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ABSTRACT 

 

Successful mission-centric collaboration depends on situational awareness in an 

increasingly complex mission environment. To support timely and reliable high level 

mission decisions, auditing tools need real-time data for effective assessment and 

optimization of mission behaviors. In the context of a battle rhythm, mission health can 

be measured from workflow generated activities. Though battle rhythm collaboration is 

dynamic and global, a potential enabling technology for workflow behavior auditing 

exists in process mining.   

However, process mining is not adequate to provide mission situational 

awareness in the battle rhythm environment since event logs may contain dynamic 

mission states, noise and timestamp inaccuracy. Therefore, we address a few key near-

term issues. In sequences of activities parsed from network traffic streams, we identify 

mission state changes in the workflow shift detection algorithm. In segments of 

unstructured event logs that contain both noise and relevant workflow data, we extract 

and rank workflow instances for the process analyst. When confronted with timestamp 

inaccuracy in event logs from semi automated, distributed workflows, we develop the 

flower chain network and discovery algorithm to improve behavioral conformance. For 

long term adoption of process mining in mission centric collaboration, we develop and 

demonstrate an experimental framework for logging uncertainty testing. We show that it 

is highly feasible to employ process mining techniques in environments with dynamic 

mission states and logging uncertainty.  



 

iii 

 

Future workflow behavior auditing technology will benefit from continued 

algorithmic development, new data sources and system prototypes to propel next 

generation mission situational awareness, giving commanders new tools to assess and 

optimize workflows, computer systems and missions in the battle space environment. 
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1. INTRODUCTION TO WORKFLOW BEHAVIOR AUDITING 

FOR MISSION CENTRIC COLLABORATION 

 

Mission success places high demands on computing. With modern mission-

system dependencies [1], process-oriented planning and execution is tightly integrated 

with computing infrastructure, changing systems management paradigms. Data aware 

[2] and net-centric [3] axioms of the 1990s and 2000s are quickly being replaced with a 

mission centric mindset [4][5][6][7]. The old modalities highlighted the ways in which 

current and future operations would depend on data and networks so as to push 

computing power to the warfighter. The proliferation of information technology has 

indeed enabled new capabilities, but the resulting information dependence has not 

yielded methods to manage networks to support military operations. In contrast, a 

mission centric paradigm would utilize knowledge of mission planning and execution 

activities to command and control computing resources and other combat capabilities.  

Mission planning and execution requires collaboration among a myriad of inter-

organizational entities in a massive scaling and elastic environment. Ranging from DoD, 

government and foreign partners as well as industry.  For example, contractors made up 

54% of the DoD workforce in Iraq and Afghanistan over the last decade [8]. At the peak 

in Iraq, forces were composed of 176,000 troops from 32 nations [9]. In 2008, after 

Hurricane Ike over 65,000 military, police, fire, and medical responders converged from 

scores of jurisdictions; manning command posts and dispersing widely over the disaster 

area [10]. On January 12, 2010, the Haiti Earthquake initiated massive disaster relief 
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mission for DoD. Within a day, the US military was operating the Port-Au-Prince airport 

to coordinate relief efforts, and within 10 days, US Southern Command placed 13,657 

personnel in the Haiti Joint Operational Area [11].  

Despite these complexities, mission centric collaboration requires intense 

situational awareness to manage the cyber physical dependency. As a spokesman of 

Department of Defense (DoD) vision, the Secretary of the Air Force summarized 

information dependency this way, “A great deal of our combat capability operates in 

cyberspace: command and control systems as well as the intelligence, surveillance, and 

reconnaissance platforms that ensure battlefield awareness” [12]. With this basis, it is 

critical that situational awareness seize points of observation on information dependent 

missions to support high level mission decisions. Operating successfully in this complex 

mission environment depends on the evidence of mission performance to measure 

efficient operational planning and effective tactical execution. 

1.1. Workflow Behavior Auditing 

One opportunity for realizing mission situational awareness is through workflow 

behavior auditing. Workflow behavior auditing are the functions that “assess and 

optimize workflow performance” [13]. AFRL’s aim [14] is ambitious, seeking to 

understand how every packet that passes through the gateway supports the mission, 

implying that situational awareness can expose how cyber behaviors contribute to real 

world missions. In addition to awareness, workflow behavior auditing also has the 

potential for cost effectiveness for undocumented workflows and legacy systems. For 

instance, automated workflow behavior auditing can reduce documentation time and 
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labor costs by factor of 10 [15]. Auditing can also reduce risk in costly modernization 

programs, such as with the Expeditionary Combat Support System (ECSS). ECSS 

modernization attempted to consolidate 244 legacy systems, but could not cope with 

tedious manual auditing and analysis, leading to a $1B failed project [16]. If 

implemented, workflow behavior auditing can support the larger DoD in modernizing 

defense business systems, a $6.6B annual effort [17]. 

Workflow behavior auditing might ensure effectiveness in missions since 

mission centric collaboration is often designed around workflows. A workflow specifies 

steps to complete a task in order to drive workflow behaviors. In this study, we are 

interested in computer based behaviors that are guided by workflows. The behavior must 

also be observable in the sense that a system or network can be instrumented to identify 

them, leading to a sequential record of event data, ordered by time and causality. 

The event log is the ideal workflow behavior data. At the most basic level, event 

logs are composed of activities, which are well defined steps in a workflow [2]. In 

addition to the action performed, an activity may be described by timestamps and people 

and resources involved in the activity execution. A workflow instance is a sequence of 

activities and an event log is a collection of workflow instances. Event logs can be used 

for workflow behavior auditing, where an organization can inspect event logs to assess 

and optimize mission centric collaboration.  

A leading technology in workflow behavior auditing is the relatively young field 

of (business) process mining [5], which in the last 10 years, has provided tools and 

techniques for understanding workflow behaviors captured in event logs. Process mining 
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identifies process aware information systems (PAIS), where the behaviors in the system 

are driven by workflows [2]. Process mining can discover workflow behavior models, 

check the conformance of observed behavior to a given workflow model, or enhance a 

model with situational awareness [18]. Given an observable and repetitive behavior set, 

process mining is a potential technology to provide situational awareness of mission 

centric collaboration.  

1.2. The Battle Rhythm in Mission Centric Collaboration 

Mission centric collaboration conforms to a battle rhythm. A battle rhythm is a 

routine cycle of command and staff activities intended to synchronize current and future 

operations [19]. As an example of a battle rhythm, the Air Tasking Order (ATO) is 

shown if Figure 1.1. The ATO timeline consists of a 72 hour workflow driven planning 

cycle to task and prepare air units for a 24 hour tactical execution (E DAY) of targeted  

 

 

Figure 1.1: Notional Air Tasking Order (ATO) process 
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air strikes, air to air refueling and air transport. In the first planning day, high level 

intelligence and strategic objectives identify the air battle. In the second and third 

planning days, operational and tactical guidance becomes increasingly focused to an end 

result of assigned crews, flight plans, cargo and munitions [20].  

Within this battle rhythm, daily efforts of air operations center personnel and 

command and control (C2) systems are focused around the ATO process. Workflow 

behaviors may be observed between persons and systems across many organizations.  

Changes in mission state and focus occur at discrete times in the process orchestrating 

the interactions of hundreds of systems interact in a global environment. In this setting, 

mission centric collaboration generates vast quantities of battle rhythm data. The battle 

rhythm makes workflow behaviors observable and repetitive, thus a process mining 

based solution is possible. 

Given the battle rhythm, one can envision a process mining based solution for 

workflow behavior auditing with multiple capabilities (Figure 1.2). First, the auditing 

framework could detect mission state changes in the battle rhythm from streams of raw 

event data. Mission state changes could be used for improved workflow models in 

dynamic settings and accurate assessments of current behavior. Second, the solution 

could extract workflow instance data from battle rhythm data to create structured 

workflow event logs. Structured workflow event logs can expand the data sources for 

process mining tools. Third, the auditing framework would apply modeling techniques to 

structured workflow event logs. Through process discovery, a battle rhythm analyst 

could understand person-person, system-system or person-system interactions. Process  
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Figure 1.2: Target capabilities for workflow behavior auditing 

 

discovery could also be useful for modernizing legacy systems. Through conformance 

checking, commanders could ensure conformance of inter-organizational partner and 

services. A solution that can satisfy the requirements listed above provides a commander 

with invaluable knowledge to command and control information systems in the battle 

space. 

1.3. Open Challenges in Workflow Behavior Auditing 

 

There are many open challenges to support the battle rhythm in a complex 

mission centric environment, but three challenges are immediately apparent. The first is 

finding mission state changes in voluminous data streams of dynamic workflow behavior 

data. During a daily battle rhythm cycle, workflow behavior may exhibit a dynamic 

nature as situations, resources and decision making shift the arrangement of activities to 

accomplish tasks. The battle rhythm is based on DoD doctrine [19] where operational 

level collaboration meets deadlines for tactical execution. Using C2 systems, 

collaborators execute workflows to meet intermediate milestones at discrete time 

intervals. At the boundaries between intervals, workflow  behaviors change to meet the 
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next focus of the battle rhythm, which we refer to as workflow shifts. For real time 

behavior analytics, it may not be possible to observe systems directly, since they are 

prioritized for mission critical usage. Thus, passive approaches should be developed, 

such as identifying mission state changes in network traffic. In this case, the challenge of 

finding mission state changes is identifying workflow shifts inside packet flows. 

The second open challenge is the retrieval of interesting workflow behaviors in 

exabytes of unstructured information [21]. The problem of auditing systems for 

situational awareness and conformance checking has become overwhelming for human 

analysts, but automated auditing solutions require rigid data formats for mining. An 

unstructured workflow event log can be thought of as a single continuous sequence of 

activities. To create an event log that adheres to a mining tools data specification, a 

preprocessing step must search the sequence and aggregate subsequences of interesting 

behaviors. In mission centric collaboration, the process of automated preprocessing of 

event logs is made more difficult because of noise from interleaving processes. In short, 

the workflow retrieval challenge demands a capability to extract workflow event logs for 

noisy unstructured data segments. 

The era of cloud computing, which represents both a business and technological 

revolution [22], has greatly altered the static and isolated ‘stovepipe’ auditing 

environment. Now, auditors must recognize the interactions with third party systems and 

organizations and cope with an elevated pace of change for system baselines [23]. In this 

era, even data and other resources exhibit an increased level of dynamism. Situationally, 

resources (or the demand for them) may expand and contract on a moment’s notice to a 
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massive scale. Since ownership is virtual, resources may be shared outside of the 

traditional organization, blurring the boundaries of policy. Business processes have 

exploited the freedom of resource movement, executing transactions a thousand times 

per second. Computer systems keep the pace, continuing to log activities, but human 

auditing is inadequate to correlate, reconstruct and evaluate human and system behaviors 

in a timely manner.  However, distributed environments and high speed transactions 

make it possible that workflow activities will be recorded out of order. For example, 

distributed environments can exhibit inaccurate clocks that yield inaccurate timestamps. 

If this occurs, distributed logging devices may record events out of order affecting 

derived workflow behavior models. Thus, the third open challenge is to enable auditing 

in cloud services by mitigating the impact of timestamp inaccuracies of a distributed 

system in a global environment with inter-organizational partners   

The open challenges of mission centric collaboration create opportunities for 

workflow management research. A new era of analytics can make it possible to audit 

systems for decision support in real time but it will require new technology that can 

identify mission shifts, extract data from unstructured sources and mitigate timestamp 

inaccuracy for cloud workflows.  

1.4. Research Overview 

This dissertation presents research on workflow behavior auditing in the 

challenges of next generation mission centric collaboration. Decision makers need real-

time workflow behavior data to make timely and reliable high level decisions for 

mission success in a battle rhythm. The mission centric environment is complex, but the 
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expected conformance to the battle rhythm makes process mining a viable technology 

for workflow behavior auditing. However, a number of challenges must be addressed 

before process mining technology can be implemented.  

In the next section, it will become apparent that process mining has not 

adequately addressed the grand challenges of mission centric collaboration. This study 

will describe the poor performance of process discovery and conformance checking of 

event logs with dynamic workflow behavior, noise and timestamp distortion. Therefore, 

we will address a few key near term issues.  In sequences of activities parsed from 

network traffic streams, we identify mission state changes in the workflow shift 

detection algorithm. In segments of unstructured event logs that contain both noise and 

relevant workflow data, we extract and rank workflow instances for the process analyst 

or discovery algorithm. When confronted with timestamp inaccuracy in event logs from 

semi automated, distributed workflow execution, we develop the flower chain model and 

discovery algorithm to improve behavioral conformance. For the long term adoption of 

process mining in mission centric collaboration, we develop and demonstrate an 

experimental framework for logging uncertainty testing.  

In summary, this study will show that it is highly feasible to employ process 

mining techniques in environments with dynamic mission states and logging uncertainty. 

By addressing these challenges, we believe that workflow behavior auditing will help 

decision makers achieve mission success by managing collaborating forces and systems 

with a mission centric mindset. The impact will be felt in cost effective systems 

modernization, efficient operational planning and effective tactical execution. 
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In Section 2, we present the gaps in the current approach of process mining to 

present our thesis and research approach. In Section 3, we showcase the workflow shift 

detection algorithm to find shifts in mission state evidenced by statistical changes in 

activity. In Section 4, we explore log preprocessing techniques to extract and rank 

meaningful workflow behavior instances. In Section 5, we analyze and overcome 

temporal uncertainty through the creation of the Flower Chain Petri net and associated 

discovery algorithm. In Section 6, we detail the design of a testbed and methodology for 

repeatable testing of process mining methods with logging uncertainty and then conclude 

in Section 7 with a discussion of future work. 
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2. PROCESS MINING FOR WORKFLOW BEHAVIOR AUDITING 

 

Workflow behavior auditing can help commanders gain an understanding of 

mission situational awareness to improve mission management and cost avoidance. 

However, workflow behavior auditing in the battle rhythm environment is a difficult task 

owing to the significant challenges of dynamic mission sets, voluminous, unstructured 

data and globally distributed workflow execution. To utilize process mining for 

workflow behavior auditing in this environment, we aim to expose the technical issues 

that currently limit process mining from this application. From a set of near term 

technical issues, we will develop and execute a research plan to handle dynamic mission 

states and logging uncertainty. 

2.1 Issues in Process Mining for Workflow Behavior Auditing 

Process mining is a potential technology to answer the needs of workflow 

behavior auditing, but there are several technical issues that mining methods can not yet 

overcome. Situational dynamics affect the activity of worker populations, but methods to 

detect a mission state change are limited. Behavior data buried in streams of noisy 

activity logs also limit process mining. Process discovery and conformance checking is 

mostly applied where timestamp inaccuracies are a non-factor, but in cloud based 

mission environments, these assumptions are strongly undermined. Though the 

challenges of applying process mining to workflow behavior auditing are many, we 

provide an exposition of near term shortfalls that can be immediately addressed. 
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2.1.1. Dynamic Mission State Identification in Raw Event Data 

Workflow behaviors are bound to change rapidly based on the mission state. 

Deviance (blue line, Figure 2.1) from expected behavior (red line, Figure 2.1) may be 

detected after an initial model is discovered. In this context, deviance indicates that 

either the monitored population not conforming to the expectation or that the expectation 

is wrong.  If the expectation is wrong, the new expected behavior must replace the 

baseline. Assuming that the majority organizational behavior is also the correct behavior, 

a persistent shift in organizational usage may coincide with a mission state change. 

This problem in process mining is known as concept drift [24], overloading the 

term in the machine learning/data mining community. It has been researched within 

process mining under the sub field of workflow flexibility [25][26], but the goals of 

these works are to make the models more flexible to change. Despite these works, most 

Figure 2.1: Model of expected (red) and observed (blue) workflow behaviors 
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process mining techniques assume a steady state process [24]. The problem of searching 

for change points with the log as the only input had not been studied in the process 

mining community as recent as 2011 [24]. The change point detection approach has been 

attempted in [26] on workflow management system event logs in a large Dutch hospital 

[27] to improve segmentation of process models as seen in Figure 2.2. There have been 

no attempts in process mining to apply change point detection to network traffic to 

determine changes in mission state. The problem set differs because there is a lot more 

noise and loss in network traffic as compared to workflow management systems. 

Mission state changes are common in battle space and disaster response environments 

and passive network listeners would not inhibit performance of online servers.  

 

 

 

 

Figure 2.2: Multi-process workflow model due to concept drift 
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2.1.2 Behavior Extraction from Noisy Event Logs 

A vast majority of business data is “unstructured”, meaning that it is not ready to 

be processed by process mining tools. Raw event logs and packet traces form the basis 

of training instances to discover behavior models, but current efforts focus on 

standardization. Standards are materializing as established data formats have emerged 

and evolved. The first of these was MXML (Mining Extensible Markup Language) [28], 

but it suffered from being restrictive in the types of information that could be 

represented and could not be represented in an event log [29]. Still, it is generally easy to 

use and understand as it follows a simple XML parsing format. MXML was replaced by 

XES (eXtensible Event Stream) as the standard because of its expressivity and flexibility 

to capture event data from any domain [29].  

By definitions enforced by these standards, process mining data starts with 

atomic activities to model [2][5]. However, there are few tools [30][31] to extract data 

from unstructured sources and put them in standard formats. Importing activity event 

data from network traffic has not been done in process mining. Likewise, few tools have 

been developed to automate retrieval of workflow behavior from source data to analyst.  

Initial works to automate parsing [32][33][34] lack workflow specific ranking 

criteria to guide automated search. Autonomy is vital to allow the system’s models of 

expected behavior to change dynamically. In related fields, operations profiles can be 

extracted from activity sequences [35][36] for the design of mission qualification 

training programs, but operations profiles have a different structure than workflow 

behavior. Some parts of the operations profile research is applicable, including profile 
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extraction of highly repetitive sequences [37] and the use of suffix arrays [38] to gather 

similar profiles.  

2.1.3. Workflow Management in Cloud Computing 

Given the wide range of potential inaccuracy in a global distributed system and 

the movement of business activities to semi-automated and inter-organizational 

workflows [2], distributed and cloud workflow logging undermines core assumptions in 

process mining. Service Oriented Architectures [22] pervade cloud technology, 

interacting at very high speeds in distributed environments. Timestamps may be 

inaccurate because of clock inaccuracy. The NIST Guide to Computer Security Log 

Management states the case this way: 

“Each host that generates logs typically references its internal clock when 

setting a timestamp for each log entry. If a host’s clock is inaccurate, the timestamps in 

its logs will also be inaccurate [and] might indicate that event A happened 45 seconds 

before event B, when event A actually happened two minutes after event B.“ [39]. 

A distributed model undermines assumptions of process mining in various ways. 

Given a log of business activities, the event log can be mined for relationships between 

activities to form a representation of observed behavior. The α-Algorithm [40] was 

developed by William van der Aalst, and it stands as the first successful algorithm to 

model concurrent relationships in Petri nets. We summarize the phases here.  

Building Transition Sets. Four sets of transitions are inferred from activity 

sequences in the log: 1)Ta - all transitions mapping the activity language of the 
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workflow, 2) Ts - start transitions, 3) Te - end transitions and 4)  Tr - repeated transitions, 

activities which exhibit consecutive repetition. 

Rules Inference. The log is searched for four sets of rules. 1) R>L are all 

occurrences of causation and 2) R→L are all occurrences of strong causation, a →L b 

where a, b ∈ A, b follows a, but a does not follow b. 3) Mixed rules or concurrency 

relations compose the set R||L  and 4) R#L and indicates that a never followed b or vice 

versa. 

Place Discernment. Places, P, in the Petri net are determined from the rule sets 

by separating all a ∈ A transitions from all b ∈ B transitions where a →L b. Maximal 

places are found by removing places whose input and outputs are each subsets of other 

candidate places. The places are implied states between transitions in a discovered net. 

Flow Identification. - Flows, F, are set P to T and T to P using the input and 

output sets of each place.  

The procedure builds a Petri net, PN = (P, T, F) from an event log (Figure 2.3).  

