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a b s t r a c t

Many systems such as turbo-generators, wind turbines and helicopters show intrinsic
time-periodic behaviors. Usually, these structures are considered to be faithfully modeled
as linear time-invariant (LTI). In some cases where the rotor is anisotropic, this modeling
does not hold and the equations of motion lead necessarily to a linear periodically time-
varying (referred to as LPTV in the control and digital signal field or LTP in the mechanical
and nonlinear dynamics world) model. Classical modal analysis methodologies based on
the classical time-invariant eigenstructure (frequencies and damping ratios) of the system
no more apply. This is the case in particular for subspace methods. For such time-periodic
systems, the modal analysis can be described by characteristic exponents called Floquet
multipliers. The aim of this paper is to suggest a new subspace-based algorithm that is
able to extract these multipliers and the corresponding frequencies and damping ratios.
The algorithm is then tested on a numerical model of a hinged-bladed helicopter on the
ground.

1. Introduction

Most existing identification techniques in mechanical and civil engineering work under the assumption that the
underlying system can be modeled by a linear time-invariant (LTI) model. Unfortunately, structures that exhibit intrinsically
time-varying behaviors are increasingly used in industry. For accurate analysis of such structures, that assumption is not
satisfied. The time-varying aspect must be taken into account for a whole and reliable description of the system dynamics.

The extension of the well-known identification techniques to the linear time-varying (LTV) systems is an ongoing active
topic of research. A wide range of methods have been suggested in the literature. Among them, one can cite the frozen-time
approach introduced first in [1,2] which deals with the identification of slowly time-varying systems (the frozen-time
approach consists in modeling the slowly time varying system as a sequence of LTI systems, called frozen-time systems).
Recursive algorithms such as recursive least squares (RLS), recursive instrumental variable and recursive predictive error
[3,4] have also been widely investigated. For the class of rapidly time-varying systems, the functional expansion techniques
have been suggested in manifold works [5–8].

In [9–12], efforts have been undertaken to extend the subspace identification approach [13] to the LTV case by
introducing the idea of repeated experiments. As pointed in [14], most subspace-based results developed thus far, even if
significant, give state space realizations that are topologically equivalent from an input and output standpoint, but are not
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defined in the same coordinate system. In other words, between two different instants the identified realizations will be
expressed in two different bases.

Mechanical engineers are rather interested in identifying system eigenvalues and eigenvectors (which give modal
frequencies, damping ratios and mode shapes) for vibration and stability analysis sake. Unfortunately and due to the lack of
a consistent theoretical background, the modal analysis of time-varying systems is not well defined and is still handled case
by case. The eigenvalues, for example, of each of the identified state space matrices, using the subspace framework, do not
determine the stability of the global system as illustrated by example in [15] and as in [11] where the concept of pseudo-
eigenvalues is preferred to eigenvalues.

The scope herein is limited to a sub-class of LTV which is the linear periodically time-varying (LPTV or LTP) class. Time-
periodic systems are considered to be a bridge between the time-invariant case and the time varying one, and their theory is
well established. In fact, the modal analysis of ordinary differential equations (ODE) with periodic coefficients, known as
Mathieu's equation [16], was handled using the Floquet theory [17], in many works [18–22]. This theory derives some
characteristic multipliers, called the Floquet multipliers (or Lyapunov–Floquet multipliers), that stand for the classical
eigenvalues. When not canceled by system's zeros (anti-resonance, for example), these multipliers entirely describe the
dynamics of a time-periodic system and predict its stability margins. In the time domain, the extraction of those multipliers
has so far lied to the computation of the fundamental solution matrix (FSM) [23] from the integration of the system
equations. Then, a so-called monodromy matrix, whose eigenvalues derive the Floquet multipliers, is deduced. The
integration of periodic ODE is immensely costly and cumbersome. In [24,25] for example, a technique employing expansion
in Chebyshev polynomials is used in order to symbolically approximate the FSM and alleviate the computational burden of
the exact solution. This symbolic approximate solution is still computationally costly.

Despite these significant analytic results which assume that the differential equation is known, scope on the
identification of the Floquet multipliers and the corresponding mode shapes from output-only data remains limited. Allen
and coworkers are the first who have taken steps in this direction in [26–28]. They used, for the purpose, the harmonic
transfer function concept by Wereley and Hall [29], which is an extension of the concept of transfer function to LPTV
systems.

In this paper, we suggest a new time-domain subspace-based algorithm which is able to extract the Floquet multipliers
and mode shapes of an LPTV systems from output-only data. The originality is to build a subspace matrix from the
covariances of two lagged subsequences of the output data that have same dynamics, in such a way that the monodromy
matrix is a least square approximation of an equation involving two block rows of the said subspace matrix.

The paper is organized as follows: in Section 2, a classical output-only stochastic subspace identification (SSI) algorithm
for LTI systems is presented. Then, Section 3 is devoted to the extension of this algorithm to periodic cases. The new
algorithm is designed so that it extracts the Floquet multipliers and mode shapes of an LPTV system. Finally in Section 4, the
algorithm has been tested on a numerical simulation of a helicopter with a hinged-blades rotor on the ground.

