160 research outputs found

    Synergistic optical and microwave remote sensing approaches for soil moisture mapping at high resolution

    Get PDF
    Aplicat embargament des de la data de defensa fins al dia 1 d'octubre de 2022Soil moisture is an essential climate variable that plays a crucial role linking the Earth’s water, energy, and carbon cycles. It is responsible for the water exchange between the Earth’s surface and the atmosphere, and provides key information about soil evaporation, plant transpiration, and the allocation of precipitation into runoff, surface flow and infiltration. Therefore, an accurate estimation of soil moisture is needed to enhance our current climate and meteorological forecasting skills, and to improve our current understanding of the hydrological cycle and its extremes (e.g., droughts and floods). L-band Microwave passive and active sensors have been used during the last decades to estimate soil moisture, since there is a strong relationship between this variable and the soil dielectric properties. Currently, there are two operational L-band missions specifically devoted to globally measure soil moisture: the ESA’s Soil Moisture and the Ocean Salinity (SMOS), launched in November 2009; and the NASA’s Soil Moisture Active Passive (SMAP), launched in January 2015. The spatial resolution of the SMOS and SMAP radiometers, in the order of tens of kilometers (~40 km), is adequate for global applications. However, to fulfill the needs of a growing number of applications at local or regional scale, higher spatial detail (< 1 km) is required. To bridge this gap and improve the spatial resolution of the soil moisture maps, a variety of spatial enhancement or spatial (sub-pixel) disaggregation approaches have been proposed. This Ph.D. Thesis focuses on the study of the Earth’s surface soil moisture from remotely sensed observations. This work includes the implementation of several soil moisture retrieval techniques and the development, implementation, validation and comparison of different spatial enhancement or downscaling techniques, applied at local, regional, and continental scale. To meet these objectives, synergies between several active/passive microwave sensors (SMOS, SMAP and Sentinel-1) and optical/thermal sensors (MODIS) have been explored. The results are presented as follows: - Spatially consistent downscaling approach for SMOS using an adaptive moving window A passive microwave/optical downscaling algorithm for SMOS is proposed to obtain fine-scale soil moisture maps (1 km) from the native resolution (~40 km) of the instrument. This algorithm introduces the concept of a shape-adaptive window as a central improvement of the disaggregation technique presented by Piles et al. (2014), allowing its application at continental scales. - Assessment of multi-scale SMOS and SMAP soil moisture products across the Iberian Peninsula The temporal and spatial characteristics of SMOS and SMAP soil moisture products at coarse- and fine-scales are assessed in order to learn about their distinct features and the rationale behind them, tracing back to the physical assumptions they are based upon. - Impact of incidence angle diversity on soil moisture retrievals at coarse and fine scales An incidence angle (32.5°, 42.5° and 52.5°)-adaptive calibration of radiative transfer effective parameters single scattering albedo and soil roughness has been carried out, highlighting the importance of such parameterization to accurately estimate soil moisture at coarse-resolution. Then, these parameterizations are used to examine the potential application of a physically-based active-passive downscaling approach to upcoming microwave missions, namely CIMR, ROSE-L and Sentinel-1 Next Generation. Soil moisture maps obtained for the Iberian Peninsula at the three different angles, and at coarse and fine scales are inter-compared using in situ measurements and model data as benchmarks.La humedad del suelo es una variable climática esencial que juega un papel crucial en la relación de los ciclos del agua, la energía y el carbono de la Tierra. Es responsable del intercambio de agua entre la superficie de la Tierra y la atmósfera, y proporciona información crucial sobre la evaporación del suelo, la transpiración de las plantas y la distribución de la precipitación en escorrentía, flujo superficial e infiltración. Por lo tanto, es necesaria una estimación precisa de la humedad del suelo para mejorar las predicciones climáticas y meteorológicas, y comprender mejor el ciclo hidrológico y sus extremos (v.g., sequías e inundaciones). Los sensores pasivos y activos en banda L se han usado durante las últimas décadas para estimar la humedad del suelo debido a la relación directa que existe entre esta variable y las propiedades dieléctricas del suelo. Actualmente, hay dos misiones operativas en banda L específicamente dedicadas a medir la humedad del suelo a escala global: la misión Soil Moisture and Ocean Salinity (SMOS) de la ESA, lanzada en noviembre de 2009; y la misión Soil Moisture Active Passive (SMAP) de la NASA, lanzada en enero de 2015. La resolución espacial de los radiómetros SMOS y SMAP, del orden de unas decenas de kilómetros (~40 km), es adecuada para aplicaciones a escala global. Sin embargo, para satisfacer las necesidades de un número creciente de aplicaciones a escala local o regional, se requiere más detalle espacial (<1 km). Para solventar esta limitación y mejorar la resolución espacial de los mapas de humedad, se han propuesto diferentes técnicas de mejora o desagregación espacial. Esta Tesis se centra en el estudio de la humedad de la superficie terrestre a partir de datos obtenidos a través de teledetección. Este trabajo incluye la implementación de distintos algoritmos de recuperación de la humedad del suelo y el desarrollo, implementación, validación y comparación de distintas técnicas de desagregación, aplicadas a escala local, regional y continental. Para cumplir estos objetivos, se han explorado sinergias entre diferentes sensores de microondas activos/pasivos (SMOS, SMAP y Sentinel-1) y sensores ópticos/térmicos. Los resultados se presentan de la siguiente manera: - Técnica de desagregación espacialmente consistente, basada en una ventana móvil adaptativa, aplicada a los datos SMOS Se propone un algoritmo de desagregación del píxel basado en datos obtenidos de medidas radiométricas de microondas en banda L y datos ópticos, para mejorar la resolución espacial de los mapas de humedad del suelo desde la resolución nativa del instrumento (~40 km) hasta resoluciones de 1 km. El algoritmo introduce el concepto de una ventana de contorno adaptativo, como mejora principal sobre la técnica de desagregación presentada en Piles et al. (2014), permitiendo su implementación a escala continental. - Análisis multiescalar de productos de humedad del suelo SMAP y SMOS sobre la Península Ibérica Se han evaluado las características temporales y espaciales de distintos productos de humedad del suelo SMOS y SMAP, a baja y a alta resolución, para conocer sus características distintivas y comprender las razones de sus diferencias. Para ello, ha sido necesario rastrear los supuestos físicos en los que se basan. - Impacto del ángulo de incidencia en la recuperación de la humedad del suelo a baja y a alta resolución Se ha llevado a cabo una calibración adaptada al ángulo de incidencia (32.5°, 42.5° y 52.5°) de los parámetros efectivos, albedo de dispersión simple y rugosidad del suelo, descritos en el modelo de transferencia radiativa � − �, incidiendo en la importancia de esta parametrización para estimar la humedad del suelo de forma precisa a baja resolución. El resultado de las mismas se ha utilizado para estudiar la potencial aplicación de un algoritmo activo/pasivo de desagregación basado en la física para las próximas misiones de microondas, llamadas CIMR, ROSE-L y Sentinel-1 Next Generation. Los mapas de humedad recuperados a los tres ángulos de incidencia, tanto a baja como a alta resolución, se han obtenido para la Península Ibérica y se han comparado entre ellos usando como referencia mediciones de humedad in situ.Postprint (published version

