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Abstract

Developing and extending a biomedical ontology is a very demanding
process, particularly because biomedical knowledge is diverse, com-
plex and continuously changing and growing. Existing automated
and semi-automated techniques are not tailored to handling the is-
sues in extending biomedical ontologies.
This thesis advances the state of the art in semi-automated ontol-
ogy extension by presenting a framework as well as methods and
methodologies for automating ontology extension specifically designed
to address the features of biomedical ontologies.The overall strategy is
based on first predicting the areas of the ontology that are in need of
extension and then applying ontology learning and ontology matching
techniques to extend them. A novel machine learning approach for
predicting these areas based on features of past ontology versions was
developed and successfully applied to the Gene Ontology. Methods
and techniques were also specifically designed for matching biomedi-
cal ontologies and retrieving relevant biomedical concepts from text,
which were shown to be successful in several applications.

Keywords: ontology extension, ontology matching, ontology learn-
ing, ontology evolution





Resumo

O desenvolvimento e extensão de uma ontologia biomédica é um pro-
cesso muito exigente, dada a diversidade, complexidade e crescimento
contínuo do conhecimento biomédico. As técnicas existentes nesta
área não estão preparadas para lidar com os desafios da extensão de
uma ontologia biomédica.
Esta tese avança o estado da arte na extensão semi-automática de on-
tologias, apresentando uma framework assim como métodos e metodolo-
gias para a automação da extensão de ontologias especificamente de-
senhados tendo em conta as características das ontologias biomédicas.
A estratégia global é baseada em primeiro prever quais as áreas da on-
tologia que necessitam extensão, e depois usá-las como enfoque para
técnicas de alinhamento e aprendizagem de ontologias, com o objec-
tivo de as estender. Uma nova estratégia de aprendizagem automática
para prever estas áreas baseada em atributos de antigas versões de
ontologias foi desenvolvida e testada com sucesso na Gene Ontology.
Foram também especificamente desenvolvidos métodos e técnicas para
o alinhamento de ontologias biomédicas e extracção de conceitos rel-
evantes de texto, cujo sucesso foi demonstrado em várias aplicações.

Palavras Chave: extenso de ontologias, alinhamento de ontologias,
aprendizagem de ontologias, evoluo de ontologias





Resumo Estendido

As ontologias biomédicas representam um importante avanço em Bioin-
formática, uma vez que auxiliam num dos grandes desafios desta área,
a gestão e extracção de conhecimento. O desenvolvimento de uma on-
tologia biomédica é um processo muito exigente, dada a diversidade,
complexidade e crescimento contínuo do conhecimento biomédico. Um
dos maiores desafios na manutenção de uma ontologia é mantê-la actu-
alizada. Com o advento de técnicas como a sequenciação automática
de DNA e microarrays tem sido gerada uma grande quantidade de da-
dos que resultaram num crescimento exponencial do número de publi-
cações científicas e dos dados armazenadas em bases de dados biomédi-
cas. As ontologias biomédicas, em especial as mais bem-sucedidas, são
utilizadas todos os dias por investigadores de várias áreas, e necessi-
tam estar actualizadas para cumprirem o seu propósito.

O desenvolvimento de uma ontologia continua a ser um esforço essen-
cialmente manual, especialmente no caso das ontologias biomédicas
dado o seu domínio complexo. No entanto, têm sido desenvolvidas na
última década várias técnicas automáticas ou semi-automáticas para
auxiliar na construção e manutenção de uma ontologia. Estas técnicas
têm sido essencialmente aplicadas em ontologias dedicadas a domínios
muito mais restritos e simples que os das ontolgias biomédicas. Muitas
destas técnicas utilizam propriedades de ontologias formais, enquanto
que as ontologias biomédicas têm normalmente uma estrutura sim-
ples. Adicionalmente, muitas usam também processamento e análise
de texto, o que é um desafio especial no domínio biomédico, dada
a complexidade e ambiguidade da terminologia biomédica. Não ob-
stante, o grande volume de literatura biomédica disponível e a prolifer-
ação de ontologias biomédicas e outros recursos do género, encorajam



o desenvolvimento e adaptação de técnicas de extensão de ontologias,
capazes de encontrar novos conceitos para representar novo conheci-
mento.

Esta tese debruça-se sobre o tema da extensão de ontologias no con-
texto das ontologias biomédicas. O seu objectivo é o desenvolvimento
de uma framework para a extensão semi-automática de ontologias
assim como métodos e metodologias que auxiliem na automação de
alguns dos processos de extensão de modo a aliviar o esforço dos
curadores. A framework proposta centra-se nos desafios específicos
da extensão de ontologias biomédicas, oferecendo três componentes:
previsão de extensão, aprendizagem e alinhamento. A previsão de ex-
tensão ataca os problemas relacionados com a grande quantidade de
literatura e ontologias relacionadas disponível, ao identificar áreas que
necessitam de extensão. Estas são usadas para focar os esforços de
aprendizagem e alinhamento que geram listas de conceitos candidados
ao explorar a abundante literatura e ontologias.
Dada a existência de vários sistemas para aprendizagem e alinhamento
de ontologias, o enfoque principal da tese é no desenvolvimento de
métodos para a componente de prever extensão. Eu desenvolvi e
testei duas estratégias: uma de regras de outra de aprendizagem su-
pervisionada. A estratégia de regras é baseada em orientações para
o desenvolvimento de ontologias e provou não ser apropriada para a
tarefa. A estratégia de aprendizagem supervisionada é baseada na
noção de que é possível aprender um modelo que distingue entre as
áreas que irão ser estendidas e aquelas que não o serão, baseado em
características das ontologias. Esta estratégia atingiu os 79% de f-
measure na previsão do refinamento de uma porção do ramo biological
process da Gene Ontology (GO).
Desenvolvi também métodos e técnicas para aprendizagem e alin-
hamento de ontologias de modo a garantir o seu sucesso.
No que diz respeito à aprendizagem, desenvolvi uma medida de relevân-
cia de termos capaz de ordenar conceitos candidatos de acordo com



a sua relevância para o domínio. Isto é particularmente relevante em
domínios altamente específicos e complexos como a biomedicina. A
medida prosposta, FLOR, usa o conteúdo de evidência das palavras
no vocabulário da ontologia para medir a relação entre conceitos da
ontologia e candidatos. O FLOR foi também aplicado para medir a
relação entre conceitos da ontologia de modo a gerar novas relações.

Dois conjuntos de métodos foram desenvolvidos para alinhar ontolo-
gias, sendo posteriormente submetidos ao OAEI (Iniciativa para Avali-
ação de Alinhamento de Ontologias). O primeiro, baseado em semel-
hança léxica e técnicas de computação de semelhança global, obteve
bons resultados mas não superou o estado da arte. O segundo, resul-
tante de uma colaboração com a equipa do AgreementMaker, obteve
o primeiro lugar na competição com uma f-measure de 91.7% no al-
inhamento de ontologias da anatomia. Os métodos empregues resul-
taram de uma série de melhorias aos métodos de semelhança léxica
que exploraram os desafios e cracterísticas das ontologias biomédi-
cas. Um destes métodos é baseado na adição de novos sinónimos à
ontologia e é portanto também um método para enriquecimento da
ontologia. Com o inuito de testar a aplicação destes métodos noutro
domínio, foi também realizado o alinhamento de uma porção do GO
com o FMA (Foundational Model of Anatomy), onde foi obtida uma
f-measure de 90.7%.

As contribuições desta tese não são apenas originais na sua essência
mas possuem também um objectivo complexo, representando por-
tanto aproximações válidas à resolução dos desafios da extensão de
ontologias biomédicas. A interação dos métodos aqui descritos com
sistemas já existentes de acordo com a estrutura da framework pro-
posta, resulta numa metodologia para a extensão de ontologias capaz
de ser aplicada a ontologias biomédicas ou outras ontologias com car-
acterísticas semelhantes.



A extensão de ontologias é uma tarefa esencial da engenharia de on-
tologias e a automatização de alguns dos seus processos pode con-
tribuir não só para a diminuição do investimento de recursos mas
também para garantir uma actualização atempada da ontologia, o que
pode ser crucial em áreas de desenvolvimento rápido como a genómica,
a epidemiologia ou a saúde. Considero que o futuro do desenvolvi-
mento de ontologias passa necessariamente por uma automatização
de alguns dos seus processos, nomeadamente os mais entediantes e de-
morados, libertando assim os peritos em ontologias para se focarem em
aspectos de modelação mais complexos. É a integração bem sucedida
do conhecimento humano com métodos automáticos que irá garantir
a realização do potencial das ontologias biomédicas como ferramentas
essenciais para lidar com os desafios de gestão de conhecimento nas
Ciências da Vida no século XXI, e para a qual considero que esta tese
é um avanço.
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Chapter 1

Introduction

In recent years biomedical research has been generating an enormous amount
of data due to the advent of high throughput techniques such as automated
DNA sequencing and microarrays. This data deluge brought on the emergence
of Bioinformatics, as computers became essential to store, manage and analyze
the ever-increasing amount of data. In spite of last decades efforts to structure
and organize biomedical data, there are still many issues that challenge biomed-
ical knowledge discovery and management (Rubin et al., 2008). On one hand,
most scientific knowledge is still present only in natural language text in the
form of scientific publications, whose number grows exponentially. The alarm-
ing growth rate in the number of publications makes it necessary to employ
text mining techniques if we are ever to aspire at keeping up with their speed.
However, the natural ambiguity and subjectivity of natural language hinders the
automated processing of scientific publications. Although there have been some
well-intended discussions on the enforcing of structured digital abstracts by pub-
lishers (Gerstein et al., 2007), this is still only a conjecture. On the other hand,
although there is a large number of databases to store biomedical data, the effort
to achieve interoperabiltity between them is still lagging behind, given that most
resources, particularly the older ones, were developed in a completely indepen-
dent fashion, and only in the last few years has there been an effort to connect
them to other resources. One very important breakthrough for both areas, was
the development of biomedical ontologies (bio-ontologies). They support both
issues by providing unequivocal and structured models of specific domains, which
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1. INTRODUCTION

is fundamental to resolve semantic ambiguities in text mining and also to serve
as a common background to biomedical databases.
However, the development of a bio-ontology, or other domain ontologies, is a very
demanding process that requires both expertise in the domain to model, as well
as in ontology design. This means that people from very different backgrounds,
such as biology, philosophy and computer science should be involved in the pro-
cess of creating an ontology. However, many specific bio-ontologies are built by
small teams of life sciences researchers, with little experience in ontology design.
Ontology developers are responsible for first, agreeing on the precise limits of the
domain to model; second, defining the structure and complexity of the model; and
finally, building the ontology itself by creating the concepts, relations and other
axioms it might contain (Aranguren et al., 2008). Several methodologies have
been developed to help build ontologies (Aranguren et al., 2008; Denicola et al.,
2009; Pinto et al., 2004; Sure et al., 2003). Nevertheless, ontology development
remains a manual and labor intensive task, with ontology engineers traditionally
not concerned with the effort involved in it, given that once an ontology is built,
the task is finished. This is not the case in the Life sciences domain, where knowl-
edge is diverse, complex and continuously changing and growing. Bio-ontologies
can never be considered complete, but always having to adapt to our new under-
standing of biological knowledge. This forces bio-ontology development to be an
iterative process (Pinto et al., 2009), to keep up with the dynamic and evolving
domain. This process, usually named ontology evolution, is a continuous effort,
requiring large investments of both time and money with each new version that is
produced. Moreover, many bio-ontologies cover large and complex domains which
magnifies the effort required, even when considering highly successful ontologies,
such as the Gene Ontology (GO Consortium, 2010), where a large community is
engaged in its creation. These challenges create the need for semi-automated sys-
tems that are able to support ontology engineers in the task of ontology evolution,
and in particular in ontology extension, the most frequent and time consuming
evolution task in biomedical ontologies.

The aim of this thesis is the development of methods and methodologies to
be integrated in a proposed framework for semi-automated ontology extension

2



1.1 Research Questions and Contributions

that aims at alleviating the burden on biomedical ontology developers. One of
the main challenges these experts face is the size and complexity of the textual
corpora they need to analyze in order to create new ontology versions. These
methods are specifically tailored to handle the characteristics of bio-ontologies
and the life sciences domain, by leveraging on the large amount of publicly avail-
able biomedical literature and the many biomedical ontologies and terminologies,
through text mining, machine learning, ontology learning and ontology matching
techniques. The main testing ground for the developed methods is the Gene On-
tology (GO), which is currently the most successful case of ontology application
in molecular biology and provides an ontology for functional annotation of gene-
products in a cellular context, capable of dealing with the semantic heterogeneity
of gene product annotations.

1.1 Research Questions and Contributions

In the following, an overview of this work is presented in terms of the research
questions that were addressed and the accomplished contributions.

1.1.1 Research Questions

The research questions addressed in this thesis span three areas of ontology engi-
neering: ontology extension, ontology matching and ontology learning. Ontology
matching and learning provide methods that can be used in the field of ontology
extension.

Biomedical Ontology Extension One of the research topics in this thesis is
what are the specific challenges of extending biomedical ontologies (I). Re-
searching these issues is a cornerstone for the development of a framework
for the extension of biomedical ontologies (II). A relevant issue in biomedi-
cal ontology extension is the identification of the needed changes, which is
rendered more difficult by the size and complexity of the domain. So an-
other question this thesis addresses is if it is possible to automate the change
capturing phase of ontology extension and thus identify the ontology areas
that need to be extended(III).
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Ontology Learning A crucial challenge in extracting biomedical ontology con-
cepts from text is the differentiation between general terms and domain
terms. In this thesis I address the question of wether it is possible to
support this differentiation by exploring the vocabulary of the ontology to
extend (IV).

Ontology Matching In this area I investigate what are the specific issues in
matching biomedical ontologies (V) and if current ontology matching meth-
ods can be improved to handle them (VI). And finally if this improvement
can be achieved without using external resources (VII).

1.1.2 Contributions

When choosing a research topic for my doctoral thesis I was motivated by my pre-
vious work in semantic similarity for my MSc dissertation. An initial exploration
of semantic similarity measures resulted in the publication of a review on PLoS
Computational Biology (Pesquita et al., 2009b), the highest impact factor journal
in Bioinformatics. Semantic similarity was subsequently applied in two areas of
my work: ontology matching and candidate term filtering. This thesis advances
the state of the art in semi-automated biomedical ontology extension by present-
ing a framework as well as methods and methodologies for ontology extension
specifically designed to address the issues of extending biomedical ontologies:

Framework for automating ontology extension (II) which integrates three
main components: extension prediction, learning and matching. I designed
this framework to solve some of the issues in extending biomedical ontolo-
gies and also to support the integration of novel and existing automated
methods with human expert verification.

Conceptual framework for analysis of ontology extension (I) , where I pro-
pose a series of guidelines for analyzing ontology extension. The application
of these guidelines to the Gene Ontology revealed interesting patterns in its
development (Pesquita & Couto, 2011).
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Supervised learning approach for automating change capturing (III) , where
I created a novel approach based on features of previous versions of the
ontology to support the prediction of extension events in areas of the ontol-
ogy. This approach reached 0.79 f-measure and also identified the minimal
number of versions and features able to support prediction. The good re-
sults obtained with this approach contrasted with the poor results found
by using rules based on traditional guidelines for ontology development.
These results were published in PLoS Computational Biology (Pesquita &
Couto, 2012) and in the International Conference on Biomedical Ontologies
(Pesquita & Couto, 2011).

Novel methods for filtering candidate concepts extracted from text (IV)
were proposed with the goal of ensuring the relevance of candidate concepts
to the ontology. FLOR, the main method I developed, is a term relevance
measure based on the ontology vocabulary which can be used to calcu-
late the relatedness between ontology concepts. FLOR was applied to find
relations between ontology concepts with the purpose of enriching the on-
tology and it was found to achieve a good performance. FLOR was also
applied as an entity-resolution module in an approach for the recognition
and resolution of chemical entities, where it was shown to outperform a
dictionary-based approach by 2-5% f-measure (Grego et al., 2012).

Novel and improved methods for ontology matching (V-VII) were devel-
oped with the specific intent of handling the issues I identified in the align-
ment of biomedical ontologies. These methods were submitted to OAEI
2010 and OAEI 2011. In OAEI 2010 my system reached 5th and 2nd place
in two of the competition tasks (Pesquita et al., 2010). In OAEI 2011, in
collaboration with the AgreementMaker team, my contributions helped to
achieve the 1st place in the competition, improving on past years results
(Cruz et al., 2011). Moreover, I also tested their application in aligning a
portion of GO and FMA where an f-measure of 90.8% was achieved. It is
also noteworthy that one of the proposed methods also functions as an on-
tology enrichment strategy by extending the ontology with new synonyms.
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1.2 Reader’s Guide

This thesis is organized in three main parts:

Foundation where an overview of the theoretical foundations needed for
this thesis is given. Chapter 2 gives a short introduction to ontologies
and ontology evolution, describing some biomedical ontologies as well.
Chapter 3 focuses on relevant approaches in ontology extension, de-
tailing the state of the art in ontology extension and its sister areas,
learning and matching. Chapter 4 provides a basic introduction to
machine learning and semantic similarity, two techniques employed in
this thesis.

Methods The second part describes in detail the approaches developed
to support the semi-automated extension of biomedical ontologies. In
chapter 5 a framework for semi-automated extension is presented along
with an analysis of challenges and opportunities for this area in the
biomedical domain. It also describes a conceptual framework for the
analysis of ontology extension and its application to the Gene On-
tology. Chapter 6 presents the approaches developed for predicting
ontology extension. Chapter 7 focuses on exploring ontology vocabu-
lary in the context of ontology learning and enrichment while ontology
matching is addressed in chapter 8.

Conclusions The third part concludes this thesis by presenting an overall
summary, an outlook to future work and some final remarks.
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Foundation
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Chapter 2

Ontologies and Ontology
Evolution

This chapter is divided in two main sections. The first is dedicated
to the definition of ontology, and a description of bio-ontologies, with
a focus on ontologies to be used throughout this work. The second
describes the state of the art in ontology extension and provides a
general delineation of the closely related areas of ontology learning
and matching.

2.1 Ontologies

2.1.1 Background

The origins of ontology date back to Aristotle who first proposed the
study of being and reality, and particularly the classification within a
hierarchy of the entities that exist. In this sense, ontology is compa-
rable in many ways to the taxonomies produced by the life sciences,
dedicated to the description and classification of organisms, that first
came into existence in the 18th century with Linnaeus.
But the concept of ontology as a technical term in the context of com-
puter science was only coined in the early 1990’s by Gruber (Gruber,
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1993) as "an explicit specification of a conceptualization of a domain".
This definition caused much debate, so we refer to (Gruber, 2008) for
a clear and more recent definition:

Definition 1. "An ontology defines (specifies) the concepts, relation-
ships, and other distinctions that are relevant for modeling a domain.
The specification takes the form of the definitions of representational
vocabulary (classes, relations, and so forth), which provide meanings
for the vocabulary and formal constraints on its coherent use."

This means that the modeling provided by an ontology should spec-
ify a systematic correlation between reality and its representation. It
should also allow automatic information processing through its formal-
ization, while remaining understandable and clear to a domain expert
(Smith, 2003).

In Computer Science several kinds of data and conceptual models are
considered to be ontologies, covering a wide range of expressiveness and
level of axiomatization, including: glossaries, thesauri, XML schemas,
database schemas, taxonomies and formal ontologies (axiomatised the-
ories). The latter are typically encoded in formal languages that allow
abstraction from lower level data, such as OWL, OBO, RDF Schema.

Ontologies can function in multiple roles (Noy & Mcguinness, 2000b):

• To share common understanding of the structure of information
among people or software agents;

• To enable reuse of domain knowledge;

• To make domain assumptions explicit;

• To separate domain knowledge from the operational knowledge;

• To analyze domain knowledge.

The core of all ontologies are their classes or concepts. These are
usually organized in a hierarchical fashion, but can also be related
through other types of relations. The instances of the classes can also
be an important element of ontologies, and even if the ontology does
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not model them, they are essential to materialize the concepts. A
simple definition of these three ontology elements, concepts, relations
and instances is given:

Definition 2. An ontology class or concept provides the abstraction
mechanism for grouping resources with similar characteristics. Classes
have an intensional meaning (their underlying concept) which is related
but not equal to their extension (the instances that compose the class).

Definition 3. An ontology relation is a binary relation established
between classes or concepts.

Definition 4. An ontology instance or individual is an individual ob-
ject pertaining to a domain.

Ontologies are often depicted as labeled graphs where nodes represent
the classes, and edges the relations between them.

The remainder of this section is dedicated to bio-ontologies, in partic-
ular the Gene Ontology, and to WordNet, a lexical ontology commonly
used in ontological applications.

2.1.2 Biomedical Ontologies

One of the scientific areas where ontologies have had more success is
biomedicine. The domain knowledge in this area is too vast to be
dealt with by a single researcher. Therefore, there is a need to use
approaches such as biomedical ontologies (ontologies applied to the
biomedical domain), to handle the application of domain knowledge
to biological data. The role of bio-ontologies has changed in recent
years: from limited in scope and scarcely used by the community, to a
main focus of interest and investment. Although clinical terminologies
have been in use for several decades, different terminologies were used
for several purposes, hampering the sharing of knowledge and its reli-
ability. This has lead to the creation of bio-ontologies to answer the
need to merge and organize the knowledge, and overcome the semantic
heterogeneities observed in this domain. While the first attempts at
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developing them focused on a global schema for resource integration,
real success and acceptance was only achieved later by ontologies for
annotating bioentities1, namely the Gene Ontology (Bodenreider &
Stevens, 2006). Since then, bio-ontologies have been used successfully
for other goals, such as description of experimental protocols and med-
ical procedures.

The maturity of biomedical ontologies is embodied in the goals of the
OBO Foundry (Smith et al., 2007), a self-appointed foundry responsi-
ble for the goal of creating a suite of orthogonal interoperable reference
ontologies in the biomedical domain.

2.1.2.1 Gene Ontology

The Gene Ontology (GO) (GO Consortium, 2010) is a task-oriented
ontology that was created for the functional annotation of gene prod-
ucts in a cellular context. This means that the concepts in the ontol-
ogy are applied to describe aspects of gene product functions. A gene
product can be defined as follows:

Definition 5. A gene product is the result of the expression of a gene,
either an RNA strand or a protein.

Since GO is more commonly employed to annotate proteins, from now
on we focus on these biomolecules. GO is only composed of classes,
referred to as GO terms, and never the instances to which they apply,
i.e. gene products.

GO is divided in three categories (or GO types), which constitute three
ontologies:

• molecular function, which is dedicated to the description of pro-
cesses at the molecular level;

1Biological entities, e.g. genes, proteins, anatomical parts, diseases
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• biological process, which handles the assemblies of various molec-
ular functions;

• cellular component, which is in charge of cellular locations and
macromolecular complexes.

Each of these ontologies is composed of terms and relationships be-
tween them, which are structured as a Directed Acyclic Graph (DAG),
where terms are nodes and relationships are edges (see Figure 2.1. A
GO term is a natural language term (e.g. transport) with a corre-
sponding unique seven-digit numeric identifier (e.g. GO:0006810) and
a natural-language definition. The nearer a term is to the root of the
graph, the more general it is (e.g. binding, intracellular) and traveling
deeper into the graph, the terms become more specialized (e.g retinal
binding, cytoplasmic nucleosome).

GO:0008150
biological process

GO:0008152
metabolic process

GO:0006629
lipid metabolic

 process

GO:0009058
biosynthetic 

process

GO:0008610
lipid biosynthetic

 process

GO:0016042
lipid catabolic

 process

Figure 2.1: A subgraph of the biological process ontology from GO.
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GO currently employs 6 distinct types of relations:

• is_a is a subsumption relationship: one term subsumes the other
(e.g DNA binding is a subclass of binding, so DNA binding is_a
binding). is_a is a transitive relationship, that is, a child is a
subclass of its grandfather since its father is also a subclass of its
grandfather.

• part_of expresses part-whole relationships, more explicitly neces-
sarily part of, that is the existence of the whole does not imply
the existence of the part, but wherever the part exists it exists as
a part of the whole.

• has_part represents a part–whole relationship from the perspec-
tive of the parent, and is thus the logical complement to the
part_of relationship.

• regulates is applied to situations where one process directly affects
the manifestation of another process or quality. More specifically
it means necessarily regulates: whenever B is present, it always
regulates A, but A may not always be regulated by B.

• positively_regulates is a sub-relation of regulates that represents
a more specific form of regulation.

• negatively_regulates is a sub-relation of regulates that represents
a more specific form of regulation.

The relationship types part_of and regulates are also used to link
terms from the molecular function and biological process ontologies.

Annotation of proteins with GO
The primary functionality of GO, the annotation of gene products,
is largely achieved by the GOA project (Camon et al., 2004), which
provides GO term annotations for gene products present in UniProt,
the largest repository of protein sequences, and other major databases.
The functional annotation of proteins is the assignment of a GO term
to a protein in order to describe an aspect of its function. In the
context of GO, annotations are always accompanied by an evidence
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code (a three letter acronym), which describes the kind of evidence

that supported the annotation. GO evidence codes can be classified

into two main categories: manual and electronic. Manual annotations

correspond to those that were manually curated, whereas electronic

annotations correspond to annotations automatically generated and

comprise the vast majority of GO annotations. Furthermore, based

on the true path rule, annotations to a GO term are automatically

transmitted to its ancestors, so GO terms can be said to have two types

of annotations: direct and inherited. Direct annotations correspond to

annotations made directly to the term, whereas inherited annotations,

are annotations made to their children. Finally, a protein may be

annotated with as many GO terms as necessary to fully describe its

functional aspects.

Development of GO

GO is a handcrafted ontology supported by OBO-Edit, an ontology

editing software (Day-richter et al., 2007). There are about 100 con-

tributors to GO spread across the GO Consortium and several GO

Associates members, and they are expected to contribute regularly

towards the content of GO. Since GO covers a broad range of biolog-

ical areas, GO has setup interest groups to discuss the areas within

the ontology that are likely to require extensive additions or revisions.