2. A classical output-only subspace identification algorithm

In this section, a typical output-only stochastic subspace (SSI) algorithm, based on covariance-driven data, is presented [30].
Let the LTI continuous-time state space model of a given system be

_zðtÞ ¼ A zðtÞþvðtÞ
yðtÞ ¼ C zðtÞþwðtÞ

(

ð1Þ

where zAR
n is the state vector, yAR

r the output vector or the observation, AAR
n%n the state matrix and CAR

r%n the
observation matrix. The vectors v and w are uncorrelated noises assumed to be white Gaussian such that their means and
covariances are defined as follows:

EðvðsÞÞ ¼ 0; EðvðsÞvT ðs′ÞÞ ¼Qv & δðs's′Þ

EðwðsÞÞ ¼ 0; EðwðsÞwT ðs′ÞÞ ¼ Qw & δðs's′Þ

where E is the expectation operator and δ is the Dirac function. Consider a sampling period τ and denote by

F ¼ eAτ; zk ¼ zðkτÞ; yk ¼ yðkτÞ;

wk ¼wðkτÞ; ~vk ¼
Z ðkþ1Þτ

kτ
eAððkþ1Þτ'sÞvðsÞ ds

The discrete-time form of (1) is written as [31]

zkþ1 ¼ Fzkþ ~vk

yk ¼ Czkþwk

(

ð2Þ



As shown in [31], the resulting sequence f ~vkg is an uncorrelated white noise. Its mean and covariance are respectively

Eð ~vkÞ ¼ E

Z ðkþ1Þτ

kτ
eAððkþ1Þτ'sÞvðsÞ ds

 !

¼
Z ðkþ1Þτ

kτ
eAððkþ1Þτ'sÞEðvðsÞÞ

|fflfflffl{zfflfflffl}

0

ds¼ 0 ð3Þ

and

Eð ~vk ~v
T
k Þ ¼ E

Z ðkþ1Þτ

kτ

Z ðkþ1Þτ

kτ
eAððkþ1Þτ'sÞvðsÞvT ðs′ÞeA

T ððkþ1Þτ's′Þ ds ds′

 !

¼
Z ðkþ1Þτ

kτ

Z ðkþ1Þτ

kτ
eAððkþ1Þτ'sÞEðvðsÞvT ðs′ÞÞ

|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}

Qv &δðs's′Þ

eA
T ððkþ1Þτ's′Þ ds ds′

¼
Z ðkþ1Þτ

kτ
eAððkþ1Þτ'sÞEðvðsÞvT ðsÞÞ

|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}

Qv

eA
T ððkþ1Þτ'sÞ ds¼

Z τ

0
eAððkþ1Þτ'sÞ & Qv & eA

T ððkþ1Þτ'sÞ ds ð4Þ

Let λ and ϕλ be respectively the eigenvalues and the eigenvectors of system (2):

detðF'λIÞ ¼ 0; Fϕλ ¼ λϕλ ð5Þ

Denote ψ λ ¼ Cϕλ the observed eigenvectors, also called mode shape. The objective of identification is to extract the
eigenstructure ðλ;ψ λÞ using the available output data from the sensors. The steps of the SSI algorithm are given hereafter.

For chosen parameters p and q such that minfpr; qrgZn, the covariance-driven Hankel matrix below Hp;qAR
ðpþ1Þr%qr is

built:

Hp;q ¼

R1 R2 ⋯ Rq

R2 R3 ⋯ Rqþ1

⋮ ⋮ ⋮ ⋮

Rpþ1 Rpþ2 ⋯ Rpþq

2

6
6
6
6
4

3

7
7
7
7
5

ð6Þ

with Ri ¼ EðykyTk'iÞ the covariances of the output data. If N is the number of output measurements that are available (N⪢1),
the Ri's can be estimated by

R̂ i ¼
1
N

∑
N

k ¼ iþ1
yky

T
k'i

In practice, the parameters p and q are chosen sufficiently large such that the order of the Hankel matrix is equal to the
system order n. Also, a classical choice for covariance driven subspace approaches is to take q¼ pþ1 to ensure that the
subspace matrix is square. These considerations are extensively treated in [32–34].

An estimate of the Hankel matrix can be written as

Ĥp;q ¼
1
N

∑
N'p

k ¼ qþ1
Yþ

k Y'T
k ð7Þ

where

Yþ
k ¼ ½yTk ⋯ yTkþp+T ; Y'

k ¼ ½yTk'1 ⋯ yTk'q+T ð8Þ

Let G¼ EðzkyTk Þ be the correlation between the state and the observation, Op ¼ ½CT ; ðCFÞ+T ;…; ½ðCFpÞT +T and
Cq ¼ ½FG; F2G;…; FqG+ the p-th order observability matrix and the q-th order (shifted) controllability matrix respectively.
The computation of the Ri's leads to the decomposition [30]:

Hp;q ¼OpCq ð9Þ

Therefore, an estimate Ôp of the observability matrix can be obtained via a Singular Value Decomposition (SVD) of the
Hankel matrix Ĥp;q and its truncation at the desired model order n [35]. This estimate is obtained up to a non-singular
matrix:

Ĥp;q ¼UΔVT ¼ ½U1 U2+
Δ1 0

0 Δ2

" #
VT
1

VT
2

" #

UAR
ðpþ1Þr%ðpþ1Þr ; ΔAR

ðpþ1Þr%qr ; and VAR
qr%qr ð10Þ

Ôp ¼U1Δ
1=2
1 ð11Þ

where Δ1AR
n%n contains the n first singular values and U1AR

ðpþ1Þr%n the n first columns of UAR
ðpþ1Þr%ðpþ1Þr . Since only the

left part of the singular value decomposition is needed to retrieve an estimate of the observability matrix, an economic (so-
called thin) SVD, which computes only that left part, can be used.