 

 

Figure 2.3: Petri net discovered from an event log 
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There are many approaches in process mining to recreate the workflow model 

through discovery. These include Hidden Markov Model approaches [41][42][43], 

directed graphs [44], and transition systems [45]. A great majority of the approaches 

seek to model Petri nets because workflow management systems use Petri net based 

modeling languages [2]. Within Petri net algorithms, there are various families: genetic 

algorithms [46], region based algorithms [45][47][48], heuristics based algorithms [49] 

and alpha algorithms [40][50][51], which are called alpha algorithms because they 

extend the first α-algorithm.  

While there are many approaches, there is no one good model [2][5][18]. Each 

process mining endeavor should be driven by an information need to focus the discovery 

task [5]. For example, a long range goal of this study may be to provide assured and 

adaptive systems that demands security minded research, and a number of security 

related approaches exist [52][53][54][55][56][57][58][59][60]. Even so, specific tasks 

and constraints will be different from system to system. This current work is shaped by 

limitations in process mining due to timestamp accuracy. 

Process discovery events are recorded in a log in order, but distributed execution 

of activities makes the ordering of events uncertain [61]. Uncertainty from timestamp 

distortion is detrimental because it can lead to different perspectives on the ordering of 

activities by different observers. These issues affect the order of events in logs in a 

decentralized workflow management system, which are critical to process mining. 

Although attempts to address timestamp inaccuracies exist [62], models that can cope in 

environments that have timestamp distortion are not common. 
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Figure 2.4: State explosion due to concurrency 

 

Timestamp inaccuracy is relatively untouched in process mining but remains a 

significant inhibiting data problem [63][64]. The result of directly applying process 

mining algorithms to event logs with causal reordering can be seen in the state explosion 

in Figure 2.4. State explosion occurs because of an overabundance of perceived 

concurrency in the model. To handle the timestamp and subsequent state explosion issue 

for process mining, one must model, analyze and address timestamp distortion. New 

models must be developed for semi-automated distributed workflows that are tolerant of 

concurrency but still capable of behavioral conformance.  

2.1.4. Logging Uncertainty and Auditing Development 

Attempts to directly use process mining tools for mission situational awareness in 

a dynamic and distributed environment are ill-conceived because the core of research in 

process mining centers on event logs without system and inference error. Logging 

uncertainty characterizes the possibility of system and inference error in event logs. The 

Releasability Gateway and RAMP may audit with an incredible amount of logging 

uncertainty, which may break a fundamental bound of process mining methods.  
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Process Mining without Logging Uncertainty Process Mining with Logging Uncertainty

Centralized logging Distributed logging 

Accurate clocks Inaccurate clocks

Timestamp synchronization Timestamp by consensus

Every event is recorded Event loss is possible

Events are recorded without observation noise Events may include observation noise

Activity data is atomic [2][5] Activity data may be inferred from system events

The issue of logging uncertainty was identified as “observation noise” by 

Rozinat [41]. Some issues pertaining to log quality in general are discussed in [64], yet 

logging uncertainty is often overlooked and has received no methodological treatment 

for understanding.  

Table 2.1 gives an overview of the type of conditions that may yield logging 

uncertainty. The issues that process analysts will face in systems with logging 

uncertainty are varied and numerous. From the body of research that has been discussed, 

it would appear that process discovery and conformance algorithms can withstand some 

level of uncertainty, but it is unclear how much. It is also unclear if the auditing 

technology required in mission centric systems is outside those bounds. Therefore, a 

testbed and repeatable, working methodology is a critical requirement to applying 

process mining to environments with logging uncertainty. 

Simulation tools for logging uncertainty testing includes Rozinat’s HMM based 

‘Observation Noise Experimenter’ [41] as a simulation mechanism to model noise 

effects that may come from logging devices. Another simulation tool, CPN Tools [65] 

implements Colored Generalized Stochastic Petri Nets (CGSPN) [66]. CGSPNs add 

significant value to Petri net simulation in terms of a capability to run parallel process 

Table 2.1: Differences of assumptions for process mining environments 
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simulation with random timing delays. CPN Tools offers a fast approximation of fairness 

by selecting enabled markings at random to allow the simulation to explore the state 

space. Yet to accomplish simulation and observation of logging uncertainty, a more 

expressive observation framework is required. 

A leading modeler and simulator is ProM [67], which is the most prolific 

research tool used in the field. It is an analysis framework that offers hundreds of plug-

ins for analyzing well structured event logs. The framework offers tools for control flow 

discovery, social network analysis, and historical activity analysis to name a few. 

Near and long term issues hinder the adoption of process mining techniques for 

workflow behavior auditing. With a goal of conforming process mining to the needs of 

workflow behavior auditing, we will identify a research plan to detect mission state 

changes, prepare data for process mining and adapt process mining discovery and 

models for the unique requirements of mission centric collaboration. 

2.2. Research Approach 

Process mining is not ready for the vision of mission situational awareness, as it 

is most certainly limited in environments that produce noisy, lossy and time distorted 

event logs. Process mining performs poorly when analyzing data in noisy, continuous 

activity sequences. Discovery algorithms have difficulty avoiding state explosion in 

modeling data that contains timestamp distortion. Extraction and concept drift is difficult 

even without logging uncertainty, so process mining applications into uncertain 

environments may not work at all. To proceed towards workflow behavior auditing for 

mission situational awareness, a number of near term research issues must be addressed. 
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2.2.1. Thesis Statement and Research Overview 

Process mining techniques can be applied to uncertain environments where 

dynamic mission states and logging uncertainty pollute event logs with noise and 

timestamp distortion. A repeated methodology of problem analysis and algorithmic 

development support the claim in order to support auditing mission centric collaboration. 

Under this thesis, dynamic mission state changes are to be identified, workflow instances 

must be extracted from noisy, unstructured data and new process discovery algorithms 

must reduce detrimental effects of concurrency. For research beyond the scope of the 

dissertation, a testbed must be created to model, analyze and develop process mining 

algorithms for future issues with logging uncertainty. 

2.2.1.1.  Workflow Shift Detection in Inferred Activity Streams 

The need for detection of mission state changes is illustrated in a battle rhythm 

scenario where dynamic changes in mission situation yield changes in workflow 

behaviors. Workflow behaviors, driven by workflow nets, produce expected behaviors 

that can be observed in event logs. To have situational awareness in a dynamic mission 

setting, organizations must detect and respond to workflow shifts. In the context of 

process mining, workflow shifts would be useful in splitting the log between two 

segments of repeated behaviors. This must lead to process models that are more concise 

than unsegmented logs. 

This study proposes the Workflow Shift Detection Algorithm (WSDA) to 

segment inferred activity streams into log segments called workflow periods. WSDA 

will make instance extraction faster and workflow instances that come from them more 
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concise. The method uses statistical change point detection to identify novelties in 

streaming data. The algorithm uses generic features of workflow behavior to make the 

solution general to any streaming log, but is specifically geared to find workflow shifts 

in Resource Access Actions (RAAs). The algorithm establishes a baseline of RAA 

features, then proceeds into a sliding window phase with a decision function to find 

statistically significant changes in an exponentially weighted mean. WSDA is evaluated 

on its ability to provide more concise process models in the ‘Battle Rhythm scenario’, a 

simulated implementation of dynamic workflows in the Convoy Planning System. 

2.2.1.2.  Extracting and Ranking Workflow Instance Collections 

This study proposes the retrieval of Workflow Instance Collections (WIC) 

through a multi stage algorithm that addresses extraction and ranking of WIC. The data 

source for the study is unique: a log of inferred activities from network traffic. The 

control flow perspective in process mining relies on the availability of workflow 

instances that are reasonably free of noise and expressive of a representative sample of 

the possible behaviors of a process. The purpose of this study is to overcome the process 

mining limitation to learn models from noisy, continuous activity sequences. The WIC-

Extract algorithm is aimed to find all possible workflow instance candidates, while WIC-

Rank offers a set of WIC to a process analyst to support search queries of the activities 

from an archive. The algorithms are measured by complexity, performance and 

effectiveness to produce relevant collections to a process analyst. A sample of our 

resulting workflow models are evidence for using process mining in mission centric 

computing. 
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2.2.1.3.  Semi-Automated, Distributed Workflow Modeling 

After modeling and simulating timestamp distortion, we analyze the core 

systemic issues that lead to reduced behavioral conformance in process mining control 

flow models. The issue of concurrency is a direct contributing factor to poor False 

Positive (FP) rates, but models with inherently low FP rates (Flower Petri nets) are 

disadvantageous as well. This study proposes a new model that combines positive 

aspects of both approaches in the Flower Chain Net (FCN) adding detection capabilities 

for semi-automated and inter-organizational workflows. The FCDA algorithm discovers 

FCN from an event log. FCN and FCDA are evaluated against existing methods for 

structural characteristics and behavioral conformance. FCN support mission centric 

collaboration with a potential method for conformance detection in distributed 

environments. 

2.2.1.4.   Logging Uncertainty Testing and Development 

The long term vision for process mining in mission centric systems must be 

supported by a repeatable testing framework to identify problems and develop new 

solutions. This study addresses this by proposing a testbed and methodology that 

analyzes the detrimental effects of event logs with system and inference error. We 

exercise the methodology in this thesis, showing the stages of analysis, problem 

development and algorithmic solutions. It is a unique tool to process mining, since no 

other testbed simulates and analyzes timestamp inaccuracy. Thus, a testbed for logging 

uncertainty testing could be advantageous for the process mining community and our 

mission situational awareness application. 
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Figure 2.5: Framework for simulating and analyzing logging uncertainty 

 

Such a testbed would be valuable for analysis of uncertainty and devising 

strategies to overcome its negative effects, but an appropriate observation and control 

framework is required. Figure 2.5 illustrates our expectation of the solution to be able to 

observe and control uncertainty factors. Specified from expressive simulation and 

workflow models, perturbation from simulated logging errors alter the expected 

sequence of activity to what is actually observed. The uncertainty factor itself is random 

and unobservable, though dashed lines indicate potential instrumentation points for an 

process analyst. Having both expected and observed activities, a control-test 

environment can support a range of experiments with logging uncertainty.  

The system will be realized in the Workflow Auditing and Simulation Platform 

(WASP) and a case study concerned with the degrading structural conformance of 

models with timestamp distortion analysis. The WASP will be evaluated by comparison 

to existing tools and methodologies. 
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2.2.2. Expected Contributions 

In this thesis, we make the following contributions: 

1) We develop a statistical change point detection algorithm that detects 

concept drift in noisy event logs. The workflow shift detection algorithm (WSDA) uses a 

sliding window scheme to capture statistical frequencies of general features of resource 

access actions. We use this to split a log for a process modeling algorithm to find a more 

concise process model. The algorithm may be used in sequential activity data and not 

just resource access action streams. We believe it may also be used to reduce extraction 

requirements for Workflow Instance Collection by splitting logs into workflow periods, 

where particular behaviors may have a higher rate of occurrence.  

2) We develop the Workflow Instance Collection Extract and Rank algorithms 

to provide a tool for process analysts to extract approximately repeating activity 

sequences. The two algorithms provide a string processing/information retrieval 

approach to finding highly repetitive sequences without specific knowledge of the 

targeted activity symbols. Our workflow behavior features capture inherent 

characteristics of workflow sequences to improve the ranking of sequences to an analyst. 

The algorithm also features a genetic algorithm that configures the weights in the 

ranking function so an analyst can select from top results. We develop a prototype of the 

RAMP auditor to create models from packet traces. We believe that this tool will be 

beneficial to the process mining community to expand data sources into network traffic 

and other unstructured sequential data. 
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3) We model, analyze timestamp distortion in Petri net models and overcome 

behavioral conformance degradation through the Flower Chain Net and Flower Chain 

Discovery Algorithm. Our solution showcases a stepwise scaling approach to allow 

more concurrent structure into the model than Flower Petri nets. At the same time, it 

features a minimal footprint while reducing the false positive rate of heuristic 

algorithms. The solution can be incorporated with anomaly detectors using its structure 

to carry historical and organizational data. We believe this model could be scaled to 

incorporate more expressive behavior within a threshold of minimum false positives. We 

also believe that the model will be useful in managing semi-automated and distributed 

workflows, where concurrency from timestamp inaccuracy is expected to be high. 

4) We design and implement a testbed and repeatable methodology for logging 

uncertainty testing. The system answers a critical need in the field of process mining to 

evaluate the robustness of process mining techniques in the presence of timestamp 

distortion, observation noise and loss. To do this, we propose a simulation framework 

that observes and transforms activities generated by a colored generalized stochastic 

petri net in order to emulate the execution of workflows in distributed settings. The 

methodology is demonstrated throughout our study as empirical evidence of repeatable 

modeling, analysis and algorithmic design approaches. We believe this tool will be vital 

to advance process mining technology for mission centric collaboration.  
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3. WORKFLOW SHIFT DETECTION IN INFERRED ACTIVITY STREAMS* 

 

To apply process mining to workflow behavior auditing, one needs to contend 

with dynamic mission centric behaviors that conform to a battle rhythm and the 

problems of inferring activity from raw sources. Inference of human activity from 

network traffic is possible because packet communication follows a strict protocol. In 

previous work [68], an activity parser paired with a network sniffing tool harvested data 

from distributed file system interaction. This data is inherently noisy and even lossy if 

the inference is imperfect, but it is a suitable challenge for testing the ability of process 

mining to model mission centric data from unconventional sources.  

3.1. Workflows in a Mission Centric Environment 

Our main purpose is to infer mission state changes in the observed activities of a 

computer network. The motivation is to detect cycles in mission centric collaboration 

from a ‘battle rhythm’. A battle rhythm is a routine cycle of command and staff activities 

intended to synchronize current and future operations [19]. During a daily battle rhythm 

cycle, workflow behavior may exhibit a dynamic nature as situations, resources and 

decision making shift the arrangement of activities to accomplish tasks.  

A mission centric system can be considered to be a process aware information 

system (PAIS) if the behaviors in the system are driven by workflows [2]. Within PAIS, 

______________________________________ 

*Reprinted with permission from “APSAT: A Framework for Modeling and Analysis of 

Workflow Dynamics in Mission Centric Systems.” by J. Pecarina and J.C. Liu, 2012 in 

Proceedings of the 2012 Conference on Collaboration Technologies and Systems, 

Westminster, Colorado, 2012, pp. 575–582, Copyright [2012] by IEEE. 
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workflow modeling languages are used to design workflows and specify human 

activities to complete a task or objective. Often, the languages map business activity 

labels to the transitions in a Petri net to identify real world business activities [2]. 

Workflows designed with Petri net formalism are called Workflow Nets and are used in 

many workflow modeling products in the industry, including BPMN [69] and YAWL 

[70]. Workflow designers can verify soundness properties to ensure the flow of activities 

will eventually result in task completion [5] (i.e., the verification of freedom of deadlock 

and livelock conditions). Thus the workflow net carries explicit syntax and describes 

well defined business process activities and workflow behaviors. 

If workers behave according to the workflow net syntax, then event logs may 

capture expected behavior that will conform exactly to the original model. Process 

discovery algorithms capture expected behavior from event logs by assigning labels to 

well defined activities and representing them as transitions in a Petri net model [2]. One 

potential goal for discovery is to recreate the workflow net that defined the original 

specification of behavior from an event log. This is difficult if a workflow has a 

changing structure, where an alteration in the workflow net can cause the expected 

behavior to change. If workers behave according to the new workflow net, then the 

events in a log that spanned the structural change of the workflow net may consist of 

multiple sets of workflow behaviors. This is the workflow shift detection problem [68], 

which has also been called concept drift or workflow flexibility in the process mining 

literature [24]. In our study, we focus on finding sudden drifts [24], characterized as 

complete shifts between one workflow and one that follows it. The workflow behaviors 
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of interest in our problem come from noisy sequences of activities harvested from 

network traffic. This section illustrates, defines and solves the workflow shift detection 

problem for inferred activity event streams using an offline and online version of a 

statistical change point detection algorithm.  

3.2. Noisy Inferred Activity Streams 

To generate a data set, we devised a battle rhythm scenario involving two 

scripted workflows (Figure 3.1) from the Convoy Planning System (CPS). CPS is a 

hypothetical system in a mission centric collaborative environment focused on planning 

convoy routes in a combat zone. The workflow scripts identify steps to accomplish for 

subtasks of this mission. Workers executed repeatedly executed a script of activities to 

accomplish a task (i.e. the intel update task) by interacting with a network file server. In 

the end, users executed 39 workflow simulations to generate the basis of a suitable data 

set for understanding dynamic workflows.  

 

 

Figure 3.1: CPS simulation for battle rhythm scenario 
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Figure 3.2: RAA parsing grammar 

 

Activity inference is an intermediate step in detecting workflow behaviors from 

network traffic. A passive network observer can harvest a stream of bits between users 

and systems on the network in a packet trace. For this data set, we used Wireshark [71] 

to sniff and parse SMB [72] packets from bits on the wire and record them as packet 

sequences.  From the packet sequences, we applied a set of rules based on the SMB 

protocol to describe Resource Access Actions (RAAs). The RAA parsing grammar in 

Figure 3.2 identified human actions on the file system through regular expression 

matching. From the 39 simulations we recorded 103,252 packets and inferred 600 

activity events from using the RAA parsing grammar. The result of this inference task is 

seen in the event log in Figure 3.3. A Petri net can be discovered (Figure 3.4) from 

multiple instances of the executed workflows within the event log. 
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Figure 3.3: Inferred activity log and comparison to original task script 

 

 

 

Figure 3.4: Discovered Petri net from unsegmented event log 

 

 Start End RAA Share Directory
9:29:59.90 9:29:59.92 ATTEMPT \NAS\PUBLIC EMPTY

9:30:10.59 9:30:10.62 CONNECT \NAS\PUBLIC EMPTY

9:30:11.42 9:30:15.74 TRAVERSE \NAS\PUBLIC \\

9:30:16.08 9:30:29.73 TRAVERSE \NAS\PUBLIC \Users\

9:30:29.95 9:30:34.42 TRAVERSE \NAS\PUBLIC \Users\sim\

9:30:34.64 9:30:37.51 TRAVERSE \NAS\PUBLIC \Users\sim\ConvoyPlanning\

9:30:37.52 9:30:50.42 TRAVERSE \NAS\PUBLIC \Users\sim\ConvoyPlanning\Intel\

9:30:50.43 9:30:58.97 OPEN \NAS\PUBLIC \Users\sim\ConvoyPlanning\Intel\intel_update.ppt

9:31:00.55 9:31:56.41 TRAVERSE \NAS\PUBLIC \Users\sim\ConvoyPlanning\Intel\

9:31:56.84 9:32:18.35 TRAVERSE \NAS\PUBLIC \Users\sim\ConvoyPlanning\SITREPs\

9:32:18.36 9:32:21.12 OPEN \NAS\PUBLIC \Users\sim\ConvoyPlanning\SITREPs\SITREP.pdf

9:32:22.12 9:33:50.37 WRITE \NAS\PUBLIC \Users\sim\ConvoyPlanning\Intel\intel_update.ppt

9:33:50.39 9:34:05.16 WRITE \NAS\PUBLIC \Users\sim\ConvoyPlanning\Intel\intel_update.ppt

9:34:05.27 9:34:48.24 TRAVERSE \NAS\PUBLIC \Users\sim\ConvoyPlanning\Intel\

9:34:48.66 9:34:52.98 OPEN \NAS\PUBLIC \Users\sim\ConvoyPlanning\Intel\portal.html

9:34:59.86 9:34:59.97 OPEN \NAS\PUBLIC \Users\sim\ConvoyPlanning\Intel\notify.py

9:36:44.33 9:36:44.45 OPEN \NAS\PUBLIC \Users\sim\ConvoyPlanning\Intel\notify.py
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3.3. Dynamic Workflow Nets 

For an intuitive sense of shifting dynamics on a workflow net from this data set, 

a process mining tool was applied on a manually preprocessed version of this event log 

(Figure 3.4). The figure outlines two branches of the discovered Petri net, which the 

mining algorithm assumed to be part of a single workflow reducing the visual 

understandability of the Petri net. For dynamic workflows, one strategy is to divide the 

event log before mining the workflow behaviors.  

