57 research outputs found

    The pseudo-self-similar traffic model: application and validation

    Get PDF
    Since the early 1990Âżs, a variety of studies has shown that network traffic, both for local- and wide-area networks, has self-similar properties. This led to new approaches in network traffic modelling because most traditional traffic approaches result in the underestimation of performance measures of interest. Instead of developing completely new traffic models, a number of researchers have proposed to adapt traditional traffic modelling approaches to incorporate aspects of self-similarity. The motivation for doing so is the hope to be able to reuse techniques and tools that have been developed in the past and with which experience has been gained. One such approach for a traffic model that incorporates aspects of self-similarity is the so-called pseudo self-similar traffic model. This model is appealing, as it is easy to understand and easily embedded in Markovian performance evaluation studies. In applying this model in a number of cases, we have perceived various problems which we initially thought were particular to these specific cases. However, we recently have been able to show that these problems are fundamental to the pseudo self-similar traffic model. In this paper we review the pseudo self-similar traffic model and discuss its fundamental shortcomings. As far as we know, this is the first paper that discusses these shortcomings formally. We also report on ongoing work to overcome some of these problems

    The Dynamics of Internet Traffic: Self-Similarity, Self-Organization, and Complex Phenomena

    Full text link
    The Internet is the most complex system ever created in human history. Therefore, its dynamics and traffic unsurprisingly take on a rich variety of complex dynamics, self-organization, and other phenomena that have been researched for years. This paper is a review of the complex dynamics of Internet traffic. Departing from normal treatises, we will take a view from both the network engineering and physics perspectives showing the strengths and weaknesses as well as insights of both. In addition, many less covered phenomena such as traffic oscillations, large-scale effects of worm traffic, and comparisons of the Internet and biological models will be covered.Comment: 63 pages, 7 figures, 7 tables, submitted to Advances in Complex System

    A study of self-similar traffic generation for ATM networks

    Get PDF
    This thesis discusses the efficient and accurate generation of self-similar traffic for ATM networks. ATM networks have been developed to carry multiple service categories. Since the traffic on a number of existing networks is bursty, much research focuses on how to capture the characteristics of traffic to reduce the impact of burstiness. Conventional traffic models do not represent the characteristics of burstiness well, but self-similar traffic models provide a closer approximation. Self-similar traffic models have two fundamental properties, long-range dependence and infinite variance, which have been found in a large number of measurements of real traffic. Therefore, generation of self-similar traffic is vital for the accurate simulation of ATM networks. The main starting point for self-similar traffic generation is the production of fractional Brownian motion (FBM) or fractional Gaussian noise (FGN). In this thesis six algorithms are brought together so that their efficiency and accuracy can be assessed. It is shown that the discrete FGN (dPGN) algorithm and the Weierstrass-Mandelbrot (WM) function are the best in terms of accuracy while the random midpoint displacement (RMD) algorithm, successive random addition (SRA) algorithm, and the WM function are superior in terms of efficiency. Three hybrid approaches are suggested to overcome the inefficiency or inaccuracy of the six algorithms. The combination of the dFGN and RMD algorithm was found to be the best in that it can generate accurate samples efficiently and on-the-fly. After generating FBM sample traces, a further transformation needs to be conducted with either the marginal distribution model or the storage model to produce self-similar traffic. The storage model is a better transformation because it provides a more rigorous mathematical derivation and interpretation of physical meaning. The suitability of using selected Hurst estimators, the rescaled adjusted range (R/S) statistic, the variance-time (VT) plot, and Whittle's approximate maximum likelihood estimator (MLE), is also covered. Whittle's MLE is the better estimator, the R/S statistic can only be used as a reference, and the VT plot might misrepresent the actual Hurst value. An improved method for the generation of self-similar traces and their conversion to traffic has been proposed. This, combined with the identification of reliable methods for the estimators of the Hurst parameter, significantly advances the use of self-similar traffic models in ATM network simulation

    IP Traffic Statistics - A Markovian Approach

    Get PDF
    Data originating from non-voice sources is expected to play an increasingly important role in the next generation mobile communication services. To plan these networks, a detailed understanding of their traffic load is essential. Recent experimental studies have shown that network traffic originating from data applications can be self-similar, leading to a different queueing behavior than predicted by conventional traffic models. Heavy tailed probability distributions are appropriate for capturing this property, but including those random processes in a performance analysis makes it difficult and often impossible to find numerical results. In this thesis three related topics are addressed: It is shown that Markovian models with a large state space can be used to describe traffic which is self-similar over a large time scale, a Maximum Likelihood approach to fit parallel Erlang-k distributions directly to time series is developed, and the performance of a channel assignment procedure in a wireless communication network is evaluated using the above mentioned techniques to set up a Markovian model. Outcomes of the performance analysis are blocking probabilities and latency due to restrictions of the channel assignment procedure as well as estimations of the overall bandwidth that the system is required to offer in order to support a given number of users