An estimate Ĉ of the observation matrix is extracted from the first r rows of the observability matrix Ôp. The estimate F̂

of the state transition matrix is obtained from a least square approximation of [30]:

O
↑
pF ¼O

↓
p ð12Þ

where O
↑
p and O

↓
p are defined as

O
↑
p ¼

C

CF

⋮

CFp'1

2

6
6
6
4

3

7
7
7
5
; O

↓
p ¼

CF

CF2

⋮

CFp

2

6
6
6
4

3

7
7
7
5

ð13Þ

and can be respectively estimated as the first pr rows and the last pr rows of the estimated observability matrix Ôp. Once the
state transition matrix F and the observation matrix C are estimated, the system eigenstructure can be easily retrieved.

3. Subspace identification for LPTV systems

In this section, the classical SSI algorithm presented in Section 2 is extended to the case of linear periodically time-
varying systems. Since in real applications, the time-invariant modal description may yield misleading results for such
systems [22,26], we introduce a general description based on the Floquet theory. The essential elements of this theory are
recalled, then the steps of the new algorithm are detailed.

3.1. On Floquet theory

The Floquet theory is a mathematical theory of ordinary differential equations (ODE) with time-periodic coefficients.
Introduced by Floquet in [17], it is the first complete theory for the class of periodically time-varying systems. Some of its
essential elements, that are related to the study hereafter, are briefly reviewed. More details can be found in [36].

Let us consider the periodic differential system:

_xðtÞ ¼ AðtÞxðtÞ ð14Þ

where xAR
n is the state vector. The state transition matrix AðtÞAR

n%n is continuous in time (or at least, piecewise
continuous) and periodic, of period T40. If an initial condition xðt0Þ ¼ x0 is fixed, a solution of (14) is guaranteed to exist.

Let ΦðtÞ be the matrix whose n columns are n linearly independent solutions of (14), ΦðtÞ is known as the fundamental

transition matrix (FTM). It has the properties:

_ΦðtÞ ¼ AðtÞΦðtÞ; ΦðtþTÞ ¼ΦðtÞΦðTÞ; 8 t ð15Þ

Let Q be the value of the fundamental matrix at t¼T (Q is called the monodromy matrix. It can be complex, even if the
dynamical matrix A(t) is real) and the matrix R such that

Q ¼ΦðTÞ; R¼ 1
T
log ðQ Þ ð16Þ

The eigenvalues of R are called the Floquet exponents. They wholly describe the system (14) and replace the classical
frequencies and damping ratios in the periodic case. Since R gives the information about the system dynamics [18], the goal
hereafter is to identify this matrix (or its discretized form).

Make the change of variable xðtÞ ¼ΦðtÞe'RtzðtÞ. The theory insures that

_zðtÞ ¼ RzðtÞ ð17Þ

This transform is called the Lyapunov–Floquet transform (or Floquet transform). It gives an underlying autonomous system (a
system with a constant state transition matrix with respect to time) that is equivalent to the initial periodic system (14).

Consider the complete system with the observation equation:

_xðtÞ ¼ AðtÞxðtÞþvðtÞ
yðtÞ ¼ CðtÞxðtÞþwðtÞ

(

ð18Þ

Both of the state transition matrix AAR
n%n and the observation matrix CAR

r%n are real, piecewise continuous and periodic
of period T. The vectors v and w are unmeasured uncorrelated noises assumed to be white Gaussian. By Lyapunov–Floquet
transformation, Eq. (18) is transformed into

_zðtÞ ¼ RzðtÞþðLðtÞÞ'1vðtÞ
yðtÞ ¼ ~C ðtÞzðtÞþwðtÞ

(

ð19Þ

where LðtÞ ¼ΦðtÞe'Rt and ~C ðtÞ ¼ CðtÞLðtÞ. Since L is periodic, the new observation matrix ~C ðtÞ is periodic.
This transformation makes the modal analysis straightforward and comprehensive for periodic systems [37]: the modal

frequencies are derived from the eigenvalues of R (called Floquet exponents) and the mode shapes are the product of
the eigenvectors by the periodic matrix ~C t C t L t . Let μ ρ iωp be a Floquet exponent (i 1

p
). Then, as in the



time-invariant case the damping ratio and the modal frequency are defined as

ξ¼ 'ρ

jωpj
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þρ2=ω2
p

q ; f p ¼
jωpj

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þρ2=ω2
p

q

2π
ð20Þ

Let τ be a sampling period. The discretization of Eq. (19) yields the following:

zkþ1 ¼ Fzkþ ~vk

yk ¼ ~C kzkþwk

(

ð21Þ

where zk ¼ zðkτÞ, yk ¼ yðkτÞ, F ¼ eRτ , ~C k ¼ ~C ðkτÞ, wk ¼wðkτÞ and ~vk ¼
R ðkþ1Þτ
kτ eRððkþ1Þτ'sÞðLðsÞÞ'1vðsÞ ds. Assume that the sampling

period τ is a divisor of the system period T, then the obtained discrete-time system is periodic of period Td ¼ T=τ.
The results (3) and (4) reported in [31] for the discrete-time noise in the time-invariant case can be readily extended to

this periodic case:

Eð ~vkÞ ¼ E

Z ðkþ1Þτ

kτ
eRððkþ1Þτ'sÞðLðsÞÞ'1vðsÞ ds

 !