Worker behaviors may follow dynamic workflows, but to detect workflow shifts 

by observing behaviors one must first be able to define the expected behavior of a 

worker as specified by a workflow net. It is important to define workflow behavior using 

the dynamic behaviors of a Petri net in order to ground the perception of behavior to be 

sequential and repeatable. The formal properties of a workflow net as a type of place 

transition net (or generally Petri net) are described by van der Aalst [5]. From this we 

adapt the following definition is from [66] and [5], offering our definition of a workflow 

behavior instance. 

 

Definition 3.1. (Workflow Net Behavior) - Let WFNet = (P, T, I⁻, I⁺, M0) such that: 

1. A marking of WFNet is a function M : P→ ℕ≥0  where M(p) is the number of tokens 

in p 

2. p ∈ P  is marked  iff  M(p) > 0 

3. t ∈ T  is enabled  iff  ∀p ∈ P | I⁻(p,t) > 0, M(p) > I⁻(p,t), denoted M>t 

4. A firing where ∃t  ∈ T  | t is enabled ,  is the new marking M’ of p and p’ such that 
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∀p ∈ P | I⁻(p,t) > 0   ( )    ( )    ⁻(   )  

∀p’ ∈ P | I
+
(p’,t) > 0   (  )    (  )    ⁻(    ) 

Denoted   

 
→             → ℕ≥0 indicates the ith firing in the PN 

5. A firing sequence of WFNet is a finite sequence of transitions σ = tm … tn , 0 ≤ m ≤ n 

such that ∀                            ∈         ∃(  

 
→    ) 

6. Workflow Behavior Instance: 

(Starting transition) for t1 ∈σ : ({t1…tn } n ≥ 0) ∃ts ∈T : I⁻(pi , ts) > 0 ⇒ t1 = ts 

(Ending transition) for tn ∈σ : ({t1…tn } n ≥ 0) ∃te ∈T : I
+
(po , te) > 0 ⇒ tn = te 

∀ t ∈ σ, ∃t’ ∈ T | t = t’ 

 

The definition states that places are marked by tokens and arcs from places to 

transitions are weighted. If the marking (number of tokens) exceed arc weights, then the 

transition is enabled. If the transition is enabled, a firing may occur on the transition, 

yielding new markings for the places leading to and leading from a fired transition t. 

This re-marking is also known as a state transition. When a token are removed from a 

place due to a firing, the token is consumed. When a token is added to a place due to a 

firing, the token is produced. A firing sequence is the sequence of transitions that were 

enabled by firings in the WF-Net. We define a workflow behavior instance, b, as an 

activity sequence from a complete firing sequence of a workflow net starting from an 

initial transition firing after the input place and ending after firing a transition before the 

last place in WF-Net. By defining these conditions, the log LE is defined as the set of all 

workflow instances expected in a strict workflow environment.  



 

34 

 

A workflow net may have a dynamic structure, meaning that behavior follows a 

workflow net that shifts with the passage of time, which we define as a dynamic 

workflow net. 

 

Definition 3.2. (Dynamic Workflow Net) - A Dynamic Workflow Net is a 6 tuple PN = 

(P, T, I⁻, I⁺, M0, l, τ) where: 

1. τ = {τ1 , …, τk} is a finite and nonempty set of discrete times 

2. Pτ ∈ P | Pτ = {p1 , … , pn}is a finite, nonempty set of places for any time, τ ∈ τ 

3. Tτ ∈ T | Tτ = {t1 , … , tm} is a finite, nonempty set of transitions for any time, τ ∈ τ 

4. P ∩ T  = ∅ 

5. Fτ ∈ F |     (    ) (    ) is a set of directed arcs for any time, τ ∈ τ 

6. M0 : P → ℕ0  is the initial marking  

7. l : T → Γ  is a labeling function of transitions T to a finite set of activity labels, Γ 

 

The dynamic workflow net can be seen as a generalization of the static workflow 

net, and the original definition is attained if one specifies τ = { τ0 }. However, within the 

dynamic structure, expected workflow behavior is also dynamic such that for any | τ | > 

1, multiple sets of expected behavior may be generated by workers. With this context, a 

dynamic event log can be defined  

 

Definition 3.3. (Dynamic Event Log) – A Dynamic Event Log, LE , is a set of workflow 

behavior instances from a dynamic workflow net, such that LE spans τ = { τ0, τ1 } 
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3.4. Workflow Shift Detection 

Workflow shift detection is the problem of discovering changes in expected 

behaviors where a workflow shift may be a result of the introduction of new workflows 

to a monitored population of users. In monitoring mission centric systems, the event log 

into workflow periods, LE,τi which represent periods of usage that are dominated by a 

particular workflow. In the initial problem formulation, a log LE spans τ = { τ0, τ1 } and 

the goal is to split LE  into two LE,τ0 and LE,τ1, where τ1 is the workflow shift in the log.  

 

Definition 3.4. (Offline Workflow Shift Detection). At time τ0, workflow0 directs 

worker behavior and at time τ1, worker behavior is directed by a different workflow. The 

Offline Workflow Shift Detection problem is to find an index k(τi), τi ∈ τ, τ0 < τ1 | LE < 

k(τ1)  = LE,τ0 and LE ≥ k(τ1) = LE,τ1 . 

 

The finite case can be approached using an offline method hypothesis test [73], 

but for fast processing, one needs an online algorithm that will alarm at every change in 

an infinite activity log. Assuming the changes are detected quickly enough and τ is long 

enough for the detection algorithm to re-baseline workflow behavior, the infinite and 

online case only requires one shift to be detected [73], thereby allowing for multiple 

splits of the log. A second change in the definition involves adding the potential for 

noise in the log. Let LO be observed behavior, LO = LE  × UN, where UN  is a stochastic 

process that inserts activity noise into the sequence of  LE. Therefore, the definition is 

refined for the infinite case in a noisy log, LO. 
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Definition 3.5. (Online Workflow Shift Detection). At time τ0, worker behavior is 

directed by workflow0. In observing time ordered sequences of activities in LO, online 

workflow shift detection is the problem of finding an index k(τa), τ0, τa ∈ τ, τ0 < τa such 

that LO < k(τa)  = LO,τ0. where the alert time, τa, is determined by a stopping rule  

τa  = inf {k : g(X) ≥ h} 

 

With this problem definition, the proposed features will be used to scan the 

activities in the combined event log to find a statistical change point. Then, WSDA 

implements a sliding window scheme and slope analysis of local deviations that make up 

an offline version of the workflow shift detection algorithm. This result is improved with 

an online version. 

3.5. Workflow Shift Detection Algorithm 

Having defined the workflow shift detection problem, it is implemented for a 

stream of logged actions inferred from network traffic. A specific type of actions is very 

prevalent in file based systems. Without their mission context, these are Resource 

Access Actions (RAAs) and they are well defined activities since they are matched from 

regular expressions. Their collection is vital to ascertain ongoing system and mission 

events for the CPS. In this section, the WSDA detects the split between LO,τ0 and LO,τ1 

using a mean of feature vectors is a sliding window scheme. This algorithm consists of 

three phases: 1) baseline establishment, 2) sliding window analysis and 3) significant 

deviation alert. The section concludes with a proposed online version. 
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3.5.1. Workflow Features 

Workflow shift detection preprocesses the RAA stream to identify measurable 

features. These features indicate many properties of workflow-driven resource access.  

Activity Label - The generic activity label is an indication of the state of the 

workflow. Different workflows require a distinct relative ratios of activities as seen in 

Figure 3.5. The Intelligence Update (IU) task on the left has a different mixture or 

activities than the human resource (HR) task on the right. For example, “TRAVERSE” 

activities are the strong majority in the HR task, while the IU task has twice as many 

“OPEN” activities. The mixture can give an indication of the current workflow. 

 

 

Figure 3.5: Activity labels from two tasks in an RAA event log 

 

Attribute Type - The attributes of an activity may give a hint the target of an 

activity (i.e. a file type extension, loan amount, etc.). Again, different workflows have a 

distinct distribution of attribute types. Specific folder names, for instance give an 

indication of the task. 
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Actor (Resource) - An actor (or human resource) distribution may be analyzed to 

see participants involved in the workflow. One may include IPs, User IDs, names of file 

owners, modification and accessed dates and times if the log provides such things. 

Service Delay (SD) - SD expresses the amount of time needed for the system to 

complete an RAA. Notable delays are due to application, system and network 

performance and could be an indication of load, constraint or degradations. 

SD = time_completed(ai) - time_started(ai) 

Execution Latency (EL) - EL is the delay between successive RAAs. High 

execution latency may be caused by many things, including difficult workload, 

distractions, and poor performance.  

EL = time_started(ai) - time_completed(ai-1) 

 Figure 3.6 shows the changes in mean for SD and EL. 

 

 

Figure 3.6: Changes in mean service delay and expected latency 
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To use SD and EL as a feature, we need to discretize the time values by creating 

a number of bins, defining a bin width and then assigning them. To do so, a normal 

distribution of service delay times in the log is assumed to be able to divide the 

observations of SD(EL) in the log over quartiles, Q1 - Q4, where the bin width is defined 

by the interquartile range function (IQR) in R [74].  

3.5.2. Baseline Establishment 

The establishment of a behavioral baseline is critical in workflow shift detection, 

to identify measurable changes in workflow behavior. The workflow shift detector 

requires a log analysis tool to identify the relative frequencies of workflow features and 

then establish a baseline as a point of reference. The algorithm for workflow shift 

detection will use the workflow baseline to discern novelty. In the initialization step of 

baseline formation, baselining establishes a feature vector for to hold statistical 

measurements that correspond to the relative frequency of the presence of a feature 

within the window. Let m be the size of the feature vector, n be the length of the 

sequence of activities in LE and k = 0 ≤ k ≤ n be an index. Also, let w be a window size 

for the baseline. Then the initial baseline behavior is a feature vector, over the long 

baseline window, w.  

   { ̅   ̅ }             ̅  
 

 
∑    

   

   
 

3.5.3. Sliding Windows 

After establishing the baseline, a second window (with size c) is initialized to 

establish the mean of relative frequencies within a short change detection window. 
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   { ̅   ̅ }            ̅  
 

 
∑    

   
   using the same calculation for relative 

frequencies within the feature sets. 

Once the baseline and reference windows have been initialized, the algorithm 

proceeds through the event log using a sliding index. At each index, k in 0 ≤ k ≤ n, an 

update step is performed for the feature vector XL (XS) using a exponentially weighted 

moving average [73]: 

  (    )   ̅       

In the update step, the entire feature vector is updated by weighting current 

events stronger than older ones. The relative frequency of observed types can be seen in 

Figure 3.7. In the graph, one may observe that recent usage in the short window (last 20 

activities) deviates from the long window (last 200 activities) in terms of the distribution 

of features. The deviations between the baseline (long) and change (short) windows is 

the absolute value of the difference between the feature vectors.  

 

 

Figure 3.7: Time windowed relative frequencies 
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3.5.4. Change Point Detection 

The significance of these deviations is the object of change point detection. To 

apply a change point detection algorithm, we need to devise a transformation of the 

relative frequencies of features into a sequence of scalar time series values. Our 

approach is to calculate the Kullback-Leibler divergence for an index in LE. The first 

step of doing this is to assume that the relative frequencies of the RAA features 

correspond with the probability of their occurrence. We let Pw be the probability matrix 

for XL and Pd be the probability matrix for XS. The Kullback-Leibler divergence is the 

sum of the log likelihood for every feature multiplied by the probability of detection of 

that feature in the short window. 

 

 The calculation allows us to establish scalar time series values for the entire 

event log, Y = {y1 … yn }. The change point detection problem at this point is straight 

forward, aiming to find the index k where the behavior of the time series varies 

significantly. As an initial benchmark for change point detection, we implement the 

Shewhart control chart, and alert by the decision rule 

τa  = inf {k : g(y) ≥ h} 

where g(y) calculates the change in mean in comparison to the variance in the sliding 

windows. Therefore, the decision rule is given as 

 

where σ is the standard deviation in the long window and ψ is a threshold for noise. 
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Figure 3.8: Workflow shifts from the CPS simulated workflows 

 

The result of change point detection is seen in Figure 3.8. The solid red line 

tracks the mean in the short window and the blue line tracks the mean in the long 

window. The time series, Y, is the black line. A change point is detected when the red 

and blue lines diverge significantly while variance is still small. The dashed red line 

shows the point in the log where this holds true. Later, change points are not detected 

when the long and short windows diverge due to the fact that the time series exhibits 

increased variance. The decision rule interprets these change points as noise. 

3.5.5. Online WSDA 

The online version of the algorithm requires modifications of two stages of the 

algorithm. The baseline period and sliding window stages are merged so that the update 

function is called at every index until a number of observations w establish the long 
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baseline window. The SD and EL feature bins are created based on the interquartile 

ranges in the baseline period and shared by the long and short windows. The other 

modification occurs in the decision function, where the rule becomes 

τa  = inf {k : g(y) ≥ h} 

and the slope calculation remains the same. To remain online, the algorithm continues to 

update and calculate Y, but a period of re-baselining must occur. This is acceptable if the 

time between workflow shifts is greater than the baselining period. 

3.6. Evaluation of WSDA 

We evaluate WSDA using the data from the battle rhythm scenario in CPS. 

WSDA will detect a change point in the log, but the correct change point will yield a 

more concise model. After evaluating WSDA based on this measure of effectiveness, we 

review the complexity of the algorithm. 

3.6.1. Effectiveness 

WSDA was applied to the activity event stream in the battle rhythm scenario for 

the Convoy Planning System. The workflow shift that was detected by the algorithm 

selected a time instance after two executions of the second workflow and the completion 

of the first. Using this time instance, the log files were split in two. Workflow instances 

in the logs were manually extracted to create the Petri net models in Figure 3.9 and 

Figure 3.10 using a heuristic modeling algorithm [49]. The heuristic modeling algorithm 

identified activities that were under the threshold of occurrence, which would be seen as 

nodes without arcs in the figures. The effectiveness will be measured by the ability of 

the workflow shift detection algorithm to create more concise workflow models. 
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Figure 3.9: Workflow 1 in the battle rhythm scenario 

 

 

Figure 3.10: Workflow 1 in the battle rhythm scenario 

 

We determine the effectiveness of workflow shift detection to split the log into 

logs that concisely represent behaviors. The heuristic miner created the Petri net in 

Figure 3.11. In the figure, there are two branches of the discovered Petri net, which the 

mining algorithm modeled as a single workflow.  The boxed area shows a region of the 

workflow that possesses a highly similar structural conformance. The footprint 

conformance metric [5] is 0.987 for the activities within the box in Figure 3.11 and all 

the activities in Figure 3.10. The result suggests that segmentation of the log file can lead 

to exposing a concise substructure. 
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Figure 3.11: Petri net from unsegmented log with highlighted workflow 

 

3.6.2. Complexity 

The analysis of WSDA with regards to complexity is straightforward. The WSD 

Algorithm is O(wm) for storage, storing only scalar values of CFD and the vector of 

sliding window means (m) over the window size w. For runtime complexity, baseline 

establishment is O(wm + cm) where wm is the dominating term. Baseline establishment 

is the bottleneck for performance in the system, since the sliding window scheme uses an 

O(1) update step. In total, the algorithm has a runtime complexity O(nw).  

3.7. Discussion 

WSDA can be an effective tool for segmenting log files for process analysis 

because the segments can assist the process analyst in choosing a point in the log that 

will provide concise process models. Concise models are important for conformance 

checking tools to focus on a set of behaviors that are relevant to the situation. Models 
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that are provided through the use of this tool may give situational awareness tools a 

means to report and adapt to mission states. 

However, the process of creating these models required manual extraction, so 

WSDA has limited potential for producing better workflow models on its own, since it 

requires a human analyst to extract behaviors from the resulting logs. In the context of 

adaptation, the ability to segment logs is incomplete without an accompanying tool to 

extract the workflow instances from a raw event log. This inadequacy is addressed by 

extraction and ranking of workflow instance collections. 
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4. EXTRACTING AND RANKING WORKFLOW INSTANCE COLLECTIONS* 

 

Mission centric collaboration generates raw event data which need to be 

preprocessed before auditing. In process mining, the source of knowledge for the 

auditing task is the activity event log. An activity event log is composed of well defined 

steps in a business process (activity) arranged sequentially and recorded in collections 

(event log). However, workflow behavior data from mission centric collaboration may 

be streaming in bits specified by communication protocols rather than in activity event 

logs. The task of preprocessing this data stream to create an event log occurs in two 

stages, activity inference and workflow instance extraction.  

4.1. Process Mining Data and Discovery 

The process mining consortium has established event log formats to standardize 

process mining efforts [28][29]. The well structured formats separate finite activity 

sequences that are called workflow behavior instances. One could think of the event log 

of a collection of sequences, where the sequences in these collections may have some 

similarity to each other. This will be advantageous since an expressive behavior model 

can be represented by a collection of workflow instances that bear similar patterns to 

other instances in the collection. This is illustrated in the event log in Figure 4.1a, where  

___________________________________ 

*Part of the data reported in this section is reprinted with permission from “Behavior 

Instance Extraction for Risk Aware Control in Mission Centric Systems.” by J. Pecarina 

and J.C. Liu, 2013 in Proceedings of the 3rd International Conference on Cognitive 

Methods in Situation Awareness and Decision Support, San Diego, California, 2013, pp. 

45-50, Copyright [2013] by IEEE. 
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Figure 4.1: Event log (a, left) and corresponding process model (b, right) 

 

similarity is apparent by the repeated use of certain symbols, first and last symbols and 

subsequences.  

Further elaboration of the properties of target workflow sequences can be 

illustrated using the Workflow Net (WF-Net) in Figure 4.1b. First, one can identify 

invariant paths of the WF-Net where all workflow executions in the event log pass 

through (‘efg’ in the figure). The invariant path is executed exactly in all samples in the 

workflow log. Second, there may be looping substructures, (the repetition of ‘efg’). 

Third, there is the potential for variance between executions. The concurrent activities 

‘b’ and ‘c’ both must execute when either is executed, but order may be transposed. 

Also, the activity ‘d’ may be substituted for ‘bc’ and ‘cb’ through insertion and deletion. 

As shown in Figure 4.1a, the collection of these sequences is an event log and the 

process model in Figure 4.1b can derived from the log using a process discovery 

algorithm. 

Our goal is to find collections of workflow instances that will be useful to a 

process discovery algorithm. The focus is on segments of inferred human activity from 

packet traces that have been segmented by a workflow shift detector. Because of 
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inference and faulty observation, the activity sequence may be lossy or contain noisy 

activities. A direct application of process mining to this log will yield poor results, but 

by extracting workflow instance collections and presenting ranked collections to a 

process analyst, the task of preprocessing can be automated to the point of selection. Our 

technical contribution is an algorithm that automates extraction and ranking of workflow 

instance collections without a priori knowledge of activities in observed workflow 

behaviors.  

4.2. Event Logs from Inferred Activity Sequences 

In the context of process mining, a workflow instance collection can be 

considered an event log of filtered and structured process mining source data. As 

opposed to this, raw and unstructured source data are finite segments of an infinite log 

that contain workflow instances, but may be surrounded by noisy activities from other 

processes. A progression from process mining event logs to contiguous activity segment 

logs with increasing levels of noise illustrates the problem. The target log for workflow 

instance collection extraction and retrieval is inferred from packet data where extraneous 

activities may pad the gaps between workflow instances of interest. In the next section, 

workflow instances and the problems of extraction and retrieval are explicitly defined. 

4.2.1. Continuous Sequence Logs 

Before defining the problems, one must analyze the effects of noise and 

continuous sequencing on process mining algorithms. The simple example of an event 

log, L1, and discovered WF-Net is in Figure 4.2; observing that causal relationships are 

represented as flows across places. In other words, the observation of ‘ab’ in the first 
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sequence is perceived to be a causal relationship, a leads to b. Concurrent relationships 

are inferred when events exhibit transposed order (i.e. ‘bc’ and ‘cb’ in the first two 

instances).  The reader should refer to [5] for a thorough exposition of process discovery, 

but the importance of the figure is to note how clean and structured data produces a 

concise process model. 

