerns

In this section we show how the framework can be used for declarative process
modeling. In particular, we define sixteen business rule types. They refer to sev-
eral business concerns that can be identified when modeling business processes:
data concerns, control flow concerns, and access control concerns. For each busi-
ness rule type we provide a definition, related work, and indicate how it can be
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declarative enforced within the execution semantics of the framework. However,
in this section we do not define formal languages that would allow to make infer-
ences with these business rule types, nor do we provide verification or visualization
mechanisms. Nonetheless, we claim this section of the text to be valuable from an
end-user perspective. Already being capable of documenting business concerns in
declarative process models yields many advantages.

Table 4.1 gives an overview of the rule types that are defined in this section
and indicates the state transition types, already defined in Section 3.1.2, at which
these business rule types are relevant. At each given state, an agent might request
a particular state transition to occur. Business rules constrain the transitions
in a state space. Informally, it suffices to check prior to the occurrence of a
state transition whether relevant business rules will be violated or not. When no
business rule is violated, the state transition can take place. When, on the other
hand, the transition would lead to an intolerable violation of a business rule, the
state transition is prevented from taking place.

Table 4.1: Relating transition types to business rule types
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Temporal deontic rule x x x
Activity precondition x x
Activity postcondition x
Dynamic integrity x x x x x
Activity cardinality x x x x
Serial activity constraint x x x
Activity order x x x
Activity exclusion x x x
Activity inclusion x
Reaction rule x x x
Static integrity x x x
Derivation rule x x
Activity authorization x
Activity allocation rule x
Visibility constraint
Event subscription

4.1.1 Data Concerns

For many organizations data quality is an important business concern. This can
be put down to the fact that organizations in a service-oriented economy use in-
formation as primary resource for doing business. Organizations like insurance
companies, banks, or manufacturers cannot afford mistakes because of bad data
quality. An extensive automation of processes such as payroll administration,
insurance claim processing, or repairs, has left little possibility for human in-
tervention to detect and correct errors due to incorrect data or miscalculations.
Technologies for ensuring data quality have been existing for decades. Such tech-
nologies range from client-side input validation, over data bases integrity con-
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straints, to production rule engines for making complex calculations. In spite of
these technologies, data quality is still an issue.

One of the root causes of poor data quality can be attributed to a strictly
procedural modeling of data concerns. When data concerns are modeled pro-
cedurally, it is documented when and how a particular data concern should be
verified and enforced. Such a procedural approach to modeling data concerns goes
against the “declarative rule-enforcement” design principle identified in Section
2. When data concerns are declaratively modeled, they become process-aware in
that the processes in which they are relevant can be identified. They are however
not process-driven in that their definition is strongly connected to one process in
particular. We suggest the following methodology for documenting data concerns.

1. Define or choose a domain specific business vocabulary. In terms of the
EM-BrA2CE Vocabulary, a business vocabulary consists of business concept
types and business fact types. According the the SBVR standard, a busi-
ness vocabulary can be shared by different business communities within
and between organizations. For this reason, business vocabularies should
be well-defined, domain-specific vocabularies, that must become part of an
organization’s every-day communication. At the same time, an organiza-
tion must recognize that business vocabularies will always remain context-
dependent, and thus can be inconsistent with other vocabularies. Mediation
strategies are a still a dire necessity (Fensel and Bussler, 2002).

2. Define integrity constraints and derivation rules. The actual data qual-
ity concerns of a company can be verbalized as integrity constraints and
derivation rules. This specification takes place prior to any implementation.
Either a natural language or a formal language can be used.

3. Decide upon the modality of integrity and derivation rules. In correspon-
dence to the “differentiation by modality” design principle of declarative
process modeling, derivation rules and integrity constraints can be given
different modalities, such as necessity, obligation, permission, prohibition,
or advice. These modalities are provided by SBVR.

In the remainder of this section, we define the business rule types integrity
constraint and derivation rule, indicate related work, and indicate how they relate
to the declarative execution semantics of the EM-BrA2CE framework.

Data aspect: static integrity constraint

The performer of an activity can perform particular manipulations (addition,
removal or update) of business facts. These state transitions are among others
subject to particular integrity constraints. Integrity constraints involve cardinality
constraints, domain constraints, and the like.

A static integrity constraint is a business rule that constrains the domain
over which business facts can range by expressing a logical assertion that
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can, cannot, must or must not remain true (Wagner, 2003).
Example:
Necessity: each order has at least one order line.
Advice: the agreed price of a sales item is less or equal to the standard
price of the sales item.

Integrity constraints can be operationalized by verifying whether the manipulation
of a business fact (addition, removal and update) would lead to a violation of
the integrity constraint. Not every integrity constraint needs to be evaluated.
For instance, only those integrity constraints that range over a fact type that is
currently being manipulated. In the database literature efficient algorithms have
been proposed for static constraint verification (Gupta et al., 1994).

In the activity life cycle of the EM-BrA2CE Framework, a static integrity con-
straint constrains addFact , removeFact and updateFact activity state transitions.

Data aspect: derivation rule

Almost any knowledge representation language allows expressing so-called deriva-
tion or deduction rules.

A derivation rule is a business rule that defines a business fact in terms
of existing business facts (Wagner, 2003).
Example:
Advice: an order has a 10 percent discount if the order is from a loyal
customer.

A derivation rule can have a deontic instead of an alethic nature. In other
words, derivation rules can be SBVR:structural business rules or SBVR:operative
business rules. These rule types require a different execution semantics. For in-
stance, a business rule might recommend a particular price, but leave a salesperson
with the freedom of choice of determining custom-tailored prices.

In the monotonic semantics given to SBVR conceptual models, each time
facts of a fact type that is defined by a derivation rule are required (for instance
in the context of evaluating another business rule) the derivation rule is consulted.
Consequently, derivation rules augment the fact base (SBVR:conceptual model)
during the processing of state transition requests. Reasoning paradigms such as
backward chaining automatically support this execution semantics.

In the activity life cycle of the EM-BrA2CE Framework, a derivation rule
constrains addFact and updateFact activity state transitions.

4.1.2 Control-flow

Control-flow concerns deal with order and timing concerns that apply to the ac-
tivities in business processes (Jablonski and Bussler, 1996). These sequence and
timing constraints are an important aspect of business process flexibility and
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compliance. To date, these constraints are most often implicitly transcribed into
control-flow-based process models. This implicit representation of constraints,
however, complicates the verification of compliance and restrains flexibility in
business process design. The reason is that procedural process models are –
to quote Schmidt and Simone (1996) – a “pre-computation of activity dependen-
cies”. Without knowing the underlying business concerns, it is as difficult to make
changes to processes at design-time as it is to adapt processes at execution-time.

We suggest the following methodology for declaratively documenting control-
flow concerns concerns.

1. Identify the processes (or services) within or between organizations. In the
vocabulary, processes are composite activity types, whereas atomic activities
represent the lowest level of granularity of work that is considered to be an
activity (or service). Fact types: ‘activity type1 can consist of activity
type2’.

2. Identify the business fact types that can be made visible or manipulated by
activities (services) of a particular activity type (service capability). Fact
types: ‘activity type can make visible business fact type’, ‘activity type can
manipulate business fact type’.

3. Identify sequence and timing concerns as business rules.

4. Determine the modality of each modeled rule.

In the remainder of this section, we enumerate a number of business rule types
that can be used to verbalize sequence and timing constraints, point out related
work, and indicate how they can be operationalized in the declarative execution
semantics of the framework.

Control-flow: temporal deontic rule

Business policy and regulations contain a lot of implicit order and timing infor-
mation. In a trade community, for instance, different business protocols might
exist for engaging in a business interaction. Such business protocols lay down the
obligations and permissions of all business partners in an interaction and can be
expressed in the form of temporal deontic rules.

A temporal deontic rule is a structural business rule that defines when
deontic assignments come into existence or cease to exist based on the
(non-)occurrence of events.

The rules describe behavior from a third-person perspective and can, for instance,
be expressed in the PENELOPE language (Goedertier and Vanthienen, 2006d).
This language is introduced in Section 4.2.

The temporal deontic rules displayed underneath categorize the external busi-
ness regulation payment-after-shipment that visualized in the BPMN diagram of
Figure 4.1(a). Assuming that the agents in a business interaction do not intend to
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violate these deontic assignment rules, the resulting permissions and obligations
impose partial order constraints on the activities in a business process.

Necessity: initially a buyer has the permission to perform a place order
activity.
Necessity: when a buyer completes a place order activity, the seller has
the obligation to perform a accept order activity or a reject order activity
within 2 time units.
Necessity: when the buyer completes a place order activity, the buyer
has the obligation to perform a pay activity within 2 time units after the
seller completes the ship activity.
Necessity: when the seller completes a accept order activity, the seller
has the obligation to perform a ship activity within 2 time units.

In the activity life cycle of the EM-BrA2CE Framework, a temporal deontic
rule constrains schedule, start and redo activity state transitions. Temporal de-
ontic rules indirectly affect the sequence and timing of activities. An agent who
coordinates an activity will try to observe the deontic assignments that result
from performing the activities. In addition, the coordinator will take into ac-
count that other agents potentially could violate the deontic assignments that are
imposed on them. In particular, a coordinator will schedule the activities such
that he does not violate any permissions and that the deadlines on obligations are
observed. Additionally, he will take appropriate action when other agents violate
the deadlines that are imposed on them.

Control-flow: activity precondition

Although any activity state transition can be constrained using preconditions, we
only consider preconditions imposed on the start and complete activity transitions
to be business rules. A precondition on the start transition is called an activity
precondition:

An activity precondition is a business rule that defines the conditions
that are required to start an activity of a given activity type.
Example:
Necessity: To start an accept order activity, a place order activity has
completed and no accept order or reject order activity has started.
Necessity: To start a reject order activity, a place order activity has
completed and no accept order or reject order activity has started.
Necessity: To start a ship activity, a accept order activity has completed
and no ship order activity has started.
Necessity: To start a pay activity, a accept order activity has completed,
a ship order activity has completed and no pay activity has been started.

In the Web Service Modeling Ontology (WSMO) (Roman et al., 2005), it is pos-
sible to assign a precondition to a service capability. However, preconditions can
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only be expressed in terms of (business) concepts. In particular, it is not possible
to include event conditions or to query the properties of activities. This limita-
tion potentially has the disadvantage that it is required to add artificial business
concepts to a business vocabulary. For instance, instead of stating that an order
has been accepted, it is required to refer to a potentially artificial business con-
cept ‘acceptation notice’. The same activity preconditions, expressed in terms of
business concepts only, would then be formulated as:

Necessity: To start an accept order activity, it is necessary that the order
exists and does not have an acceptation notice or a rejection notice.
Necessity: To start a reject order activity, it is necessary that the order
exists and does not have an acceptation notice or a rejection notice.
Necessity: To start a ship activity, it is necessary that the order the order
has an acceptation notice and does not have a shipping order.
Necessity: To start a pay activity, it is necessary that the order the order
has an acceptation notice and the order has a proof of delivery and the
order has not yet been paid.

Unlike the EM-BrA2CE Framework, WSMO makes a distinction between the
state of the information space and the state of the world. Because the EM-
BrA2CE Framework is more situated on the conceptual modeling level, no such
distinction between the world and the information system is made.

In the activity life cycle of the EM-BrA2CE Framework, an activity precondi-
tion constrains start and redo activity state transitions.

Control-flow: activity postcondition

A precondition on the complete transition is called an activity postcondition:

A business fact postcondition is a business rule that specifies the abstract
state of an activity of a particular activity type upon its completion.
Example:
Necessity: To complete an activity that has type place order, it is neces-
sary that the order exists.
Necessity: To complete an activity that has type accept order, it is nec-
essary that the order has an acceptation notice.
Necessity: To complete an activity that has type reject order, it is neces-
sary that the order has a rejection notice.
Necessity: To complete an activity that has type ship, it is necessary that
the order has a proof of delivery.
Necessity: To complete an activity that has type pay, it is necessary that
there exists a proof of payment.

This constraint subsumes a mandatory constraint in the case handling paradigm
and is similar to a postcondition in WSMO. The case handling paradigm allows
specifying which case data types are free, mandatory or restricted with respect to
performing an activity of a particular activity type (van der Aalst et al., 2005).
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A free business fact type can be manipulated in every sub-activity. A business
fact type is mandatory for a particular activity type, when a fact of this fact
type is required for the completion of the particular activity. A business fact
type is restricted to a particular (or a number of) activity type, when a fact
of this fact type can only be manipulated in the context of an activity of this
type. van der Aalst et al. (2005) provide a means in which these constraints can
be operationalized by considering them as postconditions on the completion of a
particular activity. In WSMO, it is possible to assign a postcondition to a service
capability. However, the same restriction applies as with respect to preconditions.

In the activity life cycle of the EM-BrA2CE Framework, an activity postcon-
dition constrains complete activity state transitions.

Control-flow: reaction rule

A reaction rule or event-condition-action (ECA) rule is a business rule
that expresses the activities that are to be undertaken, given the (non-
)occurrence of certain events and a particular condition being fulfilled.

In spite of their apparent simplicity, business processes using only reaction rules
cannot be classified as being declarative process models. The reason is that process
models that are composed of reaction rules only constitute an explicit execution
scenario that risks to be over-specified and can be regarded to be as procedural
as control-flow based models. What is needed is a hybrid approach, in which the
freedom of choice that is left by other business rules is filled in – when required
– by a small set of reaction rules. Therefore, reaction rules are considered among
other business rules to specify behavior, but constitute by themselves no means
for declarative process modeling.

The properties of relevant abstract states in the execution model of a business
process can be used to describe decision points. For example, the above discussed
payment-after-shipment temporal deontic rules, state that a seller has the obliga-
tion to either accept or reject an order, when a buyer places an order. Although
possible from a modeling perspective, the protocol does not stipulate what the
buyer must do in case the seller, for instance, rejects the order. This freedom of
choice can be represented as an abstract state or decision point that is described
by the following abstract state expression:

An agent of role seller has the obligation either to accept or reject an
order.

From this abstract state a number of mutually exclusive abstract states can be
derived: the seller has accepted the order, the seller has rejected the order or the
order times out. Reaction rules can impose a suitable reaction to each of these
states:

When an order is rejected and if the order is critical , then notify a
purchase representative.
When an order is rejected and if the order is not critical , then reorder
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with a different seller.
When an order times out and if the order is critical , then notify a purchase
representative.
When an order times out and if the order is not critical , then reorder
with the same seller.

In the activity life cycle of the EM-BrA2CE Framework, a reaction rule defines
start activity state transitions.

Control-flow: dynamic integrity constraint

Within the context of an activity, agents can manipulate business facts that are
related to the activity. There are, however, conditions on the state change of
business facts that could prevent an activity from taking place. Wagner (2003)
calls such conditions dynamic integrity constraints.

A dynamic integrity constraint is a business rule that defines the admis-
sible state changes of a business fact.
Example: After the start of a ship activity, the order lines of the order
can no longer be changed.

The activities via which the manipulations occur always remain implicit in these
rules as the fact type ‘activity type can manipulate business fact type’ already
relates these activity types to the appropriate business fact types.

In the activity life cycle of the EM-BrA2CE Framework, a dynamic integrity
constraint constrains start , redo, addFact , removeFact and updateFact activity
state transitions.

Control-flow: activity cardinality constraint

An agent that performs a composite activity, actually constructs an execution
plan. This coordination work involves, among others, the creation of a number
of activities. Although the composites of a coordination plan are defined by the
‘Activity type1 can consist of activity type2’ fact type, the fact type does not
impose any restrictions on the number of such activities that may be included in
the execution plan. For instance, an execution plan in the context of a handle
purchase order activity might involve two separate ship activities, but it may only
contain one accept order activity. Such cardinality restrictions are imposed by
activity cardinality constraints.

A activity cardinality constraint is a business rule that limits the number
of activities of a particular activity type that occur within the context of
a same parent (coordination) activity.
Example:
There exists exactly one place order activity1 that has parent a handle
purchase order activity2.
There exists at most one accept order activity1 that has parent a handle
sales order activity2.
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This business rule type can be expressed in the ConDec language with so-called
existence constraints.

In the activity life cycle of the EM-BrA2CE Framework, an activity cardinality
constraint constrains create, start and redo activity state transitions.

Control-flow: serial activity constraint

When coordinating a composite activity, it is also relevant to know whether two
activities can be performed concurrently. This is expressed by a serial activity
constraint.

A serial activity constraint is a business rule that imposes that activities
belonging to a particular set of activity types must not be performed in
parallel within the context of a same parent (coordination) activity.
Example:
Activities that have type place order, accept order, reject order and ship
order must not be performed in parallel.

Sadiq et al. (2005), for instance, include serial activity constraints in their con-
straint specification framework.

A serial activity constraint constrains schedule, start and redo activity state
transitions.

Control-flow: activity order constraint

An order constraint on two activities is a stronger condition than a seriality con-
straint.

An activity order constraint is a business rule that imposes that activities
of particular activity types must be performed in a specified order within
the context of a same parent (coordination) activity.
Example:
An accept order activity1 can only start after a place order activity2 has
completed.

This can, for instance, be expressed with an order constraint in the constraint
specification framework of Sadiq et al. (2005) or with different types of relation
constraints in the ConDec language.

In the activity life cycle of the EM-BrA2CE Framework, an activity order
constraint constrains schedule, start and redo activity state transitions.

Control-flow: activity exclusion constraint

An activity exclusion constraint is a business rule that imposes that two
activities of a particular activity type are mutually exclusive within the
context of a same parent (coordination) activity.
Example:
Necessity: accept order and reject order activities are mutually exclusive.



4.1. Documenting Business Concerns 85

This can, for instance, be expressed with an exclusion constraint in the constraint
specification framework of Sadiq et al. (2005) or with different types of negation
constraints in the ConDec language.

In the activity life cycle of the EM-BrA2CE Framework, an activity exclusion
constraint constrains create, start and redo activity state transitions.

Control-flow: activity inclusion constraint

An activity inclusion constraint is a business rule that imposes that two
activities of a particular activity type are mutually inclusive within the
context of a same parent (coordination) activity.
Example: Obligation: accept order and ship activities are mutually in-
clusive.

This can, for instance, be expressed with an inclusion constraint in the constraint
specification framework of Sadiq et al. (2005) or as a co-existence constraint in
the ConDec language.

In the activity life cycle of the EM-BrA2CE Framework, an activity inclusion
constraint constrains complete activity state transitions of activities that can
consist of the activities mentioned in the constraint.

4.1.3 Access Control

Access control is the ability to permit or deny access to physical or informational
resources. It is an organization’s first line of defence against unlawful or unwanted
acts. Recently, access control has become a key aspect of regulatory compliance.
Access control within the EM-BrA2CE framework is based on the existing stan-
dard for Role-Based Access Control (Ferraiolo et al., 2001; InterNational Commit-
tee for Information Technology Standards (INCITS), 2004; Sandhu et al., 1996).
The existing RBAC standard allows specifying dynamic separation of duty (SoD)
constraints. Such constraints impose that within a single session a user cannot
assume two roles on which a dynamic SoD constraint applies. Strembeck and Neu-
mann (2004) discuss an extension to the RBAC standard by allowing to express
dynamic, process-related, access rules . The proposed EM-BrA2CE Vocabulary
goes further in that it allows expressing process-aware access control policies that
can declaratively relate to the current state of a business process and to a history
of related business events. The proposed vocabulary and business rules allow to
specify process-aware access control in four steps:

1. Define an access control policy. An access control policy is a non-
actionable directive that identifies security threads and safety concerns and
motivates access control implementation. Metamodels such as the OMG’s
Business Motivation Model Object Management Group (2006a) provide the
required structure to formulate access control policies.
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2. Identify the access control roles. Roles are permissions involving the perfor-
mance of activities or the involvement in activities that pertain to meaning-
ful groups of activity types. Roles provide stability because role definitions
do not change as often as agent-activity type assignments would. Fact types:
‘role can perform activity type’, ‘activity type can manipulate business fact
type’, ‘activity type can make visible business fact type’ and ‘role can sub-
scribe to event type in context of activity type’.

3. Specify access constraints. Access constraints refine the role-based ac-
cess control policy to take into account issues that are beyond the scope
of user-role assignment. Access constraints give an access control model
precision, because they constrain the role-based access according to the
properties of the agent, the activity and the business process event history.

4. Make agent-role assignments. Agent-role assignment is the provisioning
of agents with roles that represent access rights. Agent-role assignments can
be defined by derivation rules, but for reasons of compliance and flexibility,
agent-role assignments are often hard-coded. Fact type: ‘agent can have
role role’.

Access control: activity authorization constraint

An activity authorization constraint allows constraining the agent-role assign-
ments that can be granted to an agent. For instance, the fact ‘sales representative
can perform accept order’ is constrained by the rule that sales orders larger than
2000 euro cannot be reviewed by junior sales representatives.

An activity authorization constraint is a structural business rule that
dynamically constrains the activities that can be assigned to an agent on
the basis of the properties of the activity, the business facts in its state
space and the properties of the agent.
Example: Necessity: an agent that has age less than 18 years can not
perform a place order activity.
Necessity: an agent that has function junior sales representative can not
perform an accept order or reject order activity that is identified by an
order that has an amount larger than 2000 euro.

A similar kind of rule has been described by Strembeck and Neumann (2004)
in the context of the Role-based access control (RBAC) standard Ferraiolo et al.
(2001); InterNational Committee for Information Technology Standards (INCITS)
(2004); Sandhu et al. (1996).

In the activity life cycle of the EM-BrA2CE Framework, an activity autho-
rization constraint constrains assign activity state transitions.

Access control specifications adhering to the role-based access control (RBAC)
have a non-monotonic semantics that can be expressed in defeasible logic (Anto-
niou et al., 2001; Nute, 1994). Defeasible logic is a means to formulate knowledge
in terms of general rules and exceptions. To this end, defeasible logic allows for
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rules of which the conclusions can be defeated (defeasible rules) by contrary evi-
dence provided by strict rules, other defeasible rules and defeaters. A superiority
relation between rules indicates which potentially conflicting conclusions can be
overridden. In EM-BrA2CE the ‘agent can perform activity’ fact type is defined
using a rule set of two generic defeasible rules:

r1 : true ⇒ ¬CanPerform(G, A),
r2 : HasRole(G, R),HasType(A,At),CanPerform(R,At)
. ⇒ CanPerform(G, A)

and a number of domain-specific activity authorization constraints, that trans-
lated to the following defeasible rules:

r3 : A(3) ⇒ ¬CanPerform(G, A),
...
ri : A(i) ⇒ ¬CanPerform(G, A),
...
rn : A(n) ⇒ ¬CanPerform(G, A).

The following priority relationship applies between the generic and domain-specific
defeasible rules:

r1 < r2, r2 < r3, r2 < r4, ...r2 < rn.

Because activity authorization constraints all potentially defeat the ‘agent can
perform activity’ conclusion, they cannot contradict each other. As a conse-
quence, no activity authorization constraint can be specified that can invalidate
the outcome of another constraint. This is a valuable result, because it facilitates
the incremental specification of access control policies (Grosof et al., 1999): new
rules can be added without the conditions of previous rules need to be reconsid-
ered. Ordinary rules, in contrast, require a complete, encyclopedic knowledge of
all rules to be updated or decided upon. In addition to their enhanced representa-
tional capability, efficient implementations of defeasible logic have been proposed
(Maher et al., 2001) together with visualization techniques to render the added
complexity of default reasoning comprehensible to end users (Bassiliades et al.,
2005; Kontopoulos et al., 2006). Although defeasible logic is naturally present
in the role-based access control model, the current SBVR specification does not
allow for the specification of defeasible rules.

Access Control: visibility constraint

The fact type ‘Activity type can make visible business fact type’ indicates the
business fact types that can be made visible in the context of an activity. It is
possible to constrain the visibility of facts with visibility constraints.

A visibility constraint is a structural business rule that dynamically con-
strains the visibility of business facts within an activity according to the
properties of the activity, the business facts in its state space and the
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agent that has been assigned to the activity.
Example: Coordinate purchase order can make visible the business fact
type ‘order has rejection notice’
Necessity: a rejection notice is only visible to an agent that is a corporate
customer.

Organization: event subscription constraint

The fact type ‘role can subscribe to event type in context of activity type’ ex-
presses the visibility of events to agents in the context of an activity. With event
subscription constraints is it possible to conditionally limit the visibility of events.

A event subscription constraint is a structural business rule that con-
strains the conditions under which agents who have a particular role in
the context of an activity can perceive the occurrence of an activity event.
Example: A seller can subscribe to completed in the context of ship.
A buyer can subscribe to completed in the context of ship.
Impossibility: an agent that has role buyer perceives an event that is
about a ship activity for an order that has a total amount of less than
2000 euro.

When an event occurs, each agent who has a particular role in the context of
the activity and whose role is subscribed to the event type and for whom no
subscription constraints apply, can perceive the event. Consequently, the event is
non-repudiable to external agents such that any legal obligation that results from
the event can be enforced.

Organization: activity allocation rule

It is possible that agents have the authorization to perform a particular activity,
but that they are not the primary designated performers of a task. Activity
allocation rules are guidelines that indicate to what extent assigning an activity
to an agent is desirable.

An activity allocation rule is an operative business rule that indicates
the assigning of an activity to a particular agent as an obligation or a
prohibition. In both cases a level of enforcement indicates the degree to
which such an assignment is desirable.
Example: Advice: an agent that has function purchase department head
should not be assigned to an activity that has type archive document.

Whereas activity authorization constraints deal with authorization, activity allo-
cation rules deal with the fair distribution of work.

In the activity life cycle of the EM-BrA2CE Framework, an activity autho-
rization constraint constrains assign activity state transitions.
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4.1.4 Conclusion

Documenting business concerns already yields many advantages. By making the
business concerns that govern business processes explicit as business rules, it be-
comes possible for human end-users to assess the impact of changes to business
processes at design-time. In this way, it is possible to manually verify at design-
time whether business processes do not violate particular business concerns, Sadiq
et al. (2007) call this “compliance by design”. Knowing the hard and soft con-
straints that govern business processes, it furthermore becomes possible to get
an idea about the degrees of freedom within which business processes can take
place. In addition, changes to business policies and business regulations become
traceable as their impact on business processes has been documented. This can
only be to the benefit of design-time flexibility. In this section we have identified
sixteen business rule types that relate to data concerns, control flow concerns, and
access control. For each of these concerns, we have indicated how these can be
verbalized by means of the vocabulary and business rule types of the framework
and how they can be declaratively enforced within its execution semantics.

However, to realize the execution-time advantages of declarative process mod-
els, it is required that each of the identified business rules is expressed in a formal
language. Formal languages allow to make inferences, and can be used for the
execution, visualization, and verification of declarative process models. In the
next section, we discuss a formal language for expressing temporal deontic rules.

4.2 PENELOPE

In Section 4.1.2 we have defined temporal deontic rules to be structural business
rules that define when deontic assignments come into existence or cease to exist
base on the (non-)occurrence of events. In this section, we introduce PENELOPE
(Process ENtailment from the ELicitation of Obligations and PErmissions), a
language to express temporal deontic rules about the obligations and permissions
of both internal and external agents in a business interaction, and an algorithm
to generate compliant sequence-flow-based process models that can be used to
visualize and validate them. Furthermore, we indicate how abductive reasoning
over the event calculus allows verifying a set of temporal rules.

This section is structured as follows. First, we discus the relevant literature on
applications of deontic logic. Next, we formally introduce PENELOPE. Finally,
we define and illustrate the algorithm to generate compliant, control-flow based
process models from a rule set of obligations and permissions.

4.2.1 Preliminaries: the Event Calculus

The Event Calculus, introduced by Kowalski and Sergot (1986), is a logic pro-
gramming formalism to represent and reason about the effect of events and the
state of the system expressed in terms of fluents. The Event Calculus is appealing
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Table 4.2: The event Calculus axioms (Shanahan, 1997)

term meaning

Initiates(ε, φ, τ) event ε initiates fluent φ at time τ
Terminates(ε, φ, τ) event ε terminates fluent φ at time τ
Initiallyp(φ) fluent φ holds from time 0
Happens(ε, τ) event ε happens at time τ
HoldsAt(φ, τ) fluent φ holds at time τ
Clipped(τ1, φ, τ2) fluent φ is terminated between times τ1 and τ2

HoldsAt(φ, τ)← Initiallyp(φ),¬Clipped(0, φ, τ)
HoldsAt(φ, τ2)← Initiates(ε, φ, τ1) ∧ τ1 < τ2 ∧ ¬Clipped(τ1, φ, τ2)
Clipped(τ1, φ, τ2)↔ ∃ε, τ : Happens(ε, τ) ∧ Terminates(ε, φ, τ) ∧ τ1 < τ < τ2

for several reasons. For instance, the Event Calculus builds on a first-order pred-
icate logic framework, for which efficient reasoning algorithms exist. In addition
the Event Calculus has the ability to reason about time, in which fluents come to
existence or cease to holds dynamically. In addition the Event Calculus not only
has the ability to deductively reason about the effects of the occurrence of events
events (leading to the coming into existence of fluents or the ceasing to hold),
most importantly, it also has the ability of reasoning abductively. Abductive
reasoning over the event calculus is akin to planning in artificial intelligence. In
particular, abductive reasoning produces a sequence of transitions (denoted by
events) that must happen for a particular fluent to hold in the future (Eshghi,
1988; Shanahan, 1997; Van Nuffelen and Kakas, 2001). For these reasons, the
Event Calculus is a suitable language both for specifying the semantics of state
transitions in the EM-BrA2CE framework and as a planning mechanism.

