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In spatial audio capturing the aim is to store information about the sound
field so that the sound field can be reproduced without a perceptual difference
to the original. The need for this is in applications like virtual reality and
teleconferencing. Traditionally the sound field has been captured with a B-format
microphone, but it is not always a feasible solution due to size and cost con-
straints. Alternatively, also arrays of omnidirectional microphones can be utilized
and they are often used in devices like mobile phones. If the microphone array is
sparse, i.e., the microphone spacings are relatively large, the analysis of the sound
Direction of Arrival (DoA) becomes ambiguous in higher frequencies. This is
due to spatial aliasing, which is a common problem in narrowband DoA estimation.

In this thesis the spatial aliasing problem was examined and its effect on DoA
estimation and spatial sound synthesis with Directional Audio Coding (DirAC)
was studied. The aim was to find methods for unambiguous narrowband DoA
estimation. The current State of the Art methods can remove aliased estimates
but are not capable of estimating the DoA with the optimal Time-Frequency res-
olution. In this thesis similar results were obtained with parameter extrapolation
when only a single broadband source exists. The main contribution of this thesis
was the development of a correlation-based method. The developed method uti-
lizes pre-known, array-specific information on aliasing in each DoA and frequency.
The correlation-based method was tested and found to be the best option to over-
come the problem of spatial aliasing. This method was able to resolve spatial
aliasing even with multiple sources or when the source’s frequency content is com-
pletely above the spatial aliasing frequency. In a listening test it was found that
the correlation-based method could provide a major improvement to the DirAC
synthesized spatial image quality when compared to an aliased estimator.
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Tiladdnen tallentamisessa tavoitteena on tallentaa &énikentdn ominaisuudet
siten, ettd danikenttd pystytddn jalkikdteen syntetisoimaan ilman kuuloaistilla
havaittavaa eroa alkuperdiseen. Tarve télle on 16ytyy erilaisista sovelluksista,
kuten virtuaalitodellisuudesta ja telekonferensseista. Perinteisesti danikentén
ominaisuuksia on tallennettu B-formaatti mikrofonilla, jonka kiytto ei kuitenkaan
aina ole koko- ja kustannussyistd mahdollista. Vaihtoehtoisesti voidaan kayttéaa
my0s pallokuvioisista mikrofoneista koostuvia mikrofoniasetelmia. Mikéli mikro-
fonien véliset etdisyydet ovat liian suuria, eli asetelma on harva, tulee &édnen
saapumissuunnan selvittamisestd epaselvad korkeammilla taajuuksilla. Téaméa
johtuu ilmiostéa nimelté tilallinen laskostuminen.

Taman diplomityon tarkoituksena oli tutkia tilallisen laskostumisen ilmiota,
sen vaikutusta saapumissuunnan arviointiin sekéd tiladdnisynteesiin Directional
Audio Coding (DirAC) -menetelmélld. Lisdksi tutkittiin menetelmié, joiden
avulla dénen saapumissuunta voitaisiin selvittdd oikein myds tilallisen laskostu-
misen lasnaollessa. Tyossd havaittiin, ettd nykyiset ratkaisut laskostumisongel-
maan eiviat kykene tuottamaan oikeita suunta-arvioita optimaalisella aika-
taajuusresoluutiolla. Téssd tyossa samantapaisia tuloksia saatiin laajakaistaisen
aanildhteen tapauksessa ekstrapoloimalla suunta-arvioita laskostumisen rajataa-
juuden alapuolelta. Tyon pédosuus oli kehittdd korrelaatioon perustuva saa-
pumissuunnan arviointimenetelma, joka kykenee tuottamaan luotettavia arvioita
rajataajuuden yldpuolella ja useamman &anilahteen ympéristoissd. Kyseinen
menetelma hyodyntdd mikrofoniasetelmalle ominaista, saapumissuunnasta ja taa-
juudesta riippuvaista laskostumiskuviota. Kuuntelukokeessa havaittiin, etté korre-
laatioon perustuva menetelmé voi tuoda huomattavan parannuksen syntetisoidun
tiladédnikuvan laatuun verrattuna synteesiin laskostuneilla suunta-arvioilla.

Avainsanat: DirAC, tilallinen laskostuminen, mikrofoniasetelma, &anen saa-
pumissuunta
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1 Introduction

Spatial audio has become an important part of current entertainment and commu-
nication systems. By including it in applications like virtual reality, teleconferencing
or home theaters, it is possible to create even more immersive user experiences. In
addition, by using information about the sound field it is possible to utilize various
algorithms to achieve other improvements, like noise reduction, in the recordings.
An example of a parametric spatial audio reproduction method is the Directional
Audio Coding [1], [2], for which the sound field analysis is performed in the time-
frequency domain. This way the direction of arrival and diffuseness parameters are
estimated for each time-frequency bin separately. Using these parameters and the
recorded sound, it is possible to reproduce a sound field that it is perceptually equiv-
alent to the original. When capturing spatial sound, different microphone setups are
used. A common example of a microphone setup for capturing the sound field is the
B-format microphone [3] [4]. In practical consumer devices, like mobile phones, the
use of the B-format microphone is not applicable due to size and cost considerations.
In addition, the problem of spatial aliasing occurs in the higher frequencies. Spatial
aliasing happens when the spacing between the microphone capsules is too large for
the considered frequency. Alternatively to the B-format microphone, several om-
nidirectional microphones can be used and the interchannel phase difference (IPD)
information is utilized for the parameter estimation.

The direction of arrival estimation with omnidirectional microphone arrays is
the main focus in this thesis. For this, several methods have been proposed like
the Estimation of Signal Parameters via Rotational Invariance Techniques [5] or the
Weighted Least Squares estimator [6]. However, in these methods the placing of
the omnidirectional microphones around the device causes some drawbacks in the
direction of arrival estimation. Most importantly in this thesis, the problem of spa-
tial aliasing in higher frequencies. When the microphones are relatively far away
from each other, the spatial aliasing is even more of a problem as it occurs on even
lower frequencies. In this case the use of interchannel phase difference information
produces ambiguity on which direction the sound is actually arriving from [7].

There are current solutions to overcome the problem of spatial aliasing, but these
methods are not capable of estimating the direction of arrival parameter in the de-
sired frequency resolution. In addition, some methods like phase unwrapping [8], [9]
assume only one source per time frame. Another approach is the envelope detection
[10], which is capable of estimating the direction of arrival also in higher frequencies
but requires the processing to be made in wider bands. This way one direction of
arrival can be estimated reliably for each band. This allows multiple sources to be
identified in each time frame, but because the processing is performed in frequency
bands, the frequency resolution is decreased.

This thesis studies the spatial aliasing problem when performing narrowband
direction of arrival estimation with sparse microphone arrays of omnidirectional



microphones. The reasons behind the spatial aliasing problem in the current state
of the art direction of arrival estimators are explained. Some state of the art solutions
for the problem are explained and implemented in Matlab so that their performance
can be compared. The contributions of this thesis for the spatial aliasing problem
can be summarized as:

e Study of the perceptual effects of spatial aliasing in Directional Audio Coding
reproduced spatial sound.

e Study of the effects of reducing the time-frequency-resolution of the direction
of arrival parameter for Directional Audio Coding reproduction. This is done
using an objective measure and a listening test. The results of this study
can be used in development of algorithms that aim to reduce and resolve the
negative effects of spatial aliasing.

e Development of direction of arrival parameter extrapolation method, which
aims to reduce the negative perceptual effects of spatially aliased direction of
arrival estimates. This method utilizes only the direction of arrival estimates
below the aliasing frequency, which are extrapolated to the higher frequencies.
Matlab implementation of this method.

e Development of a correlation-based direction of arrival estimator, which aims
to resolve the spatial aliasing problem. In this method the information on
how the aliasing changes the interchannel phase difference values, is used.
Because this happens differently for each frequency and direction of arrival, the
correlation between measured interchannel phase differences and previously
computed interchannel phase difference values for each frequency and direction
of arrival can be used. Matlab implementation of this method.

e Comparison of the direction of arrival estimation accuracy under the effect
of spatial aliasing for the extrapolation, correlation, phase unwrapping and
envelope methods in plane wave and room impulse response simulations.

e Listening test to compare the spatial image accuracy in synthesized sound
scenes. The used direction of arrival parameters are estimated using the ex-
trapolation and correlation methods and they are compared to the Weighted
Least Squares method which suffers from spatial aliasing.

1.1 Structure of the thesis

This thesis is organized as follows: Sec. 2 provides the background information that
is needed for this thesis. The section includes basic information on physics of sound,
time-frequency audio processing, human hearing and spatial audio capturing and
reproduction. Also the signal model, that is used throughout the thesis, is explained.
Sec. 3 presents some state of the art direction of arrival estimation methods. Sec. 4
explains the problem of spatial aliasing and the effects it causes in spatial audio
reproduction. In this section there is also a brief study on the effects of decreasing



the time-frequency resolution. Sec. 5 explains some state of the art methods that
aim to overcome the spatial aliasing problem. In Sec. 6 the proposed extrapolation
and correlation approaches are presented. In Sec. 7 the results of explained methods
are presented and they are also compared with with some state of the art methods.
Also the listening test results for the proposed methods are presented here. Sec. 8
provides a look on the future work and concludes the thesis.

1.2 Notations

The following notations are used in this thesis; scalar variables are expressed as italic
lower case and upper case letters for time and frequency domains respectively, e.g.,
x and X. Vectors and matrices are presented as bolded lower case and upper case
letters, e.g., x and X, respectively. The expectation operator is denoted as E{-}.
The transpose operator is denoted as (-)T. Complex conjugate is denoted as (-)*.
Hermitian operator is denoted as (-)!. Absolute value is denoted as | - | and vector

norm as || - ||.



2 Background

This section provides the needed background for this thesis. It starts by introducing
the properties of sound in time and frequency domains. After these, the signal
model is presented. Then, relevant properties of human hearing, especially in spatial
hearing, are presented. The section ends with an introduction to spatial sound and
a brief explanation of Directional Audio Coding.

2.1 Physics of sound

Sound is produced when a sound source, like a vibrating loudspeaker cone or the
human speech production system, moves the air particles. This causes pressure
fluctuations around the static air pressure. The compression and rarefaction of
particles transfer to the particles around and the sound propagates as longitudinal
sound waves [11|. These pressure changes can be perceived as vibrations and in the
inner ear they are interpreted as different frequencies and in the end as sound from
the source. Because the particles transfer the sound, a medium is needed and there
is no sound propagation in vacuum [12|. Sounds can be divided in three main cat-
egories which are tonal, non-tonal and transients. Examples of these are vibrating
string, white noise, and a clap of hands, respectively.

In air the particles are in constant pressure which is about 101325 Pa (1 atm)
at mean sea level [13]|. The pressure changes caused by everyday sound sources are
much smaller. Usually the sound pressure level L, is expressed in decibels (dB)
which is a logarithmic scale. The sound pressure level is defined as a relation of
measured sound pressure p and the reference pressure py of 20uPa as [14]

L, = 201og,, (£>. (1)
Do

As the pressure changes move the air particles back and forth, the phase ¢ of the sig-
nal reveals at which part of this cycle is the observation point currently at [11]. The
phase is usually presented as a number in the range of [0 27| due to the cyclic nature.
The distance in meters at which a periodic wave completes a full cycle is known as
the wavelength A. The number of these cycles within one second determines the
frequency f of the signal. The unit of frequency is Herz [Hz| [14]. The speed of the
propagation, i.e., the speed of sound, can be determined as the multiplication of f
and A as [11]

c=fA (2)

The speed of sound is dependent on factors like temperature and an often used
constant for air is 343m/s in room temperature [11|. In Fig. 1 two sine signals are
presented to demonstrate ¢, f and .
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Figure 1: Two sine signals that complete two full cycles in one second, i.e, f = 2Hz.
Red curve reaches the maximum \/4 wavelengths later than the blue signal, i.e.,
there is a m/2 phase difference.

The electrical or mechanical power driving the sound source is transformed into
acoustical energy. This energy is transferred and distributed to the space around
the source. The local density and direction of this energy transfer is presented as
the intensity i [14]. Intensity is defined as the time average (-) of the product of p(t)
and particle velocity u(t) [15] [16]

i= (p(t)u(t)). (3)

The particle velocity is the first time derivative of the particle displacement caused
by the fluctuations [11]. The term intensity usually refers to the active intensity.
Reactive component of intensity describes the part of energy flow that is not prop-
agating. The reactive intensity is the imaginary part of pu*, where ()% denotes the
complex conjugate [15]. In the near field of the source, p and u are out of phase
which makes the reactive part dominant. In the far field, p and u are in phase and
there is propagation of energy [15]. As i is a vector measure that points to the
direction of the energy flow, it is an important measure in sound field analysis [16].

2.2 Frequency domain

Often in audio signal processing the frequency content provides more information
than just the time domain signal that is captured with a microphone. Fourier
transfrom is used to transform between these two domains. The underlying principle
is that any signal can be presented as a combination of sinusoidals of different



frequencies [17]. The coefficients for these are calculated with the Fourier transform
for continuous signals or its discrete version, i.e.,

X(k)= x(n)e 2mn/N. (4)

n

I
o

for frequency and time indexes k and n respectively. The time domain signal z(n) is
sampled at N points and the coefficients X (k) are calculated for frequency indexes
k=0,1,2,..., N—1][17]. In practice, the used method is the fast Fourier transform
that is much less computationally complex than the discrete Fourier transform in
(4) |17]). To combine the information in time and frequency domains it is possible
to use the time-frequency representations that can be obtained with for example
the short-time Fourier transform [18|. In short-time Fourier transform the signal
is assumed to be slowly varying so that it can be assumed stationary and ergodic
within a time window [17]. For speech and audio signals the length of the time
window is typically around 5-20ms [17]|. These time frames are transformed into the
frequency domain and the result can be presented as a spectrogram, which shows
the signal power in each time-frequency instant. The time-frequency resolution of
the short-time Fourier transform domain is dependent on the fast Fourier transform
length [17]. If high frequency resolution is desired then a longer time frame is needed
and correspondingly the frequency content can not be determined accurately if only
a short time instant is examined [18]. This means that there is always a trade-off
between time and frequency resolution.

Time-frequency representation can also be achieved with filterbanks where the
signal is divided to subbands with a specific number of adjacent bandpass filters. An
example of filterbank with perfect reconstruction property is the Quadrature Mirror
Filter Bank (QMF) [17]. Perfect reconstruction means that the original signal can
be achieved with the inverse transform without any errors [17]. This assumes that
no processing is performed in the subbands.