These groups roughly correspond to high-level terms: cardiovascular,

developmental biology, electron transport, farm animals, immunol-

ogy, metabolism, neurobiology, pathogens and pathogenesis, protein

kinases, response to drug, and transport. Other GO users can also

contribute by suggesting new terms via Sourceforge.net, however the

majority of content requests are made by GO team members (Pesquita

et al., 2009a) (see Table ??).
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people total requests request/person
GO members 53 2545 48.02
External users 46 337 7.33

Table 2.1: Summary of new GO term requests on Sourceforge.net1 as of March
2009

2.1.2.2 Anatomy Ontologies

Anatomical representations are crucial to the integration of biomedical
knowledge, since every biological process occurs in a given anatomical
part. Several representation schemas have been created over the past
fifteen years, ranging from simple lists of terms to complete ontologies.
Three anatomical ontologies are particularly relevant for the context
of this work: the Foundation Model of Anatomy, the Adult Mouse
Anatomical Dictionary and the NCI Thesaurus Anatomical branch.
The Foundation Model of Anatomy (FMA) (Rosse & Jr, 2003) is a
domain ontology of the concepts and relationships that pertain to the
structural organization of the human body. It was developed to func-
tion as a reference ontology in biomedical informatics for correlating
different views of anatomy, aligning existing and emerging ontologies
and providing a structure-based template for representing biological
functions. The Adult Mouse Anatomical Dictionary (Hayamizu et al.,
2005) provides standardized nomenclature for anatomical terms in the
postnatal mouse. It is structured as a directed acyclic graph, and is
organized hierarchically both spatially e.g. mitral valve is part of heart
and functionally e.g heart is part of cardiovascular system, using is_a
and part_of relations. It contains more than 2,400 unique anatomical
terms, 305 of which have also synonyms. The NCI Thesaurus (Sioutos
et al., 2007) provides a reference terminology that integrates molecu-
lar and clinical cancer-related information within a unified biomedical
informatics framework. One of its branches is dedicated to Human
anatomy and is composed of over 4,000 terms, of which over a quarter
have synonyms.
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Anatomical ontologies are particularly well suited to test ontology
matching strategies, since there are direct correspondences between
anatomical parts of distinct species. All three ontologies have been
used in the OAEI (Ontology Alignment Evaluation Initiative) anatomy
track (Ferrara et al., 2009), but FMA is no longer a part of this
challenge, though it has been used to support the matching of other
anatomical ontologies (Zhang et al., 2005).

2.1.3 WordNet

WordNet (Miller, 1995) is a lexical database for the English language
designed to support automatic text analysis and artificial intelligence
applications. It groups English words into sets of synonyms called
synsets, and nouns and verbs are organized into hierarchies, defined
by hypernym or is_a relationships.
Consequently, WordNet can be seen as a lexical ontology, where the
hypernym/hyponym relationships between the nouns synsets can be
interpreted as relations between ontology concepts. The WordNet on-
tology is commonly represented as a graph.
WordNet has had many different applications in information systems,
including word sense disambiguation, information retrieval, text clas-
sification, text summarization, and ontology learning (Morato et al.,
2004).

2.2 Ontology Evolution

Ontology evolution can be defined as the process of modifying an on-
tology in response to a certain change in the domain or its conceptu-
alization (Flouris et al., 2008):

• changes in the domain, when new concepts belonging to the do-
main are added to reflect new knowledge or a re-purposing of the
ontology
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• changes in conceptualization, which can result from a changing
view of the domain and from a change in usage perspective

In general, the evolution of bio-ontologies is mainly concerned with
the first type, given the dynamic nature of biological knowledge pro-
duction. Everyday new discoveries are published, rendering some facts
obsolete and bringing new knowledge to light.

To tackle the complexity inherent to ontology evolution (Stojanovic
et al., 2002) split this process into six cyclic phases:

• change capturing, where the changes to be performed are identi-
fied;

• change representation, where these changes are formally repre-
sented;

• semantics of change, where the implications of these changes to
the ontology are determined;

• change implementation, where the changes are applied to the on-
tology;

• change propagation, where the changes are propagated to depen-
dent elements;

• change validation, where the ontology engineer reviews the changes,
undoes them if needed and possibly identifies the need for more
changes, reinitializing the cycle.

For the purposes of this thesis, the change capturing and change rep-
resentation phases are of particular interest. I defined four types of
change capturing partially based on Stojanovic & Motik (2002):

• structure-driven: analyses the structure of the ontology. It is
based on heuristics such as a concept with a single subconcept
may be merged with its subconcept, or if there are more than a
dozen subconcepts for a concept, then an additional layer in the
concept hierarchy may be necessary;

• usage-driven: considers the usage of the ontology to identify the
interests of users in parts of ontologies. Parts of an ontology that
are never used, may be considered outdated;

18



2.2 Ontology Evolution

• data-driven: is based on changes to the underlying data set that
was at the origin of the ontology;

• instance-driven change discovery : reveals implicit changes in the
domain, that are reflected in ontology instances derived from tech-
niques such as data-mining.

In the change representation phase, the necessary changes that were
identified in the previous phase need to be represented in a suitable
format. There are two main types of changes: elementary and com-
posite. Elementary changes represent fine grained and simple changes,
such as the deletion or addition of a single element (concept, property,
relation) from the ontology. Composite changes represent more coarse
grained alterations, and since they can be replaced by a series of ele-
mentary changes, below elementary changes will be referred to simply
as changes.

Although Flouris et al. (2008) and Pinto et al. (1999) provide an ex-
haustive terminology for ontology change, some finer grained aspects of
ontology evolution remain confusing, with several terms being used in
an ambiguous fashion. For the purposes of this work, it becomes rele-
vant to explicitly define and distinguish three related terms: ontology
extension, ontology refinement and ontology enrichment. Although
ontology extension is often used interchangeably with both refinement
and enrichment, I define them as follows:

Definition 6. Ontology extension is the process by which new single
elements are added to an existing ontology.

Thus, ontology extension is concerned with elementary changes of the
addition type. Many reasons can motivate such a change, such as
new discoveries, access to previously unavailable information sources,
a change in the viewpoint or usage of the ontology, a change in the
level of refinement of the ontology, etc, but they all rely on the finding
of new knowledge. Ontology extension encompasses both ontology
refinement and ontology enrichment.
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Definition 7. Ontology refinement is the addition of new concepts to
an ontology, where a new subsumption relation is established between
an existing concept and the new concept.

Definition 8. Ontology enrichment is the process by which non-taxonomical
relations or other axioms are added to an existing ontology.

Ontology extension is usually accomplished manually, however, in do-
mains with a high rate of change such as biomedical research, ontolo-
gists struggle to keep up with the production of scientific knowledge.
This makes the application of automated or semi-automated ontology
extension techniques very desirable.
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Ontology Extension

The following sections give a general introduction and describe the
state of the art in ontology extension approaches.

3.1 Ontology extension approaches

The most common data source used in automated ontology extension
is natural text, due to its availability and coverage. However, other
resources can also be used, including related ontologies and other vo-
cabulary resources such as glossaries and thesauri. To handle these
kinds of resources, as will be shown below, automated ontology ex-
tension can use techniques inherited from related areas of ontology
engineering: ontology learning and ontology matching.

The identification of new concepts and relations from text typically
resorts to the same kind of approaches as the task of learning new
concepts in ontology learning. In fact, some semi-automated ontology
learning systems actually require a seed or top ontology to be given
a priori, which is then completed using automated techniques. The
insertion of the new concepts at the appropriate position is usually
addressed by machine learning techniques that classify the new concept
into an existing ontology class.
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3. ONTOLOGY EXTENSION

Alternatively, ontologies can also be extended by the integration of
concepts belonging to related ontologies, for which an alignment has
been derived. In this scenario, if an equivalence is found between a
concept from the master ontology and a concept from a related on-
tology, the master ontology can be extended with the subconcepts of
its matching concept, or with concepts related to the matched con-
cept through relation types present in the original master ontology,
provided all constraints are maintained.

While most studies use only ontology learning techniques, some works
employ both kinds of techniques, using ontology learning techniques
to learn an ontology from text, and then ontology matching techniques
to align it to the master ontology.

A schematic of the strategies used in ontology learning and ontology
matching is provided, relating them to the techniques they employ,
in Figure 3.1. This schema functions as an overview of the different
approaches available to ontology extension.

3.2 Ontology learning strategies

Ontology learning is the process of automatically or semi-automatically
building an ontology from a given corpus or data set (Cimiano et al.,
2004). Ontology learning approaches can be classified according to
several dimensions, including data sources, units to be learned, learn-
ing targets, learning strategies, and learning techniques and knowledge
support (Zhou, 2007). Ontologies can be learnt from various sources
with various degrees of complexity and formalization, ranging from
unstructured natural language text to semi-structured text (such as
HTML and XML) and to highly structured data such as glossaries,
database schemas and UML. However, most ontology learning meth-
ods are based on natural language processing (NLP) of relevant texts
(e.g. articles, web pages), and several resort to machine learning tech-
niques as well.
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Figure 3.1: Techniques used in Ontology Learning and Ontology Matching, and
the approaches that employ them.
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3. ONTOLOGY EXTENSION

Cimiano et al. (2004) proposed an ontology learning layer cake that

organizes the different tasks that compose ontology learning, according

to their dependencies. The layer diagram is composed of 8 levels, with

the results of the lower tasks tipically being used as input for the higher

tasks. Figure 3.2 depicts this structure and a simplification I propose

to group the tasks into more general slices.

The two bottom levels correspond to the extraction of relevant termi-

nology, which serve as the basis for the formation of concepts. Unlike

terms, concepts are ontological entities, corresponding to an abstrac-

tion. The concept hierarchy layer is devoted to the identification of hy-

per/hyponymy relations between concepts, whereas the relation layer

is dedicated to other kinds of relations between concepts. When these

relations have been identified it is possible to deriving a hierarchy

between them, which is a less commonly addressed task in ontology

learning. The last two layers are the most challenging tasks in on-

tology learning due to the high level of complexity they can entail,

however the adherence to a specific ontology language limits the types

of allowed axioms.

Each of these tasks is addressed below, but for simplicity I group them

in more general slices:

Cimiano et al. (2004) Structure Proposed Structure
General Axioms Axioms and RulesAxiom Schemata
Relations Hierarchy Learning RelationsRelations
Concept Hierarchy Learning Concepts and their HierarchyConcept Formation
Synonyms Extracting relevant terminologyTerms

Figure 3.2: Ontology learning layer cake by Cimiano et al. (2004) (left) and a
proposed simplification (right).
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3.2 Ontology learning strategies

3.2.1 Extracting relevant terminology

At every ontology’s core is a terminology, thus, in ontology learning it
is crucial to extract relevant terms that serve as the basic units of the
ontology. The extraction of domain-specific terms from text is called
term identification. It is a field which has been very active in the
last two decades, mainly due to the increasing availability of electronic
text and to the growing complexity of knowledge-based applications.
Term identification is particularly important in the biomedical and
healthcare domains, where a dinamycally changing terminology poses
new challenges everyday. Term identification is commonly described
as a three step task (Krauthammer & Nenadic, 2004):

1. term recognition, which marks the word or set of words that
indicate the presence of a domain concept;

2. term classification (or categorization), which assigns terms to
broad classes, e.g. in the biomedical domain, terms can be as-
signed to genes, proteins,diseases, etc;

3. term mapping, which links terms to well-defined concepts in an
ontology or database.

Automatic term recognition in the biomedical domain is usually cou-
pled with term classification, since it is more difficult to identify fea-
tures that apply across a broad set of general terms than features that
are specific to term classes. Term mapping is not performed as a part
of ontology learning studies, since their goal is to derive ontology con-
cepts from the identified terms. However, in the biomedical domain
automatic term recognition crosses over with Named Entity Recogni-
tion (NER) since in biomedical terminology some named entities can
also be seen as classes of entities (e.g. alcohol dehydrogenase can refer
to a specific enzyme or to a class of enzymes).
Typically, automatic term recognition approaches involve three steps:

1. collecting candidate terms from text, extracting single or multi-
word terms from text;
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3. ONTOLOGY EXTENSION

2. ranking candidate terms, according to their relevance to the do-
main;

3. filtering candidate terms, according to a given threshold of rele-
vance.

The collection of candidate terms usually focuses on the identification
of noun phrases (NP), through the application of NLP techniques for
normalization and linguistic processing such as part-of-speech tagging
and tokenisation. It retrieves all possible terms in the from of single
word or multi-word terms. The list of candidate terms is then ranked,
according to the relevance and strength of the term in the pertinent
domain, and weak/unrelated terms are filtered out. The ranking of
terms can take into account distributional properties (statistical rele-
vance), or contextual properties (contextual relevance).

Additionally, biomedical automatic term recognition can also employ
NER approaches such as:

• dictionary-based, which use terminological resources to support
the localization of a term in text

• rule-based, which rely on manually built rules, usually based on
lexical, morphological and syntactical patterns to identify terms

• case-based, which leverage on annotated corpus to apply machine
learning techniques to learn useful models for term recognition and
classification or to support statistical approaches.

3.2.2 Learning Concepts and their Hierarchy

After the relevant terminology has been extracted, it is necessary to
learn concepts and their hierarchy to build the backbone of the ontol-
ogy: a taxonomy.

A concept can be defined intentionally (by a descriptive label or its
relationships to other classes) or extensionally (by specifying a set of
instances belonging to it) (Cimiano et al., 2006). The assignment of a
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3.2 Ontology learning strategies

description to a concept can be based on linguistic analysis, for instance
Velardi et al. (2003) leverage on WordNet to describe compound terms
based on their component’s descriptions. The definition of a concept
by its relations to other concepts addresses simultaneously the tasks
of concept learning and concept hierarchy learning.

Following Maedche & Staab (2004), the extraction of taxonomic rela-
tions can be classified into three kinds of approaches:

• statistics-based extraction using clustering, which clusters terms
based on distributional data, i.e. the frequency of the terms in a
given context;

• statistics-based extraction using classification, which uses an al-
ready substantial hierarchy to learn the distributional representa-
tion of a training corpus and then classifies new terms according
to the learned model;

• lexico-syntactic pattern extraction, which uses regular expressions
that convey taxonomic relations to extract them.

3.2.3 Learning Relations

Once a taxonomic hierarchy is constructed, an ontology can be en-
riched by the addition of other types of relations between the concepts
to model domain-specific properties. The task of relation extraction
involves both the identification of anonymous relations between con-
cepts and their labeling, and is considered one of the most challenging
(Maedche & Staab, 2000) and least addressed (Sanchez & Moreno,
2008) in ontology learning, due to the complexity in ascertaining how
many and what type of conceptual relationships should be modeled in
a particular ontology. Furthermore, the assignment of labels to rela-
tions is also difficult since various relationships among instances of the
same general concepts are possible (Maedche & Staab, 2002). More-
over, even if the semantic is clear, it might still be hard to guess which
among several synonymous labels are preferred by a certain community
(Kavalec & Svaték, 2005).
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3. ONTOLOGY EXTENSION

The learning of non-taxonomic relations within an ontology can be seen

as a subfield of relation extraction from text, since the first is focused

on establishing relations between the concepts of an ontology, while

the second deals with the identification of relations between named

entities, that may or may not correspond to ontology terms.

Methods for the extraction of non-taxonomic relations can be roughly

split into three categories:

• statistical analysis based, such as co-occurrence analysis and as-

sociation rules

• rule-based, which usually employ lexico-syntactic patterns

• machine learning based

Some systems integrate both statistical and rule-based approaches to

discover relations, such as (Weichselbraun et al., 2009)’s system that

combines co-occurrence analysis, with patterns and WordNet queries

to propose relations, which are then filtered by spreading activation.

3.2.4 Learning Axioms and Rules

Most ontology learning approaches do not concern themselves with

learning complex ontologies. However, the success of OWL is giving

rise to some advances in this area, given its ability to model expres-

sive axiomatizations. Völker et al. (2008) propose two complemen-

tary approaches for learning expressive ontologies: one for generating

formal class descriptions from natural language definitions extracted,

e.g., from online glossaries and encyclopedias, and another that relies

on a machine learning classifier for determining the disjointness of two

classes. Haase & Völker (2005) generate consistent OWL ontologies

from learned ontology models by taking the uncertainty of the knowl-

edge into account.
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3.2.5 Ontology Learning Systems

Several systems for ontology learning have been proposed in recent
years. Table 3.1 describes the most relevant systems in terms of learn-
ing targets, data sources, learning techniques and external knowledge
sources.

Ontology learning approaches can be classified according to several
dimensions, including learning units (e.g. word, term), learning targets
(e.g. concept, relation), data sources, strategies, techniques and type
of knowledge support (Zhou, 2007).

3.3 Ontology Matching strategies

Ontology matching has been defined as "finding correspondences be-
tween semantically related entities of different ontologies" (Euzenat &
Shvaiko, 2007). These correspondences are called alignments, and may
represent not only equivalence, but also other kinds of relations, such
as consequence, subsumption, or disjointness. The matching process
can be seen as a function that determines the alignment A for a pair of
ontologies o1 and o2. This function can have several input parameters,
such as: the use of an initial alignment, matching parameters (e.g.
weights, thresholds), and external resources.

Definition 9. The matching process can be seen as a function f which,
from a pair of ontologies to match o1 and o2, an input alignment A,
a set of parameters p and a set of oracles and resources r, returns an
alignment A′ between these ontologies: A′ = f(o1, o2, A, p, r)

There are three areas in which users can be involved in a matching
solution: (1) by providing initial alignments (and parameters) to the
matchers, (2) by dynamically combining matchers, and (3) by provid-
ing feedback to the matchers in order for them to adapt their results.
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Matchers can be elementary (individual) or compositional. Elementary
matchers are addressed first, followed by several matching strategies
that include the composition of matchers, global matching strategies
and user involvement.

3.3.1 Elementary matchers

Following a classification proposed by (Euzenat & Shvaiko, 2007),
matching techniques can be classified according to their granularity
(element-level vs. structure-level) and then according to how they
interpret the input information (syntactic vs. external vs. semantic).

3.3.2 Element-level techniques

Element-level matching techniques compute correspondences by ana-
lyzing entities or instances of those entities in isolation, ignoring their
relations with other entities or their instances. These can use inter-
nal knowledge only, i.e. information contained in the ontology itself,
or incorporate external knowledge in the form of reusable alignments,
upper or domain ontologies and other linguistic resources. Internal
knowledge-based methods include:

• string-based methods which use linguistic processing, to reduce
strings to a common format and then process them according to
metric space distance or similarity measures such as Levenshtein
or Manhattan block-distance. These can be further enhanced by
term relevance measures (see section ??)

• language-based methods also use linguistic processing methods, but
go beyond string based methods to analyze lexico-syntactic pat-
terns and apply term recognition methods

• constraint-based methods are based on the comparison of the in-
ternal structure of entities, such as types, range, cardinality or
multiplicity of properties, and keys, and are usually used in com-
bination with other techniques.
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3. ONTOLOGY EXTENSION

• instance-based methods rely on the notion is that if two ontology
entities share the same or similar sets of instances, then they can
represent a match.

External knowledge-based methods include:

• alignment reuse-based methods

• other ontologies or linguistic resources-based methods

3.3.3 Structure-level techniques

Structure-level techniques compare ontology entities or their instances
based on their internal relations with other entities or their instances.
These can also use external knowledge, for instance in the form of
instances, when these are not part of the ontology, or in the form of
previous alignments. Several types of methods can be employed at the
structural level:

• graph-based methods which consider entities similar if their neigh-
bors are also similar, using structural or semantic similarity

• instance-based methods which consider entities similar if their in-
stances are also similar using set similarity measures or formal
concept analysis

• example-based methods which leverage on examples of correct and
incorrect alignments and apply machine learning or probabilistic
techniques to derive the matches.

• semantic-based methods which use deductive techniques to arrive
at matches.

3.3.4 Global similarity computation

The similarity between two ontology entities may involve the ontolo-
gies as a whole, so that the final similarity between two entities may
ultimately depend on all of them. Similarity flooding (Melnik et al.,
2001) defines the propagation factors according to the outer degree of
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the node that represents the entity, i.e., the number of adjacent en-
tities. OLA (Euzenat et al., 2004) computes several alignments with
different combinations of normalized weights, and uses the one that
generated the best alignment as a propagation factor. DSI and SSC
(Cruz & Sunna, 2008a) define the propagation factors according to
a constant percentage (main contribution percentage) that represents
the fraction of the element-level similarity used to determine the overall
similarity. Anchor-Flood (Seddiqui & Aono, 2009) uses the similarity
between neighbors of a proposed matching pair to support it.

3.3.5 Composition of matchers

After the similarities between ontology entities have been computed,
it is necessary to employ more global strategies to arrive at a final
alignment. These include the aggregation of the elementary tech-
niques discussed previously, global similarity techniques (see above)
and alignment extraction.

The aggregation of several distinct matches has been shown to improve
matching results (Cruz & Sunna, 2008a; Lambrix & Tan, 2006). There
are two basic ways of combining several matching techniques:

• sequential composition, where the results of one matcher are fed
to the next

• parallel composition, where distinct matchers are run concomi-
tantly, and their results are combined following specific criteria,

– homogeneous, in which the different kinds of data are pro-
cessed by appropriate matchers

– heterogeneous, in which the same input is used by competing
matchers

Alignment extraction employs a series of techniques over matches be-
tween ontology elements, to derive a final optimized alignment for the
full ontologies. These techniques can include trimming, which applies
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3. ONTOLOGY EXTENSION

thresholds to ensure only the best matches are considered; or maxi-
mal weight matching (or weaker variants like stable marriage) which
optimize the global similarity.

3.3.6 Ontology Matching Systems

3.3.7 Alignment of biomedical ontologies

In 2007, the OAEI proposed as a task the alignment of the NCI The-
saurus describing the human anatomy and the Adult Mouse Anatom-
ical Dictionary, which has been developed as part of the Mouse Gene
Expression Database project. Both ontologies are part of the Open
Biomedical Ontologies (OBO)2. The alignment of these ontologies can
be evaluated through qualitative measure because there is a reference
alignment for these ontologies.

Given that many of the alignments are rather trivial and can be found
by simple string comparison techniques, the OAEI team created a
measure of recall, recall+, which ignores the trivial matches, to dis-
tinguish the ability of the systems to identify non-trivial matches. In
fact, the most interesting challenge in aligning these ontologies in an
automated fashion lies in identifying these non-trivial correspondences,
since without them the alignment has a limited usefulness.

The results of OAEI 2007 showed that systems using background
knowledge, such as AOAS (Zhang & Bodenreider, 2007), SAMBO
(Lambrix & Tan, 2006) and ASMOV (Jean-Mary et al., 2009), gener-
ated the best alignments (Isaac et al., 2007). These three systems em-
ployed the UMLS (Unified Medical Language System) as the domain
knowledge source to support lexical matching of concepts. These sys-
tems also aggregated several matchers, mostly based on structural and
terminological similarities, clearly indicating the possibility of combin-
ing the strengths of both domain specific and domain independent sys-
tems, to create a hybrid matching strategy. In 2008, the results did

2www.obofoundry.org
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System Element-level External Structure-level Composition
strategies resources strategies
string, graph,

Anchor-Flood ling. resource, WordNet similarity
constraint propagation
string, similarity linear weighted

AMaker language, WordNet propagation combination
constraint

AROMA string, document graph
instance collection
string, common graph, weighted

ASMOV ling. resource, thesaurus instance average
constraint

CIDER string, WordNet, graph weighted
ling. resource web sum

DSSim upper-level WordNet fuzzy voting
ontologies

GeRoMe instance, similarity weighted
string propagation, aggregation

HMatch language, common graph
constraint thesaurus

kosimap string, graph, weighted
constraint semantic sum
string, similarity weighted

Lily constraint propagation, sum
semantic

string, ordered
MapPSO language, WordNet graph weighted

constraint average
graph, linear

RiMOM string WordNet similarity -interpolation
propagation

SAMBO string, common graph,
SAMBO dtf ling. resource thesaurus example weighted sum

WordNet
similarity sequential

SOBOM string propagation,
relations

SPIDER1 see CIDER online see CIDER see CIDER
ontologies graph

TaxoMap language graph

Table 3.2: Ontology matching systems that participated in OAEI 2008 and 2009
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not portrait this clear advantage of domain knowledge based methods
(Caracciolo et al., 2008). The systems that used background knowl-
edge (SAMBO and ASMOV) produced F-measures of 0.85 and 0.71,
respectively. While among the systems that do not rely on background
knowledge, RiMOM (Li et al., 2009) obtained the best result with an
F-measure of 0.82. In OAEI 2009 (Ferrara et al., 2009), the best sys-
tem was SOBOM, with an F-measure of 0.855 and a recall+ of 0.431,
which is below the previous year best recall+ of SAMBO, 0.586. Agree-
mentMaker (Cruz & Sunna, 2008a) was a close second, with 0.831 of
F-measure and a better recall+ of 0.489. It is interesting to note that
neither of these systems use domain knowledge, but SAMBO, the best
system in 2008 did not compete in 2009. Table 3.2 summarizes the
results of task1 in the anatomy track for 2007, 2008 and 2009.

Other recent efforts in this area include the alignment of OBO (Open
Biomedical Ontologies) disease ontologies using syntactic patterns and
the UMLS semantics (Marquet et al., 2007), the alignment of Gene On-
tology biological process ontology to pathway ontology using artificial
neural networks to define the weights of different similarities (Huang
et al., 2008) and the application of SAMBO to the alignment of a part
of GO to a part of SigO (Signal Ontology) (Lambrix & Tan, 2006).

3.4 Ontology extension systems

This section describes relevant ontology extension systems of the last
decade. There are several other systems that can be used in ontology
extension, but here the focus is on systems that were devised with
that application in mind, rather than other ontology engineering tasks.
Table 3.3 summarizes the following descriptions.

Agirre et al. (2000) propose a system that uses the web to extract
words related to WordNet concepts. This system first retrieves all web
documents related to an ontology concept, using carefully constructed
queries that try to discard documents that belong to different word
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senses. These documents are then processed to yield a topic signature,
a vector of the words in them and their frequencies, which are filtered
to include only the words that appear distinctively in the collection of
one ontology concept in respect to the others. The authors also used
document clustering techniques to cluster WordNet concepts, since
each concept was linked to a collection of documents, tackling the
word sense proliferation in WordNet. The system was evaluated in
word sense disambiguation tasks, and outperformed the precision of
WordNet synonyms.

