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A Variational Approach for Designing Infinite
Impulse Response Filters with Time-Varying

Parameters
Karel Toledo, Jorge Torres, Rodrigo De Lamare and M. Julia Fernández-Getino Garcı́a

Abstract—Filter design with short transient state is a problem
encountered in many fields of circuits, systems and signal pro-
cessing. In this paper a novel low-pass filter design technique with
time-varying parameters is introduced in order to minimize the
rise-time parameter. Through the use of calculus of variations a
method is developed to obtain the optimal closed-form expression
for adjusting the parameters. In this context, two cases are
addressed. The ideal case in which infinite bandwidth is required
and a solution of finite bandwidth. The latter is obtained by
means of a proper constraint formulation in the frequency
domain. The proposed filter achieves the shortest rise-time and
allows better preservation of the edge shape in comparison
with other existing filtering methods. The analysis, synthesis and
performance of the proposed system is discussed and illustrated
with the aid of simulations.

Index Terms—Filter design, rise-time, time-varying parame-
ters, calculus of variations.

I. INTRODUCTION

L INEAR Time Variant filters (LTV) are commonly ap-
plied to adjust time and frequency specifications simul-

taneously. Frequency specifications are usually considered to
design low-pass, band-pass, high-pass or band-stop frequency
responses, while time specifications comprise rise-time and
overshooting parameters.

The concept is first addressed to deal with processing time
and correctness trade-off [1]. The dynamic parameters of
systems are varied in time to reduce the transient behavior
as much as possible. In this regard, the pioneering work of
Kaszynski in [2] addresses the design of low-pass filters with
time-varying parameters. This approach significantly reduces
the transient period in comparison with filters of constant
parameters.

The shortening of the transient behavior is directly related
to a reduction of rise-time. Through the use of LTV filters,
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several applications are reported to be used on a variety
of fields of circuits, systems and signal processing such as:
dynamic weighing systems [3], software defined radio (SDR)
[4], sensors for biomedical applications [5], channel equalizers
[6], inertial sensors [7] and radar processing [8], for instance.

A. Prior Work

A variety of designs have been considered to reduce the rise-
time parameter when rectangular pulses are received. Solutions
reported to date either modify parameters on the S plane or by
means of closed-form expressions in the time domain. These
solutions are based on constant and time-varying linear filters.

1) Filters of Constant Parameters: Several configurations
are based on the displacement of poles over particular curves
in the S plane with regard to the Butterworth design, in order
to obtain a reduction of rise-time. For instance, some designs
use the parabola, the ellipse or the catenary curves [9].

Other solutions modify the expression of a given design by
a parameter. In this respect, a modification of the Bessel filter
is considered in [10] and the rise-time is reduced through the
increase of a given parameter. However, the cutoff frequency
is also shifted, which represents a trade-off for this type of
solution. Moreover, a method for the synthesis of the wide-
band amplifier transfer function can be developed by using the
direct performance parameter in the time domain, known as
delay to rise-time ratio [11].

On the other hand, the eigenfilter method represents an
approach in the least squares sense [12]. This design is
implemented with time and frequency constraints in order
to minimize the rise-time and overshooting of the step re-
sponse simultaneously. In a similar way, linear programming
has been applied to filter design. In this approach the ease
of implementation is remarkable and the convergence to a
unique-solution is generally guaranteed in a frame of filters
of constant parameters [13].

Furthermore, by means of several analytic definitions of the
rise-time parameter, closed-form expressions can be obtained
for the filter coefficients. These coefficients are obtained by
looking for the minimum value of the rise-time. A first
approach for defining the rise-time analytically, given in [14],
is based on the standard deviation of the impulse response. A
second approach, described in [15], is obtained under the con-
straint of a given noise bandwidth. Finally, after considering
constraints in the bandwidth, optimal expressions of the filter
coefficients are provided in [16].
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2) Filters of Time-Varying Parameters: In case that a con-
stant cutoff frequency is specified in advance, the indetermi-
nacy principle establishes a lower bound for the rise-time. In
order to overcome this issue, the variation of filter parame-
ters in time is implemented. For instance, the characteristic
frequency function of second-order filters is time-varied to
achieve a reduction of rise-time at the filter output. This is
implemented by linear time-varying (LTV) filters.

In the analog domain, the concept of LTV filters is incor-
porated into the design of lowpass filters by the Chebyshev
[2] and Bessel [17], [18] approximations. Additionally, Notch
[19] and phase compensated systems for Butterworth [20],
Chebyshev [21] and Elliptic [22] filters are also implemented.

In the discrete-time domain, LTV filters are also imple-
mented by FIR [23] and IIR [24] systems. Although, reports
are focused on Notch filtering as described in [5], [25]. By
means of LTV filters the characteristic function, the damping
factor and the Q-parameter of second-order systems are mod-
ified, in a timely manner. The variation of filter parameters is
normally adjusted by means of linear and exponential func-
tions as well as curves derived from second order systems and
Bézier curves [1], [25]. In addition, other reports establish non-
zero initial conditions to further reduce the transient behavior
[26].

B. Motivation
Based on reported solutions to reduce the rise-time pa-

rameter, filters with time-varying coefficients offer the best
approach. In this concern, a variety of solutions modify
the characteristic frequency as well as the damping factor
of second-order lowpass IIR filters with a variety of rules.
However, an optimal solution to describe the variations of
the characteristic frequency function in time has not been
considered. Additionally, an optimal solution in case of filters
of arbitrary order is not available. The motivation of this work
is the development of optimal expressions for the characteristic
function of lowpass IIR filters of arbitrary order to reduce, as
much as possible, the duration of the transient response.

C. Contribution
The contribution of this paper is the derivation of an op-

timal closed-form expression for the characteristic frequency
function of lowpass IIR filters of arbitrary order, in order to
minimize the rise-time. As stated above, previous proposals
for the design of LTV filters were non-optimal. The optimal
expression is obtained through the use of the mathematical
tool of calculus of variations [27], that to the best of our
knowledge, had not been previously applied to this problem.
The current work is inspired by the work presented in [17] and
further analyzed in [22], [28], [29]. Although the proposed
solution is obtained for first-and second-order systems, the
generalization to higher-order filters is straightforward and can
be obtained by implementing a cascade structure comprised by
first-and second-order filters. A practical approximation and
an implementation of the proposed time-varying system are
also discussed. The results show that the proposed approach
has lower values of rise-time than the previously reported
approaches to designing time-varying systems.

D. Organization

Section II presents the filter design concepts for ideal and
practical cases. The characteristic frequency function of first-
and second-order lowpass IIR filters is derived to optimally
reduce the rise-time parameter. Section III discusses the fre-
quency response in the time frequency plane and the stability
of the proposed design in case of first and second order
systems. Section IV presents the design procedure of higher-
order filters. Software and hardware implementation followed
by an illustrative example are also presented. Additionally, the
extension to higher order lowpass IIR filters of arbitrary order
is also presented. In Section V the evaluation of the proposed
design is illustrated in comparison with other reported solu-
tions followed by the concluding remarks and future work in
Section VI.

II. PROBLEM FORMULATION AND FILTER DESIGN
CONCEPTS

A. Problem Formulation

Linear time-invariant systems are completely described in
time and frequency domains by the impulse response h(t)
and the transfer function H(s), respectively. In addition, given
the step response, denoted by g(t), of a linear time-invariant
system, the rise-time is defined as the time interval TR between
g(t) = 0.1 and g(t) = 0.9. Moreover, it is known as the
time required for the step response to increase from 10 to 90
percent of its final value [30]. However, to establish an analytic
expression of TR from this definition is not feasible.

An alternative rise-time definition can be derived taking into
account the impulse response h(t) as described in [14]. This
definition is applied in particular fields as indicated in [31].
The quantity is directly related to the standard deviation of
h(t) and it is described by:

TR =

√
2π

[∫ ∞
0

t2h(t)dt− T 2
D

]
, (1)

where TD is the time-delay and can be defined as the centroid
of the area of the curve h(t) [14], i.e.:

TD =

∫ ∞
0

t · h(t)dt. (2)

Graphically, this approach is illustrated in Fig.1. The value
of TR is related to the spreading of h(t). The shorter the
standard deviation of h(t), the more pronounced the step
response becomes.

Let us consider an analog second-order system, described
by the following transfer function:

H2(s) =
k

1

ω2
0

s2 +
2β

ω0
s+ 1

, (3)

where k, β and ω0 represent the gain, the damping factor
and the characteristic frequency, respectively. Expressions for
varying the ω0 and β parameters in time for the second-order
system given in (3) are implemented by linear, exponential
and second-order curves to reduce the transient behavior.
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The parameters β and ω0 are related to the step response.
The larger the values of β and ω0, the smaller the output
oscillations and the rise-time become.

This dynamic system, described by an LTV filter, allows
a reduction of rise-time. However, the optimal closed-form
expressions have not been derived for second-order systems,
first-order systems nor higher-order IIR filters, which in turn
demands further analysis. The next subsection addresses a
method for solving the above problem based on the definition
given in (1) and the use of calculus of variations.
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Fig. 1. Impulse response of a generic system. This figure depicts the function
sinc(t− t0), in which t0 = 3.4.

B. Optimal Solution: Ideal Case with Infinite Bandwidth

The aforementioned closed-form expression of rise-time in
(1) can be considered as the functional of a variational problem
of the form [27]:

I(ω0) =

∫ ∞
0

F (ω0, ω
′
0, t)dt, (4)

where:

F (ω0, ω
′
0, t) = t2 · h(ω0, t), (5)

the quantities t, w0 and h(w0, t) represent time, characteristic
frequency and the impulse response in case of first-and second-
order systems, respectively.

The integrand given in (4) is related to the definition of
TR in (1). The number I(ω0), defined in (4), gives a measure
of rise-time, since with lower I(ω0) the rise-time assumes a
smaller value.

The value of TD = 0 is considered here, without loss of
generality, to reduce complexity on the analytic solution of
the variational problem. The solution to be obtained by this
procedure is given in terms of coordinates centered at TD in
Fig. 1. The solution for h(t) is then transformed to h(t−TD)
to obtain the final solution.

The main idea is to find an optimal expression of ω0(t),
denoted by ω0(t), in order to obtain the optimal value of the
TR parameter. This solution must satisfy the Euler-Lagrange
equation [27]:

∂F (ω0, ω
′
0, t)

∂ω0
− d

dt

(
∂F (ω0, ω

′
0, t)

∂ω′0

)
= 0. (6)

where ∂
∂ω and d

dt stand for partial and total derivatives,
respectively.

Since the F function is independent of ω′0, the Euler-
Lagrange equation is reduced to the first term on the left-hand
side of (6). By writing out the derivatives and equating the
terms to zero, the following condition arises:

∂F (ω0, t)

∂ω0
= 0, (7)

1) Filters of arbitrary order: Let H(s) describe a rational
transfer function of a time-invariant IIR filter of arbitrary order.
In which the order of the numerator is zero, when Butterworth,
Chebyshev and Elliptic design methods are applied [32].
Similar to the approach presented in [17], the time-varying
IIR filter may be obtained after a cascade connection in terms
of first-and second-order lowpass filters as:

H(s) =

N1∏
i=1

H1i(s) ·
N2∏
i=1

H2i(s), (8)

where terms H1i(s) and H2i(s) are defined as:

H1i(s) =
1

1
ω1i
s+ 1

, (9)

H2i(s) =
1

1
ω2

2i

s2 + 2βi

ω2i
s+ 1

,

term H1i(s) stands for first-order systems, while second-order
systems is determined by H2i(s).

Decomposition of the IIR filter in terms of systems of first-
and second-order, allows to reduce the mathematical complex-
ity of the problem. The next sections are devoted to describing
the procedure to the characteristic frequency function in case
of first and second-order systems.

2) First-Order Systems: Considering the transfer function
of a first-order system as indicated by H1i(s) in (9), the
impulse response is obtained by using the table of Laplace
transforms from [33] as:

h1(t) = ω0e
−ω0t, (10)

where w0 stands for the characteristic frequency.
Then, applying the condition in (7) the optimal expression

for w0(t) is obtained by:

∂

∂ω0
t2 · h1(ω0, t) = t2 e−ω0t (1− tω0) = 0. (11)

This condition offers a solution for the characteristic fre-
quency as:

ω0(t) =
1

t
. (12)
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3) Second-Order Systems: Taking into account the term
H2i(s) from (9), and by using the table of Laplace transforms
in [33] the impulse response of second-order systems is
obtained as:

h2(t) =
ω0√
1− β2

e−βω0t sin(w0

√
1− β2 t). (13)

Then, upon evaluating the condition in (7), and by using
the following trigonometric identity:

A cos(θ + α1) +B cos(θ + α2) = R cos(θ + φ), (14)

where

R =
√
A2 +B2 + 2AB cos(α1 − α2), (15)

φ =tan−1
A sinα1 +B sinα2

A cosα1 +B cosα2
.

the following relation is derived:

∂

∂ω0
t2 · h2(ω0, t) =

t2e−βω0t√
1− β2

R2 cos(θ + φ2), (16)

where

R2 =
√
ω2
0t

2 − 2βω0t+ 1, (17)

θ =w0

√
1− β2 t

φ2 =− tan−1 1− βtω0

tω0

√
1− β2

.

Then, the condition ∂
∂ω0

t2 · h2(ω0, t) = 0 is fulfilled
whenever R21 = 0 or θ+φ21 = (2p+1)π

2 , p ∈ Z. Based on the
first condition, two solutions are obtained after factorization
given by:

ω01,2(t) =
1

t
(β ±

√
(β − 1) (β + 1)). (18)

Additionally, based on the second condition the following
expression is obtained:

tω0

√
1− β2 − tan−1 1− βtω0

tω0

√
1− β2

=
(2p+ 1)π

2
, (19)

which represents an implicit function of ω and must be solved
by numerical methods to obtain the derivation of ω0(t).

4) Concluding remarks: Solutions of first-and second-order
systems are described by the relations given in (12), (18) and
(19). However, in all cases the characteristic frequency goes to
infinity when t approaches zero. That is, the system cannot be
implemented by any practical system in hardware. However,
this problem can be addressed adding an energy restriction for
the ω0(t) curve. This is described in the next Sub-Section.

C. Optimal Solution: Practical Case with Finite Bandwidth
The class of problems in which the required functional

is expressed with integral restrictions is called isoperimetric
[27]. The isoperimetric problem allows to establish conditions
for obtaining bounded solutions. In this case, the constraint
introduced in energy is described as:

Eω0
=

∫ ∞
0

ω2
0(t)dt = C1, C1 > 0, (20)

where C1 is a constant value. The condition (20) ensures a
bounded solution of ω0(t) for the variational problem in (4). In
this case the new expression for the functional can be rewritten
as follows:

F (ω0, ω
′
0, t) = t2 · h(ω0, t) + λ1ω

2
0 , (21)

where λ1 is the undetermined Lagrangian multiplier whose
values must be determined. Thus, according to the Euler-
Lagrange equation given in (6) with the functional described
in (21), the following condition must be satisfied:

t2 · ∂h(ω0, t)

∂ω0
+ λ1ω0 = 0. (22)

In this case the constant λ1 in (22) is replaced by 2λ1 in
(23) for the ease of representation.

1) First-Order System: Upon substituting the relation in
(11) into (22) the following condition is established:

t2 e−tω0 (1− tω0) + λ1ω0 = 0, (23)

in case of first-order systems.
2) Second-Order System: Similar to first-order systems, the

following condition is obtained taking into account the relation
in (16):

t2e−βω0t√
1− β2

R21 cos(θ + φ21) + λ1ω0 = 0, (24)

where R21, θ and φ21 are determined as indicated in (17).
3) Concluding Remarks: From (23) and (24) the derivation

of a closed-form expression for ω0(t) is not affordable for both
cases, first-and second-order systems. The solution must be
determined by numerical methods. For each value of t a value
of ω0(t) is determined whenever the left-hand side of (23)
and (24) is equal to zero for first-and second-order systems,
respectively.

Considering the solutions above for ω0(t) in (23) and (24),
the implicit function theorem [34] guarantees the continuity of
the real function ω0(t) and thus ω2

0(t). Moreover, given that∫∞
0
ω2
0(t)dt = C1, as imposed in (20), then ω2

0(t) will be a
bounded function. According to this, the real function ω0(t)
is also bounded.

Although the proposed solutions in (23) and (24) for the
characteristic frequency are obtained for finite bandwidth, it
does not represent a stable filter. The next section is devoted to
the analysis of stability, which in turn imposes an additional
restriction on the characteristic frequency. In this case, the
solution for the characteristic frequency function, to be devised
on the next Section, determines a stable system of finite
bandwidth.
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III. FILTER ANALYSIS

Given the solutions derived for first-and second-order filters,
the analysis in terms of stability and frequency response is
described here.

A. Stability of the Proposed Method

The stability properties of the system with time-varying
parameters are considered taking into account the discussion
presented in [22], [28], [29]. In this regard, first-and second-
order systems are modeled by scalar linear time-varying differ-
ential equations. In case of first-order systems the differential
equation is given by:

y′(t) + ω0(t)y(t) = ω0(t)x(t), (25)

taking into account the relation for H(s)1i in (9), where y(t)
and x(t) represent, respectively, the output and the input of the
filter. In case of second-order systems the differential equation
is described by:

y′′(t) + 2βω0(t)y
′(t) + ω2

0(t)y(t) = ω2
0(t)x(t). (26)

Both equations in (25) and (26) may be rewritten through
the use of matrix notation as:[

y′1(t)
y′2(t)

]
= F (t)

[
y1(t)
y2(t)

]
+G(t)z(t), (27)

where y1(t) = y(t), y2(t) = y′(t) and F (t) and G(t) are
matrices defined as follows for first-order systems:

F (t) =

[
−ω0(t) 0

0 0

]
G(t) =

[
1
0

]
, (28)

and second-order systems:

F (t) =

[
0 1

−ω2
0(t) −2βω0(t)

]
G(t) =

[
0

ω2
0(t)

]
. (29)

From [28], the proposed system has bounded-input
bounded-output (BIBO) stability if the following conditions
are met:
• The elements of F (t) and G(t) are bounded.
• The homogeneous response of (27) shows an exponential

asymptotic stability.
Considering the first condition above, the real function ω0(t)

and thus ω2
0(t) are bounded functions as discussed in Section

II-C3. Thus, the first condition is fulfilled for first-and second-
order systems by means of the relations in (23) and (24),
respectively.

On the other hand, the exponential asymptotic stability
can be addressed by the Poincaré-Lyapunov theorem [35] as
follows. If the matrix F (t) given by (29) is considered as:

F (t) = A+B(t), (30)

then, the homogeneous response of (27) is exponential asymp-
totic stable if the two following conditions are satisfied:

1) A is a constant matrix with all eigenvalues having
negative real part.

2) B(t) is a continuous matrix with the property:
limt→∞ ||B(t)|| = 0.

In order to analyze the above conditions, the elements of A
are defined as follows:

aij = αij · lim
t→∞

∫ t

0

||fij(t)||dt, (31)

where fij are the elements of F (t) and αij are undetermined
positive constants.

In addition, another constraint is introduced in the isoperi-
metric problem in order to satisfy that A is a constant matrix:

DCω0
=

∫ ∞
0

ω0(t)dt = C2, C2 > 0, (32)

where C2 is the direct component of ω0(t). The integral given
by DCω0 determines the constant component of ω0(t).

By means of the restriction in (32) and the Euler-Lagrange
equation described in (6), a new condition for the variational
problem must be satisfied in case of first-order systems:

t2 e−tω0 (1− tω0) + λ1ω0 + λ2 = 0, (33)

and second-order systems as:

t2e−βω0t√
1− β2

R21 cos(θ + φ21) + λ1ω0 + λ2 =0, (34)

where λ2 is the undetermined Lagrangian multiplier whose
values must be determined, R, θ and φ are given in (17).

1) First-Order Systems: Considering the first condition of
the Poincaré-Lyapunov theorem, the matrix A is obtained as
follows:

A =

[
−α11C2 0

0 0

]
, (35)

using the definition in (31) and the expression for F (t) in (28).
In this case, the eigenvalue is obtained by the relation:

µ = −α11C2, (36)

which represents a negative value given that α11 and C2 are
positive constants.

Considering the second condition of the Poincaré-Lyapunov
theorem, in order to guarantee that the equality in (30) holds,
the matrix B(t) is expressed as:

B(t) =

[
−ω0(t) + α11C1 0

0 0

]
. (37)

The values of B(t) tend to zero whenever the following
condition is satisfied:

lim
t→∞

||B(t)|| =
[
−ω0(∞) + α11C1 0

0 0

]
= 0, (38)

which establishes the following condition for ω0(∞):

ω0(∞) = α11C1. (39)
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2) Second-Order Systems: Considering the first condition
of the Poincaré-Lyapunov theorem, by writing out the expres-
sion given in (31), and through the use of the definition of
F (t) in (29), the matrix A is described as:

A =

[
0 1

−α21C1 −2α22βC2

]
, (40)

and the eigenvalues may be written down as:

µ1,2 = 0.5

(
−2α22βC2 ±

√
4α2

22β
2C2

2 − 4α21C1

)
. (41)

Considering the expression obtained in (41), the first term
will be a negative number given that β describes the damping
factor and it is thus positive. The value of α22 is also defined
to be a positive quantity.

On the other hand, the second term is an imaginary value
since the argument of the square root procedure satisfies the
condition 4α2

22β
2C2

2 − 4α21C1 < 0 equivalent to :

C1 >
α2
22

α21
β2C2

2 . (42)

Indeed, the energy associated to ω0(t), described by the
term C1, is greater than the energy associated to the direct
component of ω0(t), described by the term C2

2 . Thus, C1 >

C2
2 and considering also that α2

22

α21
β2 < 1, then the condition

C1 >
α2

22

α21
β2C2

2 is fulfilled when:

β < 1, (43)

and

1 <
α2
22

α21
<

1

β2
. (44)

Hence, the eigenvalues of the matrix A have a negative real
part.

Considering the second condition of the Poincaré-Lyapunov
theorem, in order to guarantee that the equality in (30) holds,
the matrix B(t) is expressed as:

B(t) =

[
0 0

−ω2
0(t) + α21C1 −2βω0(t) + 2α22βC2

]
. (45)

For large values of t the matrix B(t) is transformed as:

lim
t→∞
||B(t)|| = (46)[

0 0
−ω2

0(∞) + α21C1 −2β2ω0(∞) + 2α22βC2

]
.

In order to guarantee the condition limt→∞ ||B(t)|| = 0,
then from (46) the following conditions must be simultane-
ously satisfied: {

ω2
0(∞) = α21C1

ω0(∞) = α22C2,
(47)

which in turn is equivalent to:

C1 =
α2
22

α21
C2

2 (48)

3) Stability Remarks: Considering the two conditions ana-
lyzed above from the Poincaré-Liapunov theorem in case of
first-and second-order systems, the restriction is applied to
ω0(∞). This value is defined by:

ω0(∞) = −λ2
λ1
, (49)

considering the first term in (33) and (34) tends to zero when
t tends to ∞.

In case of first-order systems, the value of ω0(∞) must
fulfill the relations in (39) and (49). While for second-order
systems the value of ω0(∞) is also limited by the relation in
(47). Finally, it can be concluded that the proposed first-and
second-order systems represented by (25) and (26), with the
characteristic frequency provided by relations (33) and (34)
are bounded-input bounded-output stable [28] given that the
value of ω0(∞) is bounded.

B. Time Frequency Description of the Proposed Systems

From the analysis of filter stability the optimal condition for
the characteristic frequency function has been derived in case
of first-and second-order systems. This is given by the relations
in (33) and (34), respectively. These solutions describes not
only a bounded function, but also a bounded direct component
of ω0(t).

Let’s W (t, ω0) be defined by the left side members of
relations (33) and (34) as:

W (t, ω0) = fi(t, ω0) + λ1ω0 + λ2, (50)

where i = 1 determines first-order systems, and i = 2
determines second-order systems, respectively. In this case,

f1(t, ω0) =t
2 e−tω0 (1− tω0) ,

(51)

f2(t, ω0) =
t2e−βω0t√
1− β2

R cos(θ + φ),

where R, θ and φ are given in (17). Then, values of ω0(t) are
obtained from the condition W (t, ω0) = 0 for each different
value of t.

Based on the relations in (50) and (51) it is verified that
W (0, ω) = W (∞, ω) = λ1ω + λ2. Thus, the starting and
ending values of ω0(t) are equals and are obtained after
equating the above condition to zero as:

ω0(0) = ω0(∞) = −λ2
λ1
. (52)

Values of ω0(t) are obtained by numerical methods using
the condition W (t, ω0) = 0. The ratio −λ2

λ1
establishes the

value around which the solution of ω0(t) is devised.
For instance, taking into account the second order term

given by H2i(s) in (9), the characteristic frequency is obtained
as depicted in Fig. 2 for a variety of values of λ1. The plot
of ω0(t) is obtained taking into account the term f2(t, ω0)
in (50) when ω0(0) = 1000 and β is fixed to 0.866, similar
to lowpass Bessel filters [18]. These curves are encountered
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by a combination of bisection, secant, and inverse quadratic
interpolation methods when t is varied from 0 to 6 · 10−4 in
steps of 10−6 seconds.
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Fig. 2. Characteristic frequency of second order systems.

From Fig. 2, the increment of λ1 tends to reduce the peak
of ω0(t). This parameter is used to define the range of changes
of ω0(t). The value of λ2 is selected from relation (49). On
the other hand, the variation of ω0(t) is mostly concentrated
near to t = 0, where the transient behavior is expected to
occur. This represents a common practice to varying the filter
bandwidth [22]. Additionally, the behavior depicted on Fig. 2
is similar when terms f1(t, ω0) and f2(t, ω0) are analyzed.

A time frequency description of both proposed systems is
provided by the system function of variable networks given
by H(jω, t) [36]. This function must satisfy the following
differential equation:

N∑
n=0

an(t)
dnH(jω, t)

dtn
= K(jω, t), (53)

where an(t) = 1
n!
∂nL(jω,t)
∂(jω)n . Functions K(jω, t) and L(jω, t)

are obtained by the numerator and denominator of the frozen
transfer function upon substituting s by jω. The frozen transfer
function is given by the relations in (9) for first-and second-
order systems, respectively.

In case of first order system, functions L1 and K1 are given
by:

L1(jω, t) =
jω

ω0(t)
+ 1, (54)

K1(jω, t) =1,

whereas, in case of second order systems these functions are
given by:

L2(jω, t) =
1

ω2
0(t)

(jω)2 +
2β

ω0(t)
(jω) + 1, (55)

K2(jω, t) =1.

The differential equation in (52) is solved for both systems
by using the frozen system to evaluate the initial and boundary
conditions as:

H(jω, 0) =
K(jω, 0)

L(jω, 0)
, (56)

H(0, t) =
K(0, t)

L(0, t)
,

H(jωf , t) =
K(jωf , t)

L(jωf , t)
,

dH(0, t)

dt
=

d

dt

K(0, t)

L(0, t)
,

dH(ωf , t)

dt
=

d

dt

K(jωf , t)

L(jωf , t)
.

The result is shown in Fig. 3 considering the second order
term H2i(s) in (9). A variety of curves for |H(jω, t)| are
depicted for a variety of time values. These graphs are ob-
tained considering β = 0.866. Additionally, the characteristic
frequency ω0(t) is selected from λ1 = 10−15 in Fig. 2.
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Fig. 3. System function of the proposed second order system.

Curves in Fig. 3 represent a system which tends to increase
the allowed passband at the first time interval, then to reduce
the passband. This is in accordance with the dynamic estab-
lished by the corresponding characteristic frequency.

IV. FILTER SYNTHESIS

The current section is devoted to describing the imple-
mentation of the proposed system. Additionally, the design
procedure and an illustrative example sections describe how
to implement lowpass filters of arbitrary order.

A. Filter Implementation

The filter is implemented by two connected schemes as
depicted in Figure 4, similar to that described in [17]. These
schemes are given by the forming scheme to determine the
characteristic frequency ω0i(t) and the Filter block. The
proper filtering process is implemented by using the obtained
expressions for ω0i(t). Additionally, the sequence ω0i(t) is
also synchronized with step changes in the incoming signal.
To this end, the forming scheme detects the step changes on
the incoming signal x(t), then restarts the filtering operations
by restarting internal accumulation processes as well as the
sequence ω0i(t).
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Fig. 4. Block diagrams of LTV filter.

The Filter block is implemented in a parallel form structure
comprised by first-and second-order systems as indicated by
the relations in (8) and (9). First-and second-order systems
are implemented by a state-variable diagram of the differential
equations given in (25) and (26) as depicted on Figure 5 [37].
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Fig. 5. State-variable diagram for first-and second-order systems. a) First-
order system. b) Second-order system.

B. Design Procedure

The starting point of the design procedure for lowpass IIR
LTV filters is based on the typical designs of IIR LTI filters.
Given an IIR LTI filter, the LTV approach is obtained after
incorporating the characteristic frequency derived above for
first-and second-order systems. The steps are given as follows:

1) Specify the prescribed parameters to lowpass filtering,
such as cutoff frequency, transition band and attenuation
in the stop band.

2) Obtain the transfer function by applying approxima-
tion methods of the frequency characteristic such as
Butterworth, Chebyshev, Bessel, Legendre or Elliptic
approximations. Then, decompose the obtained transfer

function in terms of first-and second-order systems, as
indicated in (8).

3) After establishing a value for λ1, then for each different
term in (9), establish a value of λ2 by defining ω0(0) =
ω0(∞) = ω0i in (49). The value of ω0i is obtained from
each different term in (9). The value of λ1 is empirically
determined and is related with the variation range of the
characteristic function ω0(t).

4) Solve the equations for the characteristic frequency as
indicated in (50) by using the parameters λ1 and λ2
obtained for each different term in (9). Each different
term in (9) will define an specific solution for the
characteristic frequency ω0i(t).

5) Implement the filtering operation by a cascade form
structure comprised by first-and second-order systems
as depicted in Figure 5.

Steps 1 and 2 are related with the invariant filter design.
Steps 3 and 4 are related with computing the dynamic param-
eter of the filter, whereas Step 5 implements the LTV filter. In
addition to the five steps above, an allpass system might be
connected in cascade to compensate for the resultant phase.
Similar to the solutions described in [20]–[22], coefficients
of first and second-order allpass systems are determined by
using Taylor series expansion or trial and error methods [38]
to implement a system of constant group delay. Then, the
obtained transfer function is transformed into an LTV filter
by steps 2 to 5 above. A detailed discussion is out of the
scope of the current paper and further examination is needed.

C. Illustrative Example

The illustrative example is based on Bessel filters, provided
it fulfills the best properties in comparison with all filters
when rectangular pulses are processed [17]. A variety of
systems detect and demodulate signals based on rectangular
pulses. This is the case of the envelope detector when an
energy detector is employed for device communication with
applications in the Internet of Things [39], for instance.

Following the steps from Section IV-B Design Procedure,
the LTV filter is obtained as follows:

1) Steps 1 and 2: Taking into account a 4th order Bessel
filter of constant parameters, the transfer function is given by
[18]:

H(s) =
1(

s2

ω2
01ω

2
c
+ 2β1s

ω01ωc
+ 1
)(

s2

ω2
02ω

2
c
+ 2β2s

ω02ωc
+ 1
) , (57)

where ω01 = 1.430, β01 = 0.958, ω02 = 1.603 and β02 =
0.621. The constant ωc stands for the cutoff frequency, in this
example ωc = 1000.

2) Steps 3 and 4: The transfer function provided in (57) is
then divided into two second-order terms. Each term defines
values of β1, β2, ω01 and ω02. The value of λ1 is fixed to
10−15, and the value of λ2 is determined by (52) in which
ω1(0) = ω01ωc and ω2(0) = ω02ωc. The expressions for ωi(t)
are determined by solving the equation W (t, ω0) = 0 in (50)
by using f2(t, ω) to obtain the sequences ω1(t) and ω2(t).
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3) Step 5: The filter is implemented by discrete techniques
connecting in parallel second-order systems with the proper
parameters β and ωi(t) as depicted in Fig. 6. In this case
the filter is implemented by using the MatLab R13-Simulink
package as shown in Fig. 6 using the structure presented in
Fig. 5.

b)

Second Order System

a)

b)

Fig. 6. Block diagram of 4th order LTV filter. a) Cascade connection. b)
Second-order filter.

V. EXPERIMENTAL RESULTS

In order to illustrate the performance of the proposed design,
graphical results are obtained for the step response in noisy
environments. In this case, a fourth-order system is employed
as described in [17]. As an example, the signal-to-noise ratio
(SNR) parameter is set to 5 dB. The value of ω0(0) and
ω0(∞) are set to 1000. Additionally, power and hardware
complexity are presented for a circuit level design taking into
account the system described in Fig. 6 from the Illustrative
Example Section.

For comparing the output filtered signals, three different
systems are analyzed: traditional Bessel filter of constant
parameter [40], time-varying parameters filter presented by
Kaszynski and Piskorowski [17], and the proposed method
based on calculus of variations. The fourth-order Bessel filter
of constant parameters is implemented as described in (57).
On the other hand, the Kaszynski and Piskorowski time-
varying filter and the proposed solution, are both implemented
similarly, except for the characteristic frequency to be used.

Fig. 7 shows the behavior of the systems analyzed tak-
ing into account the rise-time. The proposed solution, the
Kaszynski-Piskorowski method and the constant parameter

filter exhibit values of TR equal to 4 · 10−6, 8 · 10−6 and
2.2 · 10−5 seconds, respectively. The proposed solution im-
proves the TR parameter in comparison to the Kaszynski-
Piskorowski method by the half.
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Fig. 7. Output filtered signals by three different systems.

On the other hand, the second simulation is performed by
using the input signal with step changes and SNR = 10 dB,
as depicted on Fig. 8 a). This allows to evaluate the case in
which rectangular impulses with certain levels are introduced
in the proposed system. The result of filtering is illustrated on
Fig. 8 b). The function of the characteristic frequency must be
synchronized with the step changes of the input signal by the
system depicted on Fig. 4.

From Fig. 8 it can be observed that the proposed filter is
superior to the Kaszynski-Piskorowski method in the preserva-
tion of the pulse shape. In this regard, the rise-time parameter
is reduced on the proposed method in comparison with other
approaches for each received pulse.
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Finally, considering the system in Fig. 6 a total number
of 14 multipliers, 4 adders and 4 integrators are required
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to implement a 4th order system. The system might be
composed of available analog circuits for multipliers [41],
adders [42] and integrators [43]. On the other hand, total
power consumption driven by these devices is given by 452
mW approximately, taking into account the total amount
of multipliers, adders and integrators on the current design.
In comparison with other reported solutions on LTV filters,
complexity and power consumption are equivalent, provided
that system on Fig. 6 is commonly used on these designs.
Nevertheless, our proposal minimizes the rise-time parameter
while maintaining similar complexity and power requirements,
so it outperforms previous LTV filters.

VI. CONCLUSIONS AND FUTURE WORK

In this paper a new filter design approach with time-
varying parameters is proposed, which describes an optimal
solution for the characteristic frequency by means of calculus
of variations. In order to minimize the rise-time parameter,
an ideal method and a practical approximation are presented.
The implemented system exhibits a reduction in the rise-
time parameter with regard to other reported methods. This
approach allows overshooting and undershooting due to the
variation in the spectral properties. Although, in this re-
spect, the trade-off between rise-time and overshooting is an
open issue in the frame work of calculus of variations and
time-varying parameters. Additionally, an extension to non-
frequency-selective filters is not straightforward and it is out of
the scope of this paper. Future work will be focused on several
directions: extension to FIR filters, phase compensation for IIR
filters, higher order filter implementation based on a parallel
connection of first and second order systems, optimum rise-
time and overshooting reduction, as well the implementation
of the proposed system by discrete-time techniques.
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