Shanahan (1997) provides suitable axiomatizations of the Event Calculus, in
which the Frame Problem is solved through circumscription. Table 4.2 represents
the predicates and axioms we have adopted to represent and reason about obliga-
tion and permission. We have operationalized the Event Calculus in CLP(fd), a
sub-language of Prolog, which allowed us to experiment with protocol verification
and the transformation to decentralized business process descriptions. Like other
Prolog-implementations of the Event Calculus, the frame problem is inexistent,
because of the closed-world assumption attached to Prolog’s negation-as-failure.

4.2.2 The PENELOPE Language

Deontic logic is a logic for representing and reasoning about deontic concepts
such as obligation, permission, prohibition and waived obligation. Various ax-
iomatizations of deontic logic have been proposed with considerable extensions to
Føllesdal and Hilpinen’s Standard Deontic logic (SDL) (Føllesdal and Hilpinen,
1971). Broersen et al. (2004) use computational tree logic (CTL) (Clarke et al.,
1993) to express the notion of deadline obligations. Several authors have built a
Deontic Logic Knottenbelt and Clark (2004); Maŕın and Sartor (1999); Paschke
and Bichler (2005); Yolum and Singh (2004) using the Event Calculus formalism,
for which Shanahan (1997) provides suitable axiomatizations. In these works de-
ontic properties are represented as fluents, such that it is possible to represent
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Table 4.3: The PENELOPE axioms

term meaning

Xor(α1, α2) compound activity alpha1 XOR alpha2

Or(α1, α2) compound activity alpha1 OR alpha2

And(α1, α2) compound activity alpha1 AND alpha2

Oblig(π, α, δ) agent π must do activity α by due date δ
Perm(π, α, δ) agent π can do activity α prior to due date δ
CC (π, α1, δ1, α2, δ2) agent π must do activity α2 by due date δ2

after activity α1 is performed prior to due date δ1

(1) Terminates(α,Oblig(π, α, δ), τ)← τ ≤ δ
(2) Terminates(α,Perm(π, α, δ), τ)← τ ≤ δ
(3) Happens(Violation(Oblig(π, α, δ)), δ)←

HoldsAt((Oblig(π, α, δ)), δ)∧ v Happens(α, δ)
(4) Initiates(α1,Oblig(π, α2, δ2), τ)←

τ ≤ δ1 ∧HoldsAt(CC (π, α1, δ1, α2, δ2)), τ)
(5) Terminates(α1,CC (π, α1, δ1, α2, δ2), τ)← τ ≤ δ1

and reason about the effects of activities on the obligations and permissions of
actors.

Table 4.3 enumerates the deontic fluents and axioms of the PENELOPE lan-
guage. In order to distinguish necessity from possibility in business policy and
regulations, the PENELOPE language considers the deontic modalities of obliga-
tion, conditional commitment and permission, whereas other languages only con-
sider commitments and conditional commitments (Knottenbelt and Clark, 2004;
Yolum and Singh, 2004). PENELOPE does not consider prohibition or waived
obligation. Prohibition is assumed, however, if neither permission nor obliga-
tion can be derived. The exclusion of prohibition and waiver prevents a lot of
anomalies that often occur when several deontic rules lead to conflicting infer-
ences. Some implementations of Deontic logic interpret deontic assignments as
the obligation to bring about a certain proposition, others see it as the obligation
to perform a certain activity. Because PENELOPE aims at entailing process mod-
els from deontic assignments, activities rather than propositions are the object of
deontic assignments. This also allows us to model compound activities such as
Xor(AcceptOrder ,RejectOrder). Unlike other languages, PENELOPE allows to
explicitly define deadlines on the performance of activities in terms of the perfor-
mance of previous activities. When an agent performs an obligation or permission
within due time, the permission or obligation ceases to exist. This is expressed
in axioms (1) and (2). Conversely, not performing an obligation within due date
leads to a violation, as described in axiom (3). Business policies or regulations
might provide so-called reparation, or contrary-to-duty, obligations to deal with
violations (Governatori, 2005). Because we want to capture the semantics of both
external regulations and internal business policy, we need to express deontic as-
signments to both external and internal agents involved in a business interaction.
Internal agents in business policies are subordinate to the external agent they
represent. Activities performed by an internal agent resort in the same deontic
fluents as if they were performed by the representative external agent.

In Table 4.4, we give an example to demonstrate the intuition behind PENE-
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Table 4.4: Payment-after-shipment

natural and formal expression

(1) Initially the buyer has the permission to place an order.
Initiallyp(Perm(Buyer ,PlaceOrder(Buyer ,Seller)))
(2) When the seller accepts the order, the buyer is committed to pay the seller,
one time unit after the seller ships.
Initiates(AcceptOrder(Seller ,Buyer),CC (Buyer ,Ship(Seller ,Buyer), δs,
Pay(Buyer ,Seller), δs + 1), τ)
(3) When the buyer places an order, the seller must
either accept or reject it within one time period
Initiates(PlaceOrder(Buyer ,Seller),Oblig(Seller ,
Xor((AcceptOrder(Seller ,Buyer),RejectOrder(Seller ,Buyer)), τ + 1), τ)
(4) When the seller accepts the order, the seller must ship within two time units.
Initiates(AcceptOrder(Buyer ,Seller),Oblig(Seller ,Ship(Seller ,Buyer), τ + 2), τ)
(5) Only when sales accepts the order, dispatch may ship the order
Initiates(AcceptOrder(Sales,Buyer),Perm(Dispatch,Ship(Dispatch,Buyer), δ), τ)

LOPE. In an order-to-cash business process the external roles of Buyer and Seller
may be distinguished. A seller can have, among others, the internal roles of Sales,
and Dispatch. In addition, the following externally visible activity types could
exist: PlaceOrder , AcceptOrder , RejectOrder , Pay and Ship. For these roles and
activities a number of temporal deontic rules are displayed in the table. Assign-
ments 1 to 4 categorize the external business regulation payment-after-shipment,
specifying that payment takes place after shipment. Assignment 5, however, is
an internal business policy, specifying that no order may be shipped without pre-
viously being accepted. These permissions and obligations impose partial order
constraints on the activities in a business processes. This set of deontic assign-
ments leads to the process model for both seller and buyer that is displayed in
Figure 4.1(a).

4.2.3 Validation by Visualization

Declarative process modeling allows including a lot of functional and non-function
aspects of business processes that is missing in procedural process models. How-
ever, a declarative process model in the form of a state description and a set
of business rules can also be more difficult to understand than the graphically
appealing process notations of the Business Process Modeling Notation (BPMN)
(Object Management Group, 2006b) and UML Activity Diagrams (Object Man-
agement Group, 2005). In this section we introduce an algorithm to generate the
state space of a set of temporal deontic rules. This state space can be used for
verification of anomalies. In addition, this state space can be mapped to control-
flow-based process models for each of the business partners in the interaction.
Generated process models are not intended for process execution, but can rather
be used by the process designer for validation and allow to identify the decision
points and possible violations of obligations that can occur.

To generate the process model for a role in a business interaction, one must
analyze the temporal obligations and permissions that hold at certain points in
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Figure 4.1: Two process models visualized by PENELOPE

time, given certain narratives of activity performances N . To this end, the ex-
pressions below define sets of obligations O(τ) and permissions P (τ) that hold at
state τ , sets of obligations Od(δ) and permissions Pd(δ) that are due at state δ
and a set of violations without reparation VWR(τ) that happen at state τ . Notice
that a narrative of activity performances N is implicitly assumed in each of these
expressions.

O(τ) ∈ τ → {α : HoldsAt(Oblig(π, α, δ), τ)} (4.1)
P (τ) ∈ τ → {α : HoldsAt(Perm(π, α, δ), τ)} (4.2)

Od(δ) ∈ δ → {α : HoldsAt(Oblig(π, α, δ), δ)} (4.3)
Pd(δ) ∈ δ → {α : HoldsAt(Perm(π, α, δ), δ)} (4.4)

VWR(τ) ∈ τ → {α : Happens(Violation(Oblig(π, α, δ)), τ),
¬∃Initiates(Violation(Oblig(π, α, δ)), o, τ)} (4.5)

A state τ in our state space corresponds to a set of obligations O(τ), per-
missions P (τ) and conditional commitments CC (τ) that hold this state. State
transitions are defined differently in PENELOPE than in the commitment space
defined by Yolum and Singh (2004). In PENELOPE a business interaction can
move from a state τ1 to a state τ2 if there exists a narrative N of permissible
activity performances, between states τ1 and τ2, such that the performance of the
activities makes the same deontic fluents hold at state τ2 that are contained by
state τ2. Under the assumption that no cycles can occur in the interaction, the
state space can be represented as a directed acyclic graph. To efficiently enumer-
ate a state space beyond a state τ , it suffices to perform all different combinations
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Figure 4.2: The state space of the example deontic assignments

of permissible activity performances that are due at the earliest due date of the
obligations and permissions that hold in state τ . Figure 4.2 enumerates the state
space of the deontic assignments of the order-to-cash business process in Table
4.4. A state τ is an end state if no obligations or permissions hold at τ or if there
exist violations without reparation.

endState(τ)⇔ O(τ) ∪ P (τ) = ∅ ∨VWR(τ) 6= ∅ (4.6)

Temporal deontic assignments to internal and external agents in a business
interaction impose partial order constraints on the activities that are carried out.
The problem of generation the control-flow for a particular role in a set of temporal
deontic rules can either be under specified, even specified or over specified. A
problem is under specified if no unique sequence flow can be entailed. For even
and over specified problems, a unique sequence flow can be derived, provided
that the deontic assignments contain no anomalies such as livelocks, deadlocks
or contradictions. Given rules 1 to 4 in the example of Table 4.4, the generation
problem is even specified. Adding rule 5 makes the problem over specified, but
introduces no contradictions.

We have implemented the PENELOPE language in CLP(fd). In addition we
have constructed an algorithm in Prolog to generate a proprietary XML file with
the BPMN process model for all external roles in a set of deontic assignments.
From this XML file a Microsoft Visio Add-in was written to draw the generated
model. We have chosen the BPMN because its visualizations allow us to model
external events and exceptions in control-flow. We make use of well-understood
and general control flow constructs such as sequence, XOR-split, and AND-split.

The algorithm is limited to acyclic state spaces. A summary of the algorithm is
displayed in pseudo-code below. It progressively enumerates all states in the state
space and draws the BPMN model for role π. Whenever during state transitions
the role π performs activities, this is modeled as a task. Whenever another role
performs an activity of which π is a recipient, this is modeled as a message event.
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The drawing logic of the algorithm is represented by a large number of IF-THEN
rules. In the algorithm the obligations and permissions of role π that are due at
state δ are contained by the sets Od(π, δ) and Pd(π, δ). A generated process model
for a particular role π must not violate the obligations for which no violation is
allowed. Therefore, whenever the set PO(π, δ) contains obligations to fulfil, these
are drawn as tasks in BPMN. By way of precaution, a generated process model for
a particular role π must foresee the possibility that other business partners violate
obligations. For instance, when a buyer places an order, he must foresee never to
receive a rejection or acceptance from the seller. Violations of obligations can only
be detected if the due dates on obligations are timed during process enactment.
This is represented in the BPMN model using intermediate timeout events. The
obligations and permissions towards role π due at time δ are contained in the sets
OTP(π, δ) and PTM (π, δ). In a state in which a violation occurs for which no
reparation exists, an error end event is drawn. Notice that process design can only
identify exceptions, it is up to the process modeler to properly deal with them.
In some cases, the deontic conflicts between business partners might be resolved
through human interaction.

1 PO(π, δ) ∈ π × δ → {α : HoldsAt(Oblig(π, α, δ), δ)}
2 PP(π, δ) ∈ π × δ → {α : HoldsAt(Perm(π, α, δ), δ)}
3 OTP(π, δ) ∈ π × δ → {α : HoldsAt(Oblig(φ, α, δ), δ), recipient(α) = π}
4 PTP(π, δ) ∈ π × δ → {α : HoldsAt(Perm(φ, α, δ), δ), recipient(α) = π}
5 OO(π, δ) ∈ π × δ → {α : HoldsAt(Oblig(φ, α, δ), δ), φ 6= π}
6 OP(π, δ) ∈ π × δ → {α : HoldsAt(Perm(φ, α, δ), δ), φ 6= π}
7 drawControlFlow(π, τ)

8 if ¬endState(S(τ)) then

9 δ := earliestDueDate(τ)

10 if {α : α ∈ PO(π, δ), atomic(α)} 6= ∅ then draw tasks in sequence

11 if {and(α1, α2) : and(α1, α2) ∈ PO(π, δ)} 6= ∅ then draw tasks in parallel

12 if ∃xor(α1, α2) ∈ PO(π, δ) or PP(π, δ) 6= ∅ then draw XOR gateway

13 ACs := allCombinations(OO(π, δ) ∪OP(π, δ) ∪ PP(π, δ))

14 forall AC ∈ ACs

15 As := AC ∪ PO(π, δ)

16 if ∃α : α ∈ As, α ∈ xor(α1, α2), xor(α1, α2) ∈ PO(π, δ) then draw task α

17 if ∃α : α ∈ As, atomic(α), α ∈ PP(π, δ) then draw (start event and) task α

18 if ∃α : α ∈ As, α ∈ xor(α1, α2), xor(α1, α2) ∈ PP(π, δ)

19 then draw (start event and) task α

20 if ∃α1, α2 : α1 ∈ As, α2 ∈ As, and(α1, α2) ∈ PP(π, δ)

21 then draw (start event and) tasks α1, α2 in parallel

22 if OTP(π, δ) ∪ PTP(π, δ) 6= ∅ then (draw event gateway)

23 if ∃α : α ∈ OTP(π, δ), α ∈ As then draw start/intermediate event α

24 if ∃α : α ∈ OTP(π, δ), α /∈ As then draw intermediate timeout event α

25 if ∃α : α ∈ PTP(π, δ), α ∈ As then draw start/intermediate event α
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26 perform activities As

27 drawControlFlow(π, δ)

28 revoke activities As

29 end forall

30 else

31 if {ν : ν ∈ VTM ((π, δ)} 6= ∅ then draw error end event

32 if ¬∃ν : ν ∈ VTM ((π, δ) then draw end event

33 end if

4.2.4 Verification

Temporal deontic assignments lay down the rules of interaction either between
business partners or among the internal agents of a business partner in particular.
Because temporal deontic rules are the starting point for the design of a business’
private business processes they must be verified and validated. The rich semantics
and the availability of efficient reasoning procedures present new opportunities for
verification and validation. Without going into detail, we can highlight deadlock,
livelock, deontic conflict, temporal conflict and trust conflict verification issues.

In a business interaction each legal scenario must lead to termination, a
state in which no obligations or permissions exist. In a deadlocks situation,
no permissible activity performance can carry the business interaction forward
such that a new state of permissions, obligations and conditional commitments
exist. Such a scenario might consist of two business partners having conditional
commitments towards each other, but the conditional activity performance to turn
at least one of these conditions into a base-level obligation is not permitted. For
example, the buyer has made the conditional commitment to pay upon delivery,
whereas the seller has made the conditional commitment to deliver upon payment.
In a livelock situation, the protocol state is trapped in an infinite loop. Notice
that it is not the occurrence of a loop that defines the livelock, but the occurrence
of loops without a permissible activity performance that leads to a deontic state
outside the loop.

Deontic conflicts arise when there are protocol states in which a business
partner has both the permission and the prohibition to an activity performance or
when he has both an obligation and obligation waiver to an activity performance.
Note, however, that it is not possible to have deontic conflicts in PENELOPE,
because it does not make use of prohibition and waiver modalities. Temporal
conflicts occur when two deontic assignments at the same time initiate and termi-
nate a permission, obligation or conditional commitment. Such deontic conflicts
could be detected through state space enumeration, as discussed in the previous
section. A declarative approach to verification could consist of abductive rea-
soning in the Event Calculus. The ASystem, a system for abductive reasoning
within the framework of Abductive Constraint Logic Programming (Van Nuffelen
and Kakas, 2001), could for instance be used for detecting conflicting states. The
issue here is to ask the reasoner if it can come up with a narrative of activity
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performances such that a protocol state arises in which such a deontic conflict
exist.

In a business interaction trust conflicts can also occur. This happens when a
business interaction puts the business in a position were it has direct obligations
towards non-trusted business partners that involve sensitive activities such as
payment or the shipment of goods, that are not neutralized by preceding activity
performances of the opposite party.

4.2.5 Conclusion

The sequence and timing concerns on the activities in business processes, known
as control flow, are an important aspect of compliance to business policy and
regulations. In this section, we have presented the PENELOPE language that is
capable of declaratively capturing these concerns, with the purpose of (re)using
them in business process design.

The PENELOPE language is a declarative process modeling language, because
it adheres to the design principles for declarative process languages outlined in
Section 2.2. In particular, PENELOPE allows to make the sequence and timing
concerns on the activities within business processes explicit, without specifying
how and when these concerns must be enforced. Furthermore, PENELOPE is
not concerned with the details of how the performance of activities is communi-
cated to other process participants. As a declarative process modeling language,
PENELOPE also adopts a third-person perspective on the modeling of business
concerns. Rather than modeling precedence relations for one business partner
in a particular process, PENELOPE focuses on what can or must be done at
certain points in time, by all business partners, in order to achieve their business
goals, without considering one business process model in particular. This third-
person perspective on the modeling of sequence and timing constraints makes it
possible for external deontic assignments to be shared among process designers of
different organizations. Furthermore PENELOPE has an activity-level granular-
ity rather than a process-level granularity. In particular, temporal deontic rules
are autonomous units of business logic that hold in general rather than for one
particular business process. A such, changes to sequence and timing aspects in
business policy and regulations are translated into changes to particular temporal
deontic rules that potentially constrain multiple business process models.

From a specification of temporal deontic rules, we have indicated how it is
possible to generate process models that visualize the control flow aspects of
individual roles within a business interaction. The generated process models are
not intended as a means for process execution, but can rather be used by the
process designer for the purpose of validation. Moreover, this explicit generation
of control flow can be used to identify the freedom of choice that is left by the
sequence and timing constraints. It is up to the designer of the process to decide
whether this freedom of choice is to be filled in at design-time or at runtime. In
addition, the automatic generation of control flow contains an enumeration of all
possible violations of obligations by other agents that allows the process designer
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to anticipate exceptions in current business process design.

4.3 Declarative Simulation Models

Alves de Medeiros and Günther (2005) show how CPN Tools (Jensen, 1993, 1996)
can be used for generating artificial event logs. Using this idea, Alves de Medeiros
(2006) has generated a large amount of artificial event logs from CPN Tools
simulation models of reference problems in the domain of process discovery. In
the latter work, all these reference problems have been encoded as pure colored
Petri net (CP-Net) models. However, CPN Tools can also be used to simulate
declarative process models. This has first been demonstrated by Günther and
van der Aalst (2005) who model the semantics of the case handling paradigm.
In Section 3.3 of the previous chapter, we have generalized this approach and
specified the execution semantics of the EM-BrA2CE Framework in terms of a
CP-Net.

Having defined the execution semantics of the EM-BrA2CE Framework in
terms of a CP-Net, it now is possible to define a simulation model of a declarative
process model, only by specifying the fact types that span the state space and
transition constraints that apply in this state space. In this section, we briefly
discuss the declarative simulation models of two fictitious processes: a credit
application process and a driver’s license application process. The models contain
control flow concerns as well as access control concerns and serve as a proof-of-
concept of the EM-BrA2CE Framework. First, we discuss the concept types and
fact types that span the state space. Then we show how the control flow and
access control concerns can be declaratively defined as ML functions. Finally, we
briefly discuss the structure of the event logs that are obtained by running the
simulation models. These event logs are used in the remainder of this text for the
purpose of re-discovering the modeled business concerns.

4.3.1 State Space

The state space of a declarative process model can be specified by defining its roles,
activity types, and business concept types. The credit application process is
a fictitious process of a customer applying for a loan with a financial institution.
Below this paragraph, we indicate the roles, activity types, and business concept
types have been included for this process. The handleCreditApplication ac-
tivity type is a composite activity type, which represents the coordination of the
entire credit application process. To bootstrap the simulation model, it starts
from an already active activity of type root.

colset ACTIVITYTYPE = subset STRING with ["handleCreditApplication",

"applyForCredit", "checkDebt", "checkIncome", "reviewCredit",

"makeProposal", "rejectProposal", "acceptProposal", "reviewCollateral",

"changeApplication", ..., "closeApplication", "root"];

colset NOUNCONCEPTTYPE = subset STRING with ["agent","creditApplication"];
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colset VERBCONCEPTTYPE = subset STRING with ["beneficiary","applicant",

"collateralType","loanType","duration","amount","debt","income",...,"risk"];

colset FACTTYPE = union nount:NOUNCONCEPTTYPE + verbt:VERBCONCEPTTYPE;

colset ROLE = subset STRING with ["customer", "employee", "expert", "teller"];

As displayed in Figure 4.3, these types appear as tokens in the generic simulation
model.

The Driver’s License process is a fictitious process of a future driver applying
for a license. It is an extended version of the Driver’s License simulation of Alves
de Medeiros (2006). In particular, the process has been extended with a loop
construct and an activity type obtainSpecialInsurance. Activities of the later ac-
tivity type can occur in concurrently with activities of the type doTheoreticalExam.
Because we only want to include control flow concerns in this example, no business
concept types have been included.

colset ACTIVITYTYPE = subset STRING with ["start","applyForLicense",

"obtainSpecialInsurance","attendClassesCars","attendClassesMotorBikes",

"doTheoreticalExam","doPracticalExamCars","doPracticalExamMotorBikes",

"getResult","receiveLicense","end","root"];

4.3.2 Control Flow Concerns

Control flow concerns can, among others, be modeled as activity preconditions
and activity postconditions. These business rule types mainly affect the start

and complete transition types. Noteworthy is the way activity preconditions are
encoded. In particular we use a special event operator that queries the event
history. This operator is called the “completed-without-sequel” event operator
NS . This is worthwhile mentioning, because this event operator can be used to
logically represent the semantics of classical Petri nets. It is used in this section
for the simulation of classical Petri nets in a declarative simulation model, and
later in Chapter 5 as part of the language bias of our process discovery algorithm
to rediscover classical Petri nets from event logs. In CPN ML, this event operator
can be defined as follows.

fun NS(

at1:ACTIVITYTYPE, (*the activity type that must be completed... *)

bidcs1:FACTLIST, (*... and its business identifier*)

at2:ACTIVITYTYPE, (*the activity type that must not have occurred...*)

bidcs2:FACTLIST, (*... and its business identifier*)

eh:EVENTLIST (*the event history*)

):BOOL =

let

val completed =

eventsAfter(eh,bidcs1,at1,["completed"],bidcs1,at1,["aborted",...]) <> []

val withoutsequel =

eventsAfter(eh,bidcs2,at2,["started"],bidcs1,at1,["completed"]) = []

in

completed andalso withoutsequel

end
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The NS operator expresses that in the event history a completed event has been
recorded for an activity of type at1 with business identifiers bidcs1. Furthermore,
it expresses that after this event, there is no event in the event history that
indicates that an activity of type at2 with business identifiers bidcs2 has already
started.

The NS operator can be used the express the preconditions of an activity
type. The following boolean function, for instance, determines the conditions
under which an activity of type applyForLicense can start. Notice that the
function consists of a combination of NS literals. In Figure 5.8 shows a Petri net
representation of the Driver’s License example, and the logical representation in
terms of NS literals.

fun startApplyForLicense(

bidcs:FACTLIST, (*the business id*)

agent:AGENT, (*the coordinator*)

cs:FACTLIST, (*the current fact base*)

eh:EVENTLIST (*the event history*)

):BOOL =

nbApplicationsDriver(bidcs,eh) < 3 andalso

( NS("start",bidcs,"applyForLicense",bidcs,eh)

orelse

( NS("getResult",bidcs,"receiveLicense",bidcs,eh) andalso

NS("getResult",bidcs,"applyForLicense",bidcs,eh) andalso

NS("getResult",bidcs,"end",bidcs,eh) ) )

Figure 4.4: Driver’s license – simulated activity precondition

4.3.3 Access Control Concerns

Access control concerns affect the assign transition type. An example of such an
access rule for the credit application can be verbalized as follows:

“Agents that have a seniority greater than or equal to five years have a
role ‘senior’ and this role can perform the activity ‘review credit’ ”.
“Agents from the department risk control have a role ‘risk advisor’ and
this role can perform the activity ‘review credit’ ”.
“Within the context of a credit application, an agent cannot perform the
activity ‘review credit’ when the agent also has performed the activity
‘check debt’ ”.
“Within the context of a credit application, an agent cannot perform
the activity ‘review credit’ when the agent is the applicant of the credit
application.”

The boolean function authorizationreviewCredit in Figure 4.5 specifies this au-
thorization logic. Notice that the defeasible semantics of role-based access control
that are contained in the above rules were translated into one boolean function.
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fun authorizationreviewCredit(

agent:AGENT, (*the worker to be authorized*)

bidcs:FACTLIST, (*the business identifier of the activity*)

cs:FACTLIST, (* the current business fact base*)

eh:EVENTLIST (* the current event history*)

):BOOL =

if (seniority(agent) >= 5 orelse fromDepartment(agent,"risk_control"))

then (

case (applicantID(bidcs,cs),applicant(bidcs,cs)) of

(SOME(applicantID),SOME(applicant)) =>

(applicantID <> #1 agent) andalso

not(hasDone(agent,[applicant],"checkDebt",eh))

| _ => false

)

else false

Figure 4.5: Credit application – simulated authorization rule

4.3.4 The Obtained Event Logs

CPN Tools simulations can be used to generate event logs (Alves de Medeiros
and Günther, 2005). In the sample event logs in Table 4.5, the activity life cycle
of two activities within a credit application process is represented. The column
‘fact list’ represents a list of facts that have been modified by the occurrence of
the state transition the event reports about. For instance, in the first row the
fact list ‘[fact(a91,parent,a90)]’ reflects that with the created event the activity
a91 was created and has the activity a90 as parent. In addition to the positive
event assigned , the simulation log also contains negative events of the event type
assignRejected . The availability of both positive and negative events allows to
learn the transition constraints of each transition type. This is discussed in the
next section.

Table 4.5: Credit application – event log
activity activity type business ID event type agent fact list time

a91 applyForCredit c100 created ag0 [fact(a91,parent,a90)] 0
a91 applyForCredit c100 factAdded ag0 [fact(c100,type,application)] 0
a91 applyForCredit c100 assigned aga0 [fact(a91,assignedTo,ag1)] 12

...
a91 applyForCredit c100 factAdded ag1 [fact(c100,beneficiary,ag1)] 14
a91 applyForCredit c100 factAdded ag1 [fact(c100,applicant,ag1)] 15
a91 applyForCredit c100 factAdded ag1 [fact(c100,loanType,bullet)] 15
a91 applyForCredit c100 completed ag1 [] 17

...
a96 reviewCredit c100 created ag0 [fact(a96,parent,a91)] 56

...
a96 reviewCredit c100 assignRejected ag0 [fact(a96,assignedTo,ag10)] 71
a96 reviewCredit c100 assigned ag0 [fact(a96,assignedTo,ag8)] 78
a96 reviewCredit c100 factAdded ag8 [fact(c100,risk,low)] 80
a96 reviewCredit c100 completed ag8 [] 81
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4.4 Declarative Process Mining

Process mining is the automated construction of process models from informa-
tion system event logs (Agrawal et al., 1998; van der Aalst et al., 2003). Whereas
interviews provide a subjective, qualitative source of information, event logs are
an objective and quantitative source of information. The analysis of event logs can
reveal how business processes actually have taken place. It is a new and promising
way of acquiring insights into business processes. Process mining is particularly
useful in the context of human-centric processes that are supported, but not fully
controlled by information systems (van der Aalst, 2007). Many organizations
have information systems that keep track of event logs. This omni-presence of
event logs, makes process mining and process analysis techniques almost as widely
applicable as process modeling.