2.3 Single-wave sound field model

Often in acoustic research the sound sources are assumed to be omnidirectional
point sources. This means that the sound pressure caused by the source is equal in
every direction. Therefore, the sound field caused by a point source is composed of
spherical waves [11]. Another form of waves are plane waves where the wavefronts are
planes [14]. Both of these are ideal versions of the real wavefronts, but these models
can be assumed in some situations. Plane wave assumption means that locally in
the far field the pressure of a curved wavefront is constant in all directions normal to
the propagation direction [14]. This assumption is often used in microphone array
processing. In practise sound fields can also be represented as a superposition of
plane waves [19]. The plane wave assumption can be made with distances from
the source that are large compared to the array size and wavelength of the signal,
making the assumption frequency dependent [14]. According to literature [14] the



assumption can be used at distance r from the source when

> \/27. (5)

In the following, the sound field model, which is used throughout the thesis in the
time-frequency domain, is presented. This model is commonly used in recent studies
related to this topic, e.g., in [20]. The sound field is captured with M omnidirectional
microphones at points ri s in space. It is assumed that in the sound field there is
only a single plane wave Pi(k,n,r) at each time-frequency bin. The assumption of
a single plane wave is valid even in multi-source scenarios, when the source signals
are sparse in time-frequency domain. This can be assumed, e.g., for speech signals
[21]. In addition to the single plane wave assumption, also diffuse sound should be
considered in the model. In an ideal diffuse sound field the instantaneous sound
energy flow is uniformly distributed in all directions and the sound energy is equal
in all points in space, i.e., the field is isotropic and homogenous [22] [23]. The total
sound field becomes

P(k,n,r) = Pi(k,n,r) + Py(k,n,r), (6)

which is a superposition of the direct sound component P,(k, n,r) caused by a plane
wave and the diffuse component Py(k,n,r). The M microphone signals can be
presented as

x(k,n) = x4(k,n) + xa(k,n) + x4(k,n), (7)

in which the M microphone signals caused by the plane wave are denoted with
xs(k,n) = [Xs1(k,n), ..., Xsm(k,n)]" and respectively for the diffuse part xq(k, n)
and additive noise x,(k,n). Using the plane wave model, the plane wave at micro-
phone m can be presented as

Pem(k,n,r) =/ Ps(k,n)a(k,n, rm)ei‘f’s(k’"), (8)

in which ®4(k, n) is the power of the wave, ¢, the phase at the origin of the coordinate
system and ¢ is the imaginary unit, i.e., ¢ = v/—1. The phase at point r is defined
with a(k,n,r), which describes the phase shift of the plane wave along r as

a(k, n, I') — ein(k)rTn(k,n)7 (9)

where the x(k) = % is the wavenumber of the corresponding frequency. The
vector n(k,n) describes the direction of arrival of the wave with azimuth (k,n)
and elevation d(k,n) angles, which are illustrated in Fig. 2. The n(k, n) is described

as

cos () cos (9)
n(k,n) = | sin(p)cos(d) | . (10)
sin (0)

In the case of 2-dimensional coordinate system the n(k,n) is described as



n(k,n) = { cos (¢) } . (11)

sin ()

Based on (8) and (9), the direct sound vector can be obtained as

Xsm(k,n) = a(k,n)Ps(k,n, 1), (12)

where a(k,n) is the transfer functions between the reference position r; and other
microphones as defined in (9). For the ideal diffuse sound field the expected power
is given by

Qq(k,n) = E{|FPa(k,n,1)]*}, (13)
where E {-} is the expectation operator that can be approximated as a windowing

function or time averaging. Operator | - | is the absolute value.

The ratio of the powers of the direct and diffuse components is known as the
signal-to-diffuse ratio (SDR), given by
_ Uy(k,n)
B lI]d<k7 n) ‘
As described in [24] the diffuseness of the sound field can be defined with (14) as

SDR(k, n) (14)

1
U(k,n) = 15
(kn) = T SDR () (15)
which by definition € [0 1] when ¥(k,n) = 1 indicates fully diffuse sound field and
U(k,n) = 0 only direct sound.

2.4 Human hearing

This section focuses on the relevant principles of human hearing that are applied
in the field of spatial audio. The audible frequency range for a healty individual
is 16-20000 Hz [25]. However, because of the structure of the inner ear, there are
limitations to the temporal and spectral resolution. The sound arrives through the
ear canal to the middle ear and on to the oval window where inner ear starts [26].
The inner ear has spiral formed cochlea inside which there are two liquid filled canals
separated by basilar membrane. The frequency resolution is due to the resonances
of basilar membrane inside the cochlea [27].

Different sections of the membrane can be seen as overlapping bandpass filters
for frequency bands [26]. Because one filter allows a range of frequencies to pass,
the ability to distinguish nearby frequencies, also known as frequency selectivity,
is limited. The widths of the bandwidths are roughly proportional to the center
frequency and are known as critical bands [25]. Within one band the strongest tone
is dominating the auditory perception but also exciting adjacent frequencies. This



causes frequency masking, i.e., the nearby frequencies with lower loudness are per-
ceptually attenuated or even undistiquishable [26]. The masking effect takes place
also in the time domain. Sounds arriving before or after a louder sound can be
masked. These are known as backward and forward masking respectively [26].

Also other phenomena like short breaks or modulation in stimuli over time are
related in the time domain acuity of hearing, known as the temporal resolution
[26]. Informatic signals like speech and music deliver the information often in the
changes of the signal. The hearing system is not able to distinguish these changes
if they happen too rapidly, say, in the magnitude of microseconds [28]. If frequency
resolution can be modeled with bandpass filters then temporal resolution can be
presented as a lowpass filter. Instantaneous changes are attenuated and slower ones
are passed and perceived. Temporal resolution is not an unambiguous time frame
but it depends on the signal properties like bandwidth. In the field of spatial hearing
the precedence effect is an important temporal aspect [29]. It explains the shift in
localization when two nonperiodic and coherent signals are arriving from different
directions and either one has a small lag. The direction delivering the first sound is
dominating the localization. Due to the effect the two sound events are perceived
as one auditory event with a shifted location.

2.4.1 Spatial hearing

The human hearing is highly developed and accurate system for sensing the envi-
ronment. One of the most important functions of it is the sound source localization
i.e. the ability to determine the sound direction of arrival and even distance to the
source (to some extent) [28]. In literature the source location is described with three
variables. The changes in lateral direction are measured with the azimuth angle ¢,
in vertical direction with elevation ¢ and in distance with r. The coordinate system
is presented in Fig. 2.

Normally functioning hearing utilizes the binaural signals and can determine the
direction of arrival from the differences in the signals between the ears. The most
important cue for the localization is the phase difference between the ears. This is
more commonly referred as the interaural time difference which is interpreted by
the brain from the phase differences [28]. The difference comes directly from the
path length inequality from the sound source to the ear canals. The time shifts can
be from the carrier or envelope waveforms of the sound. These two function well in
lower and higher frequencies respectively, when it is assumed that the sound is not
a pure sinusoidal signal and there is an envelope [28]. The interaural time difference
cue works well in the lateral direction but lacks performance in elevation, because
the shortest delay is the one in lateral path difference [28|. In addition to time there
is also a difference in sound level between the ears, the interaural level difference
[28]. Because the low frequencies are more easily diffracted around the head, the
interaural level difference cues are more important in higher frequencies, which have
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Frontal plane
Median plane

Horizontal plane

Figure 2: Coordinate system used in auditory research. ¢ is the azimuth, r is the
distance and § elevation. Figure adopted from [30].

higher attenuation from side to side [26]. Due to the phase ambiguity for sinusoidal
signals, starting from around 800Hz, the interaural time difference is more impor-
tant than interaural level difference in lower than higher frequencies and thus the
interaural time and level difference cues can complement each other. However, both
of these cues are missing proper elevation interpretation which is especially true in
the median plane where there are no path differences and thus no interaural time or
level difference. Therefore, more cues are needed for an accurate localization ability
in every direction.

On both sides of the head, around the y-axis in Fig. 2, there are cone-shaped
areas where the path differences are equal even with varying azimuth and elevation
(when discarding the effect of the pinnae and unsymmetry of the head). These areas
are called the cones of confusion [28]. If the sound source is inside this cone there are
ambiguities in the direction of arrival. This problem can be solved by movements
of the head which provides small changes in cues [26]. Also the shape of pinnae,
head and upper body filter the spectral shape of the sound differently for different
directions of arrival, which provides cues for the localization. Commonly this effect
is known as head-related transfer function [28].

The similarity of the signals in the ears is described with the interaural coherence
that is used as a cue for the diffuseness of the sound field. It can be treated as a
separate cue but it is not clear whether if it is just perceived because of its effect
on the other cues that were discussed above [30]. With a single source without any
reflections the interaural coherence is high since the same signal is received in both
ears. Instead, when there are many sources and a lot of reflections the coherence
between the ears is low. The interaural coherence can also be seen as a measure of
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the signal-to-diffuse ratio in (14), e.g., when the direct sound dominates the sound
field, the signal-to-diffuse ratio is high, like shown in (14), and so is the coherence.

2.5 Spatial sound capturing and reproduction

In Sec. 2.4, the human ability to analyze the sound field was discussed. Nowadays,
there are many applications in which more pleasant and immersive user experience
can be provided when spatial audio is used, e.g., in teleconferencing, virtual reality
and home theaters. To use spatial audio in these applications, there is a need for
methods to analyse (capture) and synthesize (reproduce) the sound field. In the
following, the sound field analysis and synthesis are discussed with the main focus
on the analysis.

2.5.1 Sound field capturing

Acoustic signals can be captured with microphones of different types which trans-
form the pressure signal into electrical signals. One of the main characteristics for a
microphone is the directivity which is described with the polar pattern. Directivity
can be for example described as omnidirectional or dipole but ideal monopole pat-
terns are not available in practice [31]. Directivity is in practice proportional to the
frequency [31].

Analysing the sound field means that the spatial parameters, i.e., the direction
of arrival and the diffuseness, are captured. A common way is to use the B-format
signals, proposed in [3], which consist of one omnidirectional and three orthogonal
figure-of-eight signals that reveal the pressure gradient in z-, y- and z-directions.
The omnidirectional signal B,,(k,n) is used as the pressure signal and the other sig-
nals B, (k,n), B,(k,n), B.(k,n) are used to compute the corresponding components
of the particle velocity. Usually, the B-format signals can be obtained for exam-
ple from tetrahedron-shaped set of cardioid or subcardioid capsules, known as the
sound field microphone [4]. These signals are referred to as the A-format and can
be transformed to the B-format. The sound field microphone is relatively expensive
and difficult to integrate for example in mobile phones due to size constraints. For
these reasons, a more practical microphone setup like a planar array or an uniform
linear array, presented in Fig. 3, can be applied in spatial sound capturing [32] [33].
Generally, the microphone array should cover as many dimensions as is used in the
sound field analysis, e.g., when using an uniform linear array, the direction of arrival
can be determined between [0 180] degrees, but there is an ambiguity on which side
of the array axis the source is located. When using a planar array the problem is
that it is not known whether the source is above or beyond the array. Arrays like
these with a reasonably low number of cheap omnidirectional microhones, where the
microphone distances are within the range from few centimeters to about 20 cm,
are the main focus in this thesis. The number of microphone pairs in an array is
denoted as H.
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Figure 3: Examples of a planar microphone array (left) and a uniform linear array
(right).

2.5.2 Directional Audio Coding

During the history of spatial audio different methods for capturing and reproduction
of spatial sound have been proposed. These include for example stereo microphone
techniques [34], Ambisonics [35] and Multichannel Audio Coding [36]. Many of these
methods are not capable of reproducing the spatial image accurately or without dis-
tortions. For example the first-order ambisonics suffer from too high coherence
between the loudspeaker channels [37]. In addition, these methods often lack the
ability to be used with arbitrary loudspeaker setups. Directional Audio Coding [2]
is an approach that utilizes information about the functioning of spatial hearing.
This way it is possible to reproduce spatial image that is perceptually equivalent
to the original sound field. In addition, the synthesis can be made for arbitrary
loudspeaker setups.

The Directional Audio Coding method and some of its applications are presented
in [2|. In the analysis phase the microphone signals are analysed in time and fre-
quency steps that correspond to human hearing resolution. In the analysis phase
two parameters of the sound field for each time-frequency bin are extracted: direc-
tion of arrival and diffuseness. The direction of arrival vector consists of azimuth
and elevation angles as defined in (10) and depicted in Fig. 2. Diffuseness describes
the proportion of sound that is coming from random directions and its connection
to the signal-to-diffuse ratio is seen in (15). The direction of arrival corresponds
to the interaural time/level difference and monaural localization cues whereas dif-
fuseness corresponds to the interaural coherence. The fundamental idea is that by
capturing these parameters together with the sound spectrum, it is possible to re-
produce a spatial image that is perceptually equivalent to the original spatial image
[38]. This is performed with temporal and spectral resolution that is as close as
possible to the human hearing capabilities. It can be achieved with a filterbank
composed of multiple narrow-band filters that match to human frequency resolu-
tion. With this filterbank also the temporal resolution can be determined for each
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subband separately [2]. This way the best quality can be achieved, with the cost of
higher complexity compared to the short-time Fourier transform approach [39]. In
short-time Fourier transform the time and frequency resolutions are constant and
defined by the fast Fourier transform length. Examples of Directional Audio Cod-
ing applications are teleconferencing [40] and stereo upmixing [1]. In the following,
the processing pipeline is briefly explained after which the parameter estimation in
short-time Fourier transform domain with the B-format input is described.

The processing flow diagram is presented in Fig. 4. The Directional Audio Cod-
ing assumes a single wave sound field model that was presented in Sec. 2.3. First,
the microphone signals are transformed to time-frequency domain with short-time
Fourier transform, resulting in the microphone signals x(k,n) in (7). Then the di-
rection of arrival and diffuseness parameters, defined in (10) and (15) respectively,
are estimated. This step will be discussed later in more detail. The obtained pa-
rameters are the metadata that are stored and/or transferred with the microphone
signal(s) x(k,n) for the reproduction phase. The mono omnidirectional signal, like
the By (k,n) in B-format input, is the minimum requirement, but more can also
be used in high quality applications. Based on the diffuseness W(k,n) values the
transmitted audio is divided in two streams, one for direct sound and the other for
diffuse, and these will be reproduced differently in the synthesis stage. This division
of streams produces the direct and diffuse sound field components in (6), Py(k, n,r)
and Py(k,n,r), respectively. These components compose the final output spectra
S(k,n). To reduce coherence between loudspeakers the diffuse signal Py(k,n,r) is
decorrelated before it is played by all the loudspeaker channels. The direct sound
P,(k,n,r) is reproduced as if it was coming from a point source. For this purpose the
vector base amplitude panning method is a good solution for arbitrary loudspeaker
configurations [41].