Velardi et al. (2001) have developed an ontology learning system, On-
toLearn, that also functions as an ontology extension system since
it links the generated hierarchies of concepts to a core ontology, the
WordNet. This system uses a semantic disambiguation algorithm SSI
(Navigli, 2005) to identify the correct concept in WordNet that corre-
sponds to each root of the generated hierarchies. SSI uses the other
concepts in the hierarchy as the context for disambiguation. Manual
evaluation resulted in 85% precision and 53% recall.

Alfonseca & Manandhar (2002) developed a system that classifies un-
known concepts into WordNet based on the similarity between the
concept and WordNet synsets. It performs a top-down search, com-
paring the unknown concept to the most general synset and its im-
mediate hyponyms. If the unknown concept is more similar to the
general synset the search stops if it is more similar to any of the hy-
ponyms the search continues. This system uses a semantic distance
based on a topic signatures. A topic signature of a term t is the list
of terms that co-occur with it and their frequencies or weights. The
topic signatures are acquired automatically using the web following
(Agirre et al., 2000). This resulted in an accuracy of 13%. To further
support decision, the choice of the appropriate synset is backed by hy-
pernymy patterns, which increase the weight of synsets with consistent
hyponyms. This increased accuracy to 28%. In another work, these
authors extended their system to include subject, object and modifier
signatures for a concept c based on the verbs where c is a subject, the
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verbs and prepositions where c is an argument, and the adjectives and
determiners that modify c respectively.

Faatz & Steinmetz (2002) proposed a method for ontology extension
based on texts extracted from the web. The method assumes that
candidate terms have already been identified and focuses on identifying
which are the most relevant candidates , and where do they fit in the
ontology. It is based on statistical information on word usage. It
defines concepts as vectors of their collocators (words that occur near
the concept in a piece of text), and uses similarity between ontology
entities to derive similarity between collocators and ontology entities.
If this similarity is above a given threshold, the term is proposed as
an extension.

Pekar & Staab (2002) applied classification techniques to distributional
data to classify a new term into an existing concept hierarchy. They
proposed a tree ascending classification algorithm which extends the
kNN method by making use of the taxonomic similarity between near-
est neighbors. This algorithm was tested against standard classifiers
and resulted in precision values around 15%.

Widdows (2003) uses a version of latent semantic analysis, where words
are represented by vectors of their co-occurrence frequency with 1000
frequent words. These vectors constitute a matrix, or a Vector Space
Model (VSM), whose dimensions are reduced. Similarity is then calcu-
lated using the cosine similarity measure. These terms are then added
to WordNet based on the notion that the class of a set of terms is
the hypernym that subsumes as many as possible of the members of
that set. This is translated into an affinity score function that rewards
hypernyms closer to the term, and penalizes hypernyms that do not
subsume the term. Evaluation on WordNet reconstruction yielded a
precision of about 80% for common nouns, 34% for proper nouns and
65% for verbs.

Witschel (2005) proposed a method that identifies new terms in large
corpora using linguistic patterns. These terms are then described in
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terms of the words that co-occur with them more often, which allows
to compute the similarity between two terms via the number of words
in their descriptions they share. These descriptions are used as fea-
tures for a decision tree approach, where new terms are inserted into
the hierarchy based on their similarity to the descriptions of the terms
in the ontology. The hierarchy is traversed in a top-down approach,
and the search stops when the average of the similarity values between
the new concept and all the children of a given term at a given level
is greater than the variance. This work bears some similarities to (Al-
fonseca & Manandhar, 2002) and its evaluation resulted in comparable
values of precision around 10-15%.

Ruiz-Casado et al. (2005) developed a method for calculating the se-
mantic distance between two terms that is based on the distribu-
tional hypothesis. This method, context-window overlapping, over-
comes some of the limitations of vector space models, including spec-
ification of context and word order. It is based on the notion that
the similarity between two terms can be given by the percentage of
contexts of t1 where t2 can be used instead of t1 to obtain a context
of t2, and vice-versa. The context of a term is defined as a narrow
window of restricted length, and the Internet is used to collect them.
This similarity metric was applied to the extension of WordNet using
a top-down search algorithm, where a term and its children are con-
sidered candidates, based on the notion that a term in a sentence can
be substituted by any of its hypernyms.

Liu et al. (2005) developed a system to semi-automatically extend
ontologies based on textual data retrieved from the Web. This system
uses ontology terms as seeds for a Lexical Analyzer that discovers
candidate terms. The analyzer has 4 components: 1) co-occurrence
analysis, whereby terms that co-occur at sentence and document level
are ranked using log likelihood; 2)WordNet hyponyms, hypernyms and
synonyms, based on matching the seed term to a WordNet term using
vector space models; 3) Trigger phrase analysis, which uses regular
expressions to find synonyms or hyponyms; and 4) Head noun analysis,

39



3. ONTOLOGY EXTENSION

that extracts hypernyms from compound names. The candidate terms
obtained are used to generate a network, where the links that connect
them to the seed terms are weighted according to the trustworthiness
of each type of analysis. Spreading activation is run over this network
to generate the list of the most promising candidate terms to add to
the ontology.

Mahn & Biemann (2005) presented a method that uses higher-order
co-occurrences to generate ontology extension candidates. To gener-
ate higher-order co-occurrences for a term t, the N highest ranked
co-occurrences of t are added to t as a pseudosentence and the co-
occurrence calculation is applied to this extended corpus. Each it-
eration of this procedure generates a higher order of co-occurrences.
The 2nd and 3rd order of co-occurrence were found to produce the best
results.

Lee et al. (2006) proposed a system that automatically generated can-
didate terms for the Gene Ontology based on syntactic relations be-
tween existing terms. The candidate terms are more detailed con-
cepts that are created by combination of conceptual units of hyper-
nym terms. For instance, if a term t is composed of two conceptual
units (that is, it results of the composition of two other terms in the
ontology), such as ’chemokine binding’, then new terms can be gener-
ating by substituting the conceptual units by their children, resulting
for instance in ’C-C chemokine binding’. These candidate terms are
validated by their presence in biomedical literature.

Novácek et al. (2008) proposed a system for the dynamic integration
of automatically extracted knowledge from unstructured sources into
manually maintained formal ontologies. The system integrates learned
ontologies using Text2Onto into a master ontology, using matching
techniques from the ontology alignment API developed by INRIA
Rhone-Alpes and negotiation techniques from Laera et al. (2006). This
system was applied to the extension of a fragment of the Gene Ontology
cellular component branch using Wikipedia entries, with a precision
ranging from 50% to 85% depending on algorithm iterations.

40



3.4 Ontology extension systems

Bendaoud et al. (2008) developed a system, PACTOLE, that semi-
automatically extends an ontology using a collection of texts. It builds
two concept hierarchies using formal concept analysis, one based on a
collection of texts, and the other based on the initial ontology. The
text analysis is based on syntactic dependencies between the named
entities and properties, to uncover pairs (object, property) that are
subsequently manually reviewed. Formal concept analysis is applied
to these pairs to generate a concept lattice. The other concept lattice
is directly derived from the initial ontology hierarchy. The two lattices
are then merged and the final lattice is transformed into an ontology.
PACTOLE was applied to the domain of astronomy, and the similarity
between concepts from the initial ontology and concepts extracted from
text was evaluated, yielding a precision of 75% and a recall of 30%.

Jimeno-Yepes et al. (2009) proposed an algorithm for ontology exten-
sion that is based on feedback from information retrieval processes
supported by ontologies. It is based on the assumption that there is
a set of terms which if added to the ontology supporting the query
formulation will have a positive impact on precision and/or recall.
The system used term extraction using a shallow parser or the Wha-
tizit system (Rebholz-Schuhmann et al., 2008) for NER, taxonomic
relations are extracted based on Hearst patterns and non-taxonomic
relations rely on co-occurrence analysis and sentence categorization
(where SVM were the best performers). This algorithm was tested on
two corpus, PGN-disease association and protein-protein interaction
for yeast: the first clearly improved the performance of the IE task
(30%), doubling the baseline; while the second achieved comparable
results to the baseline.

Wächter et al. (2010) developed a system for the creation and exten-
sion of ontologies by semi-automatically generating terms, definitions
and parent-child relations from text. It generates terms by identify-
ing statistically significant noun phrases in text and uses pattern-based
web searches to find definitions and parent-child relations. This system
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can retrieve up to 78% of definitions and up to 54% of child-ancestor
relations.

3.4.1 Issues in ontology extension systems

The performance of most of the described systems is still lacking, high-
lighting the difficulties in this area. However, one of the best perform-
ing systems (Novácek et al., 2008) reached precision values of 50 to
85% when extending a portion of the Gene Ontology. These higher
precision values obtained can be explained by two facts: 1) it uses
Wikipedia as a corpus, which is an easier corpus to explore given its
structured contents and 2) the domain of the portion of the ontology
to extend is a common one, ensuring that there are several entries in
Wikipedia related to it. In fact, although precision values are good, the
authors themselves state that most suggestions are rather simple and
obvious. Wikipedia and other similar resources can be valuable sources
for extension of ontologies with common domains, however when the
ontology to extend reaches a high level of specificity, the only possible
source of knowledge is scientific literature where the needed level of
detail is present. Nevertheless this remains most interesting approach,
and it motivated some of the strategies in this thesis.
One common feature to most systems is that they are based on manu-
ally constructed corpora. These can provide the level of detail needed
to extend very specific domains, however building them can become
a bottleneck in the extension strategy given the time and expertise
needed to identify the relevant documents. It is arguable that the
quality of the corpora can have quite an impact on the methods per-
formance, since its relevance to the domain is crucial. Moreover, when
extending large ontologies with broad domains, using a very large and
generic corpora can hinder the task of identifying the relevant terms
given the profusion of existing terms.
These issues need to be addressed when contemplating the extension of
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biomedical ontologies which often combine very board but very specific
domains.
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Chapter 4

Basic Concepts

4.1 Machine Learning

A generally accepted definition of machine learning was given by Mitchell
(1997):

A computer program is said to learn from experience E
with respect to some class of tasks T and performance measure
P, if its performance at tasks in T, as measured by P, improves
with experience E.

This experience, or empirical data, is used by the machine learning
algorithm to derive a model capable of capturing the underlying prob-
ability distribution of a set of examples. The majority of machine
learning algorithm fall in one of two categories: supervised and unsu-
pervised learning. In supervised learning tasks, such as classification,
training data labels are used to learn am model capable of labeling
new input data. In unsupervised learning, the data is unlabeled and
the purpose of the learning algorithm is to detect the data’s internal
structure. Clustering is a common example of unsupervised learning.
The remainder of this section concentrates on supervised learning given
its relevance to this thesis.
Training examples in classification tasks are commonly represented as
vectors of feature values. A classification model is then a function that
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assigns a label or class to a vector representation of an example.

The evaluation of classification results is usually based on a set of
widely accepted measures:precision, recall and f-measure. In 2-class
problems, these measures are calculated based on a confusion matrix:

predicted class correct class
true false

true true positive false positive
false false negative true negative

Precision is the number of correctly classified examples in relation
to the total number of examples classified as true.

precision =
true positives

true positives+ false positives
(4.1)

Recall is the number of correctly classified examples in relation to
the total number of true examples.

recall =
true positives

true positives+ false negatives
(4.2)

F-measure balances precision and recall by calculating their har-
monic mean.

f −measure = 2× precision× recall
precision+ recall

(4.3)

4.2 Semantic Similarity

A knowledge-based semantic similarity measure can be defined as a
function that, given two ontology concepts or two sets of concepts an-
notating two entities, returns a numerical value reflecting the closeness
in meaning between them(Pesquita et al., 2009b). There are essentially
two types of approaches for comparing terms in a graph-structured on-
tology such as GO: edge-based, which use the edges and their types
as the data source; and node-based, in which the main data sources
are the nodes and their properties. Edge-based approaches are mainly
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based on counting the number of edges in the path between two terms
(Rada et al., 1989). The most common technique, distance, selects ei-
ther the shortest path or the average of all paths, when more than one
path exists. This technique yields a measure of the distance between
two terms, which can be easily converted into a similarity measure.
While these approaches are intuitive, they are based on two assump-
tions that are seldom true in biological ontologies: (1) nodes and edges
are uniformly distributed, and (2) edges at the same level in the on-
tology correspond to the same semantic distance between terms.
Node-based approaches do not suffer from these issues since they rely
on node (concept) properties. One concept commonly used in these
approaches is information content (IC), which gives a measure of how
specific and informative a concept is. The IC of a concept c can be
quantified as the negative log likelihood,

− log p(c)

where p(c) is the probability of occurrence of c in a specific corpus
(such as the UniProt Knowledgebase), being normally estimated by
its frequency of annotation. Alternatively, the IC can also be calcu-
lated from the number of children a term has in the GO structure
[7], although this approach is less commonly used (Seco et al., 2004).
The concept of IC can be applied to the common ancestors two terms
have, to quantify the information they share and thus measure their
semantic similarity.
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Part II

Methods for Semi-Automated
Biomedical Ontology Extension

49





Chapter 5

A Framework for the
Semi-Automated Extension of
Biomedical Ontologies

A framework for semi-automated ontology extension within the con-
text of biomedical ontologies must take into account the specific chal-
lenges of the domain as well as its opportunities.

5.1 Challenges and opportunities in extend-
ing a biomedical ontology

Most ontology extension studies focus on adding new nouns to Word-
Net, a lexical resource that organizes English nouns into a hierarchy.
Although many of the issues faced by these studies are the same ones
that need to be considered when extending bio-ontologies, there are
some crucial differences:

• Bio-ontologies have well-defined domains (e.g., protein functions,
gene sequence features, anatomy), which means that the tech-
niques used to extract new terms from text need to be able to
differentiate between general terms and domain terms
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• Biomedical terminology is complex and ambiguous.

• Bio-ontologies typically have a low level of axiomatization, with
few types of relations defined between the concepts.

• Biomedical ontologies are usually quite large with many thousands
of concepts.

• Biomedical ontologies have a faster rate of evolution, since biomed-
ical knowledge changes faster than a language.

However, the biomedical domain also presents some interesting char-
acteristics that can be explored in the context of ontology extension:

• There are many biomedical ontologies with overlapping domains

• Biomedical ontologies are terminologically rich

• There is an abundance of scientific literature indexed in PubMed

5.2 Framework

Building upon the identified challenges and opportunities I designed
the framework described in Figure 5.1.

This framework has three main components:

Change Capturing component is in charge of change capturing
and should be able to identify the areas of the ontology in need of
extension. This component is responsible for tackling the issues
related to the large amounts of available scientific literature and
related ontologies.

Matching component where an ontology matching method is used
to align the areas of the ontology to extend to other relevant on-
tologies and thus support ontology reuse.

Learning component which is responsible for taking text corpora
built based on the results from the Change Capturing component
and extracting novel ontology concepts.
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Change
Capturing

Learning Matching

Source
Ontology

Generic
Corpus

Candidate
Concepts

Manual
Verification

Insertion 
Into

Ontology

Other
Ontologies

Candidate
Concepts

Figure 5.1: Data flow diagram of the proposed framework.

The Change Capturing component functions as the first step in au-

tomated ontology learning or extension systems. Ontology learning

systems usually rely on the analysis of a manually constructed corpus

of documents pertaining to the domain of interest and their perfor-

mance is closely coupled to the relevance of these documents. The

challenge of focusing the ontology given an heterogenous corpus in

ontology learning has been identified (Brewster et al., 2009a). This

challenge is amplified when it comes to ontology extension of large on-

tologies, as is the case of many biomedical ontologies. A comprehen-

sive corpus for these ontologies would be quite large and building and

then processing it would be cumbersome. By applying the proposed

strategy, ontology developers can identify subdomains to extend, cre-
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ate tailored corpus for them, and then run the learning systems over

them, reducing the amount of data they have to process to identify

new concepts. Likewise, when using ontology matching as an integral

part of ontology extension, identifying the areas to extend can be used

to narrow down on specific ontologies to match, to support the inte-

gration of elements from other ontologies.

The Matching and Learning components are independent and can be

run in parallel, offering complementary functions. The methodology

employed within the Matching component should be specifically tai-

lored to the biomedical domain, and thus should be able to take ad-

vantage of the rich terminology and to handle large ontologies. The

methodology used in the Learning component should be able to filter

out general concepts in favor of domain ones without being hindered by

the complex and ambiguous terminology of this domain. Whereas sev-

eral methods and systems exist in the areas of ontology matching and

learning, there is none in automated change capturing. Consequently,

in this thesis there is a focus on developing methods for the Change

Capturing component, whereas work in other components is more fo-

cused on improving and adapting existing methods to the specificities

of the biomedical domain.

The Manual Verification component corresponds to the manual analy-

sis of the candidate concepts by an expert before their integration into

the ontology. By generating the list of candidate concepts in an auto-

mated fashion, the main contribution of this framework for ontology

developers lies in the speeding of the process of extension, thus releas-

ing the experts to focus on more complex ontology evolution issues.
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5.3 Analyzing Ontology Extension

An analysis of ontology extension should by definition, focus on both

refinement and enrichment, and analyze several versions of the same

ontology during a time period. The decision on the time period to

analyze should be based on the age of the ontology as well as the

availability and frequency of new version releases.

Three key aspects are proposed for analyzing ontology refinement:

1. depth of new classes, i.e. minimum distance to the root class over

is_a and part_of relations.

2. number of new classes that are children of existing vs. newly added

classes

3. number of new classes that are children of leaf classes

The first and third aspects capture the general direction of the refine-

ment of the ontology, where additions at a greater depth and to leaf

classes represent vertical extension whereas additions at middle depth

and to non-leaf classes represent horizontal extension. These aspects

are helpful to analyze the level of detail and coverage provided by the

refinement. The second aspect is related to another interesting char-

acteristic of refinement, whether new classes are inserted individually

or whether as part of a new branch.

The following are proposed for analyzing ontology enrichment:

4. age and depth of the classes linked by the new relation (i.e. whether

the relation is established between old classes, between an old and

a new class or between new classes)

This aspect is intended to capture first at what level of specificity do

the enrichment events take place, and secondly if enrichment happens

alongside refinement or if it succeeds it.
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5.3.1 Analyzing the Gene Ontology Extension

Based on the aspects identified in the previous section, twelve versions
of the Gene Ontology and its annotations were analyzed. These cov-
ered a period of 6 years from 2005 to 2010 and were six monts apart
or as close to that as possible (See the first twelve versions described
in Table 6.2. Using these six month intervals, new classes represent
about 5% of all classes in the ontology. In the context of GO, enrich-
ment corresponds to the insertion of new non is_a relations between
existing or newly inserted classes.

Figures 5.2, 5.3, 5.4 and 5.5 show the results of the analysis of each as-
pect. In all three hierarchies, the majority of new subclasses are added
as children of non-leaf classes, resulting in a prevalence of horizon-
tal extension. Also, the refinement of molecular function and cellular
component occurs mostly via single insertions, whereas in the biologi-
cal process groups of related classes are inserted together. Regarding
enrichment, in biological process, a considerable portion of relations
are established between two newly inserted classes, whereas in cellular
component, the majority is made between an existing and a new class.Sheet3
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Figure 5.2: Average depth of new classes

The application of the proposed conceptual framework for ontology
extension analysis to GO has yielded some interesting results. Firstly,
the majority of new classes are not added to leaf classes, resulting in a
horizontal growth of the ontology. This means that GO is not adding
increasingly specific classes but rather fleshing out. Secondly, it was
shown that in GO refinement happens by two major modes: individual
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Figure 5.3: Ancestry of new classes (leaves or non-leaves) by ontology version

insertions and group insertions. The first occurs frequently in all GO
hierarchies, whereas the second is only common in the biological pro-
cess hierarchy. This is in line with the fact that most of GO’s special
interest groups belong to the biological process area and their work
is more focused on modelling portions of their areas of interest rather
than making individual insertions. This refinement by branches in the
biological process hierarchy is also captured by the enrichment analy-
sis, where there is a high proportion of new enrichment relations that
are established between new classes. One issue with using path-based
depth to define the sub-graphs of GO that are subject to extension,
is that it can cause bias, since terms at the same depth do not nec-
essarily express the same degree of specificity Alterovitz et al. (2010).
However, this issue is outweighed by the need to create sub-graphs
independently of their number of annotations, so as not to introduce
a bias to the annotation based rules.
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Molecular Function not shown, since it contains less than 10 non is_a relations.
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Chapter 6

Prediction of Ontology
Extension

6.1 Introduction

Scientific literature remains the principal vehicle for scientific knowl-
edge record and communication, which makes literature analysis a
large part of the mandatory work needed for ontology evolution. How-
ever, the rate at which new papers are published prevents a timely
manual analysis of all relevant documents. For instance, the general
domain of the most successful bio-ontology, the Gene Ontology, is pro-
tein function. A query for protein AND function in PubMed, retrieves
3.3 million publications. While this number is certainly an underes-
timation of the number of publications within the domain of GO, it
still means that on average, there are 500 new scientific papers per
day on this subject. An important step in the automation of ontology
evolution is then the automation of text analysis to retrieve pertinent
information, i.e. text mining. But despite text mining of biomedical
literature being a thriving field (Ananiadou & Mcnaught, 2006), its
application to bio-ontology evolution is a much less active area. In
fact, ontology extension, and its sister area ontology learning remain
largely unexplored in a biomedical context, with few works reported
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(Brewster et al., 2009b).
Most ontology learning and ontology extension systems depend on a
corpus of domain texts which are used to extract the relevant terminol-
ogy and relations. The text corpus is given a priori to the systems, and
is usually composed of documents such as full journal articles on the
general domain (Brewster et al., 2009b), benchmark text collections
(e.g. Reuters RCV1 (Fortuna et al., 2006)), or website pages (Cimi-
ano & Staab, 2005). This means that somewhere in this process these
collections had to be manually selected according to some criteria (e.g.
availability, quality, etc). However, if we are truly to automate ontol-
ogy extension, this collection should also be automatically obtained.
A simple approach to generate a document collection, common in the
biomedical domain, is to query PubMed with keywords pertaining to
the domain in question and retrieve the returned abstracts. When the
domain is fairly small this strategy may be quite successful, but when
the domain is large and complex, some issues arise. Retrieving all
documents related to a domain may generate a very large collection of
documents. However, many of these publications will not contain any
new information pertinent to the extension of the ontology.
To filter out irrelevant documents, we can either set limits in time or
in scope. Setting a time limit would have to rely on the assumption
that the current state of the ontology reflects all available knowledge
at a given point in time, so we can disregard any publications before
that date. Thus, choosing such a point in time would have to be based
on common sense rather than on any proof. Taking again the exam-
ple above, a time limit of two years would result in a little over 340
thousand documents, a much more manageable dataset.
Filtering based on scope relies on a distinct strategy to generate the
document collection: instead of a single search for keywords relating
to the full domain, several queries are used, each based on a distinct
subdomain within the ontology to extend. This strategy opens up an
interesting opportunity whereby the document collection can be tai-
lored to specific areas within the ontology. Consequently, a document
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collection can be specifically designed to cover ontology areas that need
to be updated.
However, identifying these areas is far from trivial. On one hand,
there are the areas that ontology developers determine to need ex-
tension, sometimes following end-users requests. These require not
only extensive domain knowledge but also an increased effort to keep
up with the novel knowledge being produced in that domain. On the
other hand, there are the areas that could benefit from extension given
their characteristics but have not been addressed by ontology devel-
opers yet. Discovering these areas in an automated fashion can be
cast as a prediction problem, that identifies which ontology terms are
more likely to be further extended based on previous extension events.
By letting ontology developers and ontology learning systems focus on
these areas, the present methodology can contribute to a faster rate of
ontology evolution.
To support my research into automated change capturing I began with
a preliminary investigation of ontology usage patterns. I then devel-
oped and evaluated two distinct approaches to predict ontology ex-
tension, one based on rules and heuristics, and another on supervised
learning. Ultimately, the goal of this part of my research is not only
to develop methods that are capable of accurately identifying the best
possible ontology areas for extension, but also to determine the mini-
mum set of ontology versions and other information needed to achieve
this.

6.2 Related Work

Although there is a large body of work on ontology evolution (for a re-
view see Leenheer & Mens (2008)), there are few works on the change
capturing phase and to the best of my knowledge none on the predic-
tion of ontology extension. Stojanovic et al. (2002) proposed an ap-
proach to ontology evolution that is based on optimizing the ontology
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according to the end-users needs. They track end-users interactions
with an ontology-based application to collect useful information that
can be used to assess what the main interests of the end-users are.
Their approach is then a usage-driven change discovery, which focuses
on discovering anomalies in the design of an ontology, whose repairing
improves its usability. They employ several measures, based on query-
ing and browsing of an ontology-based application. Browsing-based
measures are based on the user’s browsing of links between ontology
concepts. They define the usage of two concepts p and c as the num-
ber of times the link between them has been browsed, where c is a
subconcept of a concept p. This concept is used in four measures for
estimating the uniformity (balance) of the usage of a link regarding
the link neighborhood: (1) SiblingUniformity represents the ratio be-
tween the usage of a link and the usage of all links, which have the
common source node with that link (the so-called sibling links); (2)
ChildrenUniformity stands for the ratio between the sum of the usage
of all the links whose source node is the given node and the sum of
the usage of a node through all incoming links into this node. (3) Par-
entUniformity is the ratio between the usage of a link and the usage
of all links which have the common destination node with that link,
and (4) UpDownUniformity characterizes the ratio between the usage
of a link in two opposite directions, i.e. in browsing down and brows-
ing up through a hierarchy. The classes with extreme values in these
measures are then analyzed to determine the change they need.
Another usage-driven strategy was proposed by Haase et al. (2005) in
the context of the evolution of multiple personal ontologies, which is
based on a user’s ratings of concepts and axioms, with the purpose of
guiding the evolution process towards personalizing the ontologies.
Both of these approaches depend on the availability of detailed usage
data or on a high degree of user involvement, which are not generally
available for biomedical ontologies. However, for ontologies where an
annotation corpus exists, we can consider these as usage measures.
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Nevertheless, few biomedical ontologies possess large corpus of anno-
tation, limiting the applicability of these approaches. Moreover, in the
case of Stojanovic et al. (2002), the notion of uniformity although inter-
esting from the point of view of tailoring the ontology to user’s needs,
is based on the notion that ontologies should have uniform structures.
Although this may improve an ontology’s usability in some domains, it
is an incorrect assumption in the life sciences. Both our knowledge of
the biomedical domain and the domain itself are anything but uniform.