Table 4.6 explorers the process analysis space along two dimensions and posi-
tions the subsequent work in this text within this space. Currently, many algo-
rithms have been developed to describe or predict control-flow, data, or resource-
related aspects of processes from event logs . An important but difficult learning
task is the discovery of sequence constraints from event logs. This task is called
process discovery (Alves de Medeiros et al., 2007; van der Aalst et al., 2004). Other
process learning tasks involve, among others, learning allocation policies (Ly et al.,
2005) and revealing social networks (van der Aalst et al., 2005; van der Aalst and
Song, 2004) from event logs. All of the aforementioned references describe new
algorithms that have been implemented in the ProM Framework (van Dongen
et al., 2005). In analogy with the WEKA toolset for data mining (Witten and
Frank, 2000), the ProM Framework consists of a large number of plugins for the
analysis of event logs (Process Mining Group, TU/Eindhoven, 2008).

In the remainder of this section, we position different process mining tasks
within the EM-BrA2CE Framework and characterize declarative process mining.

Table 4.6: An Overview of Process Mining Space
(van der Aalst et al., 2003; van der Aalst and Weijters, 2004)

control flow data flow resource flow
discovery Chapter 5 - Section 5.9

conformance Section 6.1 - -
extension - - -

4.4.1 Process Mining Tasks

In this section, different process mining tasks are represented as classification
problems that model the conditions under which a transition can take place (a
positive event) or not (a negative event). In general, classification learning is
learning how to assign an instance to a predefined class or group according to its
known characteristics. The result of classification learning is a model that makes
it possible to classify future instances based on a set of specific characteristics
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in an automated way. Classification techniques are often used for credit scor-
ing (Baesens et al., 2003; Martens et al., 2007a), and medical diagnosis (Pazzani
et al., 2001).

Ferreira and Ferreira (2006) show how process discovery can be formulated
as a classification learning problem that determines the conditions under which
an activity can take place (a positive event) or not (a negative event). This
idea can be generalized towards the state transition types that are considered
by the EM-BrA2CE Framework or by the transactional model of the MXML
format for event logs (van Dongen and van der Aalst, 2005a). A negative event
reports that a state transition could not take place at a particular moment in
the event log history. For each positive activity event type one can think of
a negative one. For instance, for the event types ‘created’ and ‘assigned’ the
event types ‘createRejected’ and ‘assignRejected’ can be conceived. Learning the
classification rules that predict whether, given the state of a process instance, a
particular state transition can occur, then boils down to learning the classification
rule that predicts when either a positive or a negative event occurs. In this way,
the following process mining tasks can be identified within the framework:

p create: classifying whether at a given moment, an activity can be created
or not (createRejected). The obtained classification model might reveal
information about business concerns such as activity cardinality, and
activity exclusion.

p schedule: learning to discriminate whether a proposed due date or perfor-
mance date will be accepted or rejected. The obtained classification model
might obtain information about scheduling policies, and due dates.

p assign: learning the transition constraints that determine the conditions
under which an agent can be assigned to an activity (assigned) or not
(assignRejected). The obtained classification model might reveal informa-
tion about activity authorization and activity allocation policies.

p start : learning the conditions that discriminate between a started or a
startRejected event. This learning task is know in the literature as pro-
cess discovery.

p addFact , removeFact , updateFact : learning the conditions that determine
whether a factAdded or addFactRejected event takes place. This learning
task can reveal information about static and dynamic data integrity con-
straints.

p complete: classifying whether a completed or completeRejected event takes
place. From the learned classification model, one can obtain information
about the intended effect of an activity in terms of an activity postcon-
dition or an activity inclusion constraint.

p skip: classifying the conditions that determine whether an activity can be
skipped.
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p abort : classifying the conditions that determine whether an activity can be
aborted.

p redo: classifying the conditions that determine whether an activity can be
redone.

Not every process mining tasks is as useful or as widely applicable as others. Some
learning tasks have not yet been addressed in the literature.

4.4.2 Declarative Mining Techniques

In order to be useful in practice, process mining techniques must be capable of
learning process models that not only accurately describe the patterns in event
logs, but that are also comprehensible to human end-users, and that take into
account the specific domain knowledge and requirements of the end user. In his
PhD, Martens (2008) brings forward three general requirements that make an
induced classification model acceptable: accuracy, comprehensibility, and justifi-
ability.

p Accuracy refers to the extent to which the induced model fits the behavior
in the event log and can be generalized towards unseen behavior.

p Comprehensibility refers to the extent to which an induced model is com-
prehensible to end-users.

p Justifiability refers to the extent to which a model is aligned with the
existing domain knowledge of the end-user.

Many process mining techniques primarily focus on the first criterion: accuracy.
This is is a necessary, but insufficient requirement for process mining. An induced
model that accurately describes the observed behavior, but that is completely
incomprehensible to end users, or inconsistent with the knowledge of end users is
likely to be less useful than a slightly less accurate model that is comprehensible
and justifiable.

Declarative process mining techniques also target the comprehensibility and
justifiability of the induced models. A process mining algorithm is said to be
declarative, when it possesses the following learning features.

p A declarative language bias. The language bias of a learner is a speci-
fication of possible language constructs that a learner can use to construct
hypotheses that explain the observed behavior in the event log. The lan-
guage bias determines the nature and number of the hypotheses that can
possibly be induced. For instance, the language bias of the α algorithm cov-
ers the class of Structured Workflow Nets (SWF-nets) (van der Aalst et al.,
2004). A learner has a declarative language bias, when it uses a declarative
process modeling language to represent the discovered patterns. In some
cases, learners with a declarative language bias potentially discover more
comprehensible process models. In particular, declarative languages can be
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expected to have a more condense representation when describing loosely-
structured processes, whereas procedural languages are more concise when
describing highly-structured processes. Pesic et al. (2007a), for instance,
make this contrast when comparing the declarative ConDec (Pesic and van
der Aalst, 2006) and the procedural YAWL (van der Aalst and ter Hofstede,
2005) process languages.

p A configurable language bias. An end user is likely to have an idea of
the language constructs that are likely to be most successful in describing
the behavior that is contained within an event log. Therefore, it potentially
is very useful that an end-user can manipulate the langue bias of a learning
algorithm. By configuring the language bias of a learner, a learner might
produce more accurate or more condense patterns. An example of this,
can be found with the decision point analysis technique of Rozinat and
van der Aalst (2006), who discuss the use of uni-relational classification
for the purpose of decision mining. In decision mining so-called decision
points are identified in process logs, and the classification problem consists
of determining which case data properties lead to certain paths being taken
in the process. The algorithm has a configurable language bias in that
allows specifying whether the time point at which a case data point is being
entered should occur prior to the decision point or not. Sometimes a relevant
case data attribute has not yet been entered, whereas it already affects the
routing choices in the event log.

p A configurable inductive bias. When learning patterns from a sample
data set, learners inevitably must make a so-called “inductive leap”. This
inductive leap expresses the uncertainty about the learned patterns being
reasonable inferences that are generalizable towards the entire population.
For instance, when summarizing a scatter plot of two continuous variables in
terms of a linear function, we implicitly assume that the underlying popula-
tion portrays a linear relationship between these to variables. The inductive
bias of a learner is what is required for making an inductive leap; it is the
additional set of assumptions that need to be added to the inductive system
such that the predictions of the learner would follow deductively instead of
inductively (Mitchell, 1997). Without an inductive bias, a learner can only
memorize the observed data instances. For some algorithms, the inductive
bias can be elegantly expressed in logic, whereas for other, black-box learn-
ing techniques, it is not possible to bring its inductive bias under words.
The language bias is only part of the inductive bias of a learner: it is the
assumption that the population can be described in terms of the language
bias; that the correct hypothesis that is part of the hypothesis space. An-
other aspect of the inductive bias, is how a learner discriminates between
good and bad hypotheses. In process mining, it can be interesting to have
a configurable inductive bias beyond a configurable language bias. By con-
figuring the inductive bias of a learner, one would in theory be capable of
manipulating the learner’s ability to generalize from the observed behav-
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ior. For example, many process discovery algorithms make a completeness
assumption about the observed event sequences to strike an appropriate bal-
ance between precision and recall. By making this completeness assumption
configurable, a user could manipulate the amount of unobserved behavior
he or she is willing to accept in the model to be learned.

p Account for prior knowledge. In general, the problem of consolidating
the knowledge extracted from the data with the knowledge representing the
experience of domain experts, is called the knowledge fusion problem (Dy-
bowski et al., 2003). Providing a proper solution for this problem is a key
success factor for any learner. Prior knowledge constrains the considered
hypothesis space to a subset that is consistent with the prior knowledge.
An example of this might be the prior knowledge that, all other things
being equal, a manager has at least the same access rights as his subordi-
nates. A learner that is capable of taking this prior knowledge into account
would refrain from inferring access control hypotheses that under the same
circumstances would grant more access rights to a subordinate than to a
manager.

With this characterization of declarative process mining techniques, no dichotomy
is implied: some learners will have more declarative features than others, but no
crisp distinction can be made.

Process mining algorithms are not solely considered to be declarative because
of a language bias that allows the induction of declarative process models. Declar-
ative process models make the business concerns that govern business processes
explicit. However, it would in general be very difficult to directly identify busi-
ness concerns from an event log only using machine learning techniques. For
instance, process discovery techniques might reveal a dependency relationship be-
tween two activity types, but this does not necessarily capture the underlying
business concern. For this reason, models obtained from process mining are most
often subjected to the interpretation of a human-expert, rather than automati-
cally being taken into production. Human-experts are capable of identifying the
underlying business concerns both from procedural and declarative process mod-
els. After interpretation, the experts can close the loop in the BPM life cycle, by
documenting and modeling the discovered knowledge, preferably using declarative
languages. What also matters is that the learning algorithms are configurable in
a declarative manner. The user of a process mining algorithm, very often has
specific knowledge and requirements for a particular learning problem. Mining
techniques that are capable of taking this into account can be expected to be more
useful. Therefore process mining algorithms must also provide means of including
a-priori knowledge from the end-user, his or her perception about the language
constructs that are most likely to be able to describe the patterns in the event
log (the language bias), and his or her perception about how a learner can best
generalize beyond the observed patterns (the inductive bias).
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4.5 Conclusion

Albeit a unifying approach, the EM-BrA2CE Framework, introduced in the pre-
vious chapter, remains a framework and thus purposefully leaves many gaps to fill
in. In this chapter, we have filled in a small number of these gaps, by indicating
how the framework allows for the application of declarative modeling, simulation,
and mining techniques.

First, we have indicated how many business concerns related to business pro-
cesses can be represented as business rule types. To this end, we have identified
sixteen business rule types that can be useful in verbalizing various business con-
cerns. For these business rule types we have indicated related work, and briefly
discussed how they can be declaratively enforced within the execution semantics
of the framework. Furthermore, we have introduced a new language for reasoning
about obligations, permissions, and due dates, called PENELOPE, and indicated
how a set of rules specified in this language can be visualized and verified. To con-
clude the modeling aspect of this text, we have briefly discussed two simulation
models that serve as a proof-of-concept of the execution semantics.

In this chapter, we have also made the transition from process modeling to-
wards process mining. We have identified twelve data mining tasks that can be
formulated as classification learning problems on event logs with negative events.
Furthermore, we have provided a characterization of declarative process mining
techniques. In particular, a process mining technique is declarative when it allows
the user to have some control over learning features such as prior knowledge, lan-
guage bias, and inductive bias. To illustrate declarative process mining, we have
indicated how access rules can be discovered from event logs using an existing,
multi-relational classification learner. Learning transition constraints such as ac-
cess rules is relatively easy when an event log by itself contains negative events.
There are, however, learning problems for which event logs generally contain no
negative events. This is, for instance, often the case for process discovery. In the
next chapter, we will focuss on this learning problem.



CHAPTER 5

Declarative Process Discovery with
Artificial Negative Events

Declarative process discovery techniques focuss on comprehensibility and justifi-
ability of the discovered process models, in addition to their accuracy. Inductive
Logic Programming (ILP) is a machine learning technique that is particularly
suited for raising comprehensibility and justifiability. Ferreira and Ferreira (2006)
show that process discovery can be formulated as an ILP classification learning
problem on event logs with both positive and negative events. In reality, event logs
often do not contain negative examples. Without negative examples, it is a chal-
lenge to strike the right balance between generality and specificity, while dealing
with problems such as expressiveness, noise, incomplete event logs, or the inclu-
sion of prior knowledge. In this chapter, we present a declarative technique that
deals with these challenges by representing process discovery as a multi-relational
classification problem on event logs supplemented with Artificially Generated Neg-
ative Events (AGNEs). The AGNEs technique is implemented as a mining plugin
in the ProM Framework (Process Mining Group, TU/Eindhoven, 2008).

5.1 Process Discovery

Within the analysis of event logs, process discovery is an important learning task.
Process discovery aims at correctly summarizing an event log and describing how
processes have actually taken place. Processes occur in a more or less structured
fashion, containing structures such as or-joins, or-splits, and-joins, and-splits, and
loops. The learning task can be formulated as follows: given an event log that
contains the events about a finite number of process instances, find a model that
correctly summarizes the behavior in the event log, striking the right balance
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between generality (allowing enough behavior) and specificity (not allowing too
much behavior). For the purpose of process discovery, processes are often repre-
sented as workflow nets, a special subclass of Petri nets. Figure 5.1 illustrates the
learning problem for a Driver’s License application process. Given the event log
in Figure 5.1(a), different process models can be conceived that portray similar
behavior as the event log. The Petri net in Figure 5.1(b) is capable of parsing
every sequence in the event log. However, it can be considered to be overly gen-
eral as it allows any activity to occur in any order. In contrast, the Petri net in
Figure 5.1(d) is overly specific, as it provides a mere enumeration of the differ-
ent sequences in the event log. The Petri net in Figure 5.1(c) is likely to be the
more suitable process model. It is well-structured, and strikes a reasonable bal-
ance between specificity and generality, allowing for instance an unseen sequence
abcefgik , but disallowing random behavior.

σ1 abcefgijk
σ2 abdfehijk
σ3 abdefhijbdfehijk
σ4 abcfegik
. . . . . .
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(d) an over-specific model

Figure 5.1: DriversLicensel – discovery of a driver’s license application process – (the
transitions correspond to activity types that have the following meaning: a start, b

apply for license, c attend classes cars, d attend classes motor bikes, e obtain
insurance, f theoretical exam, g practical exam cars, h practical exam motor bikes, i

get result, j receive license, and k end.)

An important aspect of process discovery is the visualization of the discovered
process model in graphs. In the spirit of Chapter 2, such graph-based process
models can be seen as procedural process models, because they consist of a “pre-
computation of activity dependencies” (Schmidt and Simone, 1996). In contrast,
declarative process models reflect the underlying business concerns that govern
business processes and that lead to activity dependencies. In this chapter, we
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nonetheless focus on the discovery of graph-based, procedural process models from
event logs. We believe that, in general, it would be very difficult to identify the
underlying business concerns from an event log using machine learning techniques.
Instead, the approach of summarizing an event log in a graph-based, procedural
model, and having a human expert determine the underlying business concerns
using a declarative modeling technique is a valid and productive one. Graph-based
models are also useful for performance analysis techniques such as simulation, and
critical path analysis.

An inherent difficulty of process discovery is that it is often limited to a setting
of unsupervised learning. Event logs rarely contain negative information about
state transitions that were prevented from taking place. Such negative information
can be useful to discover the discriminating properties of the underlying process.
In the absence of negative information, it is necessary to provide a learner with
a particular inductive bias, to strike the right balance between generality and
specificity, while at the same time dealing with challenging problems such as
expressiveness, noise, incomplete event logs, and the inclusion of prior knowledge
(van der Aalst and Weijters, 2004):

p expressiveness: expressiveness relates to the ability to summarize an event
log using a rich palette of structures such as sequences, splits, joins,
and loops. Additionally, learners must be capable of detecting history-
dependent behavior. Human-centric processes portray behavior that is
dependent on the non-immediate history. An example is the occurrence of
history-based joins in the control flow of a process or so-called non-local,
non-free choice constructs (Wen et al., 2007). Another challenge is the de-
tection of duplicate activities. These are activities that are identically
labeled but that are used in different execution contexts within the process.
A further challenge is the inclusion of case data. The routing choices that
are made in processes can also be dependent on the value of its data prop-
erties. The inclusion of case data in discovered process models is therefore
potentially useful.

p noise: Human-centric processes are prone to exceptions and logging errors.
This causes additional low-frequent behavior to be present in the event log
that is unwanted in the process model to be learned. Consequently, process
discovery algorithms face the challenge of not overfitting this noise.

p incomplete logs: Incomplete event logs do not contain the complete set of
sequences that occur according to the underlying, real-life process. Process
discovery algorithms must be capable of generalizing beyond the observed
behavior in the incomplete event logs. This is particularly the case for
processes that portray a large amount of concurrent and recurrent behavior.
For these process models, the completeness assumption that all behavior of
interest is present in the event log quickly becomes invalid.

p prior knowledge: In the context of process discovery, prior knowledge
might refer to knowledge about concurrency (parallelism), locality or ex-
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clusivity of activities. When a learner produces a process model that is
not in line with the prior knowledge of a domain expert, the expert might
refuse using the discovered process model. For instance, a domain expert
might refuse a process model in which a pair of activities cannot take place
concurrently, whereas in reality such parallelism is actually allowed. For
this reason, process discovery should be capable of taking into account prior
knowledge.

In this chapter, all above-mentioned challenges are addressed by representing pro-
cess mining as first-order classification learning on event logs supplemented with
artificially generated negative events (AGNEs). The AGNEs technique is capable
of constructing Petri net models from event logs and has been implemented as
a mining plugin in the ProM framework. In the next chapter, the performance
of our technique is evaluated. Benchmark experiments with 34 artificial event
logs and comparison to four state-of-the-art process discovery algorithms indicate
that the technique is expressive, robust to noise, and capable of dealing with
incomplete event logs.

Algorithm 1 outlines four major steps in the AGNEs process discovery proce-
dure. These four steps are addressed in four subsequent sections of this chapter.
AGNEs is called a declarative process discovery technique.

p Declarative specification of prior knowledge. AGNEs allows to spec-
ify prior knowledge about parallelism and locality as a logic program, and
uses this prior knowledge to actively constrain its hypothesis space. The
ability to specify prior knowledge as a number of clauses is very expressive.
For instance, the constraint ∀a ∈ A : PriorSerial(‘accept application ′, a)
indicates that the activity accept application cannot occur in parallel with
any other activity.

p Declarative control over the inductive bias. In general, learning from
positive data only requires an inductive bias of additional assumptions about
the learning problem. The inductive bias of a learner is the additional set of
assumptions that need to be added such that the predictions of the learner
would follow deductively instead of inductively (Mitchell, 1997). Many pro-
cess discovery algorithms implicitly have a completeness assumption as in-
ductive bias. AGNEs makes this completeness assumption explicit by gener-
ating artificial negative events. Because the technique allows the end-user to
configure the negative event generation procedure taking into account win-
dow size, and parallel variants, it provides the user with declarative control
over the inductive bias. By manipulating the inductive bias, the end-user
can set the balance between generality and specificity.

p Declarative control over the language bias. The language bias of the
learner is the set of language constructs that a learner can use to produce
a hypothesis that fits the learning problem. The language bias of a learner
determines the hypothesis space, the set of all allowable hypotheses. Because



5.2. Related Work 113

AGNEs makes use of an Inductive Logic Programming (ILP) classification
learner, it allows the user to have a declarative control over the language
constructs that can be used. The AGNEs technique aims at producing a
workflow net representation of the learned hypothesis space. Therefore, the
language bias is tailored toward a specific event operator. However, other
language constructs, involving case data conditions or aggregation functions
(such has the maximum occurrence of an event), can also be included and
are visualized as guard conditions on Petri net transitions.

Algorithm 1 Process discovery by AGNEs: overview
1: step 1: derive parallelism and locality from frequent temporal constraints
2: step 2: generate artificial negative events
3: step 3: learn the preconditions of each activity type
4: step 4: transform the preconditions into a Petri net

The remainder of this chapter is structured as follows. A related work sec-
tion first provides an overview of the work in the area of process discovery and
indicates the contributions made to the state of the art. Section 5.3 introduces
some preliminaries and notations about Petri nets, event logs and inductive logic
programming. Section 5.4 provides a detailed description of the first step in the
AGNEs process discovery technique: the derivation of parallelism and locality in-
formation from frequent temporal constraints. Section 5.5 explains the necessity
for generating artificial negative events and provides a detailed description of the
used algorithms. Section 5.6 discusses the language bias that is to be supplied
to a multi-relational classification learner in order to induce activity precondi-
tions that can be transformed into a Petri net. Section 5.7 provides a detailed
description of how a set of induced preconditions can be transformed into a Petri
net.

5.2 Related Work

Although grammar learning generally only considers sequential data and not con-
current behavior, process discovery can be seen as an application of the machine
learning of grammars from positive data, of which Angluin and Smith (1983) pro-
vide an overview. Gold (1967) has shown that important classes of recursively
enumerable languages cannot be identified in the limit from a finite number of
positive examples only. Instead, both positive and negative examples are required
for grammar learning to distinguish the right hypothesis among an infinite number
of grammars that fit the positive examples. Whereas Gold’s negative learnability
result applies to the learning of grammars with perfect accuracy, process discov-
ery is more concerned with the ability to discover process models that have only
a good recall and specificity. Learning grammars from only positive examples
requires a tradeoff between overly general and overly specific hypotheses. Mug-
gleton (1996) shows that in a Bayesian framework, logic programs are learnable
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with arbitrarily low error from positive examples only. Bayes’ theorem allows to
formulate this tradeoff as a tradeoff between size and generality of the hypotheses
and learning can be considered to maximization the posterior probability over
all hypotheses. In this chapter, a new approach for making the tradeoff between
generality and specificity is proposed, by inducing artificial negative events us-
ing a (highly configurable) assumption about the completeness of the behavior
displayed by the positive examples in the event log.

The term process discovery was coined by Cook and Wolf (1998), who apply
it in the field of software engineering. Their Markov algorithm can only dis-
cover sequential patterns as Markov chains cannot elegantly represent concurrent
behavior. The idea of applying process discovery in the context of workflow man-
agement systems stems from Agrawal et al. (1998) and Lyytinen et al. (1998).
The value of process discovery for the general purpose of process mining (van der
Aalst et al., 2007a) is well illustrated by the plugins within the ProM framework.
In analogy with the WEKA toolset for data mining (Witten and Frank, 2000), the
ProM Framework consists of a large number of plugins for the analysis of event
logs (Process Mining Group, TU/Eindhoven, 2008). The Conformance Checker
plugin (Rozinat and van der Aalst, 2008), for instance, allows identifying the dis-
crepancies between an idealized process model and an event log. Moreover, with
a model that accurately describes the event log, it becomes possible to use the
time-information in an event log for the purpose of performance analysis, using,
for instance, the Performance Analysis with Petri nets plugin.

Table 5.1 provides a chronological overview of process discovery algorithms
that have been applied to the context of workflow management systems. The α
algorithm can be considered to be a theoretical learner for which van der Aalst
et al. (2004) prove that it can learn an important class of workflow nets, called
structured workflow nets, from complete event logs. The α algorithm assumes
event logs to be complete with respect to all allowable binary sequences and
assumes that the event log does not contain any noise. Therefore, the α algorithm
is sensitive to noise and incompleteness of event logs. Moreover, the original α
algorithm was incapable of discovering short loops or non-local, non-free choice
constructs. Alves de Medeiros et al. (2004) have extended the α algorithm to mine
short loops and called it α+. Wen et al. (2007) made an extension for detecting
implicit dependencies, for detecting non-local, non-free choice constructs. None
of the algorithms can detect duplicate activities. The main reason why the α
algorithms are sensitive to noise, is that they does not take into account the
frequency of binary sequences that occur in event logs. Weijters and van der Aalst
(2003) and Weijters et al. (2006) have developed a robust, heuristic-based method
for process discovery, called heuristics miner, that is known to be noise resilient.
Heuristics miner can discover short loops, but it is not capable of detecting non-
local, non-free choice as it does not consider non-local dependencies within an
event log. Moreover, heuristics miner cannot detect duplicate activities.

van Dongen and van der Aalst (2005b) present a multi-phase approach to pro-
cess mining that starts from the individual process sequences, constructs so-called
instance graphs for each sequence that account for parallelism, and then aggre-
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Table 5.1: Chronological overview of process discovery algorithms

Algorithm (Ref.) Summary

global partial orders
(Mannila and Meek, 2000)

� Learns a two-component mixture model of a dominant series-
parallel partial order and a trivial partial order by searching for
the dominant partial order that yields the highest probability for
generating the observed sequence database.

α, α+

(van der Aalst et al., 2004)
(Alves de Medeiros et al.,
2004)

� Derives a Petri net from local, binary ordering relations detected
within an event log.

little thumb, heuristics
miner
(Weijters and van der Aalst,
2003)
(Weijters et al., 2006)

� Extends the α algorithm by taking into account the frequency of
the follows relationship, to calculate dependency/frequency tables
from the event log and uses heuristics to convert this information
into a heuristics net.

splitpar – InWoLvE
(Herbst and Karagiannis,
2004)

� Derives a so-called stochastic activity graph and converts it into
a structured process model in the Adonis Modeling language.

multi-phase miner
(van Dongen and van der
Aalst, 2005b)

� Constructs a process model for every sequence in the log and
aggregates the model into an event-driven process chain.

α++

(Wen et al., 2007)
� Extends the α algorithm to discover non-local, non-free choice
constructs.

–
(Silva et al., 2005)

� A probabilistic approach to process discovery.

frecpo
(Pei et al., 2006)

� A scalable technique for discovering the complete set of frequent,
closed partial orders from sequential data.

FSM/Petrify miner
(van der Aalst et al., 2006)

� Derives a highly configurable finite state machine from the event
log and folds the finite state machine into regions using the theory
of regions.

–
(Ferreira and Ferreira, 2006)

� Learns the case data preconditions and effects of activities with
ILP classification techniques and user-supplied negative events.

genetic miner
(Alves de Medeiros et al.,
2007)

� A genetic algorithm that selects the more complete and precise
heuristics nets over generations of nets.

DecMiner
(Lamma et al., 2007)

� A classification technique that learns the preconditions of activ-
ities with the ICL ILP learner from event logs with user-supplied
negative sequences.

fuzzy miner
(Günther and van der Aalst,
2007)

� An adaptive simplification and visualization technique based
on significance and correlation measures to visualize unstructured
processes.

gates these instance graphs according to previously detected binary relationships
between activity types. Interestingly, the aggregation ensures that every discov-
ered process model has a perfect recall, but generally scores less on specificity.
Herbst and Karagiannis (2004) describe the working of the splitpar algorithm
that is part of the InWoLvE framework for process analysis. This algorithm de-
rives a so-called stochastic activity graph and converts it into a structured process
model. The splitpar algorithm is capable of detecting duplicate activities, but it
is not able to discover non-local dependencies.

Alves de Medeiros et al. (2007) describe a genetic algorithm for process discov-
ery. The fitness function of this genetic algorithm incorporates both a recall and
a precision measure that drives the genetic algorithm towards suitable models.
The genetic miner is capable of detecting non-local patterns in the event log and
is described to be fairly robust to noise. In her PhD, Alves de Medeiros (2006)
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describes an extension to this algorithm for the discovery of duplicate tasks.
van der Aalst et al. (2006) present a two-phase approach to process discov-

ery that allows to configure when states or state transitions are considered to
be similar. The ability to manipulate similarity is a good approach to deal with
incomplete event logs. In particular, several criteria can be considered for defin-
ing similarity of behavior and states: the inclusion of future or past events, the
maximum horizon, the activities that determine state, whether ordering matters,
the activities that visibly can bring about state changes, etcetera. Using these
criteria, a configurable finite state machine can be constructed from the event
log. In a second phase, the finite state machine is folded into regions using the
existing theory of regions (Cortadella et al., 1998). For the moment, the second
phase of the algorithm still poses difficulties with respect to constructing suitable
process models. The approach presented in this chapter considers window size
(maximum horizon) and parallel variants as similarity criteria when generating
artificial negative events.

Günther and van der Aalst (2007) present an adaptive simplification and visu-
alization technique based on significance and correlation measures to visualize the
behavior in event logs at various levels of abstraction. The contribution of this
approach is that it can also be applied to less structured, or unstructured pro-
cesses of which the event logs cannot easily be summarized in concise, structured
process models.

