10 research outputs found

    Discovery and evaluation of non-taxonomic relations in domain ontologies

    Get PDF
    The identification and labelling of non-hierarchical relations are among the most challenging tasks in ontology learning. This paper describes a bottom-up approach for automatically suggesting ontology link types. The presented method extracts verb-vectors from semantic relations identified in the domain corpus, aggregates them by computing centroids for known relation types, and stores the centroids in a central knowledge base. Comparing verb-vectors extracted from unknown relations with the stored centroids yields link type suggestions. Domain experts evaluate these suggestions, refining the knowledge base and constantly improving the component's accuracy. A final evaluation provides a detailed statistical analysis of the introduced approach

    Media Watch on Climate Change - A Web-based Knowledge Repository to Promote Awareness and Analyze Stakeholder Communication

    Get PDF
    This paper presents the technology base and roadmap of the Climate Change Collaboratory, a Web-based platform that aims to strengthen the relations between scientists, educators, environmental NGOs, policy makers, news media and corporations - stakeholders who recognize the need for adaptation and mitigation, but differ in worldviews, goals and agendas. The collaboratory manages expert knowledge and provides a platform for effective communication and collaboration. It aims to promote awareness and environmental literacy, to facilitate networking with leading international organizations, and to bridge the science-policy gap. Rich, self-sustaining community interaction will help translate knowledge into coordinated action. Innovative survey instruments in the tradition of “games with a purpose” will create shared meaning through collaborative ontology building, and leverage social networking platforms to capture indicators of environmental attitudes, lifestyles and behaviors

    An ontology for human-like interaction systems

    Get PDF
    This report proposes and describes the development of a Ph.D. Thesis aimed at building an ontological knowledge model supporting Human-Like Interaction systems. The main function of such knowledge model in a human-like interaction system is to unify the representation of each concept, relating it to the appropriate terms, as well as to other concepts with which it shares semantic relations. When developing human-like interactive systems, the inclusion of an ontological module can be valuable for both supporting interaction between participants and enabling accurate cooperation of the diverse components of such an interaction system. On one hand, during human communication, the relation between cognition and messages relies in formalization of concepts, linked to terms (or words) in a language that will enable its utterance (at the expressive layer). Moreover, each participant has a unique conceptualization (ontology), different from other individual’s. Through interaction, is the intersection of both part’s conceptualization what enables communication. Therefore, for human-like interaction is crucial to have a strong conceptualization, backed by a vast net of terms linked to its concepts, and the ability of mapping it with any interlocutor’s ontology to support denotation. On the other hand, the diverse knowledge models comprising a human-like interaction system (situation model, user model, dialogue model, etc.) and its interface components (natural language processor, voice recognizer, gesture processor, etc.) will be continuously exchanging information during their operation. It is also required for them to share a solid base of references to concepts, providing consistency, completeness and quality to their processing. Besides, humans usually handle a certain range of similar concepts they can use when building messages. The subject of similarity has been and continues to be widely studied in the fields and literature of computer science, psychology and sociolinguistics. Good similarity measures are necessary for several techniques from these fields such as information retrieval, clustering, data-mining, sense disambiguation, ontology translation and automatic schema matching. Furthermore, the ontological component should also be able to perform certain inferential processes, such as the calculation of semantic similarity between concepts. The principal benefit gained from this procedure is the ability to substitute one concept for another based on a calculation of the similarity of the two, given specific circumstances. From the human’s perspective, the procedure enables referring to a given concept in cases where the interlocutor either does not know the term(s) initially applied to refer that concept, or does not know the concept itself. In the first case, the use of synonyms can do, while in the second one it will be necessary to refer the concept from some other similar (semantically-related) concepts...Programa Oficial de Doctorado en Ciencia y Tecnología InformáticaSecretario: Inés María Galván León.- Secretario: José María Cavero Barca.- Vocal: Yolanda García Rui

    Learning Ontology Relations by Combining Corpus-Based Techniques and Reasoning on Data from Semantic Web Sources

    Get PDF
    The manual construction of formal domain conceptualizations (ontologies) is labor-intensive. Ontology learning, by contrast, provides (semi-)automatic ontology generation from input data such as domain text. This thesis proposes a novel approach for learning labels of non-taxonomic ontology relations. It combines corpus-based techniques with reasoning on Semantic Web data. Corpus-based methods apply vector space similarity of verbs co-occurring with labeled and unlabeled relations to calculate relation label suggestions from a set of candidates. A meta ontology in combination with Semantic Web sources such as DBpedia and OpenCyc allows reasoning to improve the suggested labels. An extensive formal evaluation demonstrates the superior accuracy of the presented hybrid approach