Also relevant for this work is the investigation of ontology evolution in
biomedical ontologies. In Ceusters (2009), the author applied a pre-
viously proposed strategy, Evolutionary Terminology Auditing (ETA)
Ceusters & Smith (2006) to assess the quality of GO. These works
follow a realist approach, where the extant ontology version is consid-
ered the benchmark against which a newer version is assessed. This
strategy can be used not so much to demonstrate how good an indi-
vidual version of a terminology is, but rather to measure how much it
has been improved (or believed to have been improved) as compared
to its predecessor. This is based on matches and mismatches between
ontology versions, and their motivations, which are expressed by 17
possible configurations denoting the presence or absence of a term and
whether the presence or absence of a term in a terminology is justified
or unjustified. Of these 17 configurations only two correspond to a
need for extension, in which an entity is missing and it is real and
relevant for the ontology.
In another relevant work, Hartung et al. (2010) proposes an approach
to automatically discover evolving or stable regions of ontologies. This
approach is based on a cost model for changes between ontology ver-
sions and is able to identify regions that have been undergoing (or not)
extensive changes. Although it is predictable that evolving regions will
continue to evolve in the near future, if this kind of approach were to
be used to derive candidates for extension, the stable regions would
never again become targets for extension, regardless of their need for
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extension, which makes this approach inappropriate as an exclusive
means for identifying extension candidates.

6.3 Ontology usage patterns: a preliminary
study

Before studying the evolution of the whole Gene Ontology, I performed
a preliminary study focused on the general GOSlim. GOSlims are sub-
sets of GO, that only include high-level terms and aim at summarizing
GO. Each leaf term, the most specific terms in a GOSlim, is a repre-
sentative of all its children terms and their annotations. This simple
study assumed that the areas of GO that would benefit the most from
automated refinement, would be the ones that are lagging behind in
size, i.e. have less children terms, but still boast a significant annota-
tion. These areas are called GO hotspots. To identify these areas this
study calculated usage patterns, which are determined by the ratio
between the frequency of annotation and the number of subclasses a
GO term has.
To identify these hotspots within the 87 leaf terms of GOSlim generic,
the ratio between the annotations made to a GOSlim term and the
number of terms that it represents, i.e. the number of children it
has, was calculated. This was done for five versions of GO spanning
two years. Furthermore, to distinguish between manual annotations
and computationally derived annotations, two different ratios for each
version were calculated, one considering just the annotations that are
made by curators, and another considering all annotations present in
GOA.
For these two scenarios 17 distinct hotspots were identified (16 using
all annotations and 4 using just manual ones) by applying a simple
threshold whereby a GOSlim term is considered a hotspot if at any
given time a 1.5 fold increase in the ratio of annotations per child was
observed, that was not subsequently decreased. Figures 6.1 and 6.2
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show the distributions of the annotation ratios for these terms in each
scenario, for the five versions of GO.
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Figure 6.1: Distribution of the annotations per child ratio for the 16 hotspots
found using all annotations.

1)reproduction; 2)generation of precursor metabolites and energy; 3) DNA
metabolic process; 4)cell recognition; 5)cell death; 6)embryonic development;
7)cellular homeostasis; 8)cytoplasmic chromosome; 9)cell wall; 10)lipid particle;
11)cilium; 12)ion channel activity; 13)electron carrier activity; 14)antioxidant
activity; 15)oxygen binding; 16)chaperone regulator activity

Each column corresponds to one hotspot, and each color corresponds
to a version of GO. The size of each colored part of a column indicates
the ratio of annotations vs. number of children found for the term
in that ontology version. While some terms, like cytoplasmic chromo-
some and ion channel activity have only more recently passed the 1.5
fold increase threshold, other terms consistently maintain an elevated
ratio for a period of 5 years, indicating that for those cases, increased
usage for annotation did not result in a refinement of the ontology.
It is interesting to note that some of these hotspots match GO’s Interest
groups (e.g. embryonic development, viral reproduction, electron car-
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Figure 6.2: Distribution of the annotations per child ratio for the 4 hotspots found
using manual annotations.

1) reproduction; 2)embryonic development; 3)viral reproduction; 4)lipid particle

rier activity, generation of precursor metabolites and energy). It is also
noteworthy that the number of identified hotspots when using manual
annotations is much lower than the number of hotspots identified when
considering all annotations and that there is also considerable overlap
between these two sets.
The low number of manually derived hotspots may be a reflection of
a good articulation between GO development and GOA manual cu-
ration, which can mean that many GO terms are created when GOA
curators need them for annotation purposes. On the other hand, when
using all annotations, it was found that nearly 20% of the GOSlims
leafs could benefit from enrichment.

6.4 Predicting Ontology Extension: a rule-
based approach

Since many of the premises for good practice in ontology development
can be applied for ontology evolution, Stojanovic & Motik (2002) pro-
posed a series of guidelines for ontology evolution based on the guide-
lines for ontology development by Noy & Mcguinness (2000a). Two of

66



6.4 Predicting Ontology Extension: a rule-based approach

these are of particular interest for this work since they are concerned
with ontology extension:

1. structure-driven: If a class has fewer children than its siblings, it
may be a candidate for extension

2. data-driven: A class with many instances is a candidate for being
split into subclasses and its instances distributed among newly
generated classes.

Following the above mentioned guidelines I have devised a set of rules
to apply to the prediction of the extension of GO. The rules aim at
finding a partition of the set of classes that best separates classes that
will be refined in a future version from those that will not. Since
these guidelines are only concerned with refinement, this is the focus
of the remainder of this analysis. Here, it was assumed that the latest
ontology version is believed to be as correct and complete as possible
Ceusters & Smith (2006). There are three types of rules, one structure-
based and two data-based. The structure-based rules are derived from
guideline 1:

Rule 1: A class with at most less x% subclasses than its siblings is a
candidate for refinement

with x taking four evenly spaced values between 25 and 100%. The
data-based rules are derived from guideline 2 but distinguish between
the set of all annotations and the set of manually curated ones:

Rule 2: A class with at least x% more annotations than its siblings
is a candidate for refinement

Rule 3: A class with at least x% more manual annotations than its
siblings is a candidate for refinement

with the threshold x taking four evenly spaced values between 100 and
250%.

Distinguishing between these two sets of annotations is very relevant
in the context of GO, since the set of manual annotations contains only
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those that have been reviewed by a curator and can therefore be con-
sidered more reliable. Nevertheless, only about 3% of all annotations
are manual which means they provide a narrower coverage.

6.4.1 Methods

The rules described above were applied to the twelve ontology versions
used in 5.3.1. creating two sets of classes for each combination of rule
and threshold, one corresponding to the classes above the threshold
and the other to the ones below. Then to evaluate the predictive power
of the rules, precision, recall and f-measure were computed for how well
these sets reflect the real sets of refined and non-refined classes.

6.4.2 Results

Table 6.1 shows the results for predicting refinement in six months 1

for the thresholds x that generated the best results.

Although these results are overall poor, there is a marked difference
between the performance of structure and data-based rules, with data-
based rules having a higher precision for all three hierarchies and a
higher recall in molecular function.

These rules were also applied to predicting the refinement for ontology
branches as a whole, as opposed to the previous strategy that predicted
refinement for individual classes. This follows from the observation
that many of the new classes inserted in the biological process hierarchy
are inserted as part of small subgraphs rather than single insertions.
The focus was on the subgraphs that are rooted on classes at a depth
of four due to the fact that most extension events occur at this depth
or lower. However, the results obtained were comparable to those
generated by predicting for individual classes.

1results for one and two years were similar - data not shown
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Biological Process
Rule Precision Recall F-measure
1 (x = 75%) 0.0772 ± 0.0317 0.364±0.0802 0.127±0.0479

2 (x = 200%) 0.220±0.0185 0.318±0.0638 0.256±0.0128

3 (x = 200%) 0.242±0.0302 0.380±0.0507 0.292±0.01714

Cellular Component
Rule Precision Recall F-measure
1 (x = 75%) 0.0270±0.0228 0.381±0.206 0.0501± 0.0406

2 (x = 200%) 0.119±0.109 0.212±0.246 0.149 ±0.148

3 (x = 200%) 0.199 ±0.121 0.374±0.259 0.252 ± 0.156

Molecular Function
Rule Precision Recall F-measure
1 (x = 75%) 0.0122±0.0033 0.223±0.0908 0.0230±0.0060

2 (x = 200%) 0.101±0.0388 0.406 ±0.0357 0.157 ±0.0492

3 (x = 200%) 0.123 ±0.0515 0.526±0.0573 0.194±0.0672

Table 6.1: Prediction results for the refinement of the Gene Ontology at 6 months.
Shown values are averaged over all ontology versions, resulting from a total of 11
runs.
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6.4.3 Discussion

These results emphasize that the current proposed guidelines for cap-
turing change based on structure and data are not appropriate for
handling a large and complex ontology such as the Gene Ontology.
The guidelines represent an effort to ensure a balanced structure for
the ontology, and given the size and evolving nature of the domain
GO covers, its extension cannot be governed alone by these precepts.
In fact, GO’s Ontology Development group 1 has highlighted the pro-
cesses used in the identification of areas that need to be developed:

• by working closely with the reference genome annotation group to
ensure that areas that are known to undergo intense annotation
in the near future are updated

• by listening to the biological community

• by ensuring that emerging genomes have the necessary classes to
support their needs

If GO’s change management regarding extension were to be made ex-
plicit, for instance as is the case for making a term obsolete where
the reason is given, a more in-depth analysis could be performed and
perhaps derive more accurate rules. Nevertheless, using the number
of annotations rather than the number of subclasses yielded better re-
sults, which may be related to the fact that GO development is driven
by need, which can be approximated by the rate of annotation, rather
than by a process of homogeneization of structure. In fact, this differ-
ence was to be expected considering that in GO’s domain the level of
specificity of each branch is dependent on natural and scientific phe-
nomena, which prevents the existence of an homogenous structure to
the ontology. Such structure-based guidelines are however expected to
function better in ontologies that follow a more conceptual approach.

In trying to predict ontology extension, particularly in the case of
large biomedical ontologies, we are facing a multitude of variables, not

1http://wiki.geneontology.org/index.php/Ontology_Development_group_summary
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only the advancement of biomedical knowledge and the current state
of the ontology itself but also social and technical aspects. The ex-
tension of biomedical ontologies occurs via several different processes,
and motivated by distinct needs, which cannot be apprehended by a
’one size fits all’ rule. It becomes clear that to tackle this complexity,
with numerous variables and their relations we need more sophisticated
techniques.

6.5 Prediction of ontology extension: a su-
pervised learning approach

My proposed methodology addresses change capturing by predicting
ontology extension, and it was motivated by the fact that these changes
can in principle be semi-automatically discovered by analyzing the
ontology data and its usage. It is a supervised learning based strategy
that predicts the areas of the ontology that will undergo extension
in a future version, based on previous versions of the ontology. By
pinpointing which areas of the ontology are more likely to undergo
extension, this methodology can be integrated into ontology extension
approaches, both manual and semi-automated, to provide a focus for
extension efforts and thus contributing to ease the burden of keeping
an ontology up-to-date.

6.5.1 Methods

6.5.1.1 Data

Fifteen versions of the Gene Ontology spanning a period of seven years
were used. Table 6.2 identifies these versions, and describes a few
general statistics about them. The versions have a six-month interval
between them or as close to that as possible, since not all versions have
a full database available from the Gene Ontology archive.
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Table 6.2: Description of Gene Ontology versions

6pt4pt
ontology n. n. max avg deletions* insertions* total manual
version terms relations depth depth annotations annotations

Jan 2005 17K 26K 17 6.8 N/A N/A 6.0 M 0.50 M
Jul 2005 18K 28K 19 7.0 111 885 7.1 M 0.62 M
Jan 2006 19K 30K 18 7.0 42 1311 7.3 M 0.56 M
Jul 2006 20K 31K 18 7.0 20 578 9.0 M 0.56 M
Jan 2007 22K 35K 18 7.2 97 2079 10.4 M 0.62 M
Jun 2007 23K 38K 18 6.9 131 1454 12.4 M 0.66 M
Jan 2008 24K 40K 18 4.9 153 1674 19.0 M 0.73 M
Jul 2008 25K 44K 18 4.9 104 807 23.0 M 0.78 M
Jan 2009 27K 47K 18 4.9 17 1415 24.7 M 0.79 M
Aug 2009 28K 51K 18 5.0 77 1487 33.0 M 0.87 M
Jan 2010 29K 54K 19 4.9 61 1476 33.5 M 0.91 M
Jul 2010 32K 57K 15 3.9 31 1302 60.5 M 1.06 M
Jan 2011 33K 60K 15 4.01 106 2698 54.4 M 1.23 M
Jul 2011 34K 63K 15 4.03 48 1208 63.8 M 1.35 M
Jan 2012 36K 65K 15 4.05 32 1113 77.8 M 1.41 M

*with respect to the version in the line above

6.5.1.2 Extension Prediction Strategy

The intuition behind the proposed strategy is that information encoded
in the ontology or its annotation resources can be used to support the
prediction of ontology areas that will be extended in a future version.
This notion is inspired by change capturing strategies that are based
on implicit requirements. However in the existing change capturing
approaches, these requirements are manually defined based on expert
knowledge. This method attempts to go beyond this, by trying to
learn these requirements based on previous extension events using su-
pervised learning.
In the test case using GO, the attributes used for learning are a se-
ries of ontology features based on structural, annotation or citation
data. These are calculated for each GO term and then used to train a
model able to capture whether a term would be extended in a following
version of GO.

Structural features give information on the position of a term and the
surrounding structure of the ontology, such as height (i.e. distance to
a leaf term), number of sibling or children terms. A term is consid-
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Table 6.3: Features and feature sets used for supervised learning
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Type Feature Feature set

Structural

dirChildren: descendants∗ of a term at a dis-
tance of one

+ + +

allChildren: all descendants∗ of a term + + + + +
height: maximum distance to a descendant + +
siblings: number of terms that share at least
one parent∗

+ +

Annotation

dirManAnnots: direct annotations given a
manual evidence code

+ + +

dirAnnots: direct annotations + + +
allManAnnots: annotations (direct and in-
herited) given a manual evidence code

+ + + + +

allAnnots: annotations (direct and inherited) + + + + +

Citation PubMed: number of articles in PubMed men-
tioning the term or its children six months be-
fore ontology version

+ + +

Hybrid

ratioAll: ratio between allAnnots and
allChildren

+ +

ratioDir: ratio between dirAnnots and
dirChildren

+

siblingsUniformity: ratio between allAnnots
for the term and the sum of allAnnots for its
siblings

+ +

parentsUniformity: ratio between allAnnots
for the term and the sum of allAnnots for its
parents

+ +

childrenUniformity: ratio between allAnnots
for the term and the sum of allAnnots for its
children

+ +

* in the is_a and part_of hierarchies

ered to be direct child if it is connected to its parent by an is_a or
part_of relation, but the total of children of a term encompasses all de-
scendants regardless of the number of links between them. Annotation
features are based on the number of annotations a term has, according
to distinct views (direct vs indirect, manual vs all). Direct annota-
tions are annotations made specifically to the term, whereas indirect
annotations are annotations made to a parent of the term, and thus
inherited by the term. Manual annotations correspond to those made
with evidence codes that reflect a manual intervention in the evidence
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supporting the annotation, while the full set of annotations also in-
cludes electronic annotations. Citation features are based on citation
of ontology terms based on external resources, in our case PubMed.
Finally hybrid features combine some of the previous features into one
single value. These features can be mapped onto the change discovery
types: structural features belong to their homonymous change dis-
covery type; annotations features can be seen as both data and usage
based, since they can be interpreted as both ontology instances and on-
tology usage; and citation features correspond to the discovery-driven
change, since they are derived from external sources. In total 14 fea-
tures were defined and then grouped into five sets (see Table 6.3): all,
structure, annotations, uniformity, direct, indirect, bestA and bestB.
The first three sets are self-explanatory. Uniformity set features were
based on Stojanovic (2004), with annotations representing usage. The
direct set joins direct features of terms, in terms of children and an-
notations, whereas the indirect set joins the same kind of features in
their indirect versions. The best sets were based on the best features
found after running the prediction algorithm for individual features.

Due to the complexity of ontology extension, a framework for the out-
lining of ontology extension in an applicational scenario was estab-
lished. This framework defines the following parameters:

• Extension type:

– refinement, where a term is considered to be extended if it
has novel children terms

– enrichment, where a term is considered to be extended if it
has novel hierarchical relations to existing terms

– extension, where a term is considered to be extended if it
has novel children terms and/or novel hierarchical relations to
existing terms

• Extension mode:

– direct, where a term is considered to be extended if it has
new children terms (according to extension type)
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– indirect, where a term is considered to be extended if it has
any new descendant terms (according to extension type)

• Term set:

– all terms

– terms at a given depth (maximum distance to root)

– terms at a given distance to GOSlim terms

• Time parameters:

– nVer, the number of versions used to calculate the features

– ∆FC, the time interval(in number of ontology versions) be-
tween versions used to calculate features and version used to
verify extension (i.e. in our dataset, a ∆FC of two equals
a time interval of one year, since the chosen ontologies are
spaced by six months.)

By clearly describing the ontology extension process according to this
framework, it becomes possible to accurately circumscribe the ontology
extension prediction efforts.

The datasets used for classification were then composed of vectors
of attributes followed by a boolean class value, that corresponded to
extension in the version to be predicted, according to the used parame-
ters. To compose the datasets we need not only the parameters but also
an initial set of ontology versions to be used to calculate features and
the ontology version to calculate the extension outcome (i.e. class la-
bels). So given a set of sequential ontology versions Ov = {O1, ..., On},
we need to choose one ontology version to predict extension, Oe, and
then based on time parameters nV er and ∆FC, select the set of on-
tologies to be used to calculate features. For example, for a set of on-
tologies Ov = {O1, ..., O6}, if we chose O6 to predict extension, along
with nV er = 3 and ∆FC=2, the set of ontologies to calculate features
will be Of = {O2, O3, O4}.

Several supervised learning algorithms were tested, namely Decision
Tables, Naive Bayes, SVM, Neural Networks and Bayesian Networks,
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using their WEKA implementations Hall et al. (2009). For Support
Vector Machines, the LibSVM implementation was used with an RBF
kernel and optimized the cost and gamma parameters through a coarse
grid search. For Neural Networks, the chosen implementation was
the Multilayer Perceptron, with the number of hidden layers equal to
(attributes + classes)/2, a training time of 500 epochs, and a coarse
grid search to optimize the learning rate was performed. Regarding
Bayesian Networks, the probabilities were estimated directly from the
data, and different search algorithms were tested, namely Simulated
Annealing, K2, and Hill Climbing. Furthermore, taking into consid-
eration that there are many more terms that are not extended than
terms that are, between two sequential ontology versions, which cre-
ates unbalanced training sets, the SMOTE algorithm was used Chawla
et al. (2002). SMOTE (synthetic minority over-sampling technique),
is a technique that handles unbalanced datasets by over-sampling the
minority class and under-sampling the majority class that has been
shown to support better classification results for the minority class.

6.5.1.3 Evaluation

A simple approach was used to evaluate the ontology extension predic-
tion strategy : compare the predictions to the actual extension of the
Gene Ontology in a future version. To this end another time parameter
was needed:

• ∆TT, time interval between versions used for training and testing

This time parameter is used to create the test set, by shifting the
ontology versions according to ∆TT. So for instance, given a set of
ontologies Ov = {O1, ..., O5} and using nV er = ∆FC=∆TT= 1, the
training and test sets would correspond to the those in Figure ??. Al-
though there may be an overlap in the ontology versions used in a
particular training/testing setup, the ontology versions used to deter-
mine the class values are always distinct, ensuring that our setup in
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unbiased.

O3 O4O2O1 O5

training

test

features

features

class

class

nVer

ΔFC ΔTT

Figure 6.3: Example of ontology versions to use for training and testing with
nV er = 3, ∆FC= 1 and ∆TT= 1.

This approach allows us to compare the set of proposed extensions to

real ones that actually took place in a future version of the ontology.

Precision, recall and f-measure metrics can be calculated by using the

real extension events observed in the more recent ontology version as

our test case. These metrics are based on the number of true positives,

false positives, true negatives and false negatives. A true positive is

an ontology class that our supervised learning strategy identified as

a target for extension, and that was indeed extended in the test set,

whereas a false positive although having also been identified as a target

for extension, was not actually extended. Likewise, a false negative is

an ontology class which was not identified as a target for extension,

but was in fact extended in reality, whereas a true negative was neither

identified as a target nor was it extended in the test set. Precision

corresponds to the fraction of classes identified as extension targets

that have actually been extended, while recall is the fraction of classes

identified as extension targets out of all real extensions. F-measure is

a measure of a test’s accuracy that considers both precision and recall.
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6.5.2 Results

When trying to predict ontology extension the focus should not only
be on which features are best predictors, but also on how to design the
learning process to best support the prediction. Consequently, the goal
is not only trying to find the best prediction setup in terms of features
and machine learning algorithms, but also in terms of our strategy’s
parameters.

6.5.2.1 Parameter optimization

A first step in the experiments was to determine the best term set to
use, and to investigate if this was influenced by different parameters.
To this end, the following term sets within each GO ontology were
tested: all terms, all terms with a depth of 3, 4 and 5, all GO Slim
general terms, all GO Slim general leaf terms, all terms at a depth of
1 from the GO Slim general leaf terms, under the same sets of param-
eters (see Table 6.4).

Table 6.4: Average term set sizes

Average term set size
Term Sets Biological Process Cellular Component Molecular Function
all 15928 2272.8 8265.6
depth=3 97.07 21 154
depth=4 374 112.47 495.33
depth=5 849 178.47 1093.67
GOSlim 65.27 31.67 -
GOSlim leaves 54.07 26.07 -
GOSlim leaves 1189.93 758.73 -

depth=1

To provide a simple basis for this first analysis the focus was shifted
to just the biological process hierarchy, a single feature allChildren
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and WEKA’s Decision Table algorithm with attribute selection us-
ing BestFirst. Results are presented (unless otherwise specified) using
the average f-measure obtained using all possible setups derived from
the 15 GO versions available, since a large number of combination of
different parameters is being analyzed. So for instance, when using
nV er = 1, ∆FC= 2 and ∆TT= 2, we get a total of ten runs for our
prediction evaluation, whereas using nV er=3, ∆FC= 1 and ∆TT= 1

we get only six runs.

Before comparing term sets, the trends between parameter sets need to
be analyzed. First, in what concerns extension types and modes (see
Table 6.5) it is clear that indirect extension is predicted with much
more success (0.49-0.86) than direct extension (0.1-0.27). Further-
more, in regards to comparing refinement to enrichment and generic
extension, enrichment is poorly predicted, with a performance around
0.20-0.30. The performance for indirect refinement and extension in
term sets derived from depth performance is comparable (0.63-0.78),
whereas in GO Slim sets refinement is better predicted (0.65-0.86 vs.
0.62-0.65).

Table 6.5: Comparison of extension types and modes

refinement refinement enrichment extension
Term Sets direct (A) indirect (B) indirect (C) indirect (D)
all 0.0999 ± 0.07817 0.4919 ± 0.03250 0.2009 ± 0.09838 0.4674 ± 0.03577
depth=3 0.2704 ± 0.22514 0.7896 ± 0.05400 0.2955 ± 0.22057 0.7495 ± 0.05059
depth=4 0.2176 ± 0.17606 0.7083 ± 0.03660 0.3429 ± 0.17947 0.6790 ± 0.04012
depth=5 0.2313 ± 0.14730 0.6348 ± 0.04879 0.2898 ± 0.14780 0.6268 ± 0.05476
GOSlim 0.2024 ± 0.22988 0.8637 ± 0.05889 0.1722 ± 0.21296 0.6530 ± 0.30708
GOSlim leaves 0.1635 ± 0.21344 0.8553 ± 0.06710 0.1003 ± 0.17292 0.6470 ± 0.30122
GOSlim leaves 0.1523 ± 0.13830 0.6529 ± 0.06636 0.3168 ± 0.10540 0.6243 ± 0.07201

depth=1

Values are average and standard deviation f-measure for all runs using the 15 ontology versions
and a Decision Table algorithm, in the biological process hierarchy. Time parameters: nV er =

1, ∆FC= 1, ∆TT= 1
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To clarify this difference, the average extended proportion for each ex-
tension type was calculated (see Table 6.6 for the values for the term
set at depth=4), i.e. the average proportion of extended terms for all
GO versions. This showed that the proportion of extended terms is
higher for biological process, independently of extension type, followed
by cellular component and molecular function, and that the propor-
tion of refined terms is higher than enriched terms, independently of
GO term type. This can have an impact on training since there are
fewer examples of enrichment.

Table 6.6: Average extended proportion for Gene Ontology according to extension
type

refinement enrichment extension
biological process 0.293 0.103 0.292
cellular component 0.122 0.027 0.124
molecular function 0.076 0.013 0.077

Values are averaged for all GO term at depth=4 for the 15 ontology versions with an indirect
extension mode.

Regarding the time parameters (see Table 6.7) and using indirect ex-
tension and refinement, the differences are less marked. An increase
in the number of versions (nV er) used to calculate the feature values
from one to three does not significantly alter the results, and when
the interval between versions for feature extraction and extension is
extended it results in an increase in overall performance of about 0.02-
0.06.

In general, when comparing term sets considering the best sets of pa-
rameters (B,C and E, see Tables 6.5 and 6.7), it is clear that smaller
term sets show a better overall performance. For the remainder of the
analysis the focus will be on two term sets, depth=4 and GO Slim
leaves depth=1, which will be referred to as depth and GOSlim respec-
tively. These sets were chosen to cover both term set strategies and
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Table 6.7: Comparison of time parameters

nV er=1, ∆FC= 1, nV er=1, ∆FC= 2, nV er=3, ∆FC= 1, nV er=3, ∆FC= 2,
Term Sets ∆TT= 1 (B) ∆TT= 2 (E) ∆TT= 1 (F) ∆TT= 2 (G)
all 0.4919 ± 0.03250 0.5301 ± 0.01627 0.4890 ± 0.03550 0.5301 ± 0.01627
depth=3 0.7896 ± 0.05400 0.8177 ± 0.05422 0.8152 ± 0.04293 0.8005 ± 0.07808
depth=4 0.7083 ± 0.03660 0.7520 ± 0.03340 0.7267 ± 0.04551 0.7437 ± 0.04113
depth=5 0.6348 ± 0.04879 0.6962 ± 0.04093 0.6526 ± 0.04885 0.7101 ± 0.03863
GOSlim 0.8637 ± 0.05889 0.9020 ± 0.07523 0.8264 ± 0.06208 0.8869 ± 0.08646
GOSlim leaves 0.8553 ± 0.06710 0.9004 ± 0.06908 0.8378 ± 0.05228 0.9046 ± 0.07896
GOSlim leaves 0.6529 ± 0.06636 0.6748 ± 0.07166 0.6624 ± 0.06722 0.7021 ± 0.04651

depth=1

Values are average and standard deviation f-measure for all runs using the 15 ontology ver-
sions and a Decision Table algorithm, in the biological process hierarchy. Extension mode:
refinement, indirect

provide a reasonable size set without sacrificing too much performance.
Also from now on, all results will pertain to refinement and indirect
extension, since they represent the primary goal of finding areas of
the ontology to extend. Considering time parameters the best overall
performers (setup G: nV er=3, ∆FC= 2, ∆tTT= 2) were used.