Several authors have used classification techniques for the purpose of process
discovery. Maruster et al. (2006), for instance, were among the first to investigate
the use of rule-induction to predict dependency relationships between activities
from a corpus of reference logs that portray various levels of noise and imbal-
ance. To this end, the authors use a propositional rule induction technique, the
uni-relational classification learner RIPPER (Cohen, 1995), on a table of direct
metrics for each process task in relation to each other process task, which is
generated in a pre-processing step.

Ferreira and Ferreira (2006) apply a combination of ILP learning and partial-
order planning techniques to process mining. Rather than generating artificial
negative events, negative examples are collected from the users who indicate
whether a proposed execution plan is feasible or not. By iteratively combin-
ing planning and learning, a process model is discovered that is represented in
terms of the case data preconditions and effects of its activities. In addition to
this new process mining technique, the contribution of this work is in the truly
integrated BPM life cycle of process generation, execution, re-planning and learn-
ing. Lamma et al. (2007) also describe the use of ILP to process mining. The
authors assume the presence of negative sequences to guide the search algorithm.
Unlike the approach of Ferreira and Ferreira, who use partial-order planning to
present the user with an execution plan to accept or reject (a negative example),
this approach does not provide an immediate answer to the origin of the negative
events. Contrary to our approach, the latter two approaches are not concerned
with the construction of a graphical, control-flow based process model and do not
consider the generation of artificial negative events.
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In the literature, there are many formalisms to represent and learn the prob-
ability distributions of stochastic, generative grammars over sequences of ob-
served characters and unobserved state variables. Historically, techniques like
Markov models, hidden Markov models, factorial hidden Markov models, and
dynamic Bayesian networks have been first applied to speech recognition, and
bio-informatics (Durbin et al., 1998). Each representation has its own partic-
ular modeling features that makes it more or less suited for representing the
human-centric behavior of business processes. Factorial hidden Markov models,
for instance, have a distributed state representation that allows for the modeling
of concurrent behavior (Ghahramani and Jordan, 1997). Other authors describe
learning mixture models to identify meaningful clusters of (hidden) Markov mod-
els (Cadez et al., 2003; Smyth, 1997). Whereas stochastic models provide useful
information, their probabilistic nature tends to compromise the comprehensibil-
ity of discovered process models. Business processes have well-defined start, end,
split, and synchronization nodes. The network structure of stochastic models
does visualize not this. For instance, although hidden states could be useful in
representing duplicate activities – the same activity label is logged in different
contexts – a hidden Markov model is unlikely to be capable of comprehensively
representing its different usage contexts.

In contrast, Mannila and Meek (2000) describe a technique to learn two-
component mixture models of global partial orders that provide an understand-
able, global view of the sequential data. The authors assume the presence of
one dominant, global partial order and consider a generic partial order with ran-
dom behavior to deal with low-frequent variations (noise) from the former model.
Silva et al. (2005) describe a probabilistic model and algorithm for process dis-
covery that discovers so-called and/or graphs in polynomial time. These and/or
graphs are comprehensible, directed acyclic graphs that have the advantage over
global partial order representations that they can differentiate between parallel
and serial split and join points. Pei et al. (2006) describe a scalable technique
for discovering the complete set of frequent, closed partial orders from sequential
data. The three aforementioned techniques assume each item to occur only once
within a sequence, and do not consider recurrent behavior (cycles), nor duplicate
activities.

5.3 Preliminaries

This section introduces the most important concepts and notations that are used
in the remainder of this chapter.

5.3.1 Inductive Logic Programming

Inductive Logic Programming (ILP) (Džeroski, 2003; Džeroski and Lavrač, 1994,
2001; Muggleton, 1990) is a research domain in machine learning that involves
learners that use logic programming to represent data, background knowledge,
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(a) customer
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 Partner 2


C1

C3


C2

C4


(b) partner

Figure 5.2: Multi-relational datasets

the hypothesis space, and the learned hypothesis.

Multi-relational Representation

ILP learners are also called multi-relational data mining (MRDM) learners. Multi-
relational data mining extends classical, uni-relational data mining in the sense it
can not only learn patterns that occur within single tuples (within rows), but can
also find patterns that may range over different tuples of different relations (be-
tween multiple rows of a single or multiple tables). For the purpose of discovering
non-local, non-free choice constructs, this multi-relational property is much de-
sired, as it allows discovering patterns in the event log that relate the occurrence
of an event to the occurrence of any other event in the event log. This aspect will
be addressed in Section 5.6.

To understand the idea, consider the following example. The example database
of Figure 5.2 consists of two tables, whereby the second table indicates which per-
sons from the first table are married with each other (Džeroski, 2003). From this
database, one wants to establish a decision tree so that the important customers
can be identified swiftly. Propositional learners create classification rules of the
following form: IF (income > 100000) THEN important customer = YES. Ob-
serve that only the information from the first table was used for the creation of
this rule. Relational algorithms on the other hand are able to use the relation-
ships that exist among multiple tuples. An example of such a rule is: IF (x is
married with a person with income > 100000) THEN important customer (x)
= YES. To allow propositional learners to exploit this multi-relational informa-
tion the multi-relational data mining problem has to be converted a uni-relational
problem, as shown in Figure 5.3. We can see that we need three extra columns
to describe the properties of the partner. This technique has been applied to
multi-relational data mining (Lavrac et al., 1991) and allows to keep on using
propositional learners. Nonetheless, it is less elegant, as it transfers the problem
of non-local search to the input space. More importantly, it also exponentially
increases the dimensions of the input space. High dimensional input spaces are
typically hard to handle by classical data mining techniques, a problem known as
‘curse of dimensionality’ (Tan et al., 2005).
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Figure 5.3: Transformation to uni-relational problem

Logic Programming

In this section, we briefly introduce the basic concepts of logic programming that
are useful to understanding the finer details of ILP classification learning with
TILDE. The overview is based on the comprehensive text books of Brachman
and Levesque (2004); Džeroski and Lavrač (2001); Hogger (1990).

The syntax of first-order logic or predicate logic consists of terms, atomic for-
mulae, and well-formed formulae. Variables, functions, and constants are terms.
A variable such as x is a term. A function symbol followed by a bracketed n-tuple
of terms is a term. For example, F (A,G(B), x) is a term when F , A, and G are
function symbols and x is a variable - strings starting with upper case characters
denote predicate and function symbols, whereas strings starting with lower case
characters denote variables. A constant is a function of arity zero. A predicate
symbol that is immediately followed by a bracketed n-tuple of terms is called an
atomic formula. A well-formed formula is either an atomic formula or a compos-
ite of atomic formulae of the following forms: F , ¬F (negation), F ∨ G (logical
disjunction), F ∧ G (logical conjunction), F ⇐ G (logical implication), F ⇔ G
(logical equivalence), ∀x : F (universal quantification), and ∃x : F (existential
quantification), where F and G are well-formed formula and x is a variable.

A theory in first-order logic is normally expressed in clausal form. A clause
consists of a logical disjunction of literals in which each variable is universally
quantified. A positive literal is an atom, a negative literal is a negated atom. In
other words, a clause is of the form ∀x1, x2, ...xs(A1∨A2∨ ...∨Ah∨¬B1∨¬B2...∨
¬Bb), where each Ai is a positive literal and each ¬Bi is a negative literal and
each Xj are all the variables occurring in (A1 ∨ A2 ∨ ... ∨ Ah ∨ ¬B1 ∨ ¬B2... ∨
¬Bb). A clause can also be represented using logical implication, giving clauses an
intuitive if -then-rule reading. The previous clause is written as A1, A2, ..., Ah ⇐
B1, B2..., Bb. The positive literals A1, A2, ..., Ah appear in the head of the clause.
The negative literals B1, B2..., Bb appear in the body of the clause. Commas in the
head denote logical disjunction, while commas in the body of the clause denote
logical conjunction.

The logic programs that are used by ILP learners to represent examples e ∈ E,
background knowledge B, and hypotheses H ∈ S are most often expressed in
Prolog. Prolog is a logic programming language that consists of definite logic
programs extended with some procedural reasoning features. Horn logic consists
of a conjunction of Horn clauses. A Horn clause is a clause that consists of at



120 Chapter 5. Declarative Process Discovery

most one positive literal, and thus at most has one literal in the rule head; it is
also a definite clause if it contains exactly one positive literal. A set of definite
clauses is called a definite logic program.

A Herbrand interpretation I of a first-order clausal theory is a set of atomic
logic formulae – this is also called the model – to which the theory assigns the
value true. More formally, a Herbrand interpretation I is a model for a clause c if
and only if for all substitutions θ such that cθ is ground (i.e. cθ no longer contains
non-substituted variables), body(c)θ ⊂ I implies head(c)θ ∩ I 6= ∅. A Herbrand
interpretation I is a model for a clausal theory T , if and only if it is a model for
all clauses in T .

Each definite logic program (Prolog program) has a single, unique Herbrand
interpretation, which is called the unique, least Herbrand model which contains all
non-negated atomic logical formula (ground facts) that are true in the logic pro-
gram. Prolog programs are fit with a so-called closed-world assumption (CWA).
Under this assumption, atomic logical formula (ground facts) that cannot be de-
rived from the program are assumed to be false. This assumption is valid when
the logic program has a complete knowledge about the “world” it models. Be-
cause of this closed-world assumption, Prolog allows for a special kind of negation
of atoms in the body of the clause. This negation is called negation-as-failure and
is written as ∼ B, where B is an atom.

Prolog programs do not contain functions of non-zero arity. This means that
only variables and constants appear as terms in atomic formulae.

Learning from Interpretations

Whereas logic programming (LP) is concerned with deductive reasoning with
logic programs so as to derive new ground facts from an initial set of axioms and
inference rules, inductive logic programming (ILP) is concerned with inductive
reasoning. In particular, ILP focusses on making generalizations from observed
instances in the presence of background knowledge, finding patterns that also
apply to unobserved instances.

Within ILP, concept learning is an important learning task. An ILP classifi-
cation learner will search for a hypothesis H in a hypothesis space S that best
discriminates between the positive P and negative examples N (E = P ∪ N)
in combination with some given background knowledge B. A particularly salient
feature of such learners is that they have a highly configurable language bias. The
language bias L specifies the hypothesis space S of logic programs H that can be
considered. In addition, users of ILP learners can specify background knowledge
B as a logic program. Such background knowledge is a more parsimonious en-
coding of knowledge that is true about every example, than is the case for the
attribute-value encoding of propositional learners (Blockeel, 1998).

In his PhD Blockeel (1998) discusses the advantages of different ILP learning
settings. Most ILP learners consider a setting that is called concept learning by
entailment. The learning task is formalized as follows (Blockeel, 1998):
given:
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p a set of positive examples P and negative examples N

p a logic program B that represents the background knowledge

p a language bias L that specifies a hypothesis space S of logic programs.

find: a hypothesis H ∈ S (a logic program) such that,

p ∀e ∈ P : H ∧B � e

p ∀e ∈ N : H ∧B 2 e.

In this setting, it is possible to learn a full logic program that contains recursive
clauses, relating the classification of one example to the classification of other
examples. The latter requires each example to be identifiable with a specific ex-
ample identifier. Whereas few concept learning problems require hypotheses that
contain recursive clauses, this broad application potential unfortunately results in
an increased computational complexity of many of these ILP learning algorithms
(Blockeel, 1998).

In the problem setting of concept learning from interpretations, the classifi-
cation of each example e is considered to be independent from the classification
of each other example. Therefore, an example e ∈ E constitutes an independent
logic program. The intent is to learn a hypothesis H, a set of clauses, such that
each positive example makes each clause in H true, whereas none of the negative
examples do so. More formally, the goal is to find a hypothesis H ∈ S such that
(Blockeel, 1998):

p ∀e ∈ P : H is true in M(B ∧ e)

p ∀e ∈ N : H is false in M(B ∧ e),

where M(B ∧ e) is least Herbrand interpretation of B ∧ e. Because each example
is considered to be independent, it is no longer possible to learn recursive relation-
ships. Nonetheless, the concept learning from interpretations setting maintains
the capability of finding patterns that apply among multiple relations within a
logic program.

In addition to their multi-relational capabilities, the power of ILP concept
learners lies with the configurability of their language bias L and background
knowledge B. The effectiveness by which an ILP learner can be applied to a
learning task depends on the choices that are made in representing the examples
E, the background knowledge B and the language bias L.

TILDE

In this text, we make use of TILDE (Blockeel and De Raedt, 1998), a first-order
decision tree learner available in the ACE-ilProlog data mining system (Blockeel
et al., 2002). TILDE is positioned within the above-introduced learning from
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interpretations setting. The learning task is classification learning rather than
concept learning. Concept learning can be considered to be a special case of
classification learning, in which the target classes are the binary classes true and
false. Blockeel (1998) formalizes the learning task of TILDE as follows:
given:

p a set of classes C

p a set of classified examples E, each example (e, c) ∈ E is an independent
logic program for which the predicate Class(c) denotes that e is classified
into class c.

p a logic program B that represents the background knowledge

p a language bias L that specifies a hypothesis space S of logic programs.

find: a hypothesis H ∈ S (a logic program) such that for all labeled examples
(e, c) ∈ E,

p ∀e ∈ E : H ∧ e ∧B � Class(c)

p ∀e ∈ E,∀c′ ∈ C\{c} : H ∧ e ∧B 2 Class(c′).

TILDE is a first-order generalization of the well-known C4.5 algorithm for de-
cision tree induction (Quinlan, 1993). Like C4.5, TILDE (Blockeel and De Raedt,
1998; Blockeel et al., 2002) obtains classification rules by recursively partition-
ing the dataset according to logical conditions that can be represented as nodes
in a tree. This top-down induction of logical decision trees (TILDE) is driven
by refining the node criteria according to the provided language bias L. Unlike
C4.5, TILDE is capable of inducing first-order logical decision trees (FOLDT). A
FOLDT is a tree that holds logical formula containing variables instead of propo-
sitions. Blockeel and De Raedt (1998) show how each FOLDT can be converted
into a logic program.

5.3.2 Event logs

An event log consists of events that pertain to process instances. A process
instance is defined as a logical grouping of activities whose state changes are
recorded as events. This logical grouping of activities is in accordance with a
particular case identifier, that identifies process instances. In this chapter, we
will continue to use the EM-BrA2CE process modeling vocabulary introduced in
Chapter 3. However, we will also use the following, abbreviated notation.

Let X be a set of event identifiers, P a set of case identifiers, the alphabet
A a set of activity types, and E a set of event types. An event predicate is a
quintuple Event(x, p, a, e, t), where x ∈ X is the event identifier, p ∈ P is the
case identifier, a ∈ A the activity type, e ∈ E the event type, and t ∈ N the
time of occurrence of the event. The function Case ∈ X ∪ L → P denotes the
case identifier of an event or a sequence. The function AT ∈ X → A denotes the
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activity type of an event. The function ET ∈ X → E denotes the event type
of an event. The function Time ∈ X → N denotes the time of occurrence of
an event. In this chapter, we are primarily interested in reconstructing a control
flow-based process model from an event log. We will therefore assume that E
is equal to the set {completed , completeRejected}, event types that respectively
indicate the completion of a particular activity or the negation of this. The set
X of identifiers has a complete ordering, such that ∀x, y ∈ X : x < y ∨ y < x and
∀x, y ∈ L : x < y ⇒ Time(x) ≤ Time(y).

Let an event log L be a set of sequences. Let σ ∈ L be an event sequence, an
ordered set of event identifiers of events pertaining to the same process instance
as denoted by the case id; σ = {x | x ∈ X ∧ Case(x) = Case(σ)}. The function
Position ∈ X ×L→ N0 denotes the position of an event with identifier x ∈ X in
the sequence σ ∈ L. Two subsequent event identifiers within a sequence σ can be
represented as a sequence x.y ⊆ σ. We define the .-predicate as follows

x.y ⇔ ∃x, y ∈ σ : x < y ∧ @z ∈ σ : x < z < y.

In the text, this predicate is used within the context of a single sequence σ which
is therefore left implicit. Given that AT (x) = a,AT (y) = b the information in
the sequence can be further abbreviated as ab, because the order of the activity
types in a sequence is the most important information for the purpose of process
discovery. This notation is used to represent the event log in Figure 5.1. Each
row σi in the event log represents a different execution sequence that corresponds
to a particular process instance.

5.3.3 Petri nets

Figure 5.1(c) is a Petri net representation of a simplified driver’s license applica-
tion process. Petri nets represent a graphical language with a formal semantics
that has been used to represent, analyze, verify, and simulate dynamic behavior
(Murata, 1989). Petri nets consist of places, tokens, and arcs. Places (drawn as
circles) can contain tokens and are an indication of state. Each different distribu-
tion of tokens over the places of a Petri net indicate a different state. Such a state
is called a marking. Transitions (drawn as rectangles) can consume and produce
tokens and represent a state change. Arcs (drawn as arrows) connect places and
transitions and represent a flow relationship. More formally, a marked Petri net
is a pair ((P, T, F ), s) where,

p P is a finite set of places,

p T is a finite set of transitions such that P ∩ T = ∅, and

p F ⊆ (P × T ) ∪ (T × P ) is a finite set of direct arcs, and

p s ∈ P → N is a bag over P denoting the marking of the net (van der Aalst,
1997, 1998).
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Petri nets are bipartite directed graphs, that means that each arc must connect a
transition to a place or a place to a transition. The transitions in a Petri net can
be labeled or not. Transitions that are not labeled are called silent transitions.
Different transitions that bear the same label are called duplicate transitions.

The behavior of a Petri net is determined by the firing rule. A transition t is
enabled iff each input place p of t contains at least one token. When a transition
is enabled it can fire. When a transition fires, it brings about a state change in
the Petri net. In essence, it consumes one token from each input place p and
produces one token in each output place p of t.

A particular class of Petri nets that has been used to model processes are
workflow nets (van der Aalst and van Hee, 2002). Workflow nets model individual
process instances in isolation. A Petri net (P, T, F ) is a workflow net iff

p P contains a source place i that has no incoming arcs,

p P contains a sink place o that has no outgoing arcs,

p and the short-circuited net (P, T ∪ {t}, F ∪ {(o, t), (t, i)}) – where t is an
additional transition t /∈ T ∪ P that connects the sink place to the source
place – has a flow relationship that transitively connects every place or
transition to every other place or transition (strong connectedness).

There exist efficient algorithms and tools to verify the correctness of a workflow
net (van der Aalst, 1997, 1998).

5.4 Step 1: Derive Parallelism and Locality from
Frequent Temporal Constraints

The starting point is the analysis of frequent constraints that hold in the event
log. These constraints are used to gain insight in local dependency, non-local
dependency, and parallelism relationships that exist between pairs of activities.
This information is used in the language bias of the classification learner, to con-
strain the hypothesis space to locally discriminating preconditions when required.
The aim is to facilitate the construction of a graphical model, a Petri net, from
the learned preconditions.

5.4.1 Frequent Temporal Constraints

Frequent temporal constraints are temporal constraints that hold in a sufficient
number of sequences σ within an event log L. In particular, a temporal con-
straint is considered frequent when its frequency of occurrence is above a partic-
ular threshold. In this section, we first define a number of temporal constraints
that apply to a single sequence σ and then define a number of frequent temporal
constraints that apply to an event log L. Let a, b, c ∈ A. The following predicates
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express temporal constraints that either hold or not for a particular sequence
σ ∈ L:

Existence(1, a, σ) ⇔ ∃x ∈ σ : AT (x) = a.

Absence(2, a, σ) ⇔ @x, y ∈ σ : AT (x) = a ∧AT (y) = a ∧ x 6= y.

Ordering(a, b, σ) ⇔ ∃x, y ∈ σ : AT (x) = a ∧AT (y) = b ∧ x < y.

Precedence(a, b, σ) ⇔ ∀y ∈ σ : AT (y) = b,∃x ∈ σ : AT (x) = a ∧ x < y.

Response(a, b, σ) ⇔ ∀x ∈ σ : AT (x) = a,∃y ∈ σ : AT (y) = b ∧ x < y.

ChainPrec(a, b, σ) ⇔ ∀y ∈ σ : AT (y) = b,∃x ∈ σ : AT (x) = a ∧ x.y.

ChainResp(a, b, σ) ⇔ ∀x ∈ σ : AT (x) = a,∃y ∈ σ : AT (y) = b ∧ x.y.

ChainSeq(a, b, c, σ) ⇔ ∃x, y, z ∈ σ : x.y.z

∧AT (x) = a ∧AT (y) = b ∧AT (z) = c.

For an event log L, a temporal constraint C is considered frequent if its sup-
port is greater than or equal to a predefined threshold. Let C,D be temporal
constraints. The support for a temporal constraint can be defined as

Suppσ∈L(C,L) =
|S|
|T |

for which S = {σ | σ ∈ L ∧ Succeeds(C, σ)} and T = {σ | σ ∈ L}. Temporal
constraints can be combined to form temporal association rules of the form C →
D. The support of an association rule is defined as

Suppσ∈L(C → D,L) = Suppσ∈L(C,L).

The confidence of a temporal association rule is defined as

Conf σ∈L(C → D,L) =
Suppσ∈L(C ∧D,L)

Suppσ∈L(C,L)
.

Temporal association rules can be considered frequent if their support and
confidence are greater than or equal to a predefined threshold. It can be assumed
that each activity type that occurs in the event log is relevant and should be
included in the process model to be discovered. However, in event logs some
activities can occur more frequently than others. The detection of frequent pat-
terns must not be sensitive to the frequency of occurrence of a particular activity
type in an event log. For instance, when an activity type a occurs infrequently,
it can be the case that the temporal constraint ChainResp(a, b, σ) has a large
support, whereas in reality the sequence ab never occurs in L. To detect frequent
temporal patterns in an event log, it is therefore more important to look at the
confidence of an association rule Existence(1, a, σ) → Response(a, b, σ) than its
support. Within an event log L the following frequent temporal association rules
can be derived for an event log (the argument L is left implicit):
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Absence(2, a)⇐ ∀a ∈ A :
Suppσ∈L(Absence(2, a, σ), L) ≥ tabsence.

Ordering(a, b)⇐ ∀a, b ∈ A :
Suppσ∈L(Ordering(a, b, σ), L) ≥ tordering.

Precedence(a, b)⇐ ∀a, b ∈ A :
Conf σ∈L(Existence(1, b, σ)→ Precedence(a, b, σ), L) ≥ tsucc.

Response(a, b)⇐ ∀a, b ∈ A :
Conf σ∈L(Existence(1, a, σ)→ Response(a, b, σ), L) ≥ tsucc.

ChainPrec(a, b)⇐ ∀a, b ∈ A :
Conf σ∈L(Existence(1, b, σ)→ ChainPrec(a, b, σ), L) ≥ tchain.

ChainResp(a, b)⇐ ∀a, b ∈ A :
Conf σ∈L(Existence(1, a, σ)→ ChainResp(a, b, σ), L) ≥ tchain.

ChainSeq(a, b, c)⇐ ∀a, b, c ∈ A :
Suppσ∈L(ChainSeq(a, b, c, σ), L) ≥ ttriple.

In the above definitions, the predicates Ordering(a, b) and ChainSeq(a, b, c) do
not account for the mutual distribution of the activity types a, b, and c. They are
therefore sensitive to their frequency of occurrence. A change of these definitions
in the implementation of AGNEs is deferred to future work.

It is not necessary to enumerate every temporal constraint for every a, b, c ∈
A exhaustively. For example, the induction of frequent constraints can make
use of an a-priori trick, deriving the (in)frequency of one constraint from the
(in)frequency of another (Agrawal et al., 1996). In addition, it is not required to
calculate every triple chain sequence, but only these frequent constraints that are
required to identify short loops. The induction of frequent constraints from event
logs is not the main contribution of this chapter, consequently the details of the
induction of temporal association rules have been omitted from this text. Mannila
et al. (1997) describe the more general problem of inducing frequent episodes from
event logs.

5.4.2 Deriving Parallelism and Locality

From the induced frequent constraints, information can be derived about the
parallelism and locality of pairs of activities. As a rule of thumb, parallelism
between two activity types a, b ∈ A can be assumed when it is the case in the
event log that a frequently follows b and b frequently follows a. However, in the
case of duplicate activities, a triple chain sequence aba or bab could just as well
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occur in serial. Therefore we require these triple chain sequence not to occur,
unless it can be detected that a and b in fact are part of two separate parallel
length-one loops. This is the case when sequences like aab, baa, abb, or bba are
also frequent. Consequently, Parallel(a, b) can be defined as follows.

∀a, b ∈ A : (ChainPrec(a, b) ∨ ChainResp(a, b))∧
(ChainPrec(b, a) ∨ ChainResp(b, a))∧

(∼ ChainSeq(a, b, a)∧ ∼ ChainSeq(b, a, b) ∨ ParallelLoop(a, b)) ⇒ Parallel(a, b).

∀a, b ∈ A : Parallel(a, b) ⇒ Parallel(b, a).

∀a, b ∈ A : ChainSeq(a, a, b) ∨ ChainSeq(b, a, a)∨
ChainSeq(a, b, b) ∨ ChainSeq(b, b, a) ⇒ ParallelLoop(a, b).

In the above derivation, we use the negation-as-failure ∼ rather than the classical
negation ¬ to indicate that we derive the frequent temporal constraint from the
absence of sequences in the log that portray this behavior. Although parallelism
is difficult to detect in a one-event type setting, concurrency information can
be often obtained from domain experts with great certainty. Therefore, AGNEs
allows to define the strict relationships PriorParallel(a, b) or PriorSerial(a, b) that
defeat any conclusions about the parallelism of a, b made by the above inference
rule. The ability to include prior knowledge is an advantage of our approach with
respect to other approaches.

Locality of a pair of activities is another type of information that can be
derived from an event log. Intuitively, a is local to b if a is frequently followed by
b or if b is frequently preceded by a.

∀a, b ∈ A : ChainPrec(a, b)∧ ∼ Parallel(a, b) ⇒ Local(a, b).

∀a, b ∈ A : ChainResp(a, b)∧ ∼ Parallel(a, b) ⇒ Local(a, b).

Unlike the parallelism, locality is not symmetric: Local(a, b) does not imply
Local(b, a). Locality can also be specified as prior knowledge. Therefore, our tech-
nique allows defining the strict specifications PriorLocal(a, b) or PriorNonLocal(a, b)
that defeat any other conclusions about locality made from the induced frequent
temporal constraints.

In the presence of parallelism, it is possible, even highly likely, that not all local
relationships can be detected. Consider the situation in Figure 5.4(a). Although
a is local to b it is possible that the sequence a, b occurs infrequently in the event
log. Because b and c are parallel activities, it is possible that the sequence a, c, b
occurs far more frequently that the sequence a, b, c. In such cases, Local(a, b)
can be derived from the parallelism of b and c. However, Figure 5.4(b) depicts
a situation in which such an inference cannot be made. These concerns can
translated into the following derivation rule.

∀a, b ∈ A : ∃c ∈ A : Parallel(b, c)∧ ∼ Parallel(a, c)∧ ∼ Parallel(a, b)∧
(ChainPrec(a, c) ∨ ChainResp(a, c))∧

@d ∈ A : (ChainResp(d, b) ∨ ChainPrec(d, b))∧ ∼ Parallel(d, b)⇒ Local(a, b).
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The same reasoning for an AND-join can be applied to an AND-split, as
displayed in Figure 5.4(c) and 5.4(d). The following derivation rule applies.

∀a, b ∈ A : ∃c ∈ A : Parallel(a, c)∧ ∼ Parallel(b, c)∧ ∼ Parallel(a, b)∧
(ChainPrec(c, b) ∨ ChainResp(c, b))∧

@d ∈ A : (ChainResp(a, d) ∨ ChainPrec(a, d))∧ ∼ Parallel(a, d)⇒ Local(a, b).

a
b

c

(a) Local(a, b)

a

d b

c

(b) ∼ Local(a, b)

a

b

c

(c) Local(a, b)

a d

b

c

(d) ∼ Local(a, b)

Figure 5.4: Deriving locality from parallelism

5.5 Step 2: Generate Artificial Negative Events

A second step in the process discovery technique is the induction of artificial
negative events. As mentioned in the introduction, event logs rarely contain in-
formation about transitions that are not allowed to take place. This makes process
discovery an inherently unsupervised learning problem. To make a tradeoff be-
tween overly general or overly specific process models, learners make additional
assumptions about the given event sequences. Such assumptions are part of the
inductive bias of a learner. Process discovery algorithms generally include the as-
sumption that event logs portray the complete behavior of the underlying process
and implicitly use this completeness assumption to make a tradeoff between overly
general and overly specific process models. Our technique makes this complete-
ness assumption configurable by explicitly inducing artificial negative information
from the event log.

