70 research outputs found

    Efficient HEVC-based video adaptation using transcoding

    Get PDF
    In a video transmission system, it is important to take into account the great diversity of the network/end-user constraints. On the one hand, video content is typically streamed over a network that is characterized by different bandwidth capacities. In many cases, the bandwidth is insufficient to transfer the video at its original quality. On the other hand, a single video is often played by multiple devices like PCs, laptops, and cell phones. Obviously, a single video would not satisfy their different constraints. These diversities of the network and devices capacity lead to the need for video adaptation techniques, e.g., a reduction of the bit rate or spatial resolution. Video transcoding, which modifies a property of the video without the change of the coding format, has been well-known as an efficient adaptation solution. However, this approach comes along with a high computational complexity, resulting in huge energy consumption in the network and possibly network latency. This presentation provides several optimization strategies for the transcoding process of HEVC (the latest High Efficiency Video Coding standard) video streams. First, the computational complexity of a bit rate transcoder (transrater) is reduced. We proposed several techniques to speed-up the encoder of a transrater, notably a machine-learning-based approach and a novel coding-mode evaluation strategy have been proposed. Moreover, the motion estimation process of the encoder has been optimized with the use of decision theory and the proposed fast search patterns. Second, the issues and challenges of a spatial transcoder have been solved by using machine-learning algorithms. Thanks to their great performance, the proposed techniques are expected to significantly help HEVC gain popularity in a wide range of modern multimedia applications

    High Performance Multiview Video Coding

    Get PDF
    Following the standardization of the latest video coding standard High Efficiency Video Coding in 2013, in 2014, multiview extension of HEVC (MV-HEVC) was published and brought significantly better compression performance of around 50% for multiview and 3D videos compared to multiple independent single-view HEVC coding. However, the extremely high computational complexity of MV-HEVC demands significant optimization of the encoder. To tackle this problem, this work investigates the possibilities of using modern parallel computing platforms and tools such as single-instruction-multiple-data (SIMD) instructions, multi-core CPU, massively parallel GPU, and computer cluster to significantly enhance the MVC encoder performance. The aforementioned computing tools have very different computing characteristics and misuse of the tools may result in poor performance improvement and sometimes even reduction. To achieve the best possible encoding performance from modern computing tools, different levels of parallelism inside a typical MVC encoder are identified and analyzed. Novel optimization techniques at various levels of abstraction are proposed, non-aggregation massively parallel motion estimation (ME) and disparity estimation (DE) in prediction unit (PU), fractional and bi-directional ME/DE acceleration through SIMD, quantization parameter (QP)-based early termination for coding tree unit (CTU), optimized resource-scheduled wave-front parallel processing for CTU, and workload balanced, cluster-based multiple-view parallel are proposed. The result shows proposed parallel optimization techniques, with insignificant loss to coding efficiency, significantly improves the execution time performance. This , in turn, proves modern parallel computing platforms, with appropriate platform-specific algorithm design, are valuable tools for improving the performance of computationally intensive applications

    VLSI architectures design for encoders of High Efficiency Video Coding (HEVC) standard

    Get PDF
    The growing popularity of high resolution video and the continuously increasing demands for high quality video on mobile devices are producing stronger needs for more efficient video encoder. Concerning these desires, HEVC, a newest video coding standard, has been developed by a joint team formed by ISO/IEO MPEG and ITU/T VCEG. Its design goal is to achieve a 50% compression gain over its predecessor H.264 with an equal or even higher perceptual video quality. Motion Estimation (ME) being as one of the most critical module in video coding contributes almost 50%-70% of computational complexity in the video encoder. This high consumption of the computational resources puts a limit on the performance of encoders, especially for full HD or ultra HD videos, in terms of coding speed, bit-rate and video quality. Thus the major part of this work concentrates on the computational complexity reduction and improvement of timing performance of motion estimation algorithms for HEVC standard. First, a new strategy to calculate the SAD (Sum of Absolute Difference) for motion estimation is designed based on the statistics on property of pixel data of video sequences. This statistics demonstrates the size relationship between the sum of two sets of pixels has a determined connection with the distribution of the size relationship between individual pixels from the two sets. Taking the advantage of this observation, only a small proportion of pixels is necessary to be involved in the SAD calculation. Simulations show that the amount of computations required in the full search algorithm is reduced by about 58% on average and up to 70% in the best case. Secondly, from the scope of parallelization an enhanced TZ search for HEVC is proposed using novel schemes of multiple MVPs (motion vector predictor) and shared MVP. Specifically, resorting to multiple MVPs the initial search process is performed in parallel at multiple search centers, and the ME processing engine for PUs within one CU are parallelized based on the MVP sharing scheme on CU (coding unit) level. Moreover, the SAD module for ME engine is also parallelly implemented for PU size of 32×32. Experiments indicate it achieves an appreciable improvement on the throughput and coding efficiency of the HEVC video encoder. In addition, the other part of this thesis is contributed to the VLSI architecture design for finding the first W maximum/minimum values targeting towards high speed and low hardware cost. The architecture based on the novel bit-wise AND scheme has only half of the area of the best reference solution and its critical path delay is comparable with other implementations. While the FPCG (full parallel comparison grid) architecture, which utilizes the optimized comparator-based structure, achieves 3.6 times faster on average on the speed and even 5.2 times faster at best comparing with the reference architectures. Finally the architecture using the partial sorting strategy reaches a good balance on the timing performance and area, which has a slightly lower or comparable speed with FPCG architecture and a acceptable hardware cost

