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RESUMO

Equacoes nao lineares surgem em quase todas as areas da Engenharia
e da Fisica, sendo por isso de importancia fundamental a existéncia de
métodos para determinar as suas raizes. Infelizmente, como a determinacao
de solucoes por métodos analiticos nao é possivel na maioria dos casos, a con-
strucao e aplicacao de métodos numéricos eficientes é essencial. O método
de decomposicao de Adomian tem sido aplicado com sucesso na obtencao
de solugoes exactas ou aproximadas de problemas lineares, nao lineares, es-
tocésticos ou deterministicos. Uma das vantagens do método ¢ a obtencao
da solucao sob a forma de uma série rapidamente convergente. No entanto,
isto nao parece ser bem o caso quando o método é aplicado na resolucao de
equacoes nao lineares, podendo-se encontrar na literatura diversas variagoes
do método. Neste trabalho é construido um novo método iterativo baseado
no método de decomposicao de Adomian. A convergéncia e a ordem ctibica
deste novo método sao demonstradas.

Outra das aplicagoes do método de decomposicao de Adomian é na res-
olucao de equacgoes em derivadas parciais. Sempre que a solugao exacta nao
seja identificavel a partir da série solugao, a truncagem da série torna-se
necessaria. Uma desvantagem que dai pode advir é o raio de convergéencia
da série ser pequeno. Aproximantes de Padé tém sido usados por diversos
autores para alargar o dominio de convergéncia da série solugcao de equacoes
diferenciais ordindrias, tendo sido obtidos bons resultados. Neste trabalho
esta técnica é aplicada a equagoes nao lineares em derivadas parciais, em
particular a equacao de Burgers. S6 recentemente e paralelamente ao desen-
volvimento deste trabalho, o uso de aproximantes de Padé aplicados a solucao
obtida pelo método de Adomian foi testado em equagoes em derivadas par-
ciais, equacoes KdV e mKdV e num exemplo da equacao de Boussinesq e de
Burgers, onde ilustracoes graficas foram utilizadas para mostrar que a técnica
pode alargar o dominio de convergencia da solucao, tendo sido igualmente
referido que a precisao da solugao podia ser melhorada pelo aumento da or-
dem dos aproximantes de Padé usados. Neste trabalho, além das ilustragoes
graficas, sao também apresentados resultados numéricos que mostram que
o uso de aproximantes de Padé nao sé podem alargar o dominio de con-
vergéncia da solugao, como também podem melhorar a sua precisao. No
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entanto, existe uma desvantagem ainda nao referida a ter em conta no uso
de aproximantes de Padé aplicados a solucao obtida pelo método de Ado-
mian: a aproximagao obtida pode criar valores errados nas vizinhancas dos
polos e dubletos polo/zero (Froissart) da aproximagao racional sempre que a
solugao analitica nao é obtida por este meio. E por isso conveniente tentar
determinar a ordem Optima do aproximante de Padé a ser usado podendo
ser conveniente reduzir a ordem deste.

A aplicagao do método de Adomian apds discretizagao espacial por diferencas
finitas de uma equacao em derivadas parciais, conhecido por método das lin-
has, é efectuada neste trabalho e mostrado que esta abordagem nao tem
utilidade, visto o raio de convergéncia da série solu¢ao poder diminuir com
o numero de pontos espaciais usados. De igual modo, a aplicacao de aproxi-
mantes de Padé nao se mostra 1util neste caso.

Para valores baixos do coeficiente de viscosidade, a equacao de Burg-
ers pode desenvolver choques e descontinuidades dificeis de simular num
computador. Devido ao fenémeno de Gibbs, oscilagoes podem ocorrer da
aplicagao de métodos espectrais na resolucao das equagoes. Sob o ponto de
vista dinamico, todas estas instabilidades podem estar relacionadas com a
presenca de diferentes atractores e bifurcacoes para diferentes valores do co-
eficiente de viscosidade, que se podem observar na equacao discretizada de
Burgers por métodos espectrais. Neste trabalho é estudada a estabilidade,
bifurcagoes e dinamica de solugoes espectrais da equacao de Burgers forcada,
pelo método de colocacao. Na literatura estd descrita para a equacao de
Burgers forcada, a existéncia de uma bifurcacao de Hopf e de uma zona de
atraccao que surge apos a perda de estabilidade das orbitas periddicas com
a reducao do coeficiente de viscosidade.

Neste trabalho, varios outros fenémenos sao observados. Assim, sao ob-
servados atractores nao periédicos, torus e atractores estranhos, para val-
ores mais baixos do coeficiente de viscosidade. Também sao observadas
situacoes de bistabilidade com dois atractores periddicos, um periédico e
outro nao periédico (torus ou atractor estranho) e até com dois atractores
nao periédicos. Neste tltimo caso, as érbitas nao peridédicas parecem corre-
sponder a movimentos quasiperidédicos. Outros pontos estaveis de equilibrio
sao observados nao correspondendo a solucao assimptotica da equagao de
Burgers, podendo ai ocorrer novas bifurcaces de Hopf, quebrando ou nao a
simetria que possa eventualmente estar presente no sistema considerado. A
discussao sobre as condigoes necessarias para o surgimento destes fenémenos
¢ também efectuada. Este tipo de comportamento indica que a equagao de
Burgers pode ser um bom modelo para o estudo de diferentes comportamen-
tos dinamicos que podem ocorrer em diferentes situagoes. De igual modo,
este tipo de comportamento pode ser usado para o estudo e a implementacao



de novas técnicas de sincronizacao de sistemas de elevada dimensao, dado a
sua aplicagao em muitas areas tais como telecomunicacoes.

Condigoes suficientes de sincronizacao idéntica de equagoes de Burger
acopladas, por intermédio de uma funcao de Lyapunov, sao estudadas. Como
aplicagao para o comportamento dinamico evidenciado pelas solugoes espec-
trais das equagoes de Burgers é efectuado o estudo de solugoes espectrais
dessas equacgoes acopladas unidireccionalmente, com e sem valores diferentes
do parametro (coeficiente de viscosidade). E efectuado o acoplamento com
a equacao de entrada em regime estaciondrio, sendo o comportamento da
equacao de saida variavel com o parametro de acoplamento, até estabilizar
em torno da solucao assimptotica. Também é confirmada a presenca de sin-
cronizacao idéntica ou generalizada para acoplamentos entre equacoes em
diversos regimes assimptoticos.

Combinando a substituicao parcial, técnica usada para por vezes sin-
cronizar equacoes diferenciais ordinarias, e um acoplamento nao linear apre-
sentado na literatura para sistemas discretos acoplados, é construido um
acoplamento nao linear entre solugoes espectrais da equacao de Burgers,
obtido por acoplamento em trés diferentes posicoes. E observado que sin-
cronizacao idéntica ou generalizada é praticamente s6 alcancada na posicao
correspondente a velocidade das ondas da equagao de Burgers. E também
observado o facto da sincronizacao ser obtida por combinagao linear convexa
das variaveis de entrada com as da saida, revelando que a substituicao par-
cial pode nao conduzir a sincronizagao do sistema, mas que isso podera ser
conseguido por este tipo de acoplamento nao linear.



ABSTRACT

Nonlinear equations arise in all fields of Engineering and Physics, hence
being of fundamental importance the existence of methods to find their real
roots. As analytical solutions are only available in few cases, the construc-
tion of efficient numerical methods are essential. Adomian’s decomposi-
tion method has been successfully applied to linear and nonlinear problems,
stochastic and deterministic, obtaining an exact or approximate solution to
the problem. One of its advantage is that it provides a rapid convergent so-
lution series. However, the method applied to nonlinear equations does not
seem to be fast enough to be a efficient method to solve these kind of equa-
tions and one can find in the open literature some modifications proposed
by several authors. By applying the Adomian’s decomposition method, a
new iterative method to compute nonlinear equations is developed and is
presented in this work. The convergence of the new scheme is proved herein
and at least the cubic order of convergence is established.

The application of Adomian’s decomposition method to partial differen-
tial equations, when the exact solution is not reached, demands the use of
truncated series. But the solution’s series may have small convergence ra-
dius and the truncated series may be inaccurate in many regions. In order to
enlarge the convergence domain of the truncated series, Padé approximants
to the Adomian’s series solution have been tested and applied to ordinary
differential equations, yielding promising and good results. In this thesis this
technique is applied to partial differential equations, particularly to Burg-
ers equation. Only recently, and simultaneously to the development of the
work presented in this thesis, Padé approximants were implemented to the
series solution given by Adomian’s decomposition technique applied to par-
tial differential equations, KdV and mKdV equations, and to an example of
the Boussinesq and Burgers equation. Graphical illustrations were used to
show that this technique can enlarge the domain of convergence of Adomian’s
solution. It is also referred that the solution accuracy can be improved by in-
creasing the order of the Padé approximants. In this thesis, besides graphical
illustrations, also numerical results are presented to show that this technique
can not only enlarge the domain of convergence of the solution but also im-
proves its accuracy even when the actual solution cannot be expressed as the
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ratio of two polynomials. In addition, a disadvantage not referred can come
through: the rational approximation may create inaccurate solutions near
its poles when the real solution is not achieved. This drawback advises the
search for the optimal order of the Padé approximant to be used, which can
be of lower order.

Also, the application of Adomian’s method to the ordinary differential
equations set arising from the discretization of the spatial derivatives by
finite differences, the so called method of lines, is performed in the present
work and it is shown that this is not useful, because this technique may
reduce the convergence domain of the series solution. Also, the application
of Padé approximants is not useful in this case.

For low values of the viscosity coefficient, Burgers equation can develop
sharp discontinuities, which are difficult to simulate in a computer. Oscilla-
tions can occur by discretization through spectral collocation methods, due
to Gibbs phenomena. Under a dynamic point of view, all these instabilities
may be related to the presence of different attractors and bifurcations arising
to the discretized equations for different values of the viscosity coefficient. In
this thesis it is studied the stability, bifurcation and dynamics of spectral col-
location methods applied to forced Burgers equations, where the unknown
solution of the differential equation is expanded as a global interpolant. In
the open literature, it is described to the forced Burgers equation the pres-
ence of a trapping region, arising from the loss of stability of the periodic
orbits arising from an Hopf bifurcation.

In this work several other phenomena are observed. In fact, it is observed
the existence of nonperiodic attractors, torus and strange attractors, for lower
values of the parameter below the Hopf point. Also observed is the presence
of bistability with two periodic attractors, with a periodic attractor and a
nonperiodic one (torus or strange attractor) and even with two nonperiodic
attractors. In this last case, the nonperiodic orbits seem to correspond to
quasiperiodic motions. During this work, it was verified that other stable
equilibrium points can occur, diverse from the ones corresponding to the
asymptotic solution of Burgers equation, and that new Hopf points can occur,
breaking (or not breaking) the symmetry of the system, if present. Discussion
of the necessary conditions for the emergence of these phenomena is also
presented. This rich behavior indicates that Burgers equation is a good
model for the study of several dynamical behaviors that can occur in many
other situations. Also, this kind of behavior can be used to study and to
implement new techniques of synchronization of high dimensional systems,
very useful due to its application on several areas, as telecommunications.

Sufficient conditions for identical synchronization of coupled Burgers equa-
tions, by means of a Lyapunov function, is present. As an application for
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the dynamics apparent by spectral solutions of forced Burgers equations,
unidirectionally coupling of these equations, with and without parameter
mismatch, is also studied. It is tested the unidirectionally coupling with
a drive forced spatially spectral discretized Burgers equation in stationary
regime and the driven equation in any motion regime. It is found out that
increasing the coupling strength it is possible to carry out the suppression
of the corresponding motion till the stationary solution is reached. Numeri-
cal studies show and confirm the presence of identical and generalized syn-
chronization for different values of spacial points and different values of the
viscosity coefficient in several regimes.

By combining the partial replacement used sometimes to synchronize or-
dinary differential equations and a nonlinear coupling presented in the litera-
ture for discrete coupled systems, a nonlinear coupling for spectral solutions
of Burgers equations in three locations of the response discretized equation,
is constructed. It is observed that identical or generalized synchronization is
almost all the time only achieved at the position corresponding to the waves
velocity, by a convex linear combination of the drive and driven variables.
This point out the fact that although the partial replacement may not reach
synchronization, nonlinear coupling may do it.
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1.1 Scope of the present work

Burgers equation [55] is one of the simplest and one of the few non-
linear partial differential equations that admits analytical solution for the
initial value problem [297] [96] [97] [72] [126], having been used along the
years, to test numerical methods, serving the exact solution as control. The
driven equation has also been used to explore unidimensional 'turbulence’
[55], in spite of this being a three-dimensional phenomenon. The turbulence
in Navier-Stokes equations is incorporated in the quadratic term, the nonlin-
ear term of convection and, therefore, Burgers equation can work as a starting
point for the study of turbulence, as it possesses a nonlinear quadratic term.
For low values of the viscosity coefficient, Burgers equation can develop sharp
discontinuities and can be used to describe shocks and vibrations. Other phe-
nomena as wave processes, traffic flow, acoustic transmission, gas dynamics
can be studied starting from this equation [96].

To solve nonlinear differential equations, some analytical routines lin-
earize the equations or make the assumption that the nonlinearities do not
affect greatly the problem. However, the solution that one is looking for, the
one that represents the physical problem, may be changed with this proce-
dure. Perturbation methods, although providing a very useful tool in nonlin-
ear analysis, are based on the assumption that a small parameter must exist
in the equations under study, and nonlinear problems, especially those hav-
ing strong nonlinearities, do not have such small parameters [119]. Usually,
numerical methods are based on discretization techniques, and only approxi-
mate values of the solution are obtained and only for some values of time and
space. With Adomian’s decomposition method [15] [17] [16], the solution is
obtained by a series expansion of the so called Adomian’s polynomials, not
requiring discretization of the variables, and, therefore, not being affected
by errors associated to discretization. Also, this method does not require
linearization or perturbation and, consequently, does not change the actual
solution of the problem. As well, Adomian’s decomposition method is very
competent on finding an approximate or even exact solution for linear and
nonlinear problems, not requiring, in many cases, large computer memory
[268] [267] [269] [271] [270] [91].

It constitutes a main objective of this thesis to perform a numerical analy-
sis of Burgers equation, studying its solution and behavior by different numer-
ical methods, namely Adomian’s decomposition method and spectral meth-
ods, viewing the possibly improvement of the solution of Burgers equation
given by Adomian’s decomposition method. Also, it is projected the con-
struction of a numerical method to solve nonlinear equations, a method more
efficient than Adomian’s decomposition one, due to some slowness exhibited
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by Adomian’s method when applied to these kind of equations. Moreover,
taking advantage of the behavior of Burgers equation under a low viscosity
coefficient shocks development, it is intended to study its numerical solution
by spectral methods, so it can bring about new insights on the behavior of
higher, possibly chaotic, dimensional systems. This kind of behavior can
be used to the study and to the implementation of new techniques of syn-
chronization of high dimensional systems, very useful due to its application
on several areas, as telecommunications, electronic circuits, nonlinear op-
tics, chemical and biological systems. Hence, it is also intended to study
the synchronization of coupled Burgers equation and of its coupled spectral
solutions.

1.2 State-of-art

1.2.1 Burgers equation

Burgers equation [55] is a very useful equation due to the existence of
analytical solution for for the initial value problem [297] [96] [97] [72] [126]
and to its properties and behavior under a small viscosity coefficient [55].
Therefore, it has been used to test new numerical methods to solve partial
differential equations and also to test numerical techniques to accommodate
adequately discontinuities or shocks in solutions.

The one-dimensional Burgers equation is a quasi-linear parabolic partial
differential equation, a simplification of the Navier-Stokes:

ou ou 5 0%u

E-Fua—x— @:f(x) (1.1)

Dang-Vu and Delcarte [77], using Chebyshev collocation and Chebyshev
tau methods, found out the evidence of the existence of a critical viscosity 9.,
to the spectral spatially discretized driven Burgers equation. Above that o,
value the solution is stable and below d. a Hopf bifurcation takes place and
the motion becomes unstable in favor of motion on a strange attractor, with
the largest Lyapunov exponent positive, according to [77]. To the author’s
knowledge, no other studies on such motions for the spectral solutions of
Burgers equations have been published in the open literature.

Numerical solutions

Several methods for both obtaining particular solutions of travelling-wave
type (invariance of equations under translations) and self-similar solutions
(invariance of equations under scaling transformations) have been proposed
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for the vast majority of different forms of nonlinear evolution equations and
Burger-type equations [79] [80] [98]. The existence of such solutions results
from the invariance of those equations, respectively under translations and
scale transformations, being usually difficult to implement them without nu-
merical computations. The methods are based on the reduction of the orig-
inal equations into equations with smaller number of independent variables.
Many known solutions of nonlinear evolution equations are often possible
to express in terms of real exponentials, which can, in turn, be recombined
in powers of the tanh function. Parkes and Duffy developed a Mathemat-
ica package ATFM, Automated Tanh-Function Method [216], that allows to
automate the calculations involved in the application of the so-called tanh-
function method of solution [194], provided that solutions of the assumed

M A
form exist and are expressed in the form u = > a;tanh’ [k (z — ct — x0)],
i=0

where x( is an arbitrary constant.

Analytical solutions and asymptotic expansions for some cases of Burgers
equation on the semiline, with a flux-type boundary condition at the origin,
were obtained by Biondini and Lillo [48].

Xu et al. proposed finite difference schemes using global discretization
for convection-difusion equations [302].

Dogan [87] proposed, for the numerical solution of Burger’s equation,
an approach with a Galerkin finite element method and for the resolution
of the resulting system of ordinary differential equations a Crank-Nicholson
approach with a linear approximation of the nonlinear term. Other finite
element approaches were presented in the work of [214] and [46].

A sparse-mode spectral algorithm for turbulent flows was proposed to-
gether with tests applied to the Burgers equation [202].

A technique using step integration over a small interval of the indepen-
dent variable, after space discretization by finite differences, followed by the
calculation of the average values for each element and repetition of the pro-
cess until there is no change on the computed values was presented by Arafa
(30].

A direct variational method after Hopf-Cole transformation was applied
by Ozis and Ozdes [215].

Finite difference schemes [170] and finite variable difference methods
(FVDM) [141] [142] were proposed in the lates 90s.

An approach based on a recursive symbolic computation was introduced
by [81], where the analytical solution is approximated by a discrete process
in time. It has the disadvantage of easily produce overflow of the solution,
requiring some filtering process to eliminate higher order negligible terms.

Multiresolution techniques and wavelets have been used in the develop-
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ment of numerical schemes for the solution of partial differential equations.
Muniandy and Moroz [206] present a wavelet Galerkin approximation of the
Burgers equation using complex harmonic wavelets.

Wei et al. [295] proposed, to approximate the spatial derivatives, the
method of distributed approximating functionals (GLDAF). They have tested
the method with Hermite DAF, on Burgers equation uni and bidimensional
W (U-V)U =30AU
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The same authors, fall back upon other variations of this method, us-
ing Gaussian Lagrange distributed approximating functionals (LDAFs) [294].
According to the authors, the DAFs methods show enough flexibility to
treat complicated geometries and boundary conditions and simultaneously
they present a high precision characteristic of spectral methods.

The multiquadric (MQ) scheme, a spatial approximation scheme for solv-
ing Burgers equation, was applied by Hon and Mao [125].

The one-parameter group transformation was used in the work of [90] to
calculate an exact analytical solution of Burgers equation. Burgers equation
is reduced to an ordinary differential equation, which is analytically solved
and the solution is obtained in closed form.

A metodology by balancing the nonlinear and dispersive effects in nonlin-
ear evolution equations was used to obtain analytical solutions for Burgers
equation, the nonlinear heat equation, the modified KDV equation and the
Kuramoto-Sivashinsky equation [2].

Finite difference models based upon center manifold theory, so the dis-
cretization accurately models the dynamics, were introduced by [236]. A
finite difference scheme for Burgers equation having no diffusion and a nonlin-
ear logistic reaction term was constructed and presented in the work of [203].
A linearized implicit finite-difference scheme for the one-dimensional Burgers
equation was presented by [171]. Others schemes, as quadratic splines over
finite elements [171] or cubic splines over finite elements [76], a mixed method
using boundary elements in association with finite differences [37] have also
appeared in the open literature.
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Esipov [94] derived a coupled system of viscous Burgers equations

ou ou  0%*u 0
En + U = 53 . (8_95 (uv)) (1.4)

ov ov 0% 0

with zero Dirichlet boundary conditions

uw(0,t) =u(l,t) = (1.6)
(0,t) =v(1,t) = (1.7)

This coupled system is a simple model of sedimentation or evolution of
scaled volume concentrations of two kinds of particles in fluid suspensions,
under gravity effect. Nee and Duan [210] showed that this system with initial
data not too large, approach the zero equilibrium as time goes to infinity, not
necessarily exponentially fast, unlike the single viscous Burgers equation.

A finite element approximation of the two-dimensional steady Burgers
equation was presented by [49].

The spectral spatially discretized driven Burgers equation [77], % =

—u% +0 g% + f (x), by Chebyshev collocation and Chebyshev tau method,
provides evidence for the existence a critical viscosity d., above which the
solution is stable and below which a Hopf bifurcation takes place and the
motion becomes unstable in favor of motion on a strange attractor. Note that
spatial chaos cannot arise in steady Burgers equation, because Burgers equa-
tion with a driven term time independent is reduced to a two-dimensional
dynamical system, and from Poincaré-Benidixson theorem, it can only have
stable equilibria and stable limit cycles as attractors.

An implicit finite-difference scheme for the two-dimensional Burgers equa-

tion was developed by Bahadir [38].

Numerical solutions for shocks

In general, hyperbolic equations in conservative form are intimately linked
to the presence of solutions with discontinuities and shocks.

Traditional finite difference schemes are based on interpolation of dis-
crete data, using polynomials on fixed stencils, depending the order of ac-
curacy on the width of the stencil, provided the function being interpolated
is smooth inside it. For non smooth problems, this approach exhibits os-
cillations in the neighborhoods of the discontinuities that do not decay in
magnitude when the mesh is refined. Such oscillations constitute the Gibbs
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phenomenon in spectral methods, which establishes that the pointwise con-
vergence of global approaches of discontinuous functions is at most of first
order. In a neighborhood of a point of discontinuity of a function f, the
convergence of the Fourier series of f cannot be uniform. Defining the os-
cillation of the series partial sum of order n near a discontinuity point xg,
as wy(rg, ) = max s,(r) — min s,(z)(!), z € [zg — &,z + €], the oscillation
wy (g, €) does not approach the discontinuity point at xg, but it is verified
that the partial sums tend to pass the limits in the discontinuity region, being
these oscillations O(1) [95]. For differential equations with smooth solutions,
spectral methods exhibit exponential or spectral accuracy. For problems with
sharp gradients and discontinuities, the accuracy of these high order global
methods deteriorates.

One way to eliminate or reduce these numerical oscillations, is to add
some artificial viscosity to the problem [88]. However, such approach has the
disadvantage of the dependency of the parameter that controls the size of
the artificial viscosity on the problem under study.

Other forms of treating the discontinuities involve three main approaches:
shock fitting, front tracking and shock capturing [75]. Starting from informa-
tion given by the characteristics, the method of shock fitting tries to follow
the discontinuities. They are usually of difficult programming and of diffi-
cult generalization for systems of equations. Following the development of
the discontinuities, seeking for more accuracy in their location, but also of
difficult programming, are the methods of front tracking. The methods that
obtained larger acceptance in the scientific community are the shock captur-
ing ones. Such methods are appropriate to eliminate the oscillations and do
not demand any special treatment of the discontinuity, consist of applying
limiters to eliminate the oscillations, known by total variation diminishing
(TVD) [114].

The TDV schemes were generalized since 1987, to the essentially non-
oscillatory schemes (ENO), with the classic work of Harten et al. [116],
and later to the weighted essentially non-oscillatory schemes (WENO) [116]
[248] [115] [60] [247], schemes of higher order accuracy, having been built
to solve problems with piecewise smooth functions, with discontinuities of
first kind, as the ones that appear in the shock surfaces in conservation laws.
These schemes allow to solve discontinuities without numerical oscillations,
avoiding the Gibbs phenomenon (these oscillations occur because the sten-
cils actually contain the discontinuous cell) and are suitable especially for
problems containing both shocks and complicated smooth flow structures,
such those occurring in shock interactions with a turbulent flow [247]. The

! (sn),, is the Fourier series partial sum sequence of f
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ENO schemes involve the reconstruction of the solution (starting from cell
averages or point values), using an adaptative stencil, that vary with the
space location, avoiding when possible the inclusion of the cells containing
discontinuities in the stencil.

The WENO schemes [191] involve a linear convex combination of all can-
didate stencils, instead of just one as in the above mentioned ENO schemes.
More recently, optimized WENO schemes [266] were developed to increase
their order of precision, robustness and efficiency. The temporal discretiza-
tion fall back upon the TVD Runga-Kutta schemes and more recently to the
Lax-Wendroff type schemes [233].

An essentially nonoscillatory Fourier method, for first order nonlinear hy-
perbolic equations, based on the formulation by cell averages, was presented
by Cai et al. in [60]. The method consists of adding step functions to the
base functions used in the spectral approximation, in the process of recon-
struction of point values starting from the cell averages, in a way that the
Gibbs phenomenon is eliminated. An extension of this method for the case
of multiple discontinuities was presented in [209].

A new method of cell average spectral Chebyshev approximation (CAC)
for first order hyperbolic equations in conservation form, and the formulae
between the pointwise data at the collocation points and the cell averaged
quantities, can be consulted in the work of [59]. The spectral algorithm of
Crossley et al. [74], for the numerical solution of partial differential equations,
is based on the observation that it is enough to add step functions to the series
approximants smooth functions to represent functions with discontinuities,
differing essentially from the method exposed by [60] for doing this in the
physical space rather than in the transformed space. It makes use of Harten’s
method about subcellular resolution, in the sense that the cell-averages of a
discontinuous piecewise-smooth function contain information about the exact
location of the discontinuity within a cell [115].

Other nonoscillatory spectral methods possessing the properties of both
upwind difference schemes and ENO, efficient in the capture of shocks, and
of the spectral methods, as methods of high order, were presented in [61].

A tool for shock capturing was proposed by a single-sided locally averaged
adaptative coupling scheme for the synchronization of spatially extended
systems [293].

The application of the differential quadrature method (DQM) has been
employed to approximate spatial partial derivatives, requiring interpolation
in space. This interpolation can be obtained through the use of Lagrange
polynomials, but there are advantages of using sinc functions to solve ini-
tial boundary value problems characterized by oscillating behaviors in space,
due to the spectral approximation properties [44] [300]. A method to solve
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nonlinear evolution equations involving steep gradients, the linearized and
rational approximation method (LRAM) was presented by [300].

1.2.2 Adomian’s decomposition method

In the beginning of years 1980s, a new method for exactly solving nonlin-
ear functional equations of various kinds has been proposed by Adomian, the
so called Adomian decomposition method (ADM) [15] [17] [16] [19] [22]. Over
the past twenty years, it has been applied to solve and to obtain formal and
approximate solutions to a wide class of problems, both deterministic and
stochastic, linear and nonlinear, arising from Physics, Chemistry, Biology,
Engineering, etc. for all types of boundary or initial conditions. Nonlinear
phenomena play a crucial role in Applied Mathematics and Physics, Mechan-
ics, Biologics, and, therefore, explicit solutions to the nonlinear equations are
of fundamental importance to preserve the actual physical character of the
problem and to understand deeply the described process. Calculating exact
and numerical solutions, in particular traveling wave solutions of nonlinear
equations in mathematical physics, plays an important role in soliton 2 theory
[14]. Several methods for obtaining explicit solutions of nonlinear evolution
equations are described in the literature, like the similarity methods [245], the
generalized separation of variables, the tanh method, the sine-cosine method,
the Painlevé method, the Darboux transformation, the inverse scattering
transform (IST), which allows transforming nonlinear evolution equations,
into linear ones [181] [232] [14], the Backlund transformation (like the Hopf-
Cole transformation in the Burgers equation [126], [72]) among others [7§]
[232]. For both linear and nonlinear problems, Adomian’s approach has re-
vealed great results for obtaining an exact or approximate analytical solution,
with very fast convergence to the actual solution, high accuracy, minimal cal-
culation, and does not need linearization, weak nonlinearity assumptions or
perturbation theory to be applied, avoiding physical unrealistic assumptions
[15] [19] [17] [22].

The technique uses a decomposition of the nonlinear operator as a series
function. Each term is a generalized polynomial called Adomian polynomial.
Adomian introduced formulae to generate these polynomials for all kind of
nonlinearities [17] [15] [19] [22].

2 A soliton is a solitary traveling nonlinear wave solution that obeys a superposition-like
principle (solitons passing throught one another emerge unmodified) [299]
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Advantages of the method

Advantages of the Adomian’s decomposition method applied to many
linear and nonlinear problems are emphasized by many authors. Common
analytical procedures, to solve nonlinear differential equations, linearize the
system or assume that the nonlinearities are relatively small, transforming
the physical problem into a purely mathematical one with an available solu-
tion. This procedure may change the real solution of the mathematical model
which represents the physical reality. Generally, the numerical methods are
based on discretization techniques, and permit only to calculate the approx-
imate solutions for some values of time and space variables, which has the
disadvantage of causing overlooking for some important phenomena occur-
ring in very small time and space intervals, such as chaos and bifurcations.
Perturbation methods may only be applied when nonlinear effects are very
small.

Adomian’s method does not require discretization of the variables. Hence,
the solution is not affected by computation roundoff errors and the neces-
sity of large computer memory. Moreover it does not require linearization or
perturbation, and, therefore it does not need any modification of the actual
model that could change the actual solution, being very efficient on deter-
mining an approximate or even exact solution in a closed form, on both linear
and nonlinear problems, minimizing in many cases the computational work
[268] [267] [269] [271] [270] [91].

Another advantage of Adomian’s decomposition technique is that it pro-
vides a fast accurate convergent series, attribute manifested by several au-
thors [69] [22] [6] [7] [8] [10] [68], being this the reason why it is only necessary
a small number of terms to obtain an approximate solution with high accu-
racy [143] [145] [92] [67].

A particular phenomenon noticed by Adomian and Rach [25], is the exis-
tence of the ”self-canceling noise terms” for a decomposition series solution,
where the summation vanishes at the limit. The noise terms are identi-
cal terms with opposite signs that may appear in various components uy, of
the series solution of w (z). The authors concluded that those noise terms
appear for every nonhomogeneous partial differential equation, whereas the
homogeneous equations show no noise terms. Such conclusions were based
on observations made when the authors were working on specific examples.
Wazwaz extended the previous study to nonhomogeneous ordinary differen-
tial and integral equations, showing that this conclusion is not always correct,
exhibiting the nonhomogeneous behavior as a necessary condition but not
sufficient [269]. The author also thinks that, for the appearance of effective
noise terms, the exact solution must be included in the zeroth component w,
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of the series solution of u (x) [269] [288]. This phenomenon does not appear
with homogeneous equations, but provides a major advantage of the method.

Comparisons with other numerical methods have been investigated by
several authors. Bellomo and Monaco [45] compared Adomian’s method with
perturbation techniques, emphasizing the efficiency of Adomian’s method in
contrast with the exhaustive work required by application of perturbation
techniques. In the work of [234] the relatively simple computation required by
the decomposition method is compared with that of Picard iterative method,
exhibiting the last one a fast growing computational complexity. Compar-
isons with a wavelet-Galerkin method (WGM) for the solution of integro-
differential equations [91] show that the Adomian’s decomposition method is
efficient, easy to use, and, moreover, it minimizes the computational calculus
and supplies quantitatively reliable results, which can be obtained in explicit
form. Wazwaz compared Adomian’s method with the Taylor series method
[270], concluding that the decomposition method is efficient, produces reli-
able results with few iterations, is easy to use from a computational viewpoint
minimizing the computational difficulties of the Taylor series, and handles
nonlinear problems in a similar manner as linear problems, overcoming thus
the deficiency of linearization or perturbation. Guellal [107] deduced that the
graphical results obtained by Adomian’s method applied to Lorenz’s equa-
tions are similar to those obtained by Runga-Kutta discretization, but with
faster convergence of Adomian’s technique. The results were similar, but
with less subdivisions of the time interval [0,7 = 20] for Adomian’s method
(20 against 400 subdivisions for the Runga-Kutta method). Shawagfeh and
Kaya [246] presented a numerical comparison between Adomian’s decomposi-
tion technique and a fourth-order Runga-Kutta method for solving systems of
ordinary differential equations, concluding that Adomian’s technique is very
powerful, quite accurate, readily implemented and efficient in finding ana-
lytical as well as numerical solutions. Vadasz and Olek [261] doing a more
comprehensive study of the same equation concluded that the Adomian’s
method is more precise than the Runga-Kutta one.

Applications of the method

Applications of the Adomian’s decomposition method and its modifica-
tions have roused the attention of several researchers, so it could be possible
to solve a great diversity of both ordinary as well as partial linear and non-
linear differential equations, deterministic and also stochastic.

One can find in the open literature, among other studies, applications
to stochastic problems [20] [21], wave equation [271] [67], nonlinear advec-
tion equation [267], Lorenz equations [107] [261], heat equation [18] [111],
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Burgers equation [22] [149], two-dimensional Burgers equation (STDBE)
% + (W -V)u = pA27 [92] [150], Korteweg-de-Vries and Korteweg-de-
Vries-Burger type equations [23] [284] [145] [144], combined Korteweg-de-
Vries-Modified Korteweg-de-Vries (KdV-MKdV) equation [148], Volterra and
Fredholm integral type equations [292] [287], Thomas-Fermi equation [24]
[274], systems of partial differential equations [278], boundary value prob-
lems of higher order [277] [282], problems with singular points like Lane-
Emden type equations [280] [286], Fisher and Fisher type equations [290],
Burger’s-Huxley and Burger’s-Fisher equations [130], the model of dispersive
nonlinear waves proposed by Boussinesq L285], nonlinear dispersive equations
which exhibit compactons % + ag_: + %T“; =0,m>11<n <3 equa-
tions denoted by K (m,n) [283], generalization of the KdV equation to two
space variables, Kadomtsev-Petviashvili equation [279], coupled Schrédinger-
Korteweg-de Vries equation [146], achievement of known results of special
functions of mathematical physics as the hypergeometric function and Bessel
functions [86], integrals by reformulation into differential equations [112], or-
dinary differential equations with discontinuities [63], nonlinear and systems
of nonlinear equations [7] [34].

According to Liu [190] and He [118], the problem of solving nonlinear
boundary partial differential equations, by using Adomian’s decomposition
method, is the impossibility that appears in satisfying all its boundary con-
ditions, leading to an error at its boundary. Following Wazwaz [276], with
the proper investment on Adomian’s method, the conclusion drawn by Liu
and by He is not quite exact, and the exact solution can be obtained for some
boundary value problems on closed form solutions, or a rapid convergent se-
ries solution is always attainable [19]. On the formulation of boundary value
problems; it is possible to have an unknown function or parameter that is
determined later by imposing the other boundary condition [281].

Initial-boundary value problems have been usually solved based only on
the imposition of the initial conditions with the nonimposed boundary condi-
tions being naturally satisfied. To solve some PDEs by imposing both initial
and boundary conditions, Ngarhasta et al [211], suggested taking in account
both initial and boundary conditions in the canonical form, by choosing the
first term of Adomian’s series verifying all conditions. Also, to overcome
this problem, by imposing both initial and boundary conditions, Adomian
[16] proposed a new approach to solve the initial boundary heat linear one-
dimensional differential equation. Due to some wrong limits obtained, Lesnic
[182] [183] [184] proposed a modification of Adomian’s approach to solve lin-
ear initial-boundary problems, referring that it could be extended to higher-
dimensional, inhomogeneous and nonlinear problems.
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Adomian’s method modifications

A modification of Adomian method is proposed by [263] to overcome the
computational difficulties arising when obtaining the solution of differential
equations containing radicals while inverting the operator, particularly when
the initial approximation is not a constant. It is proposed the expansion
of the nonlinear term in the equation involving radicals in a power series,
followed by its Padé approximant [39].