5.5.1 A Configurable Completeness Assumption

For processes that contain a lot of recurrent and concurrent behavior, the com-
pleteness assumption can become problematic. For example, a process containing
five parallel activities (ten parallel pairs) that are placed in a loop, has

∑n
i=1(5!)i

different possible execution sequences (n being the maximum number of allowed
loops).
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The problem of recurrent behavior is addressed by restricting the window size
(parameter: windowSize). Window size is the number of events in the subse-
quence one hopes to detect at least once in the sequence database. The larger
the window size, the less probable that a similar subsequence is contained by the
other sequences in the event log. A limited window size can be advantageous in
the presence of loops (recurrent behavior) in the underlying process. Limiting the
window size to a smaller sub-sequence of the event log, makes the completeness
assumption less strict. An unlimited window size (windowSize = −1) results in
the most strict completeness assumption.

The problem of concurrent behavior is addressed by exploiting some available
parallelism information, discovered by induction or provided as prior knowledge
by a domain expert. Given a subsequence and parallelism information, all parallel
variants of the subsequence can be calculated. Taking into account the parallel
variants of a subsequence makes the completeness assumption less strict. The
function ParallelVariant(τ) returns – through backtracking – all parallel vari-
ants of a sequence by permuting the activities in each sub-sequence of τ while
preserving potential dependency relationships among non-parallel activities. The
function AllParallelVariants(τ) returns the set of all parallel variants that can
thus be obtained.

The calculation of parallel variants is illustrated in Figure 5.5. Given the
event sequence τ , and information about parallelism, five parallel variants can be
calculated. At position two, bcde is the shortest sub-sequence that contains all
activities parallel to b. Because b and c are not parallel, it can be the case that c is
dependent on b. Likewise, because d and e are parallel, it can be the case that c is
dependent on b. Therefore, τ‖ consists of all permutations of the sub-sequence in
which c occurs after b and e occurs after d. At position three, cde is the shortest
sub-sequence with activities all parallel to c.

given:
τ a b c d e f

Parallel(b, d).
Parallel(b, e).
Parallel(c, d).
Parallel(c, e).

parallel variants:
τ‖ a d b e c f
τ‖ a d e b c f
τ‖ a b d c e f
τ‖ a b d e c f
τ‖ a b c d e f

a
b c

d e
f

Figure 5.5: parallel variant calculation

5.5.2 Generating Negative Events

Negative events record that at a particular position in an event sequence, a par-
ticular event cannot occur. At each position k in each event sequence τi, it is
examined which negative events can be recorded for this position. Algorithm 2
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gives an overview of the negative event induction and is discussed in the next
paragraphs. In a first step, the event log is made more compact, by grouping
process instances σ ∈ L that have identical sequences into grouped process in-
stances τ ∈ M (line 1). By grouping similar process instances, searching for
similar behavior in the event log can be performed more efficiently.

In the next step, all negative events are induced for each grouped process
instance (lines 2–12). Making a completeness assumption about an event log boils
down to assuming that behavior that does not occur in the event log, should not
occur in the process model to be learned. Negative examples can be introduced
in grouped process instances τi by checking at any given positive event xk ∈ τi

whether another event of interest zk of activity type b ∈ A\{AT (xk)} also could
occur. For each event xk ∈ τi, it is tested whether there exists a similar sequence
τ
‖
j ∈ AllParallelVariants(τj) : τj 6= τi in the event log in which at that point a

state transition yk has taken place that is similar to zk (line 6). If such a state
transition does not occur in any other sequence, such behavior is not present in
the event log L. This means under the completeness assumption that the state
transition cannot occur. Consequently, zk can be added as a negative event at
this point k in the event sequence τi (lines 7–8). On the other hand, if a similar
sequence is found with this behavior, no negative event is generated.

Finally, the negative events in the grouped process instances are used to induce
negative events into the similar non-grouped sequences. If a grouped sequence τ
contains negative events at position k, then the ungrouped sequence σ contains
corresponding negative events at position k. At each position, a large number
of negative events can generally be generated. To avoid an imbalance in the
proportion of negative versus positive events the addition of negative events can
be manipulated with a negative event injection probability π (line 13). π is a
parameter that influences the probability that a corresponding negative event is
recorded in an ungrouped trace σ. The smaller π, the less negative events are
generated at each position in the ungrouped event sequences. A value of π = 1.0
means that every induced negative event for a grouped sequence is included in
every similar, corresponding, non-grouped sequence. A value of π = 0 will result
in no negative events being induced for any of the corresponding, non-grouped
sequences.

Figure 5.6 illustrates how in an event log of two (grouped) sequences τ1 and τ2

artificial negative events can be generated. The event sequences originate from a
simplified driver’s license process, depicted at the bottom of the figure. Given the
parallelism information, Parallel(e, f), the event sequences each have two parallel
variants. When generating negative events into event sequence τ1, it is examined
whether instead of the first event b the events c, d, e, f, g, h, or i could also have
occurred at the first position. Because there is no similar sequence τ

‖
j in which

c, d, e, f, g, h, or i occur at this position, it can be concluded that they are negative
events. Consequently cn, dn, en, fn, gn, hn, and in are added as negative events at
this position. Other artificial negative events are generated in a similar fashion.
Notice that history-dependent processes generally will require a larger window
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Algorithm 2 Generating artificial negative events
1: Group similar sequences σ ∈ L into τ ∈M
2: for all τi ∈M do
3: for all xk ∈ τi do
4: k = Position(xk, τi)
5: for all b ∈ A\{AT (xk)} do
6: if @τ

‖
j ∈ AllParallelVariants(τj) : ∀τj ∈M ∧ τj 6= τi∧

∀yl ∈ τ
‖
j ,Position(yl, τ

‖
j ) = l = Position(xl, τj), k − windowSize < l <

k : AT (yl) = AT (xl)∧
yk ∈ τ

‖
j ,Position(yk, τ

‖
j ) = k,AT (yk) = b then

7: zk = event with AT (zk) = b,ET (zk) = completeRejected
8: recordNegativeEvent(zk, k, τi)
9: end if

10: end for
11: end for
12: end for
13: Induce negative events in the non-grouped sequences σ ∈ L according to an

injection frequency π

size to correctly detect all non-local dependencies. In the example of Figure 5.6,
an unlimited window size is used. Should the window size be limited to 1, for
instance, then it would no longer be possible to take into account the non-local
dependency between the activity pairs c–g and d–h. In the experiments at the
end of this paper, an unlimited window size has been used (parameter value -1).

5.6 Step 3: Learn the Preconditions of each Ac-
tivity Type

Given an event log supplemented with artificially generated negative events, it is
possible to represent process discovery as a multiple classification learning problem
that learns the conditions that discriminate between the occurrence of either a
positive or a negative event for each activity type. Our process discovery technique
makes use of TILDE, an existing multi-relational classification learner, to perform
the actual classification learning.

5.6.1 Process Discovery as Classification

The motivation for representing process discovery as a classification problem is
that it has the potential to deal with so-called duplicate tasks. Duplicate tasks
refer to the reoccurrence of identically labeled transitions, homonyms, in different
contexts within the event logs. Classification learning can detect the different ex-
ecution contexts for these transitions and derive different preconditions for them.
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given:
τ1 bp cp ep fp gp ip
τ2 bp dp fp ep hp ip

Parallel(e, f).

parallel variants:
τ
‖
1 bp cp fp ep gp ip

τ
‖
1 bp cp ep fp gp ip

τ
‖
2 bp dp fp ep hp ip

τ
‖
2 bp dp ep fp hp ip

negative events:
τ1 bp cp ep fp gp ip

cn bn bn bn bn bn

dn en cn cn cn cn

en fn dn dn dn dn

fn gn gn gn en en

gn hn hn hn fn fn

hn in in in hn gn

in in hn

τ2 bp dp ep fp hp ip
cn bn bn bn bn bn

dn en cn cn cn cn

en fn dn dn dn dn

fn gn gn gn en en

gn hn hn hn fn fn

hn in in in gn gn

in in hn

b
c

d

g

hf
i

e

Figure 5.6: DriversLicensel – Generating artificial negative events for an event log
with two sequences

Transforming these preconditions into graphs will eventually result in duplicate,
homonymic activities in the graph model that correspond to the different usage
contexts. Techniques for process discovery, such as heuristics miner and genetic
miner, which have causal matrices as internal representation (Alves de Medeiros
et al., 2007; Weijters et al., 2006), are unable to discover duplicate activities.
Alves de Medeiros (2006) presents a non-trivial extension of the genetic miner
that includes duplicate tasks.

As mentioned in Section 5.3.1, multi-relational data mining allows searching
for patterns among different rows within a data set. For the purpose of discovering
history-dependent patterns, this multi-relational property is much desired, as it al-
lows learning patterns that occur in the entire history of the event. Alternatively,
the history of each event could in part be represented as extra propositions, for
instance by including all preceding positive events as extra columns in the event
log. This propositional representation would have many difficulties.

Being able to detect such non-local, historic patterns in an event log can also
work counter-intuitive. A non-local relationship might have more discriminating
power than a local one and can therefore be preferred by a learner. Unfortunately,
an excess of non-local patterns makes it more difficult to generate a graphical
model, a workflow net, containing local connections. Because TILDE allows spec-
ifying a language bias with dynamic refinement (Blockeel and De Raedt, 1998), it
becomes possible to constrain the hypothesis space to locally discriminating pat-
terns whenever necessary. One technique is the dynamic generation of constants,
that can be used to constrain the combinations of activity type constants that are
to be considered for a particular language bias construct. Additionally, it is also
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possible to constrain the occurrence of particular literals in a hypothesis H, given
the presence or absence of other literals that are already part of the hypothesis.

5.6.2 The Language Bias of AGNEs

The classification task of TILDE is to predict whether for a given activity type
a ∈ A, at a given time point t ∈ N in a given sequence σ ∈ L, a positive or a
negative event takes place. In the case of a positive event, the target predicate
evaluates to Class(a, σ, t, completed). In the case of a negative event, the target
predicate evaluates to Class(a, σ, t, completeRejected). In the language bias, the
target activity, indicated by a, will be used for dynamically constraining the
combinations of activity type constants generated.

The primary objective of AGNEs being the construction of a graphical model
from an event log, the language bias consists of a logical predicate that can repre-
sent the conditions under which a Petri net place contains a token. This predicate
is called the “no-sequel” predicate, NS (a1, a, σ, t). Let a1, a ∈ A be activity types,
σ ∈ L the sequence of a process instance, and t the time of observation. The NS
predicate is defined as follows:

∀a1, a ∈ A, t ∈ N : ∃x ∈ σ : AT (x) = a1 ∧ Time(x) < t

∧ @y ∈ σ : AT (y) = a ∧ Time(x) < Time(y) < t ⇒ NS (a1, a, σ, t).

In the remainder of this text, the arguments σ and t will be implicitly assumed
and therefore left out. The predicate NS (a1, a) evaluates to true when at the time
of observation, an activity a1 has completed, but has not (yet) been followed by an
activity a. In combination with conjunction (∧), disjunction (∨) and negation-as-
failure (∼), the NS (a1, a) predicate makes it possible to learn fragments of Petri
nets using a multi-relational classification learner. The fragments included in the
language bias are illustrated in Figure 5.7.

A local sequence of two transitions labeled a1, a ∈ A in a Petri net can be
represented by NS (a1, a). Figure 5.7(a) shows a graphical representation of this
predicate. The following constraints apply:

sequence: NS(a1, a)
constraints: Local(a1, a). (1)

@l ∈ H : l = [NS( , a1)]. (2)

The conversion from NS -based preconditions into Petri nets requires the condi-
tions to refer to local, immediately preceding events as much as possible. There-
fore, constraint (1) requires to restrict the generation of constants a1 to constants
that are local to a. In constraint (1) we do not require a1 and a to be different
activity types. This is sufficient for the discovery of length-one loops. Graphically,
a conjunction of NS constructs can be considered to be the logical counterpart
of a single Petri net place. Besides the case of length-one loops – that can be
expressed with a single NS construct – there is no reason for a Petri net place to
contain both an input and an output arc that is connected to the same transition.
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Constraint (2) has been put in place to keep a multi-relational learner from con-
structing such useless hypotheses. The constraint stipulates that the construct
NS (a1, a) can only be added to the current hypothesis H, if H does not already
contain a logical condition that boils down to an output arc towards a1.

a1 a

NS (a1, a)

(a) local sequence

a1 a

NS (a1, a)

(b) global sequence

a1

a2

a

NS (a1, a) ∨NS (a2, a)

(c) or-join

a1

a2

a

NS (a1, a) ∧NS (a1, a2)

(d) or-split

a

[OccursLessThan(a, N)]

OccursLessThan(a,N)

(e) max occurrence

a

[: Attribute = V alue]

: Attribute = V alue

(f) data condition

a1 a2

a

NS (a1, a) ∧NS(a1, a2)

(g) skip sequence

Figure 5.7: Petri net patterns in the language bias

The same NS (a1, a) construct, with different constraints, can be used to keep
track of a global sequence (see Figure 5.7(b)). Global sequences are used to rep-
resent non-local, non-free choice constructs. We require TILDE only to consider
global sequence between activity types for which both a precedence and a response
relationship has been detected from the event log, hence constraint (3).

global se-
quence:

NS(a1, a)

constraints: Precedence(a1, a) ∧ Response(a1, a). (3)
∃l ∈ H. (4)

Because we assume that any transition must be locally connected, that is con-
nected to other transitions to which it is local in the event log, we require as an
additional constraint that the global sequence construct must not be added first
to any hypothesis. In other words, the addition of a global sequence literal to the
hypothesis, requires that the hypothesis H currently under consideration contains
at least one literal.

An or-join can be represented as a disjunction of different NS constructs. This
is represented in Figure 5.7(c). The input place of a has two incoming arcs from
transitions a1 and a2. In an or-join transitions a1 and a2 must not be parallel
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and must both be local to a (5).

or-join: NS(a1, a) ∨NS(a2, a)
constraints: a 6= a1 6= a2 ∧ Local(a1, a) ∧ Local(a2, a)∧ ∼ Parallel(a1, a2). (5)

Absence(2, a) ⇒
∀b ∈ A\{a1, a2} : Ordering(a, b) ⇒ Ordering(a1, b) ∧

Ordering(a2, b).
(6)

Absence(2, a1) ∧Absence(2, a2) ⇒
(∀b ∈ A : Ordering(a1, b) ⇒ Ordering(a, b)) ∧ (7)
(∀c ∈ A : Ordering(a2, c) ⇒ Ordering(a, c)).

Constraints (6) and (7) require that a1 and a2 are only eligible as input transitions
for an or-join, when they have a similar post-ordering as the a transition. In the
case of duplicate activities, these constraints cannot be meaningfully enforced.

An or-split can be represented as a conjunction of different NS constructs.
This is represented in Figure 5.7(d). In an or-split, the outgoing transitions are
not parallel, moreover, both outgoing transitions are local to the transition from
which the or-split originates (8). Constraints (9) and (10) impose that for a and
a2 to be part of an or-split, they must have similar pre-orderings as a1. Of course,
the constraints must be relaxed when the activities can occur more than once in
a process instance.

or-split: NS(a1, a) ∧NS(a1, a2)
constraints: a 6= a1 6= a2 ∧ Local(a1, a) ∧ Local(a1, a2)∧ ∼ Parallel(a, a2)

∧ ∼ Local(a, a2). (8)
Absence(2, a1) ⇒
∀b ∈ A : Ordering(b, a1) ⇒ Ordering(b, a) ∧Ordering(b, a2). (9)

Absence(2, a) ∧Absence(2, a2) ⇒
(∀b ∈ A\{a1} : Ordering(b, a) ⇒ Ordering(b, a1)) ∧ (10)
(∀c ∈ A\{a1} : Ordering(c, a2) ⇒ Ordering(c, a1)).

@l ∈ H : l = [NS( , a1)]. (11)

An or-split is a logical conjunction of NS constructs, that represents a single
Petri net place. As it was the case for the local sequence construct, there is no
reason for a Petri net place to contain both an input and an output arc that is
connected to the same transition. Similarly to the constraint (2) attached to a
local sequence, constraint (11) has been put in place to keep a multi-relational
learner from adding NS (a1, a) ∧ NS (a1, a2) to the current hypothesis H, if it
already contains a logical condition that boils down to an output arc towards a1.

The language bias of TILDE is limited to conjunctions and disjunctions of NS
constructs of length two and three. Or-splits and or-joins that involve more activ-
ity types are obtained by grouping conjunctions and disjunctions of NS constructs
into larger conjunctions and disjunctions in step 4. However, this limitation in
length sometimes leads to TILDE make inadequate refinements. Solving this lan-
guage bias issue, requires constructing a proprietary ILP classification algorithm
that during each refinement step allows considering conjunctions of NS constructs
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of variable lengths. We leave this improvements to future work.
A skip sequence, depicted in Figure 5.7(g), has the same logical structure as

an or-split, but has different constraints imposed on it. Whereas the outgoing
activities of an or-split cannot be local (8), it is a requirement that the skip-
activity a is local to a2 (12).

skip sequence: NS(a1, a) ∧NS(a1, a2)
constraints: a 6= a1 6= a2 ∧ Local(a1, a) ∧ Local(a1, a2)∧ ∼ Parallel(a, a2)

∧ Local(a, a2). (12)
Absence(2, a1) ⇒
∀b ∈ A : Ordering(b, a1) ⇒ Ordering(b, a) ∧

Ordering(b, a2).
(13)

Absence(2, a) ∧Absence(2, a2) ⇒
(∀b ∈ A\{a1} : Ordering(b, a) ⇒ Ordering(b, a1)) ∧ (14)
(∀c ∈ A\{a1} : Ordering(c, a2) ⇒ Ordering(c, a1)).

@l ∈ H : l = [NS( , a1)]. (15)

As a skip sequence is also a logical conjunction of NS constructs, it addition to
H is constrained by H already containing a1 on the outflow (15).

The language bias is extended with two non-Petri net constructs. The first
construct, OccursLessThan, is defined as follows. Let a1, a ∈ A be activity types,
σ a sequence of events pertaining to one process instance and t be the time of
observation:

OccursLessThan(a, n, σ, t)⇐
X = {x | x ∈ σ ∧AT (x) = a ∧ Time(x) < t} ∧ |X| < n.

Graphically, the OccursLessThan precondition can be represented as a guard
condition on a transition. This is depicted in Figure 5.7(e). The second non-Petri
net construct deals with case data conditions and can be given the semantics of
a guard condition in a colored Petri net, as depicted in Figure 5.7(f).

Figure 5.8 displays the mining results after applying heuristics miner and
AGNEs on the DriversLicensel event log. Figure 5.8(c) shows how the precondi-
tions in the Petri net can be represented as conjunctions and disjunctions of NS
atoms. AGNEs is capable of detecting the different contexts in which the activ-
ities applyForLicense and end can take place and derives different preconditions
for these activities. In addition, our technique has detected the non-local, non-free
choice construct between the activities attendClassesCars–doPracticalExamCars
and attendClassesMotorBikes–doPracticalExamMotorBikes and the maximum re-
currence of the activity applyForLicense. However, having learned the transitions
rules that determine whether a positive or a negative event occurs, for each ac-
tivity type in the event log, is not sufficient for the construction of a graphical
model. Roughly speaking, we now have individual Petri net fragments that are
to be puzzled together into a sound workflow net. This problem is addressed in
the next section.
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applyForLicense applyForLicense

[OccursLessThan(applyForLicense, 3)]

[OccursLessThan(applyForLicense, 3)]

attendClassesCars attendClassesMotorBikes

doPracticalExamCars doPracticalExamMotorBikes

doTheoreticalExam

getResult

obtainInsurance

start

receiveLicense

end

end

(a) result of AGNEs

start

applyForLicense

attendClassesCars

doTheoreticalExam obtainInsurance

doPracticalExamCars

getResult

attendClassesMotorBikes

doPracticalExamMotorBikes

receiveLicense

end

(b) result of heuristics miner

activity precondition
a start true
b applyForLicense NS (a, b)
b applyForLicense (NS (i, b) ∧ NS (i, j) ∧ NS (i, k)) ∧

OccursLessThan(b, 3)
c attendClassesCars NS (b, c) ∧ NS (b, d)
d attendClassesMotorBikes NS (b, c) ∧ NS (b, d)
e obtainInsurance NS (c, e) ∨ NS (d, e)
f doTheoreticalExam NS (c, f) ∨ NS (d, f)
g doPracticalExamCars (NS (f, g) ∧ NS (f, h)) ∧

(NS (e, g) ∧ NS (e, h)) ∧ NS (c, g)
h doPracticalExamMotorBikes (NS (f, g) ∧ NS (f, h)) ∧

(NS (e, g) ∧ NS (e, h)) ∧ NS (d, h)
i getResult NS (g, i) ∨ NS (h, i)
j receiveLicense NS (i, b) ∧ NS (i, j) ∧ NS (i, k)
k end NS (j, k)
k end NS (i, b) ∧ NS (i, j) ∧ NS (i, k)

(c) A representation with activity preconditions

Figure 5.8: DriversLicensel – the result AGNEs and heuristics miner on a complete,
zero noise event log



138 Chapter 5. Declarative Process Discovery

5.7 Step 4: Transform the Preconditions into a
Petri Net

After discovering frequent temporal patterns, and supplementing the event log
with artificial negative events, AGNEs runs TILDE (Blockeel and De Raedt,
1998) that is supplied with the language bias discussed in the previous section.
As discussed in Section 5.3.1, TILDE constructs for each activity type a logical
decision tree (LDT) that best partitions the negative and positive events. Blockeel
and De Raedt show how a LDT can be transformed into an equivalent logic
program. In this section, we show how the logic programs produced by TILDE
can be transformed into a Petri net.

5.7.1 Rule-level Pruning

In the previous step, TILDE has learned preconditions for each activity type inde-
pendently. In a Petri net, the preconditions for each activity type are nonetheless
interrelated. Therefore, the logic programs of activity preconditions are submitted
to several rule-level pruning steps, to make sure that they do not produce redun-
dant duplicate places in the Petri net to be constructed. These pruning steps occur
among the conditions within a single precondition, within a set of preconditions
to the same activity type and among preconditions of activity types that pertain
to the same or-split. Algorithm 3 provides an overview of these procedures. In
the remainder of this section, these different pruning steps will be discussed.

The logic programs constructed by TILDE contain rules that classify the
occurrence of either a positive or a negative event. By construction, the lan-
guage bias of AGNEs is such that TILDE will never consider a negation of an
NS construct to be explanatory for the occurrence of a positive event. There-
fore, TILDE will never construct a tree in which a right leaf predicts a positive
event. The latter entails that, in equivalent the logic program, the rules with a
class(a, σ, t, comleted) rule head can be taken from the logic programs without
loss of information (line 1).

In a second step, a number of intra-rule pruning operations take place (lines
2–6). The top-down refinement of hypotheses, can result in the derivation of
logically redundant conditions. These logical redundancies are removed for each
rule (line 3). Each rule in the logic program consists of conjunctions of groups of
NS constructs. A conjunction of a pair of or-split constructs that originate from
the same activity a1 can be combined into a larger or-split (line 4). Likewise, a
conjunction of a pair of or-joins can be combined into a larger or-join (line 5).

In a third step, a number of inter-rule pruning operations are performed for the
preconditions that pertain to each activity type. In particular, a precondition that
subsumes another precondition for the same activity type, is redundant and thus
removed from consideration (lines 10–12). Furthermore, it is examined whether
a more specific or-join can be constructed out of the groups of NS constructs
within the different preconditions of the same rule (lines 13–15). Finally, all rules
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are examined to find the most specific or-split condition from the preconditions
extracted by TILDE (lines 18–26).

Algorithm 3 Rule-level pruning
1: R+ = {r ∈ R | r has rule head class(a, σ, t, comleted) }.

// intra-rule pruning:
2: for all r ∈ R+ do
3: reduce r according to (NS1 ∨NS2) ∧NS1 ≡ NS1.
4: group or-splits: NS (a1, a) ∧NS (a1, a2) ∈ r and NS (a1, a) ∧NS (a1, a3) ∈ r

into NS (a1, a) ∧NS (a1, a2) ∧NS (a1, a3).
5: group or-joins: NS (a1, a) ∨ NS (a2, a) ∈ r and NS (a3, a) ∨ NS (a4, a) ∈ r

into NS (a1, a) ∨NS (a2, a) ∨NS (a3, a) ∨NS (a4, a).
6: end for

//inter-rule pruning:
7: for all a ∈ A do
8: R+

a = {r ∈ R+ | r is a precondition of a}
9: for all r ∈ R+

a do
10: if ∃s ∈ R+

a : s is more specific than r then
11: remove r.
12: end if
13: if ∃s ∈ R+

a : s combined with r lead to a more specific or-join than r
then

14: replace the or-join in r with the more specific or-join.
15: end if
16: end for
17: end for

//keep the most specific or-split:
18: for all a ∈ A do
19: Rsplit

a = {r ∈ R+ | r contains an or-split going out a }.
20: s = the most specific or-split by combining the or-splits going out a in

Rsplit
a .

21: for all r ∈ Rsplit
a do

22: if s is more specific than r then
23: replace the or-split in r with the or-split in s.
24: end if
25: end for
26: end for

5.7.2 Petri Net Construction

Given a pruned rule set of preconditions for each activity type, the construction of
a Petri net is fairly straightforward. Algorithm 4 describes the procedure in detail.
Each induced precondition corresponds to a different transition in a Petri net to be
constructed (lines 2–6). Because AGNEs may produce several preconditions for an
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activity type, the constructed Petri net may contain duplicate transitions. These
duplicate transitions correspond to the different contexts in which a particular
activity type can be performed.

Each group νi of NS constructs within the precondition of a transition corre-
sponds to a particular input place of this transition (lines 9–13). Such a group
can correspond to an a sequence, a global sequence, an or-split, an or-join, or a
skip sequence. Transitions can share input places. If a particular input place has
not yet been created for another transition, it is created and labeled with its pre-
condition. The output arcs of the newly constructed place connect the place to all
transitions that have the precondition of the place as a conjunctive part in their
precondition (lines 14–16). The input arcs of the newly constructed place originate
from transitions u ∈ T that bear labels that correspond to the incoming activities
NS (c, ) of νi (lines 17–23). However, in the case of duplicate transitions, not ev-
ery transition u necessarily is to be connected to the newly constructed place. As
a heuristic, the proportion of frequent triple chains ChainSeq(c, b, a) compared to
the total of triple chains that would be make possible by connecting a transition u
to the new place, must be higher than a threshold tconnect (lines 19–20). In other
words tconnect is the proportion of triples triples that can occur by connecting a
transition u to the new place, that are frequent.

Having constructed a Petri net graph, the graph construction algorithm ap-
plies two final pruning steps. In a first step, the algorithm removes redundant
places, that correspond to redundant global sequences in the event log (line 27).
Transitions that produce tokens on multiple output places can give rise to un-
wanted concurrent behavior. Therefore, in a second pruning step, the algorithm
merges pairs of output nodes that are input nodes to transitions with activity
types that are all pairwise serial (line 28).

5.8 Implementation

AGNEs has been implemented in SWI-Prolog (Wielemaker, 2003). In particular,
the frequent temporal constraint induction, the artificial negative event genera-
tion, the language bias constraints, and the pruning and graph construction algo-
rithms all have been written in Prolog. As mentioned before, AGNEs makes use
of TILDE, an existing multi-relational classifier (Blockeel and De Raedt, 1998),
available in the ACE-ilProlog data mining system (Blockeel et al., 2002). To be
able to benefit from the facilities of the ProM framework, a plugin was written
that makes AGNEs accessible in ProM 1. Figure 5.9 depicts a screen shot of
AGNEs in ProM.