MICROPHONE TIME-FREQUENCY DIRECTION and MEASURED  REPRODUCTION AUDIO
CHANNELS IN  ANALYSIS DIFFUSENESS PROPERTIES ouT
. ESTIMATION azimuth 8(tf) 1
— . ' — - >
Short-time ! Point-like
Fourier analysis | Energetic elevation ¢(t,f) virtual 2
OR i analysis | sources
—> Filterbank ! L. y .
! diffuseness wy(t,f) cross-fade N
R — X >
: Diffuse
reproduction
1 or N microphone channels

ANALYSIS TRANSMISSION SYNTHESIS

Figure 4: Simplified Directional Audio Coding flow diagram showing the input,
analysis, transmission, synthesis and output phases. Figure adapted from [2|. Note
that the notations here differ compared to the ones used in this thesis.
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2.5.3 Parameter estimation with B-format input

The parameter estimation in Directional Audio Coding by using the B-format is
presented in [37]. The analysis here is done using the single wave sound field model in
Sec. 2.3 for a single location r so it is omitted in the notations. The omnidirectional
signal B, (k,n) is an estimate of the total sound field pressure P(k,n) in (6) as

By(k,n) = P(k,n). (16)

With the plane wave assumption the particle velocity can be computed as

By (k,n)
By(k,n) |, (17)

u(k,n) =
PcV2 | B (k)

in which pg is the mean density of air. In short-time Fourier transform domain the
intensity equation in (3) can be expressed as [42, p.24]

i(k,n) = Re[B} (k,n)u(k,n)]. (18)

As the intensity points to the direction of energy flow, then the direction of arrival
vector n(k, n) for the plane wave in (10) can be obtained from the negative intensity
vector as

n(k,n) = —i(k,n). (19)
The estimate of energy density E(k,n) can be computed as
Po 2, |Bu(k,n)”
E(k,n) = —|ju(k —_— 2
(ko) = g+ P (20)
where || - || is the vector norm operator. With i(k,n) and E(k,n), the diffuseness
can be estimated as
c [[E{i(k,n)} |
v(k =1—-———. 21

The diffuseness can also be estimated by using the statistics of the intensity vectors
over time with a method called coefficient of variation [43]. The idea is that in diffuse
field the length of averaged intensity vectors tends to zero because the direction
varies constantly. In contrast, for a single plane wave the direction is constant so
the length of averaged vector tends to a finite value and equals to the average of the
vector length. Thus, the diffuseness can be estimated as

Gip ) — [q [ELGK )]
‘”’“”)M L E{k )} (22)

This has advantages over (21), especially when using other microphone arrays than
the B-format. In the next chapter the direction of arrival estimation for other
microphone setups is presented.
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3 State of the art direction of arrival estimation

The spatial parameters in Directional Audio Coding processing are the direction of
arrival vector n(k,n) and diffuseness W(k,n), defined in (10) and (15), respectively.
The B-format input for the state of the art Directional Audio Coding processing,
discussed in Sec. 2.5.3, is not always available or a practical option. In these cases
also other estimators can be used that can be applied to more practical microphone
arrays, for example [44] and [45]. In this chapter some state of the art direction of
arrival estimators for arrays of omnidirectional microphones are presented. First,
broadband estimation methods based on the time difference of arrival for a micro-
phone pair is presented. Also some well known narrowband methods are explained
as they are the main interest in time-frequency domain processing. In this thesis
the direction of arrival estimation is limited to the azimuth plane and so only the
azimuth ¢(k,n) will be considered in the direction of arrival from now on.

3.1 Time difference of arrival

A straight-forward method for direction of arrival estimation is to utilize the time
difference of arrival value, also known as the delay 7, between microphones [46].
The scenario is presented in Fig. 5, where a plane wave arrives at the array. The
basic idea is to take a set of samples from one sensor and observe the signal from
the other microphone for the same part of the signal. One of the most fundamental
ways to identify this similarity in signals is to use cross-correlation [47] [48]. The
cross-correlation function is the average product of two signals when either one is
being time shifted. The function can be presented for discrete time domain signals
z1(n) and z3(n) as

Rec(7) = E{x1(n)xs(n — 1)}, (23)

with the time shift 7 € [—Tax, Tmax)- The maximum delay 7. is the propagation
time of sound for distance Ad between the microphones. By finding the maximum
of (23) as

7A'CC = arngax(Rcc (T)), (24)
the delay between the microphones is found. Once the delay 7 between the micro-

phones has been estimated, the direction of arrival can be calculated as [46]

$ = arccos % (25)
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Figure 5: A plane wave arriving at a microphone pair. The delay 7 between the
sensors can be used to estimate the . Figure adapted from [46].

The problem of this method is that in reality even if xo(n) is shifted with 7c¢c
the signals are not the same. This is because they are also attenuated and spectrally
distorted due to for example reverberation [46]. In a reverberant room the signal
can be reflected multiple times before arriving at the sensors and this multipath
propagation should be considered. In real life applications also ambient noise and
moving sources increase the possibility for error [46]. The delay can also be found
out by comparing the magnitude differences of the two signals with time shifts.
The shift that produces minimal differences indicates the actual delay. This average
magnitude difference function and other delay estimation techniques are presented
in [49] and [50].

The Generalized Cross-Correlation is a correlation-based method for time dif-
ference of arrival estimation in frequency domain [51]. It allows the use of a priori
knowledge through weighting function A(k) that can be seen as a prefilter. The
Generalized Cross-Correlation is formulated as

Raco(r) =Y Ak)Xaya, (k) e N, (26)
0

=

e
Il

where

Xmm(k) = E{Xl(k)Xg(k)}> (27)



17

is the cross-spectrum of the signals. The frequency domain is useful because the
convolution of the weighting function and cross-spectrum is transformed into multi-
plication, making it more efficient [18]. The delay is found by replacing Roc(7) by
Rgcc(T) in (27)

If unit weights are used in A(k), the Generalized Cross-Correlation corresponds
to the classical cross-correlation. In addition, the weighting can be frequency de-
pendent and give more emphasis on bands with higher signal-to-noise ratio (SNR)
value. Proposed methods for weighting are for example Phase Transform (PHAT)
[52] [51], maximum likelihood processor [51], Roth processor [53] or combination
of these [54]. The PHAT algorithm is one of the most popular due to its perfor-
mance in reverberant conditions and consistensy in performance with alternating
source signal. Methods based on the time difference of arrival are popular in broad-
band estimation. In the following, some narrowband direction of arrival estimators
are presented, as the Directional Audio Coding processing requires the narrowband
estimates.

3.2 Weighted least squares

Least squares is an optimization method that provides an estimate of the parame-
ter(s) that produced the observed values by minimizing the sum of squared errors
between the estimate and the observations [55]. This can be applied in direction of
arrival estimation and an example of a Weighted Least Squares (WLS) estimator is
presented in [6]. In this method the direction of arrival is estimated based on the
interchannel phase differences of the microphone pairs in the array. The problem is
approached with the signal model presented in Sec. 2.3 but with only direct sound
and additive noise. The interchannel phase difference information is contained in
the microphone signals x(k,n) in (7). The power spectral density (PSD) matrix of
the signals is

Y. (k. n) = B{x(k,n)x" (k,n)}, (28)
where the ()" is the Hermitian operator. Like the model in (7), also the (28) can be
separated to the plane wave and noise parts, i.e., to power spectral density matrices
Y.(k,n) and Y,(k,n), respectively. The cross power spectral density of the plane
waves between microphones m and m’ can be computed as

Ysmm(k,n) = B{ X (k,n) X2, (k,n)}, (29)
and it can be represented with the phase shift in (9) as

Ysmm(k,n) = Vs(k,n)a(k, n, rmpm). (30)
The noise is assumed independent and identically distributed, i.e., it does not af-
fect the phase shift between microphones. With this assumption the off-diagonal
elements of Ys(k,n) and Y, (k,n) are the same and can be used to compute the in-
terchannel phase difference s between the points r,,, and r,,. The relevant values,
i.e., corresponding to all pairs m’m but not mm/, from (28) are collected to a vector
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¢x(/€,n) = [T%lg,...,TLZJ',...,T%ZM]T, (31)

where Z7 = M — 1,1 < 2 < Z and 2z < j < M. The expeptation operator
is approximated with time averaging, resulting in the estimate ¢, (k,n) which is
connected to the interchannel phase difference as

lis - ZgAbw(k‘, TL), (32>

i.e., the phase of the observed power spectral density values. The connection between
the direction of arrival vector n(k,n) in (11) and the observed interchannel phase
difference can be written as

f(k,n) = Q(k)n(k,n) + Ak, n). (33)

The A(k,n) is used as an estimate of the errors in the interchannel phase difference
estimation, which depend on the signal-to-noise ratio, f, microphone spacings and
the direction of arrival. The Q(k) describes the phase shifts like in (9) by using the
wavenumber (k) and interchannel vectors r,,, as

Q(k) = k(k)[ri2, ... Ty Tzpr) " (34)

The errors are minimized by using a least squares solution as

n(k,n) = [Q(k) W (k,n)Q(k)] "' Q(k) "W (k, n)f,(k,n) (35)

The solution assumes that when estimating the n(k, n), the matrix Q(k)* W (k, n)Q(k)
has full rank. This can be quaranteed if the array covers D-dimensions when esti-
mating the direction of arrival vector in D-dimensions. As not all the pairs have
equal distances and thus the spatial aliasing frequencies, a weighting matrix W (k,n)
is used. This way the array pairs are discarded as they reach their spatial aliasing
limit, i.e., if r; is too large for a certain frequency the weights for that pair are set to
zero. As was mentioned, the array needs to cover D dimensions so the discarding of
the microphone pairs is only done if it does not risk this condition. Spatial aliasing
will be discussed more in a later section and this estimator will be used there. In
the following, a simulation model is explained so that some simulation results with
this method can be presented.

3.2.1 Plane wave simulation using the single plane wave signal model

A plane wave simulation according to the signal model in Sec. 2.3 is made to present
an example of estimation results with the Weighted Least Squares estimator. Two
source signals were used, 5 seconds of male and female speech. Both contained the
same sentence with a small time shift. The time-frequency domain signals Xy (k, n)
and Xg(k,n) are obtained from the corresponding time domain signals via short-
time Fourier transform with fast Fourier transform length of 1024 and 50% overlap
using a sine window. Sampling frequency f; = 48kHz. A microphone array like in
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the Fig. 3 with » = 0.3cm is used. The r was chosen so that no spatial aliasing
occurs in the observable frequency range.

Using (8) in the signal model, the short-time Fourier transformed signals are
phase shifted corresponding to the array structure and directions of arrival. This
way the P,,(k,n,r) for both plane waves and for each microphone m are ob-
tained. The direction of arrival vectors shown in (11), n; = [cos(52) sin(52)]T and
n, = [cos(—92) sin(—92)]*, are used to indicate the true source locations. After the
phase shifts are added, the Py ,,(k,n,r) and Psx ., (k,n,r) are added together and
also additive noise x,, in (7) was added to correspond to 60dB SNR. The noise vector
was created by generating gaussian white noise individually for each microphone.
These microphone signals were used as an input to the Weighted Least Squares es-
timator, where an averaging is performed within 10 time frames of power spectral
density values in (29).

The simulated results are presented in Fig. 6 b) where the estimated directions
of arrival are color coded as a function of time and frequency. In Fig. 6 a) and
c) the first and second source are shown above and beyond the plotted estimates
respectively. This way it can be seen how the activity and power of the source
affects the direction of arrival estimates. When either one of the sources is active,
the corresponding estimated direction of arrival is appointed to the time-frequency
bin. If neither of the sources are active, like above 20kHz, the estimates are random.
It can be seen that as the first source has larger power, it is dominating the estimates.
When the first source is inactive, e.g., right before 2 seconds mark, the second source
direction of arrival is appointed for the bins. The light green areas, corresponding to
¢ = 0 in the estimates, appear when the powers of the sources are approximately the
same. This double talk scene will be simulated multiple times in following chapters,
e.g., in Sec. 4.2.

3.3 Subspace methods

Multiple Signal Classification [56] and Estimation of Signal Parameters via Rota-
tional Invariance Techniques [5] are direction of arrival estimation methods that
allow multiple source directions to be detected simultaneously. These methods pro-
vide high resolution when the source signals are uncorrelated. They are known as
subspace methods because they are based on analyzing signal and noise subspaces.
The Multiple Signal Classification is computationally very complex as it requires
eigenvalue decomposition and the search over all directions of arrival. It is also
sensitive to errors in the array modeling, i.e., the positions, gains and phases of the
microphones [57]. Root Multiple Signal Classification was developed to decrease the
complexity by using polynomial rooting but it can only be applied to an uniform
linear array [58]. In [59] the algorithm was modified so that it could be used also
with a nonuniform linear array. In addition to direction of arrival estimation, Mul-
tiple Signal Classification can be used also for other applications like estimating the
number of sources [56].
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Figure 6: a) Spectrogram of the male speech on dB-scale, source located at ¢ =
52°. b) Color coded direction of arrival estimates with the Weighted Least Squares
method [6]. ¢) Spectrogram of the female speech on dB-scale, source located at
po = —92°. When sources are active the directions of arrival are mostly estimated
to either one of the correct directions of arrival.

The Estimation of Signal Parameters via Rotational Invariance Techniques works
with similar eigenvalue decomposition approach and can overcome some of the prob-
lems in the Multiple Signal Classification. Mainly, the computational complexity is
decreased because the search over all directions of arrival is not needed and it is also
less sensitive to errors in the positions of the microphones and their gain/phase [5].
The main drawback is that the array is required to consist of two identical subarrays.
The microphones in the first subarray are paired with a corresponding microphone
in the second subarray. This way the interchannel phase differences between each
pair are equal. In the original Estimation of Signal Parameters via Rotational In-
variance Techniques publication [5] it was found to perform better than Multiple
Signal Classification but also contrary results have been obtained [60].
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4 Spatial aliasing

The state of the art direction of arrival estimators presented in the Sec. 3 can be
used in different applications where omnidirectional microphones are used. In time-
frequency processing, like Directional Audio Coding in Sec. 2.5.2, the estimator
should be capable of processing the data in narrow bands, so that each frequency
bin can be appointed with separate direction of arrival parameters. These estimators
are usually based on the interchannel phase difference information, which provides
reliable results when certain assumptions about the signal bandwidth are met. In
low frequencies the phase difference is so small that the noise might dominate the
samples, making estimation difficult. In higher frequencies a phenomenon, known
as spatial aliasing, occurs and it is discussed in this section. The introduction to
the spatial aliasing problem is started by explaining the temporal aliasing, which is
a common problem in digital signal processing. Then, the connection between tem-
poral and spatial aliasing is explained. After this, the spatial aliasing is explained
in more detail and with examples. Finally, also some perceptual aspects of spatial
aliasing are discussed. This section also includes a brief study on how decreasing
the time-frequency resolution affects perceptually to the spatial image. This infor-
mation could be used when designing aliasing free direction of arrival estimators.

