
NAGARAGHATTA, A.S. 2019. Algorithms and methods for video transcoding. Robert Gordon University [online], PhD
thesis. Available from: https://openair.rgu.ac.uk

Algorithms and methods for video transcoding.

NAGARAGHATTA, A.S.

2019

This document was downloaded from
https://openair.rgu.ac.uk

The author of this thesis retains the right to be identified as such on any occasion in which content from this
thesis is referenced or re-used. The licence under which this thesis is distributed applies to the text and any
original images only – re-use of any third-party content must still be cleared with the original copyright holder.

ALGORITHMS AND METHODS

FOR VIDEO TRANSCODING

Akshay Shashidhara Nagaraghatta

A THESIS SUBMITTED IN PARTIAL FULFILMENT OF THE

REQUIREMENTS OF THE ROBERT GORDON UNIVERSITY FOR

THE DEGREE OF DOCTOR OF PHILOSOPHY

October 2019

i

ABSTRACT

Algorithms and Methods for Video Transcoding

Akshay Shashidhara Nagaraghatta

Submitted to Robert Gordon University in partial fulfilment of the requirements

for the degree of Doctor of Philosophy

Video transcoding is the process of dynamic video adaptation. Dynamic video adaptation can be

defined as the process of converting video from one format to another, changing the bit rate, frame

rate or resolution of the encoded video, which is mainly necessitated by the end user requirements.

H.264 has been the predominantly used video compression standard for the last 15 years. HEVC

(High Efficiency Video Coding) is the latest video compression standard finalised in 2013, which

is an improvement over H.264 video compression standard. HEVC performs significantly better

than H.264 in terms of the Rate-Distortion performance. As H.264 has been widely used in the

last decade, a large amount of video content exists in H.264 format. There is a need to convert

H.264 video content to HEVC format to achieve better Rate-Distortion performance and to

support legacy video formats on newer devices. However, the computational complexity of

HEVC encoder is 2-10 times higher than that of H.264 encoder. This makes it necessary to

develop low complexity video transcoding algorithms to transcode from H.264 to HEVC format.

This research work proposes low complexity algorithms for H.264 to HEVC video transcoding.

The proposed algorithms reduce the computational complexity of H.264 to HEVC video

transcoding significantly with negligible loss in Rate-Distortion performance.

This work proposes three different video transcoding algorithms. The MV based mode merge

algorithm uses the block mode and MV variances to estimate the split/non-split decision as part

of the HEVC block prediction process. The conditional probability based mode mapping

algorithm models HEVC blocks of sizes 16×16 and lower as a function of H.264 block modes,

H.264 and HEVC Quantisation Parameters (QP). The motion compensated MB residual based

mode mapping algorithm makes the split/non-split decision based on content adaptive

classification models.

With a combination of the proposed set of algorithms, the computational complexity of the HEVC

encoder is reduced by around 60% with negligible loss in Rate-Distortion performance,

outperforming existing state-of-art algorithms by 20-25% in computational complexity. The

proposed algorithms can be used in computation-constrained video transcoding applications, to

ii

support video format conversion in smart devices, migration of large-scale H.264 video content

from host servers to HEVC, cloud computing based transcoding applications, and to support high

quality videos over bandwidth constrained networks.

Index Terms - H.264 to HEVC video transcoding, split/non-split decision, mode mapping, mode

merging.

iii

ACKNOWLEDGEMENTS

I take this opportunity to sincerely thank everyone who helped me directly or indirectly to

successfully complete this research work.

I wish to thank my principal supervisor, Dr. Yafan Zhao for the constant guidance, encouragement

and support to carry out this research work. Special thanks for all the numerous discussions

throughout the duration of this research work. I am very grateful for her motivation during the

entire phase of this research.

I thank the other members of my supervisory team during the first half of my research work, Dr.

Sampath Kannangara and Mr. Grant Maxwell for their invaluable support and guidance. I take

this opportunity to specially thank Dr. Sampath Kannangara for having faith in me and providing

me this research opportunity and being very supportive during the initial part of this research

work.

I am very grateful and thankful to Dr. Wai-Keung Fung for accepting to be my second supervisor

during my last year. I very much appreciate all the feedback I received from him on my thesis. It

was very helpful in refining my thesis.

I would also like to thank all the staff of the Graduate School and the School of Engineering for

being very supportive and guiding me in the right direction during my PhD.

I thank my colleague Jay for all the support, very useful discussions and guidance during my

research work. I would also like to thank my past and present colleagues Anil, Kristof, Kaushal,

James Philip and Vivek for their help and support, and their friendship. I would also like to thank

Hannah for her support.

I would like to take this opportunity to thank my parents Dr N S Shashidhara and Mrs Anupama

B S for their guidance, sacrifices and unconditional love and support for me to reach this point.

They enabled me with the right kind of support system so that I could realise my ambition of

pursuing my PhD. I would like to thank my sister Dr Ashwini N S for motivating me to take up

this Ph.D. course. She has always been a strong pillar of support. I would also like to thank my

brother in law, Dr Vivek and my extended family and friends for their support. The birth of my

nephew provided me lot of joy while I was writing my thesis.

I dedicate this work to my parents

iv

TABLE OF CONTENTS

ABSTRACT .. i

ACKNOWLEDGEMENTS ... iii

TABLE OF CONTENTS ... iv

LIST OF FIGURES ... ix

LIST OF TABLES .. xii

ABBREVIATIONS AND ACRONYMS .. xiv

PART ONE: BACKGROUND..1

1 INTRODUCTION ...2

1.1 Introduction .. 2

1.2 Problem Statement ... 2

1.3 Research Aim ... 4

1.4 Research Objectives ... 4

1.5 Main Contributions and Publications ... 4

1.6 Organisation of the Thesis ... 5

2 VIDEO CODING BACKGROUND ..7

2.1 Introduction .. 7

2.1.1 Digital Video ... 7

2.1.2 Basics of Block based Video Coding ... 12

2.2 Video Coding Standards and Container Formats ... 16

2.2.1 Video Coding Standards ... 16

2.2.2 Video Container Formats .. 18

2.3 Overview of H.264/AVC standard ... 19

2.3.1 Introduction ... 19

2.3.2 Standard Development .. 19

2.3.3 H.264 Syntax .. 19

2.3.4 Profiles and Levels .. 21

2.3.5 Picture Format and Structure .. 23

2.3.6 H.264 Encoder .. 25

2.3.7 H.264 Decoder .. 25

2.4 Overview of H.265/HEVC standard .. 26

2.4.1 Introduction ... 26

v

2.4.2 Standard Development .. 26

2.4.3 HEVC Syntax ... 27

2.4.4 HEVC Profile and Levels ... 27

2.4.5 Picture Format and Structure .. 28

2.4.6 HEVC Encoder ... 30

2.4.7 HEVC Decoder ... 31

2.5 Comparison between H.264 and HEVC .. 31

2.6. Conclusion.. 33

3 VIDEO TRANSCODING ...34

3.1 Introduction .. 34

3.2 Significance of Video Transcoding .. 34

3.3 Types of Video Transcoding Algorithms ... 35

3.3.1 Video Format Conversion ... 36

3.3.2 Bitrate Conversion .. 37

3.3.3 Resolution Conversion .. 37

3.3.4 Framerate Conversion ... 37

3.3.5 Container Format Conversion ... 38

3.3.6 Toolset based Conversion ... 38

3.4 Video Transcoding Architecture .. 38

3.4.1 Cascaded Transcoding Architecture ... 38

3.4.2 Smart Transcoding Architecture ... 39

3.5 Video Transcoding Algorithms .. 40

3.5.1 Mode Re-use algorithms ... 40

3.5.2 Motion Vector re-use algorithms .. 41

3.5.3 Machine Learning based algorithms ... 42

3.5.4 Residual Data Reuse algorithms ... 42

3.5.5 Hybrid algorithms ... 43

3.6 Conclusions .. 43

4 METHODOLOGY ..45

4.1 Introduction .. 45

4.2 Implementation .. 45

4.2.1 Video Softwares .. 45

4.2.2 Test Platform ... 46

4.2.3 Development Environment ... 46

vi

4.2.4 Testing the Algorithm ... 46

4.2.5 Data Collection ... 47

4.2.6 Data Analysis .. 48

4.3 Testing .. 48

4.3.1 Test Sequences .. 48

4.3.2 Testing Conditions .. 49

4.4 Performance Measurement ... 49

4.4.1 Video Quality Measurement ... 50

4.4.2 Bitrate Measurement ... 51

4.4.3 Computational Complexity Measurement .. 51

4.5 Tools ... 52

4.5.1 Microsoft Visual Studio 11.0 .. 52

4.5.2 Matlab 2015b .. 52

4.5.3 Video Bitstream analysers .. 52

4.5.4 YUV viewers .. 52

4.5.5 FFmpeg application .. 52

4.6 Conclusion.. 53

PART TWO: EXPERIMENTAL WORK ...54

5 MV BASED MODE MERGE ALGORITHM ..55

5.1 Introduction .. 55

5.2 Hypothesis .. 56

5.3 Motion Estimation and Motion Vectors ... 56

5.3.1 Motion Estimation .. 56

5.3.2 Analysis of MV Variances .. 58

5.3.3 Prediction Accuracy .. 61

5.4 Mode Merge based MV Algorithm .. 62

5.4.1 Square Partitions ... 62

5.4.2 Rectangular Partitions ... 65

5.4.3 Spatial and Temporal Similarity ... 66

5.4.4 Merge to 16×16 Blocks... 69

5.4.5 Algorithm Flowchart ... 70

5.5 Experimental Results ... 71

5.6 Discussions ... 75

5.7 Conclusion.. 76

vii

6 CONDITIONAL PROBABILITY BASED MODE MAPPING ALGORITHM.........77

6.1 Introduction .. 77

6.2 Hypothesis .. 77

6.3 Related Work ... 78

6.4 Conditional Probability based Mode Mapping Algorithm............................... 79

6.4.1 Mode Conditional Probabilities .. 79

6.4.2 Mathematical Model ... 81

6.4.3 Application of the Model .. 83

6.5 Experimental Results ... 84

6.6 Discussions ... 88

6.7 Conclusion.. 89

7 RESIDUAL BITS BASED MODE MERGE ALGORITHM ..90

7.1 Introduction .. 90

7.2 Hypothesis .. 90

7.3 Related work .. 91

7.4 Residual based Mode Merge Algorithm .. 91

7.4.1 Histogram of Split/Non-Split blocks .. 91

7.4.2 Sequence Activity ... 93

7.4.3 Modelling Bit Thresholds ... 96

7.4.4 Algorithm Steps .. 100

7.5 Experimental Results ... 100

7.6 Discussion .. 102

7.7 Conclusion.. 103

8 FAST H.264 TO HEVC TRANSCODING SOLUTION ...104

8.1 Introduction .. 104

8.2 Proposed Algorithm ... 104

8.3 Experimental Results ... 106

8.4 Discussions ... 114

8.5 Conclusion.. 115

PART THREE: FUTURE WORK AND CONCLUSIONS ...116

9 CONCLUSION ..117

9.1 Introduction .. 117

9.2 Main Developments and Results .. 117

9.3 Conclusion.. 117

viii

9.4 Future Directions .. 121

9.4.1 Future direction related to Proposed Algorithm 121

9.4.2 General Directions for Video Transcoding ... 122

REFERENCES ...124

BIBLIOGRAPHY ..135

ix

LIST OF FIGURES

Figure 2-1 4:2:0 Sampling .. 8

Figure 2-2 4:2:2 Sampling .. 9

Figure 2-3 4:4:4 Sampling .. 9

Figure 2-4 BT 709 Primaries shown on the CIE 1931 X, Y chromaticity diagram

(source:[104]) .. 10

Figure 2-5 Interlaced and Progressive Scanning .. 12

Figure 2-6 Spatial and Temporal representation of video data 12

Figure 2-7 End-to-end video coding process .. 13

Figure 2-8 Blok Diagram of a Video Encoder .. 13

Figure 2-9 Video Compression Standards .. 16

Figure 2-10 Encapsulation of H.264 syntax elements .. 21

Figure 2-11 Baseline, Main and Extended Profiles of H.264 ... 22

Figure 2-12 Macroblock partitioning modes in H.264 | Intra Prediction MB modes (top