 

 

Figure 4.2: Simple event log and Petri net exhibiting concurrency 

 

 

Figure 4.3: Continuous sequence event log and Petri net with circular flow 
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On the other hand, when workflow instances are in unstructured sequential log 

files, they tend to look like Figure 4.3. The process mining algorithm was still able to 

discover the log from L2, but the graph includes a circular flow from the last transition to 

the first.  This is not a significant issue, since the graph is otherwise very similar visually 

and in terms of the conformance of the underlying transition rules. The footprint 

conformance of the rules for this Petri net is    
               

              
    

 

  
  0.92 . Yet 

the stage is set for increased perturbation of the activity event relationships. 

4.2.2. Noisy, Continuous Sequence Logs 

Figure 4.4 shows how noise in the continuous sequence log increases ambiguity 

in a process model. When other activities occur before or after the workflow instance 

and before the next, a log may exist where instances are padded with noise (L3a) and are 

juxtaposed (L3b). A heuristic method [49] can reduce noise, yet the structure is 

increasingly compromised (footprint conformance = 0.67).  

 

 

Figure 4.4: Noisy, continuous event log and discovered Petri net 
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However, the heuristic method has limitations with increased noise in a noisy, 

continuous log. Increasing noise padding from other processes in the log file in 

simulation, the Petri net looks progressively worse (Figure 4.5), as noisy activities are 

added to the Petri net until the original process is indiscernible. 

 

 

Figure 4.5: Exploding process models with increasing levels of noise padding 

 

The heuristic method reduces noise when the noisy activities occur within the 

workflow instance, but noise on the edges of the activity sequences do not get reduced 

using the method. WSDA segmented the activity stream, but it left another problem in 

extracting and retrieving the workflow instances from a noisy, continuous sequence log 

file.  



 

53 

 

4.3. Workflow Instance Collection Extraction and Retrieval 

Our aim is to find workflow instance collections for process mining from 

inferred activities, therefore this section describes the Workflow Instance Collection 

Extraction problem from a sequence S of labeled activities a ∈ A. A workflow instance 

collection is a set W composed of similar candidate workflow instances with at least one 

stemmed candidate exactly matches another stemmed candidate in the set. For clarity, 

the composition of candidate workflow instances and the nature of stemmed candidates 

are defined first. 

 

Definition 4.1. (Candidate Workflow Instance) - A Candidate Workflow Instance 

(CWI) is a sequence of labeled activities a ∈ A such that CWI = ap,ap+1, … aq where 0 ≤ 

p ≤ q. It is denoted CWI[p,q] to indicate its indices within S. 

 

The candidate workflow instance is a subsequence of S, but looping substructures 

(as seen in Figure 4.1) allows workflow execution to repeat portions of the workflow 

specification. We refer to this as a CWI Loop.  

 

Definition 4.2. (CWI Loop) - A CWI Loop (CWIL) is a sequence of labeled activities a 

∈ A within a CWI such that  

1) k = i - j is a non-negative, non-zero length of the CWIL 

2) CWIL = {ai, … aj}, p + k ≤ i < j ≤ q is a substring of S and CWI 

3) For CWI[m, n] where n - m = k and n = i - 1, CWI[m,n] = CWIL 
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That is to say that CWIL is the second part of a tandem repeat within the CWI. 

This is an important distinction because CWILs must be stemmed to make it possible to 

identify like candidates. The WF-Net gives no limit on loop size, so by removing them, it 

is much more likely that a string distance function will find them to be similar. The 

similarity we assign is the ε-similar CWI property based on the edit distance [75] 

function, denoted ED( , ). 

 

Definition 4.3. (ε-similar CWI Property) Given sequences, g and g’, ε-similar CWI 

property is satisfied when ED(g, g’) ≤ h . h is a threshold defined by h = length(S) * ε 

where 0 ≤ ε ≤ 1. 

 

The definitions of the CWIL and the ε-similar CWI property allow a relationship 

between CWI in S to become clear. 

 

Definition 4.4. (Candidate Workflow Instance Similarity) - CWI-Similarity is a 

comparison function S(CWI1, CWI2) performing the steps 

1) Stem(CWI) is a stemming function | ∀ CWIL ∈ CWI, CWI - CWIL  

2) CWI* = Stem(CWI) 

3) S(CWI1, CWI2)  ℕ = ED(CWI1*, CWI2*) where ED( , ) is the edit distance 

function 
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CWI-Similarity depends on the stemming function to relate workflow instances 

to each other. Under this framework, it is possible to group similar instances in a 

collection.  

 

Definition 4.5. (Workflow Instance Collection) - A Workflow Instance Collection 

(WIC) is a set of CWI with the following properties 

1) ∀ i,j ∈ |WIC|, S(CWIi, CWIj) ≤ h  

2) WICh is the epsilon similarity for all candidate workflow instances in WIC 

3) |WIC| > 2 

4) Exists i,j ∈ |WIC| such that S(CWIi, CWIj) = 0 and CWIi is the centroid of the set 

 

Thus the WIC consists of sequences of activities that hold the properties of 

workflow instance collections and are epsilon similar to each other. The requirement that 

at least one CWI in the collection exactly matches another in the set is both practical and 

desirable. Practical because it limits the amount of sequences that must be checked to 

find a workflow instance collection and desirable because workflow discovery and 

conformance algorithms often use heuristics based on exact repetition in the log. 

The definition of a WIC is framed in a way to address two problems. The first is 

to identify all possible subsequences with the characteristics of a WIC. However, in a 

noisy activity log, the ability to find these collections is not sufficient without defining 

domain specific workflow information. Since our formulation is open ended, a second 
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problem is apparent, selecting the right WIC for the process analyst. The first problem is 

WIC Extraction and the second is WIC Ranking.  

 

Definition 4.6. (Workflow Instance Collection Extraction Problem) The Workflow 

Instance Collection Extraction Problem (WICEP) states that given a sequence S, find all 

sets of WICh for any given h. 

 

All sets require considerable enumeration (worst case (O(2
n
)) of the sequence S. 

With such a large search space, ranking and heuristics will be necessary. That fact gives 

credence to the need for a ranking function for the extracted instances. 

 

Definition 4.7. (Workflow Instance Collection Ranking Problem) The Workflow 

Instance Collection Ranking Problem (WICRP) states that given a sequence S, rank all 

sets of WICh for any given h according to a set of criteria C and ordered using a 

weighted ranking function R(C,WIC)  

R(C, WIC) = Σ wi*ci(WIC) 

 

where ci(WIC) are weighted functions in C that evaluate the WIC. Thus C has the 

capacity to evaluate WIC for its ‘interestingness’ to a process analyst. The problems are 

separated to yield different solutions for extraction and ranking and to provide clarity, 

but in implementation they can be intertwined to save processing time and introduce 

heuristics.  
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4.4. WIC-Extract 

A solution for WICEP is the WIC-Extract algorithm. WIC-Extract accepts an 

input sequence S as input and returns all possible WIC to the WIC-Rank algorithm. First, 

repetition stemming prepares S for approximate repetition analysis. In the second stage, 

grapheme analysis populates a workflow suffix trie, G while determining the prevalence 

of behavior in S. In the third stage, ε-similar aggregation populates WIC.  

4.4.1. Repetition Stemming 

Consecutive repetition in workflow behavior occurs in event logs if failed system 

interactions (e.g. unsuccessful logins, incomplete forms, re-accomplished steps, etc.) 

force repeated actions, cycles or loops. Rather than trying to handle this issue by 

expanding ε-similarity, which may introduce noise in the instances, the S is pre-

processed to remove looping structures, remembering their indices to reintroduce during 

the modeling phase.  

The algorithm for repetition stemming (Figure 4.6) involves multiple passes of 

the S to remove loops starting with the smallest and ending with the largest. Otherwise, 

attempting to remove sequence loops in any other order causes some repetitions to be 

missed. Consider as an example the phrase HELLOHELO. In the first pass, the L is 

removed to produce HELOHELO. Without this, when step is 4, it will not detect the 

loop. Three indices track the locations of consecutive strings in S. To advance the 

indices, the hammingDist( ) function checks the equivalency of symbols using Hamming 

distance and returns the number of misses. Hamming distance is preferred over edit 

distance because we seek an exact match and it is faster since it assumes sequence 
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alignment. After the check, the next exact match cannot in S occur until the indices 

iterate past these misses.  

 

 

Figure 4.6: Repetition stemming algorithm 

 

4.4.2. Grapheme Analysis and Workflow Suffix Trie 

In the second stage of WIC-Extract, n-grams are expanded out of the repetition 

stemmed S into sets in G. In most settings, n-gram expansion concentrates on particular 

values of n. In the workflow modeling domain, behavior instances that capture large 

portions of workflows are needed, so WIC-Extract does not necessarily restrain the value 

of n. In addition, later stages in the algorithm make use of activity frequencies. Thus, the 

algorithm starts with n-grams of 1 and searches for a maximum N (Max-N) in the input 

stream. Max-N is equivalent to the length of the longest repeating substring in S. Finding 

Max-N is done at the same time as repetition stemming, using a suffix trie to store the 
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matches of the repeats for future approximate matching and ranking steps. Max-N and 

Min-N are also available as user defined parameters, leaving the final determination of n 

with the user who has intuition about his particular type of workflows of interest.  

The key point in grapheme analysis is the data structure used to contain n-grams 

G(n). While the set of all n-grams G may be maintained in a database, visualizing a set 

of n-grams G(n) using a suffix trie is valuable to understand how activities are grouped 

before extraction. A trie is a tree based data structure that stores a null at the root and 

each node stores a symbol, except at the leaf nodes which holds the index of the n-gram.  

An example trie in Figure 4.7 shows partial construction of the trie using the 

reference string. Construction (Figure 4.7 (1)) for a string abcefgacbe is shown where 

the first suffix (the entire string) has been inserted to the tree along the left side of the 

figure. The second insertion into the suffix trie, G, is bcefgacbe, leaves the a out of the 

string, starting a new path from the root. Each string and substring in S* is added in the 

same fashion. 

At the same time, the suffixes of S* are also scored in G. As an example,  ‘efga’ 

is added and the final node records term frequency, gram criteria, index, a repeating bit 

and other workflow specific criteria that can guide search. After creation of the suffix 

trie, the repetitions that were removed in repetition stemming are also added to G.  

The result of this step is creation of a data structure that will make search faster. 

To find whether the string efg was ever repeated, one merely needs to traverse the trie by 

parsing ‘efg’ and inspecting the node for the number of exact matches that were within 

the original string S, repetition included. 
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Figure 4.7: Workflow scored suffix trie 

 

4.4.3. ε-similar Aggregation 

With all n-grams in the suffix trie data structure, the algorithm proceeds to ε-

similar aggregation. The basic premise is that grams are selected from the trie from 

longest exact matches to the smallest. The workflow suffix trie stores useful information 

to guide the search, first in the presence of exact matches to serve as seeds for WICs, but 

also in the indices, so overlapping strings are not checked.  
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Figure 4.8: ε-similar aggregation algorithm 

 

Following the pseudocode in Figure 4.8, grams are selected from the trie in an 

outer loop gOut, while an inner loop iterates grams, gIn in the trie to find a WIC. ε-similar 

CWI have the property of d(gIn, gOut) < ε-dist but, because ε-similar instances can have 

different lengths, grams in neighbor tries of two times ε-dist (above and below n) must 

also be searched and compared. Comparison utilizes edit distance because it allows for 

sequence misalignment and substitution, deletion, insertion and transposition operations 

cost 1. Another distance function is hamming distance, which only counts substitution 

operations. Hamming distance will only find optimally aligned workflow behaviors that 

only contain substituted actions or differ by inserted or deleted actions in latter parts of 

the sequence. Longest Common Substring (LCS) distance counts insertions and 

deletions but not substitutions. This means that substitutions will cost 2 instead of 1, 
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possibly removing the workflow instance from the instance set. Edit distance, though 

costly, was chosen to avoid introducing incompleteness before modeling.  

The algorithm is enhanced in various ways to improve performance in the search. 

First, the search starts with the highest gram set. Second, repeat instance sets are avoided 

by only checking one subsequence among common subsequences. Also, if the trie is 

traversed in order, the discovery of substrings with edit distances above ε may allow one 

to branch back and skip leaf nodes in the trie. Certain scoring criteria may also be 

employed in this stage depending on their weighting, whether before the n-gram 

comparison or before the instance set is added to all instances. At first, it may appear 

that intermediate non-branching nodes in the suffix trie can also be collapsed to show 

shared substrings, which could but not necessarily describe a WIC. However, knowledge 

of the first activities can greater reduce search time by confining search to branches of 

the trie (or last activities by using a prefix trie). 

4.5. WIC Rank 

WIC Rank is a two stage algorithm involving a genetic algorithm for 

configuration of weights and a ranking function to implement criteria. Then WIC Rank 

performs workflow behavior interest ranking using a workflow oriented criteria and 

ranking. The purpose of this algorithm is to return relevant results based on user defined 

scoring criteria.  

4.5.1. Workflow Behavior Interest Ranking 

Using the ranking function  in Section III, an ‘interestingness’ score is calculated. 

The ranking function is a weighted summation over the criteria of the WIC, so the 
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algorithm is not shown. However, a handful of scoring metrics are employed in our 

implementation of  WIC-Rank. Here is a description of the criteria with rationale and 

formulas. 

Cardinality. The number of instances in the instance set. For modeling, more 

instances will mean better models if they are complete representations. |WIC| 

Common Start(Finish).  The number of instances that have the same starting 

symbol as the seed  divided by the total in the set. Computer behaviors often begin(end) 

with the same starting(finishing) sequence (i.e. logging in, checking e-mail). 

Exactness. The ratio of the number of instances equal to the seed over the total 

number of instances is also important for the same reason as closeness. Exact matches 

would indicate less entropy in the set.  
    (        )    

         
 

Closeness. The average Hamming distance provides how close aligned instances 

are. It stands to reason that workflow instances of common sub-paths would be aligned. 

Since Hamming Distance was used in an earlier step to calculate tandem repeats, this 

information is already be available. 
 

     
∑   (    ∈           ) 

Tightness. Calculate the average edit distance in the set, which may indicate less 

noise between instances. Edit distance was calculated in WIC-Extract, and could be 

stored for this criteria.  
 

     
∑   (    ∈           ) 

Pairwise LCS. This captures all shared versus unique symbols and is calculated 

as the length of the pairwise LCS over the sum of all unique characters per instance.  
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Other semantics of the individual actions (i.e. specific action, action at an index) 

may be applicable. The result of workflow behavior interest extraction is a set of 

instances that could be selected as workflow instances in modeling applications, but the 

results need to be ranked to be presented to a process analyst. 

4.5.2. Genetic Algorithm Configuration 

Weight configuration is performed by a genetic algorithm (GA) that uses 

precision and recall metrics as a fitness function. An oracle WIC is presented as a target 

and weights are mutated by the GA to rank the oracle within the top 5 results. The 

weights are used by the ranking function. 

In this discussion, the focus is on the alterations made to the GA to work for WIC 

weight configuration. The interested reader should refer to [76] for a background of 

GAs. In the first part, the GA initializes by assigning random weights to new candidates. 

The mutation function of the weights is subject to a uniform random process. The set of 

all WIC rankings are provided to a new candidate with the WIC criteria. With criteria, 

the initialization need not have the collection itself. The second part of the GA involves 

checking the fitness function of candidates. The fitness functions used in our GA are 

adapted from precision and recall metrics for information retrieval algorithms [77]. 

 

                
      ∈          ∈      

      ∈       
 

              
      ∈          ∈      

      ∈       
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WIC precision identifies the weighted intersection of relevant CWI and retrieved 

CWI as the existence of CWI in the oracle WIC in the first five results of the candidate. 

Each index is scored and inversely weighted according to its ranking. Total and average 

fitness of the candidate population is calculated. This is monitored by a separate check to 

see if the GA is converging or diverging from a solution. The GA may stop if the 

stopping threshold is reached or maxRounds is reached. The pseudocode for this process 

can be seen in Figure 4.9. 

 

 

Figure 4.9: Fitness function update step and stopping condition check 

 

If the GA does not stop, then the next generation is formed by selection of elites 

and creation of new candidates by mutation from the previous generation (Figure 4.10). 

Mutation occurs with higher probability of selecting genes from the more successful 

candidate ranking functions, but the randomness allows for greater exploration of the 

search space.  
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Figure 4.10: Selection of next generation candidates  

 

The GA returns a set of weights to the process analyst to configure the ranking 

function to select interesting candidates that are somewhat to the process analysts query. 

The ranking algorithm produces a weighted score for each WIC using the WIC criteria 

and weights. The results and evaluation of the WIC algorithms are discussed next. 

4.6. Evaluation of WIC-Extract and WIC-Rank 

The WIC-Extract and WIC-Rank algorithms are varied in their approaches, 

applying from string processing to information retrieval and evolutionary algorithms. 

The algorithms provide a set of WIC that a process analyst can select from, easing his 

task of extraction from raw event data. To evaluate WIC Extract and Rank for workflow 

mining tasks this study considers complexity, performance and effectiveness aspects 

using complexity analysis, performance measurement and repeated trials of extraction 

and discovery of WIC in noisy continuous activity sequences. In addition, a simulated 

battle rhythm driven workflow is developed and monitored to show its viability for 

workflow behavior auditing in mission centric systems. 
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4.6.1. Complexity 

The complexity of WIC Extract is dependent on the length of the input sequence 

|S|. The theoretic worst-case time complexity of repetition stemming is O(nk log(n/k)) 

where k is the maximal distance between two repeat copies (miss). Hamming distance 

functions have complexity O(log(n/k)) [78].  

A vital step in the algorithm records all possible substrings (q-grams) from the 

sequence, but since this step is combined with the repetition stemming step in the 

algorithms the performance impact could be lessened. However, the worst case run time 

for generating all substrings in the input sequence is realized there are no tandem repeats 

in the input sequence. In this scenario, the first pass will produce 2 substrings each equal 

to a half of the input sequence and subsequent passes will produce 1 additional substring 

until the n
th

 pass, which produces n substrings. The dominating terms of this process 

results in O(n
2
) run time complexity.  

The resulting suffix trie will contain CWI that have no exact matches and CWI 

with exact matches. The complexity of ε-similarity aggregation depends on the outer 

loop of the algorithm, iterating the number of CWI in the trie with exact matches, m = 

|CWIh|. The middle loop of the algorithm checks similarity against all sequences within a 

bounded distance ±ε of string length, q. The inner loop iterates a maximum of 
 

  
 

sequences for each string length and uses the edit distance for matching.  

The implementation of an efficient edit distance function can be supported by the 

fact that matching is bounded by the similarity property. Under this condition, 

Ukonnen’s algorithm [79] can compute edit distance in O(qε) time and O(ε) space. 
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Myers approach using bit vectors [80] improves this result to O(σ + ⌈q1/w⌉ q2) where q1 

and q2 are two strings such that q1 ≤ q2  and w is a bit vector size. Mapping a string into a 

bit vector parallelizes the dynamic programming matrix of the classical edit solution 

O(n
2
) and assumes σ  as a bound on the alphabet size. Hyyro advances this to O(σ + 

⌈ε/w⌉ q1)  by bounding errors [80]. Considering these factors ε-similarity aggregation 

time complexity is no greater than  (      
 

  
   )   (    )  using Ukonnen’s 

algorithm. Thus the worst case runtime complexity of the entire WIC-Extract algorithm 

is  (       )     (  ). Size complexity is based on the size of the suffix trie, 

which is also O(n
2
). The only way to improve the result is to select heuristics to reduce 

the number of q-grams to create, which can be done with knowledge of the first or last 

activities in a target workflow instance. WIC Rank is not considered in complexity 

analysis since the workflow criteria can be harvested from distance based scores that 

happen within WIC Extract.  

4.6.2. Performance 

A Python implementation of WIC-Extract and WIC-Rank shows the capability of 

the algorithms to extract workflow instances from noisy and continuous activity 

sequences. Running on Linux with 1024 MB memory on a single 2.00 Ghz CPU, the 

algorithm was tested to handle 6000 events in 10 minutes on this modest platform 

searching for workflow instances between 7 and 11 sequences long. If users perform 

actions every 10 seconds, a population of 100 users could be continually monitored. 

