14 research outputs found

    Digital polar transmitter for multi-band OFDM ultra-wideband

    Get PDF
    Master'sMASTER OF ENGINEERIN

    Radio-Communications Architectures

    Get PDF
    Wireless communications, i.e. radio-communications, are widely used for our different daily needs. Examples are numerous and standard names like BLUETOOTH, WiFI, WiMAX, UMTS, GSM and, more recently, LTE are well-known [Baudoin et al. 2007]. General applications in the RFID or UWB contexts are the subject of many papers. This chapter presents radio-frequency (RF) communication systems architecture for mobile, wireless local area networks (WLAN) and connectivity terminals. An important aspect of today's applications is the data rate increase, especially in connectivity standards like WiFI and WiMAX, because the user demands high Quality of Service (QoS). To increase the data rate we tend to use wideband or multi-standard architecture. The concept of software radio includes a self-reconfigurable radio link and is described here on its RF aspects. The term multi-radio is preferred. This chapter focuses on the transmitter, yet some considerations about the receiver are given. An important aspect of the architecture is that a transceiver is built with respect to the radio-communications signals. We classify them in section 2 by differentiating Continuous Wave (CW) and Impulse Radio (IR) systems. Section 3 is the technical background one has to consider for actual applications. Section 4 summarizes state-of-the-art high data rate architectures and the latest research in multi-radio systems. In section 5, IR architectures for Ultra Wide Band (UWB) systems complete this overview; we will also underline the coexistence and compatibility challenges between CW and IR systems

    Dynamic Load Modulation Scheme for Digital Transmitters

    Get PDF
    Nesta dissertação é proposto o dimensionamento de uma rede dinâmica de carga utilizando o algoritmo Particle Swam Optimization. A rede resultante deverá apresentar três níveis de impedância diferentes (10 Ohm, 20 Ohm e 30 Ohm), a mesma fase da corrente na antena, e uma eficiência intrínseca elevada. Os resultados preliminares foram testados e validados utilizando o ambiente de simulação Cadence Virtuoso com modelos BSIM, numa fase posterior os resultados são validados experimentalmente.The design of a Dynamic matching network topology, using the Particle Swarm Optimization (PSO) method is proposed in this dissertation. The resulting matching network should have three distinct impedance values (10Ohm 20Ohm and 30Ohm, the same current phase in the antenna and an high intrinsic efficiency. Preliminary results were tested and validated on the Cadence Virtuoso simulator with BSIM models and in a latter stage also real verification is performed

    Analysis and Design of a Transmitter for Wireless Communications in CMOS Technology

    Get PDF
    The number of wireless devices has grown tremendously over the last decade. Great technology improvements and novel transceiver architectures and circuits have enabled an astonishingly expanding set of radio-frequency applications. CMOS technology played a key role in enabling a large-scale diffusion of wireless devices due to its unique advantages in cost and integration. Novel digital-intensive transceivers have taken full advantage of CMOS technology scaling predicted by Moore's law. Die-shrinking has enabled ubiquitous diffusion of low-cost, small form factor and low power wireless devices. However, Radio Frequency (RF) Power Amplifiers (PA) transceiver functionality is historically implemented in a module which is separated from the CMOS core of the transceiver. The PA is traditionally dictating power and battery life of the transceiver, thus justifying its implementation in a tailored technology. By contrast, a fully integrated CMOS transceiver with no external PA would hugely benefit in terms of reduced area and system complexity. In this work, a fully integrated prototype of a Switched-Capacitor Power Amplifier (SCPA) has been implemented in a 28nm CMOS technology. The SCPA provides the functionalities of a PA and of a Radio-Frequency Digital-to-Analog Converter (RF-DAC) in a monolithic CMOS device. The switching output stage of the SCPA enables this circuital topology to reach high efficiencies and offers excellent power handling capabilities. In this work, the properties of the SCPA are analyzed in an extensive and detailed dissertation. Nowadays Wireless Communications operate in a very crowded spectrum, with strict coexistence requirements, thus demanding a strong linearity to the RF-DAC section of the SCPA. A great part of the work of designing a good SCPA is in fact designing a good RF-DAC. To enhance RF-DAC linearity, a precision of the timing of the elements up to the ps range is required. The use of a single core-supply voltage in the whole circuit including the CMOS inverter of the switching output stage enables the use of minimum size devices, improving accuracy and speed in the timing of the elements. The whole circuit operates therefore on low core-supply voltage. Throughout this work, a detailed analysis carefully describes the electromagnetic structures which maximize power and efficiency of low-voltage SCPAs. Due to layout issues subsequent to limited available voltages, however, there is a practical limitation in the maximum achievable power of low-voltage SCPAs. In this work, a Multi-Port Monolithic Power Combiner (PC) is introduced to overcome this limitation and further enhance total achieved system power. The PC sums the power of a collection of SCPAs to a single output, allowing higher output powers at a high efficiency. Benefits, drawbacks and design of SCPA PCs are discussed in this work. The implemented circuit features the combination of four differential SCPAs through a four-way monolithic PC and is simulated to obtain a maximum drain efficiency of 44% at a peak output power of 29dBm on 1.1V supply voltage. Extensive spectrum analysis offers full evaluation of system performances. After exploring state-of-the-art possibilities offered by an advanced 28nm CMOS technology, this work predicts through rigorous theoretical analysis the expected evolution of SCPA performances with the scaling of CMOS Technologies. The encouraging forecast further emphasizes the importance of SCPA circuits for the future of high-performance Wireless Communications