¼
Z ðkþ1Þτ

kτ
eRððkþ1Þτ'sÞðLðsÞÞ'1EðvðsÞÞ

|fflfflffl{zfflfflffl}

0

ds¼ 0 ð22Þ

and similarly

Eð ~vk ~v
T
k Þ ¼

Z ðkþ1Þτ

kτ
eRððkþ1Þτ'sÞL'1ðsÞ & Qv & L'T ðsÞeR

T ððkþ1Þτ'sÞ ds ð23Þ

Consider the covariance of the obtained noise Eð ~vkþTd
~vT
kþTd

Þ at sample ðkþTdÞ corresponding to the continuous time ðkτþTÞ,
and the variable change ξ¼ s'T:

Eð ~vkþTd
~vT
kþTd

Þ ¼
Z ðkþ1ÞτþT

kτþT
eRððkþ1ÞτþT'sÞL'1ðsÞ & Qv & L'T ðsÞeR

T ððkþ1ÞτþT'sÞ ds

¼
Z ðkþ1Þτ

kτ
eRððkþ1Þτ'ξÞL'1ðξþTÞ & Qv & L'T ðξþTÞeR

T ððkþ1Þτ'ξÞ dξ

¼
Z ðkþ1Þτ

kτ
eRððkþ1Þτ'ξÞL'1ðξÞ & Qv & L'T ðξÞeR

T ððkþ1Þτ'ξÞ dξ¼ Eð ~vk ~v
T
k Þ

The purpose of the identification algorithm below is to extract the discrete-time Floquet exponents (namely, the
eigenvalues of F) and the corresponding frequencies and damping ratios. If λ is an eigenvalue of F, then it is related to the
continuous-time Floquet exponent μ by λ¼ eμτ , and the modal frequency and the damping ratio are derived from Eq. (20).

The focus of this paper is the poles of the system and the corresponding frequencies and damping ratios. Nonetheless,
the extraction of the mode shapes is straightforward. The discrete-time and continuous-time transition matrices F and R

have the same eigenvectors. Denote ϕλi
the eigenvector corresponding to the i-th eigenvalue λi, hence the i-th mode shape at

instant k is equal to ψk;i ¼ ~C kϕλi
.

3.2. Identification algorithm

The subsequences ðzjþ iTd
ÞiAN

and ðyjþ iTd
ÞiAN

have the same dynamics for all j. A total of Td different subsequences exists
[38]. One of these subsequences (denoted the j-th subsequence in the following) is shown in Fig. 1.

Let p and q be two parameters such that minfpr; qrgZn. A Hankel matrix, built on the j-th index, is defined as

Ĥ
ðjÞ
p;q ¼

1
NT

∑
NT'1

i ¼ 0
Yþ

jþ iTd
Y'T

jþ iTd
ð24Þ

where NT is the number of the available rotor revolutions (number of periods). The parameters p and q are chosen as in the
time-invariant case. Notice that more than one subsequence is used, i.e. for one choice of the index j, all points between j'q

and jþp are used at every period, to compute the Hankel matrix Ĥ
ðjÞ
p;q resulting from the summation of the products

Yþ
jþ iTd

Y'T
jþ iTd

. Still, decimating the summation at every period will yield to Proposition 3.1.

Proposition 3.1. When NT goes to infinity, the Hankel matrix can be factorized as follows:

HðjÞ
p;q ¼OðjÞ

p CðjÞq ð25Þ

Fig. 1. The j-th time-invariant subsequence.



where the observability and the controllability matrices are defined as

O
ðjÞ
p ¼

~C j

~C jþ1F

⋮
~C jþpF

jþp

2

6
6
6
6
4

3

7
7
7
7
5

ð26Þ

C
ðjÞ
q ¼ ½FGðj'1Þ ⋯ FqGðj'qÞ+ ð27Þ

where GðkÞ is the state-output cross correlation of the k-th invariant subsequence. It can be estimated by Ĝ
ðkÞ

¼
ð1=NT Þ∑NT'1

i ¼ 0 zkþ iTd
yTkþ iTd

.

Proof. See Appendix A for the proof.

In [39,40], the authors proposed a subspace-based algorithm for the extraction of the Floquet multipliers from the
computation of two successive Hankel matrices HðjÞ

p;q and H
ðjþ1Þ
p;q , then a resolution of a least squares equation. This algorithm

estimates the matrix F up to two different time-varying transforms T̂
ðjÞ

and T̂
ðjþ1Þ

, such that the output of the algorithm is
related to the desired estimate as T̂

ðjþ1Þ'1

F̂ T̂
ðjÞ
. In order to solve this problem some approximation has been made as in [10].

This approximation may hold only for very low rotation speeds. In the current paper, the proposed algorithm solves the
problemwithout any approximation, and is then applicable for rotating systems with high and low rotation speeds. The idea
is to build the Hankel matrix denoted Ĥ

ðjþÞ
p;q , such that the future data are shifted from the past data by a period Td:

Ĥ
ðjþÞ
p;q ¼ 1

NT
∑

NT'1

i ¼ 0
Yþ

jþðiþ1ÞTd
Y'T

jþ iTd
ð28Þ

Since ~C k and GðkÞ are periodic for all k, we get the following limit factorization:

HðjþÞ
p;q ¼O

ðjþTdÞ
p FTdC

ðjþTdÞ
q ¼O

ðjÞ
p FTdC

ðjÞ
q ð29Þ

Consider the total Hankel matrix:

Hp;q ¼
H

ðjÞ
p;q

H
ðjþÞ
p;q

2

4

3

5¼
O

ðjÞ
p

O
ðjÞ
p FTd

2

4

3

5C
ðjÞ
q ¼OpC

ðjÞ
q ð30Þ

and

Ĥp;q ¼
Ĥ

ðjÞ
p;q

Ĥ
ðjþÞ
p;q

2

6
4

3

7
5 ð31Þ

Obviously, the total observability matrix Op depends on the sample index j. This dependency is dropped, for the sake of
notation simplicity. An estimate Ôp of Op can be obtained from a singular value decomposition of the total Hankel matrix
estimate Ĥp;q. Ôp is obtained up to some non-singular matrix T̂ . Denote O↑

p the first ðpþ1Þ block rows of Op and O↓
p the last

block rows. Define their estimates accordingly. The transition matrix F satisfies

O↑
pF

Td ¼O↓
p ð32Þ

Then an estimate of the transition matrix F can be retrieved as

F̂ ¼ ððÔ↑

pÞ†Ô
↓

pÞ1=Td ð33Þ

Since we only have an estimate of the observability matrix Op up to some transform T̂ , then the estimate of F is defined up to
an invertible matrix T̂ . Notice that the basis T̂ is a byproduct of the singular value decomposition procedure but has no
impact on the eigenvalues of F̂ since two estimates related by

F̂ 1 ¼ T̂
'1

F̂ 2T̂ ð34Þ
are two representations of the same linear map (the transform matrix T̂ is the same in the left and the right). Once the
discrete-time Floquet exponents (the eigenvalues of F̂ ) and the corresponding eigenvectors are identified, the modal
frequencies, the damping ratios and the mode shapes can be deduced. Those quantities do not depend on T̂ . A summary of
the identification steps is given in Algorithm 1.

Algorithm 1. Floquet exponents identification.

Require: ðNTTdþpþ jÞ output data ðykÞ are available.
1: Initialization: Ĥ

ðjÞ
p;q←0ðpþ1Þr%qr and Ĥ

ðjþÞ
p;q ←0ðpþ1Þr%qr . Take q and p such that minfpr; qrgZn

2: for i¼ 0 : ðNT'1Þ do
3:

Ĥ
ðjÞ
p;q←Ĥ

ðjÞ
p;qþYþ

jþ iTd
Y'T

jþ iTd
as in Eq. (24)

4: end for

5: for i¼ 0 : ðNT'1Þ do



6:
Ĥ

ðjþÞ
p;q ←Ĥ

ðjþÞ
p;q þYþ

jþðiþ1ÞTd
Y'T

jþ iTd
as in Eq. (28)

7: end for

8:

Ĥp;q←

Ĥ
ðjÞ
p;q

Ĥ
ðjþÞ
p;q

2

6
4

3

7
5

9: compute the SVD of Ĥp;q

10: retrieve Ôp, Ô
↑

p and Ô
↓

p

11: compute an estimate F̂←ððÔ↑

pÞ
†
Ô

↓

pÞ
1=Td

12: compute the Floquet exponents and the corresponding eigenvectors
13: deduce the frequencies, damping ratios and mode shapes
Ensure: the system modal frequencies, damping ratios and mode shapes

4. Application

4.1. Helicopter model

In this section, the suggested identification method is tested on a helicopter model. We give, first, some essential
elements that allow to understand the dynamics of a helicopter on the ground and the instabilities that may occur, namely
the ground resonance.

When the rotor of a helicopter is spinning, some angular phase shifts – known as leading and lagging angles – can be
created on the blades by external disturbances. Basically, this may occur when a helicopter with a wheel-type landing gear
touches the ground firmly on one corner, then this shock is transmitted to the blades in the form of out of phase angular
motions. Those angular motions interact with the elastic parts of the fuselage (the landing gear, mainly) for certain values of
rotor's angular velocity. The fuselage starts then to rock laterally. These lateral oscillations amplify the lead-lagging motions
which also amplify the fuselage oscillations, and so on till the divergence and the destruction of the structure when a critical
rotation velocity is reached.

The analysis given herein is based on the model in [41], but extending it to the case where dampers are present on the
structure. The fuselage is considered to be a rigid body with mass M, attached to a flexible landing gear (LG) which is modeled
by two springs Kx and Ky, and two viscous dampers Cx and Cy as illustrated in Fig. 2. For the sake of simplicity, the fuselage is
considered to be symmetrical: namely the stiffnesses are equal to the same value, Kz, Kx ¼ Ky ¼ Kz and idem for the viscous
dampers Cx ¼ Cy ¼ Cz. The rotor spinning with a velocity Ω is articulated and the offset between the MR (main rotor) and each
articulation is noted as a. For k¼ 0;…;Nb'1 (with Nb the number of blades), each blade is modeled by a concentrated massm –

considered constant here for the sake of simplicity – at a distance b of the articulation point and a torque stiffness and a viscous
damping Kϕk

and Cϕk
are present in each articulation. The moment of inertia around each articulation point is Iz. The degrees of

freedom are the lateral displacements of the fuselage x and y, and the out-of-phase angles ðϕkÞ.
The equation of motion of the studied mechanical system is obtained by applying Lagrange equations to the kinetic,

potential energy and dissipation function's expressions (respectively T, U and F) of the helicopter, given in Appendix B:

δ

δt

δT

δ_ξ

5 6

'δT

δξ
þδU

δξ
þδF

δ_ξ
¼ 0 ð35Þ

Fig. 2. Mechanical model of a 4 bladed helicopter: Nb¼4.