Wazwaz [272] proposed a modification of the Adomian’s decomposition
method in order to simplify the calculations and accelerate the rapid con-
vergence of the series solution, the modified technique, the method being
validated through several examples. He proposed a small modification for
the first two components, ug and u;. The function f, that represents ug by
the classic method, is divided into two parts f = f; + fo, with f; the new
zeroth component ug, whereas the remaining part f, is combined with the
other terms of ;. The main reason for this modification is that Adomian’s
polynomials depend considerably on ug, and therefore, the reduction of its
number of terms could make easier the calculation of Adomian’s polynomi-
als, as it can be seen in the work of [274] where the difficulties appeared
with the nonlinear term given by the exponent of a radical, or in the work of
[277] and [282] where the difficulties from the high order of differential and
integrate-differential equations are surpassed with the modified technique.

A new modification proposed by the same author was introduced in [289],
where the function f that represents ug by the classic method is expressed
in Taylor series, and a new recursive relationship is suggested.

For nonlinear oscillatory systems, as the solution given by Adomian’s
method did not exhibited periodicity, Venkatarangan and Rajalakshmi [263]
modified the Adomian’s solution making it periodic, using a technique sug-
gested by Nayfeh [208]. The authors applied the Laplace transform to the
Adomian’s truncated series, followed by Padé approximants and finally the
inverse Laplace transform, which yielded a better and also periodic solution.

There are some disadvantages on the Adomian’s decomposition method.
The solution’s series may have small convergence radius and the truncated
series solution may be inaccurate in some regions [132] [65] [93]. One way
of improving the mathematical structure, enlarging the convergence domain
of the truncated series solution, can be achieved by defining Padé approxi-
mants (PAs), converting the polynomial approximation into a ratio of two
polynomials, a rational function [29] [274] [273] [274] [132] [4] [5] [43]. Padé
approximants, generally, may enlarge the convergence domain of the trun-
cated Taylor series and improve the convergence rate of the truncated series
[132]. Also, Padé approximants will converge on the entire real axis if the
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function is free of real singularities. An aftertreatment technique (AT) by
using Padé approximants to modify Adomian’s series solution, applied to
ordinary differential equations with initial conditions, is proposed by [132].

Cheng et al. [65] suggest a piecewise solution technique, by dividing the
solution space into regions, to overcome the divergent difficulties arising from
small convergence radius.

In the work of [93] the Adomian’s method approximated to the first two
terms is applied to the Riccati matrix differential equation in a recursive
form, in n subintervals on the time horizon, which can be used to obtain
the solution for the entire time interval considered. The authors named the
method as the multistage Adomian’s decomposition method (MADM), being
based on the fact that the first two terms give a good approximation for the
Riccati matrix equation, only in the neighborhood of the initial time. The
accuracy of the method can be increased either by choosing a smaller time
interval or by adding more terms.

To solve the Burgers equation, Abbasbandy and Darvishi [13] proposed
transforming the equation into a nonlinear ordinary differential one, by means
of time discretization, solving it then by Adomian’s method.

To solve nonlinear equations by Adomian’s decomposition method, some
modifications are proposed in the open literature. By rearranging the prob-
lem in such a way that the order of convergence of Adomian’s method is
improved [32], Babolian and Biazar proposed a method to solve nonlinear
equations [33]. Other modifications of standard Adomian’s method can be
found in the work of Abbasbandy [12] and Babolian and Javadi [35]. In
the approach of Abbasbandy [12], to solve the nonlinear equation f (z) =0,
three terms of Adomian’s series solution applied to a second order Taylor
expansion of the nonlinear function f are kept, so a iterative method is con-
structed. In the approach of Babolian and Javadi [35], an algorithm named
as the restarted Adomian method, is proposed to solve nonlinear equations
of the type x = F (x) + ¢o, by applying Adomian’s approximated series to
the equation, and restarting successively with a new starting point. Choos-

n
ing xy close enough to the exact solution, the truncated series ) zj will

k=0
be a good approximation for the solution of the equation for a moderate

value of n. Starting with an initial value zy = ¢y, by application of Ado-
mian’s method, a solution x; is obtained and then making = = Fy (z) + 2,
with I} (z) = F () — (21 — zo). The process is repeated until the difference
between the last two consecutive values of z satisfies a given tolerance € [35].
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1.2.3 Coupling and synchronization
Identical synchronization

Synchronization of periodic signals is a well-known phenomenon in Physics,
Engineering and many other scientific areas. Synchronization has a funda-
mental importance in telecommunication, electronic circuits, nonlinear op-
tics, and chemical and biological systems. In spite of being natural to asso-
ciate synchronization with periodic signals, chaotic systems also can synchro-
nize [99] [227]. Synchronization of chaotic systems has been studied due to its
interest and applicability. Chaos synchronization has reached a great interest
because of its potential applications in the transmission of secure information
[159], control and suppression of chaos, anticontrol of chaos and estimation of
model parameters from time series. Since 1993 that researchers have realized
that chaotic systems can be synchronized, by the numerical observation of
the phenomenon in a lattice of diffusively coupled chaotic systems [99].

A definition for identical synchronization is the following [227]:

Definition 1: Two dynamical systems are said to be identical synchronized if
both trajectories x; and y; are bounded and tlim |x; —y:| = 0. The equality

X; = y; defines a dynamical behavior restricted to an invariant hyperplane
in the phase space, called synchronization manifold.

A possible definition for an attractor is given by Milnor [204] [205]:

Definition 2: A closed subset A C M, M invariant manifold, is an attractor
of F, if it satisfies the following two conditions:

e its basin of attraction [ (A), consisting of all points x € M, for
which all its limit points with ¢ — oo belong to A, has strictly positive
Lebesgue measure, and

e there is no strictly smaller closed set A" C A such that 3 (A") = 3 (A)
up to a set of measure zero.

An attractor is said to be minimal if no proper subset is an attractor.

Studying synchronization requires the find out of the invariant synchro-
nization manifold in the phase space and then the determination of its stabil-
ity. In a coupled system, the property of having a synchronization manifold
is independent of the motion attraction to that manifold when it started
away from it. This property is related to stability, and, therefore, it is im-
portant to determine whether perturbations transverse to the invariant sub-
space damp out or are amplified. This means that one has to determine if
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the invariant subspace is an attractor. If perturbations damp out, the mo-
tion is restricted to the synchronization manifold. Many different types of
synchronization schemes are possible in both unidirectional and bidirectional
coupling schemes [227].

Pecora et al. [227] analyzed and review several synchronization schemes
of chaotic systems, with great potential for applications in communications
systems. They considered the case of synchronization of two identical sys-
tems, showing that different initial conditions often drive to identical chaotic
synchronization. Also for certain coupling schemes, the synchronization is
robust under disturbances in the parameters of the systems of the drive or
of the response [133].

In the presence of identical synchronization, which is revealed by the
equality of the components of both systems, the synchronization manifold
is an hyperplane. Assuming that the hyperplane contains the origin of the
coordinates (since this is just a simple translation that keeps the geometry)
then the transverse space, the space orthogonal to the synchronization man-
ifold, must have zero coordinates when the motion is on the synchronization
manifold.

The stability of the invariant synchronization manifold is guaranteed if
perturbations transversal to this manifold damp out. The most general crite-
rion, and it appears also the minimal condition for stability, used to study the
stability of the synchronization manifold of coupled chaotic oscillators was
proposed by Fujisaka and Yamada [99]. It consists of having all the Lyapunov
exponents associated to the transverse subsystem negative. Such study was
made starting from the variational equations of the system that supply the
dynamics of the transverse disturbances to the synchronization manifold [99]
[121] [227]. However, this is only a necessary criterion for stability, due to
the fact that large desynchronizations bursts can be observed in spite of the
largest negative Lyapunov exponent [120] [227] [102]. This is explained by
the fact that the Lyapunov exponents are only ergodic means over the attrac-
tor. One would have to show that all of the Lyapunov exponents are negative
for all the measures of the dynamics. Gauthier and Bienfang [102] suggest as
sufficient condition to quickly estimate the range of coupling strengths that
result in high-quality coupled chaotic oscillators, not interrupted irregularly
by large (comparable to the size of the attractor) and brief desynchroniza-
tion events (bubbling attractor), by investigating the time derivative of the
Lyapunov function £ (x,) = |ox, (), x. (t) = xD (t) — x® (2).

In the presence of two identical chaotic systems, with an unidirection-
ally coupling scheme (master-slave configuration), Pecora et al. named as
complete replacement [224] [225] [227] the substitution of one or more of the
components of the response system by the corresponding components of the
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drive system (for instance, a transmitted signal from the drive to the response
as being a subsystem from the drive), which reduces the dimension of the
response system:

duV) £y (u® v
(& ]- 1260 s
2] v 19)

In the previous equations, equation (1.8) is the drive and equation (1.9)
the response.
Identical synchronization takes place if tlim [vi) —v@] =0, being u®

the components of equation (1.8) that drive the response equation (1.9) by
complete replacement, named synchronization driven by u").

A dynamical system is said to be absolutely synchronizing if synchroniza-
tion takes place for every u. A dynamical system is said to be resynchro-
nizable if there are, at least, two synchronizing coordinates. Similarly, one
defines as absolutely resynchronizing, a system possessing at least two ab-
solutely synchronizing coordinates [256]. An example of a resynchronizing
dynamical system are the Lorenz equations. The study of the stability of the
synchronization manifold is made by making recourse to the Lyapunov expo-
nents from the variation subsystem d (v() — v(®)) /dt [224], named by Pecora
and Caroll [225] as conditional Lyapunov exponents, because they depend on
the trajectory of u™. In [227] complete replacement is exemplified with two
chaotic Lorenz systems, where the driven signal is the first component x. In
other words, the x component from the response system is substituted by
the respective component of the drive system:

da(D) B ]
d oy —aW)
gD () () (D)) (1.10)
b 2y — ()
| Tat - B
[z ] B ]
d o (y@) . x(l))
| | ) 2@ (D) (1.11)
o) 2 (My@ 5@
| at - B

the parameters o, r and b being real and positive. In chaotic regime, iden-
tical synchronization is observed. The dynamics is then restricted to the
three-dimensional hyperplane y® = y® and (V) = 2 defined on a five-
dimensional space. To study the stability, a change of coordinates is made,
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yo =y +y@, g =y® —y@ and z, = 2 4+ 2 2 = 20 — 2D three
coordinates belonging to the synchronization manifold (x(l), Yins zH) and two
to the transverse manifold (y,, z,). One needs to have y, and z, approach-
ing zero as t — oo. Thus, the zero point (0,0) in the transverse manifold
must be a fixed point within that manifold. So, the dynamical transverse
subsystem % and % must be stable at the (0,0) point, which requires the
negativity of the largest Lyapunov exponent of the variational equations for

the response subsystem,

{%}%DFQI?JL] (1.12)

where D F; is the Jacobian of Fy calculated in the attractor, in the synchro-
nization manifold. This is equivalent to requiring the response subsystem
y® and 2 to have negative Lyapunov exponents. Lorenz system driven by
the component y is also synchronized, being the subsystem (z, z) asymptoti-
cally stable [224], which means that the Lorenz system has two synchronizing
coordinates and is, therefore, resinchronizable.

The replacement of one or more components from the drive system into
the driven one, can also be done in a partial manner [109] [108] [227] step
that is named as partial replacement. In the partial substitution approach
a response variable is replaced with the drive counterpart only in certain
locations, depending on which replacements will cause stable synchronization
and which of them are accessible in the physical device that one is interested
in building.

From a more general viewpoint one can synchronize two chaotic unidirec-
tionally coupled systems by diffusive coupling, also called negative feedback
control, where the above technique of complete replacement is a special case
[227]. Tt consists of adding a damping term to the response system, a differ-
ence between the drive and response variables:

dx)
= F (X(l)) (1.13)

)
d’;t — F(x®) 1 aE - (xV - x?) (1.14)

In the previous equations, E is the matrix that determines the linear
combination of the components that will be used in the difference and o

determines the strength of the coupling. The Lyapunov exponents are deter-
dXL

mined by the variational equation %t = [DF — aF]x,. In [227] this type



1. Introduction 19

of coupling is exemplified with two chaotic Rossler systems, where E;; = 0,
except K11 = 1:

d:t(l) —

dt B (y(l) + Z(l)>
dzil(tl) — x(l) + ay(l) (115)
(6H) 1) (1) _
dzM) b+ z (x c)
| Tar -
“e | [ - 0@ +2®) +a (@@ —2@)
dy 2) — ( ) + ay(2 (116)
el b+ 2@ (2 —¢)
| Tar -

In the same way as before, the negativity of the largest Lyapunov expo-
nent of the system d(’;—;, AL ., gives a necessary condition for stability. This
exponent is a function of a. The effect of adding coupling is, at first, to de-
crease the largest Lyapunov exponent occurring for most coupling situations
of chaotic systems [121]. However, at larger values of a, A becomes pos-
itive and the synchronous state looses its stability [121] [223]. At extremely
large values of «, particularly for a — oo, the synchronization approaches
the complete replacement method of synchronization [227], being these con-
clusions also valid for bidirectionally couplings [121] [223] (unidirectionally
and bidirectional coupling are at least locally equivalent [134]). Hence, dif-
fusive, unidirectionally coupling and complete replacement are related and
the asymptotic value of AL indicates whether the complete replacement
works. Conversely, the asymptotic value of A}, is determined by the stabil-
ity of the subsystem that remains uncoupled from the drive. For the study
of the stability of bidirectionally coupled systems, one can also end with the
variational equations [227].

It is important to notice that even if the largest Lyapunov exponent is
negative, bursts may occur, because this exponent is only an ergodic average
over the attractor, and invariant sets maybe still unstable. The bursts can
be directly associated with unstable periodic orbits (UPOs) [120] [227].

Sometimes several or even all drive variables are desired at the response
system when only send one signal can be sent. Techniques of synchronous
substitution [227] permit a great range of coupled chaotic systems to syn-
chronize. There are described extensions of this technique that allow the
so-called hyperchaotic systems to synchronize (systems with more than one
positive Lyapunov exponent).

One variation of this method, based on a decomposition of the given sys-
tems into active and passive parts, was reported by Kocarev and Parlitz [159]
and may be viewed as a generalization of the complete replacement method
of Pecora and Carroll [224] [227]: starting from a chaotic autonomous sys-

dx dx

tem % = F'(x) and rewriting it as a nonautonomous one % = G (x, s (1)),
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with some driving s(t) = h(x), in such a way that this nonautonomous
system tends to a fixed point when not driven. The authors called this de-
composition, given by an active function h that defines the driving signal
and a passive function asymptotically stable G, an active-passive decompo-
sition (APD) of the original dynamical system. The freedom to choose the
active function h leads to a large flexibility in applications. This is different
from the complete replacement synchronization method of Pecora and Car-
roll [224] [227] where only a finite number of possible couplings exists, which
is given by the number of stable subsystems of the dynamical system.

Another scheme of unidirectionally chaotic coupled systems can be con-
sulted in the work of [240]. Applications of Lie derivatives in chaos synchro-
nization and localization of periodic orbits are discussed by [164].

Coupling of two systems can be generalized to a chain of chaotic systems
where each output acts as a drive signal for the next system, with applications
in secure communications [227].

The method BK [228] is another possible configuration. The key feature
of BK technique is to provide for m-dimensional systems, 2m adjustable
coupling parameters. From a chaotic system d’;—f) =F (X(1)>, to generate
the transmission signal u, one defines it as u (t) = K7xW (t), where K is a
constant column vector and x) (¢) the drive system state vector. Similarly,
the response state vector x(?) (t) is used to generate a second scalar signal,
v (t) = KTx? (t). The difference between the two scalars is multiplied by a
second constant vector B, and subtracted directly from the vector field F' of
the response subsystem. The response system becomes

dx@ (t)
dt

With this method, systems with more than one positive Lyapunov ex-
ponent can be synchronized with a scalar transmitted signal [228]. The
problem of synchronization consists on finding an adequate combination BK
with negative Lyapunov exponents on the driven system.

In [133], theBK method is used to obtain and maintain excellent syn-
chronization between a drive and a response system even when there is large
parameter mismatch between them (F (x) = F (x, y) ). Particularly
when other techniques of coupling used, as in [262], intermittent burstings
of desynchronization are observed, even in the presence of small parameter
mismatch. Numerical experiments showed that varying the drive parameter
and keeping constant the driven parameter, modifications were produced in
the dynamics of both systems, from bifurcations to chaos, showing a high
synchronization degree, with reproduction in the driven system of the dy-
namics of the drive system. It must be emphasized that, when the systems

=F (x?(t)) - BKT - (x® (t) - x" (1)) (1.17)
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are not identical, it is not in general possible to obtain identical synchroniza-
tion. In this case the possible synchronization is the so-called generalized
synchronization [220] [250].

Many coupling schemes, either for periodic or chaotic systems, consist
on adding linear combinations to the coordinates of N identical oscillators,
running;:

dzim = F (x9) 4 aE - G° (x0,x, .., xND)
d;;(:) _F (x(l)) +aF -Gt (X(O),X(1)7 ...,x(N—l))
(N-1)
dxdt =F (X(N—l)) +aFE-GN1 (X(O),x(l), ...,X(N—l)) o

where F' : R®” — R” is the vector field controlling the dynamics of a single
oscillator and x(® € R™ is a individual oscillator coordinates. The coupling
between oscillators is described by the coupling functions G* : R™Y — R",
and E = diag (v1,...,7,) is a diagonal matrix that determines the linear
combination of the coordinates of x that will be used in coupling. Eventually,
« is a scalar coupling constant, which determines the coupling strength.

For coupled dynamical oscillators, exhibiting shift-invariant symmetry,
coupling configuration does not vary from one oscillator to the next and the
oscillators can be considered to occupy points on a one-dimensional lattice
with periodic boundary conditions. The shift-invariance of the coupling is
expressed algebraically as:

j+N72)>

G (xW), x0T xUPN-D) = @it (xU=D) xO) X

i,j=0,1,..,N —1(mod N) (1.19)

In [121] the chaotic synchronization problem is studied for this type of
restricted, but representative class of coupled dynamical oscillators, for those
that exhibit shift-invariant symmetry, property shared by many coupled os-
cillator systems. To ensure that any solution for a single oscillator is also a
solution of the coupled system, the coupling functions G* must vanish when
the oscillators are synchronized. Common examples of shift-invariant cou-
pling is the nearest-neighbor diffusive coupling, having coupling functions of
the form G = x0=D — 2x® 4+ x*D and the global coupling, with coupling

functions typically having the form G* = > ¢ (X(k) — X(Z)>, where ¢ is a vec-
k=0

tor function satisfying ¢ (0) = 0. Common examples of non-shift-invariant
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coupling are nearest-neighbor coupling cases with fixed or free-end conditions
[121].

The stability of the synchronization manifold is insured if the variations
transverse to the synchronization manifold damp out with time. For sys-
tems with shift-invariant symmetry, the variational equations can always be
changed by a convenient transformation [121], like the spatial discrete Fourier
transform [212], whose jacobian is block diagonal, so that the transverse and
nontransverse variations to the synchronization manifold (x(® = x = ... =
x(NV=1 which represent n (N — 1) constraint equations, so that the synchro-
nization manifold has dimension nN — n (N — 1) = n, which is the phase
space dimension of a single oscillator) decompose naturally, and the trans-
verse variational equations typically come in independent, lowdimensional
sets, usually the dimension of a single oscillator. In general, the synchroniza-
tion problem can be studied by reducing a highdimensional set of variational
equations to a lowdimensional set.

By application of the discrete Fourier transform, the transverse varia-
tional equations for diffusive coupling are given by (% + 1 distinct modes for
N odd) [121],

dn®)
dt

k
- [DF — 4asin? (WW) E} n® kE=1,2,.N—1 (1.20)

being n®*) = x*) — 5 (¢), where s (t) represents the synchronized state. For
the case where the coupling is done through all the coordinates, where G* =
E (x07) —2x® 4+ x(*) and E = diag (v1,...,7), 7% = 1, the transverse
Lyapunov exponents are given by [121] [99],

k
A=A\ — 4q5in? (WW) k=1,2,.,N—1 (1.21)

being A¥ the transverse Lyapunov exponents and \? the Lyapunov exponents
in the synchronized state. The largest transverse Lyapunov exponent is then
given by Apax = Al — 4asin® (L), where X% is the largest Lyapunov
exponent of a single oscillator. Therefore, it is possible to have a stable syn-
chronized chaotic solution, provided the coupling constant « is large enough.

Note that the modes do not lose stability at the same time.
For global coupling, G* = Nz_lg (x®) —x@), with ¢ (0) = 0, Dg(0) =
v - I,, the transverse Lyapunovke:)gponents are given by [121],
M=XN—-ay, k=12..,N-1 (1.22)

and all the modes lose stability simultaneously.
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In case there are nil entries in F, the synchronized state can be broken
for larger values of the coupling strength «, and the study of the chaotic
synchronization can be related with complete replacement when the value of
the parameter « tends to infinity [121].

Increasing the coupling parameter a does not necessarily guarantee syn-
chronization. Often, the synchronized motion is stable only over a finite range
of coupling values as it is seen with a Rossler-like circuit system coupled dif-
fusively with the x coordinate, equations (1.15), (1.16) [227]. If there exists
a value for the coupling a above which desynchronization takes place, the
highest-order mode will then go unstable first. Pecora et al. [122] [223] call
this a short-wavelength bifurcation. It is a desynchronizing bifurcation that
sometimes occurs in diffusively-coupled arrays of oscillators and is caused by
increasing the coupling. It means that the smallest spatial wavelength will
be the first to desynchronize and is excited to cause the system to desyn-
chronize. This type of bifurcation can occur in any coupled system where
each oscillator or node has internal dynamics that are not coupled directly to
other nodes. In the example with the coupled chaotic Rossler system, using
x coordinate for coupling, ¥ and z coordinates are internal dynamical vari-
ables. This phenomenon of desynchronization bifurcation can also take place
in a coupled array of limit cycle oscillators [223]. However, some coupling
schemes do not allow a straight-forward wavelength interpretation [223].

Besides, when there are desynchronization bifurcations in chaotic arrays,
there is an upper limit, a size limit, to the number of chaotic oscillators
that can be added to the array while keeping the synchronized state stable
[122] [227] [223]. Heagy et al. [122] showed that this maximum number
can be calculated if one knows the stability diagram. This occurs when
the highest frequency mode becomes unstable before the lowest frequency
mode becomes stable as the coupling increases. This is due to a scale
phenomenon of the variational equations for each mode that, for the case
of the nearest-neighbor diffusive coupling runs as: DF — 4q sin? (%) E =

in2 ( &z
DF —4 {045. 2((11))} sin? (%) E. Thus, computing the Lyapunov exponents
S N

for the first mode as a function of the coupling parameter «, yields automat-
ically the exponents for the mode k. In the case of limit cycles, this situation
is not verified, considering that the maximum Lyapunov exponent of each
mode in the absence of coupling, o = 0, is zero and not a positive value [122]
223).

Rewriting the coupled linear system (1.18) as & = F (x) 4+ a (G ® E) x,
where F'(x) has F' (x@) for the i-th node block, the matrix G € My defines
the linear combination of the nodes and £ € M, operates on the nodes

individually to determine which of the oscillator components are coupled,
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Pecora [223] showed that, for F'(x) and F fixed, the stability of many linear
symmetric coupling schemes of identical oscillators personified by the matrix
G, limit cycles or chaotic systems, may be evaluated from another linear
symmetric coupling scheme with coupling matrix G’, with possible different
number of oscillators. Thus, if the matrices G and G’ can be diagonalized, the
stability diagram given by the Lyapunov exponents (or Floquet multipliers)

are related by the identity \F__ () =\ <:YY_ZQ) where v, is the eigenvalue
of G associated to the k-th mode and 1 is the eigenvalue of G" associated to
the g-th mode.

A rigorous criterion for synchronization is presented by Brown and Rulkov
[54] [53] which guarantees, if satisfied, that the coupling scheme will yield
synchronization linearly stable to perturbations for identical chaotic (or not)
systems coupled in a drive response manner. The dynamics of the driving
system is given by d’;—il) =F (x(l), t) and the dynamics of the response system
given by d’;—(:) =F (x®,¢)+E (x) — x?), where E is a vector function, and
represents the coupling between the systems. It is assumed that E(0) = 0
so synchronization occurs on the invariant manifold given by x() = x(®),
Depending on the choice of F and E, synchronous motion may only occur
within a finite range of coupling strengths and it may not occur for coupling
strength too small or too large, or it may never occur. Using the linearized

equations of motion transverse to the synchronization manifold, w, = x® —
x(, dfj"—l = [DF (x(l),t) — DE (O)] w |, where DF (x(l),t) is the Jacobian

L =
of F evaluated at x(!) at time ¢, and DE (0) is the Jacobian of E evaluated
at w, = 0, the goal is to reach the asymptotic behavior of w, (t), because if

tlim |lw_ (t)|| = 0 then the synchronization manifold is linearly stable. This

study was made by Brown and Rulkov [54] [53] by dividing DF (x),¢) —
DE (0) into a time independent part A, and an explicitly time dependent
part B (x,t), decomposition not unique since one may add and subtract
constant terms to A and B

DF (x",t) —DE(0) = A + B (x,?) (1.23)

Assuming that A can be diagonalized one has D = P~!AP. Being Ay,
the eigenvalue of A with larger real part R (Ay;), the optimal decomposition
found for equation (1.23) was [54] [53]:

A = (DF) — DE (0) (1.24)

B (x,t) = DF (x'V,t) — (DF) (1.25)



1. Introduction 25

lim - ftz DF [x) (s), s] ds.

- t—ool—t0
Finally, the condition for linear stability of the invariant trajectory in the

synchronization manifold is [54] [53]:

where (-) denotes time average, (DF)

—R(Ay) > {||P7'[B (x,1)] P||) (1.26)

This criterion can be used to design couplings that guarantee linearly
stable synchronization, being only sufficient, but not necessary. Thus, one
can expect that it is possible for a coupling scheme to fail this criterion and
still produce stable synchronization.

An approximate and quick criterion, non rigorous, to determine whether
or not synchronization will occur for a particular coupling scheme is R (Ay/) <
0 according to [54]. But although a linear stability analysis may seem to guar-
antee stable synchronization, noise and nonlinear effects may prevent long
term synchronous behavior.

To get synchronization beyond the transformations of the driving signal,
Tresser et al. [257] showed that it is possible to get driven synchronization
in dynamical systems by a linear change of variables.

Another type of unidirectionally coupling consists of sending the drive
signal in discrete moments of time, occasional driving, sometimes being able
to produce synchronization where the continuous driving does not. In [110]
the authors introduced a new method for synchronizing chaotic systems with
positive conditional Lyapunov exponents, systems that do not synchronize
by the complete replacement method of Pecora and Carroll [224]. A copy of
the drive system (1.8) is considered as the response system,

w® @ 1T R (a® v@) B (@ v@) 17 197

dt di _[ 1(“ ’V) 2(“ 7V>] (1.27)
and the following driving signal formed by a convex combination of the drive
and response systems as the new driving signal,

a? (u(l), u(2)) =u? +¢ N (u(l) — u(2)) = (1—¢€dars) u? 4+ ¢ 5At7tu(1)
(1.28)
where da.; is a Kronecker delta and ¢ is the combination parameter, taking
values between 0 and 1. This new signal is injected into the response system
at time steps At. For € = 0 the dynamics of both systems are independent
and for € = 1, establishes one the complete replacement of Pecora and Carroll
[224].
It was reported by [196] that chaotic systems can be stabilized by applying
proportional pulses to the system variables. Thus, the component associated
with the response system, (1 —e dats) u®, applies proportional pulses to
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the system variables at time steps At acting as a chaos suppression method,
and for some values of the parameter e, these perturbations stabilize the
dynamics of the response system, obtaining a fixed point. The component
associated with the drive, € 5At7tu(1), is the connecting term that induces the
behavior of the chaotic drive into the stabilized response system.

A coupling for arbitrary pairs of identical systems that makes use of the
contraction properties of the underlying flow, suppressing the exponential
divergence of the dynamics transversal to the synchronization manifold, and
thus fulling exploiting the contraction properties of the flow of the given
systems, was presented by Junge et al. [217] [137].

Chaotic systems possessing invariant manifolds of lower dimension than
that of the full phase space can exhibit several classes of phenomena. In
chaotic systems with an invariant subspace M, where a chaotic attractor A
exists, like the synchronization manifold of coupled chaotic systems, basins
of positive measure but containing no open sets, have been observed. These
basins, called riddled basins [28] [178] [31], were first studied theoretically
for discrete maps by Alexander et al. [28]. They are characterized by any
point chosen at random from any disk having a positive probability of being in
B (A) (basin of attraction of the attractor A) and a positive probability of not
being. The normal Lyapunov exponents must be negative, indicating that A
attracts points with positive probability [28]. Also A must repel sufficiently
many points. For riddling to occur it is then necessary to have a dense set of
points in the invariant subspace with zero Lebesgue measure and transversely
unstable. Lai and Grebogi [177] argue that the existence of a chaotic attractor
in the invariant manifold is not necessary for riddling to occur, only being
necessary the existence of a chaotic invariant set in the invariant manifold M,
which can be a chaotic attractor or a nonattracting chaotic saddle. This is
what occurs in periodic windows near a parameter value at which the chaotic
attractor is observed, where there are both a stable periodic attractor and
a nonattracting chaotic saddle in the invariant subspace, and, unlike chaotic
attractors where riddling disappears when the attractor becomes transversely
unstable [28] [178], in a periodic window riddling (in a generalized sense)
can occur regardless the chaotic saddle is transversely stable or unstable
[177] [174]. Globally, the basin of attraction of the periodic attractor in the
invariant subspace contains both an open set and a set of measure zero with
structures of the riddled type with holes belonging to the basin of another
attractor, being this base named by Lai [174] as pseudo-riddled basin. A
stronger property, called intermingled basins [28] [85], can occur when there
is, in the invariant subspace M, more than one chaotic attractor with basins
of attraction riddled and dense. Any point chosen at random from any disk
has a positive probability of being in each of the basins of attraction. No
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finite computation can determine the fate of a given initial condition, even
if that initial condition is given with a precision of infinity [85].

Lai and Winslow [180] demonstrated that dynamical systems may also
exhibit sensitive dependence of asymptotic attractors on system parameters.
They showed that a class of spatiotemporal chaotic systems, modeled by
globally coupled maps, exhibit riddled parameter space. This means that
for every point in the chaotic parameter space, there are parameter values
arbitrarily nearby that lead to nonchaotic attractors. A consequence is an ex-
tremely sensitive parameter dependence characterized by a significant proba-
bility of error in numerical computations of asymptotic attractors, regardless
the precision specified for the parameters.

To characterize and quantify dynamical invariants for the sensitivity in
phase space or parameter space, one can appeal to the uncertainty exponents
7v [180] [31] [106]. One randomly chooses many different pairs of phase points
in phase space or parameter space rg, and ro+49, being  a small perturbation.
If the final state of the system for each value of each pair are on different
attractors, the initial conditions or parameters are called uncertain initial
conditions or uncertain parameter values. For 0 fixed, one calculates the
fraction of uncertain initial conditions or uncertain parameter values f (4).
Typically, there is a scaling relation, f () ~ 07, where 7 is the uncertain
exponent.

In the work of [117] several phenomena linked to the synchronization of
discrete chaotic systems are discussed using as example of two coupled skew
tent maps, f:[0,1] — [0, 1], dependent on a parameter a, for 0.5 < a < 1.

ro={

By application of Birkhohff theorem, the asymptotic distribution of al-
most every trajectory is uniform. The synchronization was studied starting
from the determination of the natural Lyapunov exponent transversal to the
synchronization manifold, S = {(z,y) € R: 0 < 2 =y < 1}, for two different
cases, one of linear coupling

Tnt+1 = f (xn) + J (‘rn - yn)

2. 0<r<a
L a<z <1

—a?

(1.29)

Ju—y

—

,n=0,1,2,... 1.30
Ynt1 = f (Yn) + € (Tn — Yn) ( )
and one of nonlinear coupling

Yn+1 = f (yn +€ (xn - yn))

being § and ¢ real parameters. According to [117], the global dynamic be-
havior is quite different particularly when the ideal system is perturbed by
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parameter mismatch or noise. A mnecessary condition for synchronization
to take place is that the transversal natural Lyapunov exponent is nega-
tive (meaning that almost all of the trajectories that begin close to S are
by S attracted, or, in other words, almost all synchronized trajectories are
transversally attracting), which means that the synchronization manifold S
is an attractor in the weak Milnor sense.

In the nonlinear case, there are values of the coupling parameters, for
which all synchronized trajectories are transversally attracting, the transver-
sal Lyapunov exponent for all trajectories is negative, so the synchroniza-
tion manifold is an asymptotically stable attractor. In the presence of noise
or small parameter mismatch, the synchronization error is asymptotically
and uniformly bounded. When the transversal natural Lyapunov exponent
is negative, but the basin of attraction is locally riddled (there are initial
conditions that generate trajectories with positive transversal Lyapunov ex-
ponents), the synchronization manifold is not Lyapunov stable and in the
presence of noise or small parameter mismatch, intermittent desynchroniza-
tion bursts, of larger amplitude for the linear case, are observed [117].

Coupled discrete dynamical systems are called of coupled map lattices
(CML). This type of lattices differ from cellular automata, because the state
is continuous and not discrete.

In the work of [188] is presented a complete numerical description for
the synchronization of coupled map lattices making recourse to the logistic
function f : (0,1) — (0,1), f(zn) =7 20 (1 —2,), 7 € [Yeo ~ 3.57,4], in
chaotic regime. The one dimensional model is given by

gt =f@E) +alf (afy) + f(aly) —2f@))],i=1,2,...,N (1.32)

with periodic boundary conditions f (zf) = f (z%), f (2%4,) = f (z7). The
bidimensional model is, in turn, given by

aity = f(af) +

tof (#hay) + f (i) + f (ef) + f (af20) —Af (235)]
i, j=1,2,... N (1.33)

with periodic boundary conditions in both dimensions f (xgvj) =f (an,j)7
f (xrﬁmrl,j) =f (x?,j): f (x?,o) =f (xZN>7 f (xZNJrl) =f (‘75?1)

A rigorous proof for synchronization in the case of one-dimensional cou-
pled map lattice (1.32), with lattice sizes n = 2,3 for v € [yo ~ 3.57,4]
and n = 4 for v € [y, ~ 3.57,3.82] is given by [188]. A rigorous proof for
synchronization in the case of one-dimensional coupled map lattice (1.32),
with lattice size n = 4 for v € [y &~ 3.57,4] in the chaotic regime, is given
by [189].
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The loss of chaos synchronization is associated with transverse bifurca-
tions of unstable periodic orbits embedded in the synchronous chaotic attrac-
tor (SCA), which constitute the skeleton of any typical chaotic attractor [153]
[155]. These bifurcations are described in the work of [153] [155]. Hence, fol-
lowing [153] [155], if all such unstable periodic orbits are transversely stable
against perturbations transverse to the invariant subspace, the synchronous
chaotic attractor becomes asymptotically stable, and one has strong synchro-
nization. When the coupling parameter passes through a threshold value, a
riddling bifurcation can occur. Before the bifurcation, all the periodic or-
bits embedded in the chaotic attractor are saddles, and when the bifurcation
takes place in the first periodic saddle embedded in the synchronous chaotic
attractor, usually of low period, it loses its transverse stability and weak
synchronization in the Milnor sense takes place [153] [155]. Then, a typical
trajectory may have repelling segments exhibiting positive local transverse
Lyapunov exponents, with the average transverse Lyapunov exponent nega-
tive, and the trajectories starting from these segments will be repelled from
the synchronous chaotic attractor. The global dynamics will depend on the
existence or not of an absorbing area inside the basin of attraction. If it
exists, the locally repelled trajectories exhibit a transient intermaittent burst-
ing from the synchronous chaotic attractor, and the basin of attraction is
said to be locally riddled. For this case, the synchronous chaotic attractor
is transversely stable because its transverse Lyapunov exponent is negative,
and the bursts will tend to stop [153] [155]. When there is no absorbing area,
the locally repelled trajectories will go to another attractor or will diverge to
infinity, and the basin of attraction becomes globally riddled. With further
variation of the coupling parameter, eventually a blowout bifurcation takes
place and the weak stable synchronous chaotic attractor loses its transverse
stability, a complete desynchronization occurs and the transverse Lyapunov
exponent becomes positive [153] [155].

From this point, if the global dynamics is bounded and there is no at-
tractor outside the invariant subspace, a new asynchronous attractor appears
by means of a supercritical (or soft) blow-out bifurcation, and an intermit-
tent bursting, called on-off intermittency takes place, where long periods of
motion near the invariant subspace (off state) are occasionally interrupted
by short burstings away from it (on state) [185] [157]. But if the global dy-
namics is unbounded or there exists another attractor outside the invariant
subspace, then a subcritical (or hard) blow-out bifurcation takes place and
an abrupt disappearance of the synchronized chaotic state occurs, and typ-
ical trajectories near the synchronization subspace are attracted to another
asynchronous attractor or diverge to infinity [185] [157].

Kim et al. [153] [155] investigated the bifurcation mechanism from strong
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to weak synchronization in unidirectionally coupled systems without symme-
try and found out a mechanism for direct transition to global riddling where
an absorbing area disappears, leading to divergent trajectories, through a
transcritical contact bifurcation between a periodic saddle embedded in the
synchronous chaotic attractor and a repeller on the boundary of its basin of
attraction. This bifurcation mechanism is different from the one occurring in
coupled chaotic systems with symmetry, where the basin becomes globally
riddled through a pitchfork or period doubling bifurcation [178]. The effect
of asymmetry of coupling on the loss of chaos synchronization was studied
by [152].

In real situations, a small parameter mismatch or the presence of noise
is inevitable. In the regime of weak synchronization, a small parameter
mismatch or noise results in the prosecution of the intermittent bursting,
intermittent loss of synchronization, transforming the chaotic attractor into
a bubbling attractor, called attractor bubbling [120] [262] [102] [227] or results
in a chaotic transient with a finite lifetime, depending on the case, bubbling
or riddling. Hence, for the study on the loss of chaos synchronization the
effect of a parameter mismatch or noise must be taken into account. In
both cases, bubbling and riddling, the quantity of interest is the average
time 7 that a trajectory spends near the synchronous chaotic attractor (the
average interburst interval or the average lifetime of the chaotic transient)
[156]. How 7 scales with the mismatch parameter and the noise intensity
in unidirectionally coupled one-dimensional maps was studied by [156]. To
measure quantitatively the degree of parameter or noise sensitivity on the
weak chaotic synchronization, a quantifier, called the parameter sensitivity
exponent was introduced by [131] [154] in two coupled one-dimensional maps.
The extension of this method to bidimensional coupled invertible systems
such as the coupled Henon maps and coupled pendula was made by Kim and
co-workers [185] [187] [186]. It was found that the scaling exponent p for
the average characteristic time (the average interburst time and the average
chaotic transient lifetime for both the bubbling and riddling cases) is given
by the reciprocal of the parameter sensitivity exponent, as in the case of a
system of coupled unidimensional maps.

Generalized synchronization

A more general kind of synchronization can occur for non identical cou-
pled chaotic systems, connecting through a function or relation the dynam-
ical variables of one system to the variables of another system [26]. The
term generalized synchronization was first introduced by Rulkov et al. [244]
for unidirectionally coupled chaotic systems. This type of synchronization
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leads to richer behaviors than the simple identical synchronization, implying
a collapse onto a subspace of the overall evolution of the dynamics. Some-
times, knowing the state of one system allows one to know the state of the
other, being even possible in certain cases, to predict the state of one system
starting from the knowledge of the state of the other, including for totally
different systems. For practical applications, predictability is the most im-
portant feature. Falling back on Lyapunov functions, one can show that
completely different systems can GS [160] [165]. Almost all the studies in
the open literature have been concentrated on unidirectionally coupled sys-
tems. Many examples of non synchronization due to parameter mismatch
are actual examples of generalized synchronization [161].

Basically, there are two types of generalized synchronization for coupled

systems described in the literature. There is a stronger notion, that corre-
sponds to the existence of a continuous mapping between the systems [160]
[165] (or differentiable for [26]):
Definition 3: Given the systems Cé—’t‘ = F(x,y) and C{% = G (x,y), x € R",
y € R™, one says that the system possess the property of generalized synchro-
nization (G.S) if there exists an invertible continuous function ¢ : R — R™,
a manifold M = {(x,y) : y = ¢ (x)} and a subset B D M, such that for all
(x,y) € B, (x,y) — M.

In the case of unidirectionally coupled systems the function ¢ does not
need to be invertible. Except for special cases, it will not be possible to ex-
hibit explicitly the function ¢. However, the set of synchronization can show
complex structures [220] [250] and it is possible that no function ¢ exists in
its exact sense, but only as a multivalued relation. A more general definition
of generalized synchronization, for unidirectionally coupled systems, where
¢ does not need to be a function but can be a multivalued relation [3] [220]
[250] is:

Definition 4: Given the systems flj—’; = F(x,y), C{% = G(x,y), x € R,
y € R™, one says that the system possess the property of generalized syn-
chronization (G\S) if there exists a synchronous open basin B C R™ x R™ such
that for all (xg,y01), (X0,¥02) € B, ||y (t,%x0,¥01) — ¥ (¢, X0, Yo2)|| — 0, in
other words, if the response system is asymptotically stable with respect to

the drive x.

Typically, a continuous function ¢ exists if the response system is asymp-
totically stable when driven by the coupling signal and no subharmonic en-
trainment occurs [220]. Subharmonic entrainment means that exist points on
the drive attractor which are not mapped uniquely to the response attractor.
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A general theory of generalized synchronization in unidirectionally cou-
pled systems was presented in [160] [165] [161]. The authors argued that
with the dynamics of the driving system invertible, a functional relation oc-
curs if the response system is asymptotically stable or if all the conditional
Lyapunov exponents of the response are negative (in the case of generalized
synchronization, the jacobian of the vector field for the calculation of the Lya-
punov exponents is determined with bases on the states of the driven system,
unlike what would be done for the identical synchronization, for which the
state of the drive system could be used). These conclusions hold for aperiodic
orbits and for periodic oscillations with entertainment ratio equal to unity
[220].

Experimentally, Rulkov [241] believes that the onset of synchronized chaos
is accompanied by phase locking of pairs of unstable periodic orbits existing
in the chaotic attractors of the uncoupled driving and response systems.

In the case of strong high-quality synchronization, all the unstable pe-
riodic orbits (UPO) of the driving attractor, must have stable periodic re-
sponses in the driven system (PO). Although such fact seems to be a suffi-
cient condition to confirm the stability of identical synchronization, it is not
sufficient to confirm stability of generalized synchronization of chaos, partic-
ularly in the case of subharmonic entrainment of chaotic oscillations, as it
was shown by [243].

The proprieties of the multivalued relation that occurs between the drive
and the response systems when the synchronization is achieved with other
than one to one frequency ratio was studied by [242].

Generalized synchronization of unidirectionally coupled dynamical sys-
tems, may occur not only for pairs of different systems but also for identical
systems as it was shown through the use of an example in the work of [221]
[219].

Close to the onset of generalized synchronization, intermittent generalized
synchronization (IGS) has been detected by Hramov and Koronovskii [128].

In physical experiments, only synchronization phenomena that are de-
scribed with stable and robust manifolds can be observed. A manifold is
said to be robust, if it shows persistence of its properties, such as smooth-
ness of the invariant manifold and quantitative bounds for deformations of
the synchronization manifold, under small arbitrary perturbations and under
small noise [163].

An invariant manifold is k-normal hyperbolic if the rate of normal con-
traction to the manifold is k times larger than the tangential one, if the rate at
which trajectories are attracted towards the manifold is £ times greater than
the rates of contraction or expansion within the manifold. The conditions
for stability and normal hyperbolicity can be expressed in terms of Lyapunov
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exponents [163]. The invariant manifold is stable if the largest normal Lya-
punov exponent is negative, and the stable manifold is normally hyperbolic if
the largest normal Lyapunov exponent is smaller than the smallest tangential
Lyapunov exponent, which means that the contraction towards the synchro-
nization manifold is sufficiently strong. Normal hyperbolicity is a necessary
and sufficient condition for the synchronization manifold to be smooth and
persistent under small perturbations [218] [163], but in real applications,
when parameter mismatches are not arbitrarily small, normal hyperbolicity
is not sufficient to give quantitative bounds for deformations of the synchro-
nization manifold, i.e., normal hyperbolicity is not sufficient to guarantee
a small synchronization error, and two almost identical systems may cause
large synchronization errors [163] [218].

Bounds on the synchronization error for the case of nearly identical non-
linear systems that are unidirectionally coupled were presented in [129].

Phase and lag synchronization

Another type of synchronization called phase synchronization was first
reported for chaotic systems by Rosenblum et al. [237]. Periodic systems
are called synchronized if either their phases or frequencies are locked. Sta-
ble periodic oscillations of an autonomous dissipative dynamical system are
represented by a stable limit cycle in its phase space [230]. Following the
definition presented by Pikovsky et al. [230] the phase is a variable that
corresponds to the motion along the limit cycle, along the direction where
neither contraction nor expansion of the phase volume occurs. Therefore, this
direction in the phase space and, respectively, the phase of oscillations corre-
sponds to the zero Lyapunov exponent. Amplitudes are all other variables of
the dynamical system that are locally transversal to the cycle, corresponding
to the negative Lyapunov exponents. Therefore, weakly perturbed amplitude
will tend to its stable value, whereas a small perturbation of the phase does
not grow or decay.

For chaotic systems, the notion of frequency or phase is, in general, not
well defined except for some class of chaotic systems where a phase vari-
able can be introduced. Phase synchronization is better observed when a
well defined phase variable can be identified in both coupled systems. Any
autonomous continuous dynamical system with chaotic behavior possesses
one zero Lyapunov exponent that corresponds to shifts along the flow, and,
therefore, the notion of phase can be generalized for this case as well. The
phase variable of a chaotic oscillator can be introduced by some techniques as
proposed by [239] [230]. For strange attractors that spiral around some par-
ticular point in a two dimensional projection of the attractor, a phase angle
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¢ (t) can be defined that decreases or increases monotonically [222]. Phase
synchronization occurs if the difference |n¢ — my|, for arbitrary integers n
and m, between the corresponding phases, is bounded by some constant,
which means [n¢ — my| < const, occurring when a zero Lyapunov exponent
of the response system becomes negative [237] [219], due to weak interaction
of non-identical chaotic oscillators [239]. One may then define a mean rota-
tion frequency as Q2 = tlirono ¢ (t) /t. This mean rotation frequency of the drive

and the response system coincide, if phase synchronization is present, with
the amplitudes of both systems varying chaotically and being completely
uncorrelated [222] [219].

An experimental observation of phase synchronization and generalized
synchronization of a system of two unidirectionally coupled Rossler systems
was performed by [222]. In this case, a close relation between phase synchro-
nization and generalized synchronization was established, with generalized
synchronization leading to phase synchronization.

A counterintuitive phenomenon observed by Liu et al. [193] refers that
the dynamics of coupled chaotic oscillators can become more complex due to
coupling and this fact does not seem to depend on the way through which
the oscillators are coupled. In the weakly coupling regime (before phase
synchronization), on a system of N coupled chaotic attractors with multiple
scrolls, a subset of null Lyapunov exponents in the absence of coupling can
become positive as the coupling is increased. Liu et al. [193] argued that
this phenomenon is expected to be quite general, as it can occur for typical
chaotic attractors with multiple scrolls in the phase space, such as the Lorenz
attractor.

On-off intermittency was observed from the transition from phase unlock-
ing status to phase locking [303].

Rosemblum et al. [238] studied synchronization transitions in a sys-
tem of two symmetrically coupled nonidentical chaotic oscillators. Increas-
ing the coupling strength, the system undergoes the transition to phase
synchronization and, with further increase of coupling, a lag in time syn-
chronous regime was observed, where both states coincide, but shifted in
time, xW (t) = x® (¢t + 7). Further increase of coupling decreased the time
shift 7 and the systems tended to be completely synchronized. These transi-
tions were traced in the Lyapunov spectrum by Rosemblum et al. [238]. Lag
synchronization is then a phenomenon that can be observed for two coupled
nonidentical chaotic oscillators where the dynamical variables are synchro-
nized with a time delay relative to each other. In physical systems where noise
is inevitable, lag synchronization is typically destroyed when the noise level
is comparable to the amount of average system mismatch and, at small noise
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levels lag synchronization occurs in an intermittent fashion [252]. Increasing

the coupling strength often leads to a transition to complete synchronization.
Generalized time-lagged synchronization was observed by [304] for unidi-

rectionally coupled systems in the presence of large parameter mismatch.

1.2.4 Coupling extended dynamical systems

A fundamental observation in nonlinear dynamics is the low-dimensional
characteristic of the asymptotic chaotic invariant sets, that occur in many
high-dimensional systems [175]. Lai et al. [175] argued and provided nu-
merical evidence that a high-dimensional dynamical system exhibiting low-
dimensional chaotic behavior is generally associated with chaos synchroniza-
tion, identical or generalized.

Coupling spatially extended dynamical systems is also possible. It has
been shown that it is possible to synchronize not only low-dimensional chaotic
dynamical systems, but also high-dimensional ones [166] [167] [168] [254].
The synchronization manifold is defined in a similar way as those for the
other dynamical systems. As an example, for the unidirectionally coupled of
two arrays of N coupled ordinary differential equations (CODESs), one gets
for two systems of type of those decribed by equations (1.18)

(@)
d;(t =F (x(i)) +ab -G (X(O),X(l), ...,X(Nfl)) (1.34)
dv(® ‘ . . .
(};t =F (y(z)) +aF -G (y(o), vy y(Nfl)) + 81 (X(’) — y(’)) (1.35)

In the previous equations (3 is the coupling parameter between the driving
and driven systems.
The identical synchronization manifold is given by,

M={xDyD) eR"xR":x) =y i=0,2,...,N-1} (1.36)

being defined in a similar way the other cases of coupled spatially extended
systems.

A general method for synchronizing pairs of unidirectionally arrays of
N coupled ordinary differential equations with spatiotemporal chaotic dy-
namics was introduced by [162]. The synchronization is achieved by dis-
crete time coupling of individual cells of the arrays. At the moments ¢;,, =
iThy+(n—1)NTy,i=1,2,...,N, n=1,2, ..., (sporadic coupling) one of the
state variables of the i’ cell of the driven system is replaced by the corre-
sponding state of the the drive system (complete substitution). For 77 = 0,
all the cells are simultaneously coupled. Whenever the coupled individual
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cells in the limit of continuous time lead to an asymptotically stable subsys-
tem, then there exists a critical value of time 7. such that, for all 7,, < 7.
sporadically coupled systems synchronize. Following the work of [162], this
type of synchronization of sporadically coupled individual cells can be applied
to pairs of unidirectional coupled arrays where the synchronization mecha-
nism of the local elements or cells is known. It can be applied to various
pairs of coupled systems including two or three dimensional arrays, nonho-
mogeneous arrays and arrays with different internal couplings. The authors
stressed also that it can be applicable not only to arrays, but also in the case
of PDEs. They also discussed the possible applications in communications
and anticontrol and control of chaos.

Most of the coupling schemes applied to ordinary differential equations or
finite difference equations are very difficult to verify experimentally for par-
tial differential equations. Generalization of the coupling schemes of arrays
of coupled ordinary differential equations to partial differential equations is
more complex, because there are no longer isolated cells to couple for PDEs,
but one has to couple in spacial areas separated by small infinitesimal spaces.

Kocarev et al. [168] showed analytically (following the arguments of
Heagy et al. [121]) and numerically that a large class of pairs of unidirec-
tionally coupled of spatially extended dynamical systems with spatiotemporal
chaotic dynamics can synchronize, and for the case of PDEs this is achieved
by driving the response system only at a finite number of space points,
through time discrete points [167] [168]. At each moment t = kT (k € Z),
the space points v;, from the response PDE v, = F' (v, v,, Vuy, ...), © € [0, L],
are simultaneously driven and their values are set to new values accord-
ing to the equation v; (kT) = v; (kT~) + a [u; (kT) — v; (kT 7)]3, being u; =
F (u,u,,u,,,...), x € [0, L], the drive PDE. The synchronization is verified by
determining the local error in space and time e; (z,t) = |u; (z,t) — v, (z,1)]

and the global error e (t) = \/% fOL |u(z,t) — v (2,1)||* dz. These authors

also pointed out that two PDEs can synchronize by sporadic coupling [168].

Junge and co-workers [135] [138] considered the problem of controlling
and synchronizing spatially extended systems, with only a few driving signals
from local regions. They took the solution u of the one dimensional PDE,
w = F (U, g, Ugyg, ...), © € [0, L], not at singular points in space x (which is
impossible for experiments), but the local spatial average of the observable
u, which is measured by N sensors w, that take averaged values from local

3 v; (kT ™) is the value of v; in the immediately former instant to k7.
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regions of width p at some time ¢

1 nd+p/2
7 (1) = —/ w(yt)dy, n=1,...N. (1.37)
P Jnd—p/2

being d = L/ (N + 1) the distance between the sensors.

To synchronize a pair of PDEs, besides the N sensors u, in the driving
system, identical number of sensors 7,, at same positions were measured in
the driven system and a locally diffusive coupling term was used

a (U, —y), nd—p/2 <z <nd+p/2

0, elsewhere (1.38)

f(u,v,z) = {
being necessary a minimum value N of coupling signals for the synchroniza-
tion to take place, which depended on the coupling strength a and the width
p of the sensors . An examination of the synchronization properties of two
coupled Kuramoto-Sivashinski equations was performed (the discretization
scheme used was an explicit Euler scheme):

U = —2Uly — Ugy — Uggee, T € [0, 1] (1.39)

Uy = —20V; — Vg — VUgaze T f (U, v, ZE)

with boundary conditions © = u, = 0 for z =0 and x = L.

As the chaotic behavior in space destroys the spacial correlations at an
exponential speed, the distance d between two sensors can not be arbitrarily
large and must have more sensors for larger values of L. Also the sensor cou-
pling improves the pinning control because less coupling signals are needed
[135] [138]. It was confirmed by the authors of the works [135] [138] that the
extensive Lyapunov dimension of the attractor Dy grows linearly with the
system size L (because equation (1.39) shows extensive and microextensive
chaos [253]). The synchronization mechanism was studied by computing the
six largest transversal Lyapunov exponents (TLE) %. As applications, the
synchronization of chaotic systems used for controlling purposes and sup-
pression of chaos and the estimation of model parameters were presented by
[135] [138]. The transition to high quality synchronization as a function of the
number of sensors N occurred via spatiotemporal intermittency, although all
transversal Lyapunov exponents were negative [254]. An extensive numerical
study for a coupling of this type, applied to Ginzburg-Landau equation, with

4 PDEs have infinite dimension and, therefore, there is also an infinite number of Lya-
punov exponents. Determining only a number N of exponents, they are the N largest
with probability one, because the components of the eighenspaces corresponding to the
largest eighenvalues grow much faster.
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similar results, was performed by Junge et al. [136], through the use of an
implicit Crank-Nicholson discretization.

Wei [293] proposed a single-sided locally averaged adaptative coupling
scheme for extended dynamical systems. The author showed that this scheme
can suppress and control spatiotemporal oscillations, providing an approach
for shock capturing. For the case of two identical systems, described by par-
tial differential equations u; = F (u, Uy, Ugy, ...) and vy = F (v, 0g, Ugg, -..) +
¢ (u,v), considering the adaptively coupling ¢ (u,v) = € (|Jv;]) (v — @), u(x,t) =
}D ffpp/; u (y,t) dy, where the coupling strength ¢ is a nondecreasing function
of the gradient measurement |v, |, Wei [293] noticed an oscillation suppression
occurring near the shocks, which appear, for example, in Burgers equation
at low viscosity. These spurious oscillations were eliminated by coupling two
Burgers equations, one of low viscosity and the other of a higher viscosity,
and by coupling two exactly inviscid identical systems. The scheme became
more dissipative as the size of local average was enlarged, as indicated by

solving the inviscid Burgers equation with a Riemann-type initial value.

1.3 Contributions of the present work

Nonlinear equations arise in all fields of Engineering and Physics, hence
being of fundamental importance the existence of methods to find their real
roots. As analytical solutions are only available in few cases, the construc-
tion of efficient numerical methods are essential. Adomian’s decomposi-
tion method has been successfully applied to linear and nonlinear problems,
stochastic and deterministic [15] [17] [16], obtaining an exact or approximate
solution to the problem. This method has the advantage of not requiring
discretization, linearization or perturbation techniques, providing a rapid
convergent solution series [69] [22] [6] [7] [8] [10] [68]. However, the method
applied to nonlinear equations does not seem to be fast enough to be a effi-
cient method to solve these kind of equations and one can find in the open
literature some modifications proposed by several authors [33] [12] [35]. By
applying the Adomian’s decomposition method, a new iterative method to
compute nonlinear equations is developed and is presented in this work. This
new method [40] is based on the proposals of Abbasbandy to improve the
order of accuracy of Newton-Raphson method [12] and on the proposals of
Babolian and Biazar to improve the order of accuracy of Adomian’s decom-
position method [32]. The convergence of the new scheme is proved herein
and at least the cubic order of convergence is established.

The application of Adomian’s decomposition method to partial differen-
tial equations, when the exact solution is not reached, demands the use of
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truncated series. But the solution’s series may have small convergence radius
being the truncated series only accurate in a small region. In order to enlarge
the convergence domain of the truncated series, Padé approximants (PAs)
to the Adomian’s series solution have been tested and applied to ordinary
differential equations, yielding promising and good results [29] [274] [273]
[132]. In this thesis this technique is applied to partial differential equations,
particularly to Burgers equation. Only recently, and simultaneously to the
development of the work presented in this thesis, Padé approximants were
implemented to the series solution given by Adomian’s decomposition tech-
nique applied to partial differential equations (KdV and mKdV equations)
[4] and to an example of the Boussinesq and Burgers equation [5]. Graphical
illustrations were used to show that this technique can enlarge the domain
of convergence of Adomian’s solution. It is also referred by [4] [5] that the
solution accuracy can be improved by increasing the order of the Padé ap-
proximants. In this thesis, besides graphical illustrations, also numerical
results are presented to show that this technique can not only enlarge the
domain of convergence of the solution but also improves its accuracy even
when the actual solution cannot be expressed as the ratio of two polynomials.
In addition, a disadvantage not referred by [4] [5], can come through: the
rational approximation may create inaccurate solutions near its poles when
the real solution is not achieved. This drawback advises the search for the
optimal order of the Padé approximants to be used, which can be of lower
order. Also, the application of Adomian’s method to the ordinary differential
equations set arising from the discretization of the spatial derivatives by finite
differences, the so called method of lines, is performed in the present work
and it is shown that this is not useful, because this technique may reduce the
convergence domain of the series solution [43].

New behaviors are found for the numerical solution of the driven Burgers
equation by collocation spectral methods [42]. For low values of the viscosity
coefficient, Burgers equation can develop sharp discontinuities, which are
difficult to simulate in a computer. Oscillations can occur by discretization
through spectral collocation methods, due to the Gibbs phenomena. Under
a dynamic point of view, all these instabilities may be related to the presence
of different attractors and bifurcations arising to the discretized equation for
different values of the viscosity coefficient. In this thesis it is studied the
stability, bifurcation and dynamics of spectral collocation methods applied
to forced Burgers equations, where the unknown solution of the differential
equation is expanded as a global interpolant. Besides the trapping region
found by Dang-Vu and Delcarte [77], arising from the loss of stability of
the periodic orbits arising from an Hopf bifurcation, other phenomena are
observed. In fact, it is observed the existence of nonperiodic attractors,
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torus and strange attractors, for lower values of the parameter below the
Hopf point, before the dynamics becomes unbounded [42] [41].

Also observed is the presence of bistability with two periodic attractors,
with a periodic attractor and a nonperiodic one (torus or strange attractor)
and even with two nonperiodic attractors. In this last case, the nonperiodic
orbits seem to correspond to quasiperiodic motions on torus type attractors
[41]. During this work, it was verified that other stable equilibrium points
can occur, diverse from the ones corresponding to the asymptotic solution
of Burgers equation, and that new Hopf points can occur, breaking (or not
breaking) the symmetry of the system, if present. Discussion of the necessary
conditions for the emergence of these phenomena is also presented. This rich
behavior indicates that Burgers equation is a good model for the study of
several dynamical behaviors that can occur in many other situations. Also
this kind of behavior can be used to study and to implement new techniques
of synchronization of high dimensional systems.

Sufficient conditions for identical synchronization of coupled Burgers equa-
tions, by means of a Lyapunov function, is presented. As an application for
the dynamics apparent by spectral solutions of forced Burgers equation, uni-
directionally coupled equations with and without parameter mismatch are
also studied. It is tested the unidirectionally coupling with a drive forced
spatially spectral discretized Burgers equation in stationary regime and the
driven equation in any motion regime. It is found out that increasing the cou-
pling strength it is possible to carry out the suppression of the corresponding
motion through periodic and nonperiodic windows till the stationary solution
is reached. Numerical studies show and confirm the presence of identical and
generalized synchronization for different values of spacial points and different
values of the viscosity coefficient § in several regimes. Also, by combining
the partial replacement [109] [108] [227] of one or more components of cou-
pled ODEs and the nonlinear coupling presented in [117] for discrete coupled
systems, a nonlinear coupling is constructed in the three locations of the re-
sponse discretized equation, waves velocity v, % and %, by replacing the
response variable discretized v by u+ a (u — v), where u represents the drive
and « the coupling parameter. It is observed that coupling at the position
corresponding to the waves velocity v, by a convex linear combination of
the drive and driven variables with o < 1, identical or generalized synchro-
nization is achieved, only allowing values of o around 1 in very few cases.
This point out the fact that although the partial replacement may not reach
synchronization, nonlinear coupling with @ < 1 may do it. Coupling at %,
synchronization is only observed in very few cases and with low values of the
coupling parameter «, whereas at % synchronization is not achieved [41].
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1.4 Structure of the thesis

The present thesis is structured as follows:

Chapter 1, the present chapter, constitutes the Introduction.

In chapter 2 a review of some important concepts related to partial dif-
ferential equations and the development of singular solutions is made.

In chapter 3 a description of the Adomian’s decomposition method and its
convergence is made. A new iterative method to compute nonlinear equations
is presented and the numerical improvement of Adomian’s method applied to
Burgers equation by Padé approximants is performed. Also, the application
of Adomian’s method to the ordinary differential equations set arising from
the application of the method of lines, is studied.

In chapter 4 an introduction to some notions of dynamical systems, such
as bifurcations and chaos and related instruments, like Lyapunov exponents,
is presented. Also a brief introduction to spectral methods is made. The
study of spectral solutions of several forced Burgers equations is performed
together with its discussion.

In chapter 5 a discussion of the synchronization of a linear coupled Burgers
equation, by means of a Lyapunov function, is presented. Also a study of
unidirectionally coupled forced spectral solutions of Burgers equations with
and without parameter mismatch is performed.

In chapter 6 conclusions are withdrawn and suggestions for further work
are made.
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Some partial differential equations can develop discontinuities in its solu-
tions, so a brief review of some concepts related to PDEs are very important
to fully understand how to define such solutions. It is imperative to gen-
eralize the concept of solution of a differential equation and to introduce
concepts that allows one to define solutions that exist from the point of view
of applications, but that are not sufficiently smooth to be solutions from the
strict or classic point of view.

Burgers equation [55] is a PDE that admits analytical solution for the
initial value problem [297] [96] [97] [72] [126] and can develop such singular
solutions, solutions that in the classic sense do not exist [55]. This one is the
PDE worked out in this thesis, hence, a brief review of the relation between
this equation, Navier-Stokes and heat equation is presented here.

2.1 The classification of partial differential equations

A wide variety of problems arising from Engineering, Physics, Chemistry,
Finance, Biology, and all other science subjects, are characterized by par-
tial differential equations (PDEs). In particular, among those, the second
order equations possess a major importance in applications. To study and
to correctly implement numerical methods, classification of partial differen-
tial equations is of great matter. There are three different basic categories
for second order linear partial differential equations, with mathematical and
physical different properties, describing three types of different physical phe-
nomena [95]. Being u the dependent variable, such categories are:

The wave equation (associated with oscillatory processes)

uy = Au (2.1)
The heat equation (associated with diffusion processes)
uy = o*Au (2.2)

The potential equation or Poisson equation (associated with stationary

processes)
1

Au=——p (2.3)
€o
being p a given function, and ¢, o and g, representing, generally, physical
constants. The potential equation is transformed into the Laplace equation
for p = 0.
Au=0 (2.4)
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These equations are also classified, according to their mathematical prop-
erties, into, respectively, hyperbolic, parabolic and elliptic equations, possess-
ing two, one and zero real characteristics (on the plane).

The second order quasilinear partial differential equations are of the form
a(x, t)uze + b(x, ugy + c(x, t)uy = f(x,t, u, ug, uy), being the classification
made as a function of the sign of the discriminant b* — 4ac. The equation
is hyperbolic if b?> — 4ac > 0, is parabolic if b*> — ac = 0 and is said to be
elliptic if b — 4ac < 0. As the functions a, b and ¢ depend on z and ¢, the
sign of the discriminant may fluctuate for different values of x and ¢, and so
the same equation may be classified in different way according to the range
under consideration [78] [200].

As far as their application is concerned, hyperbolic equations are gener-
ally adequate to model transport phenomena, parabolic equations are more
appropriate to model diffusion phenomena and elliptic equations generally
model equilibrium or permanent phenomena.

Generally, both parabolic and elliptic equations exhibit regular solutions,
whereas singular solutions are more common for hyperbolic equations. This
is a fundamental issue on the development of numerical schemes [75] [101].

2.2 Sobolev spaces

Many nonlinear equations develop discontinuities. This has as conse-
quence the inexistence of a solution in the classic sense. Sobolev spaces are
the replacement for the classic space C* of solutions of partial differential
equations of order k [201] [235].

Consider {2 a nonempty open set belonging to R", the Banach space
LP(Q)={u:Q—R: [,lu]f <oo}, 1 <p< oo, with the associated norm

ullo) = (g \u\p) and L}, (Q) = {u € L? (K), for all compact subset
of K of Q} For p = 2 L2 (Q) is an Hilbert space for the usual scalar
product ( fQ x)dx. The space of all functions belonging to
C*>(Q) Wlth support compact in Q, is called the space of test functions
D(R2), and is dense in LP(Q2) for 1 < p < oo. The following notion of
convergence is associated: a sequence of test functions (¢,) converges to
zero, when the support of all functions ¢, belong to a fix compact K, and
when for every a € N, the sequence (D%p, ) converges to zero uniformly in

— n a — olel _ gortagt..tan
K, where o = (v, a, ..., ay) € N" and D* = = ST = 5a e

A sequence of test functlons () converges to ¢ when (@, — ) converges to
zero. The dual space D'(Q2) of all continuous functionals 7', defined on D(£2),
is called the distribution space on €.

One calls generalized derivative or derivative in the sense of distributions
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of order « of u, to the function v € L} . such that

/u(x)Daw(x)dx = /(—1)'“1}(3:)@(95)(195 Vo € D()
Q Q
where |a| = oy + ag + ... + . One says that D*u = v in the sense of
distributions.

The Sobolev space WP (Q) consists of all functions u belonging to
the Lebesgue space LP (2), 1 < p < oo, having generalized derivatives of
all orders, up to the order m in L” (2). One defines the norm ||u|\2p =

1/p

Z Jo 1Du(x)|? dx , 1 < p < o0, being the Sobolev space W™P (Q2)
la|<m
a Banach space. The particular case of p = 2 is very useful in applications
and one represents W™P(Q) by H™(£2).

When m = 0, W (Q) = L? (Q), and although D(1) is dense in LP(Q) it
is not true that D(QQ) is always dense in WP (Q), m > 1. Due to that one
represents W;""(Q) as the closure of D(2) with respect to the norm || - H?,lpa
i.e. the closure of D(Q) with respect to W™2(). For p = 2, one represents
W P(Q2) by Hi*(€2) [201] [235].

2.3 Conservation laws

Conservation laws describe a conservation principle of some basic physical
quantities of a system. In fluid mechanics the equations of motion are of the
type, conservation hyperbolic equations [88] [101]

ou
o PV =5 (2.5)

being F' the correspondent total flux u per unit time.
If w is smooth and S (u) = 0, equation (2.5) becomes

ou , u
N (P ) o (2.

Generalized inviscid Burgers equation is obtained substituting F (u) =
(o + gu) u in equation(2.6), which yields:
Ju Ju ou
ot Ox g Ox (27)
Equations of this type admit solutions with spontaneous singularities,
developing discontinuities. This means that, in the classic sense, solutions of
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such equations do not exist. The solutions that we look for are weak solutions

u € L.

For « = 0 and 8 = 1, equation (2.7) becomes the standard inviscid

Burgers equation 5 5

U U

BT + Ugs = 0 (2.8)

Using the method of characteristics [78], one can study and even obtain

the solution of equation (2.6) with given initial conditions. Equation (2.6)

reveals that the vector field (z,t,u) — (F’(u),1,0), must be tangent to the

integral surface. Introducing an auxiliary variable A, the following set of
three equations is obtained [27] [197] [78]:

21 TP
;ﬁg ~ | (2.9)
o 0

In the previous set of equations its integral curves are the characteris-
tics curves for equation (2.6). The integral surface that satisfies the initial
condition (z,t,u),_q = (7,0,u0 (7)) is

BN YT P(u(r,0)
t(r,\) | = | A+t(r,0) (2.10)
u (7, \) u (7,0)

x (7, \) F'(u(7,0)\ + 2 (7,0) Fllug ()X + 7
t(r,\) | = A+1t(r,0) = A (2.11)
u (7, A) u(7,0) uo (7)

Therefore , one gets the implicit solution given by u = ug (z — F'(u) - t).
For each value of 7, the curves A — (z(7,\),t(7,\)), projections on u =
0 of the characteristic curves, called characteristics base curves or simply
characteristics (plane solution curves), along which the initial conditions
propagate, are straight lines © — F'(uq (7)) - t = 7, that have as slope [197]
[88] [101] [78]:

dt 1
dr  F'(uo(w))

Discontinuous solutions for a Cauchy problem for a nonlinear conservation
partial differential equation are settled either as shock type solutions or as
fan type solutions [78] [88]. As they do not admit a single weak solution, it
becomes necessary to apply some selection principle to identify the physically
relevant solution from all possible solutions. A form of doing this is to impose
the entropy condition of Lax to the weak solution, which establishes that a

(2.12)



2. Partial Differential Equations 47

shock solution occurs when characteristics carrying conflicting information
collide. The discontinuities in the solution then appear, being created the
shock surfaces, in which wu(z,t) takes several values, that is a phenomenon
frequent in hyperbolic nonlinear equations [78] [88].

For a weak solution u of equation (2.6), which possesses a jump dis-
continuity along a curve ¢, but is smooth on either side of the curve, the
propagation velocity Z—f should satisfy the Rankine-Hugoniot relation for the
speed of the shock wave [232] [78] [88] [78]

dx
dt

One solution of this type is as a shock type solution, being ¢ the shock
curve. Discontinuities transmit along these shock curves.

The conservation law is said to be genuinely nonlinear if F" (u) # 0. If,
for example, F (u) = a(x,t)u(x,t), then F'(u) = a(x,t) and the conser-
vation equation is linear, reducing the Rankine-Hugoniot relation (2.13) to
‘fl—f = a(z,t). This means that, in this case, the shock curve is just a char-
acteristic curve for the PDE. There are some important differences between
linear and nonlinear initial value problems [88] [78]. For linear problems and
for all smooth initial data, there is a smooth global solution, which is uniquely
determined by the equation and the initial data. Moreover, discontinuities
in the initial data propagate along characteristics curves and solutions are
invariant under smooth transformations and equivalent equations have the
same smooth solutions. On the other hand, for nonlinear problems, it may
not exist any global classical solution even for smooth initial data. Although
global weak solutions exist, they are not uniquely determined by the equa-
tion and the initial data. In addition, discontinuities can arise spontaneously
and are propagated along noncharacteristic curves called shock curves. Also,
weak solutions are not invariant under smooth transformations and equa-
tions that are algebraically equivalent may not have the same weak solutions.
Particular care is required in the variable changes used in the resolution of
nonlinear equations, because in spite of the smooth transformations of the
conservation equations, they lead to equivalent equations as far as smooth
solutions are concerned, but the weak solutions are in general different, which
means that the shocks are in general different.

One classic form of obtaining the solution of the conservation equation
(2.6) Ou/0ot + OF (u) /Ox = 0 is to make recourse to the equation disturbed
by some viscosity Ou/0t + OF (u) /0x = 6 §°u/dx?*. As this equation admits
analytical solution for all initial conditions belonging to L? (R) [126], making
0 — 0 one hopes to obtain the relevant physical solution of the original equa-
tion without viscosity. This method of studying the conservation equation

(ur—uw)=F (") —F(u) (2.13)
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(2.6) is called parabolic regularization [88] [78].

2.4 Navier-Stokes and Burgers equations

The equations that govern the laminar flux, Newtonian fluids, are the
Navier-Stokes equations [89] for compressible fluids.

1 :
—Vp+6(Viv) + §(5 [V (V-v)]+pb=pv (2.14)
For incompressible fluids, the Navier-Stokes equation take the form:
—Vp+6(V?v) + pb = pv (2.15)

In the previous equations, v is the particle velocity vector, p is the pres-
sure, p is the density, ¢ is the fluid viscosity and b is the body force vec-
tor. The time derivative of the fluid velocity, v, is the material or transport
derivative, defined as

OV 2.1
\% 8t+v Vv (2.16)

Burgers equation can be considered as a simplification of the Navier-
Stokes equations, by neglecting the terms of pressure and body force as both
Navier-Stokes and Burgers equations contain nonlinear terms of the same
type and higher-order terms multiplied by a small parameter:

ou ou  .0%u

o or o2

However, Burgers equation with high Reynolds number!, or equivalently,
small values for the viscosity coefficient, develops waves with sharp slopes.
This phenomenon is responsible for the appearance of discontinuities for val-

ues 0 — 0, yielding difficulties to obtain a solution. For § = 0 the inviscid
Burgers equation is an hyperbolic equation type:

Ju ou
5 + um = 0 (2.18)
Burgers equation can be transformed into the linear heat equation by the
Hopf-Cole transformation [126] [72] [232], so exact solutions to Burgers equa-
tion with initial conditions can be obtained. Burgers equation is connected
to the heat equation

—0 (2.17)

ov v
— =9 a3 (2.19)
ot ox

! Reynolds number, a nondimensional number, determines the flux type, either laminar

or turbulent, R = £ ‘gD , being V' the velocity and D the carachteristic lengh.
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by the Bécklund transformation [232]

ov 1

% + %Uu = (2.20)
dv  10(vu)

a3 0 (2.21)

u=———=—-20—logw (2.22)
T

This formula is called the Hopf-Cole transformation [126], [72] [232]. A
solution can be obtained for the Burgers equation (2.17) to the Cauchy prob-
lem

—+u——57 reR, t>0 (2.23)
u(z,0) = f(z)

Eliminating v from (2.20) and (2.21) one obtains the heat equation (2.19),
or, using Hopf-Cole transformation (2.22) [232]:

ot Ox ox?
3
= —26— 4 251 4 4P EEE — 4 GO
’U ’U v
QU:E:U:U QUQCQCU:E 2U£E:EU£E 2( )3
_ _25% + 25vtvx + 252’0111 252’01xe _
v v?
0 [26 [(0Ov 0%v
_ U = 2.24
oz {v (815 563:2)] 0 (2.24)

where v (z,t) is the solution of the linear heat equation (2.19). Then, if v
satisfies the heat equation (2.19), u satisfies Burgers equation (2.23). The
initial conditions for the heat equation must be similarly transformed, being

given by the solution of the ordinary differential equation u (z,0) = f (x) =
26 0Ovu(z,0)
v(z,0) Oz

, having as solution:

v (2,0) = K exp (—2% /0 £(s) ds) (2.95)
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The heat equation (2.19) with initial condition (2.25) has the following
solution [78] [95]:

\/415?/ OOexp (—%) v (y,0) dy (2.26)

It becomes apparent that the zeros of the heat equation correspond to
singularities of the Burgers equation [139]. Finally, the solution for Burgers
equation (2.23) is:

v(z,t) =

[T (@ —y)exp (—(x;;i) — 55 J5 f(s) dS) dy
u(x,t) = (2.27)
+00 (z—y)*> 1 vy
tf . exp <_ o 2o [ (s) dS) dy

This transformation rules out stochastic behavior, and exclude, in prin-
ciple, Burgers equation for modeling of turbulence.
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3.1 Adomian’s decomposition method

Adomian’s method has been applied to solve and to obtain formal and
approximate solutions to a wide class of problems, arising from Physics,
Chemistry, Biology or Engineering. For both linear and nonlinear problems,
Adomian’s decomposition method allows one to obtain an exact analytical
solution, or when that is not possible, to obtain an approximate solution
with very fast convergence to the actual solution. Also the method does not
need discretization, linearization or perturbation theory to be applied [15]
[19] [17] [22].

In this chapter, a description of Adomian’s method and its convergence
is present, followed by two sections where two different applications of Ado-
mian’s method are studied. The first study concerns an application to non-
linear equations, where a efficient iterative method to solve these kind of
equations is constructed. The second one concerns the numerically improve-
ment of the solution of Burgers equation by Adomian’s method.

3.1.1 Description of the method

For the sake of generality it is described the method applied to a nonlinear
differential equation F'u = ¢, where F' represents a nonlinear differential
operator. The technique consists on decomposing the linear part of F' in
L + R, where L is an operator easily invertible and R is the remaining part.
Representing the nonlinear term by N, the equation in canonical form runs

Lu+ Ru+ Nu=g (3.1)

Representing the inverse of the invertible operator L by L™, one gets the
following equivalent equation:

L'Lu=L"'g—L"'"Ru— L 'Nu (3.2)

Being L the operator derivative of order n, L~! represents the n-fold
integration operator. Thus, L™'Lu = u+a, containing a the terms achieving
o
from the integration. We look for a series solution u = »_ u,. Identifying g
n=0
as L™'g — a, equation (3.2) yields:

uw=1uy— L 'Ru— L "Nu (3.3)

The rest of the terms wu,, n > 0, will further be settled by a recursive
relation. The key of the method is to decompose the nonlinear term in the
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(o]
equation Nu, into a particular series of polynomials Nu = > A, being A,

the so called Adomian polynomials. Each polynomial A, de;enods only on the
independent variables and on ug, u1, ..., u,, for each n. Adomian introduced
formulae to generate these polynomials for all kinds of nonlinearities [17] [15]
[19] [22]. It has also been shown that the sum of the Adomian polynomials
is a generalization of Taylor series in a neighborhood of a function wug rather
than a point,

= Z Z (u — )" N™ (ug) (3.4)

tending the general term of the series to zero very fast, as m, due to the
optimal choice of the initial term, for m terms and n order of L [69] [22].

Substituting v = > u,, and Nu = ) A, into equation (3.3) one gets:
n=0

n=0
Zun = Ug —L’lRZun—Lflen (3.5)
n=0 n=0 n=0
To determine the components w, (z,t), n = 0,1,2, ..., one employs the

following recursive relation:

Uy = —L_IR Uy — L_le
U9 = —LilR uy — LilAl

Upir = —L'Ru, — L7'A, (3.6)

Adomian polynomials were formally introduced by [15] [17] [19] [68] [6]

as follows:
A, (ug,uqy ..y uy) = [d/\” (Z )\‘uz>] . (3.7)

This formula is achieved by introducing, for convenience, the parameter
A, and writing

= i Ay, (3.8)
n=0

[e.o]

N(u(\) =>4, (3.9)

n=0
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Expanding in a Taylor series N o v in a neighborhood of A = 0 one gets

N =Y & %N won| a0

:Z;v S <Z)\u>] A" (3.10)

From the previous equation, equation (3.7) follows immediately.

Practical methods have been developed for the calculation of Adomian’s
polynomials A, [6] [8] [10] [9]. The next theorem [6] [64], allows the infinite
series representing the Adomian’s polynomials A, to be substituted by a
finite sum, fact that allows its computation.

Theorem 5: Adomian’s polynomials A, may be computed by the formula

A, = [d)\" (Z Au>] g (3.11)

For systems of differential or algebraic equations, the nonlinear terms N,

may be of the form N = N (v, v, ..., vk, ...), Vx = D, Ug;. From a similar way
i=0

[64], the Adomian’s polynomials can be calculated through equation (3.12).

1 i . i
An: m d)\n <Z/\ulZ’ZAu%’.”’;)\uki’.”)

1 ; oL
ol d/\n (Z)\ul“z)‘qua'“a;)\ukiam> (3.12)

d =0

4 =0

The polynomials may also be computed with the formulae expressed by
equations (3.13) and (3.14) [6] [8],

(a1—a2) (an—1—an) an
B (o) Uy | Un
An (Uo,ulg...gun) - Z N (’LLO) (Ckl _&2)! (Oénfl —Ckn)‘ Ckn!’

al+...fap=n
a1>ag>...>an

(3.14)
n>1 (3.15)
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or by expressing the series solution as a function of the first term of the series
that is always known [§]

Au(u) = 3 Capannn IV ()] 7 [N (ug)] 2 -

al+...fap=n
arZaz>...>an

.. [N(n—l) (uo)}anfl_a" [N(n) (uo)}a” ., n>1

(3.16)
where
Ca1,a2,...,an
n!
(g — ) (g — o)l (1) — D) (4 1 — )
(3.17)

Generalizations of these formulae to polynomials on several variables may
be consulted in [10].

A technique to calculate Adomian’s polynomials by using only algebraic
operations, trigonometric identities and Taylor series was introduced by [275].
The application of this algorithm with the Mathematica software may be
consulted in [71].

3.1.2 Convergence of Adomian’s method

One important observation is that the series solution of Adomian’s de-
composition technique usually converges very fast to the exact solution, if
one exists, and to one of the solutions, if several exist, tending the general

term of the series solution to zero very fast, as —;, for m terms and n order

mn)!?
of L [69] [22]. o

The convergence of Adomian’s method has been subject of investigation
by several authors [66] [70] [68] [6] [7] [100] [8] [10] [69] [36].

Following Cherruault [66], the Adomian’s decomposition method applied
to the functional equation u = f + N (u), where N is a nonlinear operator
from a Hilbert space H into H and f is a given function in H, is equivalent to
determining the sequence (S,,), = (u1 + ug + ... + u,),, by using the iterative
scheme S, 11 = N (up + Sp), So = 0, which converges if N is a contraction.
This scheme may be associated with the functional equation S = N (ug + S),
which, in turn, is susceptible of being solved by Adomian’s technique.

Abbaoui and Cherrault [8], with new formulae for calculate the Adomian’s
polynomials used in decomposition method, gave a proof of convergence of
the Adomian’s decomposition technique applied to the functional equation
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u = f + N (u). Following Abbaoui and Cherrault [8], one has the following
results:

Theorem 6: If N € C* in a neighborhood of ug and ||[N™ (ug)| < M,
Vn € N (the derivatives of N are bounded in norm in a neighborhood of
up), and if |lu;|| < M, i = 1,2,..., where ||-|| is the norm in the Hilbert

space H, then the series > A, is absolutely convergent and, furthermore,
n=0

1AL < MM exp (m /gn)

Theorem 7: If N € C*° in a neighborhood of u, and HN(") (uO)H <M <1,

Vn € N | then the decomposition series » u, is absolutely convergent and,
n=0

fusthermore, [t = .| M+ exp (y 3n)

The following results are due to Cherruault [66] and Mavoungou and
Cherruault [198]. Consider the Hilbert space H, defined by H = L* ((a, 3) x [0, T]),
the set of applications:

uw: (a, ) x [0,7] — R with / u?dsdr < +o0 (3.18)
(a,8)x[0,T]

and the scalar product
(w,v)y = / uv dsdr < 400 (3.19)
(a,8)x[0,T]
and the associated norm
w3, = / udsdT < +o0 (3.20)
(a,8)x[0,7]

Consider the differential equation
Lu+ Ru+ Nu=g (3.21)
with
Tu= Ru+ Nu (3.22)

Consider the following hypotheses:
(Hy) There exists a constant k& > 0, such that for every u,v € H, the
following inequality holds (T (u) — T (v),u—v) > k||u — v||>
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(Hy) Whatever may be M > 0, there exists a constant C' (M) > 0, such
that for every u,v € H with ||u|| < M, ||v]] < M, one has (T (u) — T (v) ,w) <
C (M) ||u— vl [Jw|| for every w € H

If the above hypotheses are satisfied, the Adomian’s method is convergent
according to [66] [198].

Other results of convergence are described in the literature. Sufficient
conditions to obtain convergence of Adomian’s method were presented by [11]
[123]. In the work of [213], sufficient conditions of convergence for Adomian’s
technique applied to algebraic equations were put forward. Convergence of
the Adomian’s method applied to linear and nonlinear diffusion equations
(partial differential equations) were proved by [211].

3.2 A new iterative method to compute nonlinear equations

One of the most and generalized process to find accurate roots of nonlinear
equations is the Newton-Raphson iterative method [231] [113], a method with
quadratic convergence. Alternatively, other well known methods of higher
order, the Householder [127] and the Halley [62] methods, methods with
cubic convergence, can also be used. One of the applications of Adomian’s
decomposition method is to solve these kind of equations. It has been proved
that this method leads to accurate solutions [7] [213]. However, in spite
of Adomian’s series be in most cases a rapid convergent series, the method
applied to nonlinear equations does not seem very efficient to be a generalized
method to solve nonlinear equations.

In this section one constructs a new efficient iterative method to solve
nonlinear equations [40]. This method behaves better than the Adomian’s
decomposition one and equally or better than other methods derived from
Adomian’s technique or other usual methods. The convergence of the new
scheme is proved and at least the cubic order of convergence is established.
Several examples are presented and compared to other methods, showing
the accuracy and fast convergence of this new method. Also, it is shown
that the modified Adomian’s method developed by Babolian and Biazar [33]
to solve nonlinear equations should be slightly modified, due to the fact
that convergence of Adomian’s method does not ensure convergence of the
modified method. An example illustrates this fact, which, unlike what is
claimed by the authors, does not converge with their method, but with a
simple different choice of the zero component becomes convergent.

Adomian’s technique applied to nonlinear equations, consists, in the first
place, in transforming the equation f (z) = 0 into the canonical form

r=ux9+ F(x) (3.23)
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where z( is a constant and F' a nonlinear function. The solution is given in
a series form, running:

T = i T, (3.24)
n=0

Identified zq, the rest of the terms x,, n > 1, will further be settled by
a recursive relation. The nonlinear function F'(z) is decomposed into the
following particular series of polynomials:

F(x)= iAn (3.25)

A, being the so called Adomian polynomials. For each n, the polynomial

A, depends only on xq, z1, . .., x,. Adomian introduced formulae to generate

these polynomials for all kind of nonlinearities [15], [17], [19] and [22].
Substituting equations (3.24) and (3.25) into equation (3.23) gives rise

to:
Y an=a+ Y A, (3.26)
n=0 n=0

To determine the components x,, n = 1,2, ..., one employs the recursive
relation:

Practical methods for the calculation of Adomian’s polynomials A,, have
been developed and published in the open literature [6], [8], [10], [9] and [64].

Following Cherruault [66] and Babolian [33], the Adomian’s decompo-
sition method applied to equation (3.23), is equivalent to determining the
sequence (S,), = (#1 + 22 + ... + x,),, by using the iterative scheme:

So=0

On the other hand, the associated functional equation S = F'(zg + 5),
can be solved by Adomian’s decomposition method.

Babolian [33] proposed a modification of Adomian’s method in order to
increase the order of convergence of the solution obtained by application of
the Adomian’s method to the nonlinear equation (3.23). Instead of solving
the nonlinear equation (3.23), one can solve the following functional equation:
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making recourse to the following scheme:
so=0 (3.30)
Sni1 = Apn (S0, 8155 Sn) (3.31)

and obtaining an approximation to the solution of equation (3.29) given by

a truncated series Y s, which in turn supplies an approximation to the

k=0
n

solution of the equation x = xy + F (z), given by zo + > s.
k=0
To improve the order of convergence of the sequence (5,), as given by
[32], instead of solving equation (3.29), Babolian and Biazar [33] proposed

the following equation for the S* solution of equation (3.29):
—F'(xg+S*) S+ F(x0+ 5)
1—F (Io + S*)

based on the fact that G’ (zg + S*) = 0. Equation (3.32) was obtained by
adding —F" (xo + S*) S to both sides of equation (3.29). Because one does
not possess the solution x = xy + S* of equation (3.23), Babolian and Biazar
[33] proposed an approximation, by choosing x & .

It should be noted at this point that it is known the sensitivity of Ado-
mian’s method on the zero component [8] [11] [47], and the method may fail
when this zero component drives the solution to a divergent series. Also,
equations (3.29) and (3.32) are different and, therefore, for the same start-
ing value sg, one can converge and the other diverge. Besides, if one solves
equation (3.29) or (3.32) with Adomian’s decomposition method, it may fail
because the series of solution has small convergence radius. Thus, concerning
the above statements, an application of Adomian’s method to the equation
(3.29) or (3.32) should start with a point close enough to the real solution.

To illustrate this, one recalls the first example presented by [33]

2} 4r* +824+8=0 (3.33)

In opposition to that claimed by the authors, the application of Adomian’s
method (3.30) and (3.31) to equation (3.32) fails for so = 0, because the series
obtained is divergent.

Writing equation (3.33) in canonical form as done by [33],

2 a2

=1 - 3.34
x 7 "3 (3.34)

and applying the scheme expressed by equation (3.32), one obtains:

)
o ((5*—1)+§(S*—1)2)5—%(5—1)2—%(5‘”3 (3.35)
L+ ((S* = 1)+ 2(5* - 1))
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Following [33], and choosing S* — 1 ~ —1, the functional equation (3.35)

becomes . 4 .
=S ——(S—-1P°-=(S-1)° .
S 35 3(5 ) 3(5 ) (3.36)

n
Figures 3.1 and 3.2 show the truncated series solution zo+ > s; obtained
k=1
as a function of the number of iterations n, by applying Adomian’s method to

equation (3.36) with so = 0. As it can be seen, Babolian’s method diverges, in
spite of the fact that, after one iteration, the correct solution of the equation

(3.33), © = z9 + s1 = —2 has been reached, as claimed by the authors in
their work [33].
If one takes the real value of S* = —1, the functional equation (3.35)
becomes 1
S=-85—(S—-1)°— yiChs 1) (3.37)

The solution of such equation also diverges, although more slowly, as it
can be seen in figure 3.3.

As it has been mentioned above, to obtain the real solution one should
modify equation (3.36), so that the zero component sy has a value closer to
the exact value S* = —1. Adding and subtracting sy = a to equation (3.36),
the following equation is obtained:

1

5 4 2 3
S=—85—-—-F-1)"—-(5-1 — 3.38
S-S (S—1P-3(5-1+a—a (339)
The principle of increasing the order of convergence maintains and a con-
vergent series can be reached. Figure 3.4 shows the result for a = —%.

3.2.1 The method

An algorithm based on Newton-Raphson method and Adomian’s decom-
position method was presented by [12]. Considering the nonlinear equation
f(z) =0, and writing f in limited Taylor expansion around z, one obtains:

f(x+h)=f(x)+hf (z)+ h;f” (z) + O (h?) (3.39)
Supposing f’ (x) # 0, one searches for a value of h such that
2
f(x—l—h)zozf(x)—i-hf'(x)—i-%f”(x) (3.40)

This is equivalent to saying that one looks for the following h value:

_f@) ()
frx) 2 f(x)

h = (3.41)
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Fig. 3.1: The truncated series solution of equation (3.33), by Babolian’s method,
as a function of 0 < n < 10.
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Fig. 3.2: The truncated series solution of equation (3.33), by Babolian’s method,
as a function of 0 <n < 20.
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Fig. 3.3: The truncated series solution of equation (3.33), by Babolian’s method
with the correct value of S*, as a function of 0 < n < 100.
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Fig. 3.4: The truncated series solution of equation (3.33), by adding and subtract-

ing to Babolian’s scheme %, taking so = —%, as a function of 0 < n < 30.
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h=c+N(h) (3.42)

where ¢ = — J{c/((“;)) is a constant and N (h) = —%?,/((j)) is a nonlinear function.
Abbasbandy [12] applied Adomian’s decomposition method to approximate
the value of h, obtaining a new scheme.

Applying equation (3.32) to equation (3.43), equation (3.44) is obtained

S=N(c+59) (3.43)
N (c+S5)S+N(c+5)
5= 1—N'(c+ S (3.44)

For z close enough to the real solution of f(z) = 0, S* ~ 0. Applying
Adomian’s method to equation (3.44) with ¢ 4+ S* = ¢, one obtains:

2 g x
Lol perre o
B T el -y s @@
S1 — AO (347)
A =0 (3.48)
89 = (3.49)

After two iterations, one gets for h:

f(x) f @)]° " (x)

h— - _ — 3.50
TR el @
The new iterative method is then constructed and given by:
il = Ty — — 3.51
Tnkt = I (In) 2 [f, (In)]:s —2f (In) I’ (xn) I (In) ( )
3.2.2 Convergence analysis
Consider the iteration function g as expressed by equation (3.52).
2 e
g@)—a— L (z) f (@)]" " () (3.52)

@) 20 @) —2f (@) f (2) " (x)

The following theorem of convergence holds:
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Theorem 8: Let z* be a solution of the equation f(x) = 0, f € C3. If
f'(z*) # 0 then there exists an interval I containing z* such that for zo €
I, the iterative scheme (3.51) converges to the only solution of f(z) = 0
belonging to I.

Proof:

The statements f (z*) =0, f'(2*) # 0 and f € C® imply that g (z*) = z*
and ¢ is continuous differentiable in x = z*. Fulfilling some easy computa-
tions the following result is reached: |¢’ (z*)| =0 < 1.

So, one concludes that there exists an € > 0 such that for z € (z* — ¢, 2" + ¢),
l¢’ (z)] < 1, and, by the Fixed Point Theorem, the iterative scheme z, 1 =
g (x,) converges to the unique solution in that interval.

End of proof.

Definition 9: Let e,, = z* — z,, be the truncation error in the n'” iterate. If
there exists a number p > 1 and a constant ¢ # 0 such that

lim el _ (3.53)

n—oo ’en’p

then p is called the order of convergence of the method.
The following theorem holds:

Theorem 10: Consider the nonlinear equation f (z) = 0. Suppose f € C° .
Then, for the iterative method defined by equation (3.51), the convergence
is at least of order 3.

Proof:
Consider equation (3.52)

f@ [f (@) " (x)
fr@) 20 (@) —2f (2) £/ (z) f (x)

Executing some computations one gets to the following derivatives:

g(e)=x

g (@) =g"(")=0 (3.54)

and

(3.55)



3. Adomian’s Decomposition Method 65

From Taylor limited expansion of ¢ (x,,) around x*, one gets, for min (z,,, *) <
&, < max (z,,x*) the following relation:

Tpi — 2" =g (z,) — g (2%)

g// (:L,*) 2 g/// (gn)
(T, — %) + 5

(Tn — I*)3

that, according to equation (3.54) and for x,, # x*, is equivalent to:

rer =2 g" ()
(zn — x*):s 6

(3.57)

The statement f € C° implies that g € C? in the neighborhood of interest
of x = x*. Hence for ¢" (z*) # 0

¥ g”’ <lim fn> (o
T B S UV A C0 R (3.58)

End of proof.

3.2.3 Numerical examples

The examples presented by [12] and [33] are considered in order to par-
allel their results with those obtained with the new proposed scheme. Also,
Newton-Raphson method and Adomian’s method are performed for com-
parisons purposes. The solutions prospected for each example are the ones
indicated below, through examples 7 to 10.

Example 11: 2 + 422 + 82 + 8 = 0 with 2o = —1. The exact solution
prospected is x = —2.

xT

Example 12:  — 2 — e™ = 0 with x5 = 2. The exact solution prospected is

r = 2.120028239.

Example 13: 22 — (1 — x)5 = 0 with g = 0.2. The exact solution prospected
is x = 0.345954816.

Example 14: e* — 322 = 0 with 2y = 0 for Adomian’s and Babolian’s meth-
ods and = = 0.5 for the remainder. The exact solution prospected is © =
0.910007573. With zy = 0, the exact solution prospected for Newton-
Raphson, Abbasbandy and new iterative method (3.51), is x = —0.458962268.
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Tab. 3.1: Number of iterations and solution obtained by the different methods.

The exact solution prospected is x = —2.

Method Example 11

Number iterations  Obtained solution
Newton-Raphson 1 —2.000000000
Adomian slow convergence
Babolian divergence
Abbasbandy 2 —2.003987741
New method (3.51) 3 —2.000100903

Tab. 3.2: Number of iterations and solution obtained by the different methods.
The exact solution prospected is z = 2.120028239.

Method Example 12

Number iterations Obtained solution
Newton-Raphson 3 2.120028239
Adomian 6 2.120013306
Babolian 4 2.120016168
Abbasbandy 2 2.120028239
New method (3.51) 2 2.120028239

Tab. 3.3: Number of iterations and solution obtained by the different methods.
The exact solution prospected is z = 0.345954816.

Method Example 13

Number iterations Obtained solution
Newton-Raphson 3 0.345953774
Adomian 10 0.340622225
Babolian 5 0.346021366
Abbasbandy 2 0.345954646

New method (3.51) 2 0.345952189
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Tab. 3.4: Number of iterations and solution obtained by the different meth-
ods for the starting point o = 0. The exact solution prospected is
x = 0.910007573. (*)For Newton-Raphson, Abbasbandy and the new
iterative method (24), the starting point is g = 0.5.

Method Example 14

Number iterations Obtained solution
Newton-Raphson(*) 4 0.910007662
Adomian 10 0.904938647
Babolian 6 0.903257054
Abbasbandy (*) 4 0.910007573
New method (3.51)(*) 3 0.910007573

Tab. 3.5: Number of iterations and solution obtained by the different methods,
for the starting point g = 0. The exact solution prospected is z =

—0.458962268.
Method Example 14
Number iterations Obtained solution
Newton-Raphson 5) —0.458962274
Abbasbandy 5 —0.458964191
New method (3.51) 2 —0.458992962

The results, similar to the ones presented in [12], are presented in tables
3.1 to 3.4.

The values for the number of iterations and corresponding solution, ob-
tained by Adomian’s method for the example 11, are not presented, due to
the very slow convergence exhibited when the zero component is xqg = —1,
as it is clearly shown in figure 3.5. Choosing a value of z( closer to the real
solution z* = —2 (by adding and subtracting a constant to the equation),
one would have an improvement on the rate of convergence.

Also, for example 14, the start value for Newton-Raphson and Abbas-
bandy method must not be zy = 0 in opposition to the statement of [12],
because iterations converge to the negative root x = —0.458962268 for that
start point. Table 3.5 presents a comparison between these two methods and
the new proposed iterative method (3.51) starting at zo = 0.

Figures 3.6 to 3.10, show the evolution of the solution in terms of the
number of iterations n.

As it can be seen from these examples, the new iterative method (3.51)
exhibits equal or faster convergence to the exact solution than the other
compared methods, exception made for example 11 where the solution is
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Fig. 3.5: Solution obtained by Adomian’s method applied to example 11, in terms
of the number of iterations 5 < n < 100, evidencing the slow convergence.

.............................

Newton
_________ Abbasbandy
N Adomian
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Fig. 3.6: Comparison between the solutions obtained for the different methods,
applied to example 11, in terms of the number of iterations 0 < n < 10.
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Fig. 3.7: Comparison between the solutions obtained for the different methods,
applied to example 12, in terms of the number of iterations 0 < n < 10.
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Fig. 3.8: Comparison between the solutions obtained for the different methods,
applied to example 13, in terms of the number of iterations 0 < n < 10.
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Fig. 3.9: Comparison between the solutions obtained for the different methods,
applied to example 14, in terms of the number of iterations 0 < n < 10.
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Fig. 3.10: Comparison between the solutions obtained for Newton-Raphson, Ab-
basbandy and the new iterative method (3.51), applied to example 14,
for zg = 0, in terms of the number of iterations 0 < n < 10.
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Tab. 3.6: Number of correct decimals of the positive root of equation (3.59) for
the different methods and for different number of iterations. The golden
ratio is obtained by adding 0.5 to this solution. Starting point is 20 =1

Number of iterations

Method 1 2 3 4 5 6
Newton-Raphson 1 3 6 12 25 51
Householder 2 6 21 63 191 575
Halley 3 10 33 100 304 913
Abbasbandy 2 7 24 73 221 663
New method (3.51) 2 6 21 63 191 575

reached faster by the Newton-Raphson method. But this fact has a simple
explanation. The function f for example 11 has an inflexion point at x = —%,
a point between the exact solution x = —2 and the starting point + = —1.
Purely by chance, the tangent line at x = —1 to the graph of f, intersects
the z-axis at the point corresponding to the exact solution x = —2, and the
exact solution is obtained in only one iteration. For any other value of the
starting point that would not occur and the new method would exhibit a
better performance. The new method is also of easy computation, revealing
among the compared methods, the best alternative to the Newton-Raphson
one to solve nonlinear equations.

Next, a comparison with other well known methods of higher order, the
Householder [127] and the Halley [62] methods, methods with cubic conver-
gence, is performed by computing the Golden Ratio ¢ = 1+—2‘/5 To carry out
this comparison, the positive root of the following equations is prospected by
different methods, and the number of correct decimals is calculated:

L2y (3.59)
22 5 '

L | (3.60)

The results are shown in tables 3.6 to 3.9, where Newton-Raphson and
Abbasbandy methods are also included, this last one due to its cubic order
of convergence.

As it can be seen the new iterative method (3.51) behaves quite well, and
its high order of convergence is patent.

The computations associated with the examples discussed above were
performed by using the software Maple.
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Tab. 3.7: Number of correct decimals of the positive root of equation (3.59) for
the different methods and for different number of iterations. The golden
ratio is obtained by adding 0.5 to this solution. Starting point is 0 = 1.5

Number of iterations

Method 1 2 3 4 5 6
Newton-Raphson 0O 0 2 4 8 17
Householder 0 1 6 18 55 165
Halley 1 6 21 67 202 608
Abbasbandy 0 2 7 21 64 194
New method (3.51) 0 3 10 30 92 278

Tab. 3.8: Number of correct decimals of the positive root of equation (3.60) for
the different methods and for different number of iterations. Starting

point is z0 = 1.1

Number of iterations

Method 1 2 3 4 5 6
Newton-Raphson 0O 1 3 7 16 32
Householder 0O 1 6 19 60 181
Halley 0 4 13 41 125 378
Abbasbandy 0 2 10 44 177 712
New method (3.51) 1 7 32 132 532 2132

Tab. 3.9: Number of correct decimals of the positive root of equation (3.60) for
the different methods and for different number of iterations. Starting

point is z0 = 2

Number of iterations

Method 1 2 3 4 5 6
Newton-Raphson 1 2 6 12 26 52
Householder 1 5 18 57 172 519
Halley 1 6 21 67 202 608
Abbasbandy 2 9 41 165 663 2652
New method (3.51) 2 12 52 213 855 3423
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3.2.4 Further developments

Other iterative methods may be constructed either by conserving more
terms in the series solution obtained by Adomian’s modified method, or by
considering Taylor expansions of higher order for f, or both.

Now, considering Taylor expansion as expressed by equation (3.39) and
conserving one more term in the series solution obtained by Adomian’s mod-
ified method, the following result are obtained:

W @) ) e 52
2[f" (@)]" = 2f () ' (z) f" ()

A1 = O, SS9 = 0 (363)

4 — [ (@) [f ()] o= A, (3.64)

8 () [[f' (@) = £ (2) f ()]

After three iterations, the following expression is obtained:

h =c—+ s1 + s9 + s3
f (x) [f ()] 1" ()

@) 20 @)P —2f () £ (x) £ (2)
[ (@) [f ()]

- . (3.65)

81" () [[f (@)]” = f" () f (x)]

The iterative method is then constructed, given by:
) [ ()l 17 ()
n+1 n
Fwn) 20 (@)’ = 2f (20) ' (2a) F" (22)
" 3 4

i el ) 566)

8 (wn) [If (@a)]” = 1" () f (20)]
Consider the iteration function g associated to (3.66). One has ¢’ (z*) =
g" (z*) =0 and ¢" (z*) = —J;:/(Ef:)), where z* is the solution of the equation

f(x) =0

If one more term in Taylor expansion is conserved,

f(z+h)=f(x)+hf (z)+ h;f” (z) + %Sf’” (z) + O (k") (3.67)



3. Adomian’s Decomposition Method 74

Applying Adomian’s modified method described above, one gets:
s0=0 (3.68)
[f @B (@) [ (x) = " () f ()]

Ayg = 3 o7 S1 = Ag
3f'(z) [=2 [f (@) + 21" (2) f' () f (z) = f (2) [f (2)]]
(3.69)
Al = O, Sg = 0 (370)

After two iterations the iterative method is constructed and given by
_ f (zn)
Tp+1 = T f, (an>
[f (@)]” B (wn) £/ (wn) = " (wn) [ ()]

i 3f' (zn) [_2 Lf! (xn)]g + 2 7 (wn) [ (wn) f (20) — f7 (20) [ (xn)]2
(3.71)

Considering the iteration function g associated to equation (3.71), one
has g/ (l‘*) _ g// (ZL‘*) — 0 and g/// (l‘*) -3 (J}','((;E:))>2 o 2f”/($*)f[}(,iz;l')f']g’[f”(iv*)]Q +
21;7((;”:)), where z* is the solution of the equation f (z) = 0.

For the above description, the order of convergence for both schemes
(3.66) and (3.71), appears not to increase. Also, it is clear that they bring
about much more computations, appearing to evidence not to have advan-
tages over the new iterative method (3.51), which has already proved to be
very efficient.

Summing up, in this section an efficient iterative method to solve nonlin-
ear equations was built up. The convergence of the scheme has been proved
and the order of convergence established. The algorithm exhibits at least a
cubic convergence, and, illustrated by some examples, the performance has
been compared with other methods and showed that it behaves equally or
better than them. Among the methods derived from Adomian’s technique,
this new method exhibits one of the best performance and also reveals to be
a very good alternative to other methods, such the Newton-Raphson or the
Householder and Halley methods.

3.3 Numerical study of modified Adomian’s method applied
to Burgers equation

Finding explicit solutions to nonlinear differential equations is of funda-
mental importance to fully understand the problem under analysis. Ado-
mian’s decomposition method appears as a useful tool to find analytical or
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approximate solutions to many problems. The advantages of the method are
almost always emphasized in the literature. However, some embarrassments
may appear that are not quite stressed. The good results presented include
exact Taylor series solutions identified from the truncated series. This is
achieved either because it is easy to identify the exact solution from the
truncated series or because the real solution derived by other methods is
known in advance [291] [145] [147] or because the presence of the so called
noisy terms [269] [145] [147]. Otherwise, it would not be so straightforward
the finding of such closed form solutions. Moreover, the series solution may
have small convergence radius and the truncated series solution may be in-
accurate in some regions, as described by [132] [65] [93] [4] [5].

Therefore, when the series solution given by Adomian’s decomposition
method applied to differential equation does not allow the identification of
the exact analytical solution, the use of truncated series becomes necessary.
To overcome the possible small convergence radius exhibited by Adomian’s
series solution, Padé approximants (PAs) to the Adomian’s series solution
have been tested and applied to ordinary differential equations [29] [274] [273]
[132] and more recently to partial differential equations [4] [5]. Also, a piece-
wise solution technique, the multistage Adomian’s decomposition method
(MADM), a technique that consists in dividing the solution space into re-
gions, was applied to try to bypass the small convergence radius of Adomian’s
series solution [65] [93].

In the present section, Padé approximants, both in x and t directions,
are implemented to the series solution given by Adomian’s decomposition
technique applied to nonlinear partial differential equations, in particular
to Burgers equation. Numerical and graphical illustrations show that this
technique can improve the accuracy and enlarge the domain of convergence
of the solution, even when the actual solution cannot be expressed as the
ratio of two polynomials. There is however a disadvantage on using Padé
approximants applied to the series solution of partial differential equations.
When the real solution is not obtained by the use of Padé approximants,
which means that the real solution is not a rational polynomial function with
respect to the variable considered in the Padé approximation or the order
of the Padé approximant used is lower than the one of the real solution,
inaccurate solutions near its poles can occur.

Another way of trying to overcome the limitations of the small conver-
gence radius of Adomian’s method, which has not yet been tested, would be
to develop a time analytical and spacial numerical method, approximating
the spatial derivatives by finite differences and then solve analytically the
resulting set of ordinary differential equations by applying Adomian’s de-
composition method and Padé approximants or by applying the multistage
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Adomian’s decomposition method (MADM). However, it is shown in this
section, that the application of Adomian’s method to the ordinary differen-
tial equations set arising from the discretization of the spatial derivatives by
finite differences, the method of lines, may reduce the convergence domain
of the solution’s series [43].

3.3.1 Convergence

The convergence of Adomian’s method was deeply investigated by several
authors [66] [70] [198] [68] [6] [7] [100] [8] [10] [69] [36].

Consider the Hilbert space H = L? ((o, 3) x [0,T]) defined by the set of
applications

u: (o, ) x[0,7] = R with / u? (s,7)dsdr < 400 (3.72)
(@,8)x[0,]

Consider the differential equation
Lu+ Ru+ Nu=g (3.73)

with
Tu= Ru+ Nu (3.74)

As already stated, if the following hypothesis are satisfied, the Adomian’s
method is convergent [66] [198] [199]:

(Hy) (T (u) =T (v),u —v) > kllu—v|? k>0, Vu,v € H

(Hy ) VM >0,3C (M) >0:ul| <M, |v]| <M= T (u)—T@),w) <
C (M) |lu—v|flwl, VweH

These hypothesis applied to Burgers equation can be verified using the
same scheme of proof of [198] [199] [211] [147] [148].

Theorem 15 (sufficient condition of convergence): The Adomian’s decompo-
sition method applied to the Burgers equation

ou ou 0%

— =—u—+0— 3.75

o~ “or oz (3.75)
without initial and boundary conditions, converges towards a particular so-
lution.

Proof:
For the equation (3.75) let Lu = 88—’;, Ru = ug—g and Nu = —622772‘. One
has then: 5 e
Tu=u2l — 522 (3.76)
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This operator 1" is hemicontinuous.
Verification of hypothesis H;:

ou Ov 0?
T(u)—T ()= (u% - v%) - 5—(9:1:2 (u—0)
10 ., 5 0?

= (—6aa—;(u—v),u—v) +% (% (u2—u2),u—v) (3.78)

In addition, there exists a, ¢ > 0 such that :

92
(—w (u—v),u—v) > allu — v (3.79)
0
(% (v — %), u— v) <ollutv||lu—v|* <2Mo |ju—ov||>  (3.80)
where |Jul] < M, |jv]| < M.
Therefore
(T (uw) =T (v),u—v) > (ad —2Mo) ||u — v| (3.81)

Setting k = ad — 2Mo (with ad > 2M o), hypothesis H; is verified.
For hypothesis H:

19,4, D2
iﬁ_(u —v)—éﬁ(u—v),w)

(% (u2—v2),w) +5(—§—;(u—v)aw)

being C' (M) = M + § and therefore hypothesis Hy is verified.
End of proof.
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3.3.2 Application of Padé approximants to Burgers equation

Padé approximants are tested herein and applied to the series solution
given by Adomian’s decomposition technique for Burgers equation. Padé
approximations are usually superior to Taylor expansions when functions
contain poles, because the use of rational functions allows them to be well-
represented. One will compute essentially the symmetric Padé approximant,
because the diagonal approximants are the most accurate ones [274]. Nu-
merical and graphical applications illustrate the study.

Consider Burgers equation (3.75) with the following initial and Dirichlet
boundary conditions

u(z,0) =ug (2) (3.83)
u (O7t) = fo (t) I (17t) =h (t) (384)

Following Adomian, the linear operators expressed by equations (3.85)

are defined. 5 5
Li() =5 () Lew()=55() (3.85)

Applying the inverse operator of L, (-) = 2 (), Ly (-) = fot (1) dt’, to
both sides of equation (3.75) one obtains:

9, 0?
u(x,t) = ug (z) + L; ! (—ua—z + 56—3:;) (3.86)

According to Adomian’s method, one assumes that the unknown function
u (x,t) can be expressed by an infinite sum of components of the form,

w(z,t) = un(z,t) (3.87)

and the nonlinear term u% into the following infinite series of Adomian’s

polynomials:

a o
uze =34, (3.88)
Substituting equations (3.87) and (3.88) into equation (3.86) one obtains:

Zun =g (z) + L; ! <566—;Zun—ZAn> (3.89)
n=0 n=0 n=0

To determine the components of w, (z,t), n =0,1,2,..., Adomian’s tech-
nique can employ the recursive relation defined by:
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uy = o () (3.90)
B

Uy = Lt 5@710 - AO (391)
P

Uy = Lt (5?161 — A1 (392)
82

U, = L;! (5@%_1 — An_l) (3.93)

The Adomian’s polynomials depend on the particular nonlinearity. In
this case, the A,, polynomials are given by:

0
AO = an—mUO (394)
0 0
Al = an—mul + UIa_l‘uo (395)
Ay = tto Dy 4 ur Dy + up - (3.96)
2 = U amUQ (VA1 axul U9 amUO .
0 0
A3 = an—xU;), + Ula—xﬂa + UQa—xul + U@,%UO (397)

Applying Adomian’s decomposition method in the x direction

w(z,t) = u(0,t) +x ai 0,¢) + ng BQ: —i—u%} (3.98)
with L} (-) =[5 do’ foxl (-)dx”. The series solution is given by:
iun u (0, t)+x§u(0t +6Lm (a Zun+ZA> (3.99)
n=0 ¢
To determine the components of w, (z,t), n =0,1,2, ..., Adomian’s tech-

nique can define the following recursive relation:
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ou
= — 1
up = u(0,t) + o (0,1) (3.100)
1 [0
1 [0
Uy = EL;; Eul + Al] (3.102)
1 [0

In the following examples the truncated series solution ¢,, (z,t) = > uy (x,t)
k=0

is considered.

Example 1
Consider Burgers equation (3.75) with the particular initial and Dirichlet

homogeneous boundary conditions given by:
ug (x) = sin (7x) (3.104)
u(0,t) =u(1,t)=0 (3.105)

The exact solution is given by [78]:
AT 3 kI, (555) sin (kmwz) exp (—k*7%0t)
k=1

u(z,t) = - (3.106)
Io (5%5) +2 kz_:l Ik (5%5) cos (kmx) exp (—k>w26t)

being I the modified Bessel functions of first kind.
Consider 6 = 1. For such § one can find, as an illustrative example, the
first four terms of the Adomian’s series solution:

ug =sin (mx)

uy = —sin (rx) (r+cos(wx))nt
1
Uz =5 sin (7 z) (7° + 6 cos (ra) m+ 3 (cos (m z))? — 1) 7
1
up == sin (7 x) 7°t* [28 7% cos (m2) + 7 — 157

+51 (cos (7 x))* 7 + 16 (cos (7 z))* — 10 cos (7 z)]
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Fig. 3.11: Example 1: Results obtained for the exact solution (dashed line) and
the one obtained by application of Adomian’s method (solid line) with
n = 10.

Figures 3.11 and 3.12 show the results for the exact solution and the one
obtained by application of Adomian’s method with n = 10 and n = 14.
Figure 3.13 shows the three-dimensional plot for the solution obtained by
Adomian’s method for n = 20. One can see that the solution diverges for
values of ¢ greater than a value elsewhere between t = 0.03 and ¢ = 0.04.

Figures 3.14, 3.15 and 3.16 show the results for the exact solution and
the one obtained by application of Padé approximants [5/5], [5/4] and [7/7]
to Adomian’s solution. Figure 3.17 show the three-dimensional plot for the
solution obtained by a [7/7] Padé approximant.

Tables 3.10 and 3.11 show the errors (difference between the exact solution
and the approximate solution) for the solution given by Adomian’s method
with n = 14, and for the solution modified by Padé approximant [7/7].

The more accurate solution and the improved region of convergence is
patent by using Padé approximants. However, a drawback of using Padé
approximants that can be clearly seen in figure 3.14 and also in figure 3.16,
occur due to the existence of poles in the rational approximation.
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Fig. 3.12: Example 1: Results obtained for the exact solution (dashed line) and
the one obtained by application of Adomian’s method (solid line) with

n = 14.

Fig. 3.13: Example 1: Three-dimensional plot for the solution obtained by Ado-
mian’s method for n = 20.
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Fig. 3.14: Example 1: Results obtained for the exact solution (dashed line) and the
one obtained by application of a Padé approximant [5/5] to Adomian’s
series solution (solid line).
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Fig. 3.15: Example 1: Results obtained for the exact solution (dashed line) and the
one obtained by application of a Padé approximant [5/4] to Adomian’s
series solution (solid line).
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Fig. 3.16: Example 1: Results obtained for the exact solution (dashed line) and the

one obtained by application of a Padé approximant [7/7] to Adomian’s
series solution (solid line).

Tab. 3.10: Example 1: Errors, differences between the exact solution and the ap-

proximate solution, given by Adomian’s method with n = 14.

ti\x; 0.05 0.15 0.25 0.35 0.45
0.1 -7.51745E-12  8.46701E-13  4.91018E-12  -4.38956E-12  4.50247E-13
0.2 -1.98818E-07  1.75001E-08 1.35282E-07  -1.15055E-07  6.11515E-09
0.3 -7.30473E-05 5.18810E-06  5.09930E-05  -4.18427E-05  7.06584E-07
0.4 -4.71039E-03  2.75777E-04  3.34633E-03  -2.67247E-03  -2.88965E-05
0.5 -1.17644E-01 5.76254E-03  8.46449E-02  -6.61789E-02  -2.16060E-03
0.6  -1.61678E+00  6.69537E-02  1.17453E+00  -9.02702E-01  -4.54042E-02
0.7  -1.47351E+01  5.19643E-01  1.07855E401  -8.17325E4+00  -5.30109E-01

ti\x; 0.55 0.65 0.75 0.85 0.95
0.1 1.54630E-12  -8.34916E-13  -1.34394E-13  2.16168E-13  1.83671E-14
0.2 4.43314E-08  -2.12349E-08  -5.21332E-09  6.05034E-09  9.07751E-10
0.3 1.70554E-05  -7.46111E-06  -2.35344E-06  2.27028E-06  4.52373E-07
0.4 1.13185E-03  -4.60881E-04  -1.72366E-04  1.47078E-04  3.49075E-05
0.5 2.88133E-02  -1.10676E-02  -4.68945E-03  3.66155E-03  9.79461E-04
0.6 4.01285E-01  -1.46841E-01  -6.84936E-02  4.99722E-02  1.45870E-02
0.7 3.69265E+00  -1.29695E-+00 -6.53125E-01  4.51534E-01 1.40891E-01
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Tab. 3.11: Example 1: Errors, differences between the exact solution and the ap-
proximate solution, given by application of a Padé approximant [7/7]
to Adomian’s series solution.

t\x; 0.05 0.15 0.25 0.35 0.45
0.1  7.72079E-17  4.15110E-16  -4.60375E-15  1.85715E-15  -3.08566E-15
0.2 6.64533E-13  2.97967E-12  4.79233E-11  1.15523E-11  -2.68941E-11
0.3  8.83448E-11  3.53281E-10  2.15023E-09  1.18129E-09  -3.97138E-09
0.4  2.24271E-09 8.27523E-09  3.44407E-08  2.41130E-08  -1.24531E-07
0.5  2.35585E-08  8.18779E-08  2.72689E-07  2.11025E-07  -1.92525E-06
0.6  1.43608E-07 4.76656E-07  1.36455E-06  1.10350E-06  -2.77392E-05
0.7  6.06647E-07  1.94200E-06  4.97574E-06  4.09749E-06  2.09511E-04
0.8 1.97133E-06  6.13120E-06  1.44267E-05  1.19450E-05  1.68476E-04
1.0 1.20971E-05  3.60752E-05  7.51463E-05  6.19395E-05  3.97112E-04
1.5  1.90141E-04 5.37610E-04  9.53013E-04  7.69280E-04  2.52636E-03
2.0  8.60069E-04  2.38495E-03  3.93444E-03  3.15794E-03  7.90138E-03
3.0  3.99455E-03  1.09768E-02  1.71344E-02  1.38859E-02  2.73590E-02
4.0  8.34046E-03  2.29107E-02  3.50999E-02  2.87099E-02  5.12215E-02

t\x; 0.55 0.65 0.75 0.85 0.95
0.1  3.12547E-15  4.52255E-16  -4.48250E-16  -9.95009E-16  -8.52856E-15
0.2 1.51485E-11  2.45257E-12  -2.64229E-12  -8.25245E-12  6.56919E-11
0.3 1.28440E-09  2.10130E-10  -2.48538E-10 -1.00155E-09  3.02544E-09
0.4  2.25029E-08  3.53289E-09  -4.64875E-09 -2.28691E-08  4.31081E-08
0.5  1.73013E-07 2.51916E-08  -3.75399E-08 -2.17176E-07  2.93990E-07
0.6  8.08725E-07  1.06053E-07 -1.83231E-07 -1.21422E-06  1.25877E-06
0.7  2.72097E-06  3.11320E-07  -6.43426E-07 -4.79189E-06  3.94343E-06
0.8 7.26666E-06  6.96330E-07  -1.79757E-06 -1.48379E-05  9.91050E-06
1.0 3.24437E-05 1.73659E-06  -8.88349E-06 -8.77082E-05  4.00941E-05
1.5  3.05102E-04 -2.56678E-05 -1.14953E-04 -1.73076E-03  3.24537E-04
2.0  1.01625E-03 -2.84541E-04 -5.55498E-04 -1.69520E-02  1.02811E-03
3.0 3.04366E-03 -2.95330E-03 -3.65196E-03  6.38294E-02  3.43774E-03
4.0  3.77849E-03 -1.00792E-02 -1.08112E-02  6.11860E-02  6.22718E-03
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Fig. 3.17: Example 1: Three-dimensional plot for the solution obtained by appli-
cation of a Padé approximant [7/7] to Adomian’s series solution.

Example 2

Consider Burgers equation (3.75) with initial and boundary conditions
given by:

u(x,1) =z — wtanh <2—§) (3.107)
0 1 2
The exact solution is
r m T
=2 T tanh <—) 1
u(z,t) P tan 557 (3.109)

This example was worked by [149]. By Adomian’s decomposition method
applied in the z direction, the solution is given by:

1 ou 8u}

0 -1
u(x,t) =u(0,t) + o (0,t) + SL” {E +um (3.110)

being L} (-) = [ da’ fox, (+) da".
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So, as performed by [149] one obtains:

xmw?

uoz%— e (3.111)
uy = % (3.112)
Uy = — % (3.113)
8,.7
uz = % (3.114)
10,.9
= _7211720;1510 (8:115)

The series obtained is the Taylor expansion of the real solution (3.109)
around z = 0.
The expansion of the function tanh (z) being:

™

5 (3.116)

= 47 (47 — 1
tanh (z) = Z BQHWJJQ”_I, lz] <
n=1 :

one gets for the real solution (3.109) expanded in Taylor series around = = 0
the following equation (3.117).

P () = 1o g () () ke
(3.117)

In the previous equation, B, are the Bernoulli numbers. This expansion
coincides with the one obtained by Adomian’s method:

2 4 6

f_ftanh<ﬂ) _rorr ., T o3 T s
t ot 20t)  t 2012 2463t4 2406516
1778 - 31710 9
_ 3.118
t 10320676 72576009007 T (3.118)

Keeping this in mind, one can conclude that the Adomian’s truncated
series solution is only a good approximation for the real solution when |z| <
0t, diverging for all other values of x and ¢. Representing the truncated series
solution by ¢, = >_ wug, the numerical comparison for 6 = 0.1, performed

k=0
by [149] for the truncated series ¢99 given by Adomian’s method with the
analytical solution (3.109) is not accurate. For this value of ¢, one should
have 10z < t and the values taken by those authors were 0.1 <t; < 0.5 and
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Tab. 3.12: Example 2: The true results obtained for the error between the exact
solution and the one obtained by application of Adomian’s method with
n = 20.
ti\xj 0.01 0.02 0.03 0.04 0.05

0.1 2.00000E+4-01  7.03687E+13  1.31303E+421  1.82050E+26  1.74903E4-30
0.2 1.81899E-12 1.00000E+01  2.29652E+4-08  3.51844E+13  3.56543E+17
0.3 3.65567E-20 2.47351E-07  6.66667E+4-00  1.13138E+06  1.22236E410
0.4 1.21644E-25 9.09495E-13 2.71528E-05 5.00000E+00  5.73412E+4-04
0.5 6.76623E-30 5.33595E-17 1.69846E-09 3.31983E-04  4.00000E4-00

0.01 < z; <0.05. Table 3.12 shows the precise results obtained for the error
between the exact solution and the one obtained by application of Adomian’s
method with n = 20, for 6 = 0.1. For the majority of those values one can
see that the solution diverges. In order to be accurate, the values presented
by Kaya and Yokus [149] should obey to the relation max xz; < d mint;, that
is, those authors may have performed their calculations for § > 0.5.
Consider again 6 = 0.1. Figure 3.18 shows the results obtained for the
exact solution and the one obtained by application of Adomian’s method with
n = 20. Figure 3.19 shows the results obtained for the exact solution and the
one obtained by application of Padé approximant [10/10] to Adomian’s series
solution. The results obtained for the error between the exact solution and
the one obtained by application of Padé approximant [10/10] to Adomian’s
series solution are shown in table 3.13. The more accurate solution and the
improved region of convergence is patent by using Padé approximants.

Example 3

Consider once more Burgers equation (3.75) with the following particular
initial and boundary conditions:

T

u(x,1) = (3.119)

x2
1+ e

w(0,8) =0, u(lt)— !

t (1 + \/ieﬁ>

(3.120)

The exact solution, which can be verified by direct substitution in Burgers
equation (3.75), is:
x

t <1 + \/EefTQt>

u(x,t) =

(3.121)



3. Adomian’s Decomposition Method 89

Tab. 3.13: Example 2: Results obtained for the error between the exact solution
and the one obtained by application of a Padé approximant [10/10] to
Adomian’s series solution.

ti\X]’ 0.01 0.02 0.03 0.04 0.05

0.1 -7.80799E-15  -1.08753E-09  -4.15470E-07 -1.63449E-05 -1.99498E-04
0.2 -5.74753E-21  -3.66689E-15  -4.69991E-12  -5.09706E-10 -1.48886E-08
0.3 -9.38304E-25 -1.03846E-18  -2.24700E-15  -3.82994E-13 -1.66668E-11
0.4 -1.65326E-27  -2.34680E-21  -6.73391E-18  -1.49469E-15 -8.24634E-14
0.5 -1.06739E-29  -1.72494E-23  -5.83936E-20 -1.53467E-17  -9.92477E-16

ti\x; 0.06 0.07 0.08 0.09 0.10

0.1 -1.22003E-03  -4.78901E-03  -1.39084E-02 -3.26205E-02 -6.54008E-02
0.2 -1.94092E-07  -1.47243E-06  -7.60301E-06 -2.95326E-05 -9.23204E-05
0.3 -3.11483E-10  -3.28583E-09  -2.29811E-08  -1.18092E-07 -4.77972E-07
0.4 -1.91039E-12  -2.45529E-11  -2.06381E-10 -1.26007E-09  -5.99905E-09
0.5 -2.66083E-14  -3.91240E-13  -3.72707E-12  -2.55932E-11 -1.36165E-10

ti\x; 0.11 0.12 0.13 0.14 0.15

0.1 -1.16485E-01  -1.89345E-01  -2.86389E-01  -4.08878E-01  -5.56990E-01
0.2 -2.43553E-04  -5.61274E-04  -1.15936E-03  -2.18899E-03 -3.83582E-03
0.3 -1.60074E-06  -4.59913E-06  -1.16494E-05 -2.65664E-05 -5.54553E-05
0.4 -2.34166E-08  -7.77501E-08  -2.25780E-07  -5.85883E-07 -1.38180E-06
0.5 -5.90685E-10  -2.16882E-09 -6.93288E-09 -1.97193E-08 -5.07715E-08
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Fig. 3.18: Example 2: Results for t = 0.1, t = 0.2, ¢t = 0.3, t = 04, t = 0.5
and t = 0.6, obtained for the exact solution (dashed line) and the one
obtained by application of Adomian’s method with n = 20 (solid line).

Consider 9 = 0.1. Figures 3.20 and 3.21 show the three-dimensional
results for the solution obtained by application of Adomian’s method with
n = 10 and the one obtained by application of a Padé approximant [3/3] to
Adomian’s series solution. The symmetric Padé approximant correspondent
ton = 101is a [5/5] Padé approximant, but the much too demanding compu-
tation associated to it led one to use instead the less demanding [3/3] Padé
approximant.

Table 3.14 shows the results obtained for the error between exact solution
and the one obtained by application of Adomian’s method with n = 10. The
results obtained for the error between the exact solution and the one obtained
by application of Padé approximant [3/3] to Adomian’s series solution is
shown in table 3.15.

The most accurate solution and the improved region of convergence is
patent by using Padé approximants in spite of the comparison being per-
formed between a [3/3] Padé approximant and the series solution with n =
10. Only for small values of time ¢ and in the neighborhoods of = = 0.8 this
is not true, because of the appearance of poles in the solution near x = 0.8,
as it is shown in figures 3.21 and 3.22.
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Fig. 3.19: Example 2: Results for t = 0.1, t = 02, ¢t = 0.3, t = 04, t = 0.5
and t = 0.6, obtained for the exact solution (dashed line) and the one
obtained by application of a Padé approximant [10/10] to Adomian’s
series solution (solid line).
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Tab. 3.14: Example 3: Results obtained for the error between the exact solution
and the one obtained by application of Adomian’s method with n = 10.

t;\x; 0.1 0.2 0.3 0.4 0.5
0.1 2.43833E-01 2.61487E-01 -1.53871E-01 -4.21187E-01 -9.57961E-02
0.3 5.14780E-03 7.11723E-03 1.86708E-03 -9.74435E-03  -1.25352E-02
0.5 7.61650E-05 1.09543E-04 4.59579E-05 -1.20577E-04 -2.16753E-04
0.7 1.97159E-07 2.88136E-07 1.39259E-07 -2.78553E-07 -5.76015E-07
0.9 8.64972E-13 1.27512E-12 6.60120E-13 -1.13337E-12  -2.53511E-12
1.1 -7.07303E-13  -1.04838E-12 -5.65256E-13 8.78828E-13 2.06821E-12
1.3 -1.05975E-07 -1.57665E-07  -8.73234E-08 1.26589E-07 3.08767E-07
1.5 -2.53072E-05  -3.77535E-05 -2.13128E-05 2.93269E-05 7.34644E-05
1.7 -9.04018E-04 -1.35142E-03  -7.73855E-04 1.02270E-03 2.61537E-03
1.9 -1.28341E-02 -1.92170E-02 -1.11263E-02 1.42377E-02 3.70166E-02
t;\x; 0.6 0.7 0.8 0.9 1.0
0.1 2.59384E-01 2.08289E-01 -5.01249E-02 -1.33354E-01 -4.61523E-02
0.3 3.31525E-03 1.34845E-02 3.18653E-03 -6.41433E-03  -4.46725E-03
0.5 -2.30201E-05 2.22107E-04 1.22349E-04 -9.01966E-05 -1.03979E-04
0.7 -1.59242E-07 5.48580E-07 4.25550E-07 -1.80266E-07 -3.14395E-07
0.9 -9.40572E-13 2.25722E-12 2.11536E-12 -5.71407E-13  -1.45578E-12
1.1 8.89948E-13 -1.74225E-12 -1.84047E-12 3.25633E-13 1.20793E-12
1.3 1.45327E-07 -2.48709E-07 -2.85370E-07 3.25616E-08 1.80701E-07
1.5 3.67200E-05 -5.70584E-05 -6.95540E-05 4.79428E-06 4.28002E-05
1.7 1.36483E-03 -1.97130E-03  -2.51681E-03 8.79493E-05 1.51269E-03
1.9 1.99534E-02 -2.72113E-02 -3.60346E-02 3.06051E-04 2.12348E-02
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Tab. 3.15: Example 3: Results obtained for the error between the exact solution
and the one obtained by application of a Padé approximant [3/3] to

Adomian’s series solution.

t;\x; 0.1 0.2 0.3 0.4 0.5
0.1 -8.60461E-03  -4.13796E-02 -1.79268E-01 -2.61018E-02 2.20208E-01
0.3 -4.73900E-05 -1.66618E-04 -8.16442E-04 -8.71155E-04 1.31269E-03
0.5 -6.84560E-07 -2.13900E-06  -8.94407E-06 -1.08418E-05 8.03014E-06
0.7 -4.94078E-09  -1.44641E-08  -5.37449E-08  -6.72593E-08 2.37770E-08
0.9 -7.70704E-13 -2.16225E-12 -7.37029E-12 -9.34334E-12 1.14841E-12
1.1 3.13951E-13 8.54371E-13 2.72755E-12 3.48157E-12 1.06377E-13
1.3 3.16534E-10 8.41686E-10 2.55197E-09 3.27169E-09 4.60525E-10
1.5 5.71408E-09 1.49182E-08 4.33790E-08 5.57863E-08 1.25124E-08
1.7 3.26833E-08 8.40620E-08 2.36098E-07 3.04354E-07 8.83149E-08
1.9 1.09029E-07 2.76943E-07 7.55334E-07 9.75586E-07 3.35335E-07
3.0 2.69059E-06 6.53941E-06 1.60435E-05 2.08624E-05 1.09247E-05
4.0 9.42320E-06 2.23926E-05 5.19886E-05 6.78483E-05 4.14633E-05
6.0 3.26520E-05 7.56064E-05 1.64632E-04 2.15799E-04 1.53060E-04
t;\x; 0.6 0.7 0.8 0.9 1.0
0.1 2.26184E-01 1.75848E-01 2.57468E-01 -2.01302E-01 -6.01716E-02
0.3 6.15424E-03 1.41896E-02 1.73301E+00 -1.00293E-02 -6.03234E-03
0.5 8.59361E-05 4.13946E-04 -7.93718E-04 -2.41646E-04  -2.11008E-04
0.7 5.15066E-07 4.31281E-06 -3.70338E-06 -1.84955E-06 -1.98855E-06
0.9 6.75362E-11 9.98495E-10 -4.20469E-10  -2.64645E-10 -3.20265E-10
1.1 -2.38213E-11 -8.06939E-10 1.31928E-10 9.47361E-11 1.22714E-10
1.3 -2.13499E-08 1.13939E-05 1.06848E-07 8.33902E-08 1.12384E-07
1.5 -3.49795E-07 1.19630E-05 1.60163E-06 1.32262E-06 1.82453E-06
1.7 -1.84535E-06 3.42814E-05 7.81115E-06 6.71618E-06 9.39248E-06
1.9 -5.74947E-06 7.53380E-05 2.26973E-05 2.01117E-05 2.83473E-05
3.0 -1.11354E-04 6.34877E-04 3.33750E-04 3.21491E-04 4.55076E-04
4.0 -3.45297E-04 1.42551E-03 8.85082E-04 8.79852E-04 1.23382E-03
6.0 -1.04284E-03 3.08856E-03 2.21164E-03 2.26387E-03 3.11921E-03
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Fig. 3.20: Example 3: Three-dimensional plot, for ¢ = 0.3 to t = 2, for the solution
obtained by Adomian’s method for n = 10.

3.3.3 The method of lines

Another possible way of trying to bypass the small convergence radius
of Adomian’s method would be to develop a time analytical and space nu-
merical method, approximating the spatial derivatives by finite differences
and then solve analytically the resulting set of ordinary differential equa-
tions by applying Adomian’s decomposition method and Padé approximants
or by applying the multistage Adomian’s decomposition method (MADM).
It is shown herein, illustrated by an example, that the application of Ado-
mian’s method to the ordinary differential equations set, arising from the
discretization of the spatial derivatives by finite differences, may reduce the
convergence domain of the solution series and, therefore, the above bypassing
approach becomes useless. Actually, the convergence radius of the series so-
lution may decrease with the number of discretization points, and, although
the numerical results obtained by application of Padé approximants to the
Adomian’s solution series enlarge the convergence domain, this improvement
also decreases with the number of spatial discretization points.

Consider Burgers equation (3.75) with initial and Dirichlet boundary con-
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Fig. 3.21: Example 3: Three-dimensional plot,, for t = 0.3 to t = 3, for the solution
obtained by application of a Padé approximant [3/3] to Adomian’s series
solution.
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Fig. 3.22: Example 3: Zeros and poles for the solution obtained by application of
a Padé approximant [3/3] to Adomian’s series solution.

ditions given by:

u (x,0) = sin (7x) (3.122)
u(0,t) =u(1l,t)=0 (3.123)
Consider a uniform grid with Az = z;,1 — x;, and approximate the first

and second spatial derivatives by the following difference schemes of second
order:

8u Uj41 — Uj—1

— = 3.124

ox 2Ax ( )
82u Uj41 + Uj—1 — 2Uj

= 3.125

Ox? Ax? ( )

By applying the finite differences (3.124) and (3.125) to Burgers equation
(3.75) with initial and boundary conditions (3.122) and (3.123), one gets for
N — 1 points the following equation:

ou; 1 )
8—; = oag (W=t = Utljer) + g (Ui + -1 = 2u5), (3.126)
l<j<N-1
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Alternatively, in conservative form, equation (3.126) may be written as:

ou; 1 ) ,

a—tj:@(UE_I_ULJ+A—x2(uj+1+uj_1_2uj)’ 1<j<N—1
(3.127)

Adomian’s polynomials are given, respectively, by (the superscript of u

represents the spatial discretization):

Ad = [CN (Z Al J) (2; mg—l)L (3.128)
Ll (s A Y A 3.129
I Z u; Z u; - (3.129)

J
n

i=0 i=0

Consider § = 1. For the solution given by Adomian’s method with n = 20
(n+1 terms conserved in Adomian’s solution series) applied to system (3.127)
with initial and boundary conditions given by equations (3.122) and (3.123),
for different values of N, considering the convergence radius r (N) the largest
value of t for which the difference for all of the considered points, between
the exact values of the solution given by (3.106) and the ones obtained by the
truncated series applied to the discretized system (3.127), is inferior to 1072
one obtains the values showed in table 3.16. One can see that the convergence
radius 7 (V) and/or the rate of convergence of the series solution, decreases
with the number of subintervals N. The conclusions applied to system (3.126)
are similar.

This behavior is not due to the dimension of the system, but it seems to
be related to the way the solution series of Adomian’s method is constructed.
To determine the components v/ (z,t), n=0,1,2,.... 5 =1,2,..., N — 1, ap-
plied to system (3.127), Adomian’s technique employs the recursive relation
defined by:

(J) =u (x], 0)
J _ ' 1 AJ 1 AJ+1 0 J+1 —9 J
=), (e | gz " ™ 2]
1 ) -
%:/ (—mx 7= ] [ ! =20
1 j+1 0 j+1 j—1 j
— i e — AT 1] + A7 [unfl +ul - 2un71} (3.130)
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Tab. 3.16: Experimental convergence radius in function of the number of subin-
tervals.

N r (IN) ‘ N r (IN)

20 0.013575 | 100 0.000563
30 0.006024 | 200 0.000137
40 0.003461 | 300 0.000062
50 0.002307 | 400 0.000034
70 0.001161 | 500 0.000021

For the sake of clarity, the solution for n = 2 of the i"* equation written
in terms of the zero’s term of Adomian’s series solution (the subscript zero
has been omitted), is:

= 1 1 52
E p = |zu 3u; + Sui—g — 2u;—1 — 2u, t2—:
kzouk |:2U +2+ U; + 2U 2 Ui—1 U+1:| A

1
+ {_ﬁu?“ — Wil 4 3Ty — Ui Ui
+ui,1ul- — 3u2 1 + Uij—1Uj—2 + 1u2 2 ﬁi
i 2 7% 4 Az?

t o
+ [16us + 16wt — 32u] -7
t* 1
16 Ax?

u; (3.131)

2 2 2 2
+ [Ui+1ui+2 — U1 Uy — U1 U; + uifluz;g]

t 1
+ [u?—l - u22+1} N +

Increasing the number of subintervals N, Az diminishes, the absolute
values of the expressions between brackets in equations (3.130) and (3.131)
should also diminish and the values of the powers of A%C increase. It seems
that the powers of A%C may have a deeper influence on the convergence radius
of the series solution, as shown below. Consider the powers of A%CQ. If one
has N subintervals (a > 1), x5 equals o N?, which is o times larger than
that of ﬁ if one had N subintervals. Therefore, the convergence radius
may decrease as a function of a?. Considering that it decreases o? times,
this means that r (aN) = 27 (N) or r(y) = ];—227“ (N). Fixing the value of
N = 20, the one found in table 3.16, one gets the values showed in table 3.17
that are almost the same as those showed in table 3.16.

However, in some particular problems, the behavior can be quite differ-

ent. Consider Burgers equation (3.75) with 6 = 1 and initial and Dirichlet



3. Adomian’s Decomposition Method 99

Tab. 3.17: Theoretical convergence radius in function of the number of subinter-
vals.

N r (IN) ‘ N r (IN)

20 0.013575 | 100 0.000543
30 0.006033 | 200 0.000136
40 0.003394 | 300 0.000060
50 0.002172 | 400 0.000034
70 0.001108 | 500 0.000022

boundary conditions given by:

u(x,0) ==z (3.132)
1

(3.133)

In this case one has at x = 1 a boundary condition not nil. Hence, the
computations may become quite hard or even impossible to carry on, due
to the successive analytical integrations performed by Adomian’s method.

o0
Nevertheless, one can substitute 1 by its Taylor series kz—o(_l)k tk and

constructing the Adomian’s series through the standard procedure, the cor-

responding terms in both series are identical. This way the computations

become easier to perform, and, in this particular case, the solution is inde-

pendent of the number of lines used, since the solution series obtained is the
oo

exact solution given by z > (—1)" ",

k=0
One can say, as conclusions, that when it is not possible to know the

explicit solution given by Adomian’s method applied to nonlinear partial
differential equations, the series obtained may be adequate only in a small
region. Techniques to enlarge and/or improve this region may be necessary.

Moreover, in order to prove numerically whether the application of Padé
approximants to Adomian’s series solution of Burgers equation leads to bet-
ter accuracy and larger convergence region, the numerical solution of some
examples with and without Padé approximants were evaluated. From the
worked examples, it is clear that Padé approximants improve the conver-
gence region and the accuracy of the solution, except in the neighborhood
of poles that can appear in the rational approximation and are not present
in the real solution. This drawback warns one to look for the optimal Padé
approximant to be applied, which can be of lower order. It was also shown
that the application of Adomian’s method to the ordinary differential equa-
tions set arising from the discretization of the spatial derivatives by finite
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differences may reduce the convergence domain of the solution series, behav-
ior that seems to be related to the presence of powers of A%C that are larger
when the spatial interval grid is smaller.
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4.1 Dynamical systems: theory

Up to a certain level it is possible to predict the behavior of many physical,
biological or economical systems by knowing their present state and the laws
governing their evolution, provided these laws do not change in time. The
set of all possible states of a system, the state space (often called phase
space), and the laws of its evolution, is called a dynamical system. Formally,
a dynamical system is a triple (T, X, ¢"), where T is a time set, X a state
space and ¢ : X — X is a family of evolution operators parametrized by
t € T and satisfying the properties ¢ = I, which implies that the system
does not change its state spontaneously, and ©'™* = ' o ©* which means
that the behavior of the system does not change in time [172] [52]. An orbit
is an order subset of the state space X starting at a particular state xg, that
is, it is the evolution of a particular state of a dynamical system. Orbits
of a discrete-time system are sequences of points in the state space X, that
arise from the successive iteration of ¢. A continuous-time dynamical system
usually arises as a solution of a differential equation. The dynamical system
is called a flow if the time ¢ ranges over R, and a semiflow if it ranges over
RS [172] [52].

A point 2° € X is an equilibrium point if p'a® = 2° for all t € T. Being
Lg a cycle or periodic orbit, for each point zq € Ly, o1z = o'z, for some
Th > 0 and for all ¢ € T. The minimal value of Tj satisfying this property is
called the period of the cycle Ly. Thus, each point zy € Ly of this orbit is a
fixed point of p™ [172] [52].

Consider a continuous-time dynamical system defined by the equation

dz "
E:f(x),xER (4.1)

being f a smooth function. An equilibrium point x4 of the system, f (z) = 0,
is called hyperbolic, if there are no eigenvalues of the Jacobian matrix of f
evaluated at xy on the imaginary axis [172] [52].

Consider a discrete-time dynamical system x = f (z), where the map f
is a diffeomorphism. A fixed point xy of the system, f(z9) = ¢, is called
hyperbolic, if there are no eigenvalues of the Jacobian matrix of f on the
unit circle [172] [52] [82].

4.1.1 Periodic orbits and Poincaré maps

Consider a continuous-time dynamical system defined by the differential
equation (4.1), being f a smooth function, and possessing a periodic orbit
Ly. Let zg € Ly and X a cross-section to the cycle at that point. The cross-
section X is a smooth hypersurface of dimension n — 1, intersecting L, at
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a nonzero angle, being the simplest choice of ¥ a hyperplane orthogonal to
the cycle Ly at 5. One says that the hypersurface ¥ is of codimension 1.
The cycle Ly is an orbit that starts at a point on > and returns to X at the
same point. By the existence and uniqueness and smooth dependence on
their initial conditions, an orbit starting at a point z € X sufficiently close
to xy also returns to X at some point T € ¥ near xy. Thus, a map, called a
Poincaré map, associated with the cycle Ly is constructed [172]:

P:Y—-%
T — P (x)

The Poincaré map P is locally defined and is invertible near z(, being the
intersection point x( a fixed point of the Poincaré map P.

As described by Kuznetsov [172] by introducing local coordinates & =
(&1,&2,...,&—1) on X, the stability of the cycle Lg is equivalent to the sta-
bility of the fixed point &, corresponding to the point zy. The cycle is stable
if all eigenvalues p1, pto, . . ., p,—1 of the Jacobian matrix of P at the point &
are located inside the unit circle. These eigenvalues are independent on the
choice of the point xq on Ly, the cross-section X, and the local coordinates
£.

Let one see the relation between these eigenvalues and the differential
equation (4.1) that defines the dynamical system having the cycle Ly ac-
cording to [172]. Let 7 (t) be a periodic solution of (4.1), v (t + Tp) = v (1),
corresponding to a cycle Lg. Being u (t) an arbitrary solution, the deviation
from the periodic solution is given by w(t) = wu(t) — v (¢). If f is twice
continuously differentiable and w is small, one can expand f into a Taylor
series yielding:

dw du
t N

W (1) = 2021 (1) = 3 04w ()~ () = A w (140 (o (1))

dt

where A (t) = % (7 (t)). The linearization of this equation, % (¢) = A (¢) w (t)
is called the variational equation about the cycle Ly, which represents the
evolution of perturbations near the cycle. The stability of the cycle depends
on the properties of the variational equation. This equation admits a unique
global solution, w () = M (t) w (0), where M (t) satisfies &£ (t) = A (t) M (t)
with the initial condition M (0) = I,, M (t) being therefore its fundamen-
tal matrix. By Floquet theorem there exists a constant matrix B such that
M (Ty) = exp (BTp), and so the solution of the variational equation can be
written as w (t) = P (t)exp (Bt)w (0). Since P (t) is periodic, the asymp-
totic behavior of the solution depends only on B. The eigenvalues of B are
called the characteristic exponents and the eigenvalues of exp (BT}) are the
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characteristic multipliers, being exponential functions of the characteristic
exponents times Tj. The linear stability of Ly is related to the behavior
of these eigenvalues. Poincaré maps permit to reduce the problem of the
dynamics of the cycle Ly to a simpler one.

Theorem 16: The characteristic multipliers of the periodic orbit Ly are given
by 1 and by the n — 1 eigenvalues of the Poincaré map associated with the
cycle Lo [172] [151].

By studying the Poincaré map, one obtains a complete characterization
of the dynamics in a neighborhood of the periodic orbit.

4.1.2 Bifurcations and hyperbolicity

A dynamical system (T, R", ") is called topologically equivalent to an-
other dynamical system (T, R, ¢") if there is a homeomorphism A : R™ — R"
mapping orbits of the first system onto orbits of the second system, preserv-
ing the direction of time. Two equivalent systems have the same number
of equilibria and cycles of the same stability types. The relative position of
these invariant sets and the shape of their regions of attraction are also sim-
ilar, which means that two dynamical systems are equivalent if their phase
portraits are qualitatively similar, if one can be obtained from another by a
continuous map [82] [172] [52].

The asymptotic properties of a dynamical system may change when one
or more parameters are continuously changed. Consider a dynamical system
that depends on parameters, ‘fl—f = f(z,a), x € R", a € R™, for continuous
systems, or x = f(z,a), x € R", a € R™, for discrete systems. As the
parameters vary, the phase portrait also varies, and either the system remains
topologically equivalent to the original one, or its topology changes. The
appearance of a topologically nonequivalent phase portrait under variation
of parameters is called a bifurcation. Thus, a bifurcation is a change of the
topological type of the system as its parameters pass through a critical value
[82] [172] [151].

There are bifurcations that can be detected fixing any small neighborhood
of the equilibrium. Such bifurcations are called local. Those bifurcations of
limit cycles which correspond to local bifurcations of the associated Poincaré
maps are called local bifurcations of cycles. There are also bifurcations that
cannot be detected by looking at small neighborhoods of equilibrium or fixed
points or cycles. Such bifurcations are called global, such as the heteroclinic
or the homoclinic bifurcations [172] [82].
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Under a small parameter variation, if the equilibrium is hyperbolic, it
moves slightly, but remains hyperbolic. By varying further one or more pa-
rameters, if the hyperbolicity condition is violated, there is a qualitative
change of the system and a bifurcation occurs. As described by [172] for
a continuous-time dynamical system, the lost of hyperbolicity of an equilib-
rium happens, generally, by the approach to zero of a simple real eigenvalue of
the variational equation (tangent or fold bifurcation) or by a pair of simple
complex eigenvalues crossing the imaginary axis (Andronov-Hopf bifurca-
tion). For a discrete-time dynamical system the hyperbolicity condition can
be violated, generally, by the approach to the unit circle of a simple positive
multiplier (tangent or fold bifurcation) or by a simple negative multiplier
(flip or period-doubling bifurcation) or by a pair of simple complex multipli-
ers (Neimark-Sacker or torus bifurcation). The combination of the Poincaré
map and the center manifold theorem (that allows one to reduce the dimen-
sion of a system near a local bifurcation), allows these results to be applied
to the study of limit cycle bifurcations in n-dimensional continuous-time dy-
namical systems [172].

According to [172] continuous time dynamical systems with phase-space
dimension n > 2 can have invariant tori. An invariant torus appears through
a generic Neimark-Sacker bifurcation. For example, a stable cycle can lose
stability when a pair of complex conjugate multipliers crosses the unit circle.
Then, provided the normal form coefficient is negative, a smooth, stable,
invariant torus bifurcates from the cycle.

4.1.3 Chaos and Lyapunov exponents

Definition 17: For a probability space (X, .A, i), a transformation F' : X —
X is said to be measure preserving or p is said to be an F'—invariant measure,

if F' is measurable and p (F~1 (A)) = pu (A) for all A € A [264] [195].

Definition 18: For a probability space (X, .4, 1), a measure preserving trans-
formation F' is said to be ergodic or the F'—invariant measure p is said to be
ergodic, if for all set A € A with F~!(A) = A (A is F—invariant), pu(A) =0
or u(A) =1 [264] [195].

By other words, an invariant measure is ergodic if the dynamics cannot
be decomposed into different pieces that are themselves invariant.

Definition 19: ¢’ : X — X is said to be topologically transitive, if for any
pair of open sets U,V C X, there exists ¢, > 0 such that ¢ (U)NV # ¢
(the dynamics cannot be decomposed into two or more invariant subsystems)
(82].
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Definition 20: ¢’ : X — X has sensitive dependence on initial conditions if
there is € > 0, such that for every x € X and § > 0, there are y € X and
tr, > 0 for which d (z,y) < 0 and d (¢ (x), " (y)) > € [82].

Sensitive dependence on initial conditions means that minor changes in
initial conditions lead to dramatically different long-term behavior (unpre-
dictability).

There is no universal agreement on the definition of chaos, being generally
agreed that a chaotic dynamical system should exhibit sensitive dependence
on initial conditions. One possible definition of chaos is the one adopted by
Devaney [82]:

Definition 21: ¢’ : X — X 1is said to be chaotic on X if ¢' has sensitive
dependence on initial conditions, ¢! is topologically transitive and periodic
orbits are dense in X (unpredictable, indecomposability and with dense or-
bits).

Due to the impossibility of characterizing exactly a chaotic dynamics, one
needs a statistical description, making use of properties of the attractor that
should be independent a.e. on the initial conditions [73].

One of the most common modes of measuring the sensibility on the ini-
tial conditions, and consequently to deduce the eventual presence of a chaotic
situation, consists on the determination of the Lyapunov exponents, which
measure the exponential average growth rate of tangent vectors along trajec-
tories, that is, measure the average rate of convergence or divergence in the
phase space of nearby trajectories. Positive values are indicators of instability
or chaos, being an important invariant of nonlinear systems.

For a discrete time dynamical system, xx1 = F (x;), F': R" — R, v
non-zero vector belonging to R", one defines the Lyapunov exponent A (x, v)
[52] [73] [117] as:

1
A(x,v) = lim — log (4.2)

k—ook

I~

'M.
ix

In R™ there are n Lyapunov exponents \;, 1 < i < n, which measure
the exponential growth rate of tangent vectors according to the eigenspaces

1
directions of the matrix Ay = [J,?Jk] 2 for large ti, being Jj the jacobian
matrix of F* (1), given by the logarithm of their eigenvalues [73].
For the unidimensional case A\ is given by:

fk (330

|- = lim — Zlog\f z;)| (4.3)

1
A = lim —log Jim

k—ook

1 Jk (XQ) = J(Xk_l) s J(Xl) J(XO).
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& =FX),v

For a continuous time dynamical system n dimensional, ¥
non-zero vector belonging to R™, the Lyapunov exponent A (x,v) runs [73]:

A(x,v) = hm log | M (x,t) - v (4.4)

being M (x,t) the matrix satisfying the system 41 = DF - M and DF the
jacobian matrix of . The Lyapunov exponents are calculated, in a iden-
tical manner, as being the logarithm of the eigenvalues of the positive and
symmetric matrix Ax = [M7T (x,t) M (x,t)] % for large t.

The existence of the limit in equation (4.3) and its independence on the

trajectory considered for almost all initial conditions, are guaranteed by the
Birkohff ergodic theorem [264] [195] [117].

Theorem 22 (Birkhoff): Suppose (X, A, u) is a probability space, f : X — X
is a measure preserving function and g € £ (X)) . Then,

g (f? (z)) converges a.e. in X to a function ¢g* € L (X)

e go f(x)=g"(x) ae. in X
o [xgdu=[ygdp

For the multidimensional case, the existence of the Lyapunov exponents
and their independence on the trajectory considered for almost all initial
conditions, are guaranteed by the Oseledec multiplicative ergodic theorem
[264] [195] [117].

Lyapunov spectrum, consists on the calculation of all Lyapunov exponents
in decreasing order.

From the Lyapunov spectrum we can derive some quantities as the Kol-
mogorov entropy and the Lyapunov dimension.

The entropy measures the uncertainty of a possible outcome. In a system
with N possible and independent results with probabilities p;, the entropy S

or information of the system is S = Z p; log p;. The Kolmogorov entropy

h measure the precision of a predlctlon for the nth iterate, and decreases
with n due to the possible sensitive dependence on initial conditions. The
Kolmogorov entropy h is bounded by the sum of the positive Lyapunov ex-
ponents h < > \; [73].

Ai>0
The geometry of a chaotic attractor can be characterized by a non-integral

dimension, being the structure called a fractal. The capacity is a simple way
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of defining a non-integral dimension. If in a m-dimensional space, one covers
a set A, whose dimension one wants to find, with equal size m-cubes of side
e, and obtain N, m-cubes containing points of the set A, capacity or box
counting dimension is defined, with N, ~ e7Pe_as [73]:

(4.5)

Hausdorff dimension Dpg, another form purely geometric, is often equal
to the capacity, but gives more reasonable answers in some special cases [73].
Generalized dimensions are an attempt to take into account the measure
of the attractor, that is, the number of times the dynamics visits different
regions of the phase space.

Dimensions are a static characterization of the attractor. An attempt to
address this issue is given by Kaplan and Yorke [140], proposing a dimension
based on the Lyapunov exponents, the Lyapunov dimension (Kaplan-Yorke

dimension), given by:
P Z by (4.6)

where v is the largest integer for which the sum Z Ai > 0 (if v equals

D
ke ’)‘VJrl

the dimension of the phase space, then Dy = v). Recall that the Lyapunov
exponents are always ordered by decreasing magnitude. Lyapunov dimension
gives an estimate of the dimension of the space volume that neither grows
nor decays [73].

4.1.4 Lyapunov spectrum

Probably the most important property of chaotic systems is given by its
sensitive dependence on initial conditions. This sensitivity can be quantified
by the largest Lyapunov exponent.

Several methods are described in the literature for the calculation of the
Lyapunov spectrum, computing all exponents on decreasing order. A usual
method consists of following two nearby orbits, one being the reference orbit
and the other the test orbit, separated by a sufficiently small phase space
distance dy at a time ty. The difficulty in the calculation appears as a con-
sequence of the following reasoning: for any initial displacement of the test
orbit @', the component with the maximal expansion rate dominates, so
the component in the direction of the largest Lyapunov exponent is largely
amplified comparatively to the other components. Hence, the displacement
quickly becomes almost parallel to that direction, turning more difficult the
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calculation of the other Lyapunov exponents [298]. To avoid this situation
one falls back upon reorthonormalization methods.

To compute only the largest Lyapunov exponent [298] [207] [251], one
consider the two described orbits, one being the reference orbit and the other
the test orbit, separated by a sufficiently small phase space distance dy at
a time ty. At time t one has the distance between the two orbits given by
d (t) = dye*®=%) and defines the instantaneous largest Lyapunov exponent
as \(t) = ﬁ log 40

9 The largest Lyapunov exponent A, can be computed
by the formula:

. d(t)
A=1 log —=
tir?ot—to o8 do

(4.7)

In practice one computes the value of the instantaneous largest Lyapunov
exponent, for ¢ sufficiently large, so it can be a valid approach of its asymp-
totic value. In the case of chaotic orbits, infinitesimal variations grow quickly
at an exponential rate and the distance between the two nearby orbits d (t)
quickly saturates. Therefore, one must periodically renormalize the orbit sep-
aration whenever the distance d (t) passes beyond a small enough value, so
that the linear regime keeps valid, where the linearized equations of motion
are an accurate description. This way, one determines the largest Lyapunov
exponent, computing the reference orbit for a sufficiently long peﬁod and

computing at each discrete time t;, the linearized perturbations dj, being

ﬁ
then adjusted by the factor dg(’;;)l). Summarizing, being R the reference vec-
tor of the phase space and 7 the test vector, the adjustment is made in the
appropriate direction in the phase space at each instant ¢, according to the

- =
equation 7 «— R + dj dg(’;;)l). For the computation of the largest Lyapunov

exponent one uses the formula [298] [207] [251]:

n

An = ! Zlog d (t) (4.8)

By —to = d (tx-1)

One must ignore the first values to guarantee that the orbits are oriented
in the direction of larger expansion.

The sensitive dependence on initial conditions brings about the amplifi-
cation of small numeric errors, which establishes the importance of a larger
attention on the implementation of numeric methods in these cases.

In [103] different discrete and continuous methods for computing the Lya-
punov exponents are proposed, based on the )R decomposition, () being an
orthogonal matrix and R an upper triangular matrix with positive diagonal
elements, or based on the singular value decomposition. The discrete meth-
ods iteratively approximate the Lyapunov exponents in a finite number of
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time steps and, therefore, apply to iterated maps and continuous dynamical
systems where the linearized flow map is evaluated at discrete times. The
continuous methods are applied when all relevant quantities are obtained
as solutions of ordinary differential equations, i.e., continuous methods can
only be formulated for continuous dynamical systems, not for maps. Discrete
methods based on the QR decomposition may be performed by the Gram-
Schmidt orthonormalization procedure (GS) or a sequence of Householder
transformations. The continuous methods show several disadvantages, as
they need much more computer time, exhibit loss of orthogonality of the
matrices ¢ or U, the computation of only the largest k exponents is not
necessarily cheaper than the determination of the whole spectrum and the
continuous singular value method diverges for attractors with (almost) de-
generate Lyapunov spectra (\; ~ \; 41 for at least one 1 < i < n — 1) which
very often occur in dynamical systems [103].

An efficient and numerically stable method to determine all the Lya-
punov exponents of a discrete n-dimensional dynamical system, based on a
modification of the HQR algorithm, factorization ()R by Householder trans-
formations, was developed by Bremen et al. [51]. The adaptation of this
method to the computation of only the largest p < n Lyapunov exponents
was presented by [260].

In the work of Udawadia et al. [258] an approach for computing the
Lyapunov exponents for continuous dynamical systems based on the QR de-
composition that preserves the orthogonality of the matrix ) was presented.
However, the method was adapted only to systems with small dimensions, till
n = 3. Without this inconvenient, a method based on the Cayley transform,
preserving the orthogonality of the matrix () and requiring, for large n, only
the solution of about half the number of differential equations was presented
by [259].

4.2 Extended dynamical systems: theory

Many nonlinear phenomena are modeled by spatiotemporal systems of
infinite or very high dimension, denominated spatially extended dynamical
systems. Spatiotemporal behavior includes periodic patterns, frozen and
traveling interfaces, intermittency, spirals and synchronization. Extended
dynamical systems appear in various areas of science like Biology, Physics,
Engineering, Chemistry or any other area related to spatiotemporal behav-
ior. Often, the complex interaction between time and space gives rise to
spatiotemporal chaos. Spatiotemporal chaos can be defined by the existence
of a temporally chaotic wave u (x, t) for which the time series {u (z1,t)}, and
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{u (x2,1)}, become statistically independent as the distance from z; to z in-
creases [58]. From the Lyapunov spectrum it is possible to estimate bounds
for the effective number of degrees of freedom of the system, the dimension
of the attractor. This is presently an area of intensive research, particularly
pertaining to communications systems, chaos control, estimation of model
parameters and model identifications.

The most common models are based on a local dynamics and in a coupled
one, which operates in the space directions. These systems can be seen as
collections of many sub-systems, identical or similar, that interact amongst
themselves. Frequently the complex interaction between time and space,
between the local and the coupled dynamics, leads to the denominated chaos
spatiotemporal. Control of spatiotemporal chaos may be consulted in the
work of [166] and [158].

Basic models for spatially extended systems are coupled ordinary differen-
tial equations (CODESs), coupled map lattices (CML) and partial differential
equations (PDEs).

4.2.1 Lyapunov spectrum

The computation of the entire Lyapunov spectrum for extended dynami-
cal systems may be a very time-consuming task, according to the dimension
of the systems. It is possible to approximately reconstruct the Lyapunov
spectrum from the spectrum of a subsystem of smaller dimension Ny, by a
suitable rescaling. One technique to estimate the Lyapunov spectrum is to
consider a relatively small system with dimension N, and with exactly the
same dynamical equations as the original system /N-dimensional. In a wide
range of spatiotemporal systems the Lyapunov spectrum for the small system
converges to the spectrum of the original system under appropriate rescaling
[57].

One method to approximate quantities derived from the Lyapunov spec-
trum, like the Lyapunov dimension Dj, and the Kolmogorov entropy A, is ob-
tained by defining intensive quantities, i.e., independent from the subsystem

size, from the extensive ones, using the corresponding densities, pg (V) = %
and py (N,) = NL The estimates of the extensives quantities are taken by

the linear relation Q (V) =V x q, where @ is the extensive quantity to be
estimated, ¢ the corresponding intensive one and V' the size of the system.
This method relies on the linear increase of the Lyapunov dimension and the
Kolmogorov entropy with the system size [249] [57]. A physical interpreta-
tion of this phenomenon can be given in terms of the thermodynamic limit
of the system. For many spatiotemporal chaotic systems there is a typical
finite correlation length & such that the system can be seen as the union of
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several almost independent subsystems of size £&. One expects that, in the
limit of a large number of degrees of freedom and small correlation length, the
Lyapunov spectrum repeats itself in each of the subsystems and, as a conse-
quence, the fractal dimension of the system attractor scales linearly with the
volume of the system. This generally fails if the size N, is too small, often due
to boundary conditions that become stronger as the system size is decreased
[249] [57]. Because the Lyapunov exponents are not extensive quantities, to
estimate the largest Lyapunov exponent for the whole system one could take
the value of the largest Lyapunov exponent of the subsystem considered. In
the work of [57] a new method was proposed, that the authors believe to be
more accurate, to estimate the Lyapunov quantities. The method consists
of taking the Lyapunov spectrum of the subsystem, rescaling it, and then
extrapolating a curve through it to obtain an approximation to the whole
Lyapunov spectrum, and only then the quantities are computed. Gonza-
lez and Biinner [56] showed that, for spatially extended chaotic systems, the
relation @ (V') = V x ¢ must be corrected by the inclusion of a system depen-
dent constant V > 0, being the new relation given by Q (V) = (V — V) x ¢
for V"> V4. The presence of such a constant emerges from the observation
that, when computing the Lyapunov spectrum from a subsystem, there is
a transition from chaos to order parametrized by the subsystem size when
the subsystem size is decreased below a certain critical size 1}y, which means
that if the dimension of a subsystem is smaller than Vj, it does not give any
information about the quantity Q).

Another way of reconstructing the Lyapunov spectrum from a smaller
subsystem of dimension N, is obtained by truncating the original system
and considering only a small subset of variables, taking into account only a
portion of the information of the entire system. Only a subset Ny of the N
variables is used to build the Jacobian, and so the underlying dynamics of
the original system is not changed [57]. Gonzalez et al. [57] noticed that,
for consecutive subsystem sizes N, and N, + 1, the Lyapunov exponents
interleave. They also presented a new rescaling method, by using the ratio
of volumes ]]\,V—erll instead of the conventional one Nﬁs, reasoning that this new
rescaling method gives a better fitting to the original Lyapunov spectrum.

The extension of the notion of Lyapunov exponent to an potential infinite
extended dynamical system, which exhibits space-time chaotic behavior, is
not always straightforward. In a system with few degrees of freedom, it is
not particularly important what Lyapunov vector is choosed initially (initial
perturbation), because after an initial transient, the component with the
maximal growth rate dominates over almost all initial vectors. This may
not be true for infinitely extended systems, since the transient time can
be, formally, infinite [229]. If the initial Lyapunov vector is homogeneous in
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space, one can expect this homogeneity to be conserved at least in a statistical
way during the evolution in time. With this approach, the computation of
Lyapunov exponents appears to be the closest analogue for systems with a
finite number of degrees of freedom. Also, there is a second limit tending to
infinity, the thermodynamic limit, corresponding to the system size L, that
must be taken together with the limit of the time 7. By investigating the
convergence properties of both limits, Pikovsky and Politi [229] found the
optimal strategy to determine the largest Lyapunov exponent. The order of
magnitude of the optimal time T, for a fixed L is then given by T =~ L3.

4.2.2 Unstable dimension variability

The dynamics on a chaotic attractor is said to be hyperbolic if at each
point of any trajectory the phase space can be splitted into an expanding
subspace and a contracting one and the angle between them is bounded
away from zero. Furthermore, along each trajectory, the expanding subspace
evolves into the expanding one and the contracting subspace evolves into
the contracting one. Otherwise, the set is said to be nonhyperbolic. For
hyperbolic chaotic systems, numerical trajectories can be shadowed by true
trajectories for an arbitrarily long time, a property that is not present in
nonhyperbolic chaotic systems, which cause difficulties in the study of such
systems [179].

By investigating systems of coupled chaotic oscillators, theoretical and
computational reasoning were presented by [176] [179], defending that chaotic
high-dimensional dynamical systems may impose severe modelling difficul-
ties, as no model is able to produce reasonably long solutions that exist in
nature. Coupled oscillators arise in many situations of Physics and Biology
and from spatial discretization of nonlinear partial differential equations. The
collective behavior of all oscillators can range from steady state to periodic os-
cillations and chaotic or turbulent motions. The justification put forward by
the authors that support the modelling difficulties is the phenomenon known
as unstable dimension variability [176] [179], a type of nonhyperbolicity be-
havior, characterized by a trajectory that may have a different number of
unstable directions in different regions of the phase space, and, consequently,
there is no continuous decomposition of the tangent space at each trajectory
point into stable and unstable subspaces. The number of unstable directions
of any unstable periodic orbit is determined by the local chaotic dynamics
and the coupling strength. These conclusions are also applied to the integra-
tion of partial differential equations where discretization is used, yielding a
system of coupled ordinary differential equations. Lai et al. [179] argue that
unstable dimension variability can arise on coupled systems for small values
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of the coupling parameter, but severe modelling difficulties, where the models
do not accurately represent the deterministic evolution of the real systems,
can occur only for reasonable coupling when the unstable dimension variabil-
ity is appreciable. Often, in these cases, the only results that can be trusted
are statistical invariants obtained from a large numbers of trajectories of the
model. This phenomenon is believed to arise commonly in high-dimensional
chaotic systems, but the Liu et. al. [192] showed that noise can induce
unstable-dimension variability even in low dimensional chaotic systems.

4.3 Spectral methods

The generic outline of differential equations discretization, known as method
of weighted residuals (MWR), consists of seeking a solution expanded in trun-
cated series of basis functions, denominated trial, expansion or approximating
functions, and test or weight functions, used to ensure, by minimizing the
residual, that the differential equation is satisfied as closely as possible by
the truncated series expansion. Spectral methods can be referred as meth-
ods of this nature but much more developed. The basis functions used in
spectral methods are functions with global support, infinitely differentiable,
characteristics that distinguish them from finite element or finite difference
methods that use functions with local support where the expansion involves
local interpolants such as piecewise polynomials [105]. For problems with
smooth solutions, convergence rates of spectral methods are superior, with
convergence rates of O (CN ), 0 < ¢ < 1, where N is the number of degrees
of freedom in the expansion. In contrast, finite element or finite difference
methods yield convergence rates that are only algebraic in N, O (N~"). This
property of superior accuracy of spectral methods is commonly called spec-
tral accuracy or exponential convergence [50] [255] [105]. There are, however,
some disadvantages in using a spectral method instead of a finite element or
a finite difference method, due to the fact that sparse matrices are replaced
by full matrices, and also due to the fact that it is not easily adaptable
for problems posed on irregular domains. Nevertheless, provided the solu-
tion is sufficiently smooth, the rapid convergence of spectral methods often
compensates these disadvantages [296] [105].

The most commonly used spectral methods are the Galerkin, Tau and col-
location methods. These methods differ for the choice of the test functions.
In Galerkin methods the test functions are the same as the trial functions,
which must individually satisfy the boundary conditions. Tau methods are
similar to Galerkin methods, except in the fact that none of the trial func-
tions needs to satisfy the boundary conditions. In collocation methods (also
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known as pseudospectral methods), the test functions are shifted Dirac delta
functions centered at the so-called collocation points.

For the sake of clarity, and as an example, let one obtain the solution
of the partial differential equation % = f(u), with homogeneous Dirichlet
boundary conditions. As far as the method of weighted residuals is concerned,

the test functions are the following shifted Dirac delta functions [105],
Y (v)=0(x—x;), j=1,2,...,N—1 (4.9)

where the x; are distinct collocation points in the interval (—1,1). The
standard method of weighted residuals condition impose that,

1 auN
/ {W_ (UN)]wj(x)d:z::O,j:1,2,...,N—1 (4.10)
1

or, equivalently,

ouN N .
= (u™) |pma; =0, j=1,2,...,N —1 (4.11)

The boundary conditions are achieved by restricting the interpolants to
those satisfying u (1,t) = u” (-1,t) = 0.

Fourier series are not always a good choice for the trial functions. They
are only appropriate for problems with periodic boundary conditions. Cheby-
shev polynomials constitute a more versatile set of trial functions. Chebyshev
polynomials are defined on the interval [—1, 1] by equation (4.12).

Ty (z) = cos (k - arccoszx), k=0,1,2,... (4.12)

Choosing for trial functions the Chebyshev polynomials T}, the approxi-
mate solution, interpolating the solution in N + 1 points is

N

u (z,t) =Y () - Ty (x) (4.13)

k=0

A particularly convenient choice for the collocation points are the Gauss-
Lobatto points (Chebyshev points of the second kind, the extreme points on
[—1,1]), defined by equation (4.14) [105] [50] [255],

Ty .
r;i=cos—, 7=0,...,.N 4.14
J N J ( )
which produces highly accurate approximations and is, simultaneously, eco-

nomical since ¢y (x;) = cos ZE,
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The finite series defined by equation (4.13) is not simply the truncation of
the Chebyshev infinite series, so the expansion coefficients uy, (t) are different.
The expansion coefficients are given by the following expression [105] [50]
[255],

e (1) = N? Zé (e t) Ty (x)) (4.15)

2 j=0N
1 1<j<N-1"

The concept of a differentiation matrix for spectral collocation methods
for solving boundary value problems has proven to be a very useful tool in the
numerical solution of differential equations [296], and is based on weighted
interpolants of the form,

where ¢; =

a(z)

@~y @ =3

= alzy)

f () ¢ (z) (4.16)

where the points {xj}J.V_O are a set of distinct interpolation nodes, a (x) is
]_
a weight function and the set of interpolating functions {¢, (x)}jvzo satis-

fies ¢; (xx) = Ogj. The n'™ derivative operator may be represented by the
differentiation matrix with entries defined by equation (4.17).

m  d" [a(z)
D) = oz | 250 ) (117)

The numerical differentiation process may also be performed as a matrix-
vector product. By applying the Fast Fourier Transform (FFT), the matrix-
vector product can be computed in O (N log N) operations rather than O (N?)
operations that the direct computation requires. The matrix approach de-
fined by equation (4.17) is, for many situations, preferred to the FFT as, for
small values of N the matrix approach is faster than the FFT. On the other
hand, for the FF'T to be optimally efficient, N + 1 has to be a power of 2,
otherwise the matrix approach may not be much slower in practice even for
large N [296].

The boundary conditions are established by adding additional equations
or by restricting the interpolants to those that satisfy them.

T=x)

4.4 Dynamics in spectral solutions of Burgers equation

An important issue in nonlinear dynamics is to understand how the
asymptotic properties of a dynamical system evolve when one or more pa-
rameters are continuously changed. By varying one parameter the resulting
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system may or may not remain topologically equivalent to the original one.
If not, there is a qualitative change of the system and a bifurcation occurs.

Burgers equation used for high Reynolds number, or equivalently, for
small values for the viscosity coefficient § = %, develops waves with sharp
slopes, leading to the appearance of discontinuities for values 6 — 0. Such
discontinuities are the cause of difficulties that arise in obtaining a solution,
fact that led several authors to propose several numerical solutions [302] [202]
[87] [142] [206] [295] [294]. Oscillations can occur by discretization through
spectral collocation methods, due to Gibbs phenomena. Under a dynamic
point of view, these instabilities may be related to bifurcations arising to the
discretized equation.

Dang-Vu and Delcarte [77] provided numerical studies of the following
Dirichlet problem for Burgers equation with homogeneous boundary condi-
tions, by Chebyshev collocation and Chebyshev Tau spectral methods,

U =0+ f(z), —1<z<1 (4.18)
s T

with f (z) = 7sin (7x) [cos (mx) + d7] [77] and found out a critical value of
the viscosity § for equation (4.18), where a Hopf bifurcation took place and
a periodic orbit around the critical point arose, with frequency given by the
absolute value of the imaginary part of the pair of complex eigenvalues at
the critical point. As ¢ continued to decrease they found out that the limit
cycles lost their stability and a trapping region was obtained, i.e., a bounded
region of phase space to which all sufficiently close trajectories from the
basin of attraction were asymptotically attracted. The positive values found
by the authors for the largest Lyapunov exponent provided support for the
existence of chaotic motion [77]. Numerical studies were made for N = 16,
20 and 24, but it was referred that the same behavior was repeated for higher
values of N. However, in this chapter, further studies are carried out, such as
the improvement of the accuracy on the calculation of the largest Lyapunov
exponents, the identification of many bifurcations implicated, the observation
of orbits in real time, the change of coordinates in time and Poincaré maps.
The results show that, in several cases, the value of the largest Lyapunov
exponent may be compatible with the nil value, indicating that attractors
classified as chaotic are actuality not. Moreover, the results show that, in
many cases, the attractors are really torus type attractors, quasiperiodic
motions, seeming to be chaotic only for some situations.

In this chapter, it is studied the stability, bifurcation and dynamics of
spectral collocation methods applied to Burgers equation (4.18), where the
unknown solution of the differential equation is expanded as a global inter-
polant. The Tau and Galerkin methods are alternatives to the collocation
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method, but the latter is typically easier to implement, particularly for non-
constant coefficients or nonlinear problems. The following equation with
N — 1 degrees of freedom is obtained by discretization of equation (4.18)
with N + 1 points z;, 0 < 7 < N, by Chebyshev collocation method,

dui
dt

= —u;, DYy +6DPu+ f;, 1<i<N-1 (4.19)
where u; = u (x1,t), ug = u (xo,t), ..., uy_1 = u (xn_1,t), u = [ug, ug, ...,uN_l]T
fi = f(x;) and D® 1 < i < 2 are the Chebyshev differentiation matrices
of order . The problem is then reduced to a system of ordinary differential
equations of order N — 1.

To begin, one choses the same example used by [77] with the same function
f, so that an asymptotic solution is given by wu (x,t) = sin (7x). Studies are
also made for other forced Burgers equation (4.18) with different function f,
in order to allow for a fruitful discussion of results.

Besides the trapping region found by Dang-Vu and Delcarte [77], arising
from the loss of stability of the periodic orbits emerging from Hopf bifurca-
tion, other phenomena are observed. In fact, it is observed the existence of
torus type attractors or strange attractors, for lower values of 9, before the
dynamics becomes unbounded.

Also, bistability is observed, which means the coexistence of two final
states, attractors, for a given set of parameters. Multistability, or in partic-
ular, bistability behavior is found in a variety of systems from different dis-
ciplines of science, like Physics, Chemistry, Neuroscience and Laser Physics.
The long term behavior of such systems becomes more involved, because
it may exist a nontrivial relationship between these coexisting asymptotic
states and their basins of attraction. Given the initial conditions, it is not
clear at which attractor the dynamics will finally settle down. In this case,
both the coexistence of two periodic attractors, a periodic and a nonperiodic
one (torus type or strange attractor), and even two nonperiodic attractors
are observed. In this last case, the nonperiodic orbits seem to correspond
to quasiperiodic motions. In addition, other stable equilibrium points can
occur, diverse from the ones corresponding to the asymptotic solution of
Burgers equation.

For different degrees of freedom, some differences were noticed. For the
example used by [77], the main difference found, when there was an odd
number of degrees of freedom (with N even) and when there was an even
number of degrees of freedom (with N odd), is that all the motion in the
periodic and nonperiodic attractors, in the first case, is restricted to the
invariant subspace of the example studied, while in the second case, this did

)
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Fig. 4.1: Equilibrium solutions for Chebyshev spectral solution of Burgers equation
for N = 16. HP represents the point where the Hopf Bifurcation takes
place. BP represents a branch point. FP represents a fold point. The
bold segments represent the stable solutions.

not occur. The symmetry of the system is broken in this last case. This is
more evident for values of x away from the boundaries.

Positive values yielded by the largest Lyapunov exponent for some non-
periodic motions, provide evidence of chaotic attractors.

For this study, Chebyshev collocation method is considered, with low and
higher values of N, such as N =16, N =17, N =50 and N = 51. The tools
used to perform this study were MATLAB [1] and MATCONT [83] [84].

4.4.1 Numerical results

Consider the same example used by [77] with f () = 7 sin (7z) [cos (7x) + d7],
so that an asymptotic solution is given by u (x,t) = sin (7).

e Dynamics for N=16

In this case the Dirichlet problem admits an odd number of degrees of
freedom. Figure 4.1 shows the equilibrium solutions as a function of u4, where
HB represents a Hopf Bifurcation, BP branch points and FP fold points. The
bold segments represent the stable critical solutions.

As the value of ¢ is decreased, a supercritical Hopf bifurcation takes place
at 0y ~ 0.007638903 and simultaneously the stable asymptotic solution loses
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Fig. 4.2: N = 16. Bistability for § = 0.007, with two stable periodic orbits.

its stability, and a stable periodic orbit appears. The period of such orbit
at the onset of the bifurcation is around 4.1991798. As a stable limit cycle
emerges, the bifurcation is supercritical. Eventually, the limit cycle arising
from the Hopf bifurcation loses its stability at § ~ 0.006867718 where a
Neimark-Sacker bifurcation occurs, in fact, there is a conjugate pair of com-
plex multipliers with modulus equal to one. As the normal form coefficient
is positive, a stable torus does not bifurcates from the cycle. After this point
the cycle becomes unstable.

Before this limit cycle loses its stability, one found the coexistence of
another stable periodic orbit for § < 0.007373201. The two periodic orbits
can be seen in figure 4.2, projection onto the uy —u; space, being the new one
the orbit with a eight shape. This phenomenon is called bistability, i.e., there
is a coexistence of two attractors for a given set of parameters. Depending
the initial conditions belonging to the basin of attraction of one or other,
depends where the asymptotic trajectories go.

When this new periodic orbits loses its stability which happens at § ~
0.006727808, by a Neimark-Sacker bifurcation with a negative normal form
coefficient, a stable invariant torus type attractor bifurcates from the limit
cycle. The improvement on the accuracy of the calculation of the largest
Lyapunov exponent, shows that the largest Lyapunov exponent for this new
attractor is compatible with zero. Figure 4.3 and 4.4 show for § = 0.0065
and 6 = 0.0061 respectively, the attractor and a Poincaré map projected onto
different coordinates. Figure shows the same for . The Poincaré maps are
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Fig. 4.3: N = 16. The attractor for § = 0.0065 and a Poincaré map projected onto
different coordinates.

compatible with the attractor to be a torus type. The Poincaré maps have
been computed by allowing an error less than 107% between any point of the
orbit and the hyperplane orthogonal to a vector defined by two close points
on the attractor.

With the variation of the parameter of the system ¢, the orbit structure
appears to change, resulting in a system topologically nonequivalent. Hence,
for lower values of 6 < 0.00603, the orbits of the system seem to start loosing
its density, which appears to indicate that the system begins to generate long
period cycles instead of dense orbits. This bifurcation from quasiperiodic
motions to periodic ones is called a phase locking [172]. Figure 4.5 shows a
possible long period cycle for § = 0.006015. This attractor looses its stability
for lower values of § and disappears for a value of § ~ 0.006.

Another phenomenon of bistability is observed for some values of § <
0.006409616, where a new asymptotically stable periodic orbit is observed as
it can be seen in figure 4.6. For values of § < 0.005801757 this periodic orbit
loses its stability by a Neimark-Sacker bifurcation.

Another periodic orbit, with approximately the triple of the period of
this last one, is present for values of 0.00583 < § < 0.00585, and so, another
phenomenon of bistability of two periodic orbits can be observed. For lower
values, 9 < 0.00583, and also by a Neimark-Sacker bifurcation, this limit
cycle looses its stability, and a stable torus type attractor arises. Lowering ¢,
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Fig. 4.4: N = 16. The attractor for § = 0.0061 and a Poincaré map projected onto

different coordinates.
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Fig. 4.6: N = 16. Bistability for § = 0.0061, with a periodic orbit and a torus
type attractor.

the attractor appears to pass over a periodic orbit of long period that gives
rise to a strange chaotic attractor for values of 6 < 0.00579, evidenced by a
positive largest Lyapunov exponent. This progression can be seen in figures
4.7 to 4.10.

Figure 4.11 shows the resume of the dynamics described above.

e Dynamics for N=17

In this case the Dirichlet problem admits an even number of degrees of
freedom. Figure 4.12 shows the equilibrium solutions as a function of w;.
The bold segments represent the stable critical solutions.

Decreasing the value of 9, a supercritical Hopf bifurcation takes place at
0g ~ 0.0065513413 and simultaneously the stable asymptotic solution loses
its stability, and a stable periodic orbit appears. The period of such orbit at
the onset of the bifurcation is around 1.0326709. Eventually, the limit cycle
arising from the Hopf bifurcation loses its stability at 0 ~ 0.004665232 by
means of a branch point cycle.

The coexistence of another stable periodic orbit is found for 6 < 0.006089687.
The two periodic orbits can be seen in figure 4.13, projection onto the uy —uy
space, being the new one depicted at bold. A Neimark-Sacker bifurcation
takes place at a value of § around 0.0048780813 and this new periodic or-
bit loses its stability. As the normal form coefficient is negative a stable
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Fig. 4.12: Equilibrium solutions for Chebyshev spectral solution of Burgers equa-
tion for N = 17. HP represents the point where the Hopf Bifurcation
takes place. BP represents a branch point. The bold segments represent
the stable solutions.
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Fig. 4.13: N = 17. Bistability for § = 0.0054, with two stable periodic orbits.

torus type attractor emerges. Lowering 9, the maximum Lyapunov exponent
keeps compatible with the nil value, becoming only positive for values of
0 < 0.00473, before loosing stability for a value of ¢ around 0.00468. Hence,
other phenomena of bistability can be observed, where the limit cycle arose
from Hopf bifurcation has not yet lost its stability, and so, a torus type at-
tractor coexist with a stable periodic orbit and a chaotic one with a stable
periodic one, as it can be seen in figure 4.14.

As already described, the limit cycle arising from Hopf bifurcation loses
its stability at 0 ~ 0.004665232, a branching point cycle, bifurcating into two
stable limit cycles. Figure 4.15 show these two periodic orbits for 6 = 0.00465.
For lower values of § ~ 0.004639949, these two periodic orbits lose their sta-
bility by a period doubling bifurcation and a new strange attractor witharises
with a particular behavior in phase space. Its motion approaches and leaves
the unstable saddle periodic orbits, jumping between them. This behavior
can be seen in figure 4.16 where different visualizations over different short
periods of time are displayed, so that the trajectories can be distinguished
in the phase space.

Figure 4.17 shows the resume of the dynamics described.

e Dynamics for N=50 and N=51

For the cases of N =50 and N = 51 the equilibrium solutions found are
presented in figures 4.18 and 4.19, respectively.
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Fig. 4.16: N = 17. Strange attractor projected onto the ud — u7 space, over
different short periods of time, for 6 = 0.0046.
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Fig. 4.20: For N = 50, a spurious solution for § = 0.0007, a value for the viscosity
above the value for the Hopf bifurcation.

Observing these figures, one must emphasize the existence, for N = 50, of
equilibrium points asymptotically stable not corresponding to the asymptotic
solution of Burgers equation. These points are marked on bold in figure 4.18.
These stable equilibrium points appear for values of § before and after the
Hopf bifurcation has occurred. If one could think that for values of § greater
than the one at which the Hopf bifurcation occurs no spurious solution would
appear, this example shows the opposite. As an example of one of these stable
equilibrium for a value of § greater than the one corresponding to the Hopf
bifurcation, figure 4.20 shows the spurious solution for 6 = 0.0007 and for the
following initial condition satisfying the symmetry u; = —uy_;, 0 <7 < N:

uo(1) = 0.120007  up(2) = 0.290866 wu(3) = 0.304056

up(4) = 0.322525  uo(5) = 0.333680 1o (6) = 0.375896

uo(7) = 0.415379  uo(8) = 0.487166 uo(9) = 0.551368

up(10) = 0.643676  uo(11) = 0.718378  ug(12) = 0.814980
up(13) = 0.881280 up(14) = 0.962716 uy(15) = 0.999279
up(16) = 1.045659  uo(17) = 1.032028  uy(18) = 1.028031
up(19) = 0.949750  uo(20) = 0.891824  uy(21) = 0.745570
u(22) = 0.652637  up(23) = 0.449124  uy(24) = 0.405714

As for the previous cases, for these values of IV, a supercritical Hopf bi-
furcation also takes place and a stable periodic orbit emerges. For both cases
there is a value of the parameter § where the limit cycle loses its stability by
a Neimark-Sacker bifurcation and where a new stable attractor comes out.
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Keeping the decrease of the value of §, other bifurcations occur and new
stable attractors arise. This behavior drives to new phenomena of bistability
where, besides the ones already described, a new one of bistability with two
nonperiodic attractors is observed for both cases. Besides the stable peri-
odic attractors well identified, other attractors are found. As in the previous
cases, the improvement in the calculation of the largest Lyapunov exponent
shows that this value is compatible with the zero value for the cases studied.
This fact, together with the observation of the orbits and the calculation of
Poincaré diagrams indicate that the majority of these attractors seem to be
of the torus type nonchaotic. Moreover it seems that the system can also
generate long periodic cycles instead of dense orbits. However, the presence
of strange attractors, among those attractors, should not be excluded. It
is also possible, that for some values of the parameter 9, the largest Lya-
punov may be positive, or compatible with the nil value, but in finite periods
with the maximum exponent Lyapunov positive. This last case would sug-
gest a strange nonchaotic attractor (SNA). The fundamental property of a
strange nonchaotic attractor (SNA) is the existence of regions in phase space
where there is a finite probability for the maximum exponent Lyapunov to be
temporally positive, although possessing an asymptotic nonpositive largest
Lyapunov exponent. This exponent can be regarded as the weighted sum of
the temporally positive exponent when the orbit is in expanding regions and
the temporally negative exponent when the orbit is in contracting regions
[265]. To completely identify all those attractors, further investigations are
needed.

Figure 4.21 shows, for 6 = 0.00062, the attractor and a Poincaré map
projected onto different coordinates. As before, the Poincaré maps have
been computed by allowing an error below 107¢ between any point of the
orbit and the hyperplane orthogonal to a vector defined by two close points
on the attractor.

Figure 4.22 shows for N = 50 and 4 = 0.000648 a situation of bistability
with a periodic stable attractor and a torus type one. Figure 4.23 shows for
N =51 and § = 0.00057 another similar situation of bistability.

Figures 4.24 and 4.25 show the scheme of the dynamics observed.

For the case N = 50, as referred above, there are stable equilibrium
not corresponding to the asymptotic solution of Burgers equation (4.18).
Between the fold point at § around 0.000740995 and an Hopf bifurcation oc-
curring at ¢ around 0.000578 there is a branch of stable equilibria. After this
new Hopf point, not corresponding to the asymptotic equilibrium, keeping
the decrease of 9, a stable periodic orbit arises followed by its loss of stability
at 0 ~ 0.000572 by a Neimark-Sacker bifurcation and by the appearance of a
torus type attractor. These part of the dynamics is not represented in figure
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4.18.

4.4.2 Discussion

Next, it will be discussed which conditions facilitate the spectral solutions
of Burgers equation to behave as described above. To perform it some others
simulations for another examples are made. However, it seems clear that
the loss of stability of the asymptotic solution must occur by means of a
supercritical Hopf bifurcation and not by a subcritical Hopf bifurcation or
by a change of the signal of a real eigenvalue of the jacobian, so that stable
limit cycles can emerge. Also, the torus type attractors seem to appear
mainly due to the loss of stability of the periodic solutions by Neimark-Sacker
bifurcations.

Let one begin by discussing the forced Burgers equation of the exam-
ple studied, equation (4.18), with f (x) = msin (7z) [cos (mz) + dn]. In this
case f is odd, which means that for Chebyshev and Fourier spectral solu-
tions, there is an invariant transformation of coordinates 1" : u; ~» —un_;,
¢t = 0,...,N. In other words, the evolution equations for u; and —uy_; are
invariant under 7', % = —%, with the respectively invariant subspace
given by

Hence, the orbits arising from all the initial conditions satisfying (4.20)
do not leave that subspace.
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The Chebyshev differentiation matrix D) satisfies the antisymmetric
condition (D(l))ij =—(DW),_ in—; [255]. To compute the second deriva-

tive one can square D which costs O (N3) floating point operations or,
alternatively, by explicit formulas or recurrences [296], which may cost only
O (N?) floating point operations. For Chebyshev spectral solution, one has
for1<¢:< N —1:

(i;l :—uD u+5D U—I—f(xi):
N
=—uy (D" u]—i-éz (D@, uj+ f (2:) =
=0
N
—un—i Yy (=DW) \y, (Funj)+
=0
N /N
+6Z (Z D(l N i,N— k(D(l))N k,N— ]> (—un—j) = f(zn-i) =
j=0 \yJ
= a du
N—i
—un_; jzo (DD), 0~ 5;) (D) .y — flaw) = — dt

(4.21)

For the Fourier spectral differentiation matrices, the relation D™ =
(D(l))m holds for N odd or it can held for N even when m is odd. The
formulae can be consulted in [296] [255].
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For N even, 0 <7 < N — 1, one has:

du;
CZ ——uD u+5D Du+ f (i)
N-1 -1
:—uiZ(D( y ]—}-62 A u]—}-f(xz)
=0 =0
N-1 S
1 i — )T
=UN_; Z 3 (—1)"7 cot (%) UN_j
§=0,ij
N-1 .
1 o _
-4 [ Z 5 (_1)17]+1 CSC2 (%) UN—j
=0,
N? 1
—EUN—Z' - 6“N—i:| — flan) =
N-1
1 - N-1—j—i
=UN—; ‘ Z 5 (—1)17(N717]) cot <( Nj Z)W) UN—(N-1—7)
j=0i#AN—-1—j
Ly (i—(N—1-j)n
_s L > (1)1 2 ( - ) W1,
=0,iAN—1—j
N? 1
_EUN i T BUNZ} — fon) =
N-1 S
1 G N—i—j—1
=Un_; Z 5 (=)D ot ([ ! Nj ]W) Ujt1
J=0.N—ij+1
i ) (N—i—j—1nx
__5[ 3 5(_1yNz>o+nHC%2( N? )uﬂl
=0, N—ij+1
N? 1 duy
L N — —un| — fan) = — 422
12 UN—i 6uN z:| f (.CI?N z) dt ( )
For N odd the result dd? = —dugt*i is also easily verified.

One can see that, the example studied, being invariant under 7', is a
dynamical system with symmetry. Multistability is frequently observed in
dynamical systems with symmetry [173] [106] [104], but the symmetry does
not explain the bistability observed. Additionally, in this case, symmetry
does not even facilitate the appearance of bistability, which could be the
case for the example worked out in the previous subsection when there was
an even number of degrees of freedom, where the symmetry was somehow
broken and the motion was not restricted to the invariant subspace. As
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explained below, the bistability observed did not emerged from this break of
symmetry.

If there is an asymptotic stable solution, such as a limit cycle, a torus type
or a strange attractor, the invariant transformation 7" must apply the initial
conditions belonging to its basin of attraction into a second set of initial
conditions, symmetric to the first one and belonging to a basin of attraction
of a second symmetric asymptotic stable solution. Suppose that f; = f is
any function of equation (4.19). Consider a second Chebyshev discretized
equation for the Dirichlet problem with homogeneous boundary conditions,
given by adding a second set of N —1 equations with fo = f in equation (4.19)
being a function obtained by substituting f; (z;) by —fi (znx_;). Therefore,
one arrives to the relation fs (z;) = —f1 (xy—;) and gets one set of equations
with twice the equations, constituted by the union of the two following set
of equations:

dui

= —u; DYy + DDy + f (z;), 0<i<N (4.23)
dv; .
dz = —0,DWy 4+ 6Dy + fo(z;), 0<i<N (4.24)

The transformation H : u; — —vn_;, © = 0,..., N, is invariant for this
new set of 2N — 2 equations:

du;
() (D) doy i
—UN—i Z (D )N—i,j vj — 0 (D )N—i,j vj — fa(on—i) = — dt
=0 =0
(4.25)

One can conclude that all the asymptotic stable solutions, such as limit
cycles, the torus type or the strange attractors observed for the first set of
equations (4.23) must have the corresponding identical symmetric attractor
for the second set of equations (4.24). In other words, if one finds an asymp-
totic stable attractor for the Chebyshev solution of Burgers equation (4.18),
one has also to find a symmetric one for the same equation by substitut-
ing f(z) by —f(—z). This enlarges the set of functions f where all the
phenomena described above could be observed.

For the example studied, the function f is an odd function, f(x) =
—f (—x), and due to that, for attractors possessing the symmetry propriety,
no other symmetric attractor has to show up. The possible exceptions arise
if the symmetry is broken, and as referred above, this is the case when N is
odd and there is an even number of degrees of freedom. In these cases, where
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Fig. 4.26: N = 50. Attractor for § = 0.000615.

the asymptotic attractor breaks the symmetric property, new symmetric at-
tractors should appear. This is not the case, because although the motion
is no longer restricted to the invariant subspace, looking to the attractor as
an entire entity, the symmetry is preserved. To see that, let one consider an
asymptotic stable attractor A. If p € A is a point belonging to A with coor-
dinates p ~ (0,1, ..., Uiy ..., UN_j,...,Un_1,0), then the symmetric point
g (0, —UN_1,..., —UN_jy ..., U ..., —uy,0) also belongs to A for the ex-
ample studied. If the motion is restricted to the invariant subspace, then p
must be equal to ¢. If not, and ¢ does not belong to A, then the symmetric
point ¢ has to evolve to a symmetric attractor of A, which does not happen.
Both points p and ¢ belong to A. This can be shown by the superposition of
the attractors with initial conditions p and ¢ or by superposition of the sym-
metric images for x > 0 and x < 0. The plots of symmetric points when the
motion is inside the attractor also show this. Figure 4.26 shows an attractor
for N =50 and 6 = 0.000615 and figure 4.27 shows that its motion is made
without leaving the invariant subspace, while figure 4.28 shows an attractor
for N = 51 and 6 = 0.00059 and figure 4.29 shows that its motion is not
restricted to the invariant subspace but, globally, the attractor preserves the
symmetry. Everything occurs as the the dynamics for x > 0 and the one for
x < 0 evolve in a symmetric manner but with a time delay.

To further investigate the dynamical behavior of spectral discretization of
Burgers equation, more studies are made involving different functions f. It
is known that for low values of the viscosity coefficient, Burgers equation can
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Fig. 4.29: N = 51. Attractor in symmetric coordinates, for § = 0.00059.

develop sharp discontinuities, which are difficult to simulate numerically. Os-
cillations can occur by discretization through spectral collocation methods,
due to Gibbs phenomenon. The Gibbs phenomenon occurs at simple discon-
tinuities, and is an overshoot with large oscillations, near the endpoints of
the jump discontinuity, exhibited by the partial sums S,, of an eigenfunction
series. With an increase of n, number of terms of the series approximation,
the amplitude of the overshoot will not diminish, occurring only over smaller
intervals. It can be removed with the Lanczos sigma factor. At low viscos-
ity, the tendency for Burgers equation to develop discontinuities, together
with these oscillations, must be responsible to this dynamic behavior. But
although necessary, it is evident that it can not be a sufficient condition be-
cause, otherwise, it would be a common phenomenon. Burgers equation is a
wave nonlinear equation where the convection u is active since it depends on
the solution of the equation. As the speed of the wave is given by the solu-
tion itself, it increases when u increases and decreases when u decreases. The
higher points of the nonlinear wave will travel at a higher speed and shocks
and discontinuities for low values of ¢ will tend to appear in the intervals
where u is decreasing. The instabilities observed in the forced Burgers equa-
tion will then tend to appear first at intervals where the asymptotic solution is
decreasing, which are, for the example studied above with an asymptotic so-
lution given by u (x,t) = sin (7z), the intervals (—1,0.5) and (0.5,1). These
branches of the solution are the ones that are fixed by one extremity to each
fixed boundary for the Dirichlet problem. By numerically studying several
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examples, one argues that this fact, together with the nonexistence of such
branches where discontinuities tend to appear not fixed to the boundaries, is
a necessary condition to keep the asymptotic equilibrium solution stable for
lower values of §. Consequently, this gives time for the first loss of stability
to be signed by the emergency of a supercritical Hopf bifurcation. Intervals
where the asymptotic solution is decreasing and are not fixed to any of the
boundaries lead to a lost of stability of the asymptotic equilibrium solution
for higher values of 4, by means of a real eighenvalue becoming positive and
not by an Hopf bifurcation. In these cases, supercritical Hopf bifurcations
and the followers stable limit cycles for lower values of the parameter § were
observed, but for an equilibrium not belonging to the asymptotic solution.

To show this, several function f for equation (4.18) are then studied.

Consider Burgers equation (4.18) with f (z) = 32° — 423 + (60 + 1) z, so
an asymptotic solution is given by u (z,t) = x — 3. This example is similar
to the one studied in terms of monotony and symmetry of the asymptotic
solution. The discretized Dirichlet problem with homogeneous boundary
conditions (4.19) has also a rich behavior. For example, for N = 16, the
supercritical Hopf bifurcation takes place at 6 ~ 0.002281352, where a sta-
ble limit cycle emerges with a period around 1.3490472 at the onset of the
bifurcation. For lower values of the parameter, at o ~ 0.002243689, a period
doubling bifurcation takes place with the emerging of a stable periodic solu-
tion with twice its period. For even lower values of d, for 0.0019895707 < ¢
< 0.0021712447, a stable period orbit is present with a period similar to the
one of the cycles arising from the Hopf bifurcation. At ¢ ~ 0.0021712447,
a period doubling bifurcation takes place. Therefore, from the Hopf point,
decreasing 9, the cycle double its period and keeping decreasing J it retakes
approximately its original period. Eventually, for 6 ~ 0.0019895707 the peri-
odic orbit looses its stability by a Neimark-Sacker bifurcation with a negative
normal form coefficient, which drives the appearance of a stable torus type
attractor.

For the cases where the asymptotic solution is symmetric, related to the
x-axis, for the previous two examples, which means that the asymptotic solu-
tions are u (z,t) = —sin (7x) and u (x,t) = —x+23, the descendent branches
of the solution are no longer fixed to the boundaries, and the asymptotic solu-
tions loose their stability at a value more than ten folder higher the previous
value of 0. No attractors, limit cycles, torus type or strange ones, were found
for these cases.

To increase the height of the waves of the asymptotic solution, consider
the case where f (z) = amsin () [acos (1) + 7], so an asymptotic solu-
tion is given by u (z,t) = asin (mx). The solution is still odd, so the function
f is odd too and the symmetry is present in the system. The only difference
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between this case and the first example studied is the asymptotic solution
multiplied by a factor a. In this example the waves are higher, the path
where the solution may develop discontinuities has increased and equally do
the instabilities. To corroborate the theory exposed, it is expected a loss
of stability for the asymptotic solution to occur at higher values of §. Not
only this happened, but also a linear relation could be established between
the value of § corresponding to the point where the asymptotic equilibrium
looses its stability and the absolute value of a. So, for a > 0, a Hopf bifur-
cation related to the asymptotic solution occurs for a value of 9 satisfying
approximately the linear equation HP () = |a| HP (1), where HP (1) is the
value of 0 at the Hopf point for the first example studied and HP («) the
the value of § at the Hopf point for the new example. For a < 0 a similar
relation helds for the value of § corresponding to the loss of stability of the
asymptotic solution.

Consider now an increase on the frequency of the nonlinear waves, with
f (z) = amsin (arz) [cos (arz) + adr], so an asymptotic solution is given by
u(x,t) = sin (arx), a € Z\{—1,0,1}. The function f is odd, so the symme-
try is kept present in the system. Due to the presence of decreasing intervals
in the asymptotic solution not fixed to boundaries, it is expected a loss of the
asymptotic equilibrium for higher values of § by one real eigenvalue. This
is what really happens and so, around asymptotic equilibrium, no periodic,
torus type or strange attractors are observed. However, other stable equilib-
ria are observed and, for those equilibria, supercritical Hopf bifurcations are
also observed with the corresponding periodic orbits. The stable attractors
found break the symmetry of the system and new symmetric attractors arise,
leading to the presence of bistability. Figure 4.30 shows two periodic orbits
for « = 2, 0 = 0.0363 and N = 16, projected onto the space us — u7, and
figure 4.31 shows the same two period attractors for symmetric points where
the overall symmetry is patent. These periodic orbits loose their stability for
0 around 0.03531646 by a Neimark-Sacker bifurcation with a normal form co-
efficient very slightly negative. No stable attractors were observed for lower
values of the parameter 9.

The symmetry is not a necessary condition for the phenomena observed to
show up, as shown by the next examples. Consider Burgers equation (4.18)
with

f (z) = e*sin® (7x) + me** sin (7x) cos (7x) — Je” sin (7x)
— 20me” cos (mx) + dm’e” sin (1) (4.26)

In this case an asymptotic solution is given by u (z,t) = e*sin (7wx). It is
clear that this is not an odd function and consequently the transformation
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Fig. 4.30: Two stable periodic orbits for forced Burgers equation with asymptotic
solution w (z,t) = sin (27x), for N = 16 and 6 = 0.0363.
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asymptotic solution u (z,t) = sin (27x), for N = 16 and § = 0.0363,
viewed over symmetric coordinates.
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T is no longer invariant. Although no symmetry is present in this exam-
ple, a supercritical Hopf bifurcation takes place at 6 ~ 0.00753. For lower
values of 0 ~ 0.00740813 the periodic orbit duplicates its period and for
0 ~ 0.00694054 it looses its stability by a Neimark-Sacker bifurcation with
a normal form coefficient positive. No other attractors were found for this
case. Notice that the same behavior for symmetric coordinates must be
present when

f(x) = —e **sin® (nz) + me 2

+ 20me™" cos (mx) + dm’e” " sin (7x) (4.27)

“sin (mx) cos (mx) — de” ¥ sin (mx)

where an asymptotic solution is given by wu (z,t) = e~ % sin (7z).
Another case without symmetry is that for

f(x)= % cos (7;—36) ((57T — 2sin <%x>> (4.28)

where an asymptotic solution is given by u (x,t) = cos (%) In this case
there is only one descent branch fixed to one boundary and an ascendent
branch fixed to the other. The loss of stability of the asymptotic solution
seems to be done by a subcritical Hopf bifurcation and no stable attractors
were found.

All these examples show the importance of the descendent branches of the
asymptotic solution to be fixed to the boundaries, so that a supercritical Hopf
bifurcation, followed by periodic orbits and perhaps other attractors may
arise. This is also supported by examples performed with Fourier spectral
collocation where the solution is not fixed to boundaries and none of this
phenomena was observed.

The previous studies yield the conclusions described below.

For Chebyshev spectral solutions of forced Burgers equation several phe-
nomena and bifurcation can be observed for low values of the viscosity coef-
ficient. Besides the attractors found by Dang-Vu and Delcarte [77], arising
from the loss of stability of the periodic orbits arising themselves from Hopf
bifurcations, other phenomena were observed: existence of other attractors,
such as periodic orbits, torus type attractors and strange attractors. Bista-
bility with the coexistence of two periodic attractors, a periodic and a non-
periodic one (torus type or strange attractor), and even two nonperiodic
attractors seeming to be quasiperiodic ones, were also observed.

For the examples where attractors possess the symmetry propriety, no
other symmetric attractor has to show up. The possible exceptions arise when
the symmetry is broken, and that is what occurred in some cases studied. In
such cases, where the asymptotic attractor breaks the symmetric property,
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new symmetric attractors could appear. One saw that these new attractors
did not appear in some cases described, particularly when an asymptotic
solution was given by u (x,t) = sin (7x) and there was an even number of
degrees of freedom. The motion inside the attractors was no longer restricted
to the invariant subspace but, looking to the attractor as an entire entity,
the symmetry was preserved. Everything occurred as the dynamics evolve in
a symmetric manner but with a time delay.

The instabilities observed in the forced Burgers equation tend to appear
first at the intervals where the asymptotic solution is decreasing, since such
intervals are the ones where the discontinuities will tend to emerge. These
branches of the solution are the ones that are fixed by one extremity to each
fixed boundary of the Dirichlet problem. By numerically studying several
examples, one argued that the existence of these intervals fixed to the ex-
tremities, together with the nonexistence of similar decreasing intervals not
fixed to the boundaries, was a necessary condition to keep the asymptotic
equilibrium solution stable for lower values of §, allowing the first loss of
stability to be signed by the appearance of a supercritical Hopf bifurcation.
Intervals where the asymptotic solution is decreasing and not fixed to any of
the boundaries led to a lost of stability of the asymptotic equilibrium solution
for higher values of §, by means of a real eigenvalue turning positive and not
by an Hopf bifurcation. In these cases, Hopf bifurcations and the followers
stable limit cycles for lower values of the parameter § were observed, but for
equilibria not belonging to the asymptotic solution. The existence of only
one interval where the asymptotic solution is decreasing and fixed to only
one of the boundaries and the nonexistence of such decreasing intervals not
fixed to any of the boundaries, led to the loss of stability for lower values of
the viscosity coefficient but not by a supercritical Hopf bifurcation and no
stable attractors were observed.

Also stable points were observed for values of the viscosity coefficient
above the supercritical Hopf bifurcation, which means that spurious solutions
can occur even when the value of viscosity coefficient did not suggest it.



5. SYNCHRONIZATION OF COUPLED BURGERS
EQUATIONS
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5.1 Dynamics in coupled Burgers equations

Many nonlinear phenomena are modeled by spatiotemporal systems of
infinite or very high dimension, denominated as spatially extended dynami-
cal systems. Coupling and synchronization of spatially extended dynamical
systems is an area of present intensive research, concerning communications
systems, chaos control, estimation of model parameters and model identifi-
cations. Besides synchronization of periodic signals which is a phenomenon
already well-known, it has been shown in the literature that it is also pos-
sible to synchronize both low-dimensional chaotic dynamical systems and
high-dimensional ones [166] [167] [168] [254].

To determine the threshold for chaos synchronization, the stability of the
synchronized trajectories as a function of the coupling parameter has to be
studied. Two most frequently used criteria for this study of stability are
the Lyapunov functions and the transversal conditional Lyapunov exponents
calculated from the linearized equations for the perturbations transversal to
the synchronization manifold [99] [121] [227] [102]. Lyapunov functions for
the vector field of perturbations transversal to the manifold generally allow
one to prove stability and also that all trajectories in the phase space are
attracted by the synchronization manifold. It is not a general method since
there is no established procedure for constructing a Lyapunov function for
an arbitrary system. In many practical cases, Lyapunov functions cannot be
found, even for systems that possess a strong stable manifold of synchronized
motions. Unlike Lyapunov functions, the calculation of the transversal Lya-
punov exponents is quite simple, although the negativeness of all Lyapunov
exponents do not guarantee the stability. The robustness of the identical
synchronized manifold implies that small perturbations of the parameters of
the coupled systems lead to small deviations from the identical oscillations.

In the next section sufficient conditions for identical synchronization of a
linear coupling for both unidirectionally and bidirectionally coupled Burgers
equation is discussed by means of a Lyapunov function. In the last section,
the dynamics and synchronization of unidirectionally coupling of Chebyshev
spectral solutions of Burgers equations, by means of a linear and nonlinear
coupling, is described and discussed.

5.1.1 Coupled Burgers equations

Consider two unidirectionally coupled Burgers equations and a linear cou-
pling between them for a < z < b:
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Ez—v%jws@—i-oz(u—v) (5.1)

Lyapunov functions can help finding sufficient conditions for identical
synchronization. For w = (u — v), one gets equation (5.2)

ow_ (o N P
ot Yor ~ Vox azz MY
= — u@—v@—kv%—v@ 662—w—aw
ox ox ox Ox Ox?
ou  Ow 0w
<w8x+vﬁx) - ozz ~ Y (5:2)
Consider the well known Lyapunov function:
1 b
V= 5/ w?dx (5.3)

By computing the time derivative of the Lyapunov function (5.3) one
gets:

b b b g2 b
ow J*w
_ 20U, ow ogw, 2
= /a w c%cdx /a vwaxdrlr+(5 ’ W dx /a awdx  (5.4)

Computing the first and third integrals of equation (5.4) one obtains the
two following equations:

b b b
ou 1 ou 1 ou
20U, L 20U 4 20U

/Qw c%vdx 2/a w 8xdx+2/a w c%vdx
1

P b ow b ou
——wu}a—/a uwa—xdx+§/a w %dx (5.5)

b 9w ow]® b row\?
/GUdex— w%}a—\/a (%) d.r (56)
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Substituting these results into equation (5.4) yields:

. b b b
V:/ wa—wdx—l/ w @dx—/ w—dm—é/ dx—/ aw?dx
ozr Ox "

+ 2 (5.7)

w3r 8wr 1, ]b
31, 2

By observation of equation (5.7), one can get sufficient conditions for
synchronization of coupled Burgers equations. It must be noticed that these
conditions are sufficient but not necessary. If the time derivative of the
Lyapunov function (5.3) is negative, one has fab w?dx converging to zero,
meaning that the nil point w (z,t) = 0, corresponding to the identical syn-
chronization manifold, is achieved for almost all x € [a,b] as ¢ tends to
infinity, and synchronization is reached except perhaps for a set of nil mea-
sure. Adding the condition of convergence or merely bounded of the function

t ~ f (8“’(’” t)> dz, lim;_o, w (x,t) = 0 for all z € [a, b], eliminating those
x € |a, b] belonging to a set of nil measure, where w (z,t) could not converge

to zero as t tends to infinity.
By integration, one has for all z1, 25 € [a, b]:

/@ wie.) P e = o, 07 = (1,0 - / w(z,t) 2 g,

Ox o Ox
(5.8)
Applying the Cauchy-Schwarz inequality one obtains:
2 ow (x,t
w (w9, 1) = w(z,1)° + 2/ w (z,1) ﬁdw

< w (1, 1) +2\// xtdx\// aw”)d (5.9)
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As in the previous equations there were no restrictions on the choice of
x1 and x5 in the interval [a, b], one gets the Agmon inequality:

0 t)
max w (z,t)> < min w (z,t) +2\// (x,1) dx\// w (2, ) dx
z€[a,b] z€la,b]

(5.10)

which means that, for all x € [a,b], lim;—. w (x,t) = 0.
For the bidirectionally case, the results are similar if one replaces a by
a+ [

ou ou  _0%u
ov (% (92

Returning to the coupled Burgers equation (5.1) and considering periodic
boundary conditions or Dirichlet boundary conditions With the boundaries
of the drive and driven equations equal, and supposmg Y continuous, by the
mean value theorem equation (5.7) becomes for £ € [a, b]

V:—a/b(g—w)de—/abw (%%—i—&)dz
:_5/ (8w) d:z:—(lau (&, t)+a) /awadrz: (5.12)

As one can conclude by observation of equation (5.12), synchronization
must be reached for sufficient large values of the dissipation coefficient ¢,
and for sufficient large values of the coupling parameter a. For low values
of the dissipation coefﬁcient 0, Burgers equation presents sharp slopes with
big negative values for 2 5. Hence equation (5.12) shows that one may have
to increase more the value of the coupling parameter « for these cases. A
more intense coupling parameter is required for the time derivative of the
Lyapunov function (5.3) to be negative, when shocks are present. Also, a
sufficient condition for the time derivative to ensure the Lyapunov function
(5.3) to be negative is

> —-— (5.13)

Consider the synchronization error obtained for instant ¢ as given by:

e (t) = \/bia/ (2, 1) — v (2, 1) da (5.14)




5. Synchronization of Coupled Burgers Equations 152

delta=0.1 delta=0.05
1 1
s s
o 08 © 0.8
5 5
= 0.6 = 0.6
N N
5 04 5 04
< <
2 o2 202
> >
" "
0 0
0 1 2 3 4 5 0 1 2 3 4 5
time time
delata=0.01 delta=0.005
1 1
s s
o 08 o 0.8
5 5
= 0.6 = 0.6
N N
5 04 504
< <
2 o2 202
> >
" "
0 0
0 1 2 3 4 5 0 1 2 3 4 5
time time

Fig. 5.1: Synchronization error in function of time for different values of § and
o = max (—%g—g) + 0.5.

For coupled Burgers equation (5.1) with periodic boundary conditions,

a=0and b=1, and for a = m[ax} <—%gg> + 0.5 at each instant time ¢,
z€(0,1 g

figure 5.1 shows the evolution of the synchronization error given by equation
(5.14) with the time ¢, for § = 0.1, = 0.05, 6 = 0.01 and § = 0.005. At each
time ¢, the value of « is adapted to the slopes presented in the x direction of
the curve wu.

For the same example, and for a = (—%g—;) + 0.5 at each instant time ¢,
figure 5.2 shows the evolution of the synchronization error given by equation
(5.14) with the time ¢, for 6 = 0.1, § = 0.05, 6 = 0.01 and § = 0.005. In this
case, for each time ¢, o is not a constant, but an adaptative value depending
on the slopes in the x direction of the curve u, which can take different values
at different spatial points. As it can be seen synchronization is reached slower
with the reduction of 4. In the previous case, the reduction of § does not
affect so significantly the speed of synchronization.

For the case of Dirichlet boundary conditions, where the boundaries of
the drive and driven equations are different, u (a) # v (a) or u (b) # v (b),
complete synchronization can not be reached. For this case, synchronization
near the different boundaries can not be achieved, although by observation
of equation (5.7) one can expect that increasing a and 0 the degree of syn-
chronization may increase.
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Fig. 5.2: Synchronization error in function of time for different values of § and
a= <_%g_£> + 0.5.

As an example, numerical simulations for the case where 0 < x < 1, and
boundary conditions given by g (0) = ug (1) = k1 and vo (0) = vy (1) = ko,
are performed by using Chebyshev spectral collocation method. For the sake
of clarity, to enforce the boundary conditions, one can restrict the solution
to interpolants that satisfy these ones, or add additional equations to enforce
the boundary conditions [255] [50]. Applying the first condition, one must
first perform a change of coordinates to the interval [—1,1] so Chebyshev
polynomials can be applied, and one must also convert the inhomogeneous
boundary conditions into homogeneous ones. Hence, by applying the change
of variables expressed by equations (5.15), (5.16) and (5.17):

Ut =u—ky (5.15)
v =0 — ko (5.16)
@ =2r—1 (5.17)

the following equations are obtained from equation (5.1) with homogeneous
Dirichlet boundary conditions:

ou* ou* ou* o*u*
— o Z o Ty
ot Y or* g ox* + 58x*2
* * 2 %
v :—QU*aL_QkQaU +45av +a(u — v+ k — ko) (5.18)

ot or* or* Ox*?
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Fig. 5.3: Error at instant ¢ = 5 as a function of «, for two unidirectionaly coupled
Burgers equation, u and v, with Dirichlet boundary conditions u (0) =
u(l)=0and v(0) =v (1) =3.

Increasing «, the degree of synchronization increases initially and for
higher values of v the synchronization improves only slightly, because identi-
cal synchronization cannot be achieved. Figure 5.3 shows the synchronization
error given by equation (5.14) as a function of the coupling strength «, ob-
tained for 0 = 0.01, with boundary conditions given by u (0) = u (1) = 0,
v(0)=v(l)=3att=>5.

5.1.2 Coupled spectral solutions of Burgers equation

The low viscosity value is the main responsible for the different dynam-
ical behavior of the spectral solutions of the forced Burgers equation. The
dynamics and synchronization of a pair of unidirectionally coupled spectral
solutions of Burgers equation under different asymptotic regimes are present,
specially with parameter mismatch.

The Dirichlet problem with homogeneous boundary conditions for the
forced Burgers equation (4.18) is considered:

ou  Ou D%
ot Tar =0 tT W), =r=
Equation (4.19) with NV — 1 degrees of freedom is obtained by discretiza-

tion of equation (4.18) with N + 1 points z;, 0 < 7 < N, by Chebyshev
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collocation method:

du, |
dqu = —u,DYu+DPu+ f;, 1<i<N-1
where u; = u (x1,t), ug = u (xo,t), ..., uny_1 = u (xn_1,t), u = [uy, ug, ...,uN_l]T,

fi = f(x;) and D 1 <i <2 are the Chebyshev differentiation matrices of
order 7. The problem is reduced to a system of ordinary differential equations
of order N — 1, and the study of the dynamics and synchronization is made
for an unidirectionally coupling of pair of equations (4.19).

Linear coupling

Consider the linear unidirectionally coupling of the discretized equation
(4.19):

du,
(Z = —u; DYy +6DPu + f;
dv;

For the case where a parameter mismatch is present between the drive
and driven equations, generalized synchronization is observed.

Before discussing synchronization, let one consider the drive system in
asymptotic stable regime and describe the dynamics of the coupled equations.
Numerical simulations show that, for all the cases studied and independently
of the value of N, as the coupling increases starting from zero, there is a
threshold value of the coupling parameter o above which one has the driven
equation stabilized around the asymptotic solution for any regime of the
driven equation.

Before reaching the asymptotic regime, as the coupling increases, several
other regimes can be found: from periodic, quasiperiodic or strange regimes
to the presence of bistability. These regimes possess patterns that exhibit
some similarities with that of the uncoupled equation. Hence, with the driven
equation in strange regime and increasing « from zero, it exists a threshold
above which the strange motion is suppressed. However, further increasing of
the coupling parameter «, may drive the response equation to several other
regimes. Similarly, with the driven equation in periodic regime, increasing o
from zero may drive the response equation to other regimes. The behavior
depends on N, on the function f and on the value of the dissipative coefficient
0 of the driven equation, which determine its regime when uncoupled.

An example can illustrate this. Let one consider equation (4.19) for
N = 16, with f (z) = 7sin (7z) [cos (rx) + o7|. As already mentioned an
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Fig. 5.4: Bistability in the driven equation with a torus type and a stable periodic
atractors, for a = 0.02.

asymptotic solution is given by u (z,t) = sin (7wx). Let the drive equation
be in asymptotic stable regime with 6 > 0y ~ 0.0076389032 and the driven
equation be in strange chaotic regime with o = 0.00576. The largest Lya-
punov exponent for this case has been estimated to be around 0.147. Increas-
ing the coupling « from zero, the driven equation passes through periodic
to quasiperiodic motions before achieving complete synchronization with the
drive one. The largest Lyapunov exponent diminishes with the increase of
a (for instance, this exponent has a value of around 0.047 for a = 0.01)
till the strange motion is completely suppressed, being substituted by torus
type orbits. For a value of a ~ 0.0215 a bifurcation occurs and a stable
periodic orbit with a period of approximately 1.72 arises, loosing its stability
at o ~ 0.02828033. For o = 0.01300439, another stable periodic orbit can be
found with a period of approximately 0.57, 1/3 of the one previous mentioned
cycle. These situations of bistability for the driven equation, with a torus
type attractor and a periodic orbit, and with two stable periodic orbits, are
illustrated in figures 5.4 and 5.5, for & = 0.02 and for a = 0.026 respectively.

This new periodic orbit looses its stability at o ~ 0.23405706 through the
appearance of a period doubling bifurcation and a new attractor appears as
it can be seen in figure 5.6 for & = 0.26. This new or news attractors have
a largest Lyapunov exponent compatible with zero, seeming to be of torus

type.
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Fig. 5.7: The cycle bifurcations on the driven system, from the period doubling
bifurcation at o ~ 0.23405706, till the Hopf bifurcation, as « is increased,
projected onto the v2 — v6 space.

Keeping « increasing, a Neimark-Sacker bifurcation takes place at a ~
0.28326382 with a negative normal form coefficient, and a periodic orbit
shows up, with the period approximately twice the one of the last cycle. At
a ~ 0.35728447, a period doubling bifurcation takes place and a periodic
orbit of half the period appears and keeps present till the Hopf bifurcation
is reached at o ~ 0.3805, above which stable identical synchronization is
observed. The cycle bifurcations on the driven system, from the period dou-
bling bifurcation at a ~ 0.23405706, till the Hopf bifurcation, are shown in
figures 5.7 and 5.8, as «v is increased. The summary of the dynamics described
above is presented in figure 5.9

For the cases where the drive equation is not in asymptotic stable regime
and there is a parameter mismatch between the drive and driven equations,
generalized synchronization can be achieved. To detect the presence of this
type of synchronization some methods have been described in literature. In
the work of [244] a numerical method called mutual false nearest neighbors,
to detect the presence of a continuous transformation ¢ between the drive
and driven system was described. The method relies on the technique of
time delay phase space reconstruction, based on the continuity of the func-
tion ¢ and requires some grade of smoothness [244] [226]. This method can
be applied to temporal series where the underlying evolution equations are
unknown. For the present case, an adequate method to detect this type of
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Fig. 5.8: The cycle bifurcations on the driven system, from the period doubling
bifurcation at a ~ 0.23405706 till the Hopf bifurcation, as « is increased,
projected onto the v4 — v7 space.
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Fig. 5.9: Summary of the dynamics of a linear coupled equation for N = 16, with
the drive equation in stable asymptotic regime and the driven equation
in chaotic regime.
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generalized synchronization between the drive and driven systems, is the aux-
iliar system approach described by [3]. It considers the dynamics of another
system identical to the response system, but starting with different initial
conditions, called auzxiliary system. In the presence of generalized synchro-
nization, the trajectories of the response and the auxiliary system become
identical after a transient period, otherwise the orbits keep unrelated even if
they are in the same attractor. Moreover, the negativeness of the conditional
Lyapunov exponents of the response system can be used to detect this kind
of synchronization [160] [165] [161]. The Jacobian matrix of the coupled dis-
cretized equation (5.19) needed to perform the calculation of the conditional
Lyapunov exponents is given by

N—-1
Ty = =Dy =653 DY)up + 0D — 0, 1<ij<N—1 (5.20)
k=1

where §;; is the Kronecker symbol.

Numerical experiments for synchronization with parameter mismatch be-
tween drive and driven equations, by means of the auxiliar system approach
and the negativeness of the conditional Lyapunov exponents of the response
equation, confirm for this case the possibility of generalized synchronization
for an adequate coupling strength «, for all the values of N tested. For a
sufficient strength of the coupling parameter «, it is possible to achieve a
state of almost identical synchronization. An example with the drive and
driven equations in different asymptotic regimes is describe below.

Consider the case for N = 16, with f(z) = 7sin (7wx) [cos (mx) + 7],
where the drive equation (4.19) is in periodic stable regime, with § = 0.007,
the one that arose from the Hopf bifurcation, and the driven equation is
in strange chaotic regime with 6 = 0.00576. As « increases, the largest
Lyapunov exponent of the coupled system decreases its value till zero. For
some values of o around 0.02 a first situation of bistability of two torus type
attractors can be observed, remaining only one of them stable as « increases
further. This situation of bistability is shown in figure 5.10.

For av 2 0.1840654 a second situation of bistability is observed, due to
the appearance of a stable periodic orbit, which, for lower a values (at a ~
0.1840654) looses its stability by a Neimark-Sacker bifurcation. This second
situation of bistability is shown in figure 5.11.

For higher values of o (o 2 0.22) the torus type attractor looses its
stability, keeping the periodic orbit stable that achieve almost identical syn-
chronization with the drive for a sufficient strength of the coupling parameter
«. Generalized synchronization is only achieved for values of « for which the
motion of the driven equation is periodic as in the drive equation. In this
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Fig. 5.10: Bistability in the driven equation with two torus type attractors for
a = 0.02. The drive equation is in periodic regime and the driven one
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Fig. 5.11: Bistability in the driven equation with a torus type attractor and a
periodic orbit for & = 0.2. The drive equation is in periodic regime and
the driven one is in strange regime.
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Fig. 5.12: Summary of the dynamics of a linear coupled equation for N = 16, with
the drive equation in periodic stable regime and the driven equation in
chaotic regime.

example the value of the coupling parameter must be above 0.1840654, which
is the value where a stable periodic orbit in the driven equation arises. The
dynamics described is summarized in figure 5.12.

Changing the drive and driven equations, now the drive equation being
in chaotic regime and the driven one in periodic regime, by means of the
auxiliar system approach and of the conditional Lyapunov exponents of the
response equation, generalized synchronization is achieved for o 2 0.05.

Consider now the case for N = 17, with the same function f as above,
where the drive and driven equations are both in chaotic regime. For the drive
equation with o = 0.00472 and the driven one with ¢ = 0.0046, generalized
synchronization is achieved for av 2 0.3 and for the case where the coupling is
made with 0 = 0.0046 for the drive equation and § = 0.00472 for the driven
one generalized synchronization is achieved for a 2> 0.2.

For the case of linear coupling of two identical equations (4.19), without
parameter mismatch, numerical calculations show that stable identical syn-
chronization is achieved for an adequate value of the coupling parameter «,
marked by all the transverse Lyapunov exponents negative.

Nonlinear coupling

Coupling can be done by replacement of one or more components of the
response system by the correspondent components of the drive system, as in
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the complete replacement of Pecora and Carroll [224] [225] [227] being the
dimension of the response system reduced. The replacement of one or more
components from the drive system into the driven one, can also be done
in a partial way, as described by [109] [108] [227], procedure that is called
partial replacement. In the partial replacement approach a response variable
is replaced with the drive counterpart only in certain locations, depending
on which will cause stable synchronization and which are accessible in the
physical device one is interested in building. In the work of [117] a nonlin-
ear coupling for discrete chaotic systems is discussed using the example of
two coupled skew tent maps. Combining herein the partial replacement and
nonlinear coupling, one presents a nonlinear coupling for all the discretized
variables but only in one of the three locations of the response discretized
equation (4.19), namely, waves velocity v, % or %. The procedure consists
of replacing the discretized response variable v by v + a (u — v), where u
represents the drive and « the coupling parameter. For o = 1 one reaches a
situation of partial replacement. It is observed that coupling at the position
corresponding to the waves velocity v can lead to identical or generalized
synchronization, but generally not allowing values of & = 1. This means
that the partial replacement in certain locations may not lead to synchro-
nization, but the convex linear combination of the variables of the drive and
driven equations in that location do. When coupling at g—;, generalized syn-
chronization can only be achieved in quite few cases, specially periodic cases,
and only for low values of . Identical synchronization for identical systems
seems only possible for periodic regimes. For the nonlinear coupling at %,
no synchronization was observed. This is observed for all the cases stud-
ied independently of the dimension of the systems given by the discretized
spatial points.

The equations for the case where the nonlinear unidirectionally coupling
of the discretized equation (4.19) is made in the waves velocity v are as
follows:

du;

CZ = —u;DWy + 6Dy + §,

dv;

dz = —[v; + a(u; — v;)] DWy +6DPy + (5.21)

The Jacobian matrix must be computed in order to perform the calcula-
tion of the conditional Lyapunov exponents of the coupled discretized equa-
tion (5.21). The Jacobian matrix for the nonlinear coupling in the waves

velocity v is given by equation (5.22) and, for the nonlinear coupling in g—;



5. Synchronization of Coupled Burgers Equations 164

. 92
and in %

, is given by equations (5.23) and (5.24) respectively.

N-1
1 1 2 1
k=1

=

—1 N-1

1

i

(5.23)
1<i,j<N-1

Jij = —vDY) — 6UZD v +38(1—a)D (5.24)

Similarly to what was done for the linear coupling and for the sake of
comparison, one starts considering the example given for linear coupling with
N = 16 with the drive system in asymptotic stable regime and the driven
one in strange chaotic regime with 6 = 0.00576.

For the nonlinear coupling in the waves velocity v, the dynamics before
reaching the asymptotic regime, as the coupling increases from zero, passes
through the following regimes: periodic orbit, torus type attractor and pe-
riodic motion again. Between the first periodic orbit and the torus type
attractor there is a situation of bistability with both attractors coexisting
for a small range of o values. The asymptotic regime is achieved for values
of o in the range 0.46 < a < 1. Figure 5.13 shows the different attractors
observed for different values of the coupling parameter a.

For the nonlinear coupling in % as the coupling increases from zero, the
following regimes are observed: periodic orbit, bistability with two periodic
orbits, bistability with a torus type attractor and a periodic orbit, bistability
with two torus type attractors, torus type attractor and periodic orbit. The
dynamics does not converge to the asymptotic solution rather it converges
to a spurious stable fixed point at o =~ 0.48. Figure 5.14 shows the different
attractors and situations of bistability observed.

The nonlinear coupling in ,d 9.7 1s very unstable becoming the dynamics
unbounded with a very low Value of the coupling parameter «.

For the nonlinear coupling in the waves velocity v, and as done previously
for the example N = 16 with f (z) = msin (7wz) [cos (mz) + d7], where the
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Fig. 5.13: Nonlinear coupling in the waves velocity v with the drive equation in
asymptotic stable regime and the driven one in strange chaotic regime
with § = 0.00576. Attractors from left to right and from top to bottom:
periodic orbit, bistability with a torus type attractor and a periodic
orbit, torus type attractor and periodic orbit.
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with the drive equation in asymptotic stable

regime and the driven one in strange chaotic regime with § = 0.00576.
Attractors from left to right and from top to bottom: periodic orbit,
bistability with two periodic orbits, bistability with a torus type attrac-
tor and a periodic orbit, bistability with two torus type attractors, torus
type attractor and periodic orbit.
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Fig. 5.15: Bistability for nonlinear coupling in the waves velocity v with the drive
equation in periodic stable regime with § = 0.007 and the driven one in
strange chaotic regime with & = 0.00576.

drive equation (4.19) is in periodic stable regime with § = 0.007, and the
driven equation is in strange chaotic regime with 6 = 0.00576, a similar but
simpler behavior (in relation to the linear case) is observed. In fact, as «
increases, for values of «v in the range 0.07 < o < 0.18 a bistability situation
of two attractors with maximum Lyapunov exponent compatible with the nil
value is observed, remaining only one of them stable as « increases further,
giving rise to the appearance of a stable periodic orbit for higher values of
a in the range 0.25 < a < 1. Figure 5.15 shows the bistability situation for
a=0.17.

For the other two types of nonlinear coupling, no generalized synchro-
nization was observed with the response system becoming very unstable and
allowing only very small values of a.

For the same example, but now with the drive equation in chaotic regime
and the driven one in periodic regime, by means of the auxiliar system ap-
proach and of the conditional Lyapunov exponents of the response equa-
tion, generalized synchronization is achieved for the nonlinear coupling in
the waves velocity v for 0.05 < a < 1 and for the nonlinear coupling in %
for 0.02 < a < 0.15.

For the case N = 17, where the drive and driven equations are both in
chaotic regime with the drive equation with ¢ = 0.00472 and the driven one
with 6 = 0.0046 and vice-versa, generalized synchronization is achieved for
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nonlinear coupling in the waves velocity v for values of 0.2 < o < 0.95. For
the other cases of nonlinear coupling it appears not to be possibly to achieve
synchronization, except when the coupling is the nonlinear one in %, with
0 = 0.0046 for the drive equation and d = 0.00472 for the driven one, and
the value of « is very small. In this case a maximum negative conditional
Lyapunov exponent is observed for values of o ~ 0.04.

For the case of nonlinear coupling of two identical equations (4.19), with-
out parameter mismatch, numerical calculations show that stable identical
synchronization is achieved only for the case where the nonlinear coupling is

in the waves velocity v, and in periodic cases for the nonlinear coupling in
v
or”
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6.1 Conclusions

6.1.1 Concluding remarks

Nonlinear phenomena is present in every science field and therefore, it
is of fundamental importance to develop efficient methods to solve nonlin-
ear equations and nonlinear differential equations. Unfortunately, in most
cases, only numerical solutions can are obtainable. This makes evident the
importance of analytical techniques, such Adomian’s decomposition method
[15] [17] [16] [19] [22], since it searches for solutions under a series form,
not requiring any discretization or assumption for a small parameter to be
present in the problem, which, in fact, may not exist at all [119]. The appli-
cation of this method to partial differential equations poses some obstacles,
as the computational effort that is heavier than the one required to solve or-
dinary differential equations and the possible convergence to a solution that
does not satisfy all the boundary conditions. Anyway, as the exact analyt-
ical solution is probably not recognized from the solution series, truncated
series must be used to represent the solution. A disadvantage of such ap-
proach is that the truncated series may have a small convergence radius.
To overcome this drawback when applying Adomian’s method to ordinary
differential equations, some authors have used an aftertreatment with Padé
approximants [29] [274] [273] [132]. Only recently, and simultaneously to
the development of the thesis, this technique was applied to partial differen-
tial equations [4] [5] where graphical illustrations were used to show that the
domain of convergence of Adomian’s solution was improved by the applica-
tion of this technique. In this thesis, it is shown not only graphically but also
numerically, that this technique can enlarge the domain of convergence of the
solution and that the accuracy is generally also improved inside the domain
of convergence of Adomian’s series solution as the numerical results show
[43]. Also, and not referred by [4] [5], is the disadvantage of representing the
series solution as a ratio of two polynomials when poles not existing in the
actual solution appear in the Padé approximants. Close to these poles the
solution can become inaccurate [43]. This drawback indicates that sometimes
it is not advised to increase the order of the Padé approximants to improve
the solution, but instead one should search to find the optimal order of the
Padé approximants to be used. Other authors tried a different approach
to overcome the small converge radius of the solution series: they divided
the time horizon in subintervals and applied in a recursive form the Ado-
mian’s method, the so called multistage Adomian’s decomposition method
(MADM) [65] [93], in order to make possible to approach the solution in the
entire time interval. To increase the accuracy of the solution, some authors
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proposed the choice of a smaller time interval and/or to add more terms to
the solution series. Hence, another approach not yet referred in the open
literature that one could use to overcome the small convergence radius of the
solution series of PDEs would be the application of the Adomian’s method
to the spatial discretized PDE through finite differences, followed by the ap-
plication of the MADM to improve the convergence radius. Such approach is
used in this thesis. By applying Adomian’s method to an example of a spa-
tial discretized Burgers equation through finite differences, one observed that
the convergence domain decreased with the number of discretized points, so
this approach became useless [43]. This behavior seems to be related to the
powers of the terms ﬁ that appear in the solution, which are larger when
the spatial interval grid is smaller [43]. Another possible approach is to use
Padé approximants to the solution series applied to the lines obtained by the
spatial discretization of the PDE. Again, in this case, this technique revealed
useless since, as expected, the convergence radius also decreased with the
number of spatial discretization points [43].

Adomian’s decomposition method can also be used to solve nonlinear
equations. Due to the nonlinearity of the equations, analytical solutions are
only reachable for very few cases. The need to construct efficient numerical
methods is essential to solve nonlinear problems. In spite of the importance
of the solution series given by Adomian’s method, the convergence rate is in
this case sometimes slow. Some modifications were made by several authors
to solve this flaw, trying to improve Adomian’s method applied to those type
of equations [33] [12] [35]. This approach was also performed in this thesis and
a new iterative method to compute nonlinear equations was developed [40].
This new method has an order of convergence three and comparisons against
Adomian’s method and other methods based on it were made. Also compar-
isons were made against Newton-Raphson method, a method of second order,
and the Householder and Halley methods, methods of third order. This new
method revealed to be one of the best ones derived from Adomian’s method
and also a very good alternative to the other referred well known methods,
such the Newton-Raphson or the Househélder and Halley methods [40].

Burgers equation ([55]) is one of the simplest nonlinear partial differential
equations, and due to its quadratic term, the nonlinear term of convection,
it can exhibit sharp discontinuities under a low viscosity coefficient, which
are difficult to simulate numerically.

By using Chebyshev spectral methods, Dang-Vu and Delcarte [77] found
out the existence of a critical value for the viscosity coefficient, where a Hopf
bifurcation occurred to the spectral spatially discretized driven Burgers equa-
tion. Bellow that value, after the loss of stability of the periodic orbits, a
strange attractor seemed to appear, due to the positive largest Lyapunov ex-
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ponent [77]. To the author’s knowledge, no other studies on such motions for
the spectral solutions of Burgers equations have been published in the open
literature. In this work, new behaviors were found for the collocation spectral
solutions of the driven Burgers equation [42] [41]. Hence, several bifurcations
occur as one decreases the value of the viscosity coefficient and several attrac-
tors appear. It was observed the existence of nonperiodic attractors, torus
type attractors and strange attractors, for lower values of that parameter be-
low the Hopf point. Bistability with two periodic attractors, with a periodic
attractor and a nonperiodic one (torus or strange attractor) and even with
two nonperiodic attractors that seem to correspond to quasiperiodic motions,
were also observed. Stable equilibrium and new Hopf bifurcations different
from the ones that correspond to the asymptotic stationary solution were
found out [42] [41].

This dynamic behavior must be related to the discontinuities that Burg-
ers equation can develop and to the Gibbs phenomenon that occurs near
these points [42] [41]. For the forced Burgers equation, as the higher points
of the nonlinear waves travel at a higher speed, shocks and discontinuities
will tend to appear in the intervals where the asymptotic solution is decreas-
ing. Numerical results indicate that these branches of the solution must be
fixed to the boundaries. Moreover, such branches where discontinuities tend
to appear must not exist not fixed to the boundaries. This seems to be
related to that observed in the numerical experiments: in these cases, the
asymptotic solution keeps its stability for lower values of the viscosity co-
efficient, giving time to the equilibrium to loose stability by a supercritical
Hopf bifurcation [41]. Indeed, the numerical simulations made over several
examples with different Burgers equation drive function, show that the loss
of stability of the equilibrium point corresponding to the asymptotic solution
must occur by means of a supercritical Hopf bifurcation so that stable limit
cycles can emerge, followed by the other phenomena described. However,
Hopf bifurcations and limit cycles were observed for cases not satisfying the
above premise, but for an equilibrium not belonging to the asymptotic so-
lution. For the case where there is only one interval where the asymptotic
solution is decreasing and is fixed to only one of the boundaries, the loss of
stability was also done for lower values of the viscosity coefficient but not
by a supercritical Hopf bifurcation and no stable attractors were observed.
Also, for the Fourier spectral collocation solutions where the solution is not
fixed to boundaries, no phenomenon of this kind was observed [41].

Concerning the bistability observed, for almost all the cases, is not related
to the symmetry that is exhibited in several examples, as bistability is present
even when the motion at the attractors does not break the system symmetry.
Even when the motion at the attractors apparently breaks the symmetry, as
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for an example studied, the same behavior was observed [42] [41]. A deeper
look into the attractor, viewing it as an entire entity, allows to conclude that
the symmetry is preserved. Everything occurs as the dynamics evolve in a
symmetric manner but with a time delay [41].

This rich dynamical behavior shows that the spectral solution of Burgers
equation can be used as a model for the study of dynamical systems and
for the implementation of new techniques of synchronization of high dimen-
sional systems, since this is an area with several applications, such as chaotic
synchronization in communications. Hence, discussion of sufficient condi-
tions for identical synchronization of coupled Burgers equations, by means
of a Lyapunov function, was presented in this work and a nonlinear coupling
to synchronize coupled spectral solutions of forced Burgers equations was
proposed and studied [41]. The results showed that this kind of coupling
must be done at the position corresponding to the waves velocity in the re-
sponse equation, and generally not by partial replacement, but by a convex
linear combination between the drive and driven equations. This applies
for both generalized or identical synchronization, with or without parameter
mismatch respectively. The results found for the linear coupling show that
it is always possible to reach some kind of synchronization, identical or gen-
eralized. Also some dynamical behaviors were described which were mainly
related to the coupling with the asymptotic solution [41].

There is still work that can be done. Some is presented in the following
section.

6.1.2 Future work

The problem of solving initial-boundary value problems using the Ado-
mian’s decomposition method, and particularly Burgers equation, is still not
resolved and poses still difficulties when one deals with it. This type of prob-
lems has been usually solved based only on the imposition of the initial con-
ditions, with the nonimposed boundary conditions being naturally satisfied.
When initial and boundary conditions have to be imposed, the Adomian’s
solution may not be a valid solution. On this subject, there is a strong lack of
published work in the open literature. The only works found out are pointed
out again in order to illustrate such lack. Ngarhasta et al. [211] proposed a
search of each term of the Adomian’s series to choose the first term verify-
ing both initial and boundary conditions. Wazwaz [281], on the formulation
of some boundary value problems, used an unknown function or parame-
ter that was determined later by imposing the other boundary conditions.
Adomian [16] and Lesnic [182] [183] [184] proposed a method to solve linear
initial-boundary problems, with possible extensions to higher-dimensional,
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inhomogeneous and nonlinear problems. The approach proposed by Ado-
mian [16] and later improved by Lesnic [182] [183] [184] consists of applying
Adomian’s method to linear initial boundary problems, where the starting
term and the inverse operators incorporate both the initial and the boundary
conditions. To solve the linear heat equation (6.1), namely
2

%:%, 0<z<l1l, t>0 (6.1)
the following equations (6.2) and (6.3) are added, and equation (6.4) is ob-
tained:

Ly'Liu=L;'L,u (6.2)
Lo} Leu= L} Liu (6.3)
1
u(x,t) = 3 (L' Lyw + Loy Ly] u (, t) (6.4)

Lesnic [182] proposed defining the inverse operators L; ' and L;! as def-
inite integrals such as to incorporate the initial and boundary conditions.
Hence, for the Dirichlet problem, the inverse operators were defined as fol-
lows:

mo= [ (O ar (6.5)

L7 :/Ox i’ /0 (-)dx”—x/oldx'/oxl () da” (6.6)

For the mixed heat equation, Lesnic proposed the following inverse oper-
ators:

L= [ (67)
pio= [ f " (s (6.5)

with mixed boundary conditions given by:

ou

u(0,t)=fo(t), » (Lt)=g() (6.9)

And for the Newmann heat problem, Lesnic proposed the inverse opera-
tors:

L7 () = /Ot () dt (6.10)

L1 :/Oxdx'/;/ (-)dx”—x;/ol () da’ (6.11)



6. Conclusions 175

with boundary conditions given by:

ou ou

52 0. =g0(t), - (1,1) =g (¢) (6.12)

The application of this method to nonlinear problems has not yet been
done. Although referred by Lesnic [182], it is not an easy task to extend this
procedure to higher-dimensional and nonlinear problems, due to the excessive
computational effort that it would bring. Intensive research work account-
ing for some modifications to the above method has to be done. Besides,
the study of the convergence to the real solution satisfying both initial and
boundary conditions has also to be done. Moreover, the approach suggested
by those authors includes writing the equation in two different forms and
defining two different inverse operators. The solution is then the arithmetic
mean of these two solutions. The possible addition of these equations with
weighed coefficients, which could drive to a solution with a different starting
term and a recursive relation, can be investigated to minimize the nonlinear
effects in the computational work. The proposals of Ngarhasta et al. [211],
taking into account both initial and boundary conditions by choosing the first
term of Adomian’s series verifying both initial and boundary conditions, is
also worth of further investigation.

A more complete description of the bifurcations and attractors observed
for spectral solutions of Burgers equation is still possibly to be done. To
completely identify all the bifurcations and attractors implicated, further in-
vestigations are needed. Also, the different attractors observed for Chebyshev
spectral solutions of Burgers equation may be not a phenomenon exclusive
of this equation. Further spectral solutions of Burgers type equations may
also exhibit a rich dynamical behavior under certain parameters variation,
such as possible chaotic motions. These phenomena could be prospected and
explored, so studies like dynamical behavior and chaotic synchronization in
extended dynamical systems could be further investigated. Other similar
equations are described in the literature relating to various physical phe-
nomena including hydrodynamic processes, possessing the same nonlinearity
u%, which takes, in the generalized meaning, the form BI(;_;u)‘ Some of such
equations are those presented below.

The Korteweg-de-Vries equation (KdV), which incorporates dispersion,
describes long waves in water of relatively shallow depth, possessing steady
progressing wave solutions [297].

o Fum—+ B =0 (6.13)

The Korteweg-de- Vries-Burgers equation (KdVB), which incorporates dis-
persion and dissipation, was first proposed for the study of the flow of viscous
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fluids down an inclined plane, exhibiting a soliton in the solution.

du ou 82u Pu

The Kuramoto-Sivashinski equation (K-S) [169], a model to describe long-
wave motions of a liquid thin film over a vertical plane.

— tu—+0-+755=0 (6.15)
x x
The Nikolaevskii equation [301].
% + 8_2 1+ 8_2 i
ot 0x? Ox?

The modified Korteweg-de-Vries equation (MKdV) with m =0, 1, 2,

— =0 6.16
u—i—uaﬂj ( )

Ju
b - 6.17
ot e + ﬂaﬁ (6.17)
which, for m = 0 becomes the linear KdV equation and for m = 1 becomes
the nonlinear KdV equation.

The Fifth-order KdV equation (FKdV),

ou  Pu ou *u Bu
- =F 1
ot 0ad (“““ e 83:2’01:3) (6.18)

occurs, for example, in the theory of shallow water waves with surface tension.
The coupled Korteweg-de-Vries equation, known as Hirota-Satsuma equa-
tion, was introduced by Hirota and Satsuma [124] and can take the form:

ou Pu ou v

prialy (@ + 6ua—> + va% (6.19)
3

do_ _Ov 4,9 (6.20)
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