When capturing any continuous time signal like the air pressure to digital form,
it is sampled, i.e, its amplitude is captured at discrete time instants. This sampling
is performed with a finite sampling frequency f;. The Nyqist sampling theorem
states that the maximum achievable frequency that can be reconstructed from the
sampled values is equal to half of fs [18]. Inversely, the minimum f; needed to
capture a signal with bandwidth £ is

fs =28 (36)

If this condition is not satisfied then the phenomena known as temporal aliasing
occurs. In aliasing, frequencies higher than f;/2 are sampled identically to frequen-
cies within the bandwidth [18]. When spatially sampling the sound field with a
microphone array, the same principle applies. The pressure signal is sampled at
discrete positions in space and only a certain spatial bandwidth can be sampled
without aliasing [7]. The sampling problem is presented in Fig. 7 with three sig-
nals of different frequencies. The x-axis can be considered time, when the sampling
points are separated by 1/ f;, or distance, in which case the sampling points describe
the position of microphones in space. If the sampling is done at the points of the
black markers, only the blue signal can be reconstructed and the other two will be
temporally aliased, i.e., reconstructed as the blue one. Spatial aliasing causes the
phase differences to appear as the same for each of the signals, which makes the use
of interchannel phase difference problematic in direction of arrival estimation. From
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Figure 7: Three signals of different frequencies. From samples at the black markers,
only the blue signal can be reconstructed and the other signals will be aliased. X can
be either time or distance to illustrate temporal and spatial aliasing respectively.

now on the term aliasing will be solely used to describe the spatial aliasing.

4.1 Effects of spatial aliasing on parameter estimation

Spatial aliasing appears particularly in systems that apply interchannel phase differ-
ence in the direction of arrival estimation, such as [6], where aliasing causes wrong
direction of arrival estimates. In addition, aliasing is also a problem in beamforming
applications where aliasing causes the sidelobes to appear too large |7]. The focus
on this work is on direction of arrival estimation but it should be mentioned that
the diffuseness estimator based on intensity-energy ratio in (21) is affected by spa-
tial aliasing [45]. The narrowband diffuseness estimation with (22) is not affected
because it only considers the lengths of the intensity vectors and their variation but
the direction does not matter [43].

The sampling interval of a microphone pair is determined by the microphone
spacing Ad. Together with the speed of sound ¢ and the incident angle ¢ (relative
to the normal of the microphone pair), the aliasing frequency f, for a microphone
pair can be computed as [61]

C

~ 2[sin (p)|Ad’ (37)

fa
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As can be seen the lowest aliasing frequency can be found at |p| = 90°. When ¢ =0
there is no interchannel phase difference and also no aliasing from this direction.
However, some other direction can indicate this interchannel phase difference when
aliased, hence aliasing affects all directions. For a microphone pair or linear array
the lowest aliasing frequency is found at [44]

c

2= 38q
This means that the Ad must be at maximum half the size of the wavelength.
Otherwise the interchannel phase difference information becomes ambiguous due to

multiple wavelength periods between the microphones. For a planar array (like in
Fig. 3) the f, is found at [44]

(38)

1 ¢
fe=Vana
The maximum microphone spacing preventing aliasing at a certain frequency f can
be found as

(39)

=37

For example to prevent aliasing in teleconferencing with frequency range of 3400Hz,
the microphone spacing can maximally be around 5cm.

Ad (40)

A noiseless plane wave simulation was made to estimate azimuth angles when
aliasing is present. The simulation was carried out the same way as was described
in Sec. 3.2.1. The difference to the earlier simulation is that here it was run for each
direction of arrival with 1° steps while using a white noise source. One time frame
of the result for each direction of arrival was added to the Fig. 8. A 4-mic array like
in Fig. 3 with microphone distances » = 9cm was used. In this kind of microphone
array the smallest microphone spacings are Ad ~ 13cm. The method uses weighting
to prioritize smaller spacing microphone pairs, as was discussed in Sec. 3.2. This
way the lowest aliasing frequency is set around 1.3kHz. As is seen in Fig. 8, in
frequencies below the f, the true ¢ in x-axis corresponds to the estimated ¢ that
is coded in colors. In addition, for each frequency each estimate is only presented
once in the x-axis, i.e, the estimates are unambiguous. Above the f, the estimate is
incorrect and they are ambiguous. For example, the red color indicating estimates
above 150° appears multiple times for different true direction of arrival. By the way
the estimates change, it can be seen that the aliasing is dependent on the frequency
and the direction of arrival. The higher the frequency the more there are ambigu-
ities. When looking at a single direction of arrival the aliased estimates may vary
a lot over the frequency range. However they might also only change between two
values, like happens at for example ¢ = 0°.

When estimating the interchannel phase difference from the power spectral den-
sity matrix in (29), only the interchannel phase difference fi, wrapped between
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Figure 8: Aliasing effect with a 4 microphone planar array with a radius of 9cm.
Directions of arrival are calculated for a single white noise source in a plane wave
simulation using the Weighted Least Squares method [6]. Below f, = 1.3kHz the
directions of arrival are correct but above the aliasing limit the ambiguities appear.

[—7 7], can be calculated [62]. When there are multiple wavelengths between the
microphone positions, i.e., above the f,, this wrapped phase difference can not be
used in the direction of arrival estimation. This is because the interchannel phase
difference does not anymore describe the correct delay between the microphones.
For this, the unwrapped phase difference /i, is needed which is not bound between
the [—m m] [62]. The relation between the unwrapped and wrapped phase can be
found as

fraw (K, 1) = fi (k,n) + 27l(k, n), (41)

in which [ is an integer value indicating how many periods of £27 are there between
the sampling points. When the ji,, is used in the direction of arrival estimation
to describe the phase shift presented in the signal model (9), it will lead to wrong
estimates.

In Fig. 9 there are the interchannel phase differences as a function of frequency,
calculated for a micophone pair when white noise sound arrives from three different
directions (¢ = 0/10/90°). There is a small amount of noise and the simulation
procedure is same as was explained in Sec. 3.2.1. It can be seen how the values are
in the range of [—m 7|. At the f, around 1.3kHz, the interchannel phase difference
for ¢ = 90° reaches the limit of this range and it is estimated as the wrapped
value. The interchannel phase difference for ¢ = 10° reaches the wrapping limit at
higher frequency and the interchannel phase difference for ¢ = 0° is never wrapped.



25

—0°
AN o0

Any)

™

=g
g 0 WWMMWVM“MMWWWM\WMWMM,M -
3

" \“ﬂv\\

4 I I I I
0 0.5 1 1.5 2 2.5

x10*
Frequency [Hz|

Figure 9: Observed phase differences with a 4 microphone planar array with » = 9cm
and lowest f, around 1.3kHz. Three different directions of arrival are shown here
to show the dependency on the direction of arrival. Lowest f, is with ¢ = 90° and
with ¢ = 0° the interchannel phase difference is always zero, i.e., never wrapped.

The figure illustrates why the relation between the ., and u, is not as simple
as suggested in (41) because the unknown direction of arrival affects the aliasing
frequency and the slope of the interchannel phase difference curve [61]. This is
why there is not enough information to perform a trivial unwrapping like in [8].
In addition, noise and multiple sources can make the phase information difficult to
unwrap [62].

4.2 Perceptual aspects of spatial aliasing

Spatial aliasing causes large deviations to the direction of arrival estimate because
the aliased estimate might be located on a completely wrong direction, like is shown
in Fig. 8. Unlike small deviations around the correct estimate, these errors are per-
ceptually significant especially in spatial sound reproduction like Directional Audio
Coding processing. As for human the smallest just noticeable difference in source
localization is around 1° 28], it is obvious that spatial aliasing is severly reducing
the perceived quality of spatial image. On the other hand, the acuity for localization
is degraded at higher frequencies where the aliasing is a problem [26].

To test the degradation of spatial image quality due to aliased estimates, the dou-
ble talk scene in Fig. 6 was simulated again with the same procedure as explained
in Sec. 3.2.1. The estimation was done with an array radius » = 9cm to include
spatial aliasing. The simulation result is presented in Fig. 10, where the direction
of arrival estimates are coded in color and presented as a function of time and fre-
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quency. Comparison with the non-aliased estimates in Fig. 6 shows that for most
of the frequencies the direction of arrival estimates are aliased. When the sources
are active, there should be only two sources at ¢; = 52° and s = —92° indicated
by yellow and blue respectively. Below the f, ~ 1.3kHz the estimation result is
the same as in the non-aliased version but in higher frequencies the estimates are
mostly completely wrong. However, as there are still relevant frequencies localized
correctly, the perceived spatial image is not as distorted as the figure would imply.

By using Directional Audio Coding synthesis, described briefly in Sec. 2.5.2, with
vector base amplitude panning for 5.0 loudspeaker setup the perceptual effects can
be examined. In informal listening test, the talkers were localized somewhat in the
correct positions. The aliasing could be noticed especially when speech contains
fricatives like /s/, this was noticed as a sudden, individual, sound in the wrong
direction. This was audible for the fricatives because they contain a lot of energy
in the higher frequencies [63]. When using Directional Audio Coding processing in
multiple sources scene, the diffuseness values are higher when the sources overlap.
For this reason, the wrong localization might not be perceived so easily as the dif-
fuse stream distributes the sources in all channels. When comparing this to the
non-aliased version the difference is clear in how strong the localization is, i.e., the
spatial image sounds less diffuse. Because this is a strongly source dependent issue it
is best not to assume that the aliasing might not be perceived. Due to this, solutions
to overcome the aliasing are needed.

In parametric time-frequency domain processing the temporal and spectral res-
olutions for the reproduced sound and the estimated parameters are limited due to
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Figure 10: Same simulation as in Fig. 6 with array radius » = 9cm which causes
aliasing to appear above the f,. When the sources are active the estimates should
be either coded with yellow or blue, but aliasing causes completely wrong estimates.
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the tradeoff between temporal and spectral resolution explained in Sec. 2.2. Because
Directional Audio Coding is perceptually motivated, the human hearing resolution,
discussed in Sec. 2.4, should be considered when determing the actual required
time-frequency accuracy for the direction of arrival parameter. In the following, the
aim is to gather some insight on whether it is possible to use lower resolution by
averaging time-frequency bins together to larger blocks. This could allow different,
non-aliasing, direction of arrival estimators to be used. The quality degradation with
decreased resolution is examined both with an objective and a subjective measure.

4.2.1 Objective quality degradation of time-frequency averaging

Log-spectral distortion is the difference between two spectra in dB-scale [64]. The
value for each time frame n is calculated as a mean over the K frequency bins. The
value is calculated as follows:

LSD(n) = | 1 3 [2010g,o ISk, m)]} — 201ogo{IS(h m P, (42)

k=1

where S(k,n) is the reference spectra and S(k, n) is the distorted one. This was used
to measure how much the source signal is distorted when the direction of arrival pa-
rameter is averaged for the Directional Audio Coding synthesis. The simulation
was made as a room impulse response simulation. The simulation computes the
impulse responses at the microphone location when the location of the impulse is
at the source location. These impulse responses are then convolved with the source
signals to obtain the signals with reflections and reverberation. The room size was
7.5 x 6.8 x 3.5 [L x W x H] meters. The microphone position was at [3.3 3.5 1.6]
and 1.6m from the source positions. The Ty = 0.25s and SNR was 60dB. The used
fast Fourier transform length was 512 with 50% overlap with a sine window. To
neglect the direction of arrival estimation errors, the direction of arrival parameters
were computed by calculating a weighted average of the true directions of arrival for
each time-frequency bin. As a weighting, the powers of each source were used. The
diffuseness was computed with the coefficient of variation method in (22), where the
intensity vector length was the sound power and direction the computed direction
of arrival.

Three different scenes were used. The first scene had two talkers, a male and
female at directions of arrival of ¢ 1,2 = 30/ — 135°. The second scene had three
sources, a male talker, a bass guitar and a barking dog at directions of arrival of
©2,1/2/3 = 30/ — 135/135°. The third scene had five music instruments located
at ©31/2/3/4/5 = 30/ —30/0/135/ — 135°. The Directional Audio Coding processing
was performed for all scenes and the synthesis was made for a 5.0 loudspeaker setup.

The reference spectra for the log-spectral distortion calculation was in all scenes
the source signal that was located at ¢ = 30°. The distorted spectra was the sig-
nal that was synthesized to the loudspeaker at the same location. The direction of
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Figure 11: Frequency bands that were used for the direction of arrival averaging.
The whole frequency scale was divided to 20, 10, 6, 5, 4 and 3 frequency bands
which are visualized as bars covering the frequency bins.

arrival parameter resolution was decreased by averaging the estimated directions of
arrival in 2, 4, 6, 8, 10 and 12 adjacent time frames of approximately 11ms. The
averaging was done without a sliding window. In frequency scale the averaging was
performed so that the whole frequency scale was divided to 20, 10, 6, 5, 4 and 3 fre-
quency bands inside which the averaging was performed. The division of frequency
bands is visualized in Fig. 11, which shows the frequency bins that were included in
each averaging band. The averaging was a simple mean of the computed directions
of arrival.

The calculated log-spectral distortion values that were averaged over the whole 5
second scenes are presented in Fig. 12. The figure shows the color coded log-spectral
distortion values. X-axis shows the size of the averaging block in time frames and
y-axis shows the number of frequency bands inside which the averaging was made.
In the double talk scene in plot a) there is a quite clear increase in distortion with
averaging, especially in time. The mixed scene (talk, bass and dog) in b) shows less
clear pattern and the difference between largest averaging and no averaging is only
about 2dB. In the music scene results in ¢) there is an increase in distortion when
averaged in frequency but temporal averaging does not show that large increase in
the log-spectral distortion values. In double talk scene the sources say the same
sentence but with a small time shift. This is why time averaging makes a greater
difference in the log-spectral distortion values than averaging in frequency. In mixed
scene the source signals are completely different and that is why the averaging does
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Figure 12: Color coded log-spectral distortion values of a) double talk, b) Speech-
bass-dog (mixed) and ¢) Music scene. Note the different scaling between figures. The
y-axis shows the number of frequency bands inside which the direction of arrival was
averaged and x-axis the size of time-averaging window.

not affect as much as in the double talk scene. In music scene the sources are
overlapping in time anyway but are located in different frequency bands. This is
why averaging in time does not cause as much distortion as averaging in frequency.