With additional filtering and heuristics, porting to more powerful platforms and 

programming languages, these performance characteristics will improve.  
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To evaluate the returned results, classic precision and recall metrics are used 

[77]. Two reference strings were created from the workflows in the simulation and 

translated into the symbols used by the algorithm. Table 4.1 summarizes the returns of 

the top 5 results in the simulation. A genetic algorithm was used to choose weights for 

the ranking criteria using the precision and recall on the reference strings as a fitness 

function. In our experimental runs, exactness (most frequent precise patterns) and 

common start and finish behaviors were favored by the genetic algorithm, though this 

should not be considered a general result.  

 

Table 4.1: Precision and recall results from WIC-Rank 

 

 

4.6.3. Effectiveness 

As a source of usage data, we ran 39 workflow simulations where users primarily 

executed 2 scripted workflows from the Convoy Planning System.  In the hypothetical 

mission-centric system, operators are responsible for selecting convoy routes and 

allocating crew members, cargo, and trucks along those routes. The users were also 

encouraged to perform the scripted actions out of order when the task performance 

Cluster Center Precision Recall Precision Recall

1) 'pqostuvw' 0.000 0.000 0.375 0.250

2) 'bcfehjil' 1.000 1.000 0.000 0.000

3) 'cpqoszuwp' 0.000 0.000 0.750 0.417

4) 'cpqoszuvw' 0.000 0.000 1.000 0.833

5) 'cpqoszuvwpx' 0.000 0.000 0.692 0.250

Reference Workflow 1 Reference Workflow 2
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allowed it to be possible. The users also performed actions that were not task related at 

all to introduce noise into the event log. The result was an event log of 600 actions. To 

make the results understandable, the reader should be aware of an oracle CWI, ‘bcfehjil’ 

which corresponds to a symbolically represented and stemmed subsequence in the log. 

The meaning of these symbols is not vital to understand the algorithm’s effectiveness, 

though the reader should be assured that the map to activity labels in an event log. 

 

 

Figure 4.11: Ranked WIC with collection heads CWIh 

 

Using the segmented log LE1 from the WSD algorithm, WIC Extract and Rank 

produced ranked WIC. The top three results of the test is shown in Figure 4.11, though a 

process analyst would be given the results in a suitable format or visualization to make a 

decision based on these sets and information. The point of Figure 4.11 is to show how 
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the oracle has been identified within the top results of the search. It is logical that these 

three are selected, since the scores in the top 15 (Figure 4.12) exhibit a definite elbow 

beyond the first three.  

 

Figure 4.12: Top 15 scores for Ranked WIC. 

 

Using the α-algorithm without any noise reduction, the discovered Petri net from 

the WIC ranked as the third result is shown in Figure 4.13. The graph should be 

compared to the ones produced out the outset of the section, where noise was interleaved 

with process instances. Noise has been left in the WIC clusters in the figure to show how 

the noise is no longer modeled as being interleaved, but instead pushed to the edges (in 
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this case, the finishing edge) of the workflow. This makes the result visually acute for a 

process analyst who can interpret the graph and the presence of the noise. 

 

 

Figure 4.13: Petri net (w/ noise) discovered from third WIC result 

 

4.7 Conclusion 

The value of WIC Extract and Rank will ultimately be determined by their ability 

to create models that are appropriate to the task of the process analyst. In developing 

initial models, we are also able to indicate the viability of auditing structures of the 

RAMP and Releasability Gateways. Figure 4.14 showcases multiple artifacts created 

from the behavior instances. To start, the text cloud can give policy makers an intuitive 

sense of trending resource usage (1). Regular expressions (2) may be deployed at a 

network boundary or IDS. Other models may analyze action frequency with a moving 

baseline (3) of various aspects of the actions within the set of behavior instances. State 
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transition and frequency analysis may also be used in colored workflow transition 

systems (4) that can carry richer context than regular expressions for risk awareness.  

 

1

3

4

REGEX:  bc(fe|e|fg)+h(i)?j(i|k)l
2

 

Figure 4.14: Process mining analytics 

 

In our work in [81], we concluded that the facts that these models could be 

discovered suggest that situational awareness of workflow behaviors could conceivably 

be used for adaptation and risk management. In order to justify this claim, robust process 

discovery and workflow models are required. In mission-centric systems, the extraction 

of activity event logs from packet traces is problematic because of noise and loss during 

activity inference. However, distributed systems must also contend with temporal 

uncertainties in terms of timestamp inaccuracy.  
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5. SEMI-AUTOMATED AND DISTRIBUTED WORKFLOW MODELING 

 

Business activities are increasingly automated as service oriented architectures 

support inter-organizational service querying, processing and transactions. As 

underlying technologies of virtualization and distributed computing have come to 

maturity, business and government is adapting to move into cloud business environment, 

collaborative environments that can be characterized by massive scale, service elasticity 

and resource sharing [22]. Human actors and software agents from several organizations 

may contribute to parts of a workflow or business process creating new opportunities for 

modern auditing. To maximize the likelihood that workflow behavior auditing will yield 

mission situational awareness, these opportunities must have technical solutions. 

One such opportunity is process discovery and conformance checking of event 

logs from semi automated and inter-organizational workflows. Semi-automated 

workflows mean that activities performed by system to system interaction will be 

executed within seconds, while human activities could be accomplished with minutes, 

hours and longer time intervals. Inter-organizational workflows cause workflow 

execution and event logging to fall under the axioms of distributed system, particularly 

with respect to clock inaccuracy. The immediate consequence is timestamp inaccuracy, 

which coupled with rapid automated transactions can lead to uncertain ordering of 

events. Since process mining control flow algorithms depend on accurate causal ordering 

to produce process models, the effectiveness of process discovery will degrade as 

timestamp inaccuracy increases. 
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5.1. Timestamp Distortion 

Therefore, to extend process mining, we explore the effects of timestamp 

inaccuracy by introducing the concept of timestamp distortion. In this section, a 

timestamp distortion technique is used for simulation of activity reordering to develop an 

appropriate algorithm. Timestamp distortion analysis gives the reader an understanding 

of effects that timestamp distortion has on process models leading to the desired solution 

for semi-automated, inter-organizational workflow management. A specific problem to 

address under these conditions is degrading behavioral conformance that reduces the 

usefulness of the models for conformance checking. As shown, perceived concurrency 

leads to state explosion and broken conformance checking in Petri nets. To address high 

concurrency, one must develop a model that capitalizes on simplicity of Flower Nets [5], 

but combats their over-generalization of behavior. 

To compensate for the allowed by the flower model, the goal is to create a chain 

of flowers that will have better conformance checking properties than the flower Petri 

net, and while still retaining its minimalist nature. The formulation allows for admission 

control of the flowers into the model, so the amount of abstraction can be tailored to 

meet a goal FN/FP rate or minimal structure. In addition, new conformance checking 

tools are incorporated into the data structure, to establish checkpoints for the global 

system and curfews that limit activity execution within the flower structure. The model 

is evaluated against Heuristic miners, Flower models and Hidden Markov Models. First, 

the need is presented for such models in workflows that suffer from timestamp 

distortion. 



 

76 

 

5.2. Process Mining with Timestamp Distortion 

The approach to further auditing technology for cloud environments is through 

process mining of event logs, but these methods cannot be applied without 

understanding logs in asynchronous distributed systems. We developed the Workflow 

Auditing and Simulation Platform (WASP) to simulate reordering in event logs in semi-

automated workflows where activity wait and service times occur on the order of 

milliseconds to minutes. The WASP present a novel approach to simulating timestamp 

distortion for process mining event logs that undermines limiting assumptions. The 

analysis describes the effects on causal reordering effect on logs and its subsequent 

effects of reduced conformance and state explosion in process models.  

Semi-automated and inter-organizational workflows may lead to the perception 

of timestamp distortion. Process execution imposes a natural ordering of events, but 

distributed activity execution and distributed log writing allow the possibility that events 

are recorded out of order [61].  A global network may have a high amount of timestamp 

error due to inaccurate clocks on hosts [39]. Correlation of logs from heterogeneous 

sources may also inject error in timestamps [82]. Another source of time offsets is clock 

drift where clocks, possibly synchronized at one time, drift away from a master time due 

to imperfection of hardware oscillators or ambient physical effects [83][84]. As 

imprecise and inaccurate timestamps are among the top five data quality issues in 

process mining [63][64], timestamp distortion is an important issue to address. 
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5.2.1. Simulation of Timestamp Distortion 

We describe a Gaussian-Inaccurate clock model supports the simulation approach 

for understanding the effects of timestamp distortion in process mining. A running 

example of a Credit Application Workflow provides realistic guide for analysis. The 

study points to behavioral conformance issues stemming from a mishandling of 

concurrency in discovered Petri nets. 

5.2.1.1. Gaussian Inaccurate Clocks 

A log writing system can be modeled as an asynchronous message writing 

system where a stochastic process alters the true timestamp ts of an activity execution to 

an inaccurate version t’s. The causes of timestamp inaccuracy are a set of random 

variables U = { u1 …un }. A timestamp may be distorted by an additive time adjustment 

to the true timestamp from these random phenomena. The calculation of a distorted 

timestamp t’s from a true timestamp ts for any given state is 

  
        

       
 ;  for all distortion rates uD ∈ U | uD  = { u1 …un } 

where ui  is a stochastic process that creates an linear adjustment      for a timestamp. 

The effect of performing this adjustment over a sequence of events may induce a 

perceptive reordering that may affect the inference of causal dependency in process 

discovery and analysis techniques in process mining. To investigate this phenomenon, a 

sequence reordering algorithm simulates timestamp distortion in activity events and 

resorts the activities using the distorted timestamp. The Reorder_Gaussian algorithm 

alters timestamps by adding a time delta that is generated using a random Gaussian 

process.  
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The Gaussian process simulates the time delta from time kept by an imaginary 

master clock that holds the timestamp average. Consider that there are N computers in a 

network and each has a different clock. One may take the average of all clocks to get the 

mean time. Then, at any time step, the difference between the time from any clock and 

the average clock is calculated to obtain a single clock’s time delta. The difference 

between the zero mean clock and itself is 0. To calculate the standard deviation of all 

clock deltas, the square root of the sum of all squared deviations of the clock deltas from 

the mean divided by the number of clocks in the system.  

    √
 

   
∑ [(     ) ]   

         

With a mean of 0 and a standard deviation that is variable during the simulation, 

one can increase the variance and scale of the random clock deviations using a Gaussian 

distribution for a random number generator. 

 

Definition 5.1. (Gaussian Timestamp Distortion) Let (  ) be a zero mean clock in an 

asynchronous system and let (  ) be the standard deviation of timestamps from the 

clock. Then timestamp delta (tD) is a R.V. is a Gaussian timestamp distortion that fits the 

distribution  

   (  )  
 

√    
 
 

 (     )
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Figure 5.1: Potential for Gaussian timestamp distortion 

 

Figure 5.1 illustrates the potential of reordering for two events under Gaussian 

timestamp distortion. Two activities are executed at the time of a true timestamp (a first 

activity (red) at 0.4, a second activity (green) at 0.6 seconds). When a timestamp 

adjustment is simulated using the Gaussian pdf, the overlap region shows the potential 

for the event to be reordered in a log. A low standard deviation will have a lower 

probability to reorder events in the system than a high standard deviation will result in 

high entropy in the system, because the tails of the Gaussian will have more overlap. 

5.2.1.2. The Credit Application Workflow 

A workflow model used in simulation in the process mining literature is the 

Credit Application Workflow (CAWF) [85].  The CAWF describes potential activity 

paths that can be taken to accomplish a task of approving a loan or line of credit. It starts 

with the ‘receive application’ action, which triggers the execution of the workflow. 

From there, a token based model can route tasks to various people to execute tasks such 
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as ‘check for completeness’, ‘make decision’ and ‘notify’ acceptance or rejection.  A 

visualization of CAWF is shown in Figure 5.2. 

 

 

Figure 5.2: Credit application workflow 

 

We used the WASP to generate logs of workflow instances of the CAWF. The 

CAWF event log describes potential activity paths that are taken through the model. 

Organizational information such as roles and personnel has been incorporated into the 

simulation as well historical information concerning the delays between activities and 

service times for activities. This results in a realistic simulation log, seen in Figure 5.3. 

 

 

Figure 5.3: Event log gathered from simulation 
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We made the assumption that automation in a service oriented environment 

would make activities in the event logs significantly faster, so service times and wait 

times are 1/1000
th

 of the speed of their human counterparts. Process mining has not 

considered the difficulties of reordered events because these effects are barely noticeable 

with human agents. With fully automated software agents in distributed environments, 

these assumptions will no longer hold. 

5.2.1.3. Process Discovery with Timestamp Distortion 

Timestamp distortion is detrimental because it can lead to different perspectives 

on the ordering of activities by different observers. The core focus of control flow 

algorithms is determining causality. Causality is the relation between two events in 

sequence where one is understood or perceived to be the consequence of the other. 

Causality is basically depicted as atomic rules, where the observation of a1 followed by 

a2 is evidence to support the claim that a1 caused a2 or a1  a2. Yet it is a claim and not 

fact. The claim a1  a2 can never be proven [61] because of the potential for a 

counterexample, yet process mining assumes that the relationship is supported by 

observation in event logs.  

By discovering transitions, places and flows, a Petri net can be formed that 

closely resembles the original workflow (Figure 5.4 and 5.5). By visual inspection, one 

can see the similarities between the two models. We superimpose symbols on the 

original log to collapse their representation so the resulting process model may be 

understood. 
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Figure 5.4: Symbolic mapping of CAWF activities to transitions 

 

 

Figure 5.5: Discovered workflow without timestamp distortion 

 

Visual inspection is adequate if it can be seen that the models conform to the 

original exactly, but process models formed with timestamp distortion (Figure 5.6) 

require a quantified measurement. In the figure, timestamp distortion affects the process 

discovery algorithm because causal dependency relations have been changed.  

 

 

Figure 5.6: Discovered workflow with timestamp distortion 
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5.2.2. Behavioral Conformance with Timestamp Distortion 

Conformance checking can help us evaluate the discovered process model for an 

intended purpose. The purpose is to support detection of appropriate and inappropriate 

behavior in semi-automated and inter-organizational workflows. This requires models 

that will detect despite the effects of timestamp distortion. Behavioral conformance 

analysis in discovered Petri nets to expose the problem of timestamp distortion and 

points the reader to the desired solution. 

5.2.2.1. Token Replay 

Behavioral conformance measures the difference between the expected behaviors 

of two Workflow Nets. There are a number of ways to do this, but here the focus is on 

methods that involve token replay [5]. Token replay describes the parsing action of a 

Petri net (PN) over a given input sequence.  As an illustration, consider the parsing 

sequence in Figure 5.7.  (1) An event log may replay on this Petri net with an initial 

marking at p0. The transition after the first place is enabled. (2) An initial activity is 

parsed from any sequence in the event log, which in this case is a. The activity maps to 

transition ‘a’ in the PN and the transition fires since it is enabled. The firing rule does 

two things, first it consumes the token at the input place and second produces a token for 

every output place. (3) Three transitions are enabled after ‘a’ fires. Depending on the 

sequence, either ‘e’ can fire by consuming the tokens at p1 and p2 or ‘b’ and ‘c’ can 

independently fire each consuming the tokens at p1 and p2, respectively. In either case, 

two tokens are produced at p3 and p4 (4). With ‘d’ enabled, it can also fire when it is 

parsed and mapped, completing the firing sequence.  
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Figure 5.7: Token replay from a simple event log  

 

The instances provided in the illustration a parsed exactly to the specification of 

the Petri net.  It is possible that this is not the case. For example, any sequence of the 

above that did not start with ‘a’ would have been identified as a miss, since the activity 

was parsed from the sequence but could not fire. Furthermore, any sequence not ending 

with ‘d’ would have been considered incomplete due to the fact that a token is remaining 

after the complete parsing of the activity sequence. 

Token replay can be used to estimate behavioral conformance of a given 

collection of activity sequences to a model. Using a Boolean replay function PN(σi), one 
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would count sequences, σi ∈ σ, that had complete parsings and left no remaining tokens, 

PN(σi)= 1. Similarly, sequences that could not be replayed in this way PN(σi)= 0. If the 

sequences σ are considered to be acceptable instances, then the PN should parse the 

entire sequence without missing or remaining tokens. If the PN does not accept them, 

then this is a false positive, PN(σi)= 0. Therefore, a measure of the false positive rate for 

any discovered PN is defined: 

 

Definition 5.2. (False Positive Rate) Let σ = { σ1 …σi… σn } be a set of activity 

sequences, PN a Petri net and PN(σi) be a Boolean replay function of PN, then the False 

Positive Rate (FP) for a given Petri net is 

  (    )   
∑ [  (   )    ] 

   

   
  

 

To define a false negative rate, a set of erroneous or faulty activity sequences γ 

must be available. The  negative set of sequences should be rejected by a model, PN(γi)= 

0. If it is not, then a false negative occurs because it replays the entire negative sequence, 

PN(γi)= 1. 

 

Definition 5.3. (False Negative Rate) Let γ = { γ 1 … γ i… γ n } be a set of activity 

sequences, PN a Petri net and PN(σi) be a Boolean replay function of PN, then the False 

Negative Rate (FN) for a given Petri net is 

  (    )   
∑ [  (   )    ] 
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Another way to measure behavioral conformance is through the approximate 

matching of sequences using ratios of produced (p) to consumed (c) and missing (m) to 

remaining (r) tokens. This is called fitness since it refers to the ability of the PN to fit the 

observed behavior in the log.  

       (    )  
 

 
(   

 

 
 )  

 

 
(    

 

 
 ) 

The fitness metric only uses positive sequences, since they are used to measure 

the model ability to capture all real behavior. 

5.2.2.2. Token Replay Analysis of Timestamp Distortion  

A discovered Petri net like the one in Figure 5.6 was formed in a timestamp 

distorted environment. Given the altered structure of the Petri net, it is a reasonable 

claim that the behavior of this log no longer conforms to the oracle. This is problematic 

if an adaptive system deploys a discovered workflow behavior model to detect positive 

or negative activity sequences. The analysis is evidence to support this claim and 

identify a cause of poor detection.  

Figure 5.8 shows FP rates for the discovered Petri net using a heuristic miner. 

With clock variance ranging from 0 to 2.5 ms, the model discovered with the Heuristic 

miner degraded abruptly at increasing levels of timestamp distortion. Timestamp 

inaccuracy is measured in terms of variance from a zero mean. When clock variance rose 

to 0.11 ms, a concurrent relationship was identified where previously there was not. As a 

result, the discovered model changed and the number of places grew to 15 and flows 38. 

Though the FP rate is already unacceptable for auditing purposes, the rate began to settle 

due to increased perturbation in the behavior becoming increasingly similar to the new 
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model in terms of conformance. However, variance makes the workflow model unstable 

at 1 ms and the model breaks. This is expected since the ability for a heuristic miner to 

work is limited by the existence of adequate statistical support for causal ordering. When 

concurrency is added to a model, conformance and detection degrade. 

 

 

Figure 5.8: False positive rate for Heuristic mined Petri net 

 

5.2.2.3. Concurrency-Conformance Tradeoff 

An alternative Petri net model is the flower net in Figure 5.9. The Flower Petri 

Net (FPN) holds an advantage over the heuristic method for its stable construction in 

timestamp distorted environments. This leads to a consistent ability for the activities 
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{a,b,c,d,e,f} to replay in the FPN in any order so it is tolerant of out of sequence 

observations in an event log, so long as the start and end activities remain invariant and 

all activities parsed by the FPN are within the language of the FPN. Another benefit 

from the FPN is that the number of nodes in the petri net are limited to one input place, 

one output place and one flower place for any number of transitions. This limits the size 

of any flower model Petri net to                              (        )     . 

 

p0 p1

b

d

p2

c

f
e

start end

a

 

Figure 5.9: Flower Petri net. 

 

FPN can greatly reduce the effects of concurrency, but they also have a 

disadvantage in that the exhibited behavior in the log may not encompass all possible 

activity sequences as this model does. This means that the behavioral conformance 

checking ability will be limited to detecting out of language activities. The false negative 

rate within the language of activity labels will be very high. 

