1,099 research outputs found

    A new SSI algorithm for LPTV systems: Application to a hinged-bladed helicopter

    Get PDF
    Many systems such as turbo-generators, wind turbines and helicopters show intrinsic time-periodic behaviors. Usually, these structures are considered to be faithfully modeled as linear time-invariant (LTI). In some cases where the rotor is anisotropic, this modeling does not hold and the equations of motion lead necessarily to a linear periodically time- varying (referred to as LPTV in the control and digital signal field or LTP in the mechanical and nonlinear dynamics world) model. Classical modal analysis methodologies based on the classical time-invariant eigenstructure (frequencies and damping ratios) of the system no more apply. This is the case in particular for subspace methods. For such time-periodic systems, the modal analysis can be described by characteristic exponents called Floquet multipliers. The aim of this paper is to suggest a new subspace-based algorithm that is able to extract these multipliers and the corresponding frequencies and damping ratios. The algorithm is then tested on a numerical model of a hinged-bladed helicopter on the ground

    Infinite product expansion of the Fokker-Planck equation with steady-state solution

    No full text
    We present an analytical technique for solving Fokker–Planck equations that have a steady-state solution by representing the solution as an infinite product rather than, as usual, an infinite sum. This method has many advantages: automatically ensuring positivity of the resulting approximation, and by design exactly matching both the short- and long-term behaviour. The efficacy of the technique is demonstrated via comparisons with computations of typical examples

    A Variational Approach for Designing Infinite Impulse Response Filters With Time-Varying Parameters

    Get PDF
    Filter design with short transient state is a problem encountered in many fields of circuits, systems, and signal processing. In this paper, a novel low-pass filter design technique with time-varying parameters is introduced in order to minimize the rise-time parameter. Through the use of calculus of variations a method is developed to obtain the optimal closed-form expression for adjusting the parameters. In this context, two cases are addressed: the ideal case in which infinite bandwidth is required and a solution of finite bandwidth. The latter is obtained by means of a proper constraint formulation in the frequency domain. The proposed filter achieves the shortest rise time and allows better preservation of the edge shape in comparison with other existing filtering methods. The analysis, synthesis, and performance of the proposed system are discussed and illustrated with the aid of simulations

    Adomian decomposition method, nonlinear equations and spectral solutions of burgers equation

    Get PDF
    Tese de doutoramento. CiĂȘncias da Engenharia. 2006. Faculdade de Engenharia. Universidade do Porto, Instituto Superior TĂ©cnico. Universidade TĂ©cnica de Lisbo

    MORLAB – The Model Order Reduction LABoratory

    Get PDF

    A NOVEL AUTOMATED MODEL GENERATION ALGORITHM FOR HIGH LEVEL FAULT MODELING OF ANALOG CIRCUITS

    Get PDF
    gh level modelling techniques have been used by researchers from few decades to increase fault simulation speed of analog circuits. However, due to manual model generation, the techniques are tedious and time consuming and unable to reduce analog testing time. To overcome manual modelling limitation, researchers adopt algorithmic support and start using automated model generation (AMG) methods to generate models for high level modelling of analog circuits. AMG models successfully perform HLFM but unfortunately fail to increase high level fault simulation (HLFS) speed compared to full SPICE-circuit simulations. The failure is mainly occurred due to the consumption of multiple models and computational overhead of model switching required capturing nonlinear effects
    • 

    corecore