line) Inter Prediction MB modes (middle line) 8×8 sub MB modes for Inter 8×8 (bottom

line) ... 24

Figure 2-13 VCL NAL Unit overview ... 24

Figure 2-14 Block Diagram of H.264 Encoder ... 25

Figure 2-15 Block Diagram of H.264 Decoder .. 25

Figure 2-16 Basic Profiles in HEVC video standard .. 28

Figure 2-17 Coding Unit partitioning modes in HEVC | Symmetric Mode partitions (top

line) | Asymmetric Mode Partitions (AMP) (bottom line).. 29

Figure 2-18 Block Diagram of HEVC Encoder ... 30

Figure 2-19 Block Diagram of HEVC Decoder ... 31

Figure 3-1 Video Transcoding Architecture ... 35

Figure 3-2 Types of Video Transcoding ... 36

Figure 3-3 Video Format conversion .. 36

Figure 3-4 Video Bitrate Conversion (Trans-rating) .. 37

Figure 3-5 Video Resolution Conversion (Trans-scaling) .. 37

Figure 3-6 Video Frame Rate Conversion .. 38

Figure 3-7 Basic Video Transcoding Architecture ... 39

Figure 3-8 Smart Video Transcoding Architecture .. 39

x

Figure 4-1 Algorithm Testing Procedure .. 47

Figure 4-2 An example of a Rate Distortion Plot ... 50

Figure 4-3 Example of BD-Rate ... 51

Figure 5-1 Motion Estimation using translational motion model 57

Figure 5-2 BQTerrace video sequence 1920x1080 .. 57

Figure 5-3 Illustration of 4 merging and non-merging blocks .. 58

Figure 5-4 Correlations of H.264 MV Variance and HEVC CU sizes for Kimono1

sequences at QP=27 and QP=32 ... 60

Figure 5-5 Correlations of H.264 MV Variance and HEVC CU sizes for Basketball

sequences at QP=27 and QP=32 ... 61

Figure 5-6 Merging of 4 N×N blocks to form 2N×2N blocks where N=16 or 32 63

Figure 5-7 Merging of 3 N×N blocks to form 2N×2N blocks where N=16 or 32 63

Figure 5-8 2N×2N output modes .. 64

Figure 5-9 Additional output modes in proposed algorithm ... 66

Figure 5-10 i) Spatial neighbouring blocks ii) Temporal neighbouring block 67

Figure 5-11 Partial snapshot of HEVC Inter PU sizes of Basketball 1920×1080

sequence at QP 27 from Zond 265 Analyser .. 69

Figure 5-12 Flowchart of the complete MV variance based mode merge algorithm 70

Figure 5-13 Comparison of perceptual video quality of the frame transcoded by the

Trivial Transcoder (left image) and the Proposed Transcoder (right image) for

Basketball sequence .. 72

Figure 5-14 Comparison of perceptual video quality of the frame transcoded by the

Trivial Transcoder (left image) and the Proposed Transcoder (right image) for

Parkscene sequence ... 73

Figure 5-15 RD plots for proposed MVV algorithm for different sequences 74

Figure 6-1 H.264 Mode Probability Distribution for Parkscene 80

Figure 6-2 The probability of an 8×8 block in H.264/AVC being coded as a 8×8 block

in HEVC for Parkscene 1920×1080 sequence .. 80

Figure 6-3 The number of 8×8 blocks in H.264/AVC for different QPs of [20,26,32,38]

for 50 frames of ParkScene1920×1080 sequence ... 81

Figure 6-4 The 2D surface generated using the model for P11 for different QPAVC and

QPHEVC values. The second graph shows the model error for the Parkscene 1920×1080

sequence .. 83

xi

Figure 6-5 RD plot for Parkscene (training sequence) ... 85

Figure 6-6 RD plot for OldTownCross (training sequence) ... 85

Figure 6-7 RD plot for Basketball (non-training sequence) ... 86

Figure 6-8 RD plot for Pedestrian (non-training sequence) ... 86

Figure 7-1 Histogram of Split and Non-Split blocks for video sequences (a) Parkscene

at QP 22 (b) Parkscene at QP 27 (c) Kimono1 at QP 22 and (d) Kimono1 at QP 27 (Red

- non-split and Blue – split) .. 92

Figure 7-2 Classification of Video Sequences .. 95

Figure 7-3 Plots of (i) Average MV against QP (ii) No of partitions against QP, for

Kimono and Parkscene (1920×1080 resolution) .. 96

Figure 7-4 The combined plot of LMLT, LMHT, HMLT and HMHT models 97

Figure 7-5 Model for LMLT video sequences for a QP set of [22, 25, 27, 30, 32, 37] .. 98

Figure 7-6 Model for LMHT video sequences for a QP set of [22, 25, 27, 30, 32, 37] . 98

Figure 7-7 Model for HMLT video sequences for a QP set of [22, 25, 27, 30, 32, 37] . 99

Figure 7-8 Model for HMHT video sequences for a QP set of [22, 25, 27, 30, 32, 37] . 99

Figure 7-9 Sequence activities for various 1920×1080 sequences 100

Figure 7-10 RD plot for MB residual merge algorithm for Parkscene sequence 102

Figure 7-11 RD plot for the MB residual merge algorithm for Kimono sequence 102

Figure 8-1 Flowchart of the complete algorithm .. 106

Figure 8-2 Analysis of the probability of 16×16 blocks forming 32×32 blocks in MV

variance and MB residual based algorithms for Parkscene sequence 108

Figure 8-3 Analysis of the probability of 16×16 blocks forming 32×32 blocks in MV

variance and MB residual based algorithms for Basketball sequence 109

Figure 8-4 Analysis of the probability of 16×16 blocks forming 32×32 blocks in MV

variance and MB residual based algorithms for Kimono sequence 109

Figure 8-5 Analysis of the probability of 16×16 blocks forming 32×32 blocks in MV

variance and MB residual based algorithms for Cactus sequence 110

Figure 8-6 Subjective video quality between the reference and proposed transcoder .. 113

xii

LIST OF TABLES

Table 2-1 ITU-T Recommendation for Colour Conversion ... 11

Table 2-2 Video Container Formats ... 18

Table 2-3 NAL Unit Types ... 20

Table 2-4 Slice Types [1] .. 23

Table 2-5 Comparison of H.264 and HEVC Toolsets .. 31

Table 2-6 Comparison of Inter Block Sizes in H.264 and HEVC 32

Table 4-1 Set of standard test sequences .. 48

Table 4-2 Set of extended test sequences ... 48

Table 5-1 Block size patterns across H.264 and HEVC for QP of 27 for 32×32 blocks 64

Table 5-2 Block size patterns across H.264 and HEVC for QP of 27 for 64×64 blocks 65

Table 5-3 Spatial and Temporal Score Calculator .. 67

Table 5-4 Percentage of 16×16 blocks in HEVC Sequences .. 69

Table 5-5 Average percentage of Blocks Merged as 32×32 blocks in Basketball

sequence for 100 frames ... 71

Table 5-6 Performance of the MV based mode merge algorithm with respect to HM

reference encoder .. 72

Table 5-7 Performance of Proposed Algorithm against other algorithms 72

Table 6-1 The H.264 annd HEVC Modes considered for Modelling 82

Table 6-2 Prediction Performance (Training Sequences) for HEVC QP = 22 84

Table 6-3 Prediction performance (non-training sequences) HEVC QP=32 84

Table 6-4 Performance of the algorithm in terms of Video quality 87

Table 6-5 Performance of the algorithm in terms of Time Saving 87

Table 7-1 Summary of video sequence activities ... 94

Table 7-2 Constants for the Residual PMF based Mode Merge algorithm 96

Table 7-3 Performance of the Residual based mode merge algorithm 101

Table 8-1 Analysis of 16×16 to 32×32 block merge for Parkscene 107

Table 8-2 Analysis of 16×16 to 32×32 block merge for Basketball 107

Table 8-3 Analysis of 16×16 to 32×32 block merge for Kimono 108

Table 8-4 Analysis of 16×16 to 32×32 block merge for Cactus 108

Table 8-5 Performance of the algorithm for different video sequences 110

Table 8-6 Performance of Proposed Algorithm against [49] .. 111

xiii

Table 8-7 Performance of Proposed Algorithm against [59] .. 112

Table 8-8 Performance of Proposed algorithm against [100] 112

xiv

ABBREVIATIONS AND ACRONYMS

AAC Advanced Audio Coding

AMP Asymmetric Mode Partition

AMR Adaptive Multi-Rate Audio Codec

ASO Arbitrary Slicing Order

AVC Advanced Video Coding

BD-BR Bjontegaard Bit Rate

BD-PSNR Bjontegaard Peak Signal to Noise Ratio

CABAC Context Adaptive Binary Arithmetic Coding

CAVLC Context Adaptive Variable Length Coding

CBR Constant Bit Rate

CD Coding Depth

CU Coding Unit

CPU Central Processing Unit

CTU Coding Tree Unit

DCT Discrete Cosine Transform

DPB Decoded Picture Buffer

DS Diamond Search

DVD Digital Versatile Disc

FPS Frames per Second

FRE Fidelity Range Extension

GOB Group of Blocks

GOP Group of Pictures

HD High Definition

HDTV High Definition Television

HE-AAC High-Efficiency Advanced Audio Coding

HEVC High Efficiency Video Coding

HM HEVC Model (H.265/HEVC reference software)

HVS Human Visual System

IDCT Inverse Discrete Cosine Transform

IDE Interactive Development Environment

IDR Instantaneous Decoder Refresh

xv

IQ Inverse Quantisation

IR Intra Refresh

ISO International Organisation for Standardisation

IT Inverse Transform

ITU International Telecommunication Union

ITU-T International Telecommunications Union,

Telecommunication Standardisation Sector

JM Joint Model (H.264/AVC reference software)

JCT-VC Joint Collaborative Team on Video Coding

JVT Joint Video Team

JPEG Joint Photographic Experts Group

MB Macroblock

MJPEG Motion Joint Photographic Experts Group

MPEG Moving Pictures Expert Group

MRF Multiple Reference Pictures

MSE Mean Square Error

MV Motion Vector

MVD Motion Vector Difference

MVP Motion Vector Predictor

NAL Network Abstraction Layer

NALU Network Abstraction Layer Unit

NNS Nearest Neighbour Search

PCM Pulse Code Modulation

PPS Picture Parameter Set

PSNR Peak Signal to Noise Ratio

PB Prediction Block

PU Prediction Unit

QP Quantisation Parameter

RBSP Raw Byte Sequence Payload

RD Rate Distortion

RDO Rate Distortion Optimisation

RLC Run Length Code

SAD Sum of Absolute Differences

xvi

SD Standard Definition

SDTV Standard Definition Television

SEI Supplementary Enhancement Information

SI Switching Intra

SI Spatial Perceptual Information

SIMD Single Instruction Multiple Data

SP Switching Prediction

SNR Signal to Noise Ratio

SPS Sequence Parameter Set

SVC Scalable Video Coding

TB Transform Block

TI Temporal Perceptual Information

TS Time Saving

TU Transform Block

TV Television

VBR Variable Bit Rate

VCEG Video Coding Experts Group

VCL Video Coding Layer

WPP Wavefront Parallel Processing

1

PART ONE: BACKGROUND

2

1 INTRODUCTION

1.1 Introduction

This chapter explains the background and motivation for this research work. The chapter starts

with the background related to the research problem in section 1.2 . The research aim and

objectives are provided in sections 1.3 and 1.4 respectively. Section 1.5 provides details about the

main contributions of this work. The organisation of the thesis is explained in section 1.6.

1.2 Problem Statement

The advances in digital video has led to the advent of various use cases such as SDTV, HDTV,

DVD video, Blu-Ray video, video streaming and video conferencing applications. The advent of

mobile phones and smart devices has further accelerated the increased use of multimedia

applications on these devices. As exciting as it is, 4K and 8K televisions are a reality now. Video

compression along with the improvement in processing capabilities of processors and

development of optimized video solutions have contributed significantly to these developments.