    Impact of day/night time land surface temperature in soil moisture disaggregation algorithms

    Get PDF
    Since its launch in 2009, the ESA’s SMOS mission is providing global soil moisture (SM) maps at ~40 km, using the first L-band microwave radiometer on space. Its spatial resolution meets the needs of global applications, but prevents the use of the data in regional or local applications, which require higher spatial resolutions (~1-10 km). SM disaggregation algorithms based generally on the land surface temperature (LST) and vegetation indices have been developed to bridge this gap. This study analyzes the SM-LST relationship at a variety of LST acquisition times and its influence on SM disaggregation algorithms. Two years of in situ and satellite data over the central part of the river Duero basin and the Iberian Peninsula are used. In situ results show a strong anticorrelation of SM to daily maximum LST (R˜-0.5 to -0.8). This is confirmed with SMOS SM and MODIS LST Terra/Aqua at day time-overpasses (R˜-0.4 to -0.7). Better statistics are obtained when using MODIS LST day (R˜0.55 to 0.85; ubRMSD˜0.04 to 0.06 m3 /m3 ) than LST night (R˜0.45 to 0.80; ubRMSD˜0.04 to 0.07 m3 /m3 ) in the SM disaggregation. An averaged ensemble of day and night MODIS LST Terra/Aqua disaggregated SM estimates also leads to robust statistics (R˜0.55 to 0.85; ubRMSD˜0.04 to 0.07 m3 /m3 ) with a coverage improvement of ~10-20 %.Peer ReviewedPostprint (published version