    Quality aspects of Internet telephony

    Get PDF
    Internet telephony has had a tremendous impact on how people communicate. Many now maintain contact using some form of Internet telephony. Therefore the motivation for this work has been to address the quality aspects of real-world Internet telephony for both fixed and wireless telecommunication. The focus has been on the quality aspects of voice communication, since poor quality leads often to user dissatisfaction. The scope of the work has been broad in order to address the main factors within IP-based voice communication. The first four chapters of this dissertation constitute the background material. The first chapter outlines where Internet telephony is deployed today. It also motivates the topics and techniques used in this research. The second chapter provides the background on Internet telephony including signalling, speech coding and voice Internetworking. The third chapter focuses solely on quality measures for packetised voice systems and finally the fourth chapter is devoted to the history of voice research. The appendix of this dissertation constitutes the research contributions. It includes an examination of the access network, focusing on how calls are multiplexed in wired and wireless systems. Subsequently in the wireless case, we consider how to handover calls from 802.11 networks to the cellular infrastructure. We then consider the Internet backbone where most of our work is devoted to measurements specifically for Internet telephony. The applications of these measurements have been estimating telephony arrival processes, measuring call quality, and quantifying the trend in Internet telephony quality over several years. We also consider the end systems, since they are responsible for reconstructing a voice stream given loss and delay constraints. Finally we estimate voice quality using the ITU proposal PESQ and the packet loss process. The main contribution of this work is a systematic examination of Internet telephony. We describe several methods to enable adaptable solutions for maintaining consistent voice quality. We have also found that relatively small technical changes can lead to substantial user quality improvements. A second contribution of this work is a suite of software tools designed to ascertain voice quality in IP networks. Some of these tools are in use within commercial systems today

    Novel techniques in large scaleable ATM switches

    Get PDF
    Bibliography: p. 172-178.This dissertation explores the research area of large scale ATM switches. The requirements for an ATM switch are determined by overviewing the ATM network architecture. These requirements lead to the discussion of an abstract ATM switch which illustrates the components of an ATM switch that automatically scale with increasing switch size (the Input Modules and Output Modules) and those that do not (the Connection Admission Control and Switch Management systems as well as the Cell Switch Fabric). An architecture is suggested which may result in a scalable Switch Management and Connection Admission Control function. However, the main thrust of the dissertation is confined to the cell switch fabric. The fundamental mathematical limits of ATM switches and buffer placement is presented next emphasising the desirability of output buffering. This is followed by an overview of the possible routing strategies in a multi-stage interconnection network. A variety of space division switches are then considered which leads to a discussion of the hypercube fabric, (a novel switching technique). The hypercube fabric achieves good performance with an O(N.log₂N)ÂČ) scaling. The output module, resequencing, cell scheduling and output buffering technique is presented leading to a complete description of the proposed ATM switch. Various traffic models are used to quantify the switch's performance. These include a simple exponential inter-arrival time model, a locality of reference model and a self-similar, bursty, multiplexed Variable Bit Rate (VBR) model. FIFO queueing is simple to implement in an ATNI switch, however, more responsive queueing strategies can result in an improved performance. An associative memory is presented which allows the separate queues in the ATM switch to be effectively logically combined into a single FIFO queue. The associative memory is described in detail and its feasibility is shown by laying out the Integrated Circuit masks and performing an analogue simulation of the IC's performance is SPICE3. Although optimisations were required to the original design, the feasibility of the approach is shown with a 15È s write time and a 160È s read time for a 32 row, 8 priority bit, 10 routing bit version of the memory. This is achieved with 2”m technology, more advanced technologies may result in even better performance. The various traffic models and switch models are simulated in a number of runs. This shows the performance of the hypercube which outperforms a Clos network of equivalent technology and approaches the performance of an ideal reference fabric. The associative memory leverages a significant performance advantage in the hypercube network and a modest advantage in the Clos network. The performance of the switches is shown to degrade with increasing traffic density, increasing locality of reference, increasing variance in the cell rate and increasing burst length. Interestingly, the fabrics show no real degradation in response to increasing self similarity in the fabric. Lastly, the appendices present suggestions on how redundancy, reliability and multicasting can be achieved in the hypercube fabric. An overview of integrated circuits is provided. A brief description of commercial ATM switching products is given. Lastly, a road map to the simulation code is provided in the form of descriptions of the functionality found in all of the files within the source tree. This is intended to provide the starting ground for anyone wishing to modify or extend the simulation system developed for this thesis

    Dimensionerings- en werkverdelingsalgoritmen voor lambda grids

    Get PDF
    Grids bestaan uit een verzameling reken- en opslagelementen die geografisch verspreid kunnen zijn, maar waarvan men de gezamenlijke capaciteit wenst te benutten. Daartoe dienen deze elementen verbonden te worden met een netwerk. Vermits veel wetenschappelijke applicaties gebruik maken van een Grid, en deze applicaties doorgaans grote hoeveelheden data verwerken, is het noodzakelijk om een netwerk te voorzien dat dergelijke grote datastromen op betrouwbare wijze kan transporteren. Optische transportnetwerken lenen zich hier uitstekend toe. Grids die gebruik maken van dergelijk netwerk noemt men lambda Grids. Deze thesis beschrijft een kader waarin het ontwerp en dimensionering van optische netwerken voor lambda Grids kunnen beschreven worden. Ook wordt besproken hoe werklast kan verdeeld worden op een Grid eens die gedimensioneerd is. Een groot deel van de resultaten werd bekomen door simulatie, waarbij gebruik gemaakt wordt van een eigen Grid simulatiepakket dat precies focust op netwerk- en Gridelementen. Het ontwerp van deze simulator, en de daarbijhorende implementatiekeuzes worden dan ook uitvoerig toegelicht in dit werk
    • 

    corecore