1The AGNEs plugin is available from http://www.processintelligence.be.

http://www.processintelligence.be
http://www.processintelligence.be
http://www.processintelligence.be
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Algorithm 4 Petri net construction
1: R = the set of pruned rules

// construct all transitions t:
2: for all r ∈ R do
3: a = target(r)
4: ν = body(r)
5: draw a transition t ∈ T , such that label(t) = a and precondition(t) = ν
6: end for
7: draw a source place psource and a sink place psink, draw the start transition

tstart and the stop transitions tend and connect them properly
8: for all t ∈ T do
9: ν = precondition(t)

10: a = label(t)
// construct the input places of t:

11: for all νi ∈ ν : νi is a group of NS -constructs do
12: if @p ∈ P : condition(pi) = νi then
13: draw a place pi with condition(pi) = νi

// construct the output arcs of pi:
14: for all u ∈ T : µ = precondition(u) ∧ νi ∈ µ do
15: draw an arc from pi to u
16: end for

// construct the input arcs of pi:
17: for all b ∈ A : NS (b, ) ∈ νi do
18: for all u ∈ T : label(u) = b do
19: if ∀c ∈ A : NS (c, ) ∈ µ ∧ µ = precondition(u) ⇒

ChainSeq(c, b, a) has a confidence ≥ tconnect

20: then draw an arc from u to pi

21: end if
22: end for
23: end for
24: end if
25: end for
26: end for
27: remove redundant places that correspond to global sequences.
28: merge pairwise serial output places.
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Figure 5.9: AGNEs in ProM 4.2

5.9 Towards Mining Access Rules

Up to this point in this chapter, we have focussed on the use of generating artificial
negative events for the purpose of process discovery, i.e. related to the start and
complete transition types. However, the principles outlined in this chapter, in
theory also can be applied to other process mining tasks related to other transition
types in the EM-BrA2CE Framework, as outlined in Section 4.4.1. In this section,
we briefly present how the outlined approach can also be used to discover useful
access control policies from event logs. The primary intent of this section is
to further illustrate the usefulness of declarative process mining techniques with
respect to configuring the prior knowledge, language bias, and inductive bias. We
again use TILDE as classification learner.

Consider the fictitious credit application process, of which we have generated
an artificial event log from simulation as explained in Section 4.3. From this
event log we want to learn for each activity type the conditions that discriminate
between whether an assigned or an assignRejected event occurs at a given time
Time, for a particular agent Agent , for an activity that has the business identified
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BId . For instance, for an activity ‘review credit’, we want to learn the logic of
the following transition constraint:

authorizationReviewCredit(BId, Agent, T ime).

To learn to conditions that discriminate between assigned or assignRejected events,
TILDE must be provided with a language bias that specifies the literals that
may be used to express these conditions. Because access control is granted on the
basis of the properties of the agent who is to be assigned to the activity, properties
of the activity, and historic events, one can think of many language constructs.
Considering properties of agents, we have included the seniority and department
of an agent. These properties of agents are of course time-varying. In the simula-
tion, as in reality, it is possible for agents to obtain a higher seniority or to switch
departments as time goes by. The predicates seniority and fromDepartment in
the language bias therefore should account for the department and seniority of an
agent at the moment of assigning an agent to a task. It is possible to declaratively
configure the language bias of TILDE such that that this timing property can be
included in the language bias. To this end, we have included a language bias that
includes the seniority and fromDepartment predicates as Event Calculus fluents
(Kowalski and Sergot, 1986).With this background knowledge, we can express
the meaning of the factAdded , factRemoved and factUpdated event types. As a
consequence we can include time-dependent properties into the language bias of
TILDE learners. Rather than for example including predicates like

fromDepartment(Agent ,Department), seniority(Agent ,Seniority)

we can now express these properties by including a time point at which they hold:

fromDepartment(Agent ,Department ,Time)s, seniority(Agent ,Seniority ,Time)

effectively transforming the event log into a temporal database. Properties of
the activity to which an agent is to be assigned also affect the authorization
policy. The predicate applicant(BId ,Agent ,Time) was included in the language
bias, specifying that at time Time, the agent Agent , was the applicant of the
credit application BId . Notice that a credit application concept is the busi-
ness identifier of the activity ‘review credit’. Considering historic events that
might be used to discriminate between positive or negative events, the predicate
historicevent(AT ,BId ,ET ,Agent ,Time) was included in the language bias, in-
dicating that prior to time point Time, an event of type ET for an activity of
activity type AT with business identifier BId was provoked by an agent Agent .

Given that the provided language bias specifies a hypothesis space that con-
tains the simulated authorization rules, one can only expect that TILDE is capable
of discovering the correct classification rules. A small experiment reveals this is
the case. In this experiment we have included 200 process instances, with the
time-varying behavior that employees can randomly switch between the sales and
the risk department. Figure 5.10 shows the result of the induced authorization
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rule as a first-order logical decision tree (FOLT). A comparison to the simulated
authorization rule, depicted in Figure 5.10 reveals that nearly the same autho-
rization logic has been detected. This demonstrates the representational power
of the proposed language bias and background knowledge.

authorizationReviewCredit(BId,Agent,Time)

historicevent(CheckDebt,BId,assigned,Agent,Time) ?

+--yes: [assignRejected]

+--no: fromDepartment(Agent,risk_control,Time) ?

+--yes: applicant(BId,Agent,Time) ?

| +--yes: [assignRejected]

| +--no: [assigned]

+--no: seniority(Agent,S,Time),S>=6 ?

+--yes: [assigned]

+--no: [assignRejected]

Figure 5.10: Credit application – induced authorization rule

TILDE also allows users to provide prior knowledge that can further constrain
the hypothesis space. Consider for instance, the following prior knowledge con-
straint: “All things considered equal, an agent with less seniority can never be
assigned to an activity, whereas an agent with more seniority cannot.” If such
a constraint were provided to TILDE the learner would refrain from considering
hypotheses that violate this prior knowledge.

Inductive bias. One of the problems with access control policies is that they
suffer from access right accumulation. Access control comprises a constant tension
between revoking access rights to avoid misuses and granting access rights to allow
workers to get their job done. However, the revocation of access rights generally
causes more problems than the granting of access rights. Therefore, many access
control policies grant more access rights to their users than they actually need to
perform their jobs. Because of that, a user is not so much interested in the actual
access control policy – this policy might already have been formally specified and
automated – but rather in a more restrictive policy that reveals the access rights
that are actually needed. By manipulating the inductive bias of a learner,
this effect could in theory be obtained. In particular, it could be possible to add
additional artificial negative events to the event log that stipulated that for a given
activity, and time, a particular agent officially had the access right to perform the
activity, but in reality has never (or only rarely) requested such access in similar
situations. In this way, a learner could distinguish access rules that are actually
needed, rather than the access rules that have been assigned by a modeler in the
first place. We leave such a technique for manipulating the inductive bias for the
purpose of access control specifications to future work.
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5.10 Conclusion

Process discovery aims at accurately summarizing an event log in a structured pro-
cess model. So far, the discovery of structured processes by supplementing event
logs with artificial negative events has not been considered in the literature. The
advantage is that it allows representing process discovery as a multi-relational
classification problem to which existing classification learners can be applied. In
this chapter, we have defined the AGNEs process discovery technique. This tech-
nique is capable of having prior knowledge constrain the hypothesis space during
process discovery. In addition, our technique has a new, declarative way of dealing
with incomplete event logs that diminishes the effects of concurrent and recur-
rent behavior on the generation of artificial negative events. Finally, it has a
configurable language bias that is suitable for the discovery of Petri net patterns
within event logs. The technique shows how these discovered Petri net patterns
can be combined into a single Petri net graph. These declarative aspects – the
inclusion of prior knowledge, the configurability of the negative event generation
procedure and the language bias – are potentially useful in practical applications.
In the next chapter, an evaluation of the performance of the AGNEs algorithm is
provided in terms of recall and specificity.

Although the proposed process discovery technique shows a more than accept-
able performance, as revealed in the next chapter, each step of the technique can
still be improved in several ways. In step 1, the definitions of the Ordering(a, b)
and ChainSeq(a, b, c) frequent temporal constraints could be altered to take into
account the mutual distribution of a, b, and c activity types. Although our way of
detecting parallel pairs of activity types proved to be capable of detecting paral-
lelism in the presence of noise, the detection of parallelism by taking into account
dependency to a common predecessor (Weijters et al., 2006) could also easily be
incorporated. The generation of artificial negative events, which takes place in
step 2, can also be made more configurable. Currently, the user can have the
algorithm take into account window size and parallel variants, when looking for
non-existent behavior. However, the algorithm can be made even more config-
urable, for instance, by specifying whether ordering matters, or by imposing on
the algorithm to filter out a particular activity type. Another issue is to improve
the performance of step 3, the learning of activity preconditions. A substantial
performance gain can be expected, if the NS operator were defined on grouped
rather than regular event logs. Implementing this is however non-trivial, as it
would require to make substantial changes to the TILDE classification algorithm.
The language bias of TILDE is limited to conjunctions and disjunctions of NS
constructs of length two and three. Or-splits and or-joins that involve more activ-
ity types are obtained by grouping conjunctions and disjunctions of NS constructs
into larger conjunctions and disjunctions. However, this limitation in length some-
times leads to TILDE make inadequate refinements. Solving this language bias
issue, requires constructing a proprietary ILP classification algorithm that during
each refinement step allows considering conjunctions of NS constructs of variable
lengths. We leave these improvements to future work.





CHAPTER 6

An Evaluation of Declarative
Process Discovery

In this chapter, we provide both an experimental and an empirical evaluation of
the AGNEs process discovery technique that is introduced in the previous chapter.
Section 6.1 introduces new metrics for quantifying the recall and specificity of
a discovered process model vis-à-vis an event log. These metrics are used for
evaluating AGNEs in the remaining sections. Section 6.2 provides an extensive
experimental evaluation of the AGNEs process discovery technique. It consists
of a benchmark experiment with 34 artificial event logs and comparison to four
state-of-the-art process discovery algorithms. Finally, section 6.3 gives an idea
of the scalability of AGNEs towards real-life event logs and the usefulness of its
declarative properties.

6.1 New Recall and Precision Metrics

Discovered process models preferably allow the behavior in the event log (recall)
but no other, unobserved, random behavior (specificity). Having formulated pro-
cess discovery as a binary classification problem on event logs supplemented with
artificial negative events, it becomes possible to use the true positive and true neg-
ative rate from classification learning theory to quantify the recall and specificity
of a process model:

p true positive rate TPrate or recall: the percentage of correctly classified
positive events in the event log. This probability can be estimated as follows:
TPrate = TP

TP+FN , where TP is the amount of correctly classified positive
events and FN is the amount of incorrectly classified positive events.



148 Chapter 6. An Evaluation of Declarative Process Discovery

p true negative rate TN rate or specificity: the percentage of correctly clas-
sified negative events in the event log. This probability can be estimated
as follows: TN rate = TN

TN+FP , where TN is the amount of correctly classi-
fied negative events and FP is the amount of incorrectly classified negative
events.

Provost et al. (1998) recommended using Receiver Operator Characteristic (ROC)
curves when evaluating binary decision problems. Recall and 1-specificity are the
two axes on an ROC graph.

Accuracy is the sum of the true positive and true negative rate, weighted by the
respective class distributions. The fact that accuracy is relative to the underlying
class distributions can lead to unintuive interpretations. Moreover, in process
discovery, these class distributions can be quite different and have no particular
meaning. In order to make abstraction of the proportion of negative and positive
events, we propose, from a practical viewpoint to attach equal importance to both
recall and specificity: acc = 0.5recall +0.5specificity . According to this definition,
the accuracy of a majority-class predictor is 0.5. Flower models, such as the one
in Figure ??, are an example of such a majority-class predictors. Because a flower
model represents random behavior, it has a perfect recall of the all behavior in
the event log but it also has much additional behavior compared to the event log.
Because of the latter fact, the flower model has zero specificity, and an accuracy
of 0.5. Any useful process model should have an accuracy higher than 0.5.

6.1.1 Existing Metrics

Weijters et al. (2006) define a metric that has a somewhat similar interpretation
as TPrate: the parsing measure PM . The measure is defined as follows:

p parsing measure PM : the number of sequences in the event log that
are correctly parsed by the process model, divided by the total number of
sequences in the event log. For efficiency, the similar sequences in the event
log are grouped. Let k represent the number of grouped sequences, ni the
number of process instances in a grouped sequence i, ci a variable that is
equal to 1 if grouped sequence i can be parsed correctly, and 0 if grouped
sequence i cannot be parsed correctly. The parsing measure can be defined
as follows Weijters et al. (2006):

PM =
∑k

i=1 nici∑k
i=1 ni

.

PM is a coarse-grained metric. A single missing arc in a Petri net can result in
parsing failure for all sequences. A process model with a single point of failure
is generally better than a process model with more points of failure. This is not
quantified by the parsing measure PM . It has been included in the experiments
because it gives an idea about the soundness of the discovered process models. A
disadvantage of the current ProM 4.2 implementation PM that it converts process
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models to heuristics nets, and performs log parsing via the heuristics net. The
conversion to a heuristics net requires duplicate activities not to share any input
or output activities.

Rozinat and van der Aalst (2008) define two metrics that have a somewhat
similar interpretation as TPrate and TN rate: the fitness metric f and the ad-
vanced behavioral appropriateness metric a

′

B :

p fitness f : Fitness is a metric that is obtained by replaying each (grouped)
sequence in the event log in a workflow net. At the start of the sequence
replay, f has an initial value of one. During sequence replay, the transi-
tions in the workflow net will produce and consume tokens to reflect the
state transitions of the sequence replay. However, the proportion of tokens
that must additionally be created during sequence replay, so as to force a
transition to fire, is subtracted from this initial value. Likewise, the fitness
measure f punishes for extra behavior by subtracting the proportion of re-
maining tokens relative to the total number of produced tokens from this
initial value. Let k represent the number of grouped sequences, ni the num-
ber of process instances, ci the number of tokens consumed, mi the number
of missing tokens, pi the number of produced tokens, and ri the number
of remaining tokens for each grouped sequence i (1 ≤ i ≤ k). The fitness
metric can be defined as follows (Rozinat and van der Aalst, 2008):

f =
1
2

(
1−

∑k
i=1 nimi∑k
i=1 nici

)
+

1
2

(
1−

∑k
i=1 niri∑k
i=1 nipi

)
.

p behavioral appropriateness a
′

B : Behavioral appropriateness is a metric
that is obtained by an exploration of the state space of a workflow net
and by comparing the different types of follows and precedes relationships
that are allowed in the workflow net with the different types of follows and
precedes relationships that occur in the event log. The metric is defined
as the proportion of number of follows and precedes relationships that the
workflow net has in common with the event log vis-à-vis the number of
relationships allowed by the workflow net. Let Sm

F be the SF relation and
Sm

P be the SP relation for the process model, and Sl
F the SF relation and Sl

P

the SP relation for the event log. The advanced behavioral appropriateness
metric a

′

B is defined as follows (Rozinat and van der Aalst, 2008):

a
′

B =
(
|Sl

F ∩ Sm
F |

2.|Sm
F |

+
|Sl

P ∩ Sm
P |

2.|Sm
P |

)
.

Rozinat and van der Aalst (2008) also report a solution to two non-trivial problems
that are encountered when replaying Petri nets with silent steps and duplicate
activities. In the presence of silent steps (or invisible tasks) it is non-trivial to
determine wether there exist a suitable firing sequence of invisible tasks such that
the right activities become enabled for the workflow net to optimally replay a
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given sequence of events. Likewise, in the presence of multiple enabled duplicate
activities, it is a non-trivial problem of determining the optimal firing, as the
firing of one duplicate activity affects the ability of the workflow net to replay
the remaining events in a given sequence of events. Rozinat and van der Aalst
(2008) present two local approaches that are based on heuristics involving the
next activity event in the given sequence of events.

Fitness f and behavioral appropriateness a
′

B are particularly useful measures
to evaluate the performance of a discovered process model. Moreover, these met-
rics have been implemented in the ProM framework. However, the interpretation
of the fitness measure requires some attention: although it accounts for recall
as it punishes for the number of missing tokens that had to be created, it also
punishes for the number of tokens that remain in a workflow net after log replay.
The latter can be considered extra behavior. Therefore, the fitness metric f also
has a specificity semantics attached to it. Furthermore, it is to be noted that the
behavioral appropriateness a

′

B metric is not guaranteed to account for all non-
local behavior in the event log (for instance, a non-local non-free choice construct
that is part of a loop will not be detected by the measure). In addition, the a

′

B

metric requires an analysis of the state space of the process model or a more or
less exhaustive simulation of the behavior in the model.

6.1.2 New Recall and Precision Metrics

The availability of an event log supplemented with artificial negative events, al-
lows for the definition of a new specificity metric that does not require a state
space analysis. Instead, specificity can be calculated by replaying the (grouped)
sequences, supplemented with negative events. We therefore define:

p behavioral recall rp
B : The behavioral recall rp

B metric is obtained by
sequence replay. The values for TP and FN are initially zero. Starting from
the initial marking, each sequence is being replayed. Whenever an enabled
transitions fires during sequence replay, the value for TP is increased by
one. Whenever a transition is not enabled, but must be forced to fire the
value for FN is increased. As an optimization, identical sequences only are
to be replayed once. Let k represent the number of grouped sequences, ni

the number of process instances, TP i number of events that are correctly
parsed, and FN i the number events for which a transition was forced to fire
for each grouped sequence i (1 ≤ i ≤ k). At the end of the sequence replay,
rp
B is obtained as follows:

rp
B =

( ∑k
i=1 niTP i∑k

i=1 niTP i +
∑k

i=1 niFN i

)
.

In the case of multiple enabled duplicate transitions, sequence replay fires
the transition of which the succeeding transition is the next positive event
(or makes a random choice). In the case of multiple enabled silent tran-
sitions, log replay fires the transition of which the succeeding transition is
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the next positive event (or makes a random choice). Unlike the fitness met-
ric f , rp

B does not punish for remaining tokens. Whenever after replaying
a sequence tokens remaining tokens cause additional behavior by enabling
particular transitions, this is punished by our behavioral specificity metric
sn

B .

p behavioral specificity sn
B : The behavioral specificity sn

B metric can be
obtained during the same replay as rp

B . The values for TN and TP are
initially zero. Whenever during replay, a negative event is encountered for
which no transitions are enabled, the value for TN is increased by one. In
contrast, whenever a negative event is encountered during sequence replay
for which there is a corresponding transition enabled in the workflow net,
the value for FP is increased by one. As an optimization, identical sequences
only are to be replayed once. Let k represent the number of grouped se-
quences, ni the number of process instances, TN i number of negative events
for which no transition was enabled, and FP i the number negative events for
which a transition was enabled during the replay of each grouped sequence
i (1 ≤ i ≤ k). At the end of the sequence replay, sn

B is obtained as follows:

sn
B =

( ∑k
i=1 niTN i∑k

i=1 niTN i +
∑k

i=1 niFP i

)
.

The metrics make use of heuristics to calculate the appropriate duplicate or silent
transition to fire within a Petri net, rather than performing a partial state space
analysis or a backtracking procedure to determine the exact transition to fire.
The motivation for this choice is that process discovery is to construct a graphical
model that must be comprehensible to end users. When an end user replays a
process instance in a Petri net, he or she is unlikely to determine the right routing
choice by backtracking trough a labyrinth of silent and duplicate transitions.

Because the behavioral specificity metric sn
B checks whether the workflow net

recalls negative event, it is inherently dependent on the way in which these neg-
ative events are generated. For the moment, the negative event generation pro-
cedure is configurable by the negative event injection probability π, and whether
or not it must account for the parallel variants of the given sequences of positive
events. For the purpose of uniformity, negative events are generated in the test
sets with π equal to 1.0 and account for parallel variants = true. Admittedly,
evaluating AGNEs on a metric that uses the same principle as its learning tech-
nique introduces a bias in comparing the performance of AGNEs with respect to
other learning algorithms. For this reason, we also report the PM , f , and a

′

B

metrics in our evaluation of AGNEs. A comparable bias, of course, also applies
to the genetic miner, which has a metric similar to f in its population fitness
function.

The metrics that have been introduced in this section will be used to evaluate
the performance of AGNEs in the following sections. They have been defined and
implemented for workflow nets. However, they can also be applied to other formal
process modeling languages.
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6.2 Experimental Evaluation

In this section the results of an experimental evaluation of AGNEs are presented.
First we will discuss the properties of the event logs and the parameter settings
that have been used. Then, in Section 6.2.1 we describe the results of a number of
zero-noise experiments that allow to benchmark the expressiveness of the AGNEs
language bias with respect to other learners. In Section 6.2.2, we analyze the
results of a number of noise experiments with different types and levels of noise
that have been carried out to test how the learning algorithm behaves in the
presence of low-frequent additional behavior. Finally in Section 6.2.3, we compare
the ability of AGNEs to generalize from incomplete event logs.

In order to evaluate and compare the performance of AGNEs, a benchmark
experiment with 34 event logs has been set up. These event logs have previously
been used by Alves de Medeiros (2006) and Alves de Medeiros et al. (2007) to
evaluate the genetic miner algorithm. Table 6.1 describes the properties of the
underlying artificial process models of the event logs. The number of different
process instance sequences (column “ 6= process inst.”) gives an indication of the
amount of different behavior that is present in the event log. This number is to
be compared with the total number of process instances in the event logs. In
general, the presence of loops and parallelism exponentially increases the amount
of different behavior that can be produced by a process. Therefore, the number
of activity types that are pairwise parallel and the number and type of loops have
been reported in Table 6.1. In correspondence with the naming conventions used
by Alves de Medeiros, nfc stands for non-free-choice, l1l and l2l stands for the
presence of a length-one and length-two loop respectively, and st and unst stands
for structured and unstructured loops. Furthermore, the presences of special
structures such as skip activities and (parallel or serial) duplicate activities have
been indicated. For most of the event logs in the experiment, a reference model
was available that can be assumed to represent the behavior in the event log.
Columns “rp

B reference model” and “sn
B reference model” indicate the behavioral

recall and specificity of the reference models with respect to the original event
logs. Under the assumption that the reference models are entirely correct and
that the event logs completely represent all possible behavior, the rp

B should be
equal to one for every dataset. As can be observed from Table 6.1, this is not the
case because not all event logs completely represent all possible behavior in the
reference models. Nonetheless, the number of incorrectly derived negative events
is almost always less than one percent of the total amount of negative events.
Negative events have been generated with an unlimited window size (-1).

In the experiments, the performance of AGNEs is compared to the perfor-
mance of four state-of-the-art process discovery algorithms: α+ (Alves de Medeiros
et al., 2004; van der Aalst et al., 2004), α++ (Wen et al., 2007), genetic miner
(Alves de Medeiros et al., 2007) and heuristics miner (Weijters et al., 2006). Ad-
mittedly, choosing to include these four algorithms seems arbitrary, and one could
wonder why algorithms such as the multi-phase miner (van Dongen and van der
Aalst, 2005b), FSM/Petrify (van der Aalst et al., 2006), Fuzzy miner (Günther
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Table 6.1: Event log properties
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a10skip 12 6 300 1.000 1.000 1 1
a12 14 5 300 1.000 1.000 2
a5 7 13 300 1.000 1.000 1 1 l1l
a6nfc 8 3 300 1.000 1.000 1 1
a7 9 14 300 1.000 1.000 4
a8 10 4 300 1.000 1.000 1
al1 9 98 300 1.000 0.996 n.a. 1 unst
al2 13 92 300 1.000 0.992 n.a. 2 unst
betaSimplified 13 4 300 1.000 1.000 0 1 1 2
bn1 42 4 300 1.000 1.000 0
bn2 42 25 300 1.000 1.000 0 1 st
bn3 42 150 300 1.000 0.999 0 2 st
choice 12 16 300 1.000 1.000 0
DriversLicense 9 2 300 1.000 1.000 0
DriversLincensel 11 87 350 1.000 0.986 1 1 st 1 1 1
herbstFig3p4 12 32 300 1.000 0.999 3 1 st
herbstFig5p19 8 6 300 1.000 1.000 1 1
herbstFig6p18 7 153 300 1.000 0.977 0 1 l1l, 1 l2l
herbstFig6p19 5 136 300 n.a. n.a. n.a. n.a. n.a. n.a. n.a.
herbstFig6p31 9 4 300 1.000 1.000 0 1
herbstFig6p33 10 4 300 1.000 1.000 0 1
herbstFig6p36 12 2 300 1.000 1.000 0 1
herbstFig6p37 16 135 300 1.000 0.996 36
herbstFig6p38 7 5 300 1.000 1.000 3 1 par.
herbstFig6p39 7 12 300 1.000 1.000 1
herbstFig6p41 16 12 300 1.000 1.000 4
herbstFig6p45 8 12 300 1.000 1.000 5
l1l 6 69 300 1.000 0.988 1 2 l1l
l1lSkip 6 269 300 1.000 0.732 0 2 l1l
l2l 6 10 300 1.000 1.000 0 1 l2l
l2lOptional 6 9 300 1.000 1.000 0 1 l2l
l2lSkip 6 8 300 1.000 0.999 0 1 l2l
parallel5 10 109 300 1.000 1.000 10
repair2 8 48 1000 0.998 0.995 2 1 unst

and van der Aalst, 2007), or DecMiner (Lamma et al., 2007) have not been con-
sidered. A first reason is to keep the size of the benchmarking experiment under
control. In its current setup, the experiment requires 496 (= 34 + 8 × 34 + 190)
independent runs of each algorithm included in the test. Being the first large-
scale, comparative benchmark study in the literature of process discovery, we
have chose to include algorithms that already have appeared as journal publica-
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tions (α+, α++, and genetic miner) or that are much referenced in the literature
(heuristics miner).

During all experiments, the algorithms were run with the same, standard
parameter settings of their ProM 4.2 implementation, as reported in Table 6.2.
These parameter settings coincide with the ones used to run similar experiments
by the authors of the algorithms. The parameter settings of AGNEs have been
empirically chosen. Ideally, a procedure should be developed for determining
proper parameter values for AGNEs prior to running an experiment. Arguably,
choosing a parameter setting for AGNEs that yields good results, and choosing
a standard parameter setting for the other learning algorithms induces a bias
in the benchmark experiment. However, this effect in minimized by the size of
the experiment, including event logs of 34 different process instances. The same
parameter settings are used for all datasets. Furthermore, the parameter settings
of the genetic miner are also used in experiments that involve a subset of the
event logs used in our benchmark study.

To enable a comparison on the same terms, AGNEs was not provided with
prior knowledge regarding parallelism or locality of activity types. In particular,
the thresholds used to induce frequent temporal patterns have been given the
following values (tabsence = 0.9, tchain = 0.08, tsucc = 0.8, tordering = 0.08, ttriple

= 0.10). In practice, a good threshold depends on the amount of low-frequent
behavior (noise) one is willing to accept within the discovered process model.
The negative event injection probability π influences the proportion of artificially
generated negative events in an event log. A strong imbalance of this proportion
may bias a classification learner towards a majority class prediction, without
deriving any useful preconditions for a particular activity type. As a rule of
thumb, it is a good idea to set this parameter value as low as possible, without
the learner making a majority class prediction. In the experiments π has been
given a default value of 0.08. Ex-post, AGNEs warns the user when too low a
value for π has led to a majority-class prediction. A set of other parameter settings
allow to adjust the language bias of AGNEs. To allow for a comparison based
on process discovery only, OccursLessThan constructs and case data conditions
have been left out of the language bias. TILDE’s C4.5 gain metric was used
as a heuristic for selecting the best branching criterion. In addition, TILDE’s
C4.5 post pruning method was used with a standard confidence level of 0.25.
Furthermore, TILDE is forced to stop node splitting when the number of process
instances in a tree node drops below 5. The Petri-net construction algorithm,
uses a connect threshold tconnect of 0.4, indicating that at least 40% of the triples
that can occur by connecting a transition to a place, must be frequent.

The AGNEs technique, has run times in between 20 seconds and 2 hours for
the data sets in the experiments on a Pentium 4, 2.4 Ghz machine with 1GB
internal memory. These processing times are well in excess of the processing
times of α+, α++ and heuristics miner. In comparison to the run times of the
genetic miner algorithm, processing times are considerably shorter. Most of the
time is required by TILDE to learn the preconditions for each activity type. The
generation of negative events also can take up some time. As process discovery
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generally is not a real-time data mining application, less attention has been given
to computation times.

Table 6.2: Parameter settings
Algorithm (Ref.) Parameter settings

α+

(Alves de Medeiros
et al., 2004)

derive succession from partial order information = true
enforce causal dependencies within events of the same activity = false
enforce parallelism by overlapping events = false

α++

(Wen et al., 2007)
(no settings)

heuristics miner
Weijters et al. (2006)

relative to best threshold = 0.05
positive observations = 10
dependency threshold = 0.9
length-one-loops threshold = 0.9
length-two-loops threshold = 0.9
long-distance threshold = 0.9
dependency divisor = 1
AND threshold = 0.1
use all-activities-connected heuristic = true
use long-distance dependency heuristic = false

genetic miner
(Alves de Medeiros
et al., 2007)

population size = 100
max number generations = 1000
initial population type = possible duplicates
power value = 1
elitism rate = 0.2
selection type = tournament 5
extra behavior punishment with κ = 0.025
enhanced crossover type with crossover probability = 0.8
enhanced mutation type with mutation probability = 0.2

AGNEs

prior knowledge none
temporal constraints tabsence = 0.9, tchain = 0.08, tsucc = 0.8,

tordering = 0.08, ttriple = 0.1
negative event generation injection probability π = 0.08

calculate parallel variants = true
include global sequences = true

language bias: include occurrence count = false
data conditions = none

TILDE splitting heuristic: gain
minimal cases in tree nodes = 5
C4.5 pruning with confidence level = 0.25

graph construction tconnect = 0.4

6.2.1 Expressiveness

A first experiment has been set up to evaluate the expressiveness of the proposed
language bias. In particular, the experiment intends to evaluate the degree to
which AGNEs is capable of discovering complete and precise process models from
the artificial event logs. To this end, α+ (Alves de Medeiros et al., 2004; van
der Aalst et al., 2004), α++ (Wen et al., 2007), genetic miner (Alves de Medeiros
et al., 2007), heuristics miner (Weijters et al., 2006) and AGNEs have been run
once on the 34 event logs. For the purpose of this experiment, no noise was added
to the event logs.