    Algoritmo de estimação de movimento e sua arquitetura de hardware para HEVC

    Get PDF
    Doutoramento em Engenharia EletrotécnicaVideo coding has been used in applications like video surveillance, video conferencing, video streaming, video broadcasting and video storage. In a typical video coding standard, many algorithms are combined to compress a video. However, one of those algorithms, the motion estimation is the most complex task. Hence, it is necessary to implement this task in real time by using appropriate VLSI architectures. This thesis proposes a new fast motion estimation algorithm and its implementation in real time. The results show that the proposed algorithm and its motion estimation hardware architecture out performs the state of the art. The proposed architecture operates at a maximum operating frequency of 241.6 MHz and is able to process 1080p@60Hz with all possible variables block sizes specified in HEVC standard as well as with motion vector search range of up to ±64 pixels.A codificação de vídeo tem sido usada em aplicações tais como, vídeovigilância, vídeo-conferência, video streaming e armazenamento de vídeo. Numa norma de codificação de vídeo, diversos algoritmos são combinados para comprimir o vídeo. Contudo, um desses algoritmos, a estimação de movimento é a tarefa mais complexa. Por isso, é necessário implementar esta tarefa em tempo real usando arquiteturas de hardware apropriadas. Esta tese propõe um algoritmo de estimação de movimento rápido bem como a sua implementação em tempo real. Os resultados mostram que o algoritmo e a arquitetura de hardware propostos têm melhor desempenho que os existentes. A arquitetura proposta opera a uma frequência máxima de 241.6 MHz e é capaz de processar imagens de resolução 1080p@60Hz, com todos os tamanhos de blocos especificados na norma HEVC, bem como um domínio de pesquisa de vetores de movimento até ±64 pixels

    Algorithms and methods for video transcoding.

    Get PDF
    Video transcoding is the process of dynamic video adaptation. Dynamic video adaptation can be defined as the process of converting video from one format to another, changing the bit rate, frame rate or resolution of the encoded video, which is mainly necessitated by the end user requirements. H.264 has been the predominantly used video compression standard for the last 15 years. HEVC (High Efficiency Video Coding) is the latest video compression standard finalised in 2013, which is an improvement over H.264 video compression standard. HEVC performs significantly better than H.264 in terms of the Rate-Distortion performance. As H.264 has been widely used in the last decade, a large amount of video content exists in H.264 format. There is a need to convert H.264 video content to HEVC format to achieve better Rate-Distortion performance and to support legacy video formats on newer devices. However, the computational complexity of HEVC encoder is 2-10 times higher than that of H.264 encoder. This makes it necessary to develop low complexity video transcoding algorithms to transcode from H.264 to HEVC format. This research work proposes low complexity algorithms for H.264 to HEVC video transcoding. The proposed algorithms reduce the computational complexity of H.264 to HEVC video transcoding significantly, with negligible loss in Rate-Distortion performance. This work proposes three different video transcoding algorithms. The MV-based mode merge algorithm uses the block mode and MV variances to estimate the split/non-split decision as part of the HEVC block prediction process. The conditional probability-based mode mapping algorithm models HEVC blocks of sizes 16×16 and lower as a function of H.264 block modes, H.264 and HEVC Quantisation Parameters (QP). The motion-compensated MB residual-based mode mapping algorithm makes the split/non-split decision based on content-adaptive classification models. With a combination of the proposed set of algorithms, the computational complexity of the HEVC encoder is reduced by around 60%, with negligible loss in Rate-Distortion performance, outperforming existing state-of-art algorithms by 20-25% in terms of computational complexity. The proposed algorithms can be used in computation-constrained video transcoding applications, to support video format conversion in smart devices, migration of large-scale H.264 video content from host servers to HEVC, cloud computing-based transcoding applications, and also to support high quality videos over bandwidth-constrained networks