    Downscaling SMAP Soil Moisture Data Using MODIS Data

    Get PDF
    Soil moisture level is an important index in studying environmental changes. High resolution soil moisture data is in high demand for agricultural and weather forecasting purpose. Current daily large-scale soil moisture projects fail to provide sufficient resolution for medium or small region research. To acquire high-resolution soil moisture data, different kinds of methods are put into practice, including multivariate statistical regression, weight aggregation and so on. In this research, SMAP (Soil Moisture Active Passive) level 3 data with 36-km resolution are successfully downscaled by MODIS (Moderate Resolution Imaging Spectroradiometer) 1-km LST (Land Surface Temperature) product, NDVI (Difference Vegetation Index) product, SRTM (Shuttle Radar Topography Mission) DEM (Digital Elevation Model), and TWI (Topographic Wetness Index). Three regression models are built based on these supplemental indexes correlated with the SMAP retrieval. All downscaled results are validated with SMAPVEX15 field data. The research aims to establish and validate the multivariate regression method for downscaling low-resolution remote sensing image (such as SMAP) with local field observations. Based on the validation results, the research suggests the regression models have a decent fit. The downscaled soil moisture data indicating the method is applicable to small region research

    An artificial neural network approach for soil moisture retrieval using passive microwave data

    Get PDF
    Soil moisture is a key variable that defines land surface-atmosphere (boundary layer) interactions, by contributing directly to the surface energy and water balance. Soil moisture values derived from remote sensing platforms only accounts for the near surface soil layers, generally the top 5cm. Passive microwave data at L-band (1.4 GHz, 21cm wavelength) measurements are shown to be a very effective observation for surface soil moisture retrieval. The first space-borne L-band mission dedicated to observing soil moisture, the European Space Agency's (ESA) Soil Moisture and Ocean Salinity (SMOS) mission, was launched on 2nd November 2009.Artificial Neural Network (ANN) methods have been used to empirically ascertain the complex statistical relationship between soil moisture and brightness temperature in the presence of vegetation cover. The current problem faced by this method is its inability to predict soil moisture values that are 'out-of-range' of the training data.In this research, an optimization model is developed for the Backpropagation Neural Network model. This optimization model utilizes the combination of the mean and standard deviation of the soil moisture values, together with the prediction process at different pre-determined, equal size regions to cope with the spatial and temporal variation of soil moisture values. This optimized model coupled with an ANN of optimum architecture, in terms of inputs and the number of neurons in the hidden layers, is developed to predict scale-to-scale and downscaling of soil moisture values. The dependency on the accuracy of the mean and standard deviation values of soil moisture data is also studied in this research by simulating the soil moisture values using a multiple regression model. This model obtains very encouraging results for these research problems.The data used to develop and evaluate the model in this research has been obtained from the National Airborne Field Experiments in 2005

    Determination of Best Low-Frequency Microwave Antenna Approach for Future High Resolution Measurements from Space

    Get PDF
    Microwave remote sensing measurements at L-band (~1.2-1.6 GHz) of geophysical parameters such as soil moisture will need to be at higher spatial resolution than current systems (SMOS/ SMAP/ Aquarius) in order to meet the requirements of land surface, ocean, and numerical weather prediction models in the near future, which will operate at ~9-15 km global grids and 1-3 km regional grids in the next few years. In order to make progress toward these needed spatial resolutions, advancements in technology are necessary which would lead to improved effective (i.e. equivalent) antenna size. An architecture trade study was conducted to quantitatively define the value and limits of different microwave technology paths, and to select the most appropriate path to achieve the high spatial resolution required by science in the future without sacrificing performance, accuracy, and global coverage

    Surface topography and mixed-pixel effects on the simulated L-band brightness temperatures.