ξ is a dummy variable which is replaced by the system variables. Let q be the vector containing these variables
q¼ ½x; y;ϕ0;ϕ1;…;ϕNb'1+T . In our case, the behavior of the helicopter is described by the equation:

MðtÞ €qþCðtÞ _qþKðtÞq¼ 0 ð36Þ

The matrices M, C and K are respectively mass, stiffness and damping matrices. Their expressions are given in Appendix C.
The system matrices are periodic with a period T ¼ 2π=Ω:

MðtþTÞ ¼MðtÞ; CðtþTÞ ¼ CðtÞ; KðtþTÞ ¼KðtÞ; 8 tZ0 ð37Þ

The model can be rewritten as in (18), taking the state variable X ðtÞ ¼ ½qðtÞ
_qðtÞ+ and the state matrix AðtÞ ¼ ½ 0

'M'1ðtÞKðtÞ
I

'M'1ðtÞCðtÞ+
where I is the identity matrix.

4.2. Numerical simulation

Let us consider a helicopter with 4-bladed rotor, for this numerical application. And let the numerical values in Table 1 be
the structural parameters of the considered helicopter. The numerical values are those of the model in [41], adding viscous
dampers to it. In order to mimic the dynamics of a real helicopter, the values of the damping coefficients are taken such that
Cx ¼ Kx=25 and Cϕ ¼ Kϕ=25 as in [42].

A standard white Gaussian signal with a unit standard deviation sv is generated for the state noise v. A white Gaussian
noise w with a standard deviation sw is also generated such that the ratio sv=sw ¼ 103. To simulate an anisotropy in the
rotor, the stiffness of the fourth blade is taken such that Kϕ3

¼ 0:75Kϕ. We take the observation matrix C ¼ ½010%2 I10%10+.
To simulate the data yk, Eq. (14) is numerically integrated using the Runge–Kutta method.

4.3. Identification results

For Ω¼ 3:5 rad=s, a first data set is generated over a number of rotor revolutions NT¼2000, with a discrete period
Td¼100 (the sampling frequency is Fs ¼ Td=T). The order of the system is assumed to be known and is n¼12. The suggested
identification algorithm is applied to the data as explained herein before. The parameters p and q are chosen such that
q¼ pþ1¼ 31. The summary of the identified frequencies and damping ratios using the classical and the new SSI algorithms,
as well as the true values, is given in Table 2. For each value of Ω, the new SSI is performed using NT¼2000 data samples
where the classical algorithm uses N¼200,000 samples. For the true modes, the monodromy matrix is computed from the

Runge–Kutta numerical integration Q ¼ e
R T

0
AðtÞ dt . Then, the eigenvalues and the corresponding modal parameters

(frequency and damping ratio) are deduced using (20).

Table 1

Structural properties for hinged-blades helicopter with 4 blades [41].

Structural variable Name Value

Blade mass m 31.9 kg
Fuselage mass M 2902.9 kg
Blade stiffness Kϕ 1.0313%103 N/m
LG stiffness in the axis x Kx 2.7275%104 N/m
LG stiffness in the axis y Ky 2.7275%104 N/m
Blade damping coef. Cϕ 41.252 N s/m
LG damping in the axis x Cx 1.091%103 N s/m
LG damping in the axis y Cy 1.091%103 N s/m
Rotor eccentricity a 0.2 m
Blade length b 2.5 m
Blade inertial moment Iz 259 kg m2

Table 2

Classical and new algorithms results compared to true values for Ω¼ 3:5 rad=s.

Mode Classical SSI New SSI True values

Freq. (Hz) D. ratio Freq. (Hz) D. ratio Freq. (Hz) D. ratio

1 0.4769 0.1124 0.0853 0.3393 0.0850 0.3384

2 0.485 0.0526 0.0939 0.2948 0.0928 0.2936

3 0.2263 0.0438 0.2277 0.0396 0.234 0.0316
4 0.2567 0.022 0.2589 0.0306 0.2597 0.0276
5 0.259 0.033 0.2607 0.0274 0.2604 0.0275
6 0.273 0.05 0.2744 0.0385 0.2751 0.0324



The classical SSI algorithm identifies some modes but is largely wrong for the first two modes. The new algorithm identifies
all the modes and is more accurate for the last four modes thought it uses much less data samples than the classical algorithm.
This identification goes of course more accurate when the sample length gets larger as shown in Table 3 where the relative
errors of the identified frequencies using the new algorithms are computed for NT¼2000 and NT ¼ 10;000.

The new algorithm is also applied for simulation data set with varying rotation speed Ω from 3.1 rad/s to 4.2 rad/s by a
step of 0.1 rad/s, and data were simulated over a number NT¼2000 of periods for each step of Ω. The relative errors of the
new algorithm are plotted toward the rotation speed and reported in Fig. 3. The variation of the identified frequencies and

Table 3

Variation of relative errors for new SSI with respect to sample length.

Mode Frequency error
(NT¼2000)

Frequency error
(NT ¼ 10;000)

1 0.0232 0.0082
3 0.0370 '0.0032
3 0.0288 0.0013
4 0.0209 '0.0012
5 0.0045 '0.0004
6 0.0050 '0.0007
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Fig. 3. Relative errors w.r.t. rotation speed Ω.



damping ratios using the new and the classical algorithms, as well as the variation of the true values, is given in Fig. 4. One
can notice that the modes identified by the new algorithm track the true modes, whereas the classical algorithm gives
modes with different variations.

Another feature to test is that these identified frequencies and damping ratios do not change over time as shown in
Eq. (21), for a different choice of the index j (j being a parameter for Algorithm 1) (see Fig. 1). The variation of the estimated
frequencies and damping ratios is plotted at Ω¼ 3:5 rad=s, over a period (from the sample j¼q to j¼ qþTd), and they are
indeed constant as shown in Figs. 5 and 6.