6.5.2.2 Features

The next step in the experiment was to compare different features and
feature sets. Table 6.8 presents the average and standard deviation
f-measure values for all features and feature sets using our standard
setup.

When using single features, the best performers are allChildren, height
and allManAnnots, with average f-measure values around 0.74 in the
depth set and 0.69 in the GOSlim set. When using sets of features,
in the depth set the top performers are indirect, bestB and all, with
values between 0.75 and 0.76, whereas in GOSlim they are all, bestB
and bestA, with values between 0.77 and 0.78. Using feature sets in-
setad of single features has a positive impact on performance in the
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GOSlim set, which is not noticeable in the depth set.

Table 6.8: Feature and Feature Sets performance for Biological Process

Term set
Features depth GOSlim

Si
ng

le

dirChildren 0.6723 ± 0.02641 0.6662 ± 0.04143
allChildren 0.7437 ± 0.04113 0.7021 ± 0.04651
height 0.7426 ± 0.03482 0.6854 ± 0.04387
sibsUniformity 0.5814 ± 0.15741 0.5283 ± 0.15760
parentsUniformity 0.6336 ± 0.03964 0.5430 ± 0.17153
childrenUniformity 0.6469 ± 0.05440 0.5899 ± 0.08983
dirAnnots 0.4857 ± 0.15008 0.4964 ± 0.06482
dirManAnnots 0.4838 ± 0.10863 0.4748 ± 0.05278
allAnnots 0.7335 ± 0.03663 0.6821 ± 0.03579
allManAnnots 0.7452 ± 0.02882 0.6965 ± 0.04940
PubMed 0.5960 ± 0.03933 0.6552 ± 0.04709
ratioAll 0.6850 ± 0.04231 0.6192 ± 0.03266
ratioDir 0.5735 ± 0.11476 0.5856 ± 0.03939

Se
ts

all 0.7459 ± 0.03675 0.7801 ± 0.0525
structure 0.7431 ± 0.02543 0.6906 ± 0.04546
uniformity 0.6523 ± 0.06109 0.5727 ± 0.19389
annotations 0.7396 ± 0.02893 0.6949 ± 0.04771
direct 0.6661 ± 0.03684 0.6569 ± 0.05436
indirect 0.7641 ± 0.03242 0.6883 ± 0.06412
bestA 0.7415 ± 0.04270 0.7704 ± 0.04450
bestB 0.7550 ± 0.03049 0.7750 ± 0.04265

Values are average and standard deviation f-measure for all runs using the 15 ontology versions
and a Decision Table algorithm. Time parameters: nV er = 3, ∆FC= 2, ∆TT= 2.

6.5.2.3 Gene Ontologies

So far, predicting refinement has only been expounded for the biolog-
ical process ontology. Tables 6.9 and 6.10 summarize the results ob-
tained for the molecular function and cellular component hierarchies,
showing the top three features and feature sets for each term set. For
molecular function only results for the term set based on depth are
given since there is no GOSlim subset.

Although average f-measure is generally lower for both molecular func-
tion and cellular component, than for biological process, allChildren
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and allManAnnots continue to be among the best features. Further-
more, for cellular component the GOSlim set shows a worse overall
performance than the depth set, in disagreement with what happens
in biological process.

Table 6.9: Summary of Feature and Feature Sets performance for Cellular Com-
ponent

Term set
Features depth GOSlim

Si
ng

le

allManAnnots 0.7085 ± 0.07487 0.6068 ± 0.06908
allChildren 0.6800 ± 0.11041 0.5650 ± 0.09469
ratioAll 0.6604 ± 0.04485 0.4636 ± 0.02932
height 0.6450 ± 0.08744 0.5248 ± 0.08186

Se
ts

bestB 0.7210 ± 0.08485 0.5174 ± 0.08370
bestA 0.7155 ± 0.09198 0.4758 ± 0.11213
annotations 0.7046 ± 0.08523 0.6198 ± 0.03661
all 0.6916 ± 0.11118 0.4367 ± 0.14839
structure 0.6890 ± 0.13975 0.5985 ± 0.04716

Values are average and standard deviation f-measure for all runs using the 15 ontology versions
and a Decision Table algorithm. Time parameters: nV er = 3, ∆FC= 2, ∆TT= 2.

Table 6.10: Summary of Feature and Feature Sets performance for Molecular
Function

Term set
Features depth

Si
ng

le allChildren 0.6650 ± 0.07957
allManAnnots 0.5898 ± 0.07267
height 0.5633 ± 0.08577
dirChildren 0.5577 ± 0.06710
allAnnots 0.5572 ± 0.08084

Se
ts

bestA 0.6441 ± 0.04625
indirect 0.6395 ± 0.07485
bestB 0.6285 ± 0.06971
all 0.6218 ± 0.04873
structure 0.6168 ± 0.06450

Values are average and standard deviation f-measure for all runs using the 15 ontology versions
and a Decision Table algorithm. Time parameters: nV er = 3, ∆FC= 2, ∆TT= 2.
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6.5.2.4 Supervised Learning Algorithms

In addition to Decision Tables, chosen due to their simplicity, several
other commonly used supervised learning algorithms, namely Naive
Bayes, SVM, Neural Networks (Multilayer Perceptron) and Bayesian
Networks, were also tested using their WEKA implementations. Fig-
ure 6.4 shows a plot for precision and recall for the best feature sets
using these algorithms.
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Figure 6.4: Average precision and recall for several supervised learning algorithms

using the bestA and bestB feature sets, depth and GO Slim based term sets and
nV er=3, ∆FC= 2, ∆TT= 2 in all three GO hierarchies.

When applying different learning algorithms, overall biological process
still has the best performance, followed by molecular function and cel-
lular component. Likewise, the general performance in the GOSlim
term set is better than the one in the depth term set for biological
process, whereas it is the reverse for cellular component.
Looking in with more detail at the biological process results, the differ-
ence between feature sets is small, so we will not distinguish between
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them in our analysis. Naive Bayes gives the top precision values (0.87-
0.90) but the lowest recall (0.48-0.57), whereas Bayesian Networks have
the highest recall (0.78-0.79) with precision values between 0.74 and
0.79, which correspond to average f-measures between 0.76 and 0.79.
SVM, Decision Tables and Multilayer Perceptron have performances in
between these with both recall and precision values clustered around
0.70.
In molecular function, the highest precision is given by Multilayer Per-
ceptron at 0.70 for bestA, and Multilayer Perceptron, SVM and Naive
Bayes for bestB at 0.66-0.67. The highest recall is found in bestB

by Bayesian Networks at 0.83. Best average f-measure is achieved by
SVM at 0.66 for both bestA and bestB.
In cellular component, there is a marked difference between the per-
formance in the depth term set and in the GOSlim set, with the latter
having in general a much lower recall, around 0.40, except when using
Bayesian Networks, where recall rises to around 0.7, but at the cost
of precision. There is also a visible difference between term sets, with
bestB having in general a lower precision for the GOSlim set, which is
not apparent in the depth term set. In the depth term set the best per-
forming algorithms are Decision Tables and Bayesian Networks, with
recall around 0.8 and precision above 0.6. Decision Tables achieves the
top performance with an average f-measure of 0.72 for bestA.

6.5.2.5 Comparative evaluation

To provide a basis for comparison, Stojanovic’s browsing uniformity
measures Stojanovic (2004) were implemented and evaluated on pre-
dicting ontology evolution for GO. Annotation frequency was used as
a proxy for link usage. Since this strategy does not identify targets for
extension, but rather ranks classes according to their uniformity, the
evaluation was performed by plotting precision-recall curves for all on-
tology versions used. Fig 6.5 shows precision/recall plots for children
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uniformity, using one version of the ontology to calculate uniformity
and predicting refinement for a following version in the dataset, along-
side the plots for the proposed prediction strategy best configuration
(G, bestB). For both cases the term set based on a depth of 4 was used
along with a distance between training and testing of two versions.
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Figure 6.5: Precision/Recall plots for refinement prediction based on Stojanovic’s
children uniformity and our own strategy.

For plotting the proposed strategy, instead of relying on the binary
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labels output by the classifier, the probabilities for each instance to
be true (i.e. refined) were used. This was done so that the generated
plots are more directly comparable to those produced by the uniformity
strategy, allowing a more granular calculation of precision at different
recalls supporting a threshold based evaluation. Consequently, the
presentation of the results of our strategy in these plots differs from
the presentation in previous tables.
The prediction results for all ontologies were combined together in the
plotting of the Precision/Recall plots to provide a better visualization
of results. As the plots clearly show, the proposed strategy has a
considerably improved performance in all three GO ontologies, with
curves closer to the top right corner, which are indicative of both
higher precision and recall. The uniformity strategy performed worse
in all cases, except at higher recall values in molecular function.
The other uniformity strategies (parents and siblings) have an even
lower performance than that of children uniformity.

6.5.3 Discussion

Change capturing through prediction of ontology extension is a com-
plex issue, due to the inherently complex nature of ontology extension
itself. Ontology extension can be motivated by implicit or explicit
requirements, which have very different mechanisms. Implicit require-
ments are in principle easier to predict since they do not change be-
tween ontology versions, whereas explicit requirements, which are cre-
ated by experts to adapt the ontology to a novel conceptualization or
change in the domain, are much harder to predict. The strategy pro-
posed in this thesis, by virtue of being based on learning using past
extension events, cannot distinguish between these two types, and thus
attempts to predict extension regardless of it being motivated by im-
plicit or explicit requirements. To capture both kinds of requirements
the proposed strategy uses a set of ontology based features that not

87



6. PREDICTION OF ONTOLOGY EXTENSION

only contemplates intrinsic features, such as structural ones, but also
extrinsic ones, such as annotations and citations.

The assumption that extension can be predicted based on existing
knowledge, either in the form of the ontology itself or its usage, is
acceptable regarding the more common extension events, but is not
applicable to extension events that are the result of deep restructuring
or revision of existing knowledge. These extension events are part of
a complex ontology change that also includes deletions and modifica-
tions. As such, these more complex changes are not the object of this
strategy. In fact, one of the proposed strategy’s goals is to speed up
the process of accomplishing the simpler extensions, to give experts
more time and resources to focus on the more complex events.

One very relevant aspect of the evaluation strategy used here is that
the results are compared to the real extension events that occurred
in more recent versions of the ontology. This means that although
some predictions are conceptually correct, they may not have yet been
included in the ontology version used for testing and will thus be con-
sidered incorrect. This will have an impact on precision values, since
the strategy might be capturing needed but still unperformed exten-
sions, and then be considering them to be incorrect in our evaluation.
Due to this line of thought, we might then give preference to strategies
that increase recall even if at the cost of precision. However, this could
have the negative effect of including many incorrect predictions in our
output, which is not desirable in a semi-automated ontology extension
system. As such the evaluation was based on f-measure, to provide
balanced precision and recall.

A basic requirement of the presented strategy is to be able to access
several versions of the ontology to consider. The minimum set of on-
tology versions it requires is two: one which will be used to calculate
the features, and a second one, more recent than the first, from which
the class labels will her extracted to train the model. It then becomes
crucial to define the interval between the versions to use. In this test
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case using the Gene Ontology, versions with an interval of at least six
months were used based on the intuition that a smaller interval would
not provide sufficient extension examples to be able to train a model.
This intuition was shown to be a good approximation, since as seen in
Table 6.11, when using monthly versions there are in fact a very low
number of positive examples.

6.5.3.1 Parameters

Due to the complexity of ontology extension, particularly in such a
large ontology as the GO, an extension prediction strategy has to ac-
count for several parameters that help circumscribe our effort. One
such parameter, extension type, was designed to capture the differ-
ent types of extension: refinement and enrichment. It was found that
refinement is considerably easier to predict than enrichment, with re-
finement having a greater average f-measure by between 0.3 and 0.7.
There are two likely explanations for this difference: on one hand, there
are many more refinement events between ontology versions than there
are enrichment events (see Table 6.6), which will provide a better sup-
port for supervised learning; on the other, the features used may be
better correlated to refinement than to enrichment.

Another parameter related to extension, is its mode, direct or indirect.
Predicting direct extension, i.e. exactly which terms will be extended
in a future version, should be the ultimate goal of an ontology extension
prediction strategy. However this was proven to be a difficult task,
which is unsurprising given the multitude of different processes that
can lead to extension, and also the fact that on average new terms
correspond to about 5% of all terms in an ontology version (see Table
6.2). This follows the trend found in our previous work Pesquita &
Couto (2011), where we analyzed the extension of GO and found that
insertions of new terms often occur together.

To address this issue the prediction efforts were focused on slices of the
ontology, and extension that happens within the subgraphs rooted in
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terms within these slices was defined as indirect extension. Focusing
only on the term sets thus defined greatly improved the performance
(Table 6.5), with average f-measures for the prediction of refinement of
biological process increasing from 0.49 to 0.65-0.86 depending on the
term set considered.
Predicting for a subset of the ontology is supported by the previous
finding Pesquita & Couto (2011) that extension frequently happens
by branches and that introducing terms closer to the root has a large
impact on the overall structure of the ontology. Consequently, deter-
mining which term sets to use must be a compromise between enough
specificity to be useful, but enough generality to provide a good enough
balance of positive and negative examples. Six such subsets were de-
termined, following two distinct approaches: based on distance to root
and based on GO Slim general.
Distance to root was chosen for its simplicity in creating a middle
layer of GO terms. However, since terms at the same distance to the
root do not always have the same degree of specificity, GO Slim gen-
eral was also used as a basis for our other strategy. The purpose of
using GO Slim general was to capture a similar degree of specificity
among terms, detailed enough to provide a useful prediction and gen-
eral enough to allow for branch extension prediction. Three different
sets were tested within each approach, each yielding different term set
sizes. Since molecular function does not have a GO Slim general, we
only tested distance to root (depth) based sets.
For both approaches, the smaller the dataset the better the results.
This can be due to the fact that in smaller data sets there is a bet-
ter balance of positive and negative instances, which despite the use of
SMOTE to balance the training sets, still has an impact on training the
models. However, very small term sets are not of interest, since they
would not provide enough specificity to change capturing for ontology
extension. Considering this the focus was on the term set defined by
terms at a distance of one from GO Slim leaf terms, which corresponds
to an average term set size of 1189 for biological process and 758 for
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cellular component, and on the term set defined by terms at a distance
of four to the root, which corresponds to sizes around 370, 460 and
100, for biological process, molecular function and cellular component
respectively.

The final parameters in our strategy are those related with time: nV er,
∆FC and ∆TT. The influence of the number of versions used to de-
rive the features was found to be minimal. Regarding the intervals
between versions for feature and class, and for training and testing,
increasing those intervals from six months to one year resulted in an
increase in performance (about 0.03 to 0.06), which is likely due to the
fact that the number of positive examples is larger when considering a
larger interval between versions. Considering these results, the setup
of nV er=3, ∆FC= 2 and ∆TT= 2 was chosen.

6.5.3.2 Features

Although the parameters previously discussed represent the basis of
our strategy, by defining exactly on what the prediction is focusing,
it is the features used to support prediction that are essential to be
able to capture extension events. Using the best parameter setup a
set of thirteen single features, also arranged into eight sets, was in-
vestigated. In the depth term set, the single features allChildren
and allManAnnots were among the top performers for the three GO
hierarchies. But in the GOSlim for biological process feature sets per-
formed better than single features, whereas in cellular component this
difference was not apparent. However, the feature sets composed of the
best single features (bestA and bestB) were shown to provide the bet-
ter performances across the board, with the exception of the GOSlim
set in cellular component. It is interesting to note that although using
just structural or just annotation based features can provide in most
cases a performance comparable to combining them, which can sim-

91



6. PREDICTION OF ONTOLOGY EXTENSION

plify our strategy, using a combination of the best single features can
in some cases improve performance.

One of the most obvious patterns obtained from these results is that
terms with a lot of children terms or a lot of total annotations tend to
be extended. It is arguable that for larger subgraphs, the probability
of an extension event occurring is greater, given that there are more
terms in it. However, to support the theory that the only factor in-
volved is indeed the number of terms in the subgraph (i.e allChildren),
we would have to consider that the probability of extension for any
given term is equal. Intuitively, this does not appear to be a valid
assumption, since it would mean that the extension of GO does not
follow any particular direction. Nevertheless, this possibility was in-
vestigated by comparing the distribution of real refinement events for
allChildren intervals, with the probability density function of a bi-
nomial distribution for at least one success for the same allChildren
intervals. Figure 6.6 shows that the two distributions are significantly
different, thus supporting the notion that although the number of chil-
dren has an influence in the refinement probability, the probability of
refinement is not the same for all terms. From these results we can
hypothesize that the number of children a term has is related to its
probability of refinement, because it reflects an increased interest in
that area of the ontology.

Furthermore, the total number of annotations is influenced by the to-
tal number of children, since the annotations of the children contribute
to the total number of annotations of the parent. To take this into ac-
count, the feature ratioAll was created to mitigate the influence of the
number of children on the annotation data. Although this resulted in
a decrease in f-measure of around 6%, compared to either feature sep-
arately, it is still a better performance than most other features. This
gives further support to the notion that areas which attract a larger
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Figure 6.6: Relation between number of allChildren and refinement probability.

The label ‘observed’ corresponds to the real observed refinement events, whereas ‘expected’
to the refinement proportion expectable following the binomial distribution. Presented values
correspond to the GO version of June 2010, but other versions present a very similar behavior.
allChildren and refinement values are averaged within intervals of size 10. These intervals were
calculated by ordering the terms according to the their allChildren number in ascending order,
and then generating equal sized intervals.

interest (in this case patent in the number of annotations) become the

object of more refinement events.

Although these simple notions appear quite intuitive, and a simple

generic rule based on the number of children could in principle be de-

rived, in order to support automated change capturing the best sepa-

ration possible between targets and non-targets for refinement needs to

be established, which is best achieved by employing supervised learn-

ing.
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6.5.3.3 Supervised Learning

The results discussed so far were all based in Decision Tables, a simple

supervised learning algorithm. Other algorithms, such as SVM, Neu-

ral Networks and Bayesian Networks, were also tested and although

they were capable of providing a better performance, and specifically

in the case of SVM and Neural Networks of being parametrized to priv-

ilege either precision or recall, Decision Tables was still able to provide

generally good results comparatively, without requiring parameter op-

timization.

The performance of Bayesian Networks was of special interest, since

the attributes used are not independent, but in fact are temporally

related when we consider multiple ontology version for feature extrac-

tion. For instance the value of allChildren in one version depends on

its value in the previous one. However, no marked difference between

Bayesian Networks and other approaches was found, so this depen-

dency appears to not be very relevant for our current strategy.

Another particularly interesting aspect is that most machine learn-

ing algorithms, including the ones that were used, assume that in-

stances are all independent and identically distributed. However, the

dataset instances correspond to GO terms which are hierarchically re-

lated through the GO structure. Although the inclusion of features

that describe the neighboring area tried to capture this aspect (e.g.

siblings, and all the uniformity features), we still believe it was not

properly contemplated by the proposed setup. The hierarchical rela-

tions between instances may be affecting the experiments considering

the full set of terms, since they are not being captured by the repre-

sentation. In the subset of terms dataset, their influence would not be

as strong, since there are fewer hierarchical relations between instances.
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6.5.3.4 Comparative Evaluation

To complete this evaluation the proposed strategy was compared to
the one proposed byStojanovic et al. (2002) based on uniformity. In
general, the uniformity based strategy performed worse than the one
proposed here. This however is a consequence of Stojanovic’s approach
having been designed to support the manual extension of an ontology
that adapts to user’s needs, whereas in this setting the ontology models
knowledge about a domain whose extension is caused by many different
aspects. Curiously, when transforming the uniformity metrics into
features for classification, a better performance is achieved (Table 6.8)
than when using them as intended by the authors, as a simple criteria
for ranking.

Applying extension prediction

The output of the extension prediction methodology is a list of on-
tology classes, which are the roots of subgraphs that correspond to
ontology areas which have been predicted as good candidates for ex-
tension. This methodology is applicable to the most simple yet most
frequent type of ontology change, the addition of new elements. It is
not suited to predict more complex changes such as a reorganization
of an entire branch of the ontology. As such, the ontology extension
prediction can be used to speed up the process of extension in these
simpler cases, by allowing ontology developers and/or ontology learn-
ing systems to focus on smaller areas of the domain. This frees the
experts to spend more time focusing on the more complex changes that
cannot be predicted.

Automated ontology learning systems can also use the list to focus
their efforts on the identified areas. For instance, most ontology learn-
ing systems employ a corpus of scientific texts as input, and their
performance is tightly coupled to the quality of such corpora. If the
candidate list is used to guide the creation of specific corpora for the
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areas to extend, it can have a positive impact on the performance of
such strategies.

We have chosen to highlight three examples of the results given by the
ontology extension prediction system, two successful ones (Fig. 6.7
and Fig. 6.8), where the predicted areas were in fact extended in the
version for which extension was predicted, and one indirectly success-
ful one (Fig. 6.9), where although the extension did not occur when
predicted, it did in fact happen at later versions of the ontology.

In Fig. 6.7, extension was predicted for the subgraph rooted in "macro-
molecular complex assembly". Since it is indirect extension that is
being predicted, the addition of new subclasses can occur at any point
in the subgraph. In this case, the GO term has four direct subclasses,
and all of them gained new subclasses in the future version for which
we were predicting. In Fig. 6.8, extension was predicted for the area
of "cell pole". In the version used to train the model, "cell pole" had
two subclasses "apical pole of neuron" and "basal pole of neuron" but
in the version for which extension was predicted, "cell pole" gained
a whole new branch rooted on a new subclass for "cell tip". These
two examples showcase two different extension patterns: in the first,
extension occurs throughout the subgraph, whereas in the second it
corresponds to the addition of a single but large branch.
In Fig. 6.9 extension was predicted in the subgraph of "lipid trans-
porter activity" for the version of January 2010, but no extension took
place. However in later versions of July 2010 and January 2011, ex-
tension did occur by the addition of two new sub-subclasses. This
is an example of how this evaluation strategy may be too stringent
when considering these cases false positives, since they can eventually
undergo extension at later versions.
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6.5.3.5 Consecutive version prediction

Although six months was used as the minimum interval between con-
secutive ontology versions, a small study using monthly versions was
also conducted. As a first step the average number of refinements made
in consecutive monthly versions between May 2010 and October 2010
(six versions) within each GO ontology (Table 6.11) was investigated.

Table 6.11: Average number of refined and non-refined GO terms

GO ontology refined terms non-refined terms
depth=4 consecutive versions

biological process 84.00 ± 22.967 594.5 ± 18.554
molecular function 9.50 ± 9.604 449.25 ± 259.479
cellular component 3.25 ± 3.418 114.5 ± 66.130

GOSlim leafs depth=1 consecutive versions
biological process 118.25 ± 41.583 1156.75 ± 41.583
cellular component 6.5 ± 7.762 604.0 ± 348.785

depth=4 six month separated versions
biological process 105.89 ± 22.605 224.22 ± 36.0917
molecular function 41.89 ± 16.010 466.89 ± 20.572
cellular component 11.78 ± 2.779 92.56 ± 44.919

The number of refined terms between consecutive versions is much
lower than using a six month interval, as expected. In the molecular
function and cellular component ontologies, this has a great impact
on prediction, since between some versions there were actually no re-
finements at all. This of course precludes prediction for these cases,
but even when there are refinements, the number of positive training
examples is still much lower than the negatives, making it either im-
possible to train a model, or making the model over fitted, and hence
have a lower performance on the prediction task.

6.5.3.6 Evolution of prediction

All presented results have been averages for all predictions made using
a given setup. However it is also interesting to verify if there is any
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trend in extension prediction, so individual f-measure values for all
three GO ontologies were plotted using the standard setup (Decision
Tables, bestA, nV er = 3, ∆FC= 2, ∆TT= 2, refinement, indirect).
Figure 6.10 shows this plot, where it can be observed that for biological
process, there is very little variation across time, whereas for molecular
function and cellular component there is greater variation.
It is then possible to hypothesize that this could be due to variations
in the number of positive examples between different versions, which
could be impacting the training of the model. To investigate this the
percentage of positive examples within each dataset was calculated
and plotted in Figure 6.11.

6.6 Conclusions

In this chapter I have presented an investigation on the automation
of the first step of ontology evolution, the change capturing phase. I
tested two approaches: a rule based one and a supervised learning
one. Both approaches are based on predicting areas of the ontology
that will undergo extension in a future version, by applying either rules
or learning over features of previous ontology versions.

The rule based approach was derived from guidelines for ontology de-
velopment proposed in the literature. The efficacy of three different
rules was tested on the prediction of the extension of the Gene On-
tology, one based on the number of subclasses of GO terms and two
others based on the number of annotations (all or just manual). All
rules proved to be unsuccessful, supporting the conclusion that the ex-
tension of GO is too complex to be captured by such simple rules. In
face of this complexity, the learning approach was expected to provide
better results, and this was in fact the case with average f-measure
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reaching 0.79 for prediction of refinement for a subset of relevant bio-
logical process GO terms. The supervised learning approach was tested
using a broad selection of parameters and features, which served as an
investigation of the minimum set of versions and features needed to
provide useful prediction results. Although the best results were ob-
tained using a set of structural and annotation features from multiple
ontology versions, good results were also obtained using a single on-
tology version and simple structural features. This is crucial to the
applicability of the proposed strategy to other biomedical ontologies,
since most lack such a rich annotation corpus as GO’s and are not
updated with the same frequency.