The aggregated results, with averages over all event logs are reported in Ta-
ble 6.3. The best average performance over the 34 event logs is underlined and
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denoted in bold face for each metric. We then use a paired t-test to test the signif-
icance of the performance differences. Performances that are not significantly
different at the 5% level from the top-ranking performance with respect to a
one-tailed paired t-test are tabulated in bold face. Statistically significant under-
performances at the 1% level are emphasized in italics. Performances significantly
different at the 5% level but not at the 1% level are reported in normal font. For
the PM measure, no paired t-tests could be performed, because the metric could
not be calculated on some of the process models discovered by α+ and α++. The
latter is the case when the discovered process models have disconnected elements.

Table 6.3: zero-noise experiment - aggregated results

PM f a
′

B acc rp
B sn

B accpn
B

α+ 0.72 0.96 0.92 0.94 0.96 0.85 0.91
α++ 0.82 0.98 0.87 0.92 0.98 0.93 0.96
AGNEs 0.90 0.99 0.87 0.93 0.99 0.96 0.98
genetic 0.91 1.00 0.83 0.91 0.99 0.95 0.97
heuristics 0.88 0.99 0.86 0.92 0.99 0.95 0.97
flower 0.00 1.00 0.23 0.61 1.00 0.00 0.50

To calibrate the metrics, we also report their evaluation of the so-called flower
model. Because the flower model parses every possible sequence, it has a perfect
recall but zero specificity. These properties are to some extent reflected in the
metrics in Table 6.3. The fitness measure f and the behavioral recall measure
rp
B are both 1.0, whereas the behavioral specificity metric sn

B amounts to 0. The
behavioral appropriateness measure a

′

B does not really seem to quantify the lack
of specificity of the flower model.

Furthermore, the results show genetic miner to score the highest on fitness
f and α+ to score the highest on behavioral appropriateness a

′

B . Remarkably,
the metrics introduced in this chapter show the inverse picture: AGNEs, genetic
miner, and heuristics miner score the highest on the behavioral recall of the pos-
itive events rp

B and the behavioral specificity with regard to negative events sn
B .

Theses small differences between both pairs of metrics can be attributed to a dif-
ference in semantics of the metrics. Whereas f punishes for remaining tokens in
the discovered Petri net, rp

B does not. Whereas a
′

B compares the succession and
precedence relationships between activities in the Petri net with these observed
in the log, sn

B compares the extent to which the Petri net parses negative events.
The metrics rp

B and sn
B do not indicate any significant difference for the per-

formance of α++, AGNEs, genetic miner, and heuristics miner. Only by looking
at the individual process models, the expressiveness of AGNEs with respect to
the detection of non-local, non-free choice constructs or the discovery of duplicate
tasks becomes apparent. For example, Figure 5.8, already discussed in Section 5.6,
shows how AGNEs is capable of detecting non-local, non-free choice constructs,
even within the loop of the DriversLicensel reference problem. Length-one loops
can become very complicated, for instance when they occur prior to a parallel
split. This is correctly detected for the a5 reference problem, as depicted in Fig-



6.2. Experimental Evaluation 157

ure 6.1. AGNEs is also particularly suited for the detection of duplicate activities.
In the herbstFig6p33 event log, the activity A occurs in three different contexts
and AGNEs draws three different, identically labeled transitions correspondingly.
Figure 6.2 compares the results of heuristics miner and AGNEs on this event log.
Likewise AGNEs was capable of detecting the duplicate activities TravelTrain and
TravelCar in the betaSimplified event log, as displayed in Figure 6.4. Figure 6.3
shows that AGNEs is capable of detecting the complex AND/OR split–join and
the skip sequence that are characteristic for the a10skip event log.

Not all reference problems, however, were discovered by AGNEs with perfect
recall and specificity. A particularly difficult problem is the occurrence of parallel,
duplicate tasks. In a one-event setting, AGNEs is incapable of distinguishing a
pair of parallel duplicate tasks from a length-one loop. Figure 6.5 is an example
of a process model that contains such a difficulty. None of the process discovery
algorithms in the experiment were capable of producing a model that summarizes
the event log with perfect recall and specificity. Likewise, AGNEs is incapable of
discovering a perfect model for the a6nfc reference problem, whereas α++ does.
This is displayed in Figure 6.6.

A

B

C

D

E

END

START

(a) AGNEs result

START A
E

C

B

D END

(b) heuristics miner result

Figure 6.1: a5 – AGNEs detects the complex length-one loop E.

The outcomes of genetic miner also require some special attention. Genetic
miner is a non-deterministic mining algorithm. From the literature, it is known
that genetic miner can discover process models with perfect specificity and recall
for almost each of the event logs included in our experiment. However, due to
the longer run times of the algorithm only a single run (with random seed 1)
was performed in our experiments. This is justifiable, as we only report average
performances for genetic miner over the 34 datasets.

6.2.2 Robustness to Noise

In a second experiment, we have stirred up the 34 event logs with artificial noise.
In the literature, six artificial noise types have been described (Alves de Medeiros
et al., 2007; Maruster, 2003): (1) missing head : the removal of the head of a
sequence, (2) missing body : the removal of the mid section of a sequence, (3)
missing tail : the removal of the end section of a sequence, (4) swap tasks: the
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(a) AGNEs result
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(b) heuristics miner result

Figure 6.2: herbstFig6p33 – AGNEs detects the duplicate activity A.
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(b) heuristics miner result

Figure 6.3: a10skip – AGNEs detects the complex or-splits.
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Figure 6.4: betaSimplified – AGNEs detects the duplicate activities TravelTrain and
TravelCar.
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(a) AGNEs result
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(b) the underlying process

Figure 6.5: herbstFig6p38 – AGNEs does not correctly detect the parallel, duplicate
activity A.
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(b) the α++ mining result

Figure 6.6: a6nfc – Unlike α++, AGNEs does not correctly detect the complex
non-local, non-free choice construct.

interchange of two random events in a sequence, (5) remove task : the removal of
a random event in a sequence, and (6) mix all : a combination of all of the above.
The noise has been added with the AddNoiseLogFilter event log filter available in
the ProM framework. This filter has been applied after ungrouping the 34 event
logs. To keep the size of the experiment under control, we have limited the noise
types used in our experiments to mix all and swap tasks. For both noise types,
the used noise levels of 5%, 10%, 20% and 50% are applied.

Table 6.4 reports the average results of the discovered process models over
all 34 zero noise event logs. As is known from the literature, heuristics miner,
and genetic miner are resilient to noise, whereas the formal approaches of α+ and
α++ are known to overfit the noise in event logs. On 11 event logs from the bn1,
bn2, and bn3 processes, the α++ implementation was incapable of producing an
outcome. These missing values resulted in a score of 0 for each measure. Further-
more, the state space analysis required to calculate the behavioral appropriateness
measure a

′

B produces invalid outcomes that occur 27 times for the results of the
genetic miner algorithm out of a total of 272 (34 x 8) experiments, the reported
results for the genetic miner are less suitable for comparison. For this reason, we
only indicate the significance of the differences between the rp

B and sn
B measures

in the previous section. For the PM , f , and a
′

B metrics, the algorithm that has
obtained the best average score, is underlined. For every noise level, AGNEs
obtains accuracy results that are robust and not significantly different from the
results obtained by heuristics miner. This is a remarkable result, as AGNEs is a
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more expressive algorithm than heuristics miner, also capable of detecting more
complex structures such as non-local dependencies and duplicate activities.

Table 6.4: noise experiments - aggregated results

PM f a
′

B acc rp
B sn

B accpn
B

mix all0.05 α+ 0.11 0.83 0.85 0.84 0.87 0.62 0.74
α++ 0.00 0.79 0.65 0.72 0.75 0.63 0.69
AGNEs 0.89 0.99 0.87 0.93 0.99 0.95 0.97
genetic 0.74 0.99 0.63 0.81 0.98 0.91 0.95
heuristics 0.88 0.98 0.87 0.93 0.98 0.94 0.96

mix all0.1 α+ 0.08 0.80 0.84 0.82 0.84 0.59 0.72
α++ 0.00 0.73 0.80 0.76 0.64 0.64 0.64
AGNEs 0.83 0.99 0.89 0.94 0.99 0.96 0.97
genetic 0.51 0.97 0.59 0.78 0.94 0.78 0.86
heuristics 0.88 0.99 0.86 0.92 0.99 0.95 0.97

mix all0.2 α+ 0.00 0.77 0.91 0.84 0.82 0.51 0.67
α++ 0.00 0.65 0.65 0.65 0.49 0.63 0.55
AGNEs 0.79 0.97 0.87 0.92 0.97 0.94 0.96
genetic 0.47 0.96 0.53 0.74 0.93 0.73 0.83
heuristics 0.86 0.98 0.85 0.92 0.98 0.94 0.96

mix all0.5 α+ 0.00 0.63 0.75 0.69 0.67 0.46 0.56
α++ 0.00 0.51 0.61 0.58 0.26 0.70 0.48
AGNEs 0.54 0.96 0.77 0.87 0.97 0.90 0.93
genetic 0.20 0.95 0.43 0.69 0.86 0.53 0.69
heuristics 0.66 0.97 0.74 0.85 0.96 0.88 0.92

swap tasks0.05 α+ 0.00 0.65 0.85 0.75 0.76 0.45 0.60
α++ 0.00 0.59 0.67 0.63 0.52 0.61 0.56
AGNEs 0.90 0.99 0.87 0.93 0.99 0.96 0.97
genetic 0.44 0.95 0.61 0.78 0.90 0.74 0.82
heuristics 0.88 0.99 0.85 0.92 0.99 0.95 0.97

swap tasks0.1 α+ 0.00 0.58 0.86 0.72 0.69 0.48 0.58
α++ 0.00 0.53 0.66 0.59 0.38 0.61 0.49
AGNEs 0.78 0.98 0.87 0.93 0.98 0.94 0.96
genetic 0.38 0.94 0.53 0.74 0.89 0.65 0.77
heuristics 0.80 0.97 0.86 0.92 0.98 0.94 0.96

swap tasks0.2 α+ 0.00 0.54 0.77 0.66 0.59 0.52 0.55
α++ 0.00 0.45 0.65 0.55 0.27 0.67 0.47
AGNEs 0.73 0.97 0.86 0.92 0.98 0.93 0.95
genetic 0.19 0.93 0.62 0.77 0.84 0.52 0.68
heuristics 0.69 0.96 0.87 0.92 0.96 0.88 0.92

swap tasks0.5 α+ 0.00 0.41 0.61 0.51 0.40 0.63 0.51
α++ 0.00 0.36 0.61 0.48 0.16 0.77 0.46
AGNEs 0.32 0.91 0.72 0.81 0.95 0.82 0.89
genetic 0.07 0.93 0.77 0.85 0.79 0.40 0.59
heuristics 0.45 0.94 0.66 0.80 0.94 0.83 0.89

The reasons why AGNEs is robust to noise can be put down to the following.
First of all, the generation of negative events is not invalidated by the presence
of noise. Noise is additional low-frequent behavior that will result in less nega-
tive events being generated by AGNEs. However, the presence of noisy positive
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events does not lead to the generation of noisy negative ones. Another property
that adds to robustness, is that the constraints in AGNEs ’ language bias allows
it to come up with so-to-say structured patterns and to some extent prevents
the construction of arbitrary connections between transitions, while remaining
expressiveness with regard to short loops, duplicate tasks and non-local behav-
ior. Finally, the formulation of process discovery as a classification allows for
the application of an already robust classification algorithm (TILDE). Like many
classification learners, TILDE takes into account the frequency of an anomaly,
when constructing the preconditions for each activity type. Moreover, TILDE
applies the same tree-level pruning method as C4.5 (Quinlan, 1993).

6.2.3 Ability to Generalize

As reported by (van der Aalst et al., 2004), process discovery algorithms make a
completeness assumption when learning from event logs containing positive events
only. AGNEs explicitly makes this completeness assumption by artificially gener-
ating negative events from the observed behavior in the event log. In particular,
it assumes that any sub-sequence of an indicated window size that is not in the
event log (or that is not a parallel variant of a sub-sequence in the event log),
should not be part of the process model to be learned.

Unfortunately, event logs rarely exhibit complete behavior. This is a fortiori
the case when the underlying business process contains a lot of parallelism and
loops. Although AGNEs takes into account the parallel variants of each observed
sub-sequence, AGNEs can still generate a number of incorrect negative events
from an incomplete event log. As goes for other process discovery algorithms,
incomplete event logs can invalidate the ability to produce the correct underlying
process model. The ability to generalize towards unseen behavior, while main-
taining an acceptable level of specificity can be considered to be generalization.

To evaluate AGNEs’ ability to generalize, a 10-fold cross-validation experi-
ment has been set up. In the literature on process discovery, cross-validation has
only been considered by Goedertier et al. (2007b); Rozinat et al. (2007). The
reason for the absence of cross-validation experiments, is that process discovery is
an inherently descriptive learning task rather than a predictive one. The primary
intent of process discovery is to produce a model that accurately describes the
event log at hand. Nonetheless, it is interesting to test the predictive ability of pro-
cess discovery algorithms in an experimental setting. To apply cross-validation,
a randomization routine has been written in SWI-Prolog that groups similar se-
quences, randomly partitions the grouped event log in n = 10 uniform subgroups,
and produces n pairs of training and test event logs. Training event logs are used
for the purpose of process discovery. Test event logs are used for evaluation, this
is for calculating the specificity and recall metrics.

Precision metrics must be calculated based on the combination of training
and test event logs, the entire event log. Although this might seem unintuitive,
precision and specificity metrics make a completeness assumption as well, as they
account for the amount of extra behavior in a process model vis-à-vis the event log
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(Rozinat and van der Aalst, 2008). To correctly evaluate the proposed learning
technique, it is important that the negative events in the test set accurately
indicate the state transitions that are not present in the event log. For this
reason, the negative events in the test log are created with information from
the entire event log. Should the negative event generation be based on training
set instances only, it is possible that additional, erroneous negative events are
injected because it is possible that some behavior is not present in the test set.
In short, the experiment applies the above-described partitioning, after having
generated negative events for each grouped process instance. Intended to be
used by the evaluation metric, the negative events have been generated with an
injection probability π equal to 1, an infinite window size, and by considering
parallel variants. Evidently, the thus generated negative events were not retained
in the training set. For training purposes, negative events have been calculated
based on the information in the training set only. For the same reasons, the
behavioral appropriateness metric a

′

B has also been calculated based on the whole
of training and test set data.

In the experiment, only 19 out of the 34 event logs were retained, as the other
event logs have less than 10 different sequences. Table 6.5 shows the aggregated,
average results of the 10-fold cross validation experiment over 190 event logs.
As explained in Section 6.2.1 the font of the metrics indicates the statistical
significance of their difference with the top-ranking performance. From the results
for the parsing measure PM , the fitness measure f , and behavioral recall measures
rp
B , it can be concluded that genetic miner scores slightly better on the recall

requirement. Moreover, the behavioral specificity metric sn
B shows genetic miner

and heuristics miner to produce slightly more specific models.

Table 6.5: 10-fold cross validation experiment - aggregated results

PM f a
′

B acc rp
B sn

B accpn
B

zero noise α+ 0.72 0.96 0.96 0.96 0.97 0.83 0.90
α++ 0.77 0.97 0.81 0.88 0.97 0.90 0.93
AGNEs 0.80 0.98 0.81 0.89 0.98 0.91 0.94
genetic 0.83 0.99 0.84 0.91 0.98 0.93 0.95
heuristics 0.79 0.97 0.85 0.91 0.97 0.93 0.95

From the cross-validation experiment, we conclude that AGNEs portrays sim-
ilar generalization behavior to other process discovery algorithms. The reason
that it is not sensitive to incomplete event logs can be attributed to the follow-
ing. Given an incomplete event log, AGNEs is likely to generate a proportion
of incorrect negative events. However, this proportion of negative events is rel-
atively small, as the negative event injection parameter π is not required to be
excessively large. More importantly, the coarse-grained language bias that com-
bines NS constructs into larger structures, prevents TILDE from overfitting the
incomplete event log and allows it to generalize, to some extent, beyond the ob-
served behavior. The additional incorporation of process knowledge expressed
by a domain expert would only add to this benefit. Finally, the negative event
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injection procedure takes into account parallelism and window size. Concurrent
and recurrent behavior are the root causes of incomplete event logs. The ability
to include information about parallel variants and window size, gives our learning
technique a configurable inductive bias, with different strategies to accounts for
incompleteness.

6.3 A Case Study

This section shows the result of the AGNEs process discovery algorithm applied
to an event log of customer-initiated processes, recorded by a European telecom
provider 1. The goal of the case study was to investigate whether process discovery
can be usefully applied to map the routing choices that are made between queues
of a workflow management system (WfMS). With 18721 process instances and
127 queues, the obtained log file has a size of over 130 megabytes in the form of
a comma-separated text file. The case study gives an idea of the scalability of
the algorithm towards large event logs and the usefulness of the AGNEs process
discovery algorithm on realistic, real-life processes.

6.3.1 The Obtained Event Log

The event log consists of events about customer-initiated processes that are han-
dled at three different locations by the employees of the telecom provider. The
handling of cases is organized in a first line and a second line. First-line operators
are junior operators that deal with frequent customer requests for which stan-
dardized procedures have been put in place. When a first-line operator cannot
process a case, it is routed to a queue of the second line. Second-line case han-
dling is operated by senior experts who have the authority to make decisions to
solve the more involved cases. The second-line processes are coordinated and sup-
ported by means of a workflow management system (WfMS). The obtained event
log consists of these second-line case handling events. The second-line WfMS is
organized as a system of 127 logical queues. Each queue corresponds to a number
of similar types of activity that are to be carried out. At any given moment each
active case resides in exactly one queue. Employees can process a case by taking
it out of the queue into their personal work bin. Every evolution of a case is
documented by adding notes. Moreover, employees can classify the nature of the
case according to a number of data fields. In addition, a worker or dispatcher has
the ability to reroute cases to different queues whenever this is necessary. The
system imposes no restrictions with regard to the routing of cases. Queues repre-
sent a work distribution system and are akin to roles in WfMS. For the purpose
of this analysis, queues are considered to be activity types. To handle cases that
have a common cause, a parent-child structure exists among cases. Occasionally,

1Due to a non-disclosure agreement, the identity of the telecom provider and the content of
the event log cannot be made public. Consequently, all reported queue names have been made
anonymous, and all reported queuing time metrics have been randomized.
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rules can perform updates on cases, such as automatically closing a case, and
automatically rerouting a case.

Table 6.6 summarizes the properties of the original event log and of the event
log that was obtained after preprocessing this event log. Because the goal of the
case study is to map the routing choices, only dispatch event types were retained
from the event log. In this context, queues can be seen as activity types. Canfora
et al. (2005) and Mendling et al. (2007) assert that a high number of activity types
and arcs quickly render a process model incomprehensible. Therefore, the 40
most frequently occurring queues were retained for further analysis. Nine process
instances that did not involve at least one of these 40 queues were retained from
the event log.

Table 6.6: telecom – the properties of the original and preprocessed event log
Property Definition
real-life process Second-line customer-initiated processes regarding the resolution of inter-

net, television, and telephony service problems.
event log The event log recorded by a WfMS, containing all dispatch events of 17812

cases that were closed between January 6, 2008 and February 6, 2008.
activity types 127 different queues of which processes involving the 40 most frequent

queues were retained. In addition, the create and close case event types
are considered to be activity types.

event types From the original four event types (create, notes, dispatch, and case close)
only the dispatch event type was retained.

process inst. The case id field allowed to identify 17821 process instances of which
17812 remained after filtering out processes that did not involve the re-
tained activity types.

case data the following case data fields were given a value for more than 20% of the
cases: problem code, problem cause, and service type.

6= process inst. After grouping according to the same follows relationship 1375 different
process instances were retained.

First, an exploratory study was made using descriptive statistics. A number
of plain vanilla SQL queries on the event log were used to calculate the average
and standard deviation of its queue times, the total number of cases that were
routed to this queue, and the inflow and outflow to other queues. This data
is visualized by means of graphs such as the one in Figure 6.7. Each rectangle
represents a queue. Each arc represents cases being routed from one queue to
another. For each queue, the average cycle time, standard deviation of the cycle
time, and the total number of cases is indicated. On each arc, the outflow of cases
from one queue to another is indicated in absolute quantities. This visualization
makes it immediately apparent that cases in a given queue can be routed to a
great number of queues. To reduce the information overload on the graph, arcs
with less than 30 cases were left out. Disconnected queues are left out as well.
A lean sigma black belt expert, who is currently making improvements to the
second-line case handling, confirmed that the graph was a useful visualization
of the queue routing choices that were currently made. Moreover, he asserted
that the cross-table representation of the same data, allowing the expert to drill
down to individual cases whenever required, was a useful tool in understanding
the complexity of the underlying processes.
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Figure 6.7: telecom – a visualization of queue routing using descriptive statistics only
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6.3.2 Validity of Assumptions

Although many process discovery algorithms have been developed, only a few
authors report on the practical application of process discovery algorithms on
real-life event logs (Alves de Medeiros et al., 2007; Ferreira et al., 2007; Günther
and van der Aalst, 2007; van der Aalst et al., 2007a). Practical applications are
important, because they give an indication of the validity of the assumptions that
are made by process discovery algorithms. In particular, authors like Günther and
van der Aalst (2007) and Ferreira et al. (2007) have identified that process dis-
covery algorithms make a number of assumptions that are not always guaranteed
for realistic event logs. In the next paragraphs, the validity of these assumptions
with respect to the obtained event log is evaluated.
assumption 1. “There is a one-to-one mapping between a system event and a
business event.” This assumption underestimates the importance of preprocessing
an event log. Günther and van der Aalst (2007) assert that system logs may
contain events of different levels of abstraction. Moreover, the authors point out
that in many processes it is not meaningful to separate the control flow, data
flow, and resource perspectives. System logs can indeed have an ontology that is
different from the process modeling ontology that is used in this text. Moreover,
the interpretation of a system event can differ in function of the intended analysis.
Another issue is that the most useful information to classify a system event may
reside in unstructured data, such as free text fields or e-mails. The labeling of
unstructured data for the purpose of activity recognition can be believed to be
very difficult. For these reasons, it is often not possible to automatically convert a
system event into a relevant business event. In the obtained event log, the resource
and control flow perspective are intertwined: the queue to which a particular case
is being dispatched (resource perspective) is considered to be the activity type
(control flow perspective). Undoubtedly, the textual annotations that employees
add to each case conceal a lot of information about the nature of the underlying
activity, but we did not attempt to use this text field to discover or recognize
more fine-grained activity types.
assumption 2. “It is possible to identify meaningful process instances in an
event log.” This assumption entails that each system event can be related to a
meaningful process instance by means of a suitable identifier, such as a customer
id, an employee number, or a case id. Ferreira et al. (2007) argue that for many
system logs the existence of such an identifier is not guaranteed. Consequently, a
lot of preprocessing can be required to identify clusters of events that represent
process instances. In the obtained event log, process instances are identified using
the case id identifier of the WfMS.
assumption 3. “The events in the log are generated by exactly one underly-
ing process.” Even when meaningful process instances can be identified from
an event log, it is possible that the event log represents the history of multiple
underlying, real-life processes. Ferreira et al. (2007) demonstrate that the use
of sequence clustering algorithms can be useful to detect clusters of frequently
occurring sequences. As the obtained event log contains cases that deal with a
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variety of customer problems – there are over one hundred different problem codes
– it can be assumed that the event log is actually generated by many underlying
processes. Unfortunately, due to poor data quality of case data fields, we did not
find a useful filtering criterion. Sequence clustering can be a useful technique to
identify clusters of underlying processes (Ferreira et al., 2007). However, due to
the high number of underlying processes, the application of expectation maxi-
mization algorithm for mixtures of first-order Markov models (Cadez et al., 2003)
did not lead to the identification of meaningful clusters of process instances.
assumption 4. “The processes take place in a structured fashion.” Structured
processes take into account concerns such as prerequisites, synchronization, par-
allelism, and exclusiveness. Consequently, it is assumed that it is possible to sum-
marize the underlying processes in structured process modeling languages such as
workflow nets. Günther and van der Aalst (2007) report on a number of real-life
event logs, for which these assumptions were not valid. The authors promote a
series of multi-perspective metrics and adaptive simplification and visualization
techniques to bring structure to these seemingly unstructured event logs. From
Figure 6.7 it can be observed that there are few dominant queue routing choices.
The underlying processes apparently have little structure. The latter can be at-
tributed to the fact that the high number of unidentifiable, underlying processes
each observe a different routing and by themselves are not guaranteed to occur in
a structured fashion. Another reason why the routing occurs in an unstructured
fashion is that the WfMS does not impose any restriction on the routing of cases.

The obtained event log to some extent differs from ideal event logs. It does not
really record which activities take place, but rather records the different queues
each case is routed to. Therefore, some of the assumptions that process discovery
algorithms make are not valid for the event log. In particular, assumptions 3 and
4 are clearly problematic for the obtained event log. Another difference is that
the underlying processes contain no parallel behavior. Detecting concurrency is
one of the more difficult aspects of process discovery. It is interesting to see how
deterministic process discovery algorithms cope with these differences.

6.3.3 Results

In this section, we compare the mining results of AGNEs, genetic miner, and
heuristics miner. Table 6.7 indicates the parameter settings. Parameter settings
that are different from the experimental evaluation in the previous section are in-
dicated in bold face. In particular, AGNEs was provided with the prior knowledge
that no activity can occur concurrently: ∀a, b ∈ A : PriorSerial(a, b). This prior
knowledge is justifiable, as no case can be routed to or reside in several queues
at the same time. Moreover, the tconnect parameter was lowered to a value of 0
(the ChainSeq(a, b, c) predicate being sensitive to the frequency of occurrence of
its composing activity types). Genetic miner has been running for 5000 genera-
tions, with a population size of 10. These parameter settings correspond to the
parameter settings in the case study described by Alves de Medeiros et al. (2007).
To account for the prior knowledge that no concurrent behavior is contained in
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the event log, heuristics miner needs to have a sufficiently large AND threshold,
here set to a value of of 500,000.0.

Table 6.7: telecom – parameter settings
Algorithm (Ref.) Parameter settings

heuristics miner
Weijters et al. (2006)

relative to best threshold = 0.05
positive observations = 10
dependency threshold = 0.9
length-one-loops threshold = 0.9
length-two-loops threshold = 0.9
long-distance threshold = 0.9
dependency divisor = 1
AND threshold = 500,000.0
use all-activities-connected heuristic = true
use long-distance dependency heuristic = false

genetic miner
(Alves de Medeiros
et al., 2007)

population size = 10
max number generations = 5000
initial population type = possible duplicates
power value = 1
elitism rate = 0.2
selection type = tournament 5
extra behavior punishment with κ = 0.025
enhanced crossover type with crossover probability = 0.8
enhanced mutation type with mutation probability = 0.2

AGNEs

prior knowledge ∀a, b ∈ A : PriorSerial(a, b)
temporal constraints tabsence = 0.9, tchain = 0.08, tsucc = 0.8,

tordering = 0.08, ttriple = 0.1
negative event generation injection probability π = 0.04

calculate parallel variants = true
language bias: include skip sequences = false

include global sequences = false
include occurrence count = false
data conditions = none

TILDE splitting heuristic: gain
minimal cases in tree nodes = 5
C4.5 pruning with confidence level = 0.25

graph construction tconnect = 0.0

The results of applying these process discovery algorithms on the filtered event
log are displayed in Table 6.8. To calibrate the metrics, we also report their
evaluation of the so-called flower model. Because the flower model represents
random behavior, it has a perfect recall of the all behavior in the event log but
it also has much additional behavior compared to the event log. Because of
the latter fact, the flower model has zero specificity. These properties are to
some extent reflected in the metrics in Table 6.8. The fitness measure f and
the behavioral recall measure rp

B are both 1.0, whereas the behavioral specificity
metric sn

B amounts to 0. The parsing measure PM does not reflect the recall of
the flower model, most likely because the implementation requires a conversion
into a heuristics net, which is very complex for a flower model. The behavioral
appropriateness measure a

′

B does not really seem to quantify the lack of specificity
of the flower model.