It is also important to notice that the classical algorithm manages to identify correctly some of the modes (Table 2),
because the considered rotation speed is close to the critical speed Ω¼ 4:4 rad=s of the ground resonance where the
fuselage (time-invariant part) and the rotor (time-periodic part) are coupled. When the rotation speed is far from 4.4 rad/s,
this classical algorithm gives totally irrelevant results. Table 4 shows this for Ω¼ 2 rad=s, for example. It shows the identified
frequencies using the two algorithms as well as the true frequencies. The classical algorithm uses much more data samples
N¼200,000 than the new algorithm NT¼2000, however its identified modes are still highly biased.

4.4. Comparison with other approaches

As mentioned in the Introduction, works on the identification of LPTV systems remain limited. Under the assumption of
isotropy, the identification could be handled with the so-called Coleman transformation or multi-blade transformation
(MBC) [43], which allows to write the underlying system in the rotating frame, and then to obtain a time-invariant model.
This approach has been recently suggested in [44] where the MBC transform is used as a pre-processing step to the classical
SSI algorithm. The isotropy assumption must be not only internal but external, also: the rotor blades of the considered
system have the same static structural properties, and the external loads are symmetric [37]. The latter symmetry is
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bottom two figures: identification results by the classical SSI algorithm. And in the middle: identification results by the new SSI.



guaranteed when the system is operating in vacuum and is then quickly violated for real applications. In fact, the dynamic
properties of the system (mainly the dynamic stiffnesses) may change drastically with the external loads such as aero-elastic
and gravity loads as shown in [45,37]. In this case, the inherent periodic behavior cannot be completely suppressed and
should be taken into account for the modal analysis [45,46]. This analysis is provided by the Floquet theory.

To the authors' knowledge, the work of Allen in [26] is the only work which deals with the output-only identification of
the Floquet modes. The suggested approach uses a theory developed by Wereley in [29] regarding harmonic transfer
functions (HTF), and the expression of the output spectrum in terms of the Floquet modes in order to estimate these latter
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Fig. 5. Damping estimates for index j, over a period, for Algorithm 1 at Ω¼ 3:5 rad=s.
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Fig. 6. Frequency estimates for index j, over a period, for Algorithm 1 at Ω¼ 3:5 rad=s.

Table 4

Frequency estimates compared to true values for Ω¼ 2 rad=s.

Mode Classical SSI (Hz) New SSI (Hz) True values (Hz)

1 0.2171 0.0576 0.0586
2 0.2451 0.0732 0.0728
3 0.2451 0.0732 0.0728
4 0.2527 0.0995 0.0997
5 0.4791 0.1458 0.1481
6 0.4807 0.1559 0.1617



modes with the peak picking technique. As mentioned by Allen, the picking is based on a prior knowledge about the system
and some spectra rays were neglected and were still uninterpreted.

The approach presented in the current paper does not require a prior knowledge of system dynamics and seems to give
good estimates of the Floquet modes. At first sight, having fewer points for the new SSI algorithm (NT ¼N=Td) may appear as
a potential drawback compared to the classical SSI which uses more data samples. This drawback is overcome by the fact
that the new algorithm is not biased unlike the classical one as illustrated by the numerical application.

Besides, an algorithm is defined by its bias (consistency) and variance properties (efficiency). In this paper, it has been
demonstrated that for one realization of the noise sequence, the algorithm provides estimated quantities close to the true
ones. Considerations on the efficiency are pure assumptions and conjectures at this point. It has to be proved by a much
heavier tool set. Efficiency of subspace methods for linear time-invariant approaches has been considered by the authors
recently (see [47]). The extension of this study to the algorithm suggested herein is the scope of a future work.

5. Conclusion

The problem of identification for linear periodically time-varying is addressed. A new subspace-based algorithm is
proposed. It has the aim to identify the so-called discrete-time monodromy matrix and its eigenvalues. This matrix is
derived from the Floquet transformation which gives an equivalent description of periodic systems. Its eigenvalues, the
Floquet multipliers, replace the classical eigenvalues in the classical modal analysis for linear time-invariant systems.

For this, a subspace matrix was built over lagged output data subsequences. Then, the matrix was extracted from a least
squares minimization equation. The suggested algorithm is finally tested on data created from the simulation of a hinged
blades helicopter spinning on the ground. Future works will focus on both the estimation of the uncertainties associated to
the identified parameters and the validation with experimental data from helicopters and wind turbines.

Appendix A. Proof of Proposition 3.1

The elements of the Hankel matrix in (24) are products between lagged outputs yjþm and yj'l. These products write

yjþmy
T
j'l ¼ ~C jþmF

mþ lzj'ly
T
j'l

þ ~C jþmF
mþ l'1 ~vj'lþ1y

T
j'l

þ ~C jþmF
mþ l'2 ~vj'lþ2y

T
j'l

þ⋯

þ ~C jþmF ~vjþm'1y
T
j'l

þ ~C jþm ~v jþmy
T
j'l

þwjþmy
T
j'l ðA:1Þ

The observation matrix ~C is periodic. Then ~C jþ iTd
¼ ~C j, 8 i40. Now, let us compute the sum:

∑
NT'1

i ¼ 0
yjþmþ iTd

yTj'lþ iTd
¼ ~C jþmF

mþ l ∑
NT'1

i ¼ 0
zj'lþ iTd

yTj'lþ iTd

þ ~C jþmF
mþ l'1 ∑

NT'1

i ¼ 0

~vj'lþ1þ iTd
yTj'lþ iTd

þ⋯

þ ~C jþmF ∑
NT'1

i ¼ 0

~vjþm'1þ iTd
yTj'lþ iTd

þ ~C jþm ∑
NT'1

i ¼ 0

~v jþmþ iTd
yTj'lþ iTd

þ ∑
NT'1

i ¼ 0
wjþmþ iTd

yTj'lþ iTd
ðA:2Þ

Dividing by NT leads to:

/ ~C jþmF
mþ lð1=NT Þ∑NT'1

i ¼ 0 zj'lþ iTd
yTj'lþ iTd

converges to ~C jþmF
mþ lGðj'lÞ when NT goes large, where Gðj'lÞ is the correlation

between the ðj'lÞ'th time-invariant subsequences of the state vector and the output vector.
/ ~C jþmF

mþ l'1ð1=NT Þ∑NT'1
i ¼ 0

~vj'lþ1þ iTd
yTj'lþ iTd

converges to 0 when NT goes large, because w is a white noise which is
uncorrelated of any time-invariant subsequence of the output, idem for ~C jþmF

mþ l'2ð1=NT Þ∑NT'1
i ¼ 0

~vj'lþ2þ iTd
yTj'lþ iTd

, …,
~C jþmFð1=NT Þ∑NT'1

i ¼ 0
~vjþm'1þ iTd

yTj'lþ iTd
and ~C jþmð1=NT Þ∑NT'1

i ¼ 0
~vjþmþ iTd

yTj'lþ iTd
.

/ ð1=NT Þ∑NT'1
i ¼ 0 wjþmþ iTd

yTj'lþ iTd
converges to 0 too (unless when m¼ l¼ 0, which is not the case herein), for the same

reason of uncorrelation.



Appendix B. Energies' expressions

B.1. Kinetic energy

According to the theorem of Koenig, the total kinetic energy of one blade is the sum of the kinetic energy of the circular
translation, and that of the rotation about the center of mass of the blade:

Tpk ¼ 1
2 m_zk

_z kþ1
2Iz

_ϕ
2
k ðB:1Þ

where m is the mass of the blade, Ω is the angular velocity of the main rotor, Iz is the moment of inertia of the k-th blade
about its center of mass, z¼ xþ iy and zk ¼ xkþ iyk ¼ zþðaþbeiϕk ÞeiðΩtþαkÞ is the coordinate of the k-th blade, with
α¼ 2π=ðNb'1Þ and Nb is the number of blades. Then for small displacements ϕk, the kinetic energy of one blade writes

Tpk ¼ 1
2m½_z _zþ _z ibð _ϕkþ iΩϕkÞeiðΩtþαkÞþ _zð'ibÞð _ϕk'iΩϕkÞe'iðΩtþαkÞ

þb2 _ϕ
2
k'Ω2abϕ2

k +þ1
2Iz

_ϕ
2
k ðB:2Þ

Finally, the total kinetic energy of the helicopter writes

T ¼ 1
2
M _z _zþ ∑

Nb'1

k ¼ 0
Tpk ðB:3Þ

B.2. Potential energy

The potential energy of the helicopter originates from the stiffnesses of the fuselage in the two directions x and y,
modeled in Fig. 2 by two springs, and the stiffnesses of the Nb blades. The total potential energy is then the sum of the
separate energies:

U ¼ 1
2
Kzzzþ

1
2

∑
Nb'1

k ¼ 0
Kϕk

ϕ2
k ðB:4Þ

B.3. Dissipation function

Dampers are added to the model considered in [41]. Its incorporation in the structure provides more stability to it, by
absorbing the oscillation of the landing gear and reducing the lead lagging modes on the rotor. This stabilizing effect is
discussed in [48,49] who considered dampers on the rotor. The dampers are assumed to be linear. Nonlinear dampers can be
replaced by equivalent linear viscous damping using a standard linearization technique [50]. Similar to the potential energy,
the dissipation function can be written as

F ¼ 1
2
Cz _z _zþ

1
2

∑
Nb'1

k ¼ 0
Cϕk

_ϕ
2
k ðB:5Þ

Appendix C. System matrices

The system matrices write

M¼

ðMþNbmÞ 0 'mb: sin 0 ⋯ ⋯ 'mb:ð sin ÞNb'1

0 ðMþNbmÞ mb: cos 0 ⋯ ⋯ mb:ð cos ÞNb'1

'mb: sin 0 mb: cos 0 ðmb2þ IzÞ 0 ⋯ 0

⋮ ⋮ ⋮ ⋱

'mb:ð sin ÞNb'1 mb:ð cos ÞNb'1 0 0 ⋯ ðmb2þ IzÞ

2

6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
5

C¼

Cx 0 '2mbΩ: cos 0 ⋯ '2 mbΩ:ð cos ÞNb'1

Cy '2 mbΩ: sin 0 ⋯ '2mbΩ:ð sin ÞNb'1

Cϕ0

⋱

CϕNb'1

2

6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
5



K¼

Kx 0 mbΩ2: sin 0 ⋯ mbΩ2:ð sin ÞNb'1

Ky 'mbΩ2: cos 0 ⋯ 'mbΩ2:ð cos ÞNb'1

Kϕ0
þmΩ2ab

⋱

KϕNb'1
þmΩ2ab

2

6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
5

where sin k ¼ sin ðΩtþαkÞ, cos k ¼ cos ðΩtþαkÞ and α¼ 2π=ðNb'1Þ.
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