16 research outputs found

    Flexible Hardware-based Security-aware Mechanisms and Architectures

    Get PDF
    For decades, software security has been the primary focus in securing our computing platforms. Hardware was always assumed trusted, and inherently served as the foundation, and thus the root of trust, of our systems. This has been further leveraged in developing hardware-based dedicated security extensions and architectures to protect software from attacks exploiting software vulnerabilities such as memory corruption. However, the recent outbreak of microarchitectural attacks has shaken these long-established trust assumptions in hardware entirely, thereby threatening the security of all of our computing platforms and bringing hardware and microarchitectural security under scrutiny. These attacks have undeniably revealed the grave consequences of hardware/microarchitecture security flaws to the entire platform security, and how they can even subvert the security guarantees promised by dedicated security architectures. Furthermore, they shed light on the sophisticated challenges particular to hardware/microarchitectural security; it is more critical (and more challenging) to extensively analyze the hardware for security flaws prior to production, since hardware, unlike software, cannot be patched/updated once fabricated. Hardware cannot reliably serve as the root of trust anymore, unless we develop and adopt new design paradigms where security is proactively addressed and scrutinized across the full stack of our computing platforms, at all hardware design and implementation layers. Furthermore, novel flexible security-aware design mechanisms are required to be incorporated in processor microarchitecture and hardware-assisted security architectures, that can practically address the inherent conflict between performance and security by allowing that the trade-off is configured to adapt to the desired requirements. In this thesis, we investigate the prospects and implications at the intersection of hardware and security that emerge across the full stack of our computing platforms and System-on-Chips (SoCs). On one front, we investigate how we can leverage hardware and its advantages, in contrast to software, to build more efficient and effective security extensions that serve security architectures, e.g., by providing execution attestation and enforcement, to protect the software from attacks exploiting software vulnerabilities. We further propose that they are microarchitecturally configured at runtime to provide different types of security services, thus adapting flexibly to different deployment requirements. On another front, we investigate how we can protect these hardware-assisted security architectures and extensions themselves from microarchitectural and software attacks that exploit design flaws that originate in the hardware, e.g., insecure resource sharing in SoCs. More particularly, we focus in this thesis on cache-based side-channel attacks, where we propose sophisticated cache designs, that fundamentally mitigate these attacks, while still preserving performance by enabling that the performance security trade-off is configured by design. We also investigate how these can be incorporated into flexible and customizable security architectures, thus complementing them to further support a wide spectrum of emerging applications with different performance/security requirements. Lastly, we inspect our computing platforms further beneath the design layer, by scrutinizing how the actual implementation of these mechanisms is yet another potential attack surface. We explore how the security of hardware designs and implementations is currently analyzed prior to fabrication, while shedding light on how state-of-the-art hardware security analysis techniques are fundamentally limited, and the potential for improved and scalable approaches

    SCARF: A Low-Latency Block Cipher for Secure Cache-Randomization

    Get PDF
    Randomized cache architectures have proven to significantly increase the complexity of contention-based cache side channel attacks and therefore pre\-sent an important building block for side channel secure microarchitectures. By randomizing the address-to-cache-index mapping, attackers can no longer trivially construct minimal eviction sets which are fundamental for contention-based cache attacks. At the same time, randomized caches maintain the flexibility of traditional caches, making them broadly applicable across various CPU-types. This is a major advantage over cache partitioning approaches. A large variety of randomized cache architectures has been proposed. However, the actual randomization function received little attention and is often neglected in these proposals. Since the randomization operates directly on the critical path of the cache lookup, the function needs to have extremely low latency. At the same time, attackers must not be able to bypass the randomization which would nullify the security benefit of the randomized mapping. In this paper we propose \cipher (\underline{S}ecure \underline{CA}che \underline{R}andomization \underline{F}unction), the first dedicated cache randomization cipher which achieves low latency and is cryptographically secure in the cache attacker model. The design methodology for this dedicated cache cipher enters new territory in the field of block ciphers with a small 10-bit block length and heavy key-dependency in few rounds

    Secure migration of WebAssembly-based mobile agents between secure enclaves

    Get PDF
    Cryptography and security protocols are today commonly used to protect data at-rest and in-transit. In contrast, protecting data in-use has seen only limited adoption. Secure data transfer methods employed today rarely provide guarantees regarding the trustworthiness of the software and hardware at the communication endpoints. The field of study that addresses these issues is called Trusted or Confidential Computing and relies on the use of hardware-based techniques. These techniques aim to isolate critical data and its processing from the rest of the system. More specifically, it investigates the use of hardware isolated Secure Execution Environments (SEEs) where applications cannot be tampered with during operation. Over the past few decades, several implementations of SEEs have been introduced, each based on a different hardware architecture. However, lately, the trend is to move towards architecture-independent SEEs. As part of this, Huawei research project is developing a secure enclave framework that enables secure execution and migration of applications (mobile agents), regardless of the underlying architecture. This thesis contributes to the development of the framework by participating in the design and implementation of a secure migration scheme for the mobile agents. The goal is a scheme wherein it is possible to transfer the mobile agent without compromising the security guarantees provided by SEEs. Further, the thesis also provides performance measurements of the migration scheme implemented in a proof of concept of the framework

    Cross-VM network attacks & their countermeasures within cloud computing environments

    Get PDF
    Cloud computing is a contemporary model in which the computing resources are dynamically scaled-up and scaled-down to customers, hosted within large-scale multi-tenant systems. These resources are delivered as improved, cost-effective and available upon request to customers. As one of the main trends of IT industry in modern ages, cloud computing has extended momentum and started to transform the mode enterprises build and offer IT solutions. The primary motivation in using cloud computing model is cost-effectiveness. These motivations can compel Information and Communication Technologies (ICT) organizations to shift their sensitive data and critical infrastructure on cloud environments. Because of the complex nature of underlying cloud infrastructure, the cloud environments are facing a large number of challenges of misconfigurations, cyber-attacks, root-kits, malware instances etc which manifest themselves as a serious threat to cloud environments. These threats noticeably decline the general trustworthiness, reliability and accessibility of the cloud. Security is the primary concern of a cloud service model. However, a number of significant challenges revealed that cloud environments are not as much secure as one would expect. There is also a limited understanding regarding the offering of secure services in a cloud model that can counter such challenges. This indicates the significance of the fact that what establishes the threat in cloud model. One of the main threats in a cloud model is of cost-effectiveness, normally cloud providers reduce cost by sharing infrastructure between multiple un-trusted VMs. This sharing has also led to several problems including co-location attacks. Cloud providers mitigate co-location attacks by introducing the concept of isolation. Due to this, a guest VM cannot interfere with its host machine, and with other guest VMs running on the same system. Such isolation is one of the prime foundations of cloud security for major public providers. However, such logical boundaries are not impenetrable. A myriad of previous studies have demonstrated how co-resident VMs could be vulnerable to attacks through shared file systems, cache side-channels, or through compromising of hypervisor layer using rootkits. Thus, the threat of cross-VM attacks is still possible because an attacker uses one VM to control or access other VMs on the same hypervisor. Hence, multiple methods are devised for strategic VM placement in order to exploit co-residency. Despite the clear potential for co-location attacks for abusing shared memory and disk, fine grained cross-VM network-channel attacks have not yet been demonstrated. Current network based attacks exploit existing vulnerabilities in networking technologies, such as ARP spoofing and DNS poisoning, which are difficult to use for VM-targeted attacks. The most commonly discussed network-based challenges focus on the fact that cloud providers place more layers of isolation between co-resided VMs than in non-virtualized settings because the attacker and victim are often assigned to separate segmentation of virtual networks. However, it has been demonstrated that this is not necessarily sufficient to prevent manipulation of a victim VM’s traffic. This thesis presents a comprehensive method and empirical analysis on the advancement of co-location attacks in which a malicious VM can negatively affect the security and privacy of other co-located VMs as it breaches the security perimeter of the cloud model. In such a scenario, it is imperative for a cloud provider to be able to appropriately secure access to the data such that it reaches to the appropriate destination. The primary contribution of the work presented in this thesis is to introduce two innovative attack models in leading cloud models, impersonation and privilege escalation, that successfully breach the security perimeter of cloud models and also propose countermeasures that block such types of attacks. The attack model revealed in this thesis, is a combination of impersonation and mirroring. This experimental setting can exploit the network channel of cloud model and successfully redirects the network traffic of other co-located VMs. The main contribution of this attack model is to find a gap in the contemporary network cloud architecture that an attacker can exploit. Prior research has also exploited the network channel using ARP poisoning, spoofing but all such attack schemes have been countered as modern cloud providers place more layers of security features than in preceding settings. Impersonation relies on the already existing regular network devices in order to mislead the security perimeter of the cloud model. The other contribution presented of this thesis is ‘privilege escalation’ attack in which a non-root user can escalate a privilege level by using RoP technique on the network channel and control the management domain through which attacker can manage to control the other co-located VMs which they are not authorized to do so. Finally, a countermeasure solution has been proposed by directly modifying the open source code of cloud model that can inhibit all such attacks

    Novel Attacks and Defenses for Enterprise Internet-of-Things (E-IoT) Systems

    Get PDF
    This doctoral dissertation expands upon the field of Enterprise Internet-of-Things (E-IoT) systems, one of the most ubiquitous and under-researched fields of smart systems. E-IoT systems are specialty smart systems designed for sophisticated automation applications (e.g., multimedia control, security, lighting control). E-IoT systems are often closed source, costly, require certified installers, and are more robust for their specific applications. This dissertation begins with an analysis of the current E-IoT threat landscape and introduces three novel attacks and defenses under-studied software and protocols heavily linked to E-IoT systems. For each layer, we review the literature for the threats, attacks, and countermeasures. Based on the systematic knowledge we obtain from the literature review, we propose three novel attacks and countermeasures to protect E-IoT systems. In the first attack, we present PoisonIvy, several attacks developed to show that malicious E-IoT drivers can be used to compromise E-IoT. In response to PoisonIvy threats, we describe Ivycide, a machine-learning network-based solution designed to defend E-IoT systems against E-IoT driver threats. As multimedia control is a significant application of E-IoT, we introduce is HDMI-Walk, a novel attack vector designed to demonstrate that HDMI\u27s Consumer Electronics Control (CEC) protocol can be used to compromise multiple devices through a single connection. To defend devices from this threat, we introduce HDMI-Watch, a standalone intrusion detection system (IDS) designed to defend HDMI-enabled devices from HDMI-Walk-style attacks. Finally, this dissertation evaluates the security of E-IoT proprietary protocols with LightingStrike, a series of attacks used to demonstrate that popular E-IoT proprietary communication protocols are insecure. To address LightningStrike threats, we introduce LGuard, a complete defense framework designed to defend E-IoT systems from LightingStrike-style attacks using computer vision, traffic obfuscation, and traffic analysis techniques. For each contribution, all of the defense mechanisms proposed are implemented without any modification to the underlying hardware or software. All attacks and defenses in this dissertation were performed with implementations on widely-used E-IoT devices and systems. We believe that the research presented in this dissertation has notable implications on the security of E-IoT systems by exposing novel threat vectors, raising awareness, and motivating future E-IoT system security research
    corecore