I find that two particular characteristics of the proposed strategy can
be improved, namely the selection of ontology versions to use and the
selection of the term set. Both of these can benefit from recent works
on ontology evolution Hartung et al. (2009, 2010) from which we can
gather useful information to guide the selection process. For the on-
tology versions, as discussed above, there is a need for a minimum of
changes between versions to allow for the training, and by using these
works we can pinpoint ontology versions that have enough changes be-
tween them. In what concerns the term set, we can benefit from the
identification of stable and evolving regions of the ontology, and thus
dynamically define distance to root based on this criteria, i.e. for sta-
ble regions we predict for terms further away from the root, whereas
for evolving regions we stay closer to the root.

Another interesting avenue to improve this strategy is concerned with
the machine learning algorithms. Most of these algorithms, including
the ones that were used, assume that instances are all independent and
identically distributed. However, the dataset instances correspond to
GO terms which are related hierarchically through the GO structure.
The hierarchical relations between instances may be affecting the ex-
periments considering the full set of terms, since they are not being
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captured by the representation. In the subset of terms dataset, their
influence would not be as strong, since there are few hierarchical re-
lations between instances. Furthermore, when using more than one
ontology version for features, the same features for each version are
temporally related. These challenges can be addressed by employing
a more complex strategy based on (Sharan & Neville, 2008), which
accounts both for relations between instances, and temporal variation
of attributes by combining a Relational Bayesian classifier (RBC) with
a Relational probability tree (RPT).

To the best of my knowledge, there has been no previous research into
the prediction of ontology evolution and its use for change captur-
ing. Integrating the proposed strategy into a semi-automatic ontology
engineering framework can bring numerous advantages to ontology en-
gineers and developers, particularly in large ontologies, which are very
common in biomedicine. Using the candidate classes that are returned
by this method we can build focused corpora. This on one hand re-
duces the amount of data ontology learning methods need to process,
increasing the speed of the whole process which can be of particular
relevance in domains where the speed of ontology evolution plays a
crucial role, such as epidemiology. On the other, it narrows down the
domain of each corpus to be analyzed, which can have a positive im-
pact on the efficacy of ontology learning systems. One issue of these
systems is that they generate many spurious new candidate classes
since they are based on term recognition methods that are unable to
differentiate between generic terms and domain terms. By providing
a more focused input corpus to begin with, this issue can be partially
avoided.

Nevertheless, human experts will always be required, especially to han-
dle the more complex modeling tasks, but clever integration of the
proposed strategy with ontology learning methods is expected to dra-
matically decrease the workload of ontology engineers and drive the
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cost of ontology extension in the biomedical domain down, both in
terms of time and resources.
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Figure 6.7: Example of predicted extension in the Molecular Function hierarchy.

Extension was predicted for the root term and occurred at a distance of two
edges, in every subclass.
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Figure 6.8: Example of predicted extension in the Cellular Component hierarchy.

Extension was predicted for the root term and occurred at a distance of one edge,
with the addition of a whole new branch.
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Figure 6.9: Example of predicted extension in the Biological Process hierarchy.

Extension was predicted for the root term and although it did not occur in the
version for which it was predicted (January 2010), it did in fact occur in later
versions, with the addition of one new sub-subclass in July 2010 and another in
January 2011.
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Figure 6.10: F-measure for refinement prediction for separate ontology versions

using Decision Tables with the bestA feature set and nV er = 3, ∆FC= 2, ∆TT=
2.
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Figure 6.11: Percentage of positive examples for training models for refinement
prediction for separate ontology versions.
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Chapter 7

Exploiting ontology vocabulary
in ontology learning and
enrichment

Ontology learning from text can be used as an integral part of an on-
tology extension approach, provided that the learned ontologies are
integrated into the one to extend. One of the key tasks of ontology
learning for extension is the identification of novel candidate classes.
Retrieving these classes from text is often based on automated term
recognition (ATR) strategies that are able to process a text corpora
to find the relevant concepts they contain. ATR strategies usually
function by first identifying all terms within the texts and then rank-
ing them according to their relevance to the domain. Term relevance
measures are used to rank terms according to their relevance to the
domain. These measures can be classified into two types (Kageura &
Umino, 1996): unithood measures and termhood measures.
Unithood is "the degree of strength or stability of syntagmatic com-
binations or collocations," and termhood is "the degree to which a
linguistic unit is related to (or more straightforwardly, represents)
domain-specific concepts." Unithood measures include mutual infor-
mation, log likelihood, t-test, and the notion of ’modifiability’ and its
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variants (Deane, 2005; Wermter & Hahn, 2005). A few studies, such

as (Deane, 2005), leverage on n-gram sequences to identify potential

terms.

Termhood measures are frequency-based and use reference corpora.

They include information retrieval methods such as TF-IDF (Robert-

son & Jones, 1976); domain relevance (Navigli & Velardi, 2004) which

compares the term frequency in the corpus with its frequency in an

external corpora from distinct domains; domain pertinence (Sclano &

Velardi, 2007) and domain consensus (Navigli & Velardi, 2004).

Recent studies have focused on hybrid approaches, that combine unit-

hood and termhood into a single score. These include C-vale/NC-

value (Frantzi et al., 1996), Termextractor (Sclano & Velardi, 2007)

and many others. Two recent comparative evaluation studies of ATR

methods have been conducted (Zhang et al., 2008) (Korkontzelos et al.,

2008). Both concluded that the performance of the methods varied

with the corpus used and that approaches including termhood mea-

sures consistently performed better.

In the context of ontology extension, guaranteeing that the identified

terms belong to the domain in question is crucial. However, existing

termhood measures are tailored to use reference corpora instead of

ontologies. To address this issue I developed a term relevance mea-

sure FLOR that can be used to calculate the ‘domainness’ of a term

by measuring its relatedness to ontology terms. Interestingly, the ap-

proach of FLOR can also be used to enrich an ontology with relations

between existing terms by calculating their relatedness.

Another strategy to filter recognized terms is to remove from the candi-

date term lists terms that have been identified by named entity recogni-

tion methods as belonging to a distinct domain. To test this hypothesis

I developed a method based on a popular named entity recognition sys-

tem for biomedical entities, the GENIA tagger (Tsuruoka et al., 2005).
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7.1 Related Work

FLOR is inspired by FiGO, a system for the the identification of Gene
Ontology (GO) terms in PubMed abstracts developed by Couto et al.
(2005) for BioCreAtIvE (Blaschke et al., 2005). FiGO is based on
the frequency of the words present in the GO vocabulary. The more
frequent a word is, the smaller is its relevance to the final score of the
GO term. This strategy is derived from term relevance measures used
in term identification approaches.
The GENIA tagger is a named entity recognition system specifically
tuned for biomedical text. It analyzes English sentences and outputs
the base forms, part-of-speech tags, chunk tags, and named entity tags.
The GENIA tagger is capable of identifying the following biomedical
entities: protein, DNA, RNA, cell line and cell type.

7.2 FLOR: A term relevance measure

FLOR calculates the relevance of a term in an ontology domain by
calculating the relatedness between the term and ontology concepts.
It relies on textual information contained in ontologies and uses two
information theory notions: the evidence content of a word, and the
information content of an ontology concept.

7.2.1 Components of ontology textual information

An ontology vocabulary is the set of all textual information contained
in an ontology in the form of labels, synonyms and definitions.
Ontology concepts usually have several textual descriptors (e.g., name,
synonyms, definitions). So an ontology concept description can be
stated as follows:

D(c) = {d0, ..., dn} (7.1)

where dn are its textual descriptors: name, synonyms and definition.
A concept descriptor is a unit of text related to an ontology concept ,
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i.e. its label, synonym or definition.

7.2.2 Evidence content of a word

The evidence content of a word is calculated as the negative logarithm
of the relative frequency of a word in the ontology vocabulary.

EC(w) = −logf(w) (7.2)

where f(w) is the frequency of the word in the vocabulary of an ontol-
ogy. In FiGO, Couto et al. calculate the frequency of a word based on
its occurrence in GO names and synonyms. FLOR considers all tex-
tual descriptions available, so it also uses definitions when available.
Like FiGO, it also filters out common English words, but uses a more
elaborate syntactic processing before the computation of word frequen-
cies. The TreeTagger package (Schmid, 1995) is used to tokenise, lem-
matise and perform part-of-speech tagging on the text retrieved from
GO term’s names, synonyms and definitions. TreeTagger is not pre-
pared to handle complex biochemical names, so these remain unlem-
matised and are tagged as nouns. Each noun token is then further
tokenized, using special characters and delimiters, with the specific
intent of handling biochemical entities and other complex words. For
instance, the term dibenzo-p-diazine generates three entries: dibenzo-
p-diazine, dibenzo and diazine.
Tokens are then reduced to their stem, using the Snowball algorithm,
an updated version of the Porter Stemmer algorithm (Porter, 2001).
Furthermore, since stemming algorithms are unable to handle cases
such as pancreas and pancreatic, FLOR uses a simple rule whereby
words are merged to their longest common prefix, when their length is
greater than 5 characters, and their longest common prefix can only be
at most 3 characters shorter than the longest word it represents. This
results in the aggregation of words that fall under the same stem into

110



7.2 FLOR: A term relevance measure

a single entry, reducing the bias towards uncommon forms of common

root words. For instance interactively and interaction are both merged

into the entry interact.

The final frequency of a word corresponds to the number of terms that

contain it in their descriptors. This means that a word that appears

multiple times in the name, definition or synonyms of a term is only

counted once, preventing bias towards terms that have many synonyms

with similar word sets.

7.2.3 Information content of an ontology concept

The information content (IC) of a concept c (Resnik, 1998) is a measure

of how likely the concept is to occur in a given corpus, which can be

quantified as the negative log likelihood,

IC(c) = −logp(c) (7.3)

where p(c) is the frequency of occurrence of c in a specific corpus. The

information content can be given as a number bounded between 0 and

1 by using the relative information content (Pesquita et al., 2008a) as

follows:

IC(c) = − logf(c)

logN
(7.4)

where N is the size of the corpus.

For ontologies where no corpus is available, we can calculate the IC

of a concept using the number of its descendants, ICchildren, so that

concepts with few descendants are considered more informative and

vice-versa.

111



7. EXPLOITING ONTOLOGY VOCABULARY IN ONTOLOGY
LEARNING AND ENRICHMENT

7.2.4 Calculating the relatedness between two on-
tology concepts

The relatedness between two ontology concepts given by FLOR corre-
sponds to the maximum similarity between all possible combinations
of descriptors:

FLOR(c1, c2) = maxd1∈D(c1),d2∈D(c2)Sim(d1, d2) (7.5)

where c1 and c2 are two ontology concepts with D(c1) and D(c2) as
their sets of descriptors. As is shown below, the relatedness between
two concepts is not symmetrical, so c1 is considered to be the query
term, and c2 to be the target term.

7.2.4.1 Similarity between text descriptors

The similarity between two descriptors of ontology concepts, Sim(d1, d2),
can be given by equation 7.6.

Sim(d1, d2) ={. if(d1 ⊃ d2), SimEM

else, SimPM
(7.6)

If d2 is found to be contained in d1 as a substring, we consider it an
exact match, if not we consider it a partial match. In case of an exact
match, the final score is given by a function of the information content
of c2, weighted by a factor α:

SimEM = (1− α) + (α IC(c2)) (7.7)

Since SimEM returns values bounded between 0 and 1, α reflects the
portion of the score that is influenced by the concept IC. This implies
that the similarity between two descriptors is not symmetrical, since
the substring relation is one-way only. In case of a partial match, the
final score is given by a weighted Jaccard similarity, SimPM , which is
calculated by transforming each descriptor into a vector of words, each
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word weighted by its evidence content, and then dividing the sum of
the EC of the words both descriptors share, by the sum of the EC of
all words contained in both descriptors.

SimPM =

∑
w∈(d1∩d2)EC(w)∑
w∈(d1∪d2)EC(w)

(7.8)

where w are the words contained in the descriptors d1 and d2, and EC
is the evidence content of a word. It provides a measure of the relevance
of the words shared by both descriptors versus the total relevance of
their words.

7.2.5 Calculating the relatedness between a textual
term and ontology concepts

To calculate the relatedness between an ontology concept and a textual
term a very similar approach is used, where an artificial concept is
created with a single descriptor which corresponds to the textual term.
Then the approach for the relatedness between concepts is used.

7.3 FLOR in ontology learning

FLOR can be used to provide a term relevance measure to automated
recognition methods for ontology learning. The score returned by
FLOR can give a measure of how relevant it is for the ontology. An-
other strategy to ensure that the identified terms belong to the domain
in question is to filter out easily recognizable named entities that be-
long to other domains. The strategy proposed here would begin by
first extracting noun-phrases that can potentially be candidate terms,
then removing known named entities from this list and finally ranking
the remaining terms using FLOR.
Biomedical named entity recognition of genes has already achieved a
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high performance with the first ranked system in BioCreative 2 reach-
ing 87.21% f-measure (Wilbur et al., 2007). However genes are just
one kind of biomedical entity and depending on the domain of the
ontology to extend, recognizing other kinds of entities can be helpful.
For instance, texts within the domain of GO will likely reference sev-
eral kinds of biomedical entities including genes, proteins, RNA, cells,
laboratory procedures, etc. As a proof of concept for this strategy I
implemented a term recognition system based on the coupling of the
GENIA tagger and FLOR for the domain of GO.

7.3.1 Methods

Abstracts retrieved from PubMed based on the output of the Extension
Prediction module are parsed by the GENIA tagger. The output of
GENIA is then processed to filter out irrelevant terms. First, a list
of all noun phrases is compiled from the POS tagger output. Then,
all noun phrases that exactly correspond to named entities recognized
by GENIA are removed. The remaining noun-phrases are run through
FLOR and ranked according to their relatedness to GO concepts.

7.3.2 Test case

The abstract in Figure 7.1 was retrieved from PubMed by the query
‘neuron differentiation’, taking this concept as an area in need of ex-
tension. It was run through GENIA resulting in the POS tagging in
Figure 7.2 and the named entity recognition in Figure 7.3. Then all
noun phrases that were not identified as named entities were ranked
with FLOR to generate candidate concepts. Table 7.1 shows the re-
sulting scores for the candidates.

In this case, all top candidates are within the scope of GO, with some
corresponding to existing GO terms, for instance ‘neuronal morpho-
genesis’ is covered by ‘cell morphogenesis involved in neuron differen-
tiation’ and ‘axonal outgrowth’ by ‘axon extension’. However all other
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Figure 7.1: Abstract retrieved for the query ‘neuron differentiation’

candidates are viable novel GO terms. Although this is just a a test

case, it illustrates how FLOR can be used as a term relevance measure

in ATR strategies for ontology extension.

7.4 FLOR in ontology enrichment

This section presents an evaluation of FLOR on its ability to retrieve

related concepts within the same ontology. The strategy described

below can be applied to ontology enrichment, by uncovering relations

between ontology concepts.
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Figure 7.2: POS tagging by GENIA

7.4.1 Methods

FLOR can be adapted to retrieve concepts that are related to an input
concept. Given that bio-ontologies are generally large, a preparatory
step is needed to derive a set of target concepts for which this method
will be applied. The set of target concepts is the union between all:

1. concepts whose name or synonym is contained in the query concept
descriptors - exact match concepts, and

2. the top k related concepts to the input concept, that are not in-

Table 7.1: FLOR scores for top candidate concepts after named entity removal

Candidate concepts FLOR score
microtubule stability 0.46
dendritic arborization 0.45
neuronal morphogenesis 0.45

axonal outgrowth 0.45
neuronal polarization 0.44

dendritic spine formation 0.4
tubulin acetylation 0.38

dendritic filopodia formation 0.31
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Figure 7.3: NER by GENIA

cluded in the previous set - partial match concepts.

These top k concepts correspond to concepts ranked by the highest
sum of EC from the words that they share with the input concept.
The candidate target concepts include the exact match concepts and
the partial match concepts that share relevant words with the query
concept. The relatedness score is calculated for each pair (query con-
cept - target concept), and the target concepts are ranked according
to the relatedness score.

7.4.2 Evaluation

The Gene Ontology (March 2010 release) was used to evaluate the
performance of FLOR in two tasks: (1) calculating the relatedness
between two GO terms. (2) retrieving GO terms related to a query GO
term. Although GO is usually described as three separate ontologies,
there is an increasing number of relations across them, which enables
the use of the three ontologies as a single one, for the purpose of testing
ontology enrichment.

7.4.2.1 Dataset

The Gene Ontology is particularly suited to the evaluation of FLOR
since GO crossproducts provide a set of terms that are related (Mungall
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Crossproducts dataset Term pairs
bp_x_mf 12
mf_x_mf 27
mf_x_cc 28
bp_x_cc 245
cc_x_cc 284
bp_x_bp 736
Total 1332

Table 7.2: Number of term pairs derived from each GO crossproducts dataset.

et al., 2010). GO crossproducts are definitions of GO terms by compo-
sition using two other terms. The intuition behind using GO crossprod-
ucts to evaluate the extraction of relations between GO terms is that
if a given term t1, can be defined by composition of two other terms,
t2 and t3, then t1 can be said to be related to the terms t2 and t3, since
it refers them. Consider the term mitotic spindle elongation , which
is defined as a crossproduct in the obo format, as follows:

[Term] id: GO:0000022 ! mitotic spindle elongation

intersection_of: GO:0051231 ! spindle elongation

intersection_of: part_of GO:0000278 ! mitotic cell cycle

This triplet generates two related query term-target term pairs: ’mi-
totic spindle elongation - spindle elongation ’ and ’mitotic spindle elon-
gation’ - ’mitotic cell cycle ’.
Two kinds of crossproducts datasets were used: the intra-hierarchy, or
self, datasets, where a term of a given hierarchy is defined by com-
position of two terms of the same hierarchy, and the inter-hierarchy
datasets, where a term of a given hierarchy is defined using one term
from the same hierarchy and one term from a distinct hierarchy. A
total of 6 datasets were generated from these cross-products sets, with
a total of 1332 pairs of terms. Table 7.2 presents each dataset size.

The corpus of annotations provided by GOA can also be used to cal-
culate information content. The probability of a term occurring in the
GOA corpus is given by its frequency of annotation. In this evaluation
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we use all annotations, regardless of their evidence code, to compute
the information content. Also, we considered α the weighting factor of
SimEM to be 0.2. The intuition behind this, is to allow for relatively
high scores when an exact match is found, since the minimum score
allowed for an exact match is 0.8.

7.4.2.2 Systems used for comparison

FLOR was compared to two previously proposed methods:

1. FiGO, a method proposed by Couto et al. (2005) to uncover GO
terms in text;

2. substring strict matching, a method used by Ogren et al. (2004)
to find compositional relations between GO terms.

FiGO calculates the confidence level for a GO term occurring in a text
by the dividing the local evidence content (the sum of the evidence
content of the words shared by the term and the text) by the term’s
evidence content.
The strict matching algorithm simply checks if the the name or syn-
onyms of the target term are contained as a substring in the name or
synonyms of the input term’s name, synonym or definition. To pro-
vide a ranking score for retrieving candidate related terms, information
content weighting was applied.

7.4.2.3 Relatedness between two terms

To evaluate the performance of the proposed method in calculating the
relatedness between terms, a pseudo-negative dataset was built from
random term pairs with the same number of term pairs as the positive
dataset derived from the crossproducts. With a positive and a negative
set of related pairs FLOR’s ability to distinguish between related and
unrelated pairs of terms can be tested. Three different setups of FLOR
were applied to this dataset: (1) all descriptors, which considers all
descriptors (names, definitions and synonyms) of GO terms; (2) just
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names, where GO terms are described only by their names; and (3)
without exact matches, that also describes GO terms using only their
names and computes all scores using only SimPM .
The first two setups are intended to test the influence of considering
the term definitions as well as names and synonyms. It has been
suggested (Johnson et al., 2006) that term definitions contain relevant
information in the case of finding relations to ChEBI, so here we test if
the same is true within GO. The third setup is designed to evaluate the
influence of exact matches in the overall computation. With this setup
FLOR’s performance in distinguishing between positive and negative
term pairs without recurring to exact matches can be tested.
To provide a basis of comparison, FiGO and a simple strict matching
algorithm were also employed. The performance of all five methods
was assessed through ROC and linear correlation analysis. ROC curves
were plotted using the ROCR R library (Sing et al., 2005).

Figure 7.4 presents the ROC curves for all five methods. All five
methods have a good performance on this dataset, with a very low
false positive rate which can ultimately be attributed to the randomly
generated negative dataset. However, there is a clear advantage of the
proposed method using all descriptors over FiGO, and FiGO is already
a noteworthy improvement on strict matching. The linear correlation,
presented in Table 7.3, corroborates the increased performance of two
of FLOR’s setups: all descriptors and just names.

Method Pearson’s correlation
FLOR all descriptors 0.89
FLOR just names 0.82

FLOR without exact matches 0.72
FiGO 0.73

strict matching 0.75

Table 7.3: Pearson’s correlation values for the application of FLOR’s 3 variants,
FiGO and strict matching to GO term relatedness computation.
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Retrieval of Related Bio-Ontology Concepts
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Figure 7.4: ROC curves for the comparison of five relation extraction methods

FLOR’s all descriptors, just names and without exact matches setups, FiGO and
strict matching.
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7.4.2.4 Finding related concepts

GO crossproducts were also used to evaluate the performance of FLOR
in retrieving terms related to an input term. For each term pair (query
term - target term), a list of candidate terms that are related to the
query term ranked according to their score is returned, and these are
evaluate them against the target term. Precision and recall over all
term pairs are calculated by considering the first k candidates. So,
precision and recall at rank k are defined as follows:

precision(k) =

∑k
i=1 ||C+||∑k
i=1 ||C||

(7.9)

recall(k) =

∑k
i=1 ||C+||
||N ||

(7.10)

where C+ is the number of correct predictions, C is the number of
candidates at that rank and N is the total number of term pairs.
However, these metrics are not adequate to evaluate the performance
of the methods across all ranks. Gaudan et al. (2008) propose a global
performance measure, gp, that is suitable for this evaluation. This
measure is able to compare measures across all ranks, by weighting the
contribution of correct predictions according to their rank. A correct
prediction at rank 1, contributes fully, while a correct prediction at
rank 10, contributes with a tenth. The formula is:

gp(k) =

∑k
i=1 1/k||C+||
||N ||

(7.11)

Following this approach, FLOR’s two best performing setups in the
previous evaluation, all descriptors and just names, were evaluated
against FiGO and strict matching, for ranks 1 through 10. Figure
7.5 shows these results. From the analysis of this data, it is clear
that FLOR outperforms both FiGO and the strict matching approach.
When considering all datasets, the best performance is achieved by the
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all descriptors setup, with a precision of 0.42 at a recall of 0.42 in rank
1. When using just names, these values drop slightly to 0.40. The strict
matching dataset is very close behind with 0.39 precision at 0.39 recall,
whereas FiGO has a weaker performance, with 0.05 of precision/recall
at rank 1.

When considering the global performance values given in Table 7.4,
and inspecting each dataset’s results separately, we can see clear dif-
ferent performance tendencies according to the GO hierarchy to which
the target term belongs. Cellular component terms are overall the
easiest to predict relations to, and they particularly stand out in the
just names and strict matching results of the mf_x_cc and bp_x_cc
datasets. This advantage is not as obvious in the all descriptors setup.
Molecular function terms on the other hand are the most difficult to
predict relations with, and show a clearly lower performance in the
just names and strict matching, with some improvement in the all de-
scriptors setup. The prediction of relations to biological process terms
is very similar in the strict matching and just names, improving clearly
with the all descriptors setup.
In terms of overall global performance, FLOR’s all descriptors setup
shows the best score, with 1.78, with just names coming in second at
1.69, and strict matching in third at 1.56. FiGO, while interestingly
being the second best method in the bp_x_mf dataset, has the lowest
global performance reaching only 0.33.

7.4.3 Discussion

The performance of FLOR in ontology enrichment was evaluated in
two distinct tasks: calculating the relatedness between pairs of GO
terms, and identifying candidate GO terms related to a query GO term.
In the first task, all five methods tested have a good performance, be-
ing able to clearly distinguish between related and unrelated pairs of
terms. However, the highest performers are FLOR’s setups that con-
sider both exact and partial matches. Since they both use exact and
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Figure 7.5: Precision vs. Recall for ranks 1 to 10. A -FLOR with the just names
setup; B-FLOR with the all descriptors setup; C - FiGO; D - strict matching.
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strict matching FiGO just names all descriptors
bp_x_bp 1.56 0.33 1.6 2.03
bp_x_cc 2.0 0.19 2.11 2.23
bp_x_mf 0.0 1.48 1.07 1.73
cc_x_cc 1.54 0.41 1.59 2.43
mf_x_cc 1.74 0.33 2 2.11
mf_x_mf 1.63 0.22 1.63 1.66

all 1.56 0.33 1.69 1.78

Table 7.4: Global performance of strict matching, FiGO and FLOR’s just names
and all descriptors setups.

partial matching approaches, these results support their integration.
In the second task, the FLOR setups were also the best performers pre-
senting the highest global performance values, 1.78 and 1.69, followed
by strict matching at 1.56 and with FiGO clearly lagging behind.
The strict matching method’s performance is not surprising, since the
GO crossproducts dataset is only composed of GO terms, which follow
a standard of syntax and have a compositional nature, which increases
the chances of a term being literally contained in another.
These same reasons also influence the good performance obtained by
FLOR since it also employs an exact match approach. However, FLOR
rises above the strict matching due to its hybrid nature capable of
handling cases were an exact match is not possible. Furthermore, the
superior performance of the all descriptors setup is a clear indicator
that term definitions contain relevant information for relation extrac-
tion.
FiGO was found to be unsuited to this task. Its weak performance can
be in part explained due to its ranking method that does not account
for exact matches and filters out more general terms. Although these
aspects are relevant to identify GO terms in abstracts, they can repre-
sent obstacles to the identification of relations between terms, where
exact matches provide good evidence for the establishment of relations.
Additionally, FiGO does not use term definitions, which can provide,
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as already discussed, an important source of information.
However, the method applied is not the only factor that influences the
results. There are obvious differences in terms of performance for the
different ontologies of the target term. For instance, in the just names
and strict matching results, cellular component terms appear to be
more easily predicted to be in a relation than other branches terms.
However, this advantage is not as strong in the all descriptors results,
which can mean that while cellular component terms relations are
stated in GO term’s names, biological process and molecular function
relations are more frequently referred to in the definition of terms, and
thus are being missed by the just names and strict matching methods.
In fact, 17% of all molecular function terms contain a cellular compo-
nent term name in their names, and this percentage rises to 37% in
the case of biological process terms. However, only 4% of biological
process names contain molecular function names.
Nevertheless, cellular component terms may simply be easier to be
identified in relations, since they are on average shorter than biologi-
cal process and molecular function terms, and thus exact matches are
more likely. A similar hypothesis has already been proposed by (Gau-
dan et al., 2008), who observed that cellular component terms are the
easiest to identify in text passages.
Overall these results highlight a relevant distinction that exists be-
tween finding an ontology concept in text, and retrieving related ontol-
ogy concepts based on their textual descriptions: ontology textual re-
sources are more rigidly defined than common natural language texts.
Term names usually follow conventions, and term definitions are writ-
ten in a clear and concise fashion, focusing on a very well defined piece
of information. Natural language texts can refer to ontology terms in
any number of manners, and usually possess a wider context that can
increase the difficulty in identifying terms.
FLOR’s ability to handle the natural variability in natural language
while still regarding the more conventional format of ontology text
data, make it particularly well suited to the task of retrieving related
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ontology concepts, and thus capable of being applied to both ontology
learning and ontology matching, and thus an appropriate method to
support ontology extension.