    Approximate and timing-speculative hardware design for high-performance and energy-efficient video processing

    Get PDF
    Since the end of transistor scaling in 2-D appeared on the horizon, innovative circuit design paradigms have been on the rise to go beyond the well-established and ultraconservative exact computing. Many compute-intensive applications – such as video processing – exhibit an intrinsic error resilience and do not necessarily require perfect accuracy in their numerical operations. Approximate computing (AxC) is emerging as a design alternative to improve the performance and energy-efficiency requirements for many applications by trading its intrinsic error tolerance with algorithm and circuit efficiency. Exact computing also imposes a worst-case timing to the conventional design of hardware accelerators to ensure reliability, leading to an efficiency loss. Conversely, the timing-speculative (TS) hardware design paradigm allows increasing the frequency or decreasing the voltage beyond the limits determined by static timing analysis (STA), thereby narrowing pessimistic safety margins that conventional design methods implement to prevent hardware timing errors. Timing errors should be evaluated by an accurate gate-level simulation, but a significant gap remains: How these timing errors propagate from the underlying hardware all the way up to the entire algorithm behavior, where they just may degrade the performance and quality of service of the application at stake? This thesis tackles this issue by developing and demonstrating a cross-layer framework capable of performing investigations of both AxC (i.e., from approximate arithmetic operators, approximate synthesis, gate-level pruning) and TS hardware design (i.e., from voltage over-scaling, frequency over-clocking, temperature rising, and device aging). The cross-layer framework can simulate both timing errors and logic errors at the gate-level by crossing them dynamically, linking the hardware result with the algorithm-level, and vice versa during the evolution of the application’s runtime. Existing frameworks perform investigations of AxC and TS techniques at circuit-level (i.e., at the output of the accelerator) agnostic to the ultimate impact at the application level (i.e., where the impact is truly manifested), leading to less optimization. Unlike state of the art, the framework proposed offers a holistic approach to assessing the tradeoff of AxC and TS techniques at the application-level. This framework maximizes energy efficiency and performance by identifying the maximum approximation levels at the application level to fulfill the required good enough quality. This thesis evaluates the framework with an 8-way SAD (Sum of Absolute Differences) hardware accelerator operating into an HEVC encoder as a case study. Application-level results showed that the SAD based on the approximate adders achieve savings of up to 45% of energy/operation with an increase of only 1.9% in BD-BR. On the other hand, VOS (Voltage Over-Scaling) applied to the SAD generates savings of up to 16.5% in energy/operation with around 6% of increase in BD-BR. The framework also reveals that the boost of about 6.96% (at 50°) to 17.41% (at 75° with 10- Y aging) in the maximum clock frequency achieved with TS hardware design is totally lost by the processing overhead from 8.06% to 46.96% when choosing an unreliable algorithm to the blocking match algorithm (BMA). We also show that the overhead can be avoided by adopting a reliable BMA. This thesis also shows approximate DTT (Discrete Tchebichef Transform) hardware proposals by exploring a transform matrix approximation, truncation and pruning. The results show that the approximate DTT hardware proposal increases the maximum frequency up to 64%, minimizes the circuit area in up to 43.6%, and saves up to 65.4% in power dissipation. The DTT proposal mapped for FPGA shows an increase of up to 58.9% on the maximum frequency and savings of about 28.7% and 32.2% on slices and dynamic power, respectively compared with stat

    Depth sequence coding with hierarchical partitioning and spatial-domain quantization

    Get PDF
    Depth coding in 3D-HEVC deforms object shapes due to block-level edge-approximation and lacks efficient techniques to exploit the statistical redundancy, due to the frame-level clustering tendency in depth data, for higher coding gain at near-lossless quality. This paper presents a standalone mono-view depth sequence coder, which preserves edges implicitly by limiting quantization to the spatial-domain and exploits the frame-level clustering tendency efficiently with a novel binary tree-based decomposition (BTBD) technique. The BTBD can exploit the statistical redundancy in frame-level syntax, motion components, and residuals efficiently with fewer block-level prediction/coding modes and simpler context modeling for context-adaptive arithmetic coding. Compared with the depth coder in 3D-HEVC, the proposed one has achieved significantly lower bitrate at lossless to near-lossless quality range for mono-view coding and rendered superior quality synthetic views from the depth maps, compressed at the same bitrate, and the corresponding texture frames. © 1991-2012 IEEE
    corecore