    Radio Communications

    Get PDF
    In the last decades the restless evolution of information and communication technologies (ICT) brought to a deep transformation of our habits. The growth of the Internet and the advances in hardware and software implementations modified our way to communicate and to share information. In this book, an overview of the major issues faced today by researchers in the field of radio communications is given through 35 high quality chapters written by specialists working in universities and research centers all over the world. Various aspects will be deeply discussed: channel modeling, beamforming, multiple antennas, cooperative networks, opportunistic scheduling, advanced admission control, handover management, systems performance assessment, routing issues in mobility conditions, localization, web security. Advanced techniques for the radio resource management will be discussed both in single and multiple radio technologies; either in infrastructure, mesh or ad hoc networks

    A Dual-Band 47-dB Dynamic Range 0.5-dB/Step DPA with Dual-Path Power-Combining Structure for NB-IoT

    No full text
    This paper presents a digital power amplifier (DPA) with a 43-dB dynamic range and 0.5-dB/step gain steps for a narrow-band Internet of Things (NBIoT) transceiver application. The proposed DPA is implemented in a dual-band architecture for both the low band and high band of the frequency coverage in an NBIoT application. The proposed DPA is implemented in two individual paths, power amplification, and power attenuation, to provide a wide range when both paths are implemented. To perform the fine control over the gain steps, ten fully differential cascode power amplifier cores, in parallel with a binary sizing, are used to amplify power and enable signals and provide fine gain steps. For the attenuation path, ten steps of attenuated signal level are provided which are controlled with ten power cores, similar to the power amplification path in parallel but with a fixed, small size for the cores. The proposed implementation is finalized with output custom-made baluns at the output. The technique of using parallel controlled cores provides a fine power adjustability by using a small area on the die where the NBIoT is fabricated in a 65-nm CMOS technology. Experimental results show a dynamic range of 47 dB with 0.5-dB fine steps are also available

    Highly Efficient 3-Bit Digital Power Amplifier for OFDM Waveform Amplification

    No full text
    In this work, we present a digital power amplifier (DPA) and a signal-optimized control technique suitable for the amplification of orthogonal frequency division multiplexing (OFDM). OFDM is a high peak-to-average power ratio (PAPR) signal that is naturally arising from high spectrum efficiency modulations. A 3-bit DPA is implemented with three power-scaled transistors which are turned on and off based on the signal amplitude, while phase modulation is restored using the radio frequency (RF) input signal. The unavoidable nonlinearities at the DPA output due to PA switching are minimized by accounting for the OFDM signal probability density function (pdf). This pdf is a priori knowledge to design an optimal quantizer that minimizes distortion by distributing the DPA power levels where the signal amplitude is more similar to the original one. Back-off efficiency within 23=8 possible states is then optimized by implementing a load-modulating power combiner. Theory and an example design of the combiner network are provided and demonstrated for this DPA. The reported DPA prototype operates at 1.5 GHz with a 3-bit control and achieves a maximum power-added efficiency (PAE) of 64.3% and maintains a drain efficiency greater than 47% over the output power range from 36.6 to 45.2 dBm (8.6-dB range)

    A Digital Power Amplifier With Built-In AM–PM Compensation and a Single-Transformer Output Network

    No full text
    This article presents a digital power amplifier (DPA) with a built-in AM–PM compensation technique and a compact single-transformer footprint. The AM–PM distortion behavior of the current-mode/voltage-mode power amplifiers (PAs) is detailed and an AM–PM compensation technique for both modes is introduced. The proposed design utilizes one current-mode DPA as the main path PA and a class-G PA voltage-mode digital PA as the auxiliary path PA, combined through a single-transformer footprint. It provides enhanced linearity through built-in adaptive biasing and hybrid current-/voltage-mode Doherty-based power combining. As a proof of concept, a 1.2–2.4-GHz wideband DPA is implemented in the Globalfoundries 45-nm CMOS SOI process. The measurements show a 37.6% peak drain efficiency (DE) at 1.4 GHz, and 21.8-dBm saturated output power (Psat) and 1.2×/1.4× power back-off (PBO) efficiency enhancement, compared to the ideal class-B at 3 dB/6 dB PBO at 1.2 GHz. This proposed digital PA supports 20-MSym/s 64-QAM modulation at 14.8-dBm average output power and 22.8% average PA DE while maintaining error vector magnitude (EVM) lower than −23 dB without any phase predistortion. To the best of our knowledge, this is the first demonstration of hybrid current–voltage-mode Doherty power combining on a single-footprint transformer over a broad bandwidth (BW).ISSN:2644-134
    corecore