7.5 Conclusions

In this chapter I described FLOR, a term relevance measure and its
application in two scenarios: filtering term candidates extracted from
text and finding relations between ontology concepts.
In candidate term filtering FLOR can be used after the application
of automated term recognition methods to ensure that the candidate
terms are within the domain of interest. The FLOR score can guide
ontology developers in deciding whether a candidate concept is worth
integrating into the ontology or not. This application scenario of
FLOR can handle one of the issues in employing ontology learning
methods to ontology extension, which is to ensure the relevance of the
selected candidates. While testing the applicability of FLOR to can-
didate term filtering, I also investigated the feasibility of adding an
extra filter based on named entity recognition. The intuition behind
this, is that we can filter out irrelevant terms if we can identify them
as entities belonging to other domains. An example of this was given
using the GENIA tagger to weed out gene and cell mentions in the
task of identifying novel GO terms in text.
FLOR was also shown to find relevant relations between Gene Ontol-
ogy terms, supporting its application in this scenario. However, FLOR
can also be applied within ontology matching to find the relatedness
between concepts from distinct ontologies, as shall be described in the
next chapter.
Future work in this area will include a broader evaluation of FLOR in
ontology learning, investigating its ability to provide relevant candi-
date concepts.
However, FLOR has some limitations, namely that it depends on the
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quality of the ontology vocabulary. For instance, if an ontology as few
synonyms, two concepts can be related without sharing any words,
rendering FLOR unable to detect them. The strategy using a named
entity recognition system also has limitations, in particular, the ex-
istence of relevant NER systems for the domain being analyzed. If
there are no NER systems able to identify the entities that need to be
filtered out, then this approach cannot be applied.
FLOR’s versatility has contributed to its application in other areas,
namely the resolution of chemical entities using the ChEBI ontology
Grego et al. (2012) and more recently to identifying epidemiology con-
cepts in dictionary entries.
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Chapter 8

Matching biomedical
ontologies

Ontology matching is one of the core techniques in ontology engineer-
ing and can play an important role as a part of ontology development,
since it is the basis for the integration of ontologies. By matching an
ontology that needs extension to another relevant ontology, we can
then reuse the matched portions for integration resulting in an exten-
sion of the ontology. Using ontology matching for extension is partic-
ularly interesting in the case of the biomedical domain, where despite
the efforts of the community to provide orthogonal ontologies, it still
boasts many overlapping ontologies or related resources. In BioPortal,
a portal for biomedical ontologies, there are 306 ontologies distributed
by categories, for instance 59 in the health category, 38 in the anatomy
and 21 in the biological process.

In recent years the OAEI has been the major playfield for biomedical
ontologies alignment, in its anatomy track. An important finding of
the OAEI initiative is that many of the anatomy ontologies matches
are rather trivial and can be found by simple string comparison tech-
niques. Based on this notion, the work in (Ghazvinian et al., 2009)
has applied a simple string matching algorithm, LOOM, to several
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ontologies available in the NCBO BioPortal, and reported high levels
of precision in most cases. The authors mention several possible ex-
planations for this, including the simple structure of most biomedical
ontologies, the high number of synonyms they contain and the low
language variability.
When compared to the top performers in OAEI 2008 (Caracciolo et al.,
2008), SAMBO, SAMBOdtf, and RiMOM, LOOM has a higher pre-
cision but a lower recall, probably due to the other algorithm’s ex-
ploitation of other more complex methods than simple lexical match-
ing. SAMBO and SAMBOdtf employ the UMLS (Unified Medical
Language System) as the domain knowledge source to support lexical
matching of concepts. RiMOM on the other hand, does not use exter-
nal knowledge, relying on label and structural similarities.
In OAEI 2009 (Ferrara et al., 2009), the best systems, SOBOM and
AgreementMaker also did not use external knowledge, but both relied
on global similarity computation techniques. These techniques repre-
sent ontologies as graphs, where concepts are nodes, and the relations
between them, edges, and propagate lexical similarities between on-
tology concepts throughout the ontology graphs. This is based on the
assumption that a match between two concepts should contribute to
the match of their adjacent concepts, according to a propagation fac-
tor.
The importance of OAEI in the ontology matching field motivated my
participation in 2010 and 2011 with methods developed within the con-
text of this thesis. The OAEI provides a standard for the evaluation
and comparison of ontology matching strategies and as such presents
itself as an ideal benchmark for the testing of the proposed strategies.
Moreover, it also supports an accurate analysis of results since the
evaluation is based on a manually curated reference alignment.
Based on an analysis of winning systems of OAEI 2009 I developed
methods designed to leverage on the success of simple lexical match-
ing methods, while still finding alignments where lexical similarity is
low, by using global computation techniques. These methods were
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incorporated into a system called BLOOMS which was implemented
as a module over the ontology matching platform AgreementMaker
(Cruz & Sunna, 2008b) and was submitted to OAEI 2010. In 2011,
the collaboration with the AgreementMaker team was tightened, and I
was responsible for several improvements and new modules, which will
be described below. These improvements were designed to handle and
take advantage of the specific characteristics of biomedical ontologies,
such as the richness in synonyms and the existence of a part_of hierar-
chy. In addition to testing these methods in OAEI I also investigated
their performance on the alignment of a portion of GO and a por-
tion of FMA, to support their usage on different biomedical ontologies
scenarios.

8.1 Related Work

The LOOM system uses a terminological matcher that considers two
concepts from different ontologies as similar, if their names or syn-
onyms are equivalent based on a simple string-matching function, which
disregards delimiters (e.g., spaces, underscores, parentheses, etc.), and
allows for a one character mismatch in strings with length greater than
four. The terminological matchers used in SAMBO comprise two ap-
proximate string matching algorithms, n-gram and edit distance, and
a linguistic algorithm. The n-gram matcher, considers an n-gram as a
set of n consecutive characters extracted from a string. If two strings
share a high number of n-grams they are considered similar. Edit dis-
tance is defined as the number of deletions, insertions or substitutions
required to transform one string into the other. If two string are easily
transformed into each other, then they are considered similar.
Similarity flooding (simflood) (Melnik et al., 2001) is a structural al-
gorithm that is based on the notion that concepts from two graphs are
similar if their adjacent elements are similar. The algorithm obtains
initial matches using a string matching function, and then iteratively
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creates more mappings for elements whose neighbors are similar. The
contribution of similarity from a mapping to adjacent neighbors de-
pends on the aligned node degree, i.e, if two aligned concepts have
many parents, that each pair of parents gains little similarity, on the
contrary if two aligned concepts have just one parent, they gain much
more similarity. The iterations continue until the similarities between
elements stabilize or a maximum number of iterations is reached.

The AgreementMaker system (Cruz & Sunna, 2008b) is an ontology
matching framework that supports a wide variety of methods and
matchers. Its architecture allows for serial or parallel composition
of matchers such that the results from several matching algorithms
can be combined into a single final result. Due to its modularity,
AgreementMaker can be used in many different matching scenarios,
but for the present purposes, only the strategies used in OAEI 2009
and 2010 will be described. For OAEI 2009 three string-based tech-
niques were run on parallel: the Base Similarity Matcher (BSM) , the
Parametric String-based Matcher (PSM), and the Vector-based Multi-
word Matcher (VMM). BSM is a basic string matcher, which uses
rule-based word stemming, stop word removal, and word normaliza-
tion. PSM combines an edit distance measure and a substring measure.
VMM uses the TF-IDF (Jones, 1972) approach by compiling a virtual
document for every concept in an ontology and then uses the cosine
similarity measure. The string matcher results are combined using the
Linear Weighted Combination (LWC) matcher which automatically
calculates the weights for each matcher using a local-confidence qual-
ity measure. Then AgreementMaker runs the Descendant’s Similarity
Inheritance (DSI) matcher, a structure-based matcher that increases
the matching scores between the descendants of matched concepts.
The final alignment is extracted from the set of matches based on a
threshold for the scores. For OAEI 2010, the string-based matchers
were extended by plugging in a set of lexicons that expands the set of
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synonyms via WordNet. The final configuration used in the anatomy
track was a Linear Weighted Combination of BSM, PMM and VMM.

8.2 Exploring lexical similarity and global
computation techniques in OAEI 2010

The first ontology matching methods developed for this thesis were
part of BLOOMS, a system that couples a lexical matching algorithm
based on the specificity of words in the ontology vocabulary, with a
novel global similarity computation approach that takes into account
the semantic variability of edges.

8.2.1 Methods

BLOOMS has a sequential architecture composed of three distinct
matchers: Exact, Partial and Semantic Broadcast Match. While the
first two matchers are based on lexical similarity, the final one is based
on the propagation of previously calculated similarities throughout the
ontology graph. Figure 8.1 depicts the general structure of BLOOMS.

8.2.1.1 Lexical similarity

Exact and Partial matchers use lexical similarity based on textual de-
scriptions of ontology concepts. Textual descriptors of concepts in-
clude their labels, synonyms and definitions. Since ontology concepts
usually have several textual descriptors (e.g., name, synonyms, defi-
nitions), the similarity between two ontology concepts is given by the
maximum similarity between all possible combinations of descriptors.
The first matcher, Exact Match, is run on textual descriptions after
normalization and corresponds to a simple exact match, where the
score is either 1 or 0. The second matcher, Partial Match, is applied
after processing all concept labels, synonyms and definitions through
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Figure 8.1: Diagram of BLOOMS architecture.

Given two ontologies, BLOOMS first extracts alignments based on Exact matches,
then on Partial matches, and finally it propagates the similarities generated by
those two strategies using the Semantic Broadcast approach.

tokenizing strings into words, removing stopwords, performing nor-

malization of diacritics and special characters, and finally stemming

(Snowball). If the concepts share some of the words in their descrip-

tors, i.e. are partial matches, the final score is given by a Jaccard

similarity, which is calculated by the number of words shared by the

two concepts, over the number of words they both have.

These Exact and Partial matchers correspond to a specific configu-

ration of FLOR, where in SimEM α is set to zero and in Sim_PM

the EC of every word is set to one. Alternatively, each word can be

weighted by its evidence content (see 7.2.2) and

to handle the cases where the word is common to both ontologies the

evidence content of the word is given by the average of their ECs within

each ontology.
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8.2.1.2 Semantic Broadcast

After the lexical similarities are computed, they are used as input for

a global similarity computation technique, Semantic Broadcast (SB).

This novel approach takes into account that the edges in the ontology

graph do not all convey the same semantic distance between concepts.

This strategy is based on the notion that concepts whose relatives are

similar should also be similar. A relative of a concept is an ancestor

or a descendant whose distance to the concept is smaller than a factor

d. To the initial similarity between concepts, SB adds the sum of all

similarities of the alignments between all relatives weighted by their

semantic gap sG, to a maximum contribution of a factor c. This is

given by the following:

Simfinal(ca, cb) = Simlex(ca, cb) + c(
∑

Simlex(ri, rj).sG(ca, ri, cb, rj))

|D(ca, ri) < d ∧D(cb, rj) < d ∧ ri, rj ∈ A
(8.1)

where ca and cb are concepts from ontologies a and b, and ri and rj

are relatives of ca and cb at a distance D smaller than a factor d whose

match belongs to the set of extracted alignments A. The semantic gap

between two matches corresponds to the inverse of the average seman-

tic similarity between the two concepts from each ontology. Several

metrics can be used to calculate the similarity between ontology con-

cepts, in particular, measures based on information content have been

shown to be successful (Pesquita et al., 2009b). BLOOMS implements

three information content based similarity measures: Resnik (1998),

Lin (1998) and a simple semantic difference between each concept’s

ICs. The information content of an ontology concept is a measure of

its specificity in a given corpus. Many biomedical ontologies possess

annotation corpora that are suited to this application. Nevertheless,

semantic similarity can also be given by simpler methods based on edge

distance and depth. Since neither the mouse or the human anatomy
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ontologies have an annotation corpus, the Semantic Broadcast algo-
rithm used a semantic similarity measure based on edge distance and
depth, where similarity decreases with the number of edges between
two concepts, and edges further away from the root correspond to
higher levels of similarity.

Semantic broadcast can also be applied iteratively, with a new run
using the similarity matrix provided by the previous.

8.2.1.3 Alignment Extraction

Alignment extraction in BLOOMS is sequential. After each matcher
is run, alignments are extracted according to a predefined threshold
of similarity and cardinality of matches, so that the concepts already
aligned are not processed by matchers down the line. Each successive
matcher has its own predefined threshold.

8.2.2 Integration in AgrementMaker to participate
in OAEI 2010

BLOOMS was integrated into the AgreementMaker system due to its
extensible and modular architecture. It was also of interest to benefit
from its ontology loading and navigation capabilities, and its layered
architecture that allows for serial composition since the BLOOMS ap-
proach combines two matching methods that need to be applied se-
quentially. Furthermore, the visual interface was also helpful during
the optimization process of the matching strategy because it supports
a very quick and intuitive evaluation.
Since neither the mouse or the human anatomy ontologies have an
annotation corpus, the Semantic Broadcast algorithm used a semantic
similarity measure based on edge distance and depth, where similarity
decreases with the number of edges between two concepts, and edges
further away from the root correspond to higher levels of similarity.
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8.2.3 Results and Discussion

BLOOMS was evaluated in the OAEI anatomy track which consists
of four tasks: in the first three tasks, matchers should be optimized
to favor f-measure, precision and recall, in turn. In the fourth task,
an initial set of alignments is given, that can be used to improve the
matchers performance. In addition to the classical measures of preci-
sion, recall and f-measure, the OAEI initiative also employs recall+,
which measures the recall of non-trivial matches, since in the anatomy
track a large proportion of matches can be achieved using simple string
matching techniques. Taking advantage of the SEALS platform sev-
eral distinct configurations of BLOOMS were executed, testing differ-
ent parameters and also analyzing the contribution of each matcher to
the final alignment. It was found that after the first matcher is run,
the alignments produced have a very high precision (0.98), but the re-
call is somewhat low (0.63). Each of the following matchers increases
recall while slightly decreasing precision, which was expected given
the increasing laxity they provide. It was also found that weighting
the partial match score using word evidence content did not signifi-
cantly alter results when compared to the simple Jaccard similarity.
For task 1, a Partial Match threshold of 0.9 was used coupled with a
final threshold of 0.4. Semantic Broadcast was run to propagate simi-
larities through ancestors and descendants at a maximum distance of
2, and contribution was set to 0.4. This resulted in 0.954 precision,
0.731 recall, for a final F-measure of 0.828 and a recall+ of 0.315. For
task 2, a Partial Match threshold of 0.9 was used and Semantic Broad-
cast was not run. With this strategy, we ensured a higher precision,
of 0.967. However, recall was not much lower than the one in task 1,
0.725 , which resulted in a final f-measure of 0.829.

Comparing the results for tasks 1 and 2, they clearly indicate that
the semantic broadcast strategy does not represent a very heavy con-
tribution to recall. However when using both the Exact and Partial
Match strategies, nearly 10% more matches are captured, than when
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Table 8.1: OAEI 2010 anatomy track results

Task #1 Task #2 Task #3 Recall+
System Prec. F Rec. Prec. F Rec. Prec. F Rec. #1 #3
AgrMaker* 0.903 0.877 0.853 0.962 0.843 0.751 0.771 0.819 0.874 0.630 0.700
Ef2Match 0.955 0.859 0.781 0.968 0.842 0.745 0.954 0.859 0.781 0.440 0.440
NBJLM* 0.920 0.858 0.803 - - - - - - 0.569 -
SOBOM 0.949 0.855 0.778 - - - - - - 0.433 -
BLOOMS 0.954 0.828 0.731 0.967 0.829 0.725 - - - 0.315 -
TaxoMap 0.924 0.824 0.743 0.956 0.801 0.689 0.833 0.802 0.774 0.336 0.414
ASMOV 0.799 0.785 0.772 0.865 0.808 0.757 0.717 0.753 0.792 0.470 0.538
CODI 0.968 0.779 0.651 0.964 0.785 0.662 0.782 0.736 0.695 0.182 0.383
GeRMeSMB 0.884 0.456 0.307 0.883 0.456 0.307 0.080 0.147 0.891 0.249 0.838

Table 5. Results for subtasks #1, #2 and #3 in terms of precision, F-measure, and recall (in
addition recall+ for #1 and #3). Systems marked with a * do not participate in other tracks or
have chosen a setting specific to this track. Note that ASMOV modified its standard setting in a
very restricted way (activating UMLS as additional resource). Thus, we did not mark this system.

AgreementMaker is followed by three participants (Ef2Match, NBJLM and
SOBOM) that clearly favor precision over recall. Notice that these systems obtained
better scores or scores that are similar to the results of the top systems in the previous
years. One explanation can be seen in the fact that the organizers of the track made the
reference alignment available to the participants. More precisely, participants could at
any time compute precision and recall scores via the SEALS services to test different
settings of their algorithms. This allows to improve a matching system in a direct feed-
back cycle, however, it might happen that a perfect configuration results in problems
for different data sets.

Recall+ and further results. We use again the recall+ measure as defined in [7]. It
measures how many non trivial correct correspondences, not detectable by string equiv-
alence, can be found in an alignment. The top three systems with respect to recall+
regarding subtask #1 are AgreementMaker, NBJLM and ASMOV. Only ASMOV has
participated in several tracks with the same setting. Obviously, it is not easy to find a
large amount of non-trivial correspondences with a standard setting.

In 2010, six systems participated in subtask #3. The top three systems regarding
recall+ in this task are GeRoMe-SMB (GeRMeSMB), AgreementMaker and ASMOV.
Since a specific instruction about the balance between precision and recall is missing in
the description of the task, the results vary to a large degree. GeRoMe-SMB detected
83.8% of the correspondences marked as non trivial, but at a precision of 8%. Agree-
mentMaker and ASMOV modified their settings only slightly, however, they were still
able to detect 70% and 53.8% of all non trivial correspondences.

In subtask #2, seven systems participated. It is interesting to see that systems like
ASMOV, BLOOMS and CODI generate alignments with slightly higher F-measure for
this task compared to the submission for subtask #1. The results for subtask #2 for
AgreementMaker are similar to the results submitted by other participants for subtask
#1. This shows that many systems in 2010 focused on a similar strategy that exploits
the specifics of the data set resulting in a high F-measure based on a high precision.

using Exact Match alone. Recall+ is not very high, again highlight-
ing the need to expand this strategy to improve recall. Nevertheless,
performance was comparable to the best systems in 2009, and in 2010
the f-measure in task 1 is 5% lower than the best performing system,
whereas in task 2 BLOOMS is the second best system, with a slight
difference of 0.1% in precision. These are encouraging results which
motivated the participation in OAEI 2011.

8.3 Exploring synonyms and other biomed-
ical ontologies features in OAEI 2011

Following the participation in OAEI 2010, we decided to tighten our
collaboration with the AgreementMaker team, and my contributions
to the system focused on providing a detailed analysis of the anatomy
tracks results alongside with designing several improvements to the
matchers.

8.3.1 Analyzing the AgreementMaker alignments
for OAEI 2010

A careful analysis of the 234 missed and 107 erroneous matches made
by the AgreementMaker configuration used in OAEI 2010 revealed
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several avenues for improvement. This analysis was only possible in

2011 due to the release of the reference alignment which was previously

undisclosed.

Some of these mistakes were due to errors in the reference alignment

or to peculiarities in the ontologies, for instance, in one ontology two

terms correspond to two distinct classes, while in the other they are

encoded as synonyms. Others were due to issues in the matchers them-

selves.

One very common problem was that matchers that take into account

super and subclasses labels were only considering the is_a hierarchy

to derive them, missing a lot of relevant information from the part_of

hierarchy. In fact, there are 1669 part_of relations in the human

anatomy ontology, whereas in the mouse there are 1637.

Another issue that was identified was that matchers were consider-

ing matches derived from synonym labels as good as matches derived

from main labels, which also introduced some errors. Furthermore,

some matches were being missed because the matchers were unable

to identify their labels as synonyms. For instance, the match between

the concepts MA:0002519 labeled ‘stomach secretion’ and NCI:C32661

labeled ‘gastric secretion’ was missed because the only synonym pro-

vided in the ontologies is ‘gastric juice’ in MA.

Some errors were due to matches between a concept and one of its

subconcepts, for instance ‘maxillary vein’ to ‘internal maxillary vein’,

or a concept and one of its parts, e.g. ‘gut’ to ‘gut epithelium’.

Finally, a few errors were due to polysemic terms, such as ‘lingula’,

which in MA is a part of the brain and in NCI a part of the lung.

These issues are due to ontologies features that are common to many

other biomedical ontologies and as such present themselves as inter-

esting avenues for developing improved matchers.
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8.3.2 Methods

Following the analysis of AgreementMaker’s results for 2010, a series
of improvements were designed to handle some of the identified issues.

8.3.2.1 Extending the Ontologies with Synonym Terms

One of the improvements was a new method to augment the number
of synonyms for each concept by capitalizing on the large number of
synonyms present in both ontologies via the hasRelatedSynonym prop-
erty. First, based on existing synonyms a lexicon of synonym terms
(both single and multi-words) was derived. This is done by finding
common terms between ontology synonyms to infer synonyms terms.
Then these synonym terms are used to create novel synonyms, by
substituting terms in existing synonyms and labels with their synony-
mous term. For example, in the mouse anatomy ontology the concept
‘stomach serosa’ has the synonym ‘gastric serosa’, which supports the
inference that ‘stomach’ and ‘gastric’ are synonyms as well. These
synonym terms can then be used to create new synonyms such as ‘gas-
tric secretion’ for the concept ‘stomach secretion’, which allows it to
be matched to its NCI counterpart.

8.3.2.2 Improving the Vector-based Multi-words Matcher

The VMM matcher compiles vectors of words from the concept’s la-
bels and then uses them to compute the similarity between concepts
using a variety of metrics, such as TF-IDF coupled with cosine sim-
ilarity, Jaccard similarity, Dice coefficient, etc. In AgreementMaker’s
classical implementation these vectors could be composed by the main
labels, synonym labels and parent concepts labels. However, since the
system wasn’t considering the part_of hierarchy, it was missing these
labels, so an option to use this hierarchy was added to the system. An-
other improvement was adding the option to also consider subclasses
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labels.This broadens the number of labels available for the creation of
the vectors which can be expected to have both an impact in precision
and recall.
However, VMM was using a bag of words approach without regards to
whether the labels were from a superclass, a subclass or a synonym.
This could result in an erroneous calculation of the matching scores,
for instance by comparing subclass words to superclass words.To han-
dle this I implemented an alternative VMM matcher, called VMM
Pairwise, which instead of using a single vector for all words in all
labels, used several vectors, one for each label and compared them in
a pairwise approach. The resulting score was given as the maximum
similarity out of all pairwise similarities.

8.3.2.3 Other improvements

Two other contributions were also developed: a weighting for the BSM
matcher and a best-match boosting strategy.
The weighting strategy enables the differentiation between matches
based on main labels or synonym labels, by attributing a lower score
to matches based on synonyms. This is achieved by multiplying the
score by a factor. This strategy can handle the cases where some con-
cepts are modeled as synonyms in one ontology and as sibling concepts
in the other.

The best-match boosting strategy was developed to handle the cases of
matches that were being missed due to scores below the threshold but
that were in fact correct matches. Since these matches corresponded
to the best match for both concepts, the strategy is to simply multiply
the score by a factor.

8.3.2.4 Integration into AgreementMaker for OAEI 2011

The creation of the extended lexicon by the synonym terms approach
impacts all lexical based matchers that AgreementMaker uses, BSM,
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VMM and PSM. Likewise, the best-match boosting is also applied to
all matchers. However, the use of the part_of hierarchy only affects
VMM, and the weighting is exclusive to BSM. VMM Pairwise was not
included in the competition configuration since although it improves
on standard VMM in terms of performance, it was not contributing
to an overall increase in performance when the other matchers were
added (see Section 8.3.3).
For OAEI 2011 AgreementMaker used five matchers: BSM weighted,
VMM, VMM considering the part_of hierarchy, PSM with the best-
match boosting strategy and a Mediated Matcher (MM) based on
alignments made to a mediating ontology. My contributions to MM
were confined to which ontology was the best to use as a mediator. All
matchers except MM used the synonym terms lexicon. The matchers
results were then combined via LWC.

8.3.3 Results and Discussion

The results of AgreementMaker in the anatomy track are shown in Ta-
ble ??. In 2011, OAEI focused on a single task to maximize f-measure
and AgreementMaker ranked first with 91.7%, topping its own results
for 2010 both in precision and recall. It is important to emphasize that
improvements in performance will generally correspond to just a few
percent, since the majority of matches are captured by simple string
matching, a fact recognized by OAEI organizers.

To better highlight the performance of my contribution I provide a de-
tailed analysis comparing the performance of the matchers before and
after the inclusion of my improvements. Figure 8.2 provides a com-
parison for BSM with and without the synonyms terms and weighting
approaches.