Table 6.8 also shows the results of the visualization of queue routing of Figure
6.7 that was obtained from descriptive statistics. To calculate these results, the
visualization has been converted into a Petri net in the following way. Every
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Table 6.8: telecom – mining results

PM f a
′

B acc rp
B sn

B accpn
B #nodes #arcs run time

AGNEs 0.06 0.94 0.67 0.80 0.93 0.67 0.80 129 153 0d:10h:06m:34s
descriptive statistics 0.73 0.86 x.xx x.xx 0.94 0.80 0.87 42 139 <1m
flower model 0.00 1.00 0.76 0.88 1.00 0.00 0.50 47 88 00s:032ms
genetic 0.03 x.xx x.xx x.xx 0.83 0.62 0.73 42 14392 7d:00h:08m:26s
heuristics 0.80 0.97 0.72 0.85 0.96 0.88 0.92 42 132 01s:578ms

rectangle (queue) is mapped to a labeled transition with exactly one input and
output place. Each arc (queue routing) is mapped into an silent transition that
connects the output place of the from-queue to the input place of the to-queue.
This mapping is justifiable, because the event log contains no concurrent behavior.
If the underlying processes do portray concurrent behavior, there would be no
straightforward mapping of descriptive statistics into Petri nets.

The mining results of AGNEs, genetic miner, and heuristics miner are depicted
in Figures 6.8, 6.9 and 6.10 respectively. In the next paragraphs, we address the
question whether the discovered models produce useful information for an expert
to get a good idea of the queue routing choices that are made within the second-
line handling of customer problems. In particular, it is determined whether, the
discovered models provide additional information compared to the graph with
descriptive statistics displayed in Figure 6.7. In Section 4.4.2, three general re-
quirements have been introduced that make a process mining model acceptable:
accuracy, comprehensibility, and justifiability. In the next paragraphs, these re-
quirements are applied to the discovered process models.

Accuracy refers to the extent to which the induced model fits the behavior
in the event log and can be generalized towards unseen behavior. Accuracy refers
both to recall (allowing all observed behavior in the event log) and specificity (dis-
allowing all unobserved or disallowed behavior). Compared to the flower model,
AGNEs has a fairly good recall with a fitness f of 0.94 and a behavioral recall
rp
B of 0.93. In addition, the AGNEs result represents a specificity improvement:

the behavioral specificity metric sn
B amounts to 0.67, indicating that 67% of all

disallowed behavior is also disallowed by the model. For the genetic miner mining
result, the ProM 4.2 implementations of f , and a

′

B did not produce an outcome.
To calculate these metrics, a conversion of the heuristics nets into Petri nets is
required. The resulting Petri nets, which have many invisible transitions, are
seemingly too complex to determine a good firing sequence or to perform a state
space analysis (Rozinat and van der Aalst, 2008). Because we use simple heuris-
tics to determine a good firing sequence of invisible and duplicate transitions, we
are capable of calculating the rp

B and sn
B recall and specificity metrics. Notice

that much of the complexity of calculating our specificity metric is transferred
to generating the artificial negative events. Looking at the available rp

B and sn
B

measures, it can be observed that the genetic miner result is less good than the
AGNEs mining result, both in terms of recall and specificity. Accuracy can be
seen as a weighted average of precision and recall. If we attach equal importance
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Figure 6.8: telecom – AGNEs mining results as a Petri net
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Figure 6.9: telecom – genetic miner mining results as a heuristics net

to precision and recall, the discovered process model by AGNEs has an accuracy
of 80%, whereas the models discovered by genetic miner and heuristics miner have
an accuracy of 73% and 92% respectively. Heuristics miner is the only algorithm
that outperforms the overall accuracy of 87% of the model obtained from the
descriptive statistics.

Comprehensibility refers to the extent to which an induced model is com-
prehensible to end-users. Whereas comprehensibility is more difficult to quantify,
it is an important evaluation criterium for process models. Table 6.8 indicates
the number of arcs and nodes in each of the mining models. These numbers
should be treated with care, because the number of nodes is dependent on the
used process modeling languages. For AGNEs the number of places, transitions,
and arcs in the Petri net are reported, whereas the genetic miner and heuristics
miner this is done with the number of nodes and arcs in the discovered heuristics
nets. Mendling et al. (2007) have evaluated graph-based business process model
understandability and quality by means of surveys and experiments. In general,
the understandability of a process model deteriorates with the number of arcs
and nodes in the model. Although the AGNEs mining result contains several
duplicate, homonymic transitions, it has less arcs than the genetic miner result.
However, in terms of comprehensibility, the simple visualizations in Figure 6.7,
obtained by descriptive statistics, and Figure 6.10, obtained by heuristics miner,
already give a clear idea of the queue routing frequencies, and queuing times.
By allowing the user to filter out the arcs and nodes of which the frequency is
below a particular threshold, the end-user obtains a comprehensible and config-
urable image of the routing choices. Notice that the comprehensibility of the
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Figure 6.10: telecom – heuristics miner mining results as a heuristics net
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descriptive statistics model is mainly due to the lack of concurrent behavior. The
visualization does not allow to comprehensively represent concurrency.

Justifiability refers to the extent to which an induced model is aligned with
the existing domain knowledge. Domain knowledge can refer to knowledge about
concurrency (parallelism), impossibility (mutually-exclusive activities), etcetera.
For the obtained event log, a domain expert might be surprised to see a process
model in which a routing to several queues is allowed at the same time. Because
AGNEs was provided with the requirement that all queue routings must occur
in serial, the discovered model does not contain any parallel transitions. The
same a-priori knowledge can be conveyed to heuristics miner by setting the AND
threshold to a sufficiently large value. In general AGNEs allows to provide paral-
lelism information for individual pairs of activity types. This fine-grained a-priori
knowledge cannot be provided by fine-tuning the AND threshold with heuristics
miner. Currently, it is not possible to constrain the search space of genetic miner
with this a-priori knowledge.

Run time refers to the time that is required to run a particular process discov-
ery algorithm. Table 6.8 indicates considerable differences in required run time on
the filtered event log. Whereas a single run of heuristics miner takes less than two
seconds, running AGNEs and genetic miner takes over ten hours and over seven
days respectively. 85% of the run time required by AGNEs was used for running
TILDE to discover activity preconditions. In general, process discovery is not a
real-time data mining application. However, an end-user is likely to prefer process
discovery algorithms that are less stringent on computational requirements. In
practice, shorter run times will encourage the end-user to interactively explore
the event log, applying various filters, and parameter settings (Hammori et al.,
2006; van Dongen et al., 2005). Reporting run times is perhaps unfair. The imple-
mentations of AGNEs, heuristics miner, and genetic miner can be considered to
be scientific prototypes, built as a proof-of-concept, not as a commercial process
mining algorithm. A commercial version of genetic miner, for instance, contains
a much faster implementation of genetic miner (Pallas Athena, 2008b). The de-
scriptive statistics from which model 6.7 has been constructed, were implemented
as a number of SQL queries. By constructing a number of indexes on the event
log, run time could be reduced to less than 30 seconds.

Case studies can give an idea of the validity of the assumptions and the scal-
ability of the algorithms in the domain of process discovery. Like other case
studies (Ferreira et al., 2007; Günther and van der Aalst, 2007; van der Aalst
et al., 2007a), this case study brings forward that human-centric processes can
take place in an unstructured fashion. Bringing order in the chaos of unstructured
processes probably requires a different search strategy and process modeling lan-
guage than the ones used by existing process discovery algorithms. In spite of
that, the AGNEs process discovery technique copes reasonably well with the lack
of structure in the event log, but is outperformed in terms of accuracy and com-
prehensibility both by the heuristics miner and the descriptive statistics model.
The case study also indicates that, despite the long run time, our technique is
scalable towards real-life sized event logs. Another outcome of the case study,
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is that the proposed measures for behavioral recall rp
B and behavioral specificity

sn
B in practice turn out to be valuable metrics for assessing the accuracy of a

discovered process model.

6.4 Conclusion

Process discovery algorithms must – in addition to finding the right balance be-
tween recall and specificity – deal with challenges such as expressiveness, noise,
incomplete event logs, and the inclusion of prior knowledge. Dealing with one
challenge sometimes goes to the deterioration of another. The AGNEs technique
simultaneously addresses many of these challenges. This can be concluded from
the results of an extensive benchmark study applied to AGNEs and four state-of-
the art process discovery algorithms. In this benchmark study, we make use of a
new metric for quantifying specificity, based on the generation of artificial nega-
tive events. The benchmark experiments indicate that our technique can discover
complex structures such as short loops, duplicate activities, and non-free choice
constructs, while remaining robust to noise.

The declarative aspects of the AGNEs technique are useful in practice. This
claim is supported by a real-life case study. The case study indicates that in
practice the challenge of process discovery is to deal with unstructured processes,
rather than to discover complex structures such as non-local, non-free choice,
parallelism, and synchronization. In spite of that, our learning technique was
capable of discovering a useful process model from the event log.

Another contribution is the definition of two new metrics for quantifying be-
havioral recall rp

B and behavioral specificity sn
B . These metrics are calculated by

replaying the event log supplemented with artificial negative events. Because the
metrics can be efficiently calculated, they produce an outcome on every discovered
model in the experiments, facilitating comparison.





CHAPTER 7

Conclusion

7.1 Conclusion

In this text, we have characterized and introduced a number of declarative tech-
niques for the modeling and mining of business processes intended to raise an
organization’s insight into its business processes.

Declarative process modeling has the potential of reconciling compliance and
flexibility, both at the design-time and runtime. We start out from a general
characterization of declarative process modeling. This characterization indicates
how declarative process modeling techniques could contribute to flexibility and
compliance. Moreover, the characterization contains important design principles
for declarative modeling languages. These principles are to some extent present
in existing works. An important contribution, is the identification of these works
and a comparison based on considered state space and transition types.

Given the fact that there already exist a large number of formal declara-
tive process modeling languages in the literature, introducing a new language,
inevitably would borrow constructs from existing languages. Moreover, one lan-
guage is likely only to cover a limited aspect of the many business process concerns
that exist in reality. Rather than developing another formal language for declar-
ative process modeling, we have presented a unifying framework, within which
existing approaches can be positioned. In that respect, the EM-BrA2CE Frame-
work can be seen as a way to bring structure to the related work in the literature
of both process modeling and service modeling. It consists of a unifying vocab-
ulary and a unifying execution model. A remarkable property of the vocabulary
is that it makes use of the SBVR ontology language. This ontology language
has only recently appeared as an official specification of the Object Management
Group (2008). The SBVR is perhaps a complex specification, but it has many
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appealing properties, such as its combination of linguistics and logics. The ex-
ecution semantics of the framework is specified by means of colored Petri nets.
The latter allows for the simulation of declarative process models in CPN Tools.
These simulations are an important proof-of-concept of the execution semantics
and furthermore provide artificial event logs useful in process mining experiments.

Albeit a unifying approach, the framework purposefully leaves many gaps to fill
in. After defining the framework, we identify sixteen business rule types within
the framework that allow to declaratively document several business concerns
related to business processes. Documenting business concerns in declarative pro-
cess models can already realize many of the design-time advantages of declarative
process modeling. Realizing the run-time advantages, however, requires a spec-
ification in formal languages, that are automatically executable, and verifiable.
PENELOPE is an example of such languages. It allows to express the dynamics
of obligations, permissions, and due dates that come into existence during the
enactment of business processes. For this language, we indicate how it can be
visualized and verified – with many limitations for the time being.

A second part of the text deals with declarative techniques for process discov-
ery within the EM-BrA2CE Framework. Declarative process discovery techniques
focuss on comprehensibility and justifiability of the discovered process models, in
addition to their accuracy. Inductive Logic Programming (ILP) is a machine
learning technique that is particularly suited for raising comprehensibility and
justifiability. Ferreira and Ferreira (2006) show that process discovery can be
formulated as an ILP classification learning problem on event logs with both pos-
itive and negative events. In reality, event logs often do not contain negative
examples and therefore process discovery cannot be represented as a classification
problem that discriminates between positive and negative events. To overcome
the problem, we develop a configurable technique to artificially generate negative
events (AGNEs). By generating artificial negative events, a classification learner
is given a configurable completeness assumption as inductive bias. The idea of
manipulating the inductive bias of learners by generating artificial negative events
undoubtedly is one of the most surprising outcomes of the text. This idea was first
explored for the learning of access rules from event logs, but fully implemented
for the discovery of activity preconditions with the AGNEs process discovery
technique. The AGNEs process discovery technique has been implemented as a
mining plugin in the ProM framework. We call this learning technique declara-
tive, because it allows the user to configure the prior knowledge, inductive bias,
and language bias of the learner. In addition the generation of artificial negative
events, the technique also shows how it is possible to convert a set of transition
rules for each activity type, into a Petri net representation. The conversion of
transition rules into a graphical model greatly facilitates comprehensibility of the
discovered mining model.

The ability to artificially generate negative events, has lead to the specification
of two new metrics for quantifying recall and specificity of a discovered process
model. Because these metrics can be efficiently calculated, they have proven to
be very useful to compare the AGNEs learning technique with existing state-of-
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the-art learning techniques. An important contribution, is the experimental setup
of the extensive benchmark experiment. This experiment evaluates the expres-
siveness, robustness to noise, and ability to generalize of AGNEs in comparison
to four state-of-the-art process discovery algorithms using both existing metrics
and our own metrics. A comparative benchmark study of this scale is the first
in the field of process discovery. The experiments show very good results for our
learning technique. The artificial event logs, however, contain the events of sim-
ulated, structured processes. In reality, it might very well be that there are only
few human-centric processes that actually take place in a structured manner. A
real-life case study conducted for a large, European telecom provider, provided us
with an event log of customer-initiated processes that clearly violates a number
of assumptions that are traditionally made in the domain of process discovery.
Although in comparison to other learners the AGNEs technique still is capable of
discovering an acceptable process model from the event log, the case study is a
further indication that research in process discovery should focuss on discovering
less structured processes. In such as setting, process mining techniques that have
a declarative representation with transition rules instead of Petri nets as language
bias, are likely to be more useful.

7.2 Limitations and Future Work

Declarative process modeling and mining techniques still require substantial effort,
in order to realize their design goals. Looking at our own techniques, we can
suggest – among others – the following future work.

7.2.1 A Configurable Completeness Assumption

Although we have done a large number of experiments to evaluate the performance
of AGNEs we did not manipulate the history size and parallel variants parameters.
To what extent would it affect the ability of the algorithm of generalizing? Under
the current settings –infinite window size and parallel variant calculation – a
rather strong completeness assumption is made. By reducing the window size, a
weaker completeness assumption is made, less negative events are generated, and
the amount of allowed behavior increases. Under the current settings, AGNEs
nonetheless has proven to be fairly robust to incomplete event logs.

Furthermore, it would be interesting to extend the configurability of the in-
ductive bias. Currently, the user can have the algorithm take into account win-
dow size and parallel variants, when looking for non-existent behavior. However,
the algorithm can be made even more configurable, for instance, by specifying
whether ordering matters, or by imposing on the algorithm to filter out a partic-
ular activity type. Such configurability of the inductive bias would resemble to
the approach of van der Aalst et al. (2006), which allows to configure how a finite
state machine is constructed from the traces in an event log and how this state
machine is folded into a Petri net.
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7.2.2 Learning Other Transition Types

In this text, we have primarily focussed on the use of declarative classification
techniques for the purpose of process discovery. The control flow aspects of process
discovery only relate to start and complete transitions within the framework.
However, the learning of the conditions that discriminate between positive and
negative events for some other transition types within the framework, present
relevant, and non-trivial challenges. In particular, the learning of access rules is
a challenging problem that could also benefit from declarative learning features.
As illustrated in section 5.9, learning access rules that do away with access right
accumulation is a real challenge that requires a declarative manipulation of the
inductive bias. Furthermore, the conversion of a set of access rules into a role-
based access control specification (RBAC) with defeasible access constraints is
a non-trivial challenge that could alleviate the role-engineering problem from a
mining rather than from a modeling perspective. Future research has to reveal
whether this approach could yield good results in practice.

7.2.3 Declarative Process Mining Models

The AGNEs process discovery technique has been provided with a language bias
that can be converted into Petri nets. Whereas the use of Petri nets as external
mining model representation language allowed for the use of existing evaluation
metrics, the language bias of AGNEs by no means should be restricted to Petri net
based languages only. AGNEs’ technique for inducing artificial negative events
is independent of the chosen language bias. Therefore, the learner could easily
be provided with a language bias such as the ConDec language that allows for
a declarative representation of the mining model. The contribution of AGNEs
is that it enables the use of ILP classification learners even when the event log
does not naturally contain negative events. The ability to choose a process rep-
resentation language that is best capable of capturing the underlying behavior –
potentially a declarative or a procedural language – in practice will undoubtedly
be a huge advantage of the ILP learning technique. Therefore, future work should
also focus on providing AGNEs with other, non-graphical, yet declarative process
representation languages.

7.2.4 Learning from Unstructured Processes

Whereas the AGNEs process discovery algorithm shows good performance for
event logs of structured processes, our telecom case study and other case studies
in the literature reveal that the bulk of human-centric processes are essentially
semi-structured or even unstructured. Most state-of-the art process discovery
algorithms provide little added value on event logs of unstructured processes.
Because more and more human-centric processes are computer-supported, there
are also many event logs available of unstructured processes. Examples are un-
structured workflow processes, online shopping, or self-scan supermarket visits.
Because of its declarative nature, AGNEs is a learning technique that can be
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tailored towards unstructured processes. Essentially, this would require a combi-
nation of the two approaches: a more suitable language bias, and a probabilistic
approach.

1. language bias approach: AGNEs has been designed for discovering rule-
based Petri net patterns from event logs. Clearly, unstructured processes
cannot easily be represented as Petri nets. However, other event operators
might be more successful in capturing the hidden temporal structure of an
event log. Instead of a graphical model, AGNEs is more likely to present
a number of rules that best discriminate between the observed (positive
events) and unobserved behavior (negative events).

2. probabilistic approach: Unstructured processes are essentially proba-
bilistic: from a given state of a process, almost any transition can be ob-
served with a non-zero probability. Probabilistic learning approaches, such
as the ones intended by De Raedt and Kersting (2003), are particularly
suited for the analysis of unstructured or semi-structured, human-centric
processes, because their transition probabilities account for the uncertainty
that originates from noise, unobserved states, and the lack of structure.

In the literature, there are already many formalisms to represent and learn the
probability distributions of stochastic, generative grammars over sequences of ob-
served characters and unobserved state variables. Historically, techniques like
Markov models, hidden Markov models, factorial hidden Markov models, and
dynamic Bayesian networks have been first applied to speech recognition and bio-
informatics (Durbin et al., 1998). Each representation has its own particular mod-
eling features that makes them more or less suited for representing human-centric
behavior. Factorial hidden Markov models, for instance, have a distributed state
representation, that allows for the modeling of concurrent behavior (Ghahramani
and Jordan, 1997). Lafferty et al. (2001) show how conditional random fields are
useful discriminative models that can be used for activity segmentation, the
supervised learning of a labeling function from a finite set of training samples
that gives meaning to segments of observed activities in terms of a sequence of
predefined labels. Both for generative hidden Markov models and discriminative
conditional random fields, a first-order, inductive logic programming (ILP) exten-
sion exists that allows for the representation of sequences of logical atoms rather
than alphabets of flat characters (Kersting et al., 2006). These extensions with
regard to language bias and probabilistic learning undoubtedly have much poten-
tial, but at the same time pose many challenges with regard to comprehensibility
and justifiability.
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doctoral program
2004-2005 doctoral courses:

D650 Introduction to Research Methodologies
H02A3A Programming Languages and Methodologies
HD85 Machine learning and inductive inference
D373 Multivariate statistics in business and industry
H02c4a Artificial Neural Networks

2005 comprehensive exam: Rule-based process modeling and exe-
cution

2006 research proposal: On the use of business rules throughout the
BPM life cycle.

2007 1st seminar: On the use of business rules throughout the BPM
life cycle, Leuven, May 14, 2007.

2008 2nd seminar: Robust process discovery with artificial negative
events, Leuven, February 14, 2008.

2008 pre-defense: Declarative techniques for modeling and mining
business processes, Leuven, May 22, 2008.

2008 defense: Declarative techniques for modeling and mining busi-
ness processes, Leuven, September 16, 2008.

academic experience
2008 ad-hoc reviewer for the Machine Learning special issue on

“Swarm Intelligence”
2008 ad-hoc reviewer for the Information Systems special issue on

“Business Process Modeling”
2008 ad-hoc reviewer for the Springer journal “LNCS Transactions on

Petri Nets and Other Models of Concurrency” (ToPNoC)
2008 program committee member of RuleML-2008: The International

RuleML Symposium on Rule Interchange and Applications
2007 reviewer for the Second International Conference on Bio-

Inspired Computing: Theories and Applications (BIC-TA 2007),
Zhengzhou (China), September 14-17 2007

teaching experience
2006 course: Business Intelligence

class: decision trees & artificial neural networks
2007 course: Logica voor informatici: toepassingen in de beleidsinfor-

matica
class: An introduction to logic programming in Prolog, Leuven,
Leuven, December 14, 2007.

2008 course: Knowledge Management & Business Intelligence
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class: Business process intelligence: quantifying process perfor-
mance and process compliance, Leuven, April 8, 2008.

grants & awards
2008 granted the one-year fulltime position of postdoctoral re-

searcher (PDMK) by KULeuven. Submitted research proposal:
“Analysing Semi-Structured, Human Behavior with Probabilistic
Sequence Analysis Techniques”

2007 best paper award for Goedertier, S., Mues, C., and Vanthienen, J.
(2007d). Specifying process-aware access control rules in SBVR.
In Paschke, A. and Biletskiy, Y., editors, Proceedings of the Inter-
national Symposium Advances in Rule Interchange and Applica-
tions (RuleML 2007), volume 4824 of Lecture Notes in Computer
Science, pages 39–52. Springer. (Best Paper Award)

presentations
2008 Goedertier, S. (2008). Analyzing Business Processes using Data

Mining: Data Mining Garden, workshop on New Frontiers in Data
Mining, Leuven, Belgium, January 9, 2008. Presentation

2007 Goedertier, S. (2007c). Process Mining as First-Order Classifi-
cation Learning on Logs with Negative Events, 3rd Workshop
on Business Processes Intelligence (BPI’07), Brisbane, Australia,
September 24, 2007. Presentation

2007 Goedertier, S. (2007a). A Vocabulary and Execution Model for
Declarative Service Orchestration, 2nd Workshop on Advances
in Semantics for Web services (semantics4ws’07), Brisbane, Aus-
tralia, September 24, 2007. Presentation

2007 Goedertier, S. (2007b). FETEW Doctoral Seminar, Declarative
BPM: on the use of Business Rules in the BPM Life Cycle, Leu-
ven, Belgium, May 14, 2007. Presentation

2005 Goedertier, S. and Vanthienen, J. (2005a). Rule-based Business
Process Modeling and Execution. IEEE EDOC Workshop on
Vocabularies, Ontologies and Rules for The Enterprise (VORTE
2005)

publications

submitted for publication in international journals

Goedertier, S., Martens, D., Vanthienen, J., and Baesens, B. (2008c). Robust
process discovery with artificial negative events. resubmitted for review to the
Journal of Machine Learning Research on September 1, 2008

Goedertier, S., Martens, D., Vanthienen, J., and Baesens, B. (2008b). Benchmark-
ing state-of-the-art algorithms for process discovery. submitted for review to
the journal of Informations Systems on September 1, 2008
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accepted for publication in international journals

Goedertier, S. and Vanthienen, J. (2008). Rule-based business process modeling
and enactment. International Journal of Business Process Integration and
Management. (accepted for publication)

published in international journals

Goedertier, S., Mues, C., and Vanthienen, J. (2007d). Specifying process-aware
access control rules in SBVR. In Paschke, A. and Biletskiy, Y., editors, Pro-
ceedings of the International Symposium Advances in Rule Interchange and
Applications (RuleML 2007), volume 4824 of Lecture Notes in Computer Sci-
ence, pages 39–52. Springer. (Best Paper Award)

Goedertier, S. and Vanthienen, J. (2007a). Declarative process modeling with
business vocabulary and business rules. In Meersman, R., Tari, Z., and Her-
rero, P., editors, OTM Workshops (1), volume 4805 of Lecture Notes in Com-
puter Science, pages 603–612. Springer

Goedertier, S., Martens, D., Baesens, B., Haesen, R., and Vanthienen, J. (2007c).
Process mining as first-order classification learning on logs with negative events.
In ter Hofstede, A. H. M., Benatallah, B., and Paik, H.-Y., editors, Business
Process Management Workshops, volume 4928 of Lecture Notes in Computer
Science, pages 42–53. Springer

Haesen, R., Goedertier, S., Van de Cappelle, K., Lemahieu, W., Snoeck, M., and
Poelmans, S. (2007). A phased deployment of a workflow infrastructure in
the enterprise architecture. In ter Hofstede, A. H. M., Benatallah, B., and
Paik, H.-Y., editors, Business Process Management Workshops, volume 4928
of Lecture Notes in Computer Science, pages 270–280. Springer

Goedertier, S. and Vanthienen, J. (2007b). A vocabulary and execution model
for declarative service orchestration. In ter Hofstede, A. H. M., Benatallah,
B., and Paik, H.-Y., editors, Proceedings of the 2nd Workshop on Advances in
Semantics for Web services (semantics4ws’07), Business Process Management
Workshops, volume 4928 of Lecture Notes in Computer Science, pages 496–
501. Springer

Goedertier, S. and Vanthienen, J. (2006d). Designing compliant business processes
with obligations and permissions. In Eder, J. and Dustdar, S., editors, Business
Process Management Workshops, volume 4103 of Lecture Notes in Computer
Science, pages 5–14. Springer

Dutch publications

Goedertier, S. and Vanthienen, J. (2006a). Bedrijfsregels voor conforme en flexi-
bele bedrijfsprocessen. Business InZicht, 21

announcements made at international conferences

Martens, D., Vanthienen, J., Goedertier, S., and Baesens, B. (2007b). Placing
process intelligence within the business intelligence framework. In Proceedings
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of the 6th International Conference on Information and Management Sciences
(IMS 2007)

Goedertier, S. and Vanthienen, J. (2006c). Compliant and flexible business pro-
cesses with business rules. In Regev, G., Soffer, P., and Schmidt, R., editors,
Proceedings of the 7th Workshop on Business Process Modeling, Development
and Support (BPMDS’06) at CAiSE’06, pages 94–104. Presses Universitaires
de Namur

Goedertier, S. and Vanthienen, J. (2006b). Business rules for compliant business
process models. In Abramowicz, W. and Mayr, H. C., editors, Proceedings
of the 9th International Conference on Business Information Systems (BIS
2006), volume 85 of Lecture Notes in Informatics, pages 558–572. Gesellschaft
für Informatik

Goedertier, S. and Vanthienen, J. (2005b). Rule-based business process modeling
and execution. In Proceedings of the IEEE EDOC Workshop on Vocabularies
Ontologies and Rules for The Enterprise (VORTE 2005). CTIT Workshop
Proceeding Series (ISSN 0929-0672), Enschede

internal reports (IR)

Goedertier, S., Haesen, R., and Vanthienen, J. (2007a). EM-BrA2CE v0.1: A
vocabulary and execution model for declarative business process modeling.
FETEW Research Report KBI 0728, K.U.Leuven

Goedertier, S., Martens, D., Baesens, B., Haesen, R., and Vanthienen, J. (2007b).
A new approach for discovering business process models from event logs.
FETEW Research Report KBI 0716, K.U.Leuven
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Groot-Brittannië en de Europese monetaire integratie: een onderzoek naar de gevolgen
van de Britse toetreding op de geplande Europese monetaire unie. Leuven, Acco, 1975.
XIII, 222 pp.

18. MOESEN Wim (1975)
Het beheer van de staatsschuld en de termijnstructuur van de intrestvoeten met een
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pp.

23. VERHEIRSTRAETEN Albert (1977)
Geld, krediet en intrest in de Belgische financiële sector. Leuven, Acco, 1977. XXII, 377
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