4.2.2 Subjective quality degradation of time-frequency averaging

The log-spectral distortion does not provide information on how much the averaging
affects perceptually. To obtain information on this, a listening test was organized.
In the listening test the same signals as in the log-spectral distortion calculations
were used. The test was organized as a MUSHRA test [65] where the anchor was a
signal for which the direction of arrival information was randomized in 30 x40 (kxn)
blocks. The reference was the signal without averaging. Although the log-spectral
distortion values were calculated also for samples that were averaged in both time
and frequency, only either one was applied to the listening test samples at once. This
was done because the main interest was in the effect of these averagings individually
and also to keep the listening test length within reasonable limits. The participants
were asked to evaluate how stable and sharp the spatial image is. The used scale
was from 0-100. There were 9 participants in the listening test.

The results of the listening test are presented in Figs. 13. The vertical lines
present the result for each sample. Middle point of the line is the mean of the
answers and the height of the line presents the 95% confidence interval. In time
averaging in plot a) it should be noticed that the double talk and mixed scene have
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quite clear decrease in evaluated spatial image sharpness and stability. In music
scene the quality drop is clear compared to the reference but it is not significantly
decreasing with larger time averaging. In frequency averaging the overall drop for
all scenes is larger and especially now the music scene suffered the most. These
results are somewhat in line with the decrease in quality that was noticed from
the log-spectral distortion values. Based on these results the spatial image quality
decreases when averaging is done so that the computed direction of arrival parame-
ter covers bins where the sources would otherwise be non-overlapping. Because the
signals overlap partly even without the averaging, the sources were not perfectly
panned in the correct locations even in the reference signal. This is why the refer-
ence was not always graded at 100.

It seems clear that averaging decreases the perceived spatial image quality. How-
ever, in some cases it could be possible to use estimators utilizing a wider band at
least above the aliasing limit in which case they should remove completely wrong
directions of arrival due to aliasing, which are probably a bigger issue than reduced
time-frequency-resolution.
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Figure 13: Results of spatial image sharpness listening test. Direction of arrival
parameters averaged a) within 2,4,6,8,10,12 time frames of 11ms and b) within
20,10,6,5,4,3 frequency bands. In reference there was no averaging and in the anchor
the direction of arrival was random. The spatial image quality decreases more when
the averaged direction of arrival covers non-overlapping parts of the sources.
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5 State of the art approaches for the spatial aliasing
problem

The state of the art direction of arrival estimators in Sec. 3 suffer from spatial
aliasing, which causes ambiguities in the estimated source direction. Spatial aliasing
was explained in Sec. 4.1 and in this section some state of the art methods are
presented to overcome the problem of spatial aliasing. Also the drawbacks of these
methods are explained. The section starts by discussing some possibilities that are
based on the modification of the microphone array. Then, some state of the art
methods, that are based on unwrapping the observed interchannel phase difference
information, are discussed. After these, an estimator based on the signal envelope
is explained.

5.1 Physical changes to microphone arrays

This thesis focuses on ways to solve spatial aliasing with algorithms when using mi-
crophone arrays of omnidirectional microphones. However, it should be remembered
that there are also ways to prevent aliasing by optimizing the microphone spacing
or by utilizing microphone directivity. These approaches are briefly discussed in the
following.

Spatial aliasing is caused by non-optimal array dimensions and thus, the simplest
way to prevent it is to optimize the microphone spacing. In the direction of arrival
estimation literature this is often made by choosing small microphone spacing or by
limiting the frequency bandwidth, e.g., [66] and [67]. On the other hand, too small
microphone spacing causes noise domination and decreased spatial resolution in the
lower frequencies. To prevent this, it is possible to combine microphone arrays for
different frequency bands. These setups are called nested arrays [68]. The basic idea
is to use the array optimal in the frequency band under inspection. The problem is
that adding a new array for each band is impractical due to number of microphones
and computational complexity. To overcome this, one option is to nest the arrays
with harmonically increasing distances [69]. Different sized uniform linear arrays
are combined in a way that the overlapping microphones can be shared by different
arrays and the total number of sensors is decreased. This method requires careful
choosing of the subbands for each subarray but can be effective in preventing the
spatial sampling problems.

In addition to nesting microphone arrays, it should be noted that microphone
directivity can also be used as an advantage against spatial aliasing. This advantage
can be obtained by placing omnidirectional microphones on the surface of a rigid
baffle like a cylinder or a sphere. The structure causes shadowing especially on higher
frequencies where the aliasing occurs. This method is used in [45] where microphones
are placed on the surface of a sphere and direction of arrival estimation is based on
the magnitude sensor response.
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5.2 Phase unwrapping

As was discussed in Sec. 4.1, the failure of estimators based on the interchannel phase
difference is caused by the wrapped phase differences. The simplest method for phase
unwrapping is the Itoh’s algorithm [8]. In this method the estimated interchannel
phase difference values fi(k) are examined along the frequency axis. The method
compares the estimated interchannel phase differences between adjacent frequencies.
If the difference

Ap(k) = plk = 1) — k), (43)
between two adjacent samples is out of the range of -7 7|, it is considered as a
wrapping point. The first wrapping point, i.e., the aliasing frequency bin, is denoted
as K,. Depending on whether the difference was positive or negative, then 27 is
added or subtracted from all following values respectively. This method unwraps
the values and in theory the phase difference slope for a single broadband source is
then monotonic. This naive method is effective when there is only one source but
it is not very robust when noise is present. An improved version, presented in 70|,
applies Kalman filter which combines the noise reduction with phase unwrapping.
The signal can also be divided to subbands so that the direction of arrival can first
be estimated unambiguously in the first band and then proceed to upper bands, see
for example [67] and [71]. In a recent paper |9] a method is proposed that provides
both accurate direction of arrival estimate in wide frequency range and robustness
to noise. In the following explanation the time indexes n are omitted for clarity
as only one time frame is processed at once. The method has 7 stages which are
explained in the following. At each stage the interchannel phase difference values
are analyzed or modified and these stages are also plotted in Fig. 14 b).

1. Narrow-band signal subspace estimation. Frequency bins that do not contain
enough energy from the source are neglected as noise. These bins are replaced
by interpolating them from the surrounding values.

2. Aliasing frequency f. estimation. Assuming the phase is wrapped in periods
of K,, applying autocorrelation to the wrapped interchannel phase differences
fiw (k) results a symmetrical vector. After taking the latter half of this vector
the first maxima is at £ = 0 and the first minima points the frequency bin K,
where the first phase wrapping occurs and aliasing starts. The latter half of
the autocorrelation vector is presented in Fig. 14 a) as a function of frequency.

3. Wrapping direction estimation. At the first wrapping point the phase difference
is either —7 or 7. From there the next value jumps to the other end of that
range. In [9], the wrapping direction is estimated by fitting a line to the blue
curve in 14 b). The sign of the slope of this line determines the wrapping
direction wy.

4. Phase unwrapping. As stated before, the unwrapping means adding or sub-
tracting 27 to/from the wrapped value. This can be done using the following
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equation:

(44)

N . K,+k
fraw (k) = fie (k) + 2wy { J T,

2K,

in which the wrapped /i is added with 427 multiplied by the factor inside the
floor function |-]|. Wrapping direction wy determines the sign of the addition.
In Fig. 14 b) the red curve shows the unwrapped values, i.e., values that are
not anymore bound between [—7 7|

5. Failed unwrapped points correction. In this step the unwrapped values are
checked in case some values were missed by the algorithm. In Fig. 14 b) it can
be seen how not all values on the red curve were unwrapped, because they are
still the same as before unwrapping.

6. Outlier removal for denoising. The points which have distance higher than a
certain threshold are removed to have a steady slope of the interchannel phase
difference values.

7. Final direction of arrival estimation. Finally the unwrapped interchannel
phase difference vector can be used in the direction of arrival estimation the
same way as the wrapped interchannel phase difference would have been used.

A more detailed explanation can be found in [9]. Similarly to the Itoh’s algo-
rithm, this method also assumes a single source for all k£, which makes it inadequate
for accurate time-frequency processing. In [61], an interchannel phase difference
replication method is presented for a linear array. This method considers all the
possible aliasing periods for each frequency bin. In the end a matrix is created
which will contain all the unwrapped phase values for both wrapping directions and
all aliasing periods. These unwrapped values will be transformed to corresponding
directions of arrival. As explained in [61], a histogram analysis will reveal the true
directions of arrival as peaks in the histogram. This way it is possible to find more
than one source within one time frame. Still, this only means that these sources
are active in the time frame but their distribution along the frequencies remains
unknown.

Because the above discussed phase unwrapping algorithms require information
from a wider frequency region and may assume only a single source, these methods
are not capable of resolving the true directions of arrival with the desired time-
frequency resolution. However, because they are applicable in certain situations the
phase unwrapping method of [9] was implemented in Matlab and it was tested in
simulations. In Sec. 7.2 some estimation results of this method are shown.
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Figure 14: a) Shows the autocorrelation vector as a function of frequency which is
used for finding the first aliasing frequency bin. b) shows the phase difference as
a function of frequency. The different stages of phase unwrapping in [9] are color
coded and named in the legend.

5.3 Envelope-based direction of arrival estimator

To overcome the limitations of spatial sampling with large microphone spacing, a
parameter estimator based on signal envelope is presented in [10]. This method
discards the fine structure of the signal and focuses on the amplitude modulations
present in the common signals like speech and music. Because this envelope is rela-
tively slowly varying, the spatial sampling problems have no affect in the frequency
range of interest. Obtaining the time delay An, and furthermore the direction of
arrival, from the envelope is quite straight-forward. The sound is divided into fre-
quency bands from which the envelope is extracted. These bands can be for example
1/3 octave bands or equivalent rectangular bandwidth bands. The sound field model
notations in Sec. 2.3 are used and only direct sound is assumed. As presented in (7)
and (8), without the diffuse sound component the signal of the m-th microphone is

Xin(k,n) = Psm(k,n,rm) + Xom(k, n), (45)

where P; ,,,(k,n,r,,) is the direct sound plane wave and X, ,,(k, n) is the uncorrelated
microphone noise. In time-frequency domain the jth bandpass signal X,, ;(k,n) is
obtained as the multiplication of the bandpass filter transfer function 7} (k) and the
broadband signal
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Xom.j(k;n) = Tj(k) X (K, n). (46)
To obtain the envelope of the signal, the analytical signal spectrum de(k;, n)

is first constructed. It is constructed with the following statements depending on
frequency bin k and fast Fourier transform length NV:

Xmuj<0’ n)7 for k = 0
2X,,(k,n), for1<k<¥ 1
XMJ(%?”), for k‘ = %

0, else.

X j(kyn) = (47)

These statements form the discrete time analytic signal transform, as presented in
[72]. This sets the spectrum’s negative frequency half to zero to obtain the one-sided
spectrum. The inverse Fourier transform of X,, ;(k,n) gives the analytic signal 3;(n).
The magnitude of this is the signal envelope as [73]

gj(n,tm) = [5;(n)]. (48)
After the envelopes for at least the two points r; and ry are calculated, the time

delays can be estimated by maximizing the cross-correlation over different delays 7,
similarly to Sec. 3.1 as

Z\nj = argmax |E{e;(n,r1)e;(n+ 7,12) }|. (49)

The obtained delays can now be used in the direction of arrival estimation that
is based on the time difference of arrival. Because the delay can not be larger
than travel the time between microphones, the range of 7 can be limited to 7. =
:I:M. The achievable angular resolution is limited by number of time samples in
this range. This in turn is directly dependent on the microphone spacing together
with the sampling rate f [10]. This dependency is favourable because the larger the
array is the more accurate this method is. Usually a large array causes the problem
of spatial aliasing but this method takes the advantage of the large microphone spac-
ing. The choice of bandpass filters determines the direction of arrival resolution in
frequency as only one direction of arrival is estimated for each passband. Compared
to the full time-frequency resolution this leads to decreased accuracy. Due to this,
the envelope method should only be applied above the aliasing frequency where the
methods based on the interchannel phase difference fail. In [10] the method was
used together with the Estimation of Signal Parameters via Rotational Invariance
Techniques estimator [5] above and beyond the f, respectively. This combination
produced improved perceptual spatial image quality when compared to using only
the Estimation of Signal Parameters via Rotational Invariance Techniques estima-
tion that produces aliased estimates. However, it did not reach the perceptual
quality of the reference signal which had source locations rendered individually to
correct locations. This means that reducing the frequency resolution to avoid spa-
tial aliasing can lead to improved spatial image quality, as was assumed in Sec. 4.2.2.
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6 Proposed approaches to overcome the spatial alias-
ing problem

With the state of the art direction of arrival estimators in Sec. 3 the direction of
arrival can be estimated reliably below the spatial aliasing frequency f, [5], [6].
Using the aliased direction of arrival estimates above the f, does not produce per-
ceptually desired results in the reproduction with Directional Audio Coding, as
was discussed in Sec. 4.2. The methods presented in Sec. 5 can help reducing and
preventing the wrong direction of arrival estimates caused by aliasing. However,
the presented methods are not capable of providing the correct estimates in each
frequency band individually for the time-frequency resolution used in Directional
Audio Coding processing. In this section two methods are presented that could also
be used to overcome the aliasing problem. The first one is a simple extrapolation
that aims to provide similar results as phase unwrapping with low complexity. The
second method is a correlation-based method that is uses the information on how
the aliasing happens in different frequencies and directions of arrival.

