Overcoming the Intuition Wall: Measurement and Analysis in Computer Architecture

Abstract

These are exciting times for computer architecture research. Today there is significant demand to improve the performance and energy-efficiency of emerging, transformative applications which are being hammered out by the hundreds for new computing platforms and usage models. This booming growth of applications and the variety of programming languages used to create them is challenging our ability as architects to rapidly and rigorously characterize these applications. Concurrently, hardware has become more complex with the emergence of accelerators, multicore systems, and heterogeneity caused by further divergence between processor market segments. No one architect can now understand all the complexities of many systems and reason about the full impact of changes or new applications. To that end, this dissertation presents four case studies in quantitative methods. Each case study attacks a different application and proposes a new measurement or analytical technique. In each case study we find at least one surprising or unintuitive result which would likely not have been found without the application of our method

    Similar works