The very high penetration of video applications in day-to-day life brings with it a greater need for

inter-operability of video content on different devices. The creation and consumption of video

content across different kinds of devices, networks with different bandwidth capabilities and

different video encoding formats should be seamless to provide the best user experience. The

original video content may be stored in a server in a specific video format at a particular

resolution. This needs to be converted into different combinations of video resolution and formats

to be compatible with the end user’s requirements. For example, YouTube stores the video in

240p, 360p, 480p, 1080p, 1440p and 2160p resolutions to cater to different end user preferences.

Also, videos stored in these servers may be delivered over different communication networks,

including the internet, 3G, 4G, 5G networks and so on, each with very different capabilities. The

network constraints also greatly influence the choice of video quality and resolution being

transmitted. A higher available bandwidth provides the option of transmitting a higher quality

video, and lower bandwidth puts a constraint on the quality and resolution of the video being

transmitted over the network. Another factor that plays a significant role is the end device on

which the video is decoded and displayed. Nowadays, users expect to watch the same video

content on different devices (laptops, tablets, smart TVs, smart phones). If a device does not

support a particular video format, the video needs to be transcoded into a supported video format.

And if the device does not have the processing capability to decode video at a higher resolution,

3

the video needs to be converted to a lower resolution. In addition to this, the new devices in the

market may not support old and legacy video formats, in which case converting the video to newer

formats is necessary. As the device capabilities and network properties are unknown when the

video is compressed, dynamic adaptation of video characteristics, such as video resolution and

the bitrate, is required. Video transcoding is one of the key technologies that makes it possible.

H.264 [1] video compression format is the most widely used standard in the last 15 years. This

implies that there is a large amount of video content already present in H.264 format. In addition

to this, as most of the cameras and smart devices will be supporting hardware acceleration for

H.264 encoder, thereby newer video content generated will be in H.264 format. HEVC [2] video

compression format offers around 2× times better compression of video data compared to H.264

format. This basically means a video which needs an internet bandwidth of 1 Mbps using H.264

format would only need around 500kbps using HEVC format. On a similar note, a H.264

compressed video which needs 1 GB for storage using H.264 would only need around 500 MB if

using HEVC format. To support high quality videos over constrained networks, and for efficient

storage of video content , and for supporting newer devices which do not support legacy video

formats, there is a need to transcode video from H.264 to HEVC video compression format. This

brings with it, its own set of challenges as explained in the following paragraphs.

The most straight-forward method of performing video transcoding from H.264 to HEVC is to

decode the H.264 video content using a H.264 decoder and encoding the decoded video using

HEVC encoder. However, the most commonly used approach is to re-use the decoded information

for the subsequent stage of encoding to reduce the computational complexity of the encoder. In

[5], it is shown that the process of mode selection and motion estimation alone can take around

40-60 percent of the total computational requirement of the HEVC encoder. Hence, if ways are

designed to reduce the computational complexity of motion estimation and mode selection, the

overall computational complexity of HEVC encoder reduces significantly. The largest block size

of HEVC standard is 64×64 pixels, which is different compared to older video standards including

H.264, which use 16×16 pixels. This makes re-use of H.264 decoded information for HEVC

encoding a challenging task. This needs a thorough analysis of the data extracted from the H.264

decoder information, interpretation and modeling to predict the HEVC block mode, which would

lead to reduction in HEVC encoder complexity. This should have the least possible deterioration

in objective video quality.

Computational complexity of the HEVC encoder is 2 to 10 times compared to that of H.264

encoder [3]. Motion estimation is the most complex stage during the process of encoding. In the

case of H.264 inter frame prediction, each macroblock can be partitioned as a 16×16 block, two

16×8 blocks, two 8×16 blocks, or four 8×8 blocks. Each 8×8 block in turn can be sub-partitioned

into a single 8×8 sub-block, two 8×4 sub-blocks, two 4×8 sub-blocks or four 4×4 sub-blocks.

This gives rise to 259 different possible combinations [4] for a single macroblock. Consider the

4

fact that a 64×64 Coding Unit in HEVC [2] can be considered as a set of sixteen 16×16 blocks.

This makes the total number of possible combinations of block partitions in a 64×64 Coding Unit

in HEVC to be a very huge number. Just by considering each 8×8 block to have the three possible

modes, 8×8, 8×4 and 4×8, a 64×64 CTU will have in excess of 3^64 possibilities. It is impossible

to achieve real time encoding of HEVC format with cost effective hardware platforms. This makes

development of low complexity algorithms for HEVC encoding very important.

1.3 Research Aim

The aim of the project is to develop low complexity algorithms for H.264/AVC to HEVC Video

Transcoding. This research work addresses computational complexity and Rate-Distortion

performance issues of the existing video transcoding algorithms. The developed algorithms

achieve efficient and effective transcoding of H.264/AVC to HEVC video formats They achieve

significant computational complexity savings while maintaining good Rate-Distortional

performance.

1.4 Research Objectives

The research aim is achieved through a set of objectives which are listed below

• Study of the existing state-of-the-art video transcoding algorithms available in literature.

This also involves a critical analysis with performance evaluation.

• Development of a novel H.264 to HEVC video transcoding algorithm to significantly

reduce the computational complexity of the transcoding with negligible loss in video

quality.

• Optimisation of the algorithm developed in objective two for robustness and further

enhancement.

• Present a complete solution with all the algorithms developed as a complete solution for

H.264 to HEVC video transcoding.

The objectives of this research work are fulfilled by developing novel algorithms for H.264 to

HEVC video transcoding.

1.5 Main Contributions and Publications

As part of this research work, novel algorithms for H.264 to HEVC video transcoding with

significant reduction in computational complexity and negligible Rate-Distortion loss were

developed. The main contributions of this work are summarized below:

5

• The development of a novel Motion Vector variance based Mode Merge algorithm. The

model predicts the homogeneity of the regions using the MV variance and block size

information from the H.264 decoder. The algorithm recursively tries to form larger sized

blocks using a bottom up approach. Different block merging techniques are used to

achieve this. The main novelty is the development of the MV variance based approach

used for the merge/non-merge decision.

• The development of a conditional probability based mode mapping algorithm to predict

the HEVC mode for 16×16 and lower block sizes. The predicted HEVC modes are

modeled as a function of the H.264 block size, H.264 and HEVC Quantisation

Parameters (QP). This algorithm complements the MV based mode merge algorithm. The

main novelty of this algorithm is the development of conditional probability based

prediction models which are based on the principles of apriori and joint probabilities, to

predict the most probable modes in HEVC.

• The development of a MB residual based mode merge algorithm. The algorithm predicts

the homogeneity of a region using content-adaptive models. This is used to reduce the

complexity of the mode prediction process. The main novelty of this algorithm is that

models are developed to classify the video sequences based on the motion and texture

details, and these video activity based models are used for the merge/non-merge decision

of HEVC blocks.

• The conditional probability based mode mapping algorithm along with the initial version

of the MV based mode merge algorithm was published as an IEEE conference paper1 [10]

1.6 Organisation of the Thesis

The thesis is organized as follows

Chapter 2 – This chapter provides a basic background on video compression. It provides a brief

overview of the H.264 and HEVC video compression standards, providing information on the

different profiles and levels, bitstream syntax, encoder and decoder descriptions. It also provides

a comparison of the H.264 and HEVC standards.

Chapter 3 – This chapter provides the basic information on video transcoding. It discusses the

different kinds of video transcoding algorithms available. It also provides a critical review of the

various video transcoding algorithms.

Chapter 4 – This chapter explains the experimental methods used in this research work. The

development and test platforms, the test sequences and the performance metrics used are

explained in this chapter.

1 The paper titled “Fast H.264/AVC to HEVC transcoding using mode merging and mode mapping” was

presented by the author at IEEE 5th International Conference on Consumer Electronics, Berlin.

6

The main contributions of this research work are described in chapters 5, 6, 7 and 8.

Chapter 5 – This chapter describes the MV variance based mode merge algorithm. This algorithm

outputs the split/non-split decision based on prediction of regional homogeneity using MV

variance. The algorithm is presented along with a critical review of its performance.

Chapter 6 – The mode probability based mode mapping algorithm is described in this chapter.

This work is based on the view that HEVC modes for 16×16 and lower block sizes are a function

of H.264 decoded information. The HEVC mode is modeled as a function of H.264 block mode

along with H.264 and HEVC QPs.

Chapter 7 – The MB residual based Mode Merge algorithm is presented in this chapter. The

residual data after inter prediction can be a very good indicator of the regional homogeneity. This

is used to develop models for different kinds of video content. The split/non-split decision is

derived based on the thresholds for the content adaptive models at different QPs.

Chapter 8 – This chapter describes the method of using all the three algorithms provided in

chapters 5, 6 and 7 to form a complete H.264 to HEVC video transcoding solution.

Chapter 9 – This chapter provides the conclusion of the thesis and possible future works and

extensions of this work.

7

2 VIDEO CODING BACKGROUND

This chapter explains the background of digital video and basic concepts of block-based video

coding. It also provides a brief overview of the H.264 and HEVC video compression standards

and compares these two standards.

2.1 Introduction

Video can be represented in either analog form or digital form. Analog video contains luminance

(Y) and chrominance (C) components. The different components can be transmitted using a single

channel or multiple channels. The former is called as composite video and the latter is called as

component video. The scope for improvement in video quality and the higher costs of analog

video primarily led to the development of video and its compression in the digital form. Digital

video is very prominently used for all video applications.

2.1.1 Digital Video

The main advantages of digital video over analog video are

- Storage of video is much easier on digital devices

- Ease of performing video processing operations

- It is simpler to perform encryption

- It is more robust to channel noise

- Multiple iterations of recording without video quality degradation

As digital video occupies a large amount of space on digital storage devices, there was a need to

compress the video in case it needs to be stored or transmitted over the internet.

As this research is focussed on digital video, it is important to have a good understanding of the

representation of digital video. Some of the most commonly used terminologies in digital video

compression are explained below.

Colour Spaces

Images can be broadly classified as Monochrome images and Colour Images. A monochrome

image requires a single value to indicate the brightness of any pixel of the image. A colour image

requires atleast three values to indicate the value of the pixel of the image.

8

RGB Colour Space

The human eye’s retina consists of an array of rods and three kinds of cones. The three kinds of

cones are most sensitive to red (R), green (G) and blue (B) light. Due to this, in a colour image,

visual information is represented using the three primary colours - Red (R), Green (G) and Blue

(B). This is known as the RGB colour space. RGB colour space in its most basic form uses 8bits

(one byte) to represent each of R, G and B data. This is called as RGB24. Other forms of RGB

representation include RGB32 and RGB16 for 32-bit and 16-bit representation respectively.

YCbCr Colour Space

In the YCbCr Colour Space, Y stands for Luminance, Cb stands for chrominance (blue) and Cr

stands for chrominance (red). The luminance component specifies the brightness, whereas the

chrominance component specifies the colour information of the image or video. Most of the video

coding algorithms process visual data in YCbCr Colour Space. Human Visual System (HVS) is

less sensitive to variations in chrominance than to variations in luminance. Hence, luminance

data is separated from chrominance and represented in YCbCr format. This makes it convenient

to compress luminance and chrominance separately, with a higher compression factor for

chrominance data. This is achieved by using chrominance sub-sampling.

The YCbCr colour space can have different sampling formats depending on the way the

chrominance is sampled and represented along with the luminance. The different possible

combinations for YCbCr are depicted in Figure 2-1 to Figure 2-3. Figure 2-1 depicts the 4:2:0

sub sampling. Here it can be seen that for every four Luma (Y) pixels in the dotted box, there are

two chroma pixels, one Cb and one Cr pixel. The two chroma pixels are chosen from the first

row in the dotted box, whereas there are no chroma pixels chosen from the second row, indicated

as 4:2:0 sampling.

Figure 2-1 4:2:0 Sampling

9

In Figure 2-2, for the 4 Luma pixels in the dotted box, two chroma pixels are chosen from the

first row and two are chosen from the second row, hence the name 4:2:2 sampling.

Figure 2-2 4:2:2 Sampling

In Figure 2-3, every Y sample is associated with a Cb and Cr sample. Hence in the dotted box,

the 4 pixels of Y are complemented with 4 pixels of chroma pixels in each of the rows. Hence it

is called 4:4:4 sampling.