6.1 Reducing spatial aliasing effects with parameter extrap-
olation

In Sec. 5.2 a method was presented that exploits the information below the aliasing
frequency to unwrap the interchannel phase difference information. It could be
better to use a low-complexity direction of arrival estimator that is accurate when
aliasing is not present and extrapolate the non-aliased values from below the f, to the
higher bands. To perform this it is assumed that there exists only one source in each
time frame. In addition, this source obviously needs to cover the frequencies below
the f,. However, the aliased estimates should first be calculated for all frequencies
to capture the variation of the direction of arrival vector. These estimates can be
used in the diffuseness estimation in (22). The value to be extrapolated can be
calculated as a simple mean of the non-aliased estimates or then as a diffuseness-
weighted mean. After using an aliased estimator to obtain the direction of arrival
vector fa(k,n) in (11) and diffuseness W (k,n) in (22), the diffuseness-weighted mean
can be computed as

fl(n) — f:aQ 1}[51(_]{1:’ n)(lA_ \Ij(k’ n))] 7 (50)
iz (1= W(k,n)]
where K, is the lowest frequency bin with aliasing and starting from bin k£ = 2
leaves out the DC component. The range of the averaging can be narrowed, e.g., if
it is known that the low frequencies have low signal-to-noise ratio.

The extrapolation was first tested with a single speech source plane wave simu-
lation with ¢ = 52° and SNR = 30dB. The simulation follows the same procedure
explained in Sec. 3.2.1. Obtained results are presented in Fig. 15, which shows the
color coded direction of arrival estimates as a function of time and frequency. Plot a)



37

presents the aliased estimates with the Weighted Least Squares estimator and b) the
extrapolation in use. In this scenario the correct direction of arrival is clear below
the f, which leads to correct extrapolation values. The time-frequency bins where
the source is inactive are also denoted with the extrapolated value. In Directional
Audio Coding reproduction this is not a major problem because the signal in these
bins will be reproduced in the diffuse stream.

Problems arise when the assumption of a single source per time frame is violated
or when the source direction of arrival can not be determined below the aliasing
frequency. For example, the deficiency of this extrapolation method appears when
trying to localize two sources in different directions. To test this, the simulation
was run with the double talk scene, which has been simulated before in Sec. 4.2. In
addition, a single source scene was simulated where the source is a bird sound at
¢ = 52°  which has majority of its frequency content above the f,. The direction of
arrival estimates for these scenes are color coded in Figs. 16 a) and b) as a function
of time and frequency.

The Fig. 16 a) shows the extrapolation results in the double talk scenario. It can
be seen that the male speaker at ( = 52° is dominating the extrapolated estimates.
This is due to its outstanding power in the lower frequencies, which can be seen
by comparing the source spectrograms in Figs. 6 a) and ¢). Only when source 1 is
inactive and the source 2 is active, the direction of arrival is extrapolated correctly
for source 2, which can be seen for example right before 2 seconds. When neither of
the samples is dominating in lower frequencies the extrapolated direction of arrival
is placed in between the true directions, which causes spreading of the spatial image.
This can be seen as light green areas indicating ¢ ~ 0 which is approximately in the
middle of these two sources. The spreading could be avoided by doing a histogram
analysis of the non-aliased samples and picking the highest peak. However, this
would present sudden changes of direction of arrival estimates in time which causes
disturbing jumping of the sources.

In Fig. 16 b) it can be seen how the extrapolated values for a high pitch bird
sound are distorted because there is no clear direction of arrival below the f, to
extrapolate. In general, it seems that the extrapolation works when a single source
has dominant direction of arrival below f,. In addition, multi-source scenes could
benefit from this method if the sources are located nearby each other, e.g., at +30°.
In this case the sources would be localized in the frontal section whereas aliasing
would cause parts of the signal being reproduced in completely wrong directions.
This means that the spreading of the spatial image might be less of an issue than
the spatial aliasing.

In informal listening test it was noticed that the single speech source scene with
direction of arrival estimates in Fig. 15 b) did not have the negative perceptual
effects of spatial aliasing. With the double talk and bird scenes in Fig. 16 there was
a clear reduction in spatial image quality when compared to a scene without the
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Figure 15: Speech source simulated at ¢ = 52. Results for a) aliased Weighted
Least Squares estimator b) extrapolation by averaging the values below f,. When
the source is correctly estimated below the f,, the extrapolation works as expected
and appoints the correct direction of arrival estimate for all time-frequency bins.

aliasing effects. More experimental results for the extrapolation will be provided in
Sec. 7, but based on these the extrapolation could be an efficient and robust way
of reducing the negative effects of spatial aliasing when the broadband single source
assumption is satisfied.

6.2 Resolving spatial aliasing with correlation-based approach

As explained in Sec. 4.1, the spatial aliasing is only affected by the frequency, direc-
tion of arrival and microphone array setup. An example of this, meaning how the
aliasing occurs over different frequencies and directions of arrival, i.e., the aliasing
pattern, was presented in Fig. 8. This pattern is specific to the used microphone
array and the use of the Weighted Least Squares direction of arrival estimator, ex-
plained in Sec. 3.2. In the situation in Fig. 8, spatial aliasing causes the wrong
estimates above f, ~ 1.3kHz. If the wrong estimates would appear only once across
all directions of arrival in a specific frequency band, the mapping from aliased to cor-
rect values would be trivial. However, as there are multiple appearances of the same
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Figure 16: Problems of extrapolation method pointed out in a) double talk b) bird
sound scenes. In a) the existence of two sources below f, causes extrapolated value
to be incorrect (light green values). In b) the extrapolated value is almost random
because there is no clear direction of arrival to extrapolate.

aliased direction of arrival across the direction of arrival axis, i.e., ambiguities, it is
not possible to reliably determine to which true direction of arrival the aliased value
corresponds to. However, there are other ways than direct mapping to utilize this
aliasing pattern and its properties. This is based on correlation between the aliased
direction of arrival estimates and this aliasing pattern. This correlation is possible
because the pattern is different for each direction of arrival when all frequencies are
considered, which will be shown in the following. The highest correlation is found
when the aliased values are correlated with the direction of arrival vector of the
pattern that corresponds to the true direction of arrival. In fact, it is also possible
to use directly the wrapped interchannel phase difference information in the corre-
lation without using the Weighted Least Squares estimator. The following sections
present the use of aliased Weighted Least Squares and wrapped interchannel phase
difference data in the correlation approach to resolve spatial aliasing.
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6.2.1 Correlation approach with Weighted Least Squares data

The aliasing pattern for a 4-microphone rectangular array in Fig. 3 with r = 9cm was
shown in Fig. 8. The computing of these direction of arrival estimates was made by
using (28)-(35) that use the signal model presented in Sec. 2.3. This pattern can be
used to estimate the direction of arrival by finding the direction of arrival vector in
the pattern that produces the highest correlation with the aliased direction of arrival
vector. This approach is possible because the aliasing pattern has two properties;
it is constant when the microphone array is kept constant and the patterns for each
true direction of arrival are unique when considering the whole frequency range. In
the following, the uniqueness property is shown and the correlation equations for
wideband and narrowband estimation are presented. Then, an example of using
the correlation for wideband direction of arrival estimation is presented. After that,
it is explained why this approach becomes unreliable when attempting to perform
narrowband direction of arrival estimation. However, it is possible to obtain correct
narrowband estimates with this correlation method when the estimation is done in
a 2-step manner, which will be explained last.

The uniqueness property of the aliasing pattern can be verified by calculating
the correlation coeflicients between each frame and all the other frames [74]. The
result of this correlation is shown in Fig. 17 a) which shows the normalized color
coded correlation coefficients as a function of the directions of arrival. These values
were calculated using the Matlab corrcoef-function |75]. The figure shows that the
highest (positive) correlation appears always on the diagonal, meaning that corre-
lation is highest only when a single direction of arrival vector is compared to itself.
It can also be seen that at ¢ = £45° and =+ 135° there are higher correlation values
also around the diagonal but the highest correlation is still at the diagonal.

Using the uniqueness property, the correlation can be performed by first using
the Weighted Least Squares estimator, as explained in Sec. 3.2, to obtain aliased
direction of arrival vector n(k,n) for all frequencies and then finding the n(k, ¢)
along the aliasing pattern that best matches to the obtained aliased values. The
direction of arrival vector of the pattern which produces the maximum correlation
when considering all frequencies can be found as

boc = argmgx [ Z [ﬁ(k;)n(k, go)}] ) (51)

k=1
The maximum correlation for specific frequency bin k, i.e., narrowband estimate is
found using

occ(k) = argmgx [fl(/{;)n(k:, go)] (52)

For now, the wideband correlation in (51) is used and the problem of the narrow-
band version in (52) is explained after that.
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Figure 17: Color coded correlation coefficients as a function of the direction of arrival
for all frames in a) aliasing pattern b) wrapping pattern. Frame here refers to values
with single DoA, i.e., K x D bins in the aliasing and K x H bins in the wrapping
pattern. The correlation of 1 is only found at the diagonal, i.e., all the pattern
frames are unique. Narrowing down the frame size to single frequency makes also
off-diagonal values approach to 1.

The correlation process for wideband direction of arrival estimation is illustrated
in Fig. 18, which shows an aliased frame on the left and the aliasing pattern on
the right. The result of the correlation with (51), as a function of the direction of
arrival, is shown at the bottom. The aliased frame was obtained from a plane wave
simulation similar to what was performed in Sec. 3.2.1, but with » = 9cm. The
correct direction of arrival for most of the frequency bins in the frame is ¢ = 52°
and in the correlation result the highest peak appears on this location.

This way the correlation is able to reveal the true direction of arrival even when
the aliased frame contains noise like is the case in Fig. 18. However, this result is
a broadband solution, whereas in Directional Audio Coding processing narrowband
estimates are needed. This broadband solution could be used when only one source
is expected within one time frame and its direction can not be estimated below the
fa. If reliable estimation is possible below the aliasing frequency, then the extrapo-
lation method, presented in Sec. 6.1, would be a more efficient way of resolving the
aliased frequencies.

By looking at the aliasing pattern in Fig. 18, it can be seen that the differ-
ence between the frames of different directions of arrival decreases when narrowing
the inspected frequency range. For example, the direction of arrival coded with
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Figure 18: Correlation with the aliased frame and a frame on the aliasing pattern
results a peak when the best match along the direction of arrival dimension of the
pattern is used. The active source is located at ¢ = 52°. Notice that the pattern
directions of arrival (x-axis) are between [—180 180]° but the correlation x-axis is
between [0 360]°.

orange color around frequency bin 140 appears multiple times on the direction of
arrival axis. Narrowing the inspected frequency range leads to losing the uniqueness
property and inevitably to unreliable correlation results when trying to perform nar-
rowband estimation. However, the broadband correlation can be considered as the
first step in resolving the ambiguities. In the second step the broadband estimates
are used as a priori information to obtain the narrowband estimates. A priori infor-
mation means that other source of information of the correct direction of arrival is
used to reduce the ambiguity. For example the a priori information could come from
a video camera system that recognizes the potential sources and their directions.

The 2-step correlation approach for a single time-frequency bin in the doubletalk
scene (Fig. 10) is illustrated in Fig. 19. First the wideband correlation in (51) is
used to obtain direction of arrival estimates above the aliasing frequency for each
time frame. Plot a) shows these color coded estimates as a function of time and
frequency for the whole scene. These broadband estimates are then collected to a
histogram in plot b), which shows two peaks at the correct locations of the sources,
i.e., o1 =52° and pg = —92°. The plot ¢) shows the narrowband correlation values
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for a single time-frequency bin as a function of the direction of arrival. These values
were computed using (52) for one time frame and & = 100. At the inspected time
instance, only the source at ¢, = —92° was active. It can be seen that there is high
correlation at this source direction but also almost equal peaks for false directions
of arrival, i.e., ambiguities. By first picking the peaks in c) that indicate a high cor-
relation, e.g., above 0.9, and then choosing the direction of arrival that has highest
peak in the histogram in plot b), it is possible to reveal the correct direction of arrival.

The problem with the 2-step correlation approach is the forming of the histogram
of the direction of arrival candidates. In the example in Fig. 19, a 5 second section of
the scene was analyzed for the histogram. Using shorter time sections for the analysis
would also allow only occasionally appearing source directions to be represented in
the histogram. However, too short time section might make the histogram peaks
less clear. To avoid this trade-off, the aim is to perform the correlation only directly
for individual time-frequency bins. In the next section the correlation approach
for individual time-frequency bins is explained by utilizing the interchannel phase
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Figure 19: The 2 step correlation approach illustrated. a) Color coded broadband
estimates as a function of time and frequency. b) Histogram of the broadband
direction of arrival estimates that is used as a priori information, peaks appear at
the correct ¢ = 52°/ — 92°. ¢) Shows the correlation of a single time-frequency
bin where the source at ¢ = —92° is dominant. When combining these correlation
values with the histogram in b), it is possible to find the narrowband estimate.
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6.2.2 Correlation approach with interchannel phase difference data

The aliasing pattern and its use for the correlation approach was presented in
Sec. 6.2.1. For that approach, the aliasing pattern was created using the Weighted
Least Squares estimator which combines the information from all microphone pairs
by using a least squares solution, as explained in Sec. 3.2. The use of the least
squares solution might lead to loss of information. For this reason, in this section
the correlation approach for direction of arrival estimation is developed to utilize
directly the interchannel phase difference information from each microphone pair.
In this case the interchannel phase difference information for all the frequencies,
directions of arrival and microphone pairs is referred to as the wrapping pattern.
The problem with the aliasing pattern was that the uniqueness of the pattern for
different directions of arrival is lost when considering only a single frequency. For
the wrapping pattern this is not the case, which is why it could yield more reliable
results. However, the basic idea is the same; utilize the uniqueness property of the
wrapping pattern for each direction of arrival and find the best match along the
wrapping pattern and the measured interchannel phase difference values. In the
following, more details of this approach are explained.

The wrapping pattern can be obtained by simulating a white noise source in
every direction of arrival (with 1° steps) and use the equations (28)-(32) to com-
pute the interchannel phase difference values py,(k, ¢). An example of this wrapping
pattern for a single direction of arrival is shown in Fig. 20. This figure shows the
color coded wrapped interchannel phase differences for all six microphone pairs and
frequency bins when only ¢ = 0° is considered. The used microphone array is the
4-microphone rectangular array shown in Fig. 3 with » = 9cm. In this case the
pattern for a single direction of arrival is called a layer. It can be seen that in this
layer the wrapping pattern is the same for microphone pairs 1, 3 and 4. This is
not the case with different directions of arrival, because the microphone pairs are
oriented differently. Changing the direction of arrival makes the interchannel phase
difference values change and so an unique layer can be achieved for each direction
of arrival.