The BSM-allS matcher is equivalent to LOOM and presented as a base-
line. The standard AgreementMaker BSM, here labeled as BSMlex-
allS-LT, uses a lexicon and all available synonyms, providing an in-
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Table 8.2: Results of the anatomy track in OAEI 2011

that do not finish in time can be separated in those systems that throw an exception
related to insufficient memory after some time (marked with ’X’). The other group of
systems were still running when we stopped the experiments after 24 hours (marked
with ’T’).8

Obviously, matching relatively large ontologies is a problem for five out of four-
teen executable systems. The two systems MapPSO and MapEVO can cope with on-
tologies that contain more than 1000 concepts, but have problems with finding correct
correspondences. Both systems generate comprehensive alignments, however, MapPSO
finds only one correct corespondence and MapEVO finds none. This can be related to
the way labels are encoded in the ontologies. The ontologies from the anatomy track
differ from the ontologies of the benchmark and conference tracks in this respect.

Matcher Runtime Size Precision F-measure Recall Recall+

AgrMaker 634 1436 .943 .917 .892 .728
LogMap 24 1355 .948 .894 .846 .599
AgrMaker2010 - 1436 .914 .890 .866 .658
CODI 1890 1298 .965 .889 .825 .564
NBJLM2010 - 1327 .931 .870 .815 .592
Ef2Match2010 - 1243 .965 .870 .792 .455
Lily 563 1368 .814 .772 .734 .511
StringEquiv - 934 .997 .766 .622 .000
Aroma 39 1279 .742 .679 .625 .323
CSA 4685 2472 .465 .576 .757 .595
MaasMtch 66389 438 .995 .445 .287 .003
MapPSO 9041 2730 .000 .000 .001 .000
MapEVO 270 1079 .000 .000 .000 .000
Cider T 0 - - - -
LDOA T 0 - - - -
MapSSS X 0 - - - -
Optima X 0 - - - -
YAM++ X 0 - - - -

Table 6. Comparison against the reference alignment, runtime is measured in seconds, the size
column refers to the number of correspondences in the generated alignment.

For those systems that generate an acceptable result, we observe a high variance
in measured runtimes. Clearly ahead is the system LogMap (24s), followed by Aroma
(39s). Next are Lily and AgreementMaker (approx. 10mn), CODI (30mn), CSA (1h15),
and finally MaasMatch (18h).

Results for subtask #1. The results of our experiments are also presented in Table 6.
Since we have improved the reference alignment, we have also included recomputed
precision/recall scores for the top-3 alignments submitted in 2010 (marked by subscript
2010). Keep in mind that in 2010 AgreementMaker (AgrMaker) submitted an align-
ment that was the best submission to the OAEI anatomy track compared to all previous

8 We could not execute the two systems OACAS and OMR, not listed in the table, because the
required interfaces have not been properly implemented.

crease in recall of 5.5% to the expense of 2.7% precision. By adding
the synonym terms extension and the weighing approach (BSMWlex-
allS-ST) precision rises to 97.5% and recall rises to 71%. The weighting
approach increases precision by 1.5%, which is a result of eliminating
some erroneous matches that were being made to synonyms. The syn-
onym terms approach increase recall by nearly 3% since it expands the
number of synonyms available to support a match.

Table 8.3 presents the results for improvements to VMM and PSM.
The best-match boosting strategy in PSM increases recall by 0.5% ,
and when it is incorporated into the complete matching strategy it
raises f-measure by 0.4%. Boosting also improves recall in the VMM
matcher by 2.3%. These improvements in recall are to be expected,
since by raising the scores of reciprocal best matches these are raised
above the threshold and make it to the final alignment. This means
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Figure 8.2: Alignment results for lexical matchers in the OAEI 2011 dataset.

allS: all synonyms; eS: exact synonyms; LT: lexicon terms; ST: synonym terms;
W: weighted

that reciprocal best matches have a high probability of corresponding

to matches even if they have scores slightly below the threshold.

Regarding the addition of the part_of hierarchy option to VMM, al-

though results as a single matcher do not improve on the regular

approach, it does have a positive impact on the complete matching

strategy increasing recall by 2.4%. This is a result of finding a few

new matches that VMM based on the is_a hierarchy was missing.

Although VMM Pairwise was not included in the configuration that

was submitted to AgreementMaker, since it did not improve the overall

performance, it represents an improvement over the standard VMM

approach as seen in Table 8.4. The VMM Pairwise approach with the

Jaccard similarity increases precision by nearly 20%, pushing f-measure

up by more than 15%.
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Table 8.3: Comparison of several matchers improved for OAEI 2011

Matcher Precision Recall F-measure
Single matchers

PSM-ST 59.1% 73.7% 65.6%
PSM-ST-boosted 59.1% 74.2% 65.8%
VMM 71.50% 67.00% 69.20%
VMM-ST 75.7 % 73.2% 74.4%
VMM-ST-boosted 75.1% 75.5% 75.3%
VMM-ST-part_of 73.50% 74.70% 74.10%

Complete matchers
without improvements 95.4% 86.9% 90.9%
with ST 92.9% 89.1% 90.9%
with PSM boosted 96.6% 86.6% 91.3%
with VMM part_of 93.1% 89.3% 91.1%
with PSM boosted and VMM part_of 94.3% 89.2% 91.7%

Table 8.4: Comparative performance of VMM and VMM Pairwise

Matcher Precision Recall F-measure
VMM-TFIDF 75.7% 73.2% 74.4%
VMM-ST-TFDIF 73.50% 74.70% 74.10%
VMM-ST-noSupClass-Jaccard 82.50% 68.00% 74.60%
VMMP-ST-noSupClass-TFIDF 80.7% 76.5% 78.5%
VMMP-ST-noSupClass-Jaccard 95.90% 71.00% 81.60%
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8.4 Matching cellular component ontologies:
GO and FMA

The development and improvement of matchers within the context of
OAEI was specifically designed to handle the challenges of matching
biomedical ontologies and as such their performance in other ontologies
is expected to be positive. In the following, an evaluation of these
matchers in the domain of cellular structures is given. However, due
to the lack of gold standards for the alignment of other biomedical
ontologies, a reference alignment had to be manually built. As such,
this evaluation focuses on two subgraphs of two large ontologies: GO
and FMA, rather than on the whole ontologies.

8.4.1 Reference Alignment

The reference alignment was built for two subgraphs of GO and FMA.
The GO subgraph includes all descendants of the concept ‘organelle’
via is_a and part_of relations with a total of 149 concepts. The FMA
subgraph includes all descendants of ‘cellular component’ via is_a
and partonomy relations including part_of, general_part_of, consti-
tutional_part_of and systemic_part_of, with a total of 816 concepts.
The decision to align a smaller GO subgraph to a larger FMA subgraph
was motivated by the fact that these ontologies have a distinct orga-
nization of concepts, and many of the concepts that are modeled as
descendants of ‘organelle’ in GO, are modeled differently in FMA.
These subgraphs were manually aligned, resulting in a total of 41
matches.

8.4.2 Results and Discussion

The results for this alignment are shown in Table 8.5. One interesting
difference between this alignment and the one for OAEI is that GO

146



8.4 Matching cellular component ontologies: GO and FMA

has several different types of synonym properties such as hasExact-

Synonym, hasRelatedSynonym, hasBroadSynonym and hasNarrowSyn-

onym. BSM without the lexicon plugin was used as a baseline to

compare the influence between using all synonyms (BSM-allS) or just

exact ones (BSM-eS). Using all synonyms, an extra match is found,

but since it is incorrect it lowers precision. The addition of the lex-

icon plugin (BSM-eS-LT and BSM-aS-LT) provides no improvement.

However, synonym terms (BSM-eS-ST and BSM-aS-ST) improves re-

call by 10 and 12%, with precision dropping a few percent. The best

BSM matcher takes into account only exact synonyms, but uses both

synonym terms and weighting (BSMW-eS-ST) for top values of both

precision and recall with f-measure hitting 90.7%. This means that it

was the improvements made to BSM in the context of this thesis that

were responsible for an improvement of nearly 10% in f-measure.

Regarding VMM, using synonym terms resulted in an improvement

of nearly 20% in f-measure, but performance was still low. However,

when employing the pairwise approach proposed in this thesis there

was nearly a 40% increase in f-measure to 85.3%. This supports the

notion that a bag of words approach may not be well suited to handle

ontologies with numerous synonyms such as GO. But in VMM, as in

BSM, indiscriminately using synonyms regardless of their type lowers

precision.

Since the reference alignment is small, some of the conclusions cannot

be extrapolated. For instance, the use of all kinds of synonyms low-

ers precision without improving recall in this example, however it is

expected that in larger ontologies this will not be the case. In fact,

the more synonyms available the better the performance, as it can be

seen when synonym terms are introduced. However, the improvement

seen when using VMM pairwise instead of the standard bag of words

approach, can be expected to translate well to the matching of larger

ontologies.
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Table 8.5: Comparison of matchers in the GO-FMA alignment

Matcher Precision Recall F-measure
BSM-eS 100.00% 68.30% 81.20%
BSM-allS 96.60% 68.30% 80.00%
BSM-eS-LT 100.00% 68.30% 81.20%
BSM-aS-LT 96.60% 68.30% 80.00%
BSM-eS-ST 97.10% 80.50% 88.00%
BSM-as-ST 94.10% 78.00% 85.30%
BSMW-eS-ST (a) 100.00% 82.90% 90.70%
VMM-eS-LT-TFIDF 51.90% 34.10% 41.20%
VMM-eS-ST-TFIDF 55.60% 36.60% 44.10%
VMMP-aS-ST-Jaccard 65.3% 78.0% 71.1%
VMMP-eS-ST-Jaccard (b) 94.3% 80.5% 86.8%
PSM 45.80% 65.90% 54.00%
LWC(a,b) 91.90% 82.90% 87.20%
OAEI2010 87.10% 65.90% 75.00%

8.5 Conclusions

In this chapter I have presented contributions in ontology matching,
specifically designed to address the challenges of matching biomedical
ontologies. The first methods developed, and subsequently tested in
OAEI 2010, were inspired by general findings of the state of the art and
were shown to be good performers but unable to improve on the state
of the art. Although global similarity techniques had produced good
results in OAEI 2009, that was not the case with Semantic Broadcast.
In fact, although AgreementMaker had used a global similarity tech-
nique for its 2009 entry, it was abandoned in 2010 in favor of more
complex lexical matchers, supporting the conclusion that in this par-
ticular case their contribution is not very relevant.

However, when the methods were designed following a careful analy-
sis of results, which was made possible by the release of the reference
alignment for the OAEI 2011 competition, they had a significant con-
tribution to the improvement of performance. Moreover the types of
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issues found in the OAEI alignment and the avenues for their improve-
ment were found to be generalizable to other biomedical ontologies, as
shown in the alignment of two portions of GO and FMA.

One of the most meaningful contributions of this part of my work was
the development of the synonym terms strategy. Although developed
to handle an issue in matching, it is in fact an extension to the ontol-
ogy in the form of new synonyms that is able to work without external
resources.

Two of the identified issues in the OAEI 2010 alignment were not
addressed directly in the improvements designed for the matchers in
the context of this thesis: polysemes and matches to subclasses or
parts. These represent interesting opportunities for future work. For
instance, polysemous concepts can be filtered out by allowing the lack
of similarity between neighbors to decrease the similarity between a
pair of matched concepts. All of the methods developed here were in-
dependent of outside resources, however there are some matches that
are virtually impossible to find without additional knowledge, so the
next logical step would be to explore external resources.

Ontology matching can play an important role as a part of an ontol-
ogy extension strategy, particularly in a domain such as biomedicine
where there are many ontologies with overlapping domains. Using the
alignments produced by ontology matching we can derive candidate
concepts to include in the ontology to extend from the neighboring
concepts of matched ones. The match scores can guide ontology de-
velopers in deciding on the suitability of the candidate concepts for
integration into the ontology.
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Chapter 9

Conclusions

9.1 Summary

This thesis addresses the theme of ontology extension in the context
of biomedical ontologies. Its purpose was the development of a frame-
work for semi-automated ontology extension as well as methods and
methodologies that support the automation of some ontology exten-
sion processes in order to ease the burden on biomedical ontology de-
velopers. The proposed framework addresses the specific challenges of
extending biomedical ontologies by providing three main components:
extension prediction, learning and matching. The prediction extension
component tackles the issues related to the large amounts of available
scientific literature and related ontologies, by identifying the areas of
the ontology in need of extension. These are used to focus the efforts
of the matching and learning components which generate lists of can-
didate concepts by exploring the abundant biomedical literature and
ontologies.
Given the existence of several systems for ontology learning and match-
ing, the main focus of this thesis is the development of methods for
the extension prediction component. I developed and tested two ap-
proaches: a rule based one and a supervised learning one. The rule
based approach applies guidelines for the development of ontologies,
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and it was shown to be unsuited for the task. The supervised learning
approach relies on the notion that it is possible to learn a model that
distinguishes between areas that will undergo extension and areas that
will not, based on ontology features. This approach attained 0.79 of
f-measure in predicting refinement for a subset of relevant biological
process GO terms.
I also developed methods and techniques in both ontology learning
and matching to ensure the success of these components in handling
biomedical ontologies.
In the context of ontology learning a term relevance measure was de-
veloped to rank candidate concepts according to their relevance to the
ontology domain. This is particularly relevant in highly specific and
complex domains such as biomedicine. The proposed measure, FLOR,
used the evidence content of words in the ontology vocabulary to mea-
sure the relatedness between existing and candidate concepts. FLOR
was also applied to measure the relatedness between ontology terms
to support new relations between them and to identifying ontology
concepts in text.
Two sets of methods were developed for ontology matching and submit-
ted to OAEI. The first, based on lexical similarity and global compu-
tation techniques, achieved good performance but ranked below state
of the art systems. The second, resulting from the collaboration with
the AgreementMaker developers, achieved the first place in the com-
petition with an f-measure of 91.7% in aligning human and mouse
anatomy ontologies. The methods employed in this resulted from a
series of improvements on lexical matching methods that explored the
specific issues and characteristics of biomedical ontologies. One of
these methods was concerned with addition of new synonyms to the
ontology and as such was not only a method for matching but also for
extension. To test the application of these methods in another domain
I aligned a portion of GO to a portion of FMA obtaining an f-measure
value of 90.7%.
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9.2 Research Contributions

In this thesis I contributed to the advancement of the state of the art in
automated biomedical ontology extension by presenting a framework
and methods for ontology extension specifically designed to address
the issues of extending biomedical ontologies.

Framework: The proposed framework contemplates the need to adapt
current extension methodologies to the biomedical domain, by in-
tegrating components of existing methods with specific methods
developed in this thesis to provide a complete structure for a semi-
automated ontology extension system.

Analyzing Ontology Extension: A conceptual framework for ana-
lyzing ontology extension was also developed to ensure that the
subsequently developed methods for predicting extension were prop-
erly designed (Pesquita & Couto, 2011).

Analysis of Ontology Usage Patterns: I performed an initial a
analysis of annotation versus extension to highlight some of the
issues in ontology extension (Pesquita et al., 2009c).

Prediction of Ontology Extension: The main contribution of this
thesis is the development of methods for automating the first step
in ontology evolution, which is a completely novel approach to
support the extension of ontologies. I tested two approaches: a
rule-based one that was shown to be ineffective (Pesquita & Couto,
2011) and a supervised learning one which obtained f-measure re-
sults between 60-80% in predicting the extension of the Gene On-
tology (Pesquita & Couto, 2012).

FLOR: I developed a new term relevance measure and applied it to
various tasks:
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• Filtering candidate concepts - FLOR was used to measure the
‘domainness’ of candidate concepts to ensure their relevance
to the ontology

• Finding relations between ontology concepts - this approach
was used within the same ontology to enrich the ontology with
relations, and between different ontologies to support their
matching (Pesquita et al., 2010)

• Resolution of ontology concepts extracted from text - FLOR
was applied to the resolution of chemical concepts extracted
from text to ChEBI concepts, increasing the f-measure by 2-
5% over dictionary-based approaches (Grego et al., 2012)

• Finding new ontology concepts in text - FLOR can also be
applied in conjunction with a POS tagger to directly find can-
didate concepts in text

Analyzing the issues in matching biomedical ontologies: In this
thesis I also analyzed the issues in aligning anatomical ontologies
and identified them as common to the biomedical domain in gen-
eral

Matching biomedical ontologies without external resources: I
also contributed to the improvement of current state of the art on-
tology matching methods, tailoring them to handle the issues in
aligning biomedical ontologies by exploring specific characteris-
tics of these ontologies, such as synonyms and the part_of hier-
archy (Pesquita et al., 2010),(Cruz et al., 2011). These methods
achieved first place in an international competition for the align-
ment of biomedical ontologies with an f-measure of 91.7%. I also
evaluated these methods in the alignment of portions of GO and
FMA obtaining an f-measure of 90.7%.

A reference alignment for a portion of GO and FMA: I also man-
ually constructed a reference alignment for portions of GO and
FMA, which given the lack of such resources can be a valuable
contribution for the community.
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Extending an ontology with new synonyms: I developed a method
for creating new synonyms for ontology concepts which functions
both in the context of ontology matching, but also as a method
for ontology enrichment (Cruz et al., 2011).

9.3 Parallel contributions

During my PhD studies I also developed research, which although
not being directly related to this thesis, contributed to it.

• A book chapter on using biomedical ontologies in mining biomed-
ical information (Pesquita et al., 2008b)

• A study of the coherence between manual and electronic an-
notations in GO Pesquita et al. (2009a).

• A tool for the collaborative evaluation of semantic similarity
measures in GO Pesquita et al. (2009d).

• An approach for identifying bioentity recognition errors of
rule-based text-mining systems (Couto et al., 2008)

• A method citation metrics which handles self-citations using
Google Scholar (Couto et al., 2009)

• An international collaboration for the analysis of proteomics
data using semantic similarity in the are of breast cancer re-
search, which resulted in a publication in Nature Biotechnol-
ogy (Taylor et al., 2009)

• A study on molecular functions from a protein perspective
using the Gene Ontology (Faria et al., 2009)

• An analysis of proteomics data related to cystic fibrosis (Gomes-
Alves et al., 2010)

• A suite of tools for application of biomedical ontologies to the
analysis of biomedical data(Tavares et al., 2011)

• A methodology for gene identification using the Gene Ontol-
ogy (Bastos et al., 2011)
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• A study on mining annotation data to highlight ontology de-
sign issues (Faria et al., 2012)

9.4 Overall Approach

The methods described in this thesis can be integrated into a
methodology following the proposed framework. Figure 9.1 presents
the data flow diagram of this methodology.
In this thesis I developed methods for all three components of the
framework. Using the ontology to extend as a source ontology, the
Extension Prediction method generates a list of candidate ontol-
ogy areas to extend. Then these areas are used as input to the
processes Corpus Construction and Finding Relevant Ontologies.
These processes were not addressed in this thesis since they rely
on simple methods. For the Corpus Construction we can query
PubMed or the Web with a composition of multiple queries us-
ing the names and synonyms of concepts in the areas to extend.
Finding Relevant Ontologies can be accomplished by querying on-
tologies repositories such as BioPortal, or ontology search engines
such as Swoogle also using the names and synonyms of concepts
in the areas to extend.
The Relevant Corpus created in this fashion is used as input to
Ontology Learning systems. Here, we can plugin any of the sev-
eral available ontology learning systems that are able to output
a list of candidate concepts. Then this list of candidate concepts
is processed by the Candidate Filter, which is responsible for en-
suring the relevance of the candidate concepts, by using the term
relevance measure FLOR and/or the Named Entity filter.
The Relevant Ontology is used as input for the Ontology Match-
ing process. Here any of the state of the art ontology matching
systems can be used, but in this thesis we improved an existing
system, AgreementMaker to handle the specific issues of match-
ing biomedical ontologies. Candidate concepts are then extracted
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Figure 9.1: Data flow diagram of the proposed methodology.
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from the produced alignment by retrieving the descendants of the

matched concepts.

The candidate concepts lists are then manually verified by an ex-

pert and integrated into the ontology if considered valid. The

scores returned by the Candidate Filter and by the Ontology

Matching can help to guide ontology developers in this decision

process.

Human experts will always be required either to verify the results

of automated methods or to handle the more complex modeling

tasks, but a clever integration of the proposed methods with tradi-

tional ontology development strategies is expected to dramatically

decrease the workload of ontology engineers and drive the cost of

ontology extension in the biomedical domain down, both in terms

of time and resources.

The methods developed in this thesis can also be applied in other

areas of ontology engineering. The prediction of ontology exten-

sion can be used to identify redundant areas of the ontology, i.e.

areas that never change or are hardly ever used. This can be a

contribution to ontology evolution, particularly in domains where

ontologies model human created content as opposed to domains

that model physical reality, and as such should only contain use-

ful concepts. The methods in ontology matching can be employed

in the matching of any ontologies even outside the biomedical do-

main, and should be particularly effective in ontologies that model

synonyms but still fail to include all possible ones. Finally, the

ranking and filtering methods in ontology learning can also be ap-

plied to other domains, and in particular the approach used in

FLOR can be employed in ontologies with specific terminology

whose concepts may be harder to identify in text.

160



9.5 Limitations and Future Work

9.5 Limitations and Future Work

Despite the success of the proposed methods and the validity of

the overall approach, there are some limitations.

The extension prediction methodology depends on the existence

of different versions of the ontology. Although versioning is a pre-

cept of OBO ontologies, many of the existing biomedical ontolo-

gies, particularly the smaller ones belonging to small development

projects, have a single version. This does not limit however the ap-

plication of the other components, which for instance can function

with manually defined areas for extension. Another limitation of

this methodology is that it can only predict the areas that will be

extended by incremental knowledge acquisition since it is based

on past events. It is not able to predict the need for extension

generated by paradigm shifts (Kuhn, 1962), which although being

a less frequent occurrence can lead to considerable changes in the

underlying domain resulting in a need for redesigning the ontology.

Two other limitations of the prediction methodology present them-

selves as interesting paths to be pursued in future work. On one

hand, the proposed methodology does not contemplate the fact

that ontology concepts are related, and as such machine learning

algorithms should contemplate that the instances are not indepen-

dent. On the other hand, when using several ontology versions to

derive the features, they are temporally related, a fact that should

also be addressed by the machine learning strategy.

The methods developed for filtering candidate concepts also have

some limitations. FLOR relies on the ontology vocabulary to fil-

ter the candidates and as such it depends on the quality of the

ontology vocabulary. If an ontology has few synonyms defined, a

candidate concept and an ontology concept may be related and

yet share no common words. In this case FLOR will fail to rank

the candidate. The Named Entity filter depends on the existence
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of NER systems for pertinent entities. These entities should be re-
lated to the domain in question, but not belong to it. The GENIA
tagger is an interesting approach for use with the Gene Ontology,
but in other domains, the choice of an appropriate NER system is
crucial for the usefulness of this filter.
The ontology matching approaches developed in this thesis did
not contemplate all identified issues, so these are obvious targets
for future work. Polysemous concepts and matches to subclasses
or parts can be addressed by methods that check for matches in
ascendants or descendants to filter them out. Another issue in the
developed methods is that they do not exploit external resources
and these are crucial to correctly identify some matches, for which
there is no support in the ontology information alone. This is a
logical next step in future work in this area, and has in fact moti-
vated a recently started FCT funded project, SOMER (Semantic
Ontology Matching using External Resources1).

9.6 Final Remarks

In this thesis I addressed challenges in extending biomedical on-
tologies in a semi-automated fashion. Ontology extension in the
biomedical domain is a very demanding task, given the sheer
amount of new knowledge being produced on a daily basis. Au-
tomating some of the processes in ontology extension can represent
a valuable contribution to both large and small ontologies. In the
biomedical domain, both types of ontologies are common.
Large ontologies are usually maintained by larger teams and re-
ceive greater funding, but given their broad domain their exten-
sion still faces challenging issues. Keeping these ontologies up to
date, with the smallest lag possible, entails considerable effort and
resource investment. These ontologies benefit from all methods

1http://somer.fc.ul.pt
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proposed in this thesis, particularly from the extension prediction
methodology.
Smaller ontologies might not benefit from the extension predic-
tion, since it is likely they need to be extended in general, but
they can employ the other methodologies directly, without a need
to focus efforts in the first place. Smaller ontologies usually have
less resources and automating the extensions that can be found
via learning and matching releases developers to focus on corner-
stone modeling issues.

Biomedical ontologies play a progressively important role in bioin-
formatics, but also in the life sciences in general. As biology and
health become increasingly data-driven, the need to add a seman-
tic layer to these large collections of data becomes more pressing.
Ontologies poise themselves as ideal to help explore, understand
and extract relevant knowledge from the accumulated data. Appli-
cations of biomedical ontologies are becoming more prevalent, in
such diverse areas as Rubin et al. (2008): search and query of het-
erogeneous biomedical data, data exchange among applications,
information integration, Natural Language Processing, represen-
tation of encyclopedic knowledge and computer reasoning with
data. But for an ontology to be truly successful and useful, it
needs to be constantly developed and maintained. This a highly
demanding task, especially in such an active and complex domain
as the life sciences. In particular, keeping up with new knowledge
is a challenge in this domain, so the automation of some of the
processes in ontology extension can be extremely helpful.
Ontology extension systems still have limitations, particularly when
it comes to extending large and complex domains. Most systems
have only been tested on simple domains, using manually con-
structed corpora, and still have a suboptimal performance.
The contributions of this thesis are not only novel in their essence
but also in the complexity of their target, representing therefore
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9. CONCLUSIONS

valid approaches to handling the challenges of extending biomedi-
cal ontologies. Integrating the methods described here with al-
ready existing systems following the structure of the proposed
framework results in a methodology for ontology extension that
can be applied to biomedical ontologies or other ontologies with
similar characteristics. Ontology extension is a crucial ontology
engineering task and the automation of some of its processes can
contribute not only to decrease the resource investment but also
to ensure a timely update of the ontology, which can be crucial in
rapidly evolving areas such as genomics, epidemiology or health-
care. I envision that the future ontology development will neces-
sarily incorporate the automation of some of its processes, mainly
those that are tedious and time-consuming, releasing ontology ex-
perts to focus on core modeling issues. It is the successful integra-
tion of human expertise and automated methods that will ensure
that biomedical ontologies realize their full potential as essential
tools for handling the challenges of knowledge management in the
Life Sciences in the 21st century, to which I believe this thesis is
a step forward.
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