    Get PDF
    The impact of topography and mixed pixels on L-band radiometric observations over land needs to be quantified to improve the accuracy of soil moisture retrievals. For this purpose, a series of simulations has been performed with an improved version of the Soil Moisture and Ocean Salinity (SMOS) End-to-End Performance Simulator (SEPS). The brightness temperature (TB) generator of SEPS has been modified to include a 100-m-resolution land cover map and a 30-m-resolution digital elevation map of Catalonia (northeast of Spain). This highresolution TB generator allows the assessment of the errors in soil moisture retrieval algorithms due to limited spatial resolution and provides a basis for the development of pixel disaggregation techniques. Variation of the local incidence angle, shadowing, and atmospheric effects (up- and downwelling radiation) due to surface topography has been analyzed. THE AVAILABILITY of high-resolution brightness temperature (TB) maps at L-band is crucial to analyze important issues dealing with bare and vegetation-covered land emission and to develop inversion algorithms in preparation for real Soil Moisture and Ocean Salinity (SMOS) mission data. Mixed-pixel, coastlines, shadowing, and topography effects on the measured brightness temperatures need further study, but the lack of global geophysical data at sufficient temporal and spatial resolution and the large amount of data involved in the generation of high-resolution TB maps on a global basis complicate the issue. In fact, in spite of the existence of global digital elevation models with sufficient spatial resolution, accurate land cover data do not exist for most parts of the world. To address these issues, a series of simulations has been performed with an improved version of the SMOS End-to-End Performance Simulator (SEPS) [1], [2], in which, to date, all points on Earth have been assumed to be at sea level. The study has been done over the region of Catalonia, on the northeastern coast of Spain, because of its many different land cover types, topography, and the presence of a coastline. A 30-m-resolution digital elevation map [3] and a 100-m-resolution land coverage map of Catalonia [4] have been used as inputs, and SEPS has been conveniently modified to generate high-resolution TB maps of this area. A variety of soil and land cover types (crops, bushes, marshes, etc.) have been parameterized using the values obtained from field experiments and literature [5]–[10], [12].The impact of topography and mixed pixels on L-band radiometric observations over land needs to be quantified to improve the accuracy of soil moisture retrievals. For this purpose, a series of simulations has been performed with an improved version of the soil moisture and ocean salinity (SMOS) end-to-end performance simulator (SEPS). The brightness temperature generator of SEPS has been modified to include a 100-m-resolution land cover map and a 30-m-resolution digital elevation map of Catalonia (northeast of Spain). This high-resolution generator allows the assessment of the errors in soil moisture retrieval algorithms due to limited spatial resolution and provides a basis for the development of pixel disaggregation techniques. Variation of the local incidence angle, shadowing, and atmospheric effects (up- and downwelling radiation) due to surface topography has been analyzed. Results are compared to brightness temperatures that are computed under the assumption of an ellipsoidal Earth

    Estimation de l'humidité du sol à haute résolution spatio-temporelle : une nouvelle approche basée sur la synergie des observations micro-ondes actives/passives et optiques/thermiques

    Get PDF
    Les capteurs micro-ondes passifs SMOS et SMAP fournissent des données d'humidité du sol (SM) à une résolution d'environ 40 km avec un intervalle de 2 à 3 jours à l' échelle mondiale et une profondeur de détection de 0 à 5 cm. Ces données sont très pertinentes pour les applications cli- matiques et météorologiques. Cependant, pour les applications à échelle régionales (l'hydrologie) ou locales (l'agriculture), des données de SM à une haute résolution spatiale (typiquement 100 m ou plus fine) seraient nécessaires. Les données collectées par les capteurs optiques/thermiques et les radars peuvent fournir des indicateurs de SM à haute résolution spatiale, mais ces deux approches alternatives ont des limites. En particulier, les données optiques/thermiques ne sont pas disponibles sous les nuages et sous les couverts végétaux. Quant aux données radar, elles sont sensibles à la rugosité du sol et à la structure de la végétation, qui sont tous deux difficiles à caractériser depuis l'espace. De plus, la résolution temporelle de ces données est d'environ 6 jours. Dans ce contexte, la ligne directrice de la thèse est de proposer une nouvelle approche qui combine pour la première fois des capteurs passifs micro-ondes, optiques/thermiques et actifs micro-ondes (radar) pour estimer SM sur de grandes étendues à une résolution de 100 m chaque jour. Notre hypothèse est d'abord de nous appuyer sur une méthode de désagrégation existante (DISPATCH) des données SMOS/SMAP pour atteindre la résolution cible obtenue par les radars. A l'origine, DISPATCH est basé sur l'efficacité d' évaporation du sol (SEE) estimée sur des pixels partiellement végétalisés à partir de données optiques/thermiques (généralement MODIS) de température de surface et de couverture végétale à résolution de 1 km. Les données désagrégées de SM sont ensuite combinées avec une méthode d'inversion de SM basée sur les données radar afin d'exploiter les capacités de détection des radars Sentinel-1. Enfin, les capacités de l'assimilation des donnés satellitaires de SM dans un modèle de bilan hydrique du sol sont évaluées en termes de prédiction de SM à une résolution de 100 m et à une échelle temporelle quotidienne.Dans une première étape, l'algorithme DISPATCH est amélioré par rapport à sa version actuelle, principalement 1) en étendant son applicabilité aux pixels optiques entièrement végétalisés en utilisant l'indice de sécheresse de la végétation basé sur la température et un produit de couverture végétale amélioré, et 2) en augmentant la résolution de désagrégation de 1 km à 100 m en utilisant les données optiques/thermiques de Landsat (en plus de MODIS). Le produit de SM désagrégé à la résolution de 100 m est validé avec des mesures in situ collectées sur des zones irriguées au Maroc, indiquant une corrélation spatiale quotidienne variant de 0,5 à 0,9. Dans un deuxième étape, un nouvel algorithme est construit en développant une synergie entre les données DISPATCH et radar à 100 m de résolution. En pratique, le produit SM issu de DISPATCH les jours de ciel clair est d'abord utilisé pour calibrer un modèle de transfert radiatif radar en mode direct. Ensuite, le modèle de transfert radiatif radar ainsi calibré est utilisé en mode inverse pour estimer SM à la résolution spatio-temporelle de Sentinel-1. Sur les sites de validation, les résultats indiquent une corrélation entre les mesures satellitaires et in situ, de l'ordre de 0,66 à 0,81 pour un indice de végétation inférieur à 0,6. Dans une troisième et dernière étape, une méthode d'assimilation optimale est utilisée pour interpoler dans le temps les données de SM à la résolution de 100 m. La dynamique du produit SM dérivé de l'assimilation de SM DISPATCH à 100 m de résolution est cohérente avec les événements d'irrigation. Cette approche peut être facilement appliquée sur de grandes zones, en considérant que toutes les données (télédétection et météorologique) requises en entrée sont disponibles à l' échelle globale.SMOS and SMAP passive microwave sensors provide soil moisture (SM) data at 40 km resolution every 2-3 days globally, with a 0-5 cm sensing depth relevant for climatic and meteorological applications. However, SM data would be required at a higher (typically 100 m or finer) spatial resolution for many other regional (hydrology) or local (agriculture) applications. Optical/thermal and radar sensors can be used for retrieving SM proxies at such high spatial resolution, but both techniques have limitations. In particular, optical/thermal data are not available under clouds and under plant canopies. Moreover, radar data are sensitive to soil roughness and vegetation structure, which are challenging to characterize from outer space, and have a repeat cycle of at least six days, limiting the observations' temporal frequency. In this context, the leading principle of the thesis is to propose a new approach that combines passive microwave, optical/thermal, and active microwave (radar) sensors for the first time to retrieve SM data at 100 m resolution on a daily temporal scale. Our assumption is first to rely on an existing disaggregation method (DISPATCH) of SMOS/SMAP SM data to meet the target resolution achieved by radars. DISPATCH is originally based on the soil evaporative efficiency (SEE) retrieved over partially vegetated pixels from 1 km resolution optical/thermal (typically MODIS) surface temperature and vegetation cover data. The disaggregated SM data is then combined with a radar-based SM retrieval method to exploit the sensing capabilities of the Sentinel-1 radars. Finally, the efficacy of the assimilation of satellite-based SM data in a soil water balance model is assessed in terms of SM predictions at the 100 m resolution and daily temporal scale. As a first step, the DISPATCH algorithm is improved from its current version by mainly 1) extending its applicability to fully vegetated optical pixels using the temperature vegetation dryness index and an enhanced vegetation cover product, and 2) increasing the targeted downscaling resolution from 1 km to 100 m using Landsat (in addition to MODIS) optical/thermal data. The 100 m resolution disaggregated SM product is validated with in situ measurements collected over irrigated areas in Morocco, showing a daily spatial correlation in the range of 0.5-0.9. As a second step, a new algorithm is built on a synergy between DISPATCH and radar 100 m resolution data. In practice, the DISPATCH SM product available on clear sky days is first used to calibrate a radar radiative transfer model in the direct mode. Then the calibrated radar radia- tive transfer model is used in the inverse mode to estimate SM at the spatio-temporal resolution of Sentinel-1. Results indicate a positive correlation between satellite and in situ measurements in the range of 0.66 to 0.81 for a vegetation index lower than 0.6. As a third and final step, an optimal assimilation method is used to interpolate 100 m resolution SM data in time. The assimilation exercise is undertaken over irrigated crop fields in Spain. The analyzed SM product derived from the assimilation of 100 m resolution DISPATCH SM is consistent with irrigation events. This approach can be readily applied over large areas, given that all the required input (remote sensing and meteorological) data are available globally

    On the correlation between GNSS-R reflectivity and L-band microwave radiometry

    Get PDF
    This work compares microwave radiometry and global navigation satellite systems-reflectometry (GNSS-R) observations using data gathered from airborne flights conducted for three different soil moisture conditions. Two different regions are analyzed, a crops region and a grassland region. For the crops region, the correlation with the I/2 (first Stokes parameter divided by two) was between 0.74 and 0.8 for large incidence angle reflectivity data (30°-50°), while it was between 0.51 and 0.61 for the grassland region and the same incidence angle conditions. For the crops region, the correlation with the I/2 was between 0.64 and 0.69 for lower incidence angle reflectivity data (<;30°), while it was between 0.41 and 0.6 for the grassland region. This indicates that for large incidence angles the coherent scattering mechanism is dominant, while the lower incidence angles are more affected by incoherent scattering. Also a relationship between the reflectivity and the polarization index (PI) is observed. The PI has been used to remove surface roughness effects, but due to its dependence on the incidence angle only the large incidence angle observations were useful. The difference in ground resolution between microwave radiometry and GNSS-R and their strong correlation suggests that they might be combined to improve the spatial resolution of microwave radiometry measurements in terms of brightness temperature and consequently soil moisture retrievals.This work was supported in part by the Spanish Ministry of Science and Innovation, “AROSA-Advanced Radio Ocultations and Scatterometry Applications using GNSS and other opportunity signals,” under Grant AYA2011-29183-C02-01/ESP and “AGORA: Tecnicas Avanzadas en Teledetección Aplicada Usando Señales GNSS y Otras Señales de Oportunidad,” under Grant ESP2015-70014-C2-1-R (MINECO/FEDER), in part by the Monash University Faculty of Engineering 2013 Seed Grant, and in part by the Advanced Remote Sensing Ground-Truth Demo and Test Facilities and Terrestrial Environmental Observatories funded by the German Helmholtz-Association. The work of A. A.-Arroyo was supported by the Fulbright Commission in Spain through a Fulbright grant.Peer ReviewedPostprint (author's final draft

    Disaggregation of SMOS soil moisture to 100m resolution using MODIS optical/thermal and sentinel-1 radar data: evaluation over a bare soil site in morocco

    Get PDF
    The 40 km resolution SMOS (Soil Moisture and Ocean Salinity) soil moisture, previously disaggregated at a 1 km resolution using the DISPATCH (DISaggregation based on Physical And Theoretical scale CHange) method based on MODIS optical/thermal data, is further disaggregated to 100 m resolution using Sentinel-1 backscattering coefficient (σ°). For this purpose, three distinct radar-based disaggregation methods are tested by linking the spatio-temporal variability of σ° and soil moisture data at the 1 km and 100 m resolution. The three methods are: (1) the weight method, which estimates soil moisture at 100 m resolution at a certain time as a function of σ° ratio (100 m to 1 km resolution) and the 1 km DISPATCH products of the same time; (2) the regression method which estimates soil moisture as a function of σ° where the regression parameters (e.g., intercept and slope) vary in space and time; and (3) the Cumulative Distribution Function (CDF) method, which estimates 100 m resolution soil moisture from the cumulative probability of 100 m resolution backscatter and the maximum to minimum 1 km resolution (DISPATCH) soil moisture difference. In each case, disaggregation results are evaluated against in situ measurements collected between 1 January 2016 and 11 October 2016 over a bare soil site in central Morocco. The determination coefficient (R2) between 1 km resolution DISPATCH and localized in situ soil moisture is 0.31. The regression and CDF methods have marginal effect on improving the DISPATCH accuracy at the station scale with a R2 between remotely sensed and in situ soil moisture of 0.29 and 0.34, respectively. By contrast, the weight method significantly improves the correlation between remotely sensed and in situ soil moisture with a R2 of 0.52. Likewise, the soil moisture estimates show low root mean square difference with in situ measurements (RMSD = 0.032 m3 m−3).This work is a contribution to the REC project funded by the European Commission Horizon 2020 Programme for Research and Innovation (H2020) in the context of the Marie Skłodowska-Curie Research and Innovation Staff Exchange (RISE) action under grant agreement no: 645642. In addition, this work has been partially funded by a public grant of Ministerio de Economía y Competitividad (DI-14-06587) and AGAUR-Generalitat de Catalunya (DI-2015-058)

    Earth remote sensing with SMOS, Aquarius and SMAP missions

    Get PDF
    The first three of a series of new generation satellites operating at L-band microwave frequencies have been launch in the last decade. L-band is particularly sensitive to the presence of water content in the scene under observation, being considered the optimal bandwidth for measuring the Earth's global surface soil moisture (SM) over land and sea surface salinity (SSS) over oceans. Monitoring these two essential climate variables is needed to further improve our understanding of the Earth's water and energy cycles. Additionally, remote sensing at L-band has been proved useful for monitoring the stability in ice sheets and measuring sea ice thickness. The ESA's Soil Moisture and Ocean Salinity (SMOS, 2009-2017) is the first mission specifically launched to monitor SM and SSS. It carries on-board a novel synthetic aperture radiometer with multi-angular and full-polarization capabilities. NASA's Aquarius (2011-2015) was the second mission, devoted to SSS monitoring with a combined real aperture radiometer/scatterometer system that allows correcting for sea surface roughness. NASA's Soil Moisture Active Passive (SMAP, 2015-2018) is the second mission dedicated to measure SM. It carries on-board a real aperture full-polarimetric radiometer and a synthetic aperture radar (SAR) for enhanced spatial resolution and freeze/thaw detection. This Ph.D. Thesis is focused on analyzing the geophysical information that can be obtained from L-band SMOS, Aquarius and SMAP observations. The research activities are structured as follows: -Inter-comparison of radiometer brightness temperatures at selected targets. A novel methodology to measure the consistency between SMOS and Aquarius radiometric data over the entire dynamic range of observations (land, ice and ocean) is proposed. It allows detecting spatial/temporal differences or biases without latitudinal limitations neither cross-overs. This is a necessary step to combine observations from different instruments in a long term dataset for environmental, meteorological, hydrological or climatological studies. -Ice thickness effects on passive remote sensing of Antarctic continental ice. The relationship between Antarctic ice thickness spatial variations and changes detected by SMOS and Aquarius measurements is explored. The emissivity of Antarctica is analyzed to disentangle the role of the geophysical contributions (snow layers at different depths and subglacial lakes) to the observed signal. The stability of the L-band signal in the East Antarctic Plateau, calibration/validation site for microwave satellite missions, is assessed. -Microwave/optical synergy for multi-scale soil moisture sensing. The relationship of SM and land surface temperature (LST) dynamics is evaluated to better understand the fundamental SM-LST link through evapotranspiration and thermal inertia physical processes. A new approach to measure the critical soil moisture from time-series of spaceborne SM and LST is proposed. The synergistic use of SMOS SM and remotely sensed LST for refining SM disaggregation algorithms is also analyzed. -Comparison of passive and active microwave vegetation parameters. Recent research has shown that microwave vegetation opacity, sensitive to biomass and water content, and albedo, related to canopy structure, can be retrieved from passive L-band observations. The relationships between these two parameters and radar-derived vegetation descriptors have been explored using airborne observations from the SMAP Validation Experiment 2012 (SMAPVEX12). The obtained relations could allow for improved SM retrievals in active-passive systems, and also to estimate the vegetation properties at high resolution using SAR observations. The Ph.D. Thesis has been developed within the activities of the Barcelona Expert Centre (BEC). The presented results contribute to the use of L-band remote sensing in different scientific disciplines such as climate, cryosphere, hydrology and ecology.Els primers tres d'una sèrie de satèl·lits de nova generació funcionant a la banda L han sigut llançats a l'última dècada. La banda L es molt sensible a la presència d'aigua a l'escena observada, sent considerada òptima per mesurar la humitat del sòl (SM) i la salinitat del mar (SSS) de manera global a la superfície de la Terra. Monitoritzar aquestes dues variables climàtiques essencials es necessari per millorar el nostre coneixement dels cicles de l'aigua i l'energia. La teledetecció a banda L també ha sigut útil per monitoritzar l'estabilitat de les capes de gel i mesurar el gruix de gel marí. La missió Soil Moisture and Ocean Salinity (SMOS, 2009-2017) de l'ESA és la primera específicament llançada per monitoritzar SM i SSS. Porta un nou radiòmetre d'apertura sintètica amb capacitat multiangular i polarització completa. La missió Aquarius (2011-2015) de la NASA va ser la segona, dedicada a monitoritzar SSS amb un sistema de radiòmetre/escateròmetre d’apertura real que permet corregir la rugositat de la superfície del mar. La missió Soil Moisture Active Passive (SMAP, 2015-2018) de la NASA és la segona dedicada a mesurar SM. Porta un radiòmetre d'apertura real i polarització completa i un radar d'apertura sintètica (SAR) per una millor resolució espaial i detecció de congelació/descongelació. Aquesta tesi està enfocada en analitzar la informació geofísica que pot obtenir-se de les observacions a banda L d'SMOS, Aquarius i SMAP. La seva investigació està estructurada com: -Intercomparació de temperatures de brillantor en zones seleccionades. Es proposa un nou mètode per mesurar la consistència entre les dades radiomètriques d'SMOS i Aquarius sobre el rang dinàmic complet d'observacions (terra, gel, oceà). Això permet detectar diferències espaials/temporals o biaixos sense limitacions latitudinals ni creuaments. Aquest pas es necessari per combinar observacions de diferents instruments en un llarg conjunt de dades per estudis mediambientals, hidrològics o climatològics. -Efecte de gruix de gel en teledetecció de gel continental a l'Antàrtida. S'explora la relació entre les variacions espaials del gruix de gel antàrtic i els canvis detectats a les mesures d'SMOS i Aquarius. L'emissivitat de l'Antàrtida es analitzada per discernir el rol de les contribucions geofísiques (capes de gel a diferents profunditats i llacs subglacials) al senyal observat. S'avalua l'estabilitat del senyal a banda L sobre la zona est de l'altiplà antàrtic, lloc per calibratge/validació de satèl·lits de microones. -Sinèrgia de microones/òptic per teledetecció de SM multiescala. S'avalua la correlació entre la SM i la temperatura de la superfície del sòl (LST) per entendre millor la relació SM-LST a través de processos físics d'evapotranspiració i inèrcia tèrmica. Es proposa un nou mètode per mesurar la humitat crítica utilitzant sèries temporals de SM i LST de satèl·lit. S'analitza l'ús de la SM de SMOS amb la LST de teledetecció per refinar algorismes de desagregació de SM. -Comparació de paràmetres passius i actius de microones relatius a la vegetació. Recent investigació ha mostrat que l'opacitat, sensible a la biomassa i el contingut d'aigua, i l'albedo, relacionat amb l'estructura, poden ser recuperats d'observacions passives a banda L. S'exploren les relacions entre aquests dos paràmetres i estimadors de vegetació derivats de radar utilitzant les observacions d'avió de l'experiment de validació d'SMAP 2012 (SMAPVEX12). Les relacions obtingudes podrien permetre millors recuperacions de SM en sistemes actius/passius i estimar les propietats de la vegetació a alta resolució utilitzant mesures de SAR. La tesi s'ha desenvolupat dins les activitats del Barcelona Expert Centre (BEC). Els resultats presentats contribueixen a l'ús de la banda L a diferents disciplines científiques com la climatologia, la criosfera, la hidrologia i l'ecologia
    corecore