The uniqueness is shown similarly to the aliasing pattern by calculating the cor-
relation between each of the layers and the result is shown in Fig. 17 b). For the
use of Matlab corrcoef-function |75], the K number of interchannel phase difference
values for each microphone pair and direction of arrival are collected to a single
array of values so that there are 360 arrays with K x H values. Similarly to the
aliasing pattern, the highest correlation is found at the diagonal but the correlation
around ¢ = +45° and =4 135° is not as high as it is for the aliasing pattern. This
means that using the wrapping pattern in the correlation approach for direction of
arrival estimation could be more accurate, especially around these angles. Calcu-
lating the correlation coefficients for a single frequency bin makes the off-diagonal
values approach to 1. With the aliasing pattern this happens for more direction of
arrival combinations and already with wider frequency range than with the wrap-
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ping pattern. This means that the uniqueness property is stronger, i.e., the use
of correlation approach with the wrapping pattern could be more reliable even for
narrowband estimation. The narrowband correlation coefficients are not shown in
the figure but it was tested separately.

The improved uniqueness means that the correlation approach using the wrap-
ping pattern could yield more reliable results. For the correlation approach, first
the interchannel phase differences fi,(k) for each microphone pair h, are computed
using (28)-(32). Using these values and the wrapping pattern values p,(k, ), the
narrowband correlation can be calculated as,

H
opoc(k) = argmgx [Z [ﬂh(k)ﬂh(k?a @)}] . (53)
h=1

When calculating the correlation for a single time-frequency bin with (53), a
more reliable estimate can be achieved when compared to using the Weighted Least
Squares data in (51). This is due to the improved uniqueness and more specifically
because the ambiguity peaks in the correlation are likely to be distributed differ-
ently for each microphone pair that is oriented differently or has a different spacing.
Only the correct correlation peak is the same for all microphone pairs. To show
an example, a plane wave simulation was made at a single frequency of 6.5kHz and
@ = 52°. The planar microphone array was the one in Fig. 3 with r = 9cm. The
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Figure 20: Example of wrapped interchannel phase differences with ¢ = 0 for the
planar array in Fig. 3 with » = 9cm. Microphone pairs that are symmetrically posi-
tioned have the same phase differences. Pair number 5 has axis perpendicular to the
direction of arrival so the interchannel phase differences are zero at all frequencies.
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noise level was 30dB and the results were obtained by running the simulation 2000
times so that a distributions for the interchannel phase differences were obtained.
The correlation was made separately for each microphone pair and the correlation
results were summed to obtain the total correlation. Fig. 21 a)-f) shows the cor-
relations for each microphone pair as a function of the direction of arrival. It can
be seen that there are multiple high correlation peaks that are practically equal in
height. Among the peaks there is one peak that points the correct direction of ar-
rival and the rest of the peaks are the ambiguities. The distributions vary between
the microphone pairs, but there are also pairs that are oriented the same way and
thus the distribution of the peaks is the same for these pairs, e.g., pairs 3 and 4 in
plots ¢) and d). Plot g) shows the summation of the correlation values for individual
microphone pairs. The summation shows the highest peak at the correct direction
of arrival, which means that in this case, the narrowband estimation would be pos-
sible. However, depending on the direction of arrival and frequency, it is possible
that also the aliased peaks line up and the summation does not point out only the
correct direction of arrival. This becomes a problem especially when there are mul-
tiple sources and reflections/reverberation included in the simulation. This means
that the wrapping pattern uniqueness along the direction of arrival dimension is not
a valid assumption in every case.
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Figure 21: Plane wave simulation with f = 6.5kHz and correlation results calculated
for each microphone pair individually. a)-f) shows the correlation peaks, including
one correct and several wrong peaks. The changing orientation and microphone
spacing changes the distribution of the wrong peaks. Summation in g) of all the
correlation values results a single high peak at the correct direction of arrival ¢ =
52°.
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To increase the uniqueness of the wrapping pattern and thus the reliability of
this approach, the correlation can be performed over a broader frequency range, i.e.,
use a frequency buffer around the frequency bin under inspection. This means that
the dominating source within this buffer is computed with the correlation and the
result is used as a direction of arrival estimate for examined bin. When using the
frequency buffer, the correlation in (53) becomes

Q H
eroon(k) = argmax| Y > [k +w)m(k+w, )] |, (54)

w=— h=1

where €2 denotes the size of the frequency buffer. This is a trade-off between fre-
quency resolution and direction of arrival estimation accuracy. The frequency buffer
can be used also for the Weighted Least Squares data correlation in (51). As was
discussed in Secs. 4.2.1 and 4.2.2, decreasing the frequency resolution decreases the
spatial image quality. However, it was noticed that this decrease of resolution is also
a source dependent issue. For example, the scene with musical instruments cover-
ing different frequencies suffered a lot from the decreased resolution, whereas the
double talk scene did not suffer so much. For now it will be assumed that reducing
the frequency resolution is acceptable to achieve more reliable direction of arrival
estimation above the aliasing limit. In Sec. 7.3, some listening test results are shown
that prove that the reduced frequency resolution is perceptually less of an issue than
using the aliased estimates.

The Fig. 22 shows the flow diagram of the narrowband correlation approach
using the aliasing and wrapping patterns. The steps are:

1. Simulate a plane wave arriving from every direction. Here a 1° resolution was
used.

2. Save either the obtained interchannel phase difference information directly to
the wrapping pattern or use the Weighted Least Squares method to obtain the
aliasing pattern.

3. Measure the interchannel phase differences of the microphone pairs when a
source is located at ;.

4. Use the Weighted Least Squares method to obtain an aliased direction of
arrival vector or keep the interchannel phase difference layer as is.

5. Compute the correlation for all ¢ between the aliased direction of arrival vector
and the aliasing pattern, or between the wrapped layer and the wrapping
pattern, using (52) or (53) respectively.

6. Search for the maximum correlation along the direction of arrival dimension
to obtain the direction of arrival estimate ¢.
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Figure 22: The flow diagram of the correlation-based direction of arrival estimation.
First, the aliasing or wrapping pattern is created by simulating a white noise source
in all directions of arrival. Second, the aliased or wrapped values are measured
and the correlation with the corresponding pattern is calculated. The maximum
correlation along the direction of arrival dimension points out the direction of arrival
estimate .

The correlation approach is based on similarity comparison between the mea-
sured values and the pattern, i.e., the direction of arrival estimation becomes a
template matching problem. Another way of measuring the similarity would be to
calculate the least squares error between the measured value and the pattern values.
The direction of arrival estimate yield by this measure can be computed as

1

ppLs(k) = argmax . 55
e S i) = mtho ] "
This can be used in the direction of arrival estimation by replacing the correlation
calculation in the flow diagram in Fig. 22. Also the use of the frequency buffer
works similarly. In the following section these two similarity measures, used with
both the Weighted Least Squares and interchannel phase difference data, are applied

and their results are compared to find the best combination.
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7 Experimental results

In this section the correlation-based method and extrapolation method, which were
proposed in Sec. 6, are tested for different scenarios with plane wave and room im-
pulse response simulations. Also the phase unwrapping and envelope-based direction
of arrival estimation methods, explained in Sec. 5, are used for comparison. Before
comparing all these methods, a single white noise source test is made only for the
correlation method. This is because the correlation method is of main interest and
the point is to compare the use of Weighted Least Squares and interchannel phase
difference data and the correlation and least squares similarity measures discussed
in Sec. 6.2. Then, the correlation, extrapolation, phase unwrapping and envelope
detection methods are tested with speech signals and in multiple source scenario.
In the end also some listening test results are presented. The listening test shows
the perceptual spatial image quality that is achieved with Directional Audio Cod-
ing reproduction by using the extrapolation and correlation-based methods in the
direction of arrival estimation.

7.1 Results of the correlation approach with a single white
noise source

In this section the correlation-based method is tested with a single white gaussian
noise source. This source provides equal power in all frequency bins so the true di-
rection of arrival ¢ can be used as a reference in root-mean-square error calculation.
The noise signal is simulated as a plane wave arriving at the planar microphone
array of 4 microphones (see Fig. 3) with » = 9cm. The plane wave simulation proce-
dure was explained in more detail in Sec. 3.2.1. With this array the spatial aliasing
frequency is f, ~ 1.3kHz. The noise source is moved from ¢ = 0° to ¢ = 180° with
5° steps. The used source signal is the same in all directions of arrival. Microphone
noise is added to observe root-mean-square error values with different signal-to-
noise ratios. The aliased estimates are calculated using the Weighted Least Squares
method, discussed in Sec. 3.2, which provides valid estimated up to the aliasing
limit. The correlation method is only applied above the aliasing limit. The root-
mean-square error calculation is made for estimates between f, — 20kHz.

The difference Ap(k,n) between true direction of arrival ¢ and the estimate
o(k,n) is defined as

p(k,n) — for |p(k,n) — ¢| < 180
Ao, n) = [$(k,n) — o], or |p(k,n) —¢| < (56)
360 — |p(k,n) — |, else.
The root-mean-square error is calculated as
11K &
RMSE; = | =7 >N [Aek,n)] (57)

k=1 =1
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where k£ and n are the frequency and time bins respectively and K and L are
the number of frequency and time bins respectively. The signal length is 5s and
sampling frequency f; = 48kHz. The correlation method is applied using the nar-
rowband correlation presented in (52) and (53) for the Weighted Least Squares and
interchannel phase difference data respectively. The results using the least squares
distance measure are computed using (55) for the interchannel phase difference data
and its corresponding modification to the Weighted Least Squares data.

The root-mean-square error values for each direction of arrival are presented in
Fig. 23. In plot a), where the SNR = 60dB, it can be seen that the root-mean-square
error values are low for all four versions of the correlation approach. The errors for
the least squares measure with interchannel phase difference data is close to 0 at
all different directions of arrival. The correlation measure with interchannel phase
difference data shows slightly higher error values. When using the Weighted Least
Squares data the least squares and correlation produces identical results, which are
higher than for the interchannel phase difference data. In plot b) the noise level
was increased so that the SNR = 20dB. Now the differences between the different
approaches is more clear, but their order is the same; least squares with interchannel
phase difference data produces the lowest root-mean-square error value and corre-
lation with interchannel phase difference data is more prone to errors. Using the
Weighted Least Squares data produces still the worst results. For comparison, with
SNR = 20dB the use of the aliased Weighted Least Squares estimates directly led
to an average RMSE = 107. This means that the correlation approach was still
improving the estimation accuracy because the maximum error with the Weighted
Least Squares data in correlation was RMSE = 94. With SNR = 5dB in plot ¢) it
can be seen that the differences between the methods are small because the micro-
phone noise is causing a lot of failures for all the methods.

To show a visual example how much wrong estimates there are with each ap-
proach, a plane wave simulation was run for a single direction of arrival ¢ = 50° and
with SNR = 20dB. Fig. 24 shows the color coded direction of arrival estimates of
this simulation as a function of time and frequency. The correct estimates (yellow
color) can be found below the aliasing frequency (k = 29) for each approach. It
can be seen that the least squares measure with interchannel phase difference data
produces the best performance, as it has most of the time-frequency bins estimated
correctly in ¢). The correlation with interchannel phase difference data in d) per-
forms worse, but has also correct estimates above the aliasing frequency. When
using the Weighted Least Squares data in a)-b), most of the estimates in the higher
frequencies are incorrect. In this figure it can also be seen that there are frequency
bands where the estimation fails almost every time instance with every method.
These are most probably the frequencies where the aliasing peaks align over all mi-
crophone pairs and thus the correct direction of arrival can not be resolved from the
aliased ones. This was discussed in more detail in Sec. 6.2.2.

To obtain more reliable results, the correlation can be performed over a broader
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range of frequencies using the frequency buffer as discussed in Sec. 6.2.2. The fre-
quency buffer size €2 means how many frequency bins are included in the correlation
above or below the studied bin. For example, buffer size 10 means that the total
number of frequency bins is 202 +1 = 21. The total buffer size is kept constant over
all frequencies and if possible, equal number of frequency bins are used above and
beyond the inspected frequency bin. For the highest and lowest bins it is not pos-
sible and for example for the highest frequency bin the buffer covers 20 bins below
the highest bin.

To show the results with frequency buffers of different sizes, the correlation
calculation was performed once more using (54) for interchannel phase difference
correlation and the corresponding modifications of (52) for the Weighted Least
Squares data correlation and (55) for the least squares measure with Weighted Least
Squares/interchannel phase difference data. The buffer size was increased from 1
to 28. The source was located to ¢ = 50° and SNR = 6dB. The obtained root-
mean-square error values are plotted in Fig. 25 as a function of the buffer size. It
can be seen that with buffer size of 1 the least squares method with interchannel
phase difference data still has the lowest root-mean-square error value. When the
buffer size is increased, the correlation method using the interchannel phase dif-
ference data outperforms all the other methods. It can also be noticed that the
correlation method using the Weighted Least Squares data is now performing bet-
ter than the least squares method with the same data. Based on these results the
correlation method with interchannel phase difference data is chosen to be used in
Sec. 7.2 where more realistic source signals are used.
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Figure 23: Comparison of the RMSE; values of narrowband estimation with cor-
relation/least squares measures and Weighted Least Squares (WLS)/interchannel
phase difference (IPD) data. A single white noise source was located from ¢ = 0°
to ¢ = 180° with 5° steps. Noise was added to obtain a) 60dB b) 20dB c) 5dB
SNRs. The least squares measure with interchannel phase difference data produced
the smallest errors.
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Figure 24: Narrowband direction of arrival estimates as a function of n and & for a
noise source at ¢ = 50°. Estimates computed with a) least squares/Weighted Least
Squares (WLS) b) correlation/WLS c) least squares/interchannel phase difference

(IPD) d) correlation/IPD combinations of similarity measure/data source.

results are seen in ¢). On specific frequencies the estimation fails often.
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Figure 25: RMSE,; values as a function of frequency buffer size €2. Noise source was
located at ¢ = 50° and SNR = 6dB. The lowest error can be achieved by using the

correlation similarity measure and interchannel phase difference (IPD) data.
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7.2 Results with other signals

In Sec. 7.1 the different versions of the correlation method, explained in Sec. 6.2,
were tested with a single noise source. Based on those results it was found that the
use of wider frequency range is needed in the correlation-based method to produce
accurate results. The use of this frequency buffer is a trade-off between frequency
resolution and correct estimates. When using the frequency buffer, the correlation
method with the interchannel phase difference data was found to produce the small-
est root-mean-square error values and in this section it is used with frequency buffer
size of ) = 28. This section presents the results when analyzing more realistic sig-
nals like speech. In addition to the correlation-based method, also results for the
phase unwrapping (|9], explained in Sec. 5.2), envelope detection ([10], explained
in Sec. 5.3) and parameter extrapolation (Sec. 6.1) methods are shown. As a up-
per reference, the estimates are also calculated using power weighted average of the
true directions of arrival. For comparison, the estimates produced by the aliased
Weighted Least Squares estimator are shown and they were discussed in more detail
in Sec. 4.1. The estimates are first shown for plane wave simulations and after that
also for room impulse response simulations. Only the frequencies above the aliasing
frequency are discussed in the results as they are of main interest in this thesis.