    Automated extension of biomedical ontologies

    Get PDF
    Developing and extending a biomedical ontology is a very demanding process, particularly because biomedical knowledge is diverse, complex and continuously changing and growing. Existing automated and semi-automated techniques are not tailored to handling the issues in extending biomedical ontologies. This thesis advances the state of the art in semi-automated ontology extension by presenting a framework as well as methods and methodologies for automating ontology extension specifically designed to address the features of biomedical ontologies.The overall strategy is based on first predicting the areas of the ontology that are in need of extension and then applying ontology learning and ontology matching techniques to extend them. A novel machine learning approach for predicting these areas based on features of past ontology versions was developed and successfully applied to the Gene Ontology. Methods and techniques were also specifically designed for matching biomedical ontologies and retrieving relevant biomedical concepts from text, which were shown to be successful in several applications.O desenvolvimento e extensão de uma ontologia biomédica é um processo muito exigente, dada a diversidade, complexidade e crescimento contínuo do conhecimento biomédico. As técnicas existentes nesta área não estão preparadas para lidar com os desafios da extensão de uma ontologia biomédica. Esta tese avança o estado da arte na extensão semi-automática de ontologias, apresentando uma framework assim como métodos e metodologias para a automação da extensão de ontologias especificamente desenhados tendo em conta as características das ontologias biomédicas. A estratégia global é baseada em primeiro prever quais as áreas da ontologia que necessitam extensão, e depois usá-las como enfoque para técnicas de alinhamento e aprendizagem de ontologias, com o objectivo de as estender. Uma nova estratégia de aprendizagem automática para prever estas áreas baseada em atributos de antigas versões de ontologias foi desenvolvida e testada com sucesso na Gene Ontology. Foram também especificamente desenvolvidos métodos e técnicas para o alinhamento de ontologias biomédicas e extracção de conceitos relevantes de texto, cujo sucesso foi demonstrado em várias aplicações.Fundação para a Ciência e a Tecnologi

    Computer-based tools for supporting forest management. The experience and the expertise world-wide

    Get PDF
    Report of Cost Action FP 0804 Forest Management Decision Support Systems (FORSYS)Computer-based tools for supporting forest management. The experience and the expertise world-wide answers a call from both the research and the professional communities for a synthesis of current knowledge about the use of computerized tools in forest management planning. According to the aims of the Forest Management Decision Support Systems (FORSYS) (http://fp0804.emu.ee/) this synthesis is a critical success factor to develop a comprehensive quality reference for forest management decision support systems. The emphasis of the book is on identifying and assessing the support provided by computerized tools to enhance forest management planning in real-world contexts. The book thus identifies the management planning problems that prevail world-wide to discuss the architecture and the components of the tools used to address them. Of importance is the report of architecture approaches, models and methods, knowledge management and participatory planning techniques used to address specific management planning problems. We think that this synthesis may provide effective support to research and outreach activities that focus on the development of forest management decision support systems. It may contribute further to support forest managers when defining the requirements for a tool that best meets their needs. The first chapter of the book provides an introduction to the use of decision support systems in the forest sector and lays out the FORSYS framework for reporting the experience and expertise acquired in each country. Emphasis is on the FORSYS ontology to facilitate the sharing of experiences needed to characterize and evaluate the use of computerized tools when addressing forest management planning problems. The twenty six country reports share a structure designed to underline a problem-centric focus. Specifically, they all start with the identification of the management planning problems that are prevalent in the country and they move on to the characterization and assessment of the computerized tools used to address them. The reports were led by researchers with background and expertise in areas that range from ecological modeling to forest modeling, management planning and information and communication technology development. They benefited from the input provided by forest practitioners and by organizations that are responsible for developing and implementing forest management plans. A conclusions chapter highlights the success of bringing together such a wide range of disciplines and perspectives. This book benefited from voluntary contributions by 94 authors and from the involvement of several forest stakeholders from twenty six countries in Europe, North and South America, Africa and Asia over a three-year period. We, the chair of FORSYS and the editorial committee of the publication, acknowledge and thank for the valuable contributions from all authors, editors, stakeholders and FORSYS actors involved in this project

    A framework for assistive communications technology in cross-cultural healthcare

    Get PDF
    Rural and remote Australian Aboriginal communities suffer seriously adverse life expectancy rates, lifestyle disease complications and hospital treatment needs due to type 2 diabetes. In great part this is due to communications barriers arising from the lack of equitable acculturation within patient-practitioner consultations. This research presents a framework foundation for a computerised patient-practitioner lingua franca. Behavioural and design science ontology development delivers an intercultural patient-practitioner type 2 diabetes assistive communications system, known as P-PAC

    Computer-based tools for supporting forest management. The experience and the expertise world-wide.

    Get PDF

    The design and use of forest decision support systems in Switzerland

    Get PDF

    The design and use of forest decision support systems in Switzerland

    Get PDF
    corecore