In a mission centric setting, semi-automated and distributed workflows will 

demand highly tolerant modeling techniques. Using FPN structures may help reduce the 
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effects of concurrency and improve behavioral conformance. In doing so, the benefit of 

low FP rates of FPN can be gained. At the same time, the goal is to decrease the FN rate 

as seen in Flower Net, by allowing the model to maintain invariant characteristics. The 

solution to this problem is the Flower Chain and Flower Chain Algorithm, which 

provides an incremental approach to grow or collapse a Petri net according to the 

environment. 

5.3. Flower Chain Models 

The need to establish modern workflow behavior auditing tools leads us to the 

development of the Flower Chain Net (FCN). The FCN is built upon the concepts in 

Petri nets to maintain their formal properties, but the formulation also adds checkpoints 

and curfews as tools to track the health of a workflow. Semi automated and distributed 

workflows will need additional tools to ensure compliance despite degradation from high 

concurrency. Here, we offer checkpoints and curfews, flower links and flower chain nets 

for this issue. 

5.3.1. Checkpoints and Curfews 

Checkpoints and curfews establish bounds on behavior exhibited in the log 

without expanding states. A checkpoint is applied in the FCN at bottlenecks in the 

model, which could be points of exchange between organizations or the completion of a 

sub task. Checkpoints are intended to handle the handoff of a human part of an 

automated workflow to a automated section. To do so, it must carry useful information is 

the time of arrival and behavior of workers before the checkpoint.  
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Definition 5.4. (Checkpoint) - A checkpoint is a tuple CH = (τ,M,βh, gh) where τ are 

time bounds to reach or exit a checkpoint and m is the minimum and maximum firings of 

a Petri net before a checkpoint. Βh, is a tolerance ratio and gh is a Boolean decision 

function such that: 

  (   )  [(    )                (    )]

 [(    )                 (    )] 

 

A checkpoint will bound the behavior before entering a concurrent region while a 

curfew bounds the behavior within a concurrent region. A curfew is intended to monitor 

the automated parts of a workflow or activities that have uncertain observation. A 

curfew features rate and firing limits discerned from historical rates and limits in a 

training log.  

 

Definition 5.5. (Curfew)- A curfew is a tuple CF = (Κ, Λ, βa, ga ) where Κ is a set of 

ordinal maximum and minimum firing limits within a concurrent  region  and Λ is a set 

of maximum and minimum firing rates. βa, is a tolerance ratio and ga is a Boolean 

decision function such that: 

  (   )   [(    )                (    )]

 [(    )                   (    )] 

 

Checkpoints and curfews form the basis of a detection capability, but the 

structural characteristics of FCN augment this by maintaining strong causal 

relationships. 
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5.3.2. Flower Chain Petri Nets 

A flower chain model is composed of places with checkpoints and curfews as 

well as places without them. The places without them are under the definition for a 

workflow net, but the places with them fall under a definition of a complex place. That is 

the flower link, and it extends from the flower petri net model. 

 

Definition 5.6. (Flower Link)  - A flower link, fl, is a 6 tuple, fl = (pf, Tf,  F, l, CH, 

CF)such that 

1. pf  is a singleton flower place  

2. t ∈ Tf | Tf = {t1 , … , tm} is a finite and nonempty set of transitions 

3. pf  ∉ T  

4. F   (     ) (     ) is a set of directed arcs 

5. l : T → Γ  is a labeling function of transitions T to a finite set of activity labels, Γ 

6. CH (CF) is a checkpoint ( curfew) function 

 

Flower links possess a desirable property of minimal states such the the number 

of nodes              and flows are also limited to |Tf | within the structure. |Tf |  is 

also described as the petal size of the structure. Flower links can form chains, thus the 

name of the model. However, a simple composition does not allow for Petri net 

concurrency relationships, so a more general construction of the FCN requires it to be 

incorporated under a general definition for a Petri net.  
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Definition 5.7. (Flower Chain Net) - A Flower Chain Net is a 6 tuple FCN = (P, T, F, 

FL, M0, l) where: 

1. FL = {fl1, …, flk} is a finite and nonempty set of flower links 

2. P = {p1 , … , pn}   ∀  ∈    is a finite and nonempty set of places  

3. T  = {t1 , … , tm}   ∀   ∈    is a finite and nonempty set of transitions 

4. P ∩ T  = ∅ 

5. F   (    ) (    ) is a set of directed arcs 

6. M0 : P → ℕ0  is the initial marking  

7. l : T → Γ  is a labeling function of transitions T to a finite set of activity labels, Γ 

 

The definition of the FCN allows for Petri net behaviors and  properties of 

Workflow Nets. The FCN allows the potential to limit concurrent relationships to reduce 

complexity within the flower link. At the same time it can improve behavioral 

conformance over the flower petri net in terms of FN rate through checkpoints, curfews 

and a Petri net structure for strong causal dependency.  

5.4. Flower Chain Discovery 

FCN can be composed using the Flower Chain Discovery Algorithm (FCDA). 

The algorithm extends from the α-algorithm to incorporate flower links to reduce 

complexity in environments with timestamp distortion. The algorithm is a 4 phased 

construction of FCN. In the first stage, a footprint matrix, transition sets and identify 

flower candidates are formed. The second stage builds flower links and the third stage 
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grows the rest of the Petri net around them. The final stage sets checkpoints and curfews 

for replay. 

5.4.1. Identifying Flower Candidates 

FCDA starts by parsing an activity event log, L and assigning symbolic labels to 

them. The symbolic transformation distinguishes activities from transitions, as they are 

incorporated into the model.  Four sets of transitions are created: 

1) T = ∀t ∈ L.  

2) TS = ∀σ ∈ L  , ∀t ∈T  | σ  = { σ1… σn } ,t = σ1  

3) TE = ∀σ ∈ L  , ∀t ∈T  | σ  = { σ1… σn } ,t = σn 

4) TR = ∀σ ∈ L  , ∀t ∈T  | σ  = { σ1… σn } ,t = σi = σi+1 

From T, the rule sets are inferred using log based ordering relations [2]  for a, b ∈ T: 

5) R =  ∀ a > b: a leads to b,  ∃σ ∈ L,  a = σi  and b =  σi+1 

6) R→ =  ∀ a → b: (a > b) and ¬(b> a)  

7) R|| =  ∀ a || b: (a > b) and (b> a)  

8) R# =  ∀ a # b: ¬ (a > b) and ¬(b> a)  

The log ordering relations form the footprint matrix shown in Figure 5.10. FCN 

capitalizes on the minimalism in flower links to collapse concurrency. To identify flower 

link candidates, the footprint matrix is 1) scanned by row or column and 2) stored in a 

concurrency table in sorted order of the degree of cardinality of each concurrency set.  

This constitutes a set of transitions for a flower link candidate (Tfl ∈ TFL
*
): 

9) Tfl=  {a, b1 … b|T| }, 1 ≤ i ≤ |T|  | a, b ∈ T  ^  a || bi  
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Concurrency Table

Activity A B C D E F G H I

A # || # # || || || # #

B || # || # # # # # ||

C # || # # # ← # # →

D # # # # → # # # #

E || # # ← # # # # #

F || # → # # # # # #

G || # # # # # # → #

H # # # # # # ← # #

I # || ← # # # # # #

Footprint Matrix (Flower Link)

1

A: B, E, F, G 

B: C, I 

C: B 

E: A 

: :

: :

2

  

Figure 5.10: Finding flower link candidates from the footprint matrix 

 

5.4.2. Building Flower Chain Networks 

In the next stage, flower places are created and linked into the other places in 

FCN as the FCN gains its directed graph structure as candidate selection proceeds first. 

For FCDA and its purpose to improve conformance in discovered PN, it is logical to 

reduce the largest degree of concurrency first and collapse down as needed. FCDA has a 

tunable parameter d to limit the reduction of concurrency in the FCN.  

10) TFL= TFL*, |Tfl | > d 

To build the flower links, pf  is created: 

11) FL = (pf , Tfl)  | ∀ Tfl  ∈ TFL , pf  = { ( Tfl, Tfl ) } 

Though it may not be evidenced by the log, all transitions in Tfl  are put in input 

and output places of pf. This is done to maintain generalization and keep FP low, but one 

could expand the set Tfl to identify input and output only sets if the situation requires it. 

Step 11 builds all the flower links but the remainder of the place nodes must be 

identified before assigning flows.  
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12) X’ = (a, b) | ∃ a → b ∈ R→ , a, b ∉ TFL   

13) FL = (a, Tfl) | ∃ a → b ∈ R→ , b ∈ TFL  , FL = (Tfl, b) | ∃ a → b ∈ R→ , a ∈ TFL   

The algorithm builds the rest of the places to find maximal sets, X’’ that are 

recursively composed from X’ under the condition that the sets of transitions A and B 

have no relationship to each other. The composition allows subsets to be marked and 

discarded from X’’. 

14) X’’ = (A , B) | A  T ^ B   T ^ ∀a∈A ∀b∈B , ∃X’ = (A, B) ^ A# B  

15) Y = ( A , B ) | ∀A’ ∀B’ (A , B) ⊄ (A’ , B’)  

The final place building step combines the flower links, maximal R→ places and 

the input and output places.  

16) P = p(A, B) | (A, B) ∈ Y ∪ FL ∪{p(∅, TS), p(TE, ∅)} 

Flows are the set of all relationships between the places in P and transitions in T. 

17) F = (T , P) ∪ (P , T) | (∀p∈P ∃b∈T b ∈ p⦁)  ∨ (∀p∈P ∃a∈T a ∈ ⦁p) 

where the operator ⦁p (p⦁) denotes the input (output) transitions of p. Finally, the petri 

net is formed as 

18) FCN = (FL , P, T, F ) 

5.4.3. Setting Checkpoints and Curfews 

After the formation of the petri net, FCDA assigns values to CH and CF in FL in 

the following manner. A training log is replayed over FCN, counting tokens produced 

and consumed at each place and in the flower links. Timing information is recorded 

between FL and the maximum and minimum time periods are recorded, τ = {τmin, τmax}. 
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Similarly, the number of firings of the FCN between FL is record in M = {mmin, mmax}. 

The information is used to set the checkpoint, CH.  

19) ∀fl ∈ FL, flCH  (τ , M, βh) 

where βa  is a tunable tolerance parameter. The curfew is set in a similar fashion, as 

token firing and rate information is harvested during the replay Finally, CF is set using 

the maximum and minimum firings (rates) in the training period such that K = {kmin, 

kmax} (Λ = {λmin, λmax}) and 

20) ∀fl ∈ FL, flCF  (Κ, Λ, ga ). 

The flower links provide detection tools in place of the expressiveness of 

concurrency modeling. The results of which will yield smaller and comprehensible 

graphs that can be used for auditing semi-automated and distributed workflows.  

5.5. Results and Evaluation 

Flower Chain Networks have structural and behavioral characteristics that are 

advantageous for semi automated and distributed workflows. The Flower Chain 

Discovery Algorithm is an extension within a family of α-algorithms [51] suited for a 

particular purpose of managing highly concurrent automated processes with the potential 

of timestamp distortion.  

5.5.1. Structural Characteristics of Flower Chain Nets 

The ability to scale and collapse concurrency results can set a bound on node size 

in the graphs. At the same time that FCN are able to reduce concurrency, they are also 

able to model global concurrent relationships. These properties can be seen through 

datasets with collapsible and global concurrency.  
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Figure 5.11: Collapsible concurrency with FCN 

 

5.5.1.1. Collapsible Concurrency 

Collapsible concurrency is a structural feature of FCN to make it possible to 

represent concurrency at various levels. Figure 5.11 shows a progression through three 

stages of a pedagogical event log with several sizes of concurrent groupings. The log 

was generated using sequences of random activities followed by an invariant activity, 

another random sequence with another invariant. Several sets were built so that 

concurrency may be perceived within subsections of an activity event log. 
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In the first stage, all concurrent relationships are visible. In the second stage, they 

reduce as flower link candidates require six members to maintain a concurrent region. At 

stage three, concurrency is completely collapsed. This is a useful property because it 

allows a process analyst to choose the proper level of abstraction for the modeling task 

they are assigned to. The concurrency reduction does not need to be top down. It may be 

bottom up or follow another candidate selection algorithm.  

5.5.1.2. Bounded Size 

The bounded size of FCN gives it its strength. A Flower Link has a bound on 

graph size as such that     |    |   , where the one is from the flower place. State 

explosion may still occur if concurrency remains, but the FCN with complete restriction 

on concurrency will bound the number of nodes, | N | = (    (|    |   ))  (  

|          |). The second set of terms are derived by the fact that all other transitions in 

the fully restricted FCN will only have at most one input place and one output place.  

5.5.1.3. Global Concurrency 

FCN have another interesting potential for showing global concurrency, as seen 

in Figure 5.12. This FCN has invariant and then concurrent sections. Most of the 

concurrent sections have become flower links except the ones circled. In this case, the 

setting of concurrency threshold did not force all branches of the Petri net to be 

restricted. Instead, the forked process spawns two globally concurrent paths through the 

FCN before merging near the end of the workflow.  
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Figure 5.12: Potential for global concurrency maintained in FCN 

 

5.5.2. Behavioral Characteristics of Flower Chain Nets 

Behavioral characteristics of Petri net workflow behavior models are based on 

their ability to replay a log file without over specifying or over generalizing concurrent 

behavior in the Petri net. The ability to replay log files is captured by the fitness metric, 

while over-specification is apparent in a high FP Rate. Among over generalized models, 

the flower model being is most liberal in the patterns of behavior allowed.  

Table 5.1 supports the claim that FCN retain positive characteristics of both 

flower and heuristic models. The experiment to build this table created five datasets with 

increasing levels of timestamp distortion variance. A modeling algorithm was applied to 

each data set to discover a Petri net. Then positive and negative instances were replayed 

through token replay to harvest the source data for these metrics. As the data sets only 
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contained positive instances, negative instances needed to be generated for the test. A 

Monte Carlo string generator produced 3684 negative instances by random mutation of 

activity events by using substitution. The instance generated created instances within a 

hamming distance of 1-5 of positive instances. 

 

Table 5.1: Behavioral conformance comparison for discovered models

 

 

The heuristic model performs well in FP/FN rates until models break under 

concurrency. Until this point fitness is steadily decreasing. Heuristic models at 0.5 ms σ
2
 

infer the presence of more states because of timestamp distortion effects. The Flower 

and Flower Chain Discovery algorithms also detect increasing concurrency, but handle it 

in different ways. The Flower Model is stable in terms of the metrics, but FN rates are 

too high for it to be useful. Flower Chains retain positive characteristics of the flower in 

terms of fitness and false positive rate while also falling between Flower and Heuristic 

models for FN rates. This result can be improved with CH and CF, which were not used 

in the test. 

 

 

    Model     

   Dataset FP Rate FN Rate Fitness FP Rate FN Rate Fitness FP Rate FN Rate Fitness

CAWF (.001 ms σ²) 0.000 0.014 1.000 0.000 1.000 1.000 0.000 0.025 1.000

CAWF (.01 ms σ²) 0.000 0.014 0.999 0.000 1.000 1.000 0.000 0.076 1.000

CAWF (.1 ms σ²) 0.000 0.036 0.953 0.000 1.000 1.000 0.000 0.253 1.000

CAWF (.5 ms σ²) 0.386 0.011 0.000 0.000 1.000 1.000 0.000 0.253 1.000

CAWF (1 ms σ²) 1.000 0.000 0.000 0.000 1.000 1.000 0.000 0.253 1.000

FlowerHeuristic Flower Chain 
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5.5.3. Comparison to HMM Approach 

The Flower Chain Model is advantageous because it can manage pockets of 

concurrency and reduce states. This is not the only model that is capable of doing this in 

process mining, so FCN must be compared against another prevalent method for this 

purpose: Hidden Markov Models (HMM). HMM are stochastic finite state machines 

with hidden states and both transition and emission probabilities. In HMM, states, Xn, are 

hidden and are observed through another set of probabilities P(a, o) where a are the 

hidden states and o are observations of the states. The probabilities P(a, o) are also 

called emission probabilities. HMM possess the Markov property that assume that the 

state of the system at time t+1 depends only on the state of the system at time t, such that  

  [                       ]    [                 ]   

The Markov property is a benefit in HMM because it allows memoryless and 

state reduced modeling. The number of nodes is bound to the number of nodes when 

transitions have stationary probabilities and do not have to be duplicated to represent 

multiple states. HMM used for process mining [42][43] can be effective in detection of 

improbable transitions in a network, such as ones for semi automated and distributed 

workflows since events that are never related in a log would have low probabilities for 

transition. 

However, HMM also have disadvantages. Starting with the memoryless property, 

HMM may be able to detect improbable transitions, but they would not be able to 

deterministically detect an over abundance of firings within a concurrent region. Another 

disadvantage is their inability to manage concurrency. Rozinat found that the only way 
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to express concurrency is by adding states and duplication of transitions [41] or by 

restricting behavior to ‘simple Petri nets’. On the other hand, FCN can range from 

concurrency (complex Petri net) and non concurrency (simple Petri nets) models. 

5.5.4. Evaluation of the Flower Chain Discovery Algorithm 

In an event log of size |L|*| ̅| = n, steps 1-8 of the algorithm can be done in a 

single pass (O(n)). The complexity of flower candidate selection by scanning footprint 

matrix is due to the number of transitions r = |T
2
|. The creation of flower chain models is 

most limited by the creation of maximal places. There are   (∑ ( 
 
)        )   (  ) 

possible places in a Petri net, but the large majority of these are avoided by composition 

of compound places from prime places (those with one input and output) and not 

enumeration.  The number of places and transitions in an FCN is strongly tied to the 

number of flows. A fully restrictive FCN (no concurrency) limits nodes, N, and flows, F, 

to a tight limit, subject to |N| = | P∪T |= (    (|    |   ))  (  |       |) and | F | = 2 * 

(    (|    |   ))  (  |       |) since every transition in a fully restricted network has 

two flows by the definition of the flower link.  

5.6. Conclusion 

We believe that FCN will be helpful in mission situational awareness to provide 

analysis of third party compliance to exported workflows. FCN also possess abilities to 

monitor entrance into concurrent regions through checkpoints and monitor behavior 

through automated or inter organizational sections. The issue of timestamp inaccuracy is 

one of many potential disintegrations of process mining’s core assumption about the 

accuracy of observation by logging devices. This study has attempted to address these 
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piecemeal to show the viability of process mining for workflow behavior auditing in 

mission centric systems and a working methodology for problem identification and 

development. To solidify this thought, the next section reveals the framework and 

system for future logging uncertainty testing. 

 

 

 

  



 

104 

 

6. LOGGING UNCERTAINTY TESTING  

 

As has been repeatedly shown in this dissertation, process mining lacks 

approaches to model and conform event data with noise, loss and distortion from system 

sources but for each issue shown a suitable solution has been found. To identify mission 

shifts in activity streams inferred from bits on a wire, we developed the workflow shift 

detector. To automate preprocessing of this data, we developed workflow instance 

extract and rank algorithms. To enable process discovery and behavioral conformance 

checking with timestamp inaccuracy, we developed the flower chain Petri net and 

discovery algorithm. 

Yet uncertainty will persist beyond the scope of this study so an evaluation tool 

that lays the groundwork for future study is required. A general simulation methodology 

for logging uncertainty testing (LUT) will yield new insights for the core focus of 

process mining. These insights yield new opportunity for uncertainty modeling, 

simulation and analysis.   

6.1. Logging Uncertainty in Workflow Observation 

The idea of ‘logging uncertainty’ was introduced by Rozinat as observation noise 

[41], but this study expands that definition to include noise and loss from activity 

inference and timestamp distortion. The basic premise of logging uncertainty testing is 

that actual behavior and observed behavior vary. In Figure 6.1, a workflow model may 

specify behavior to a set of human actors. At their discretion, humans choose behavior to 

achieve mission success, which may or may not be the expected behavior specified by 
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the workflow model. However, the possibility that events are not recorded as they 

actually happened exists in some measure on every computer system. By assuming that 

logging uncertainty does not exist, the process mining community limits itself from 

expansion into many mission centric environments.  

 

Logging 

Uncertainty

Actual Activity  Observed ActivityBehavior 

Specification

(Workflow Model)

Behavior Instance

(Process Mining

Event Log)

 
Figure 6.1: Actual and observed behaviors in uncertain environments 

 

Existing solutions like ProM [86] and HMM Experimenter [41] lack the 

separation between actual and observed behavior. In this section, separation is realized 

in activity transduction due to stochastic processes. An observation structure of faulty 

observers is incorporated into the simulation environment. The Workflow Auditing and 

Simulation Platform (WASP) supports LUT through transduction algorithms for 

timestamp distortion, noise and loss. WASP also supports a family of repeatable 

experiments. This is exhibited in a case study for timestamp distortion modeling that 

uses a pseudorandom exponential function to emulate the effects of queue delays for 

automated workflows. The section concludes with an evaluation of the WASP against 

HMM Experimenter and ProM’s CPN plug in. 

6.1.1. Activity Transduction 

Activity transduction is the process by which actual behavior is altered in noisy, 

lossy and distortion prone event logging environments. This means that through 
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insertion, deletion and modification of activities, a set of observed behavior instances 

can be derived from a set of actual behavior instances.  Let α , a ∈ α|{a1, a2, • • • , aK }be 

an actual behavior instance in LA and β, b ∈ β {b1, b2, • • • , bK } be an observed behavior 

instance in LO. Then β = Φ(α) is a transduction of α to β where Φ(α) is a transduction 

system over the input sequence α, a ∈ α|{a1, a2, • • • , aK } to produce the output 

sequence β, b ∈ β {b1, b2, • • • , bK }. (Figure 6.2). 

 

1

a:b

 

Figure 6.2: Activity transduction 

 

A transduction system is a state machine that produces an output recording from 

the elements of the input. The simple example in Figure 6.2 records an output b from an 

input a so that a string ‘aaaa’ would become ‘bbbb’. The simple example is an example 

of deterministic distortion, where a substitution of information has systematically altered 

the behavior signal that is observed. To allow for a general model for logging 

uncertainty, a stochastic distortion model is required for the transduction system.  

To model the transduction Φ(α) for these uses, one can view the observation of 

an activity as the result of a stochastic process. The observation of an activity can have 

four basic outcomes.  
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1) UA - Actual Activity: The expected activity is observed 

2) UN - Additive Noise: Unexpected activity is observed 

3) UI - Reductive Incompleteness: The expected activity is not observed 

4) UD - Distortion Modification: The expected activity is observed, but it has been 

updated by a distortive influence in the process (like timestamp modification, 

attribute modification, etc). 

We assume the received behavior signal β to be a function of transduction Φ(α, 

U)of a transmitted signal α and some factor of logging uncertainty, U. U represent an 

uncertainty factor as a stochastic process and u ∈ U , {u0,u1,u2,...., un} as instances of the 

model. With this framework, process analysts can offer models of U for LUT, but a 

structure for the error prone observations must be designed. 

6.1.2. Observation Structure 

As is, the ProM framework for CPN simulation presents the observation 

environment in Figure 6.3.  Activity Events are designed to provide the process analyst 

with the perception that a task is being executed over a period of time. The timing delays 

described in the previous definition allow for an activity to remain in state s1
+
 during a 

service delay period. An observer will identify the firing of the transition labeled Acta 

(the ‘start’ activity) as it transitions between states s1 and s1
+
. A ‘complete’ activity, 

labeled Actb is observed by o2. This is a simple model, but does not provide the 

researcher with visibility at the ‘activity’ level nor does it provide a separation of actual 

and observed behavior. 
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Actb 

(End)
s1 s2
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Figure 6.3: Observation structure (ProM) 
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Figure 6.4: Observation structure (proposed) 
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As opposed to the typical observation structure, this study proposes a layering 

approach that allows observers to provide multiple outputs. Some observers are directly 

linked to transitions which they monitor, while others are to linked to logging tools. In 

Figure 6.4, all observers are connected and share information, o1  o2A is a reporting 

event, as is o2A  o2B. A data fusion process occurs at o2A and a transduction process 

occurs at o2B. Data fusion in this case is a trivial aggregation of data fields so it is not 

discussed further. The real potential of the observation structure is apparent when it runs 

on top of a simulation environment, described next. 

6.1.3. Simulation Environment 

Two potential approaches exist for simulating logging uncertainty. The first is the 

use of a Hidden Markov Model (HMM). Unfortunately, HMM are unable to account for 

concurrency, so the approach is of limited value for simulation [41]. On the other hand, 

ProM’s CPN plugin uses a Colored Generalized Stochastic Petri Net (CGSPN) which 

maintains the connection of simulation to the modeling formalism in Workflow Nets. 

The CGSPN is able to handle more state information and it can represent concurrency, 

which is critical requirement for workflow simulations. 

Even so, some alterations must be made to fit an uncertainty observation 

structure and activity transduction. The transition observers, o ∈ O, add the potential to 

observe activities upon the firing of a transition, t. To incorporate them into the 

simulation framework, we offer the definition for the Colored Observed Generalized 

Stochastic Petri Nets (COGSPN). The definition does not alter the behavior of a CPN, 

but rather augments its ability to support LUT by including potentially faulty log writers.  
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Definition 6.1. (Colored Observed Generalized Stochastic Petri Net) Let O be a 

finite, nonempty set of observers, {o1 , … , on}, a Colored Observed Generalized 

Stochastic Petri Net (COGSPN) is a 5 Tuple | COGSPN = (CPN, T1, T2, W, Φ) where: 

1. CPN = (P, T, C, I⁻ , I⁺ , M0) is the underlying Colored Petri net 

2. T1   T is the set of timed transitions, T1 ≠ ∅ 

3. T2 ⊂ T is the set of intermediate transitions,  

4. T1 ⋂  T2 ≠ ∅ and T1    T2 = T 

5. W = (w1, … , w|T|) is an array whose i
th

 entry is a function of   (  )  →     such 

that  

∀  ∈  (  )    ( ) ∈          

6. In the case of ti ∈T1 then ci is a firing delay according to a probability 

distribution, possibly due to the color c ∈ C(ti) or defined stationarily 

7. In the case of ti ∈T2 then ci is a firing weight specifying the relative firing 

frequency due to the color c ∈ C(ti)  

8.  Φ:  O → T   O : |T| ≤ |O| and ∀ t ∈ T, ∃o ∈ Ο : Φ(t) = O 

 

The definition alters Coloured Generalized Stochastic Petri Nets (CGSPN) [66], 

where firing delays and weights can incorporate historical information with regards to 

the service times of a transition. A weighted transition fires in zero service time, while a 

transition with a firing delay waits during a service period according to an exponentially 

distributed value. The firing weight of class 2 is used to prioritize the firing of two 

immediate transitions. The observer function Φ, maps a set of observers to the 

transitions such that all transitions have at least one observer. The definition allows for 

multiple observers so that the observations can be streamed to two log files, actual LA 

and observed LO. 
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6.2. Prototype Implementation of COGSPN 

Through modeling and simulation of logging uncertainty, it is possible to 

measure the effects of uncertainty on process mining methods.  Generating a subset of 

expected behavior instances, one can hope to explore the potential for workflow 

behavior transduction in the Workflow Auditing and Simulation Platform (WASP), 

which contains a suite of transduction, process discovery and conformance checking 

algorithms where uncertainty monitoring experiments the WASP are repeatable.  

6.2.1. The WASP Testbed 

The WASP (Workflow Auditing  & Simulation Platform) is a tool that a process 

analyst can use to discover and analyze the control flow perspective of workflows as 

they are captured in event logs. The WASP’s unique analytical components are 

specifically geared to understanding the effects of various factors of uncertainty on 

process discovery and conformance checking.  

The WASP can be separated into two major components, data generation and 

data analysis. Figure 6.5 shows the data generation component. The workflow model 

designer (upper left) is the component of the WASP that creates workflow models. It 

achieves this through YAWL (Yet Another Workflow Language) [70], which is an open 

source business process design program. One can employ some of the inherent analysis 

and design capabilities of this tool. Actual behavior is generated by a discrete event 

generator (lower left of Figure 6.5). The discrete event generator needed to be capable of 

stochastic timing and path choices. CPN Tools [65][87], has a history of supporting 

process mining endeavors of this sort [85][88].  



 

112 

 

WASP

WORKFLOW 

MODEL DESIGNER

DISCRETE EVENT 

GENERATOR

TRANSDUCER
CPN 

Tools

Log 

(Re)Writer

Uncertainty 

Factor

Workflow 

Model 

Analyzer

YAWL

Log 

Writer

Monitor

DEG 

Manager

LOG

(Actual)

LOG

(Observed)

Workflow

Model

(Expected)

Workflow 

Model 

Designer
Log Storage

& Analysis

Log Storage

& Analysis

ProM
Import 

Tool

 

Figure 6.5: WASP simulation architecture 

 

To generate activities as discrete events in a log, CPN Tools requires a petri net 

representation and acceptable file format. ProM provides this, but also gives the 

capability to generate distributions for choice for the transitions and timing in the 

workflow model. These transitions emulate human discretion within the expected 

behavior of the workflow model. A DEG Manager can automate the program simulation 

from Java [87] and writes events to a log, so long as the CPN has been instrumented to 

do this. The result of DEG is actual behavior.  
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The log with the actual activities is stored or imported into the WASP Transducer 

(right of Figure 6.5). The Transducer accepts an activity event in a log as input and 

writes a transduction of the activity event to another log as output. The nature of the 

transduction is due to the uncertainty factor, u ∈ U. The resulting set of behavior 

instances at the output is observed behavior. Both sets of data, Actual and Observed are 

presented for analysis. 

The data analysis component is shown in Figure 6.6. Data analysis occurs at three 

levels, basic analysis, process discovery and conformance, which are arranged 

hierarchically on the right of the figure. Either actual or observed behaviors can be 

analyzed, but often both are analyzed together to evaluate differences in the logs. In 

basic analysis, logs are scoured for activity frequencies, timing delays, and basic bigram 

structure. Bigram structure is the set of any two adjacent activities in the log. Basic 

analysis is important for initial understanding of uncertainty in the logs, but process 

discovery is necessary for higher understanding. In the process discovery phase, 

behavior instances are clustered and mined to produce various perspectives on behavior. 

In the conformance phase, token  replay of the events in both logs can be replayed on 

discovered processes and their low level rules compared among expected, actual and 

observable behavior. Conformance Checking yields insights about the usefulness of 

models in applications. All three levels yield artifacts, metrics and insights about the 

nature of uncertainty. For comparison of algorithms implemented in WASP and in ProM 

or other process miners, logs may be ported to these other systems and analyzed 

separately.  
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Figure 6.6: WASP analysis architecture 

 

6.2.2. Experiments for Logging Uncertainty Testing 

In order to observe the impact of uncertainty, one would need to place an 

observer between the behavior specification and behavior instance and log, with full 

view of the inputs and outputs of the channel. LUT should be done for a variety of 

purposes such as scenario detection experiments, which led to the workflow shift 

detection problem, uncertainty factor analysis which led to the need for WIC extraction 

and ranking or discovery experiments that yield new models (e.g. FCN) and discovery 

algorithms (FCDA). 
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6.2.2.1. Scenario Detection and Evaluation 

Finally, the user of the WASP can import a data set or manually craft scenarios 

that can be included in a test set for detection by instance replay tools. They work by 

replaying the log over a discovered model in a strict or approximate fashion. Suitable 

metrics would include the pass/fail ability of the log to replay the scenario or identify 

breaches of expected behavior. Approximation techniques can also help a scenario 

detection experiment to be evaluated on a gradient between pass and fail. Broadly, 

scenario detection experiments test the process mining tool chain to detect fraud, 

information leaks, systemic policy breaches, performance bottlenecks or a shift in 

mission state/operations intensity as described in Section 3. 

6.2.2.2. Uncertainty Factor Analysis 

On the left of Figure 6.6, the modeling capability of the WASP is showcased. 

Uncertainty modeling is done in the next section, but for now it is important to point out 

the ability of the WASP to incorporate various modeling approaches in an iterative 

fashion, which allows millions of trial runs to alter sequences in logs under vaious 

parameters. Uncertainty factor experiments transform an event log in the test case while 

maintaining a control case.  

Analysis from the test and control logs may determine how a single algorithm 

performs in the presence of uncertainty. Algorithms can be shown to be robust to an 

uncertainty factor by evaluating artifacts produced at various analysis phases of process 

mining: basic, discovery and conformance. In general, three possibilities can occur with 

comparison at these phases. First, a method may be considered to be robust if the 



 

116 

 

comparison tools show no significant deviation between mined artifacts. Second, 

comparison tools show unacceptable deviation between test and control to show the 

method is not robust. Third, partial deviation between artifacts produced from the test 

and control logs indicates an area which algorithms may perform well sometimes and 

not others. In the third case, suitable techniques may be applied to preprocess the data, 

correct the algorithm to be less susceptible to logging uncertainty as shown in Section 4 

and Section 5. 

6.2.2.3. Discovery Model Conformance 

In discovery experiments, an logging uncertainty is controlled while multiple 

algorithms are used to discover and compare process artifacts. The use of pseudorandom 

number generators in creating the log files provides a consistent transformation of the 

log so that the algorithmic inputs do not vary between methods. In addition, discovery 

and conformance experiments may be performed over ranges of workflow models, seeds 

and uncertainty models to allow for evaluating algorithms.  

In modeling from sets of workflow instances, three possibilities can occur with 

discovery between two algorithms. First, both algorithms can produce the same process 

model or within an insignificant margin as measured by a metric. In the absence of a 

divergent metric, these algorithms are said to perform equivalently for the given 

uncertainty factor. Second, resulting models may be completely different, meaning that 

the artifacts they produce do not conform to one another. In this case, it will be 

important to use some metric to determine which is better or if neither perform well 

enough. The third possibility is that regions of the discovered process model are the 
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same and others are not and the difference between the discovered model is significant 

by some metric. The quality of the metric will help the process analyst choose between 

algorithms as before. 

In summary, discovery experiments can justify the use of one algorithm versus 

another. With suitable and expressive metrics, they can help the process analyst make 

tradeoffs in generalization, algorithmic performance and behavioral conformance as 

described in Section 5. 

6.3. Structural Conformance with Timestamp Distortion 

The WASP has structural conformance capabilities as well as other evaluative 

tools to evaluate process mining with logging uncertainty. The use of pseudorandom 

number generation makes experiments repeatable if needed. As a case study for an 

uncertainty factor experiment, timestamp distortion analysis is continued from the 

previous section by exploring timestamp distortion using an exponential delay model to 

simulate the effects of varying service delays. To analyze the effects, structural 

conformance is monitored in discovered Petri nets. 

6.3.1. Footprint Matrix Conformance 

Structural conformance [89] refers to the analysis of nodes and flows in a Petri 

net. Footprint conformance is a specific approach for structural conformance that 

analyzes the rules that a discovery algorithm produces to create a Petri net. The running 

example in section 4 is used as the source data for structural conformance testing. 

Further, an exponential timestamp distortion technique is employed to distort the 

timestamps in a test log.  
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The footprint matrix from the test log is compared to the footprint matrix of an 

oracle log. An interim step in process discovery using the algorithm is the creation of a 

footprint matrix. Footprints can be compared to investigate the changes in causal 

dependency in the presence of timestamp distortion. Recalling the earlier discussion of 

rules inference by exposing log ordering relationships, the two matrices in Figure 6.7 are 

to be compared (with an oracle (Top) and with a timestamp distorted file (Bottom)).  

 

 

 

Figure 6.7: Footprint for oracle (top) and test (bottom) timestamp distortion 

 

Activity A B C D E F G H I J K L

A # -> # # # # # # # # # #

B <- # || -> # # # # # # # #

C # || # # # # # # # # # #

D # <- # # -> # # # # # # ->

E # # # <- # -> # # # # # #

F # # # # <- # -> # # # -> <-

G # # # # # <- # -> -> # # #

H # # # # # # <- # || -> # #

I # # # # # # <- || # -> # #

J # # # # # # # <- <- # # #

K # # # # # <- # # # # # #

L # # # <- # -> # # # # # #

Footprint Matrix (Oracle) 

Activity A B C D E F G H I J K L

A # # # # # # # # # # # #

B # # -> -> # # # # # # # #

C <- # -> -> -> # # # # # # #

D # # <- <- # -> # # # # # #

E <- # <- # -> -> # # # # # ||

F # # # <- <- # -> -> -> # -> <-

G # # # # # <- || || # -> # #

H # # # # # <- # || || -> # #

I # # # # # <- || # || -> # #

J # # # # # # <- <- <- # # #

K # # # # # <- # # # # # #

L # # # || # -> # # # # # #

Footprint Matrix (Test)
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Figure 6.8: Difference matrix of footprint rules 

 

The test log was developed when the average service time was 200 ms. By visual 

inspection of the footprint matrices, one can perceive the differences between the two 

logs as a general increase in the number of rules (#  {,  or ||} and an increase in 

concurrency relations ||. This is to be expected because of the effect of reordering. In 

Figure 6.8, the differences are identified by removing rules that are equivalent. 

Visual inspection does not quantify differences, so footprint conformance is a 

way to quantify the differences between rules in process models. The simple metric 

sums the number of different rules over the total, including # relations and subtracts the 

fractional number from 1. In this case,   
  

   
          By measuring footprint 

conformance, one can graphically summarize the effect of timestamp distortion on a 

process discovery algorithm. To set a lower bound for footprint conformance using the 

naïve α-algorithm, the WASP iterates on increasing values of timestamp distortion. The 

result can be seen in Figure 6.9.  

Activity A B C D E F G H I J K L

A  ->:# #:-> #:->         

B <-:#  ||:# ->:#         

C #:<- ||:# #:-> #:-> #:->        

D #:<- <-:# #:<-   #:->      ->:||

E   #:<-          

F    #:<-    #:-> #:->    

G        ->:|| ->:|| #:->   

H      #:<- <-:||      

I      #:<- <-:||      

J       #:<-      

K             

L    <-:||     

Footprint Matrix (Difference)
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Figure 6.9: Degrading footprint conformance scores 

 

The function exhibited by the footprint conformance metric can be strongly 

correlated to a precision metric for bigram retrieval, Figure 6.10. Bigram precision is 

calculated using  
    ∈ (  ) ∪   ∈ (  )  

    ∈ (  )  
 to measure the proportion of relevant causal 

ordering relationships in an event log to all bigrams, b, in the log. The exponential decay 

exhibited in both graphs implies a correlation between the qualities. Therefore, 

improving the precision of the bigrams in the log it may also have an effect on 

conformance as well. 
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Figure 6.10: Bigram precision with increasing distortion  

 

6.3.2. Heuristic Approach and Iterated Testing 

To capitalize on this, well supported rules can be distinguished to separate 

stronger causal relationships from weaker ones. The heuristic approach to process 

discovery is based on a statistical counting method of the log ordering relations. The 

interested reader should refer to [49] for a further discussion on the method, but the basic 

process involves counting the number of ordering relations that occur for evidence of 

their support. Then, a dependency measure is used to identify the strength (from -1 to 1), 

of the log ordering relation. The dependency measure is defined as: 
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The dependency measure is applied against the causal counting matrix producing 

the dependency matrix seen in Figure 6.11. The resulting values indicate the strength of 

ordering relations based on their statistical prevalence.  

 

 

Figure 6.11: Dependency matrix for heuristic mining algorithm 

 

Figure 6.12 shows repeated trials of the footprint matrix comparison for various 

levels of the heuristic. The region contained by the upper boundary of the most stringent 

heuristic based approach and the lower boundary of the pure approach indicates the 

range of potential solutions for model conformance with timestamp distortion using 

heuristics based methods. This serves as a guide for potential solutions and should also 

bound expectations for process models emerging in environments with logging 

uncertainty. 

Activity A B C D E F G H I J K L

A 0 0.667 0.975 0.966 0 0 0 0 0 0 0 0

B -0.667 0 -0.042 0.997 0 0 0 0 0 0 0 0

C -0.975 0.042 0 0 0 0 0 0 0 0 0 0

D -0.966 -0.997 0 0 0.997 0 0 0 0 0 0 0.947

E 0 0 0 -0.997 0 0.997 0 0 0 0 0 0

F 0 0 0 0 -0.997 0 0.978 0.977 0.991 0 0.995 -0.947

G 0 0 0 0 0 -0.978 0 -0.214 -0.229 0.951 0 0

H 0 0 0 0 0 -0.977 0.214 0 -0.418 0.987 0 0

I 0 0 0 0 0 -0.991 0.229 0.418 0 0.957 0 0

J 0 0 0 0 0 0 -0.951 -0.987 -0.957 0 0 0

K 0 0 0 0 0 -0.995 0 0 0 0 0 0

L 0 0 0 -0.947 0 0.947 0 0 0 0 0 0

Dependency Matrix
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Figure 6.12: Degrading structural conformance from increasing queue delay 

 



 

124 

 

6.4. Testbed Comparison 

Three systems stand out as appropriate comparisons to the WASP. ProM 

incorporates two plug-ins, the CPN simulator and the HMM experimenter. Both offer a 

process analyst an ability to simulate workflow nets. WASP is built on tools that ProM 

uses. The HMM experimenter lacks some functionality because the HMM that form the 

basis of simulation are limited in concurrency. Our extension of the simulation 

environment is the idea of split observation. The WASP offers all categories of 

capabilities as is seen in ProM’s CPN and HMM experimenter, yet because of its 

immaturity and lack of production level quality, the WASP lacks the analysis power of 

its counterparts. The summary of these characteristics is seen in Table 6.1. 

Yet the WASP is unique in its ability to support LUT. The HMM Experimenter 

considered the idea of logging uncertainty, but did not describe it. Our tool offers a 

number of algorithms above ProM based tools, primarily in the distortion category. 

Noise is a common feature in these tools, but noise padding, which helps to simulate 

effects seen in noisy, continuous log files is also unique. A summary of these uncertainty 

testing capabilities is in Table 6.1 and Table 6.2 

 

Table 6.1: Evaluation of simulation capabilities in WASP and ProM tools 

 

Feature ProM - CPN ProM - HMM WASP

Bank of Algorithms   

Complex PN  

Stochastic Rate  

Stochastic Delay  

Prob. Transition   

Split Observer 

Simulation Capabilities for LUT
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Table 6.2: Evaluation of modeling capabilities in WASP and ProM tools 

 

 

6.5. Conclusion 

This section described how a testbed and methodology for LUT was defined and 

implemented. The system transforms behavior instances and observes the impact of 

uncertainty by measuring the difference between process models derived from LA and 

LO. The WASP makes it is possible to model, analyze and overcome the effects of 

logging uncertainty.  

Mission centric collaboration requires modern auditing methods for workflow 

behavior auditing. In this study, we have sought our approach to modern auditing 

through process mining methods. However, the existence of noise from activity 

inference and system errors is problematic for process mining because they effect the 

perception of causal relationships. To address these concerns, we have developed 

algorithms, process models and a methodology that carves a path for process mining 

with logging uncertainty. With the WASP, we have developed the solutions towards the 

goal of realizing workflow behavior auditing for mission centric collaboration. 

Feature ProM - CPN ProM - HMM WASP

Distortion 

Lossiness  

Queue Delay 

Clock Drift 

Noise (Extraprocess)   

Noise (Intraprocess)   

Noise Padding 

Modeling Capabilities for LUT
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7. CONCLUSIONS AND FUTURE WORK* 

 

To advance mission centric collaboration with tools for situation awareness, this 

study has investigated workflow behavior auditing in a battle rhythm driven computing 

environment. In particular, the major emphasis of this thesis is to show the feasibility of 

process mining for environments with dynamic mission states and logging uncertainty. 

Modern mission centric collaboration presents technical challenges in the form of 

identification of dynamic mission state changes, extraction of workflow instances from 

noisy, unstructured data and mitigation of distributed system effects on process 

discovery algorithms. To this end, several research questions were posed to validate the   

application of process mining. First, are workflow changes in a battle rhythm detectable 

___________________________________ 

*Part of the data reported in this section is reprinted with permission from “APSAT: A 

Framework for Modeling and Analysis of Workflow Dynamics in Mission Centric 

Systems.” by J. Pecarina and J.C. Liu, 2012 in Proceedings of the 2012 Conference on 

Collaboration Technologies and Systems, Westminster, Colorado, 2012, pp. 575–582, 

Copyright [2012] by IEEE. 

 

*Part of the data reported in this section is reprinted with permission from “SAPPHIRE: 

Anonymity for Enhanced Control and Private Collaboration in Healthcare Clouds.” by J. 

Pecarina, S. Pu, and J.C. Liu, 2012 in Proceedings of the 4th International Conference 

on Cloud Computing Technology and Science, Taipei, Taiwan, 2012, pp. 99–106, 

Copyright [2012] by IEEE. 

 

*Part of the data reported in this section is reprinted with permission from “Behavior 

Instance Extraction for Risk Aware Control in Mission Centric Systems.” by J. Pecarina 

and J.C. Liu, 2013 in Proceedings of the 3rd International Conference on Cognitive 

Methods in Situation Awareness and Decision Support, San Diego, California, 2013. pp. 

45-50, Copyright [2013] by IEEE. 



 

127 

 

from activities inferred from packet traces? Second, can workflow instances be extracted 

from activities inferred from packet traces to provide source data for process mining? 

Third, is Petri net discovery still structurally and behaviorally appropriate when causal 

dependency is undermined by timestamp distortion? Fourth, is long term testing and 

development of process mining in environments with logging uncertainty supportable? 

We believe that by addressing these challenges, workflow behavior auditing will help 

decision makers achieve mission success by managing collaborating forces and systems 

with a mission centric mindset.  

7.1. Summary of Research Findings 

The work in this dissertation answered the research questions by defining 

technical problems and developing algorithmic solutions that address limitations in the 

current state of the art in process mining. The major contributions of this study include 

WSDA to find Mission State Changes in a battle rhythm, WIC-Extract to provide source 

data for process discovery/conformance of workflow behaviors, FCN/FCDA to enable 

service to service and inter-organizational auditing with timestamp uncertainty and the 

WASP, which is a testbed for evaluation and development of logging uncertainty testing 

of process mining methods for workflow behavior auditing. 

WSDA is a statistical change point detection algorithm that detects concept drift 

in noisy event logs. WSDA uses a sliding window scheme to capture statistical 

frequencies of general features of resource access actions. WSDA found workflow shifts 

in activities inferred from packet traces, detected workflow shifts will make Petri nets 

more concise and used an online approach to finding change points in workflow event 



 

128 

 

data. We believe it may also be used to reduce extraction requirements for Workflow 

Instance Collection by splitting logs into workflow periods, where particular behaviors 

may have a higher rate of occurrence. 

WIC-Extract is a string processing algorithm that finds approximate repeating 

subsequences in a symbolic string that represents actions in an event log. Without 

specific knowledge of the targeted activity symbols, WIC Extract and Rank algorithms 

provide a tool for process analysts to extract approximately repeating activity sequences. 

Our workflow behavior features capture inherent characteristics of workflow sequences 

to improve the ranking of sequences to an analyst. The algorithm also features a genetic 

algorithm that configures the weights in the ranking function so an analyst can select 

from top results. WIC Extract found workflow instances in activities inferred from 

packet traces of simulated battle rhythm data. The algorithm provides correct output, 

returning all WIC within the analyzed log segment and bounds the noise in the output 

event logs using the tunable parameter. We believe that this tool will be beneficial to the 

process mining community to expand data sources into network traffic and other 

unstructured sequential data. 

FCDA is a process discovery algorithm that accepts a potentially timestamp 

inaccurate event log and produces a Petri net model to represent concurrency bounded 

behavior from the log. Our solution showcases a stepwise scaling approach to allow 

more concurrent structure into the model than Flower Petri nets. At the same time, it 

features a minimal footprint while reducing the false positive rate of heuristic 

algorithms. The solution can be incorporated with anomaly detectors using its structure 
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to carry historical and organizational data. We believe this model could be scaled to 

incorporate more expressive behavior within a threshold of minimum false positives. We 

also believe that the model will be useful in managing semi-automated and distributed 

workflows, where concurrency from timestamp inaccuracy is expected to be high to 

enable service to service and inter-organizational transaction auditing in timestamp 

uncertain scenarios for cloud workflows. 

Finally, the WASP is a testbed to evaluate and develop process mining methods 

in logging uncertain environments. The WASP possesses a simulation framework that 

observes and transforms activities generated by a colored generalized stochastic Petri 

net. We demonstrated repeated trials of Logging Uncertainty Testing (LUT), answering 

a critical need in the field of process mining to evaluate the robustness of process mining 

techniques in the presence of timestamp distortion, observation noise and loss. The 

methodology is demonstrated throughout our study as empirical evidence of repeatable 

modeling, analysis and algorithmic design approaches. We believe this tool will be vital 

to advance process mining technology for mission centric collaboration. 

From this empirical evidence, it is a reasonable claim that process mining can be 

applied with dynamic mission states and logging uncertainty. Further, the development 

of an evaluative framework for process mining with logging uncertainty ensures future 

analysis and development in this new focus area.  

7.2. Implications for Mission Situational Awareness 

The empirical evidence suggests the viability of process mining for mission 

situational awareness. The underlying premise for this claim is that workflow execution 
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contributes to the organizational mission. Given the premise, since we have shown 

process mining to be feasible in the battle rhythm environment, we believe that mission 

situational awareness with workflow behavior auditing under the process mining 

framework is also feasible by extension.  

Workflow execution in an air operations center supports the intermediate 

milestones in the air battle rhythm. Repeated and successful workflow executions 

contribute to the production of an ATO, which is the overall mission of the organization. 

Workflow execution is captured in event logs as activities and workflow instances. 

Event logs can be audited to assess and optimize mission centric collaboration. 

Therefore workflow behavior auditing, defined as functions that “assess and optimize 

workflow performance” [13], evaluates the supporting elements of the organizational 

mission.  

It follows that if workflow behavior auditing can provide conformance checking 

and process discovery of the supporting elements of a mission, then mission situational 

awareness is possible through workflow behavior auditing. Our assertion is that the 

critical path to mission situational awareness through workflow behavior auditing is 

realized in process mining. Process mining can discover a workflow behavior model, 

check the conformance of observed behavior to a given workflow model, or enhance a 

model with situational awareness [18]. Decision makers and process analysts have used 

process mining for resource allocation [85], intrusion and fraud detection [52][53], 

forensic security [54][55][56] and access control [57][58][59][60]. Thus, process mining 

has been shown to be effective for workflow behavior auditing. 
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Nevertheless, we must characterize assumptions as those for which this 

theoretical implication will hold. We recognize that our result was obtained in a 

simulated environment where noise, loss and distortion were still somewhat limited. We 

also recognize that in order to detect workflow shifts and extract workflow instances, 

event data needs to record approximately repeating sequences of activities. The 

statistical prevalence of workflow behavior is likely when workflow behavior is repeated 

more often than noise. This is important to support a final assumption that causal 

dependency could still be inferred despite the existence of logging uncertainty.  

7.3. Lessons Learned and Future Work 

The theoretical implication raises critical questions about process mining for 

mission situational awareness. Questions concerning the validity of simulated workflow 

data and simulated uncertainty models must be addressed to maximize the applicability 

of this study for broad use. Questions concerning real world implementations and 

applications of this work must also be addressed to advance workflow behavior auditing 

in the mission centric environment. By exposing the limitations of the current study, we 

identify several avenues of future work.  

7.3.1. Data Sources 

Our foremost limitation is the availability of realistic data, leading to three 

lessons learned. First, data was simulated for our study by scenarios of potential 

workflows in sterile and uncertainty controlled environments. While we justify the 

controlled simulation of workflow behavior data as a means to isolate the potential 

effects of uncertainty and dynamism on process mining algorithms, widespread adoption 
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of our algorithms can only come if they are tested using real world data sets. Second, 

RAA harvesting explored a relatively small region of the unstructured data in enterprise 

networks. The parsing activity for the SMB protocol would need to be repeated on other 

protocols and systems to infer activities across the enterprise. Third, enterprise networks 

generate a lot of data, leading to a concern that the methods employed for data 

preprocessing in this study may not scale well. Thus, data sources should also be large 

scale, requiring scalable methods for data preprocessing. 

To address the first lesson learned, we believe the value of process analysis will 

increase in the eyes of mission stakeholders so that there will be opportunities to harvest 

new data sources under more realistic conditions. A significant technical hindrance here 

is privacy, so techniques to anonymize or audit privately or confidentially could 

encourage organizations to share workflow behavior datasets. The second lesson learned 

of expanded activity inference algorithms must follow two paths. First, there are other 

protocols and systems to analyze. For example, web based process mining should be 

considered for online collaboration environments. Second, non deterministic techniques 

for activity inference should be considered. In our work, human activity is inferred from 

protocol and system events using rule based parsing techniques, but future work could 

consider probabilistic inference. 

Finally, the scalability concern for data preprocessing demands future works to 

monitor and preprocess enterprise networks with modular and parallel systems, as shown 

in Figure 7.1. Data harvesting, (Actionizer in the figure) could be implemented by 

placing observation points in networks at bottlenecks (like portals or placed near the 
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hosts being monitored). Harvesters would output data streams like RAA streams, which 

could be segmented by workflow shift detection. WIC extraction could be executed over 

workflow periods in parallel by accessing and dividing preprocessing tasks from a 

common data store. Modeling tools could operate concurrently over data maintained by 

process analysts.  

 

 
Figure 7.1: Modular and parallelized data preprocessing 

 

7.3.2. Logging Uncertainty Testing 

Algorithms for temporal uncertainty, noise padding and lossy observation in this 

dissertation were initial models for logging uncertainty. Other sources of logging 

uncertainty remain to be explored, such as log manipulation and logging queue 

overflows to name a few. Improvements or domain specific alteration of logging 

uncertainty models may help auditors gain further insight into process mining with 
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faults. As for modeling uncertainty, future work should also establish benchmarks and 

guidelines for LUT. This has been difficult to this point because of the lack of 

benchmarks in process mining in general, but as new data sets and evaluative 

frameworks emerge, there will be opportunities for LUT standardization as well. This 

may help lead to establishing theoretical bounds for conformance between observed 

workflow behaviors to an oracle model given a level of uncertainty. 

Our evaluation testbed has expansion potential as well. It is true that ProM is a de 

facto standard for process mining experiments, but the community that uses it has a 

splintered focus. We intend to extend capabilities of the WASP rather than incorporating 

it as a plug-in to ProM to give the WASP a unique feel for its core competency in 

logging uncertainty. The prototype definitely needs better algorithms, an XES reader and 

banks of workflow nets to simulate from.  

7.3.3. Workflow Behavior Auditing Applications 

This dissertation featured components of the Access Profile Statistical Analysis 

Tool (APSAT) [68], which was a prototype to harvest, extract and model workflow 

behaviors amongst distributed file systems. Plans to expand the APSAT framework, 

shown in Figure 7.2, should consider scalability and parallel execution. They should also 

consider practical ways to measure mission relevance and health and methods and 

models for conformance. The tool was limited in scope and reach, but it exhibited the 

basic necessity of modern mission centric auditing, a stepwise approach to building 

knowledge about worker behaviors and how they compare to a baseline mission. Future 

iterations of the framework may lead to advanced workflow behavior applications. 
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Figure 7.2: APSAT prototype auditing framework 

 

Along these lines, a mission situational awareness could be a valuable 

commodity for access control, authentication and network management. A corporate 

workflow profile, coupled with an appropriate risk model may be used to assign a level 

of trust between a resource owner and requestor. Decision makers would understand 

more about the health of their organization to make network policy decisions with the 

profile as justification.  Initial system prototypes are needed to demonstrate the value of 

assured and adaptive systems to a broad base of researchers and mission owners. 

Policy and privacy in next generation mission centric systems will depend on 

advances in auditing and applications that can utilize adaptive behavior discovery and 

conformance tools. Two platforms that rely on modernized workflow behavior auditing 

illustrate a long term vision for assured and adaptive systems. The first is the 
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Releasability Gateway, which uses mission relevance as an attribute for authentication 

and fine grained access control. The second is the Risk Aware, Mission Parameterized 

(RAMP) policy framework [81] that senses workflow dynamics to recommend and adapt 

security policy according to mission goals. 

7.3.3.1. Releasability Gateways 

Releasability Gateways address data privacy through dynamic trust and trust 

management [90][91][92]. Figure 7.3 shows the conceptual distributed architecture using 

Releasability Gateways to form a layer of abstraction for a Health Information Exchange 

(HIE) [93] that provides dynamic access to third party organizations. As a proxy or 

access portal, HIE could redirect static mechanisms in Kerberos [94] and Role Based 

Access Control (RBAC) [95] for dynamic attributes. Bootstrapping a Kerberos-like 

protocol to supplant identity management with trust verifications [96] allows policy 

authorization to proceed from the data owner while security enforcement mechanisms 

remain with the data storage location. Workflow auditing can yield a mission relevance 

attribute to be employed within trust negotiation [97][98] or Attribute Based Encryption 

[99][100] for portal authentication. For mission relevant authorization to data, Attribute 

Based Access Control [101], usage control [102] or workflow based access [103] could 

provide dynamic and fine grained access for semi-trusted third parties. Mission 

relevance would be captured as a worker’s positive contribution to a workflow. Dynamic 

access can be regulated through a credential management tool on the gateway that 

changes access privileges to conform workflows to mission profiles. 
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Figure 7.3: Releasability Gateway for dynamic access and authentication 

 

7.3.3.2. Risk Aware, Mission Parameterized Policy 

The Risk Aware, Mission Parameterized (RAMP) policy framework [81] (Figure 

7.4) is designed to adapt security policy based on the perception of mission state. The 

proposed framework calls for log analysis tools [104][105][68] to capture raw sequential 

data, segmenting it into workflow activity sequences. RAMP retrieves workflow 

instances from segments of interest using string processing and information retrieval 

techniques to extract training instances of workflow behavior. A workflow discovery 

tool [86] mines activity event logs to create workflow models for intelligent agents. With 

workflow models as a reference for mission state, planning and scheduling algorithms 

[76] can recommend security policy actions to information security managers. Security 

managers interface with intelligent agents using a network tasking order (NTO) [106] to 
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assign ‘weights of effort’ to particular missions and optimize security-performance 

tradeoffs. The NTO specifies an action schema to operate a security policy engine 

adapting policy based on behavior analysis and risk assessment.  

 

 

Figure 3.4: Risk Aware, Mission Parameterized (RAMP) policy framework 

 

Workflow behavior auditing prototypes and applications are vital to demonstrate 

the value of process mining for mission situational awareness. By integrating the 

algorithms in this dissertation and beyond, prototype systems can entice mission owners 

to share data from real world environments leading to improved future studies.  

7.4. Conclusion 

The path towards mission situational awareness is feasible with the ability to 

audit the organizational expectation of workflow behaviors with the actual and 
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observable activities in mission centric collaboration. In the battle rhythm, implicit or 

explicit workflows specify and mandate activities to enable mission success. However, 

the challenges posed by dynamic mission states, raw and unstructured event logs and 

inaccurate timestamps make the conventional approach of process mining inadequate. In 

this dissertation, we addressed these deficiencies by creating three algorithms and an 

experimental testbed to exhibit the feasibility of process mining as a workflow behavior 

auditing technology for mission centric collaboration. Workflow shift detection is 

addressed in the WSDA algorithm using a change point detection scheme of divergent 

probability distributions between long term and short term observation windows. 

Unstructured event logs become structured in an automated fashion using string 

processing techniques for workflow instance extraction. The flower chain discovery 

algorithm infers the flower chain network for timestamp distorted event logs. Finally, for 

long term testing and development, we introduced the WASP simulator, the first of its 

kind in the process mining field. 

The future of workflow behavior auditing depends upon continued development 

of algorithms that can mitigate logging uncertainty. New data sources and system 

prototypes will also propel next generation mission situational awareness. In doing so, 

commanders will possess new tools to assess and optimize workflows and missions in 

the battle space environment. 
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