The double talk scene simulation that has been used throughout the thesis, like
in Sec. 3.2.1, was used for the comparison in the simulations. The used microphone
array is the 4-microphone rectangular array shown in Fig. 3, with » = 9cm. The
estimated directions of arrival with different methods are shown in Fig. 26 as color
coded values as a function of time and frequency. The plot a) shows the power
weighted true directions of arrival as a reference and b) the Weighted Least Squares
estimates. The phase unwrapping results in c¢) show that the method works well
when the single source assumption is satisfied, e.g., right before 2 seconds only the
source at p = —92° is active, indicated by the blue color at all frequencies. However,
when there are both sources active the unwrapping becomes more complicated and
this method fails often. For example right before 4 seconds there are some com-
pletely wrong estimates. The extrapolation method in plot e) shows similar results
as only one estimate is produced for the higher frequencies. The extrapolation fails
also when both of the sources are active but the failure results in an estimate be-
tween the true source locations, i.e., light green color here.

The results of the envelope method show good reliability as most of the computed
estimates are either of the correct directions of arrival. The very highest frequencies
were not included in the estimation because they were left out of the highest 1/3-
octave band filter. It seems that the areas where the blue coded source is strong in
the reference, are also blue in the envelope estimates and the other areas are yellow.
The same can be noticed for the interchannel phase difference correlation estimates
in f). Based on these results the envelope and correlation-based methods yield the
best results in this double talk scenario when using a plane wave simulation. The
difference between these two is that the envelope method has fixed frequency bands
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Figure 26: direction of arrival estimation with different methods using a plane wave
simulation and SNR = 60dB. a) Power weighted true directions of arrival. b) Aliased
Weighted Least Squares estimation. ¢) Phase unwrapping. d) Envelope detection.
e) Extrapolation. f) interchannel phase difference correlation with 2 = 28 bins.

inside which one estimate is produced. In the interchannel phase difference correla-
tion the frequency buffer size is also fixed but this does not produce fixed frequency
resolution in the estimates.

To obtain more realistic microphone signals for the direction of arrival estimation,
a room impulse response simulation was made similarly to Sec. 4.2.1. Microphone
array is the same as for the plane wave simulation above. The most important differ-
ence to the plane wave simulation is that there are reflections and late reverberation
according to the reverberation time 7jy = 0.25s. The plane wave assumption is still
valid in this simulation for most of the frequencies. The results of this simulation
are shown in Fig. 27 as color coded direction of arrival estimates as a function of
time and frequency. The reference in plot a) has not changed when compared to
the plane wave simulation. In b) it can be seen that the estimates of the Weighted
Least Squares method have become noisier. This affects also the phase unwrapping
and extrapolation results in ¢) and e), respectively. For both of these there are
now more incorrect estimates. The methods still work when a single source is clear
enough, i.e., right before 2 seconds mark, but the overall accuracy degradation is
noticeable especially for the phase unwrapping. The accuracy degradation can be
seen as there are more color codes other than the yellow and blue. The estimates
with the envelope method have become significantly more noisy. The interchannel
phase difference correlation results in f) seem to be closest to the reference, but
also for that method there are now more wrong estimates than was the case with
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Figure 27: direction of arrival estimation with different methods using a room im-
pulse response simulation and SNR = 60dB. a) Power weighted true directions of
arrival. b) Aliased Weighted Least Squares estimation. c¢) Phase unwrapping. d)
Envelope detection. e) Extrapolation. d) interchannel phase difference Correlation
with frequency buffer size 28 bins.

the plane wave simulation. The results with the room impulse response simulation
show that including the reflections and reverberation makes the direction of arrival
estimation more prone to errors when using the methods here.

7.3 Listening test

The direction of arrival estimation accuracy of the phase unwrapping, envelope de-
tection, extrapolation and interchannel phase difference correlation were compared
in Sec. 7.2. In those results it was noticed that the extrapolation fails often when
the single source assumption is not satisfied. The interchannel phase difference cor-
relation showed promising results even with two active sources. Because these two
methods were proposed in this thesis and there are no subjective results on their
estimation performance, a listening test was organized.

The listening test was organized as a MUSHRA test [65], where the participants
evaluated the accuracy and stability of the spatial image. The reference was the
power weighted true directions of arrival. The lower anchor was created by having
all the sources in a mono signal that was played by all the loudspeakers so that
there is no localization of the sources. The compared methods were the Weighted
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Least Squares, extrapolation and the interchannel phase difference correlation, all
explained in Secs. 3.2, 6.1 and 6.2.2 respectively. The estimation was done by using
microphone signals from a room impulse response simulation similarly to Sec. 4.2.2.

The first test item contained a single pink noise source that was high-pass fil-
tered to contain only frequencies above 8kHz, the direction of arrival for this was
¢ = 35°. The second item ("BB" in results) had a bass guitar (¢ = —145°) in the
lower frequencies and a bird sound (¢ = 63°) that only contained frequencies above
the aliasing frequency. The third item ("DTB" in results) was a double talk scene
(p = 35%¢p = —150°) added with the same bird sound (¢ = —38°) as in the second
item. The direction of arrival estimates for the second item are shown in Fig. 28 as
an example. Plots a)-d) show the color coded estimates for the reference, Weighted
Least Squares, extrapolation and interchannel phase difference correlation methods
respectively. It should be noticed that in plot ¢) the extrapolation uses practically
only the direction of arrival estimates for the bass guitar (blue color). The diffuse-
ness was estimated using (22) similarly to Sec. 4.2.2.

100

-100

100

-100

100

Frequency [Hz|

-100

100

-100

Figure 28: direction of arrival estimates for a room impulse response simulation with
two sources; a bird ¢ = 63° and bass guitar ¢ = —145°. The estimation methods
were a) Power weighted true directions of arrival b) Weighted Least Squares c)
extrapolation d) interchannel phase difference correlation. These direction of arrival
estimates were used in the synthesis of the second listening test item.
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After performing the estimation procedure for each item with all the methods,
a DirAC synthesis was made for a 5.0 loudspeaker setup. In the test there were 8
expert listeners who were asked to grade the hidden reference to 100, the anchor to
0 and the rest of the items in between these values, based on their spatial image
quality when compared to the reference.

The results including all participants are shown in Fig. 29. The middle point of
each vertical bar shows the mean of the given grades and the height describes the
95% confidence interval. It can be seen that the interchannel phase difference cor-
relation method (pink cross) achieved grades closest to the hidden reference (black
line). In fact, it was even confused with the reference in some items by some listeners.
The Weighted Least Squares estimator (red box) achieved the second best grades
and the extrapolation (blue box) was slightly worse. The first test item ("Noise")
with a single noise source was found confusing by the listeners. This is because, e.g.,
the localization of the Weighted Least Squares estimated version was also clear and
its aliased direction of arrival was not too far from the reference direction of arrival.

The clearest difference between the compared methods is seen in the second
item ("BB"), probably because it is easier for the listeners to evaluate the sound
field and notice the failures that the Weighted Least Squares and extrapolation
methods produce. In addition, only having two sources makes it easier to obtain
correct estimates with the correlation method, so its grade is relatively high. In the
third item ("DTB") the sound field becomes more complicated and this made the
evaluation a bit more difficult but the same grading order of the methods can be seen.
However, the total grades for all items show that the interchannel phase difference
correlation led to a sound field perceptually closest to the reference. The grades
for the Weighted Least Squares method are clearly lower than for the correlation
method in all items. This means that the frequency resolution reduction is less of an
issue than using the aliased direction of arrival estimates, as was assumed Sec. 6.2.2.
Because in all items there were either multiple sources or then the source did not
have energy below the f,, the extrapolation received even worse grades than the
Weighted Least Squares method.
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Figure 29: Listening test results expressed as vertical lines for each test item. Middle
point of the line indicates the mean of the answers and the height of the line denotes
the 95% confidence interval. The interchannel phase difference (IPD) correlation can
achieve almost equivalent spatial image quality with the reference. Extrapolation
did not produce good results because its broadband single source assumption was

not satisfied.
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8 Future work and conclusions

This section ends the thesis by providing a brief look on the possible future work
and by concluding the work that was done.

8.1 Future work

The presented correlation-based method was found to reduce the negative effects
of spatial aliasing problem. However, there are still many aspects that should be
examined in more detail to make sure it is an applicable solution. First of all, the
proposed version can not achieve the original time-frequency resolution when using
the frequency buffer, thus making it similar to the envelope detection method. These
two should be compared in a listening test to find out if there is a perceptual differ-
ence. The effect of reducing the size of the buffer should be examined in different
scenarios to obtain a possible optimal size. In this work only a single array struc-
ture was used, the 4-microphone planar array. For this there are multiple different
wrapping patterns because the orientations and distances of the microphone pairs
are different. The assumption is that by adding more microphones the combined
pattern would become even more unique and vice versa. It should be examined
if there is an optimal array structure to be used in the correlation approach. In
addition, when using a linear array, it should be studied if only the differences in
microphone distances can provide the required uniqueness and with what frequency
buffer size. The method was only developed to cover the azimuth angles but in the
future also the elevation angle should be included in the analysis. This could be
possible by creating the aliasing and wrapping patterns that include these angles
also, producing one more dimension to the patterns. After these, the method should
also be tested with real recordings to see how much the nonidealities, e.g., in the
microphone placements affect the accuracy.

Another issue is the computational complexity of the correlation approach. Be-
cause of the large search space, finding the best match is computationally heavy.
This becomes a problem especially when the elevation angle is included in the esti-
mation and the search space increases. There are two things that could reduce the
search space size. First, if the used array is symmetrical, the lowest correlation is
found on the opposite direction of the correct one, as was seen in the Fig. 17. This
feature can be utilized by only perfoming the correlation on half of the space. If the
absolute value of the lowest correlation is higher than the highest correlation, it is
known that the highest correlation in the whole space is on the opposite direction to
what the lowest correlation point would indicate. The second solution to decrease
the computational load would be to decrease the wrapping pattern resolution, e.g.,
to every 2°. This might still be a perceptually acceptable reduction. By combining
the search space splitting and pattern resolution reduction, a significant reduction in
computational complexity could be achieved. In addition, the correlation approach
could be used similarly to the envelope method, i.e., for fixed frequency bands. Also
the correlation could be only used for time-frequency bins that contain only the
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direct sound, i.e., bins with low diffuseness.

The proposed extrapolation method was found to be an efficient solution that
can produce good results when there is only a single source with energy below the
fa. If a detection method for these conditions is applied, the extrapolation could
be used for single time instances instead of the correlation method to reduce the
computational load of using only the correlation method.

8.2 Conclusions

This thesis has examined the spatial aliasing problem with direction of arrival esti-
mation when using sparse microphone arrays of omnidirectional microphones. The
problem was approached in time-frequency domain using Directional Audio Cod-
ing processing framework. When using narrowband state of the art direction of
arrival estimators like Estimation of Signal Parameters via Rotational Invariance
Techniques or Weighted Least Squares, spatial aliasing causes ambiguity for the di-
rection of arrival estimates. It was noticed that the ambiguity leads to perceptually
undesired effects in the synthesized sound field because of the wrong direction of ar-
rival estimates. The current solutions to spatial aliasing, like phase unwrapping and
envelope detection can decrease the amount of wrong estimates but with the cost
of decreased frequency resolution of the direction of arrival estimates. In short, the
contributions of this thesis were the development and testing of the extrapolation
and wide-/narrowband correlation-based methods to reduce the negative effects of
spatial aliasing. In the following, a short summary of each method is presented.

In the case there is only a single source signal, the decreased resolution is not
a major problem because there is no need to separate the directions of arrival for
different frequency bands. It was found that if the direction of arrival parameter
can be estimated correctly below the spatial aliasing frequency, the aliased estimates
can be discarded by extrapolating this correct estimate to the higher frequencies.
This proposed extrapolation method is an efficient way to obtain correct estimates
for the frequencies above the aliasing frequency without the aliasing effects. For the
situation when there is no correct direction of arrival estimate below the aliasing
frequency, a correlation-based method was developed. In this method the aliasing
pattern of the microphone array is utilized. The aliasing pattern is the frequency,
direction of arrival and microphone array dependent matrix of aliased direction
of arrival estimates. This can be utilized by calculating the correlation between
the aliasing pattern and the obtained aliased direction of arrival vectors for each
frequency. In simulation tests the maximum of the summed correlation over all
frequencies was noticed to point out a reliable broadband estimate. This estimate
corresponds to the most dominant source even if all of the source’s frequency con-
tent is above the aliasing frequency. In simulations the narrowband estimation with
this method was not reliable because in the pattern there are ambiguities for each
frequency, i.e., the correlation maximum does not point out only the true direction
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of arrival when only considering one frequency bin. To reduce the ambiguities of the
narrowband estimation, a 2-step estimation approach was suggested. In this 2-step
correlation-based method the broadband correlation estimates are used as a priori
information for the narrowband correlation.

When there are multiple sources, the estimation should be made separately for
each frequency bin. For this case a correlation-based method utilizing the wrapping
patterns of each microphone pair was developed. The wrapping pattern contains
frequency, direction of arrival and microphone pair dependent interchannel phase
difference values. When using this pattern in the correlation, the ambiguities are
likely to be distributed differently for each microphone pair. Because of this, the
summation of the correlations for each microphone pair was found to provide more
reliable results than the use of the aliasing pattern. In low-noise plane wave sim-
ulations this method produced very low root-mean-square error values. However,
the narrowband estimation is not possible for each frequency and direction of ar-
rival under noisy conditions. To improve the robustness of the correlation, the use
of a frequency buffer was introduced. This way more information around the in-
spected frequency bin can be included in the correlation. In simulations the use of
the correlation-based method with the frequency buffer showed good reliability even
with higher noise levels, reflections and reverberation.

The use of the frequency buffer causes reduced frequency resolution for the di-
rection of arrival estimates. The perceptual effect of this reduction was also studied
in this thesis. With objective and subjective measures, it was found that the reduc-
tion of the frequency resolution reduces also the perceptual quality of the spatial
image. However, in an organized listening test, the correlation method with the
frequency buffer achieved a major perceptual improvement when compared to using
the aliased Weighted Least Squares estimator. Based on this, it can be stated that
perceptually more favorable results can be achieved when accepting the frequency
resolution reduction to achieve correct direction of arrival estimates.
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