Figure 2-3 4:4:4 Sampling

RGB – YCbCr Colour Conversion

The YCbCr colour space can be derived from the RGB colour space. The luminance component

Y is derived as the weighted average of R, G and B.

𝒀 = 𝒌𝒓𝑹 + 𝒌𝒈𝑮 + 𝒌𝒃𝑩 Equation 2-1

where 𝒌𝒓, 𝒌𝒈 and 𝒌𝒃 are the weight factors.

10

Cb and Cr are derived as the differences between the R, G and B components as against Y.

𝑪𝒓 = 𝑹 − 𝒀 Equation 2-2

𝑪𝒃 = 𝑩 − 𝒀 Equation 2-3

RGB data is converted to YCbCr using either BT.601 [21] or BT.709 [22] standards. Though the

human eye has three types of colour sensors, the concept of colour can be seen as being composed

of luminance and chrominance. This is used to represent colour in the form of a two-dimensional

diagram called the CIE (Commission Internale de L’Eclairage) XY chromaticity diagram. Figure

2-4 shows the CIE XY chromaticity diagram for BT 709 standard. Colours under BT 709 colour

gamut will fall under the triangle formed by the Red (XR, YR), Green (XG, YG) and Blue (XB, YB)

coordinates. The white point is represented by D65 (XW, YW). The white point is defined as the

colour (or chromaticity coordinates and luminance) that is produced when the system is sent the

maximum RGB code values that it can accept. The primary colour is set of colours which can be

used to create an entire set of colours. As the values of 𝑥, 𝑦 ≤ 1 and 𝑥 + 𝑦 ≤ 1 , all possible

chromaticity values should lie below the line 𝑥 = 𝑦 . There are multiple options for choosing

different white spectra as the standard illuminant, such as illuminant A, illuminant C, standard

daylights D65 and D100. Each of these have a different white spot on the CIE diagram. D65 has

a chromaticity equal to (0.312713,0.329016).

Figure 2-4 BT 709 Primaries shown on the CIE 1931 X, Y chromaticity diagram

(source:[104])

The definition for the colour conversion standards is given in Table 2-1. It lists the co-ordinates

for primary colour points for different colour conversions standards.

11

Table 2-1 ITU-T Recommendation for Colour Conversion

Colour Space White Point Primary Colour
XW YW XR YR XG YG XB YB

ITU-R BT.709 0.3127 0.329 0.64 0.33 0.30 0.60 0.15 0.06

ITU-R BT.601

(625 line)

0.3127 0.329 0.64 0.33 0.29 0.60 0.15 0.06

ITU-R BT.601

(525 line)

0.3127 0.329 0.63 0.34 0.31 0.595 0.155 0.07

Frame Rate

Frame rate generally refers to the rate at which frames are encoded or displayed on the screen.

The same term applies to the rate of capture of a video camera or any capturing device. Frame

rate is measured in Hertz (Hz). For example, if the camera captures 15 video frames every second,

the frame rate is 15 Frames per Second (FPS). The frame rate at which the camera captures the

image can be different from the frame rate at which the video is encoded. This is achieved by

dropping captured video frames.

Bit Rate

Bitrate is the number of bits the video encoder is expected to output per unit of time. The bitrate

is quantified using the bits per second unit. The constraint on bitrate is mainly a function of the

transmission channel, which in turn depends on the type of video application. For example, video

conferencing applications have minimal fluctuations in bitrate, which is mainly to keep the end-

to-end delay as minimum as possible. Similarly, video broadcast over fixed bitrate channels have

a constant bitrate with minimum delay [109]. The video encoders generally have a rate control

algorithm in order to maintain or reach to a target bitrate by modifying the encoder parameters.

The choice of rate control algorithm is based on many parameters such as the type of video

application (video broadcast, real-time conferencing, etc.), network capacity and user

requirements.

Video Resolution

Video resolution is the measure of width and height of the video frame in pixel terms. For

example, a video resolution of 704×576 pixels indicate that the width of the picture is 704 pixels

and the height of the picture is 576 pixels.

Video Scanning Technologies

Video can be scanned using either progressive or interlaced scanning techniques. If the time

required to capture a frame worth of video data is T seconds, in the progressive mode one frame

12

worth of data is captured after every T seconds. In interlaced mode, alternate lines of video data

are captured every T/2 seconds. The scope of this research is to deal with progressive frames only.

Figure 2-5 depicts the differences between progressive and interlaced scanning.

Figure 2-5 Interlaced and Progressive Scanning

2.1.2 Basics of Block based Video Coding

Video data is a set of images captured or displayed continuously. As explained in section 2.1.1,

frame rate is the number of frames captured/displayed per second. If the frame rate is 30 fps, it

means that a frame is captured every 33.33 milli seconds. As the successive frames are captured

at such small intervals of time, there is an overlap of data between successive frames. And each

frame would have data having a similar pattern. A video encoder is based on the concept of

removing spatial and temporal redundancies in uncompressed video data. Figure 2-6 illustrates

the representation of video data in terms of captured frames. f(t) represents the video frame

captured at time t and Δt represents the time between successive frames and is dependent on the

frame rate. For example, if the frame rate is 30 fps, Δt is 33.33 ms.

Figure 2-6 Spatial and Temporal representation of video data

13

The digital video data is a large amount of data, it needs to be compressed to aid in digital storage

and transmission. The process of compressing video is called video coding and the algorithm to

implement this is called a video encoder.

Figure 2-7 End-to-end video coding process

The complete end-to-end video coding process is illustrated in Figure 2-7. Video source is source

of the video data, such as a camera. The video encoder is responsible for compressing the video

data so that it is much more convenient for storage and transmission of the video data. The video

decoder uncompresses the compressed video data in compliant with the standard encoding format.

Finally, the decoded video data is sent to a video sink, such as a display panel.

The basic block diagram of a video encoder is given in Figure 2-8. The raw video is provided as

input to the video encoder. The encoder performs intra/inter prediction on the input video. The

residual (difference after prediction) is transformed and quantised. The quantised coefficients are

entropy coded to generate the encoded video bit-stream. The encoder also has an inbuilt decoder.

The inbuilt decoder takes in the quantised coefficients and performs inverse quantisation and

inverse transform to provide the reconstructed picture. The reconstructed picture (and not the

original picture) is used as reference picture for prediction of future pictures. This is done to avoid

an encoder-decoder mismatch as the decoder does not have access to the original picture.

Figure 2-8 Blok Diagram of a Video Encoder

14

A few of the basic processing blocks of video encoding are explained below.

Intra Prediction

Block based video coding algorithms use prediction of data to remove redundant information.

Intra Prediction is the process of finding a prediction block with respect to previous encoded

blocks in the current picture and subtracting it from the current block to obtain the residual signal.

The residual signal is encoded to form the compressed video signal.

Inter Prediction

Inter prediction is the process of forming a prediction block using the block based data from the

previous decoded pictures. The closest match of the block-based data from the previous picture

is used as the reference data.

I, P and B pictures

I picture refers to Intra-predicted pictures. In these pictures, only spatial prediction is performed

while encoding. Hence these pictures can be reconstructed without any dependency on other

pictures. P picture refers to Predicted Pictures. These pictures are predicted mainly using a

reference picture, which is used to remove temporal redundancies. These pictures cannot be

reconstructed on the decoder side if the reference picture is not available. B picture refers to Bi-

Predicted Pictures. These pictures are predicted using two reference pictures. One of the

references is called the backward reference and the other reference picture is called the forward

reference. The forward reference frame is decoded before decoding the current frame and

displayed before the current frame is displayed. The backward reference frame is displayed after

the current frame is displayed, but it is decoded prior to decoding the current frame. This implies

that on the decoder side, the decode order and the display order can be different.

Transform Coding

Transform in the context of video compression refers to converting the pixels from spatial domain

to the frequency domain. This is necessary to decorrelate the pixel data, for further processing.

The most commonly used transform in video compression is Integer-based Discrete Cosine

Transform (DCT) [23]. The Discrete Cosine Transform of a ‘N×N’ block is given by

𝑭𝒙,𝒚 = 𝑪(𝒙)𝑪(𝒚) ∑ ∑ 𝒇
𝒊,𝒋

𝐜𝐨 𝐬 (
(𝟐𝒊 + 𝟏)𝒙𝜫

𝟐𝑵
)

𝑵−𝟏

𝒋=𝟎

𝑵−𝟏

𝒊=𝟎

𝒄𝒐 𝒔 (
(𝟐𝒊 + 𝟏)𝒚𝜫

𝟐𝑵
)

 Equation 2-4

15

where 𝒇𝒊,𝒋 represents the samples of the input block, 𝑭𝒙,𝒚 represents the coefficients of the

transformed block and C(n) = √
1

𝑁
, 𝑓𝑜𝑟 𝑛 = 0 and C(n) = √

2

𝑁
, 𝑓𝑜𝑟 𝑛 > 0 .

Discrete Cosine Transform is widely used because it has strong energy compaction property

[103]. Most of the signal is concentrated in the low frequency components of the DCT. 𝑭𝟎,𝟎 is

the transformed coefficient in the top left corner of the block and is called as the DC coefficient.

The DC coefficient represents the average energy of the block. The edges in the pixel domain is

represented as high frequency coefficient values in the transformed domain.

The inverse operation of this is called Inverse Transform. Inverse transform is performed on the

decoder side and also on the decoder path of the encoder.

Quantisation

Quantisation is the process of scaling down the value of a signal, mainly to reduce the number of

bits used to represent the signal. Quantisation can be either scalar or vector quantisation. Scalar

quantisation maps a single input sample to a single quantised output value. Incase of vector

quantisation, the block of input samples is mapped to a block of quantised values.

The inverse operation of this is called as Inverse Quantisation. Inverse quantisation is performed

on the decoder side and also in the decoder path of the encoder. The inverse quantisation process

does not yield the same data as the initial pixel data, leading to loss of data. This is one of the

main reasons for lossy coding.

Uniform scalar quantisation can be represented as

𝑭𝑸 = 𝒓𝒐𝒖𝒏𝒅 (
𝑿

𝑸𝑷
) Equation 2-5

𝒀 = 𝑭𝑸. 𝑸𝑷 Equation 2-6

Entropy Coding

Entropy coding is the process of converting a set of symbols representing the video sequence into

a compression bitstream for either storage or transmission. Although different entropy coding

techniques are used, the most commonly used methods are Variable Length Coding (VLC) and

Arithmetic Coding (AC) [24]. A Variable length coder represents an input symbol with a variable

length codeword. Frequently occurring symbols are represented with shorter codes as compared

to less frequent symbols which are represented using longer codes. Arithmetic coder converts a

sequence of input symbols into a unique fractional number. This method is more efficient

compared to Variable Length Encoding for the optimal representation of input symbols.

16

2.2 Video Coding Standards and Container Formats

Video coding standards are defined as the standards developed for content representation of

digital video content targeted for storage and transmission. Different video standards have been

developed by multiple standardisation bodies in the last 30 years. A brief description is provided

in section 2.2.1.

In [20], video container formats are defined as the wrappers which defines the overall structure

of the video file, including how the file’s metadata, video/audio information and index

information are multiplexed together, but does not explicitly define how the video/audio

information is encoded. Each of the video container formats generally support multiple audio and

video compression formats.

2.2.1 Video Coding Standards

 Different video coding standards have been developed mainly by two standard bodies

• International Telecommunication Union-Telecommunication Standardisation (ITU-T) –

Video Coding Experts Group (VCEG): This body develops the video compression

standards with the H.2XX series

• International Organisation of Standardisation – Moving Pictures Expert Group (ISO-

MPEG): This group develops video standards with MPEG-X series.

For recently developed and future video compression standards, both the VCEG and MPEG

groups are working together to formalise the standards. The standards developed by ITU-T and

ISO are depicted in Figure 2-9.

Figure 2-9 Video Compression Standards

17

The early video coding standards have been developed by the following standardisation bodies -

ITU-T VCEG (International Telegraph Union- Telecommunication, Video Coding Experts

Group) and ISO/IEC MPEG (International Organisation for Standardisation/ International

Electrotechnical Commission, Moving Pictures Expert Group). An overview of the video

compression formats developed by these groups is explained below.

ITU-T VCEG Group

The ITU-VCEG group started developing the H.26X video formats.

H.261 [11] is the first video coding standard developed by ITU-T. It was initially ratified in 1988.

It mainly supported video bitrates between 40kbps and 2 Mbps. It supported two video resolutions

CIF (352-288) and QCIF (176×144) using the YCbCr 4:2:0 format. The next standard was the

H.263 [14] which was an improvement on H.261 and was mainly targeted for video conferencing

applications.

ISO/IEC MPEG Group

The ISO/IEC MPEG group developed its video standards starting with the MPEG1 video standard

[12] . The MPEG1 video standard was highly influenced by the H.261 standard. MPEG2 [13]

video format was an improvement on the MPEG1 video format to support interlaced video.

MPEG4 Part 2[15] defines the format for video compression. The first version was ratified in

1999. MPEG4 video is H.263 compatible as the basic H.263 bitstream is correctly decoded by a

MEPG4 decoder. MEPG4 supports different profiles to address various applications ranging from

low resolution to high resolution videos.

JVT

After the success of these video formats, both the VCEG and MPEG groups formed a Joint Video

Team (JVT) to develop common standards. H.264 [1], [71] is the first video compression standard

developed by ITU-T and ISO/IEC groups jointly and first version finalized in 2003. It is one of

the most commonly used video compression standards. It is also referred as MPEG4 part 10. The

next format which was developed was HEVC/H.265[2], [16]. The first version was ratified in

April 2013. It is the latest video compression standard developed by ITU-T and ISO/IEC together.

As compared to H.264, it achieves much higher compression rate at the cost of more complex

video toolsets. The joint group is currently working on the next video coding standard, called the

Versatile Video Coding (VVC) or Future Video Coding FVC) or H.266 [105] which is expected

to be finalised by end of 2019.

18

Industry standards

Google/On2

VP8 [17] was developed by On2 technologies in 2008. After the acquisition of On2 technologies

by Google, the source code was made open source and this video format is predominantly

employed in Google products. It is similar to H.264 in its features.

VP9 [18] was initially developed by Google in 2012. It has features similar to HEVC which is its

main competitor. VP9 is employed by Google in YouTube videos.

Alliance for Open Media

AOMedia Video 1 (AV1) [19] is a royalty free video format developed mainly for video

transmission over internet. It is developed by Alliance for Open Media (AOMedia), which is a

consortium of semiconductor firms and firms providing video software and services.

2.2.2 Video Container Formats

Video container formats are used to encapsulate the compressed audio and video data along with

time-sync information. The same video container can encapsulate audio and video data present

in different formats. A list of commonly used video container formats which support H.264 and

HEVC video codecs are listed below in Table 2-2

Table 2-2 Video Container Formats

Name Developer/

Proprietor

Video Coding Formats Audio Coding

Formats

3GP 3GPP H.263, MPEG4 Part 2, H.264 AMR, AAC, HE-AAC

AVI (Audio

Video Interleave)

format

Microsoft H.263, H.264, MPEG2,

MPEG4 Part 2

MP3,

Matroska (.mkv) CoreCode Inc Any format Any format

MP4 MPEG HEVC, H.264, MPEG4

Part2, VC-1[88], H.263

HE-AAC, MP3, AC-3,

Quicktime Apple MPEG2, MPEG4 Part 2,

H.264, H.261, H.263,

Sorenson Spark [89],

MJPEG, HEVC

AAC, HE-AAC, PCM,

AMR

The H.264 video coding format is supported by relatively higher number of video container

formats as compared to HEVC. The most commonly used container formats for H.264 video

coding format are AVI [92], MKV [90] , MP4 [91], 3GP and Quicktime to name a few. HEVC is

supported in Matroska, MP4 and Quicktime video container formats.

19

2.3 Overview of H.264/AVC standard

2.3.1 Introduction

H.264/AVC video coding standard was jointly developed by the ITU-T and ISO/IEC and the first

version finalised in 2003. The main objective of H.264 was to achieve better compression

efficiency compared to the previous standards. Different aspects of the H.264 development,

syntax and toolsets are provided in this section.

2.3.2 Standard Development

ITU-T Video Coding Experts Group (VCEG) issued a call for proposals in 1998 for a new video

coding standard with the objective of achieving higher compression efficiency. As ISO/IEC had

similar interest, the Joint Video Team (JVT), consisting of ITU-T VCEG and ISO/IEC Moving

Picture Experts group (MPEG), was formed in 2001 to jointly develop the new video compression

standard. The standard was finalised, and the draft was approved in May 2003.

H. 264/AVC was mainly targeted for entertainment related applications with 4:2:0 sampling

format. In July 2004, Fidelity Range Extensions (FR Ext) [25], [26], [27] introduced High

Profiles, through an amendment. The high profiles support up to 4: 4: 4 sampling format and 12-

bit sample accuracy.

Later an ‘Advanced 4: 4: 4 Profile' has been added which supports 4: 4: 4 format videos [28],

[29]. Scalable and Multi-View extensions were added to H.264 even later. Because of the higher

compression efficiency compared to previous standards, and support for error resilience and

flexibility of resolutions and bitrates supported, H.264 is widely used in a wide range of

applications.

2.3.3 H.264 Syntax

The data as per H.264 standard is encapsulated into Raw Byte Sequence Payloads (RBSP) and

subsequently into Network Abstraction Layer (NAL) units which are finally encapsulated to form

transport stream packets as shown in Figure 2-10.

Raw Byte Sequence Payloads (RBSP)

The coded video data consists of all the binary codes corresponding to the different syntax

elements present in a picture such as a coded slice, sequence parameter set or a picture parameter

set. Trailing bits are added to make this data byte-aligned. The added trailing bits are called as

RBSP trailing bits and this representation of compressed video data is called as RBSP.

20

Network Abstraction Layer (NAL)

NAL Unit is formed by adding NAL header and Emulation prevention bytes to RBSP data. The

NAL header provides information about the kind of data present in the NAL Unit. This

information is useful to classify the NAL into either Video Coding Layer (VCL) NAL unit or

non-VCL NAL unit. Emulation prevention bytes are added to prevent the Start Code prefix being

present in the NAL Unit data. The different NAL Units defined in the H.264 standard are as shown

in Table 2-3.

Table 2-3 NAL Unit Types

Value NAL Unit Type Description VCL

NAL

1 Coded Slice of a non-

IDR picture

A typical slice, without any data

partitioning

Yes

2 Coded Slice Data

Partition A

Part of a data partitioned slice Yes

3 Coded Slice Data

Partition B

Part of a data partitioned slice Yes

4 Coded Slice Data

Partition C

Part of a data partitioned slice Yes

5 Coded Slice of an IDR

picture

Slice of an IDR picture Yes

6 SEI Supplementary Enhancement

Information

No

7 (SPS) Sequence Parameter Set No

8 (PPS) Picture Parameter Set No

9 Access Unit Delimiter Indicates the type of the slice in the next

coded picture

No

10 End of Sequence Indicates the end of sequence and that the

next coded picture is an IDR picture

No

11 End of Stream Indicating the end of the stream No

12 Filler Data Filler bytes to fill the buffer in case it is

required, e.g buffer underflow

No

VCL NAL Unit

VCL NAL unit contain the coded data for the slice. Video Coding Layer (VCL) contains the

compressed video data of the frames adhering to the H.264 video standard. It is explained in detail

in section 2.3.5.

21

Figure 2-10 Encapsulation of H.264 syntax elements

Non VCL NAL Unit

Non VCL NAL contain sequence level information such as Picture Parameter Set (PPS),

Sequence Parameter Set (SPS) and Supplementary Enhancement Information (SEI).

- Sequence Parameter Set

The SPS contains information required to decode a complete video sequence. The SPS contains

information that does not change often across the different frames, such as the level and the profile

of the incoming video stream.

- Picture Parameter Set

The PPS contains information required to decode one or more pictures in the video sequence. The

information present in PPS generally change for each frame. These generally include information

such as the entropy coding mode, corresponding SPS index, 8×8 transform flag. These properties

can change across the different frames.

- Supplementary Enhancement Information

The SEI is the additional information that may be provided to the H.264 decoder but is not

essential for the decoding process. Information such as those related to Hypothetical Reference

Decoder (HRD), User data and Frame freeze information, to name a few can be provided to the

decoder.

2.3.4 Profiles and Levels

Profiles and levels are used to specify the tools and capabilities of the decoder that is needed to

support the decoding of an encoded video bitstream. Each profile is designed to have distinct

22

coding tools to support different requirements. The H. 264/AVC standard initially specified three

profiles.

Baseline: The coding tools are intended mainly for low-latency applications such as video

conferencing. The focus is mainly on error resilience on error robustness.

Main: This profile has many video coding tools for better prediction, providing higher

compressional efficiency. Hence, it mainly targets video storage and broadcasting applications.

Extended: It has improved error resilience and video stream switching capabilities on top of the

baseline profile. It is mainly targeted for internet video streaming applications.

The fidelity range extensions introduced High profiles intended for high quality video

applications . They are the High, High 10, High 4: 2: 2 and High 4: 4: 4 profiles.

Levels are limiters, a set of constraints imposed to restrict the hypothetical uses of the syntax

within a particular profile. The constraints generally apply to the maximum bit rates, amount of

processing, and memory requirements [110]. This in turn affects the maximum frame sizes and

the number of reference frames.

A brief summary of the different toolsets that are supported by different profiles are provided in

Figure 2-11.

Figure 2-11 Baseline, Main and Extended Profiles of H.264

23

2.3.5 Picture Format and Structure

The source video is in YUV format. The process of dividing a picture into coding units is

explained in this section. Each frame can be divided into multiple slices. Each slice in turn has a

slice header and slice data. The slice data has macroblock information. Each slice can contain

multiple macroblocks. Each macroblock in turn has a macroblock header and residual data. The

format involving slices and MB is illustrated in Figure 2-13.

Slice

A Slice is a region of a picture consisting of an integer number of macroblocks. The MBs in a

slice do not have any spatial dependency on any other part of the picture. A video picture consists

of one or more slices. There are 5 different types of slices in H.264 as tabulated in Table 2-4.

Table 2-4 Slice Types [1]

Slice Type Description Profiles

I (Intra) Slice A slice that is decoded using prediction only from decoded

samples within the same slice

All

P (Predicted)

Slice

A slice that is decoded using Intra prediction from decoded

samples within the slice or Inter prediction from

previously decoded reference pictures using at most one

motion vector and reference index to predict the sample

values of each block

All

B (Bi-predicted)

Slice

A slice that may be decoded using intra prediction from

decoded samples within the same slice or inter prediction

or inter prediction from previously decoded reference

pictures, using at most two motion vectors and reference

indices to predict sample values of each block

Extended

and Main

SP (Switching

Predicted) Slice

A slice that is coded using inter prediction from

previously-decoded reference using at most one motion

vector and reference index to predict the sample values of

each block and which facilitates switching

Extended

SI (Switching

Intra) Slice

A slice that is coded using prediction only from decoded

samples within the same slice and which facilitates

switching

Extended

The slices are decoded independently of one another. This is important in the case of error

recovery as loss of one slice does not necessarily mean loss of the whole picture, and the rest of

the picture can be decoded.

Macroblock (MB)

The smallest coded unit in a picture is the Macroblock (MB). A MB is a rectangular region

consisting of a block of 16×16 luma samples and two blocks of 8×8 chroma samples, when

represented in the 4:2:0 chroma sampling format. The macroblock is the basic processing block

24

unit of the H.264 video compression standard. The macroblock coding mode determines whether

intra or inter prediction is used. The different possible MB modes and sub MB modes are

illustrated in Figure 2-12.

Figure 2-12 Macroblock partitioning modes in H.264 | Intra Prediction MB modes

(top line) Inter Prediction MB modes (middle line) 8×8 sub MB modes for Inter 8×8

(bottom line)

Figure 2-13 VCL NAL Unit overview

25

2.3.6 H.264 Encoder

The functional diagram of H.264 encoder is shown in Figure 2-14.

Figure 2-14 Block Diagram of H.264 Encoder

The H.264 encoder consists of a forward encoding path and a reverse decoding path. The current

picture is predicted either using intra or inter prediction. In Intra prediction, the current

macroblock is predicted only from the neighbouring spatial samples in the current slice. These

samples belong to macroblocks which have already been encoded. In Inter prediction, the current

macroblock is predicted from motion estimation and compensation using one or two reference

pictures. The reference pictures are previously coded pictures. The residual data is

transformed and quantised before preparing it for entropy coding by reordering. Entropy coding

is performed to obtain the compressed video bitstream. The entropy coding process also codes

the header information at macroblock and slice levels. The output of the entropy coder is

encapsulated in the NAL unit and is ready for transmission or storage.

2.3.7 H.264 Decoder

The block diagram of H.264 decoder is shown in Figure 2-15.

Figure 2-15 Block Diagram of H.264 Decoder

26

The input compressed bitsream is first entropy decoded, and inverse scanned to rearrange the

coefficient values. Then inverse quantisation and inverse transform are performed to obtain the

residual pixel values. If it is an I picture, spatial compensation is performed to obtain the

reconstructed picture. If it is a predicted frame, the motion vector values are used to obtain the

prediction block and perform motion compensation to obtain the reconstructed picture.

Deblocking [73] is performed on the decoded picture to reduce any blocking artifacts.

2.4 Overview of H.265/HEVC standard

2.4.1 Introduction

A new video coding standard has been finalized in April 2013 known as the High Efficiency

Video Coding [2]. High Efficiency Video Coding (HEVC) is the latest video coding standard,

which was jointly developed by ITU-T and ISO/IEC-MPEG [12], [13], [15]. High Efficiency

Video Coding provides 2X times better compression compared to H.264/AVC for the same video

quality [3]. The better compression performance is achieved by employing better spatial and

temporal prediction tools.

HEVC will target all the video applications targeted by AVC/H.264 such as broadcasting, video

communication applications, video surveillance applications, and internet based video streaming

applications. HEVC provides better Rate-Distortion [30] performance compared to H.264/AVC

at the cost of increased computational complexity [3], [5].

HEVC standard achieves multiple goals such as better coding efficiency, support for Ultra HD

resolutions and ease of implementation using parallel processing architectures [6]. Many new

features are introduced in HEVC such as increased block sizes (up to 64×64 pixels) [78], [79]and

concept of coding tree structure, Sample Adaptive Offset [86] and Merge Mode for Motion Vector

(MV) signalling. A Coding Tree Unit (CTU), which can have a maximum size of 64×64 pixels is

analogous to a macroblock in previous video compression standards. Each CTU employs a

quadtree structure [84] and can be divided into multiple Coding Units (CUs) each of which can

have luma and chroma Coding Blocks (CBs). The Prediction Units (PUs) and Prediction Blocks

(PBs) correspond to the spatial and temporal prediction blocks. The Transform Unit (TU) and

Transform Block (TB) correspond to the block size chosen to perform integer transform.

2.4.2 Standard Development

The HEVC standard development was started with a joint call for proposals issued jointly by

VCEG and MPEG in January 2010 [66], [67], [68]. An evaluation of the proposals showed that

27

the same visual quality of H.264 was possible at half the bitrate, at a cost of increased

computational complexity.

In January 2013, both the ITU and MPEG announced that the first stage of HEVC was approved

by them. The first version of HEVC was approved as an ITU-T standard in April 2013. The second

version was approved in October 2014.

2.4.3 HEVC Syntax

The HEVC bitstream is divided into Network Abstraction Layer (NAL) units which in turn

contain RBSP units. The NAL units are similar to the ones in H.264, and as explained in section

2.3.3, they can be either VCL NAL units or non-VCL NAL units. The HEVC standard defines 32

VCL NAL units and 32 Non VCL NAL units. These are not described in more detail as they are

not relevant to the scope of this research.

One new addition to the Non VCL NAL units is the Video Parameter Set (VPS) in addition to the

SPS and PPS syntax elements that are present in H.264.The information present in VPS is similar

to the Scalability Information SEI message for SVC and View Scalability Information SEI

message present in MVC extensions of H.264.

2.4.4 HEVC Profile and Levels

The HEVC standard has the following basic profiles [108]

- Main Profile

- Main 10 profile

- Main Still Picture Profile

Main Profile

Main profile is the most commonly used profile. Video data is represented as 8 bits per sample.

And the chroma is sub sampled to half the luma samples

Main 10 Profile

In the Main 10 profile, video data is represented as 10 bits per sample. This provides for increased

brightness range and better colour representation. It is a super set in terms of Main profile in terms

of its capabilities.

Main Still Picture Profile

Main Still Picture profile is used for capturing still images for cameras. It can be used to take

snapshots from videos as well. It is a subset of Main profile in terms of its capabilities.

28

Figure 2-16 Basic Profiles in HEVC video standard

From Figure 2-16, it can be seen that the main still picture profile is a subset of the main profile,

which in turn is a subset of the main 10 profile.

There are two tiers Main and High, and thirteen levels. The tiers and levels set constraints on the

bitstream related to the picture size and bitrate.

In addition to these profiles, there are Format Range Extension (FRE) profiles and FRE high

throughput profiles[74].

2.4.5 Picture Format and Structure

The HEVC picture format is built as extension of the H.264 picture format. It can have a

maximum block size of 64×64 pixels and can recursively partition itself to form a coded tree

structure. The following new processing elements are introduced in HEVC [6]. It is an extension

of the Macroblock structure that was employed in the previous standards.

Coding Units (CUs) and Coding Blocks (CBs)

The most basic unit of HEVC video standard is a Coding Unit (CU). The maximum size of a CU

is 64×64 pixels and the minimum size of a CU is 8×8 pixels. The Coding Unit is divided into

Coding Blocks (CB). A Coding Unit has 4 Luminance CBs and 2 Chrominance CBs. Each of

the CU has its associated Transform Units (TU) and Prediction Units (PU).

29

Prediction Units (PUs) and Prediction Blocks (PBs)

The PU partitioning structure has its roots at the CU level. Depending on the type of partition, the

PB sizes can vary from 64×64 to 4×4 pixels. The CU partitioned into different Pus is illustrated

in Figure 2-17

Figure 2-17 Coding Unit partitioning modes in HEVC | Symmetric Mode

partitions (top line) | Asymmetric Mode Partitions (AMP) (bottom line)

Transform Units (TUs) and Transform Blocks (TBs)

The PUs are coded using block transforms. The size of TB can be same as CB size or can be

smaller than that of the CB. Also, a TB can span across multiple PBs in case of Inter picture

prediction to maximize the coding efficiency.

Tiles

Tiles [80], [82] are independent decodable regions of a picture which have a shared header

information. Tiles are provided for enhancing the parallel processing capabilities of the HEVC

implementation.

Wavefront Parallel Processing (WPP)

Wavefront Parallel Processing (WPP) [75], [76], [82] is for parallel and pipeline implementation

of HEVC processing. In WPP, each slice is divided into multiple rows and each subsequent row

is processed with a two CU delay as compared to the previous row. In this way, multiple rows of

CUs can be processed in parallel.

30

2.4.6 HEVC Encoder

Figure 2-18 shows the functionality block diagram of a HEVC encoder. HEVC encoder block

diagram is similar to H.264/AVC encoder in the basic functionality.

The input video signal first undergoes the process of differential coding. This can either be spatial

in the form of intra prediction or temporal in the form of motion estimation. The encoder selects

one of either motion estimation or intra prediction based on the least RD cost. In case the encoder

chooses Intra Prediction mode, it will be coded as an Intra CU, else as an Inter CU. Transform,

Scaling and Quantisation are performed on the residual (difference after doing Motion

Compensation or Intra Prediction) signal. The quantised coefficients are zig-zag scanned and

Run-Length coded before performing Entropy Coding. The bitstream is generated after entropy

coding which is the output of the encoder. The encoder also has an inverse path which simulates

the functionality of a decoder. This is necessary to make sure that the encoder uses the

reconstructed picture (and not the original picture) as reference picture, to be in sync with the

decoder. In the inverse path, encoder performs Inverse Quantisation and Inverse Transform before

obtaining the reconstructed picture, by either performing Motion Compensation or Inverse Intra

Prediction. Deblocking and SAO filtering operations are performed on the reconstructed picture,

which will be used as a reference picture for the subsequent pictures.

Figure 2-18 Block Diagram of HEVC Encoder

31

2.4.7 HEVC Decoder

The block diagram of HEVC decoder is shown in Figure 2-19. The HEVC decoder accepts the

encoded HEVC bitstream, performs entropy decoding to obtain the quantised residual transform

coefficients. Inverse quantisation and inverse transform are performed. Finally, the reconstructed

picture is obtained after compensating for the inter or intra prediction. Post processing operations

such as deblocking are performed to obtain the final picture which will be displayed.

Figure 2-19 Block Diagram of HEVC Decoder

2.5 Comparison between H.264 and HEVC

A brief description of the feature sets of H.264 and HEVC is given in Table 2-5.

Table 2-5 Comparison of H.264 and HEVC Toolsets

 H.264/AVC HEVC

Coding Unit (CU) 16×16 only 8×8 to 64×64

Prediction Unit (PU) 4×4 to 16×16 (7 types,

including rectangular
4×4 to 64×64 (28 types,

including rectangular)

Transform Unit (TU) 4×4 or 8×8 4×4, 8×8, 16×16, 32×32

Transform Type DCT DCT, DST, Transform Skip

Fractional Pixel

 Interpolation Filter

2 or 6 tap 4,7 or 8 tap

Intra Prediction 4 or 9 modes 35 modes

Entropy Coding CAVLC or CABAC CABAC

Coding Noise Removal

Filter

No Yes

Parallel Processing Slice Slice, Tile, WPP

32

H.264/AVC is used as the base for comparison. It can be seen from the table that HEVC can be

considered as an extension on top of H.264. The H.264 supports block sizes upto 16×16 whereas

HEVC supports block sizes upto 64×64. This also means HEVC supports much more block sizes

for Prediction Units (PU) and Transform Units (PU) as compares to HEVC. Similarly, Intra

Prediction in H.264 supports only 9 modes whereas Intra prediction in HEVC supports 35 modes.

One of the features where H.264 has more options than HEVC is in the entropy coding methods.

HEVC only supports CABAC [72] whereas H.264 supports both CABAC and CAVLC. Another

important difference is that HEVC has standardized toolsets to aid in parallel processing such as

the Tiles and WPP features.

The comparison of block sizes between H.264 and HEVC for inter prediction is illustrated in

Table 2-6.

Table 2-6 Comparison of Inter Block Sizes in H.264 and HEVC

Video Compression

Standard

Supported Block

Sizes

Coding

Depth

Mode Type

H.264

16×16

Not

Applicable

Symmetric Mode

Partitions

16×8

8×16

8×8

8×4

4×8

4×4

HEVC

64×64 0

Symmetric Mode

Partitions

64×32

32×64

32×32 1

32×16

16×32

16×16 2

16×8

8×16

8×8 3

8×4

4×8

64×48 0

Asymmetric Mode

Partitions

64×16

48×64

16×64

32×24 1

32×8

24×32

8×32

16×12 2

16×4

12×16

12×4

33

2.6. Conclusion

This topic introduces the basic video coding terminologies and gives an introduction about the

H.264 and HEVC video compression standards. A basic comparison of H.264 and HEVC

standards is provided to understand the differences in the picture structure. This will be the

foundation to understand the H.264 to HEVC transcoding concepts and algorithms that will be

presented in the next chapter.

34

3 VIDEO TRANSCODING

This chapter starts with need for video transcoding and the history of video coding. It also

introduces the different types of video transcoding architectures and algorithms and provides an

overview of the video transcoding algorithms relevant to the scope of this research.

3.1 Introduction

Video transcoding is the method of dynamic video adaptation. It is the process of decoding a

compressed video and re-encoding it with the desired features which were not present in the

previously compressed data. The need to transcode is generally necessitated because of the

requirements of the target application.

3.2 Significance of Video Transcoding

When video transcoding started, it was mainly to adapt to the network bandwidth constraints.

This resulted in two kinds of algorithms to match the network transmission conditions, the

Constant Bitrate (CBR) based algorithms, for static network conditions and the Variable Bitrate

(VBR) algorithms, for the dynamically adaptable network conditions.

With the increased use of multimedia applications on portable and mobile devices such as smart

phones and tablets, there is a greater need for inter-operability of video content on different

devices. There should be a seamless integration of video creation and consumption across

different devices, different types of network and different content encoding formats. Today the

users expect to watch the same video content on different devices (laptops, tablets, smart TVs and

smart phones). The video in each of these devices is delivered over different networks. Since the

device and network capabilities are unknown when the video is being compressed, dynamic

adaptation of video characteristics is required. Video transcoding is one of the key technologies

that makes it possible.

Also transcoding the video present in a legacy format to a newer compression format achieves

better compressional efficiency. This can save considerable amount of video storage space,

especially in video content servers hosted by video streaming applications. The higher

compression efficiencies obtained in newer video compression formats significantly reduces the

internet bandwidth required for video transmission.

35

3.3 Types of Video Transcoding Algorithms

The most common video features that are changed during transcoding are: video encoding format

[31], [32], frame rate[33], [34], bit rate, video resolution[35], [36] and toolsets such as Bi

Predictive pictures, Quarter Pixel motion vectors[37], [38].

 Figure 3-1 Video Transcoding Architecture

Figure 3-1 illustrates the basic block diagram of a video transcoder. The compressed video is

provided as the input to the transcoder. Video transcoding is divided into two stages. The first

stage is the video decoder stage which decodes the encoded stream and outputs the reconstructed

video in YUV format. The reconstructed video is again encoded in the required output

compression format with the desired features. Some of the video features that can be changed

using video transcoding techniques are video encoding format, frame rate, bitrate and toolsets

supported such as Bi-predictive pictures and Quarter pixel motion estimation.

The classification chart of Video Transcoding Architectures is presented in Figure 3-2

36

Video
Transcoding

Architectures

Homogeneous
Transcoding

Heterogeneous
Transcoding

Spatial
Resolution

Temporal
Resolution

Bitrate
Video

Compression
Format

Figure 3-2 Types of Video Transcoding

Figure 3-2 describes the broad classification of different types of video transcoding.

Homogeneous transcoding refers to changing the features in the same video compression format

whereas heterogeneous video transcoding refers to changing the video compression format itself.

A brief overview of the different types of video transcoding operations performed is explained

below.

3.3.1 Video Format Conversion

This kind of video transcoding is required if there is a need to change the format of the compressed

video stream. For example, the process of MPEG2 to H.264 transcoding converts a video

compressed in MPEG2 format to H.264 format. Few of the cases when this would be necessitated

is when the video container format being used does not support the existing compression format,

or if the receiver device does not support the current video format. This is illustrated in Figure

3-3.

Figure 3-3 Video Format conversion

37

3.3.2 Bitrate Conversion

In this process, the bitrate of the video content is changed. For example, a 1920×1080 video coded

at 6Mbps can be trans-rated to obtain a 1920×1080 video coded at 1Mbps as illustrated in Figure

3-4. It can be seen that there is video quality degradation associated with reduction of bitrate.

Transrating might be necessary if the video bitrate is not supported by the internet bandwidth, in

which case the application might choose to reencode the video stream at the same resolution but

with a lower bitrate.

Figure 3-4 Video Bitrate Conversion (Trans-rating)

3.3.3 Resolution Conversion

In this method, the video resolution is changed without changing the video format as illustrated

in Figure 3-5 . The video resolution can be changed to dynamically adapt to the variations in

internet speed support. One of the common examples is the video streaming service, Youtube

which transmits a video encoded at a lower resolution, though the video is not transcoded to a

lower resolution in real time.

Figure 3-5 Video Resolution Conversion (Trans-scaling)

3.3.4 Framerate Conversion

In this form of video transcoding, the frame rate of the encoded video stream is modified as

illustrated in Figure 3-6. A video stream captured and encoded at 60 fps can be converted to an

38

encoded stream at 30fps. In this particular example, the simplest way to achieve 60fps to 30fps

conversion is by skipping every alternate frame in the encoding process.

Figure 3-6 Video Frame Rate Conversion

3.3.5 Container Format Conversion

In this form of video transcoding, the actual encoded video content remains intact. Only the video

container format encapsulating the video and audio data is converted into a different format. This

is also called as transmuxing.

3.3.6 Toolset based Conversion

This is a generic name for video transcoding operations performed for addition or removal of

syntax elements corresponding to different toolsets. Some of the special toolsets which can be

modified are quarter pixel Motion vectors, B frames, 8×8 transform and data partitioning. For

example, if there is a need to remove the Quarter Pixel Interpolation support, and just have half

pixel motion vectors, this can be achieved by video transcoding, where the re-encoding does not

use the quarter pixel interpolation toolset.

3.4 Video Transcoding Architecture

Video transcoding architecture can be broadly classified into the following two types.

3.4.1 Cascaded Transcoding Architecture

A basic video transcoding architecture is shown in Figure 3-7. In this figure, it can be observed

that an encoded video is completely decoded first, and then completely re-encoded with the

desired modifications. This is the simplest solution for achieving video transcoding.

39

Figure 3-7 Basic Video Transcoding Architecture

3.4.2 Smart Transcoding Architecture

The cascaded video transcoding is the simplest solution to achieve video transcoding. However,

it is not the smartest video transcoding solution. This is because it does not exploit the video

features from the video decoder for the subsequent encoding stage. Re-using the video features

such as block sizes or motion vectors can significantly reduce the computational bandwidth

required for the encoding stage. Hence, video transcoding can be optimized by either performing

partial decode and/or partial encode instead of the full decode and encode operations. Such a

modified smart video transcoding architecture is shown in Figure 3-8.

Figure 3-8 Smart Video Transcoding Architecture

There can be multiple ways to develop smart transcoding solutions.

Full Decode - Partial Encode Algorithms: These algorithms perform the complete decode

in the source format and is followed by a partial encode stage which uses the information obtained

from the decoding stage.

Partial Decode - Full Encode Algorithms: These algorithms perform the partial decode

followed by a full encode to obtain the output video in the expected format. As the partial decode

is performed, it is needed to make sure the partially decoded video used for transcoding is

compliant with the video standardisation process.

Cascaded Video Transcoder

 Video Decoder

Video Encoder
Input

Bitstream
Output

Bitstream

 Full/Partial

Video Decoder

Full/Partial Video

Encoder
Input

Bitstream

Output

Bitstream

Smart Video

Transcoder

Smart Video Transcoder

40

Partial Decode - Partial Encode Algorithms: These algorithms perform partial decode

followed by partial encode to obtain the transcoded video. These algorithms are tightly coupled

to the video formats as they involve partial decode and encode stages.

The video transcoding algorithms considered in this research consist of Full Decode - Partial

Encode solutions. These are the most common type of video transcoding algorithms. They are

more popular compared to Partial Decode - Partial Encode or Partial Decode - Full Decode

solutions as they are more generic solutions and would work with different video formats with

minor or no modifications.

3.5 Video Transcoding Algorithms

Considerable research has been carried out in the field of video transcoding from the days of the

early video coding standards. There are a wide variety of video transcoding techniques. The most

basic video transcoding algorithm can be achieved by cascading the encoder of the target video

format to the decoder of the source video format as shown in Figure 3-7. However, the

computational complexity of this kind of video transcoding algorithm is very high. It can be

considerably reduced by re-using the information from the decoded video process to reduce the

computational complexity of the subsequent encoding stage. This is as shown in Figure 3-8.

There can be two kinds of optimized transcoding techniques – partial decode followed by full

encode or full decode followed by partial encode. In this work, mainly the transcoding techniques

which involve a full decode followed by partial encode are explored.

One of the most computationally intensive processes in video encoders is the Motion Estimation

and Prediction mode decision. Therefore, mode prediction and motion estimation are the primary

processes where computational complexity of the encoder can be reduced significantly. Hence

transcoding algorithms target to re-use the mode and motion estimation related information. Such

transcoding algorithms can be classified as below. Several approaches which a hybrid of two or

more types of the below different categories of algorithms are possible.

3.5.1 Mode Re-use algorithms

The mode mapping algorithms re-use the block prediction modes of the incoming video. The

block modes of the incoming video are used to perform mode prediction of only certain mode

types in the target encoder. This means all the modes need not be tested in the target encoder

reducing the encoder complexity significantly.

[47] proposes an early merge algorithm to reduce the computational complexity of HEVC

encoder. First a Merge Mode algorithm is proposed for root CU, then for children CUs. Merge

mode statistics at different depths are analysed. All Zero Block (AZB) and Motion Vector Length

41

(MVL - the city block distance of MV from ME search start point) are used to come up with the

early Merge decision.

In [46], a H.263 to H.264 transcoding algorithm is proposed which uses support vector machines

for inter mode decision. The algorithm uses a classification algorithm to classify probable output

modes into Intra, Skip and different Inter modes (8×8, 16×16, 16×8, 8×16). The algorithm

assumes that Skip and Inter 16×16 MBs always constitute more than 50% of the macroblocks

which may not be the case always. Also, the efficiency of the transcoding algorithm is sub-optimal

as the motion vector values are not used in the encoding process. In [43], the mean and variance

of MPEG-2 residual is compared against a threshold. It uses a single decision tree based data

mining algorithm on the MPEG2 mode data to H.264. Three different trees or classifiers are used.

Class 1 tree divides into Intra, Inter 16×16, Skip and Inter 8×8 MBs; Class 2 tree divides Inter

16×16 to smaller partitions and Class 3 tree divides the Inter 8×8 block into the sub MB partitions.

The H.264 Quantisation Parameter (QP) value is considered in this algorithm. As with few other

research work reviewed earlier, the effect of the quality of MPEG2 encoded video is not

considered. In [41], an algorithm is proposed for MPEG-2 to HEVC transcoding where the

MPEG2 mode information is mapped to the splitting depth of the HEVC CUs. the H.264/AVC

inter macroblocks are classified as inter, intra, and skip based on the modes in MPEG-2. The

effect of quantisation factor on the block modes is not investigated in this algorithm. In [44], intra

coded H.264/AVC blocks are merged to form larger HEVC Coding Units (CUs) if the direction

of intra prediction is the same. For inter pictures, a power-spectrum based rate-distortion

optimisation (PS-RDO) is used to obtain the CU structure as well as the Motion Vector to be used

in HEVC. Also, the cost of a motion vector is estimated from the variance of the motion vector

and power-spectrum of the prediction signal derived from the motion vector.

3.5.2 Motion Vector re-use algorithms

The motion vector re-use algorithms try to re-use the motion vector information of the source in

the target encoder. As motion search is the most computationally complex process, this reduces

the complexity of the encoder significantly. These algorithms generally re-use the mode

information also from the source format.

In [48], MV and Mode information is reused from the MPEG2 bitstream to predict H.264 modes.

The MPEG2 neighbouring MB MVs are used as prediction Motion Vectors and the Motion

Estimation costs are calculated. The PMV with the lowest cost is chosen as the starting point of

ME in H.264, and a diamond search (DS) is performed around the chosen starting point. In this

algorithm, if the cost of the smaller block is more than that of the bigger block, the process is

terminated as it is assumed that further cost computation will not yield better results. In [45],

MPEG2 to H.264 transcoding is performed by looking at motion vectors using Enhanced

42

Predictive Zonal Search (EPZS). This algorithm assumes that the probability of a MB being Direct

is more if the neighbouring MBs are Direct MBs. Same logic is applied for Inter 16×16 MBs as

well. Sub MB modes and temporal partitions are not considered. So far, all the video transcoding

algorithms discussed in this section is where the final format is HEVC. In [53], a fast video

transcoding algorithm from HEVC to VP9 is proposed. In this algorithm, the VP9 block is coded

as Intra block if the corresponding block in HEVC is coded as Intra block. The intention is to

reduce the large amount of processing involved in the Intra/Inter decision. In case the HEVC

block is coded as an Inter block, the number of points used as initial search candidates in VP9 is

reduced based on block properties of the HEVC block. This also involves influencing the

reference frame chosen in VP9, to be same as HEVC if possible. In [44], the decoded entity is

classified into one of Foreground/Background/Hybrid units based on the value of the decoded

Motion Vector and the long-term reference picture. CU partition is terminated early for

Background units. Though this is a simple approach to reduce complexity, it is not scalable for

all types of videos and is only suitable for videos where you can statistically classify the video

segments into one of Foreground/Background and Hybrid Units.

3.5.3 Machine Learning based algorithms

Some algorithms use machine learning to map the modes of the incoming bitstream to the target

encoding format. In [42], few frames are used to collect information about some features, and

then a machine learning algorithm is used to map these features to the target format. The

performance of an algorithm with similar approach may not work for HEVC scenario because of

the large CU size. In [49], the information from the H.264/AVC decoding process such as block

mode, MV and residual bits are fed to a C4.5 machine learning algorithm to build a set of decision

trees for the HEVC CU structure. In [50], a set of 26 features including block mode, MV, coded

block pattern (cbp), percentage of skip blocks are fed to a machine learning algorithm using a

Naïve–Bayes classifier to generate the HEVC CU structure determined by a supervised data

mining process. Though these algorithms which are based on machine learning perform well, they

treat the prediction of HEVC mode as a classification or clustering problem and are not optimized

to exploit the features in the context of video coding.

3.5.4 Residual Data Reuse algorithms

In [52], a MPEG-2 to H.264 video transcoding algorithm is proposed which is based on the MB

activity in MPEG2 video. The residual-DCT domain energy is used as an indicator to estimate

the block size in the H.264 encoding process. A homogeneous region which has lesser detail will

have larger block sizes whereas regions which have more details, such as the edges will be

represented by smaller block sizes.

43

[51] proposes a H.264 to HEVC transcoding algorithm based on residual and MV homogeneous

indicators. The residual indicator can be used for both intra and inter MBs. For coding depths 2

and 3, a significant number of modes are evaluated which can be optimized further to decrease

the time savings (TS) of the encoder significantly.

3.5.5 Hybrid algorithms

The motion vector refinement algorithm is an extension of the Motion Vector re-use algorithm.

In this case, the MV values are not used re-used directly. Motion search is performed with a either

a very small full pixel motion search range or just sub pixel motion estimation is performed. This

is performed to improve the Rate-distortion performance of the algorithm.

In [39], dynamic thresholding is used to decide the HEVC prediction modes for 64×64 and 32×32

CUs, whereas, H.264/AVC modes are directly used for 16×16 and 8×8 CUs. H.264 integer pixel

level Motion Vectors (MV) are used as a starting point for HEVC sub-pixel search refinement.

This algorithm uses a training stage for content modelling. Though different H.264/AVC QPs

have considered for training, the main algorithm is based on reusing the MV information. The

issue with this approach is that for implementations where the CU size is determined only after

finalizing the PU size, this approach is sub-optimal. In [40], the 64×64 CUs and Asymmetric

Mode Partitions (AMP) are disabled to reduce the HEVC computational complexity. Mode

prediction is carried out by reusing the H.264 mode as a starting point and employing an early

termination criterion (based on HEVC QP) for smaller partition predictions. The algorithm mainly

includes tree things. First, high level parallel processing using Wavefront Parallel Processing

(WPP); Second, fast mode decision for P/B frames by predicting the probable block structure and

third, use of low leve Single Instruction Multiple Data(SIMD) instructions. The shortcoming of

this approach is that it is too tightly coupled with the architecture of the platform.

3.6 Conclusions

In this chapter, the background related to video transcoding is provided. Basics of video

transcoding and different kinds of transcoding algorithms are also introduced. An analysis of

different video transcoding algorithms is provided.

There are different techniques and approaches that can be employed for H.264/AVC to HEVC

transcoding. Each algorithm has its own set of merits and de-merits. After reviewing the different

research works carried out in the field of video transcoding, the main criteria for developing a

video transcoding algorithm are

- To have the least possible video quality loss and the maximum computational complexity

reduction.

44

- To consider all the different factors that affect the video quality for the designing of the

algorithm

- To be adaptive so that it can work for different types of video content with different

characteristics

These criteria are used to develop the transcoding algorithms. The next chapter provides the

methodology used for this research work.

45

4 METHODOLOGY

4.1 Introduction

This chapter explains the experimental approach used in this research. Section 4.2 explains the

experimental conditions including the reference software used for development and testing, the

test platform used and the procedure employed for data collection, analysis and testing of the

developed algorithms. Section 4.3 describes the different test sequences used, and the

H.264/HEVC encoder configuration used for testing. Section 4.4 describes the various metrics

used in performance measurement and evaluation. Section 4.5 describes the different kinds of

tools used in this research.

4.2 Implementation

The analysis, implementation and subsequent testing of the algorithm is performed by software

simulation. The different softwares/methods used are described in this section.

4.2.1 Video Softwares

The following video codecs and their reference software implementations are used for algorithm

development and testing.

• H.264/AVC decoder: The H.264 decode part of the transcoding algorithm is implemented

using the H.264/AVC reference codec, JM18.5 [7]. The H.264/AVC reference JM code needs to

be modified to develop a framework to extract the useful information such as MB type, block

type, motion vectors, number of header and residual bits to encode each macroblock and coded

block pattern into a text file during H.264 decoding. This information will be used for two

purposes

- For the analysis of this data to develop the algorithm

- For the re-use of H.264 decoded information during HEVC encoding stage to reduce the

HEVC encoder complexity.

• HEVC encoder: The HEVC encode part of the video transcoding algorithm will be

implemented using the HEVC reference codec, HM12.0 [8]. The HEVC reference HM code needs

to be modified for two purposes

- to extract information from the HEVC encoder/decoder for analysis.

46

- to feed the data extracted from the H.264 decoder during the decoding stage. This data is present

in the form of log files generated during the decoding of the H.264 bitstream.

- to implement the proposed low complexity algorithms which reduce the computational

complexity of the HEVC encoder significantly.

This research was started with HM12.0 version. This has been kept the same throughout and is

not updated everytime a new HM encoder revision was available. This was done to maintain the

stability of the code, and also to keep the modification of encoder code out of the scope of this

research.

4.2.2 Test Platform

High capability personal computers are used to test the algorithm. The specifications of the

machines are listed below

Processor: Intel Xeon Processor ES-2650

Memory: 32 GB RAM

Clock Speed: 2 GHz

Operating System: Windows 7 Professional

4.2.3 Development Environment

The H.264 JM18.5 code and HEVC HM12.0 code is modified, compiled and built using the

Microsoft Visual Studio 11.0 IDE. The build environment is optimized for x64 platform. The

release mode of the binary is used for all the testing. The debug mode of the binary, which has all

the debug symbol information is used for debugging purposes.

4.2.4 Testing the Algorithm

Figure 4.1 shows the way testing of the algorithm is performed.

47

Figure 4-1 Algorithm Testing Procedure

The test H.264 video stream is decoded using the reference H.264 decoder and then encoded using

the reference HEVC encoder. This acts as the reference transcoder output. The same test H.264

video stream is decoded using the reference H.264 decoder and then encoded using the modified

HEVC encoder which has the low complexity algorithms implemented. This acts as the test

transcoder output. The different performance indicators such as video quality, video bitrate and

computational complexity in terms of time are compared between the reference and the modified

HEVC encoders to get an estimate of the performance improvement.

4.2.5 Data Collection

A large number of video sequences (including and not limited to Table 4-1 and Table 4-2) are

used. Various encoding parameters/toolsets such as bitrate (analogous to varying Quantisation

Parameters), inter prediction modes, number of reference pictures, presence of Bi predictive

pictures, transform type (8×8 transform present or not) are varied and the performance of the

H.264/AVC encoder/decoder are analysed. For the HEVC encoder, there are few additional

parameters to monitor along with the ones that are used for H.264. These are related to the Coding

Unit Size, Coding Unit depth and Transform Unit Size.

From the H.264 decoder and HEVC encoder, information such as the inter prediction mode,

motion vector information, coding unit types, bits consumed to encode a coding unit, and any

H.264

bitstream

H.264 Ref

Decoder

H.264 Ref

Decoder

HEVC Ref

Encoder

HEVC Ref

Encoder

Proposed

Low

Complexity

Algorithms

HEVC

Bitstream

HEVC

Bitstream

Measure

Video

Quality,

Bitrate and

Complexity

48

other relevant information are collected for different test sequences for analysis. The data is

collected as additional log files which are generated in a predefined format.

4.2.6 Data Analysis

Data collected from H.264 decoder and HEVC encoder are analysed for any similarities or

patterns, which will help in the design of an effective algorithm for H.264 to HEVC transcoding.

Matlab is used as the tool to analyse this data and to derive inferences. Analysis on number of

blocks on which a particular algorithm will be applied, probability of finding a particular kind of

block, number of blocks which will be merged or not merged, and the resulting time savings will

be estimated wherever possible. This analysis is the basis for developing new algorithms.

4.3 Testing

4.3.1 Test Sequences

The set of 1920×1080 test video sequences that are part of the JVT-VC test set [87] , as indicated

in Table 4-1 will be used for experiments.

Table 4-1 Set of standard test sequences

Sequence Resolution Frame Rate (Hz)

BasketballDrive 1920×1080 50

Parkscene 1920×1080 24

Kimono 1920×1080 24

BQTerrace 1920×1080 60

Cactus 1920×1080 50

Tennis 1920×1080 24

The testing is not restricted to only these sequences. Other standard 1920×1080 video test

sequences listed in Table 4-2 are also used.

Table 4-2 Set of extended test sequences

Sequence Resolution Frame Rate (Hz)

Tractor 1920×1080 30

Pedestrian 1920×1080 30

OldtownCross 1920×1080 30

Sunflower 1920×1080 30

Crowdrun 1920×1080 30

Parkjoy 1920×1080 30

49

All the test sequences chosen are 8-bit video sequences.

4.3.2 Testing Conditions

The testing conditions for the research, applicable for both H.264 and HEVC encoding [87] are

as summarised in this section

- Encoder BitRate control is disabled (This means QP value is provided as an input

configuration parameter)

- One reference picture is used

- Only the first frame is an I frame and all the remaining pictures are P pictures

- B pictures are disabled

- Tests are performed on 100 frames for each video sequence

- The QPs tested are 22, 27, 32 and 37

In addition to this, the testing conditions specific to HEVC encoding are as summarised below

- Maximum coding depth of 4

- Maximum CU size is 64×64 pixels

For all the time related calculations, the file write on the decode path of the encoder is disabled.

4.4 Performance Measurement

Video quality measurements, bit rate measurements and computational complexity measurements

are the main performance measurements that are carried out as part of this research.

The performance of the video software is measured in terms of Rate – Distortion (RD)

performance. The RD plot is a graph of video quality as against the bitrate of the encoded video

bitstream. The performance of Algorithm 1 and Algorithm2 are compared in Figure 4.2. It can be

seen that Algorithm 2 provides a particular video quality at a lower bitrate as compared to

Algorithm 1. This means that Rate- Distortion (RD) performance of Algorithm 2 is better than

that of Algorithm 1.

50

Figure 4-2 An example of a Rate Distortion Plot

4.4.1 Video Quality Measurement

There are different metrics to measure objective video quality [55], [56]. But Peak Signal to Noise

Ratio (PSNR) is the most commonly used metric. This research work uses PSNR to measure,

improve and compare the video quality[57]. PSNR is given by

𝑷𝑺𝑵𝑹 (𝒅𝑩) = 𝟏𝟎 𝐥𝐨𝐠𝟏𝟎[
(𝟐𝒏−𝟏)𝟐

𝑴𝑺𝑬
] Equation 4-1

where n is the number of bits per pixel, hence (2n – 1) is the maximum pixel value and MSE is

the mean square error between the reference frame and the compressed frame.

The MSE for a block of M×N pixels [111] is given by

𝑴𝑺𝑬 = [
𝟏

𝑴 ×𝑵
] {∑ ∑ [𝑷𝟎(𝒊, 𝒋) − 𝑷𝒕(𝒊, 𝒋)]𝟐}𝒊=𝑵−𝟏

𝒊=𝟎
𝒋=𝑴−𝟏
𝒋=𝟎 Equation 4-2

where P0(i,j) represents a pixel from the original image and Pt(i,j) represents a pixel from the test

image. The values i and j represent the pixel location in the two dimensional pixel array of M×N

pixels. In the case of videos, this is calculated for each of the video frames. