1,651 research outputs found

    Least squares DOA estimation with an informed phase unwrapping and full bandwidth robustness

    Get PDF
    The weighted least-squares (WLS) direction-of-arrival estimator that minimizes an error based on interchannel phase differences is both computationally simple and flexible. However, the approach has several limitations, including an inability to cope with spatial aliasing and a sensitivity to phase wrapping. The recently proposed phase wrapping robust (PWR)-WLS estimator addresses the latter of these issues, but requires solving a nonconvex optimization problem. In this contribution, we focus on both of the described shortcomings. First, a conceptually simpler alternative to PWR is presented that performs comparably given a good initial estimate. This newly proposed method relies on an unwrapping of the phase differences vector. Secondly, it is demonstrated that all microphone pairs can be utilized at all frequencies with both estimators. When incorporating information from other frequency bins, this permits a localization above the spatial aliasing frequency of the array. Experimental results show that a considerable performance improvement is possible, particularly for arrays with a large microphone spacing

    An adaptive stereo basis method for convolutive blind audio source separation

    Get PDF
    NOTICE: this is the author’s version of a work that was accepted for publication in Neurocomputing. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in PUBLICATION, [71, 10-12, June 2008] DOI:neucom.2007.08.02

    Äänikentän tila-analyysi parametrista tilaäänentoistoa varten käyttäen harvoja mikrofoniasetelmia

    Get PDF
    In spatial audio capturing the aim is to store information about the sound field so that the sound field can be reproduced without a perceptual difference to the original. The need for this is in applications like virtual reality and teleconferencing. Traditionally the sound field has been captured with a B-format microphone, but it is not always a feasible solution due to size and cost constraints. Alternatively, also arrays of omnidirectional microphones can be utilized and they are often used in devices like mobile phones. If the microphone array is sparse, i.e., the microphone spacings are relatively large, the analysis of the sound Direction of Arrival (DoA) becomes ambiguous in higher frequencies. This is due to spatial aliasing, which is a common problem in narrowband DoA estimation. In this thesis the spatial aliasing problem was examined and its effect on DoA estimation and spatial sound synthesis with Directional Audio Coding (DirAC) was studied. The aim was to find methods for unambiguous narrowband DoA estimation. The current State of the Art methods can remove aliased estimates but are not capable of estimating the DoA with the optimal Time-Frequency resolution. In this thesis similar results were obtained with parameter extrapolation when only a single broadband source exists. The main contribution of this thesis was the development of a correlation-based method. The developed method utilizes pre-known, array-specific information on aliasing in each DoA and frequency. The correlation-based method was tested and found to be the best option to overcome the problem of spatial aliasing. This method was able to resolve spatial aliasing even with multiple sources or when the source’s frequency content is completely above the spatial aliasing frequency. In a listening test it was found that the correlation-based method could provide a major improvement to the DirAC synthesized spatial image quality when compared to an aliased estimator.Tilaäänen tallentamisessa tavoitteena on tallentaa äänikentän ominaisuudet siten, että äänikenttä pystytään jälkikäteen syntetisoimaan ilman kuuloaistilla havaittavaa eroa alkuperäiseen. Tarve tälle löytyy erilaisista sovelluksista, kuten virtuaalitodellisuudesta ja telekonferensseista. Perinteisesti äänikentän ominaisuuksia on tallennettu B-formaatti mikrofonilla, jonka käyttö ei kuitenkaan aina ole koko- ja kustannussyistä mahdollista. Vaihtoehtoisesti voidaan käyttää myös pallokuvioisista mikrofoneista koostuvia mikrofoniasetelmia. Mikäli mikrofonien väliset etäisyydet ovat liian suuria, eli asetelma on harva, tulee äänen saapumissuunnan selvittämisestä epäselvää korkeammilla taajuuksilla. Tämä johtuu ilmiöstä nimeltä tilallinen laskostuminen. Tämän diplomityön tarkoituksena oli tutkia tilallisen laskostumisen ilmiötä, sen vaikutusta saapumissuunnan arviointiin sekä tilaäänisynteesiin Directional Audio Coding (DirAC) -menetelmällä. Lisäksi tutkittiin menetelmiä, joiden avulla äänen saapumissuunta voitaisiin selvittää oikein myös tilallisen laskostumisen läsnä ollessa. Työssä havaittiin, että nykyiset ratkaisut laskostumisongelmaan eivät kykene tuottamaan oikeita suunta-arvioita optimaalisella aikataajuusresoluutiolla. Tässä työssä samantapaisia tuloksia saatiin laajakaistaisen äänilähteen tapauksessa ekstrapoloimalla suunta-arvioita laskostumisen rajataajuuden alapuolelta. Työn pääosuus oli kehittää korrelaatioon perustuva saapumissuunnan arviointimenetelmä, joka kykenee tuottamaan luotettavia arvioita rajataajuuden yläpuolella ja useamman äänilähteen ympäristöissä. Kyseinen menetelmä hyödyntää mikrofoniasetelmalle ominaista, saapumissuunnasta ja taajuudesta riippuvaista laskostumiskuviota. Kuuntelukokeessa havaittiin, että korrelaatioon perustuva menetelmä voi tuoda huomattavan parannuksen syntetisoidun tilaäänikuvan laatuun verrattuna synteesiin laskostuneilla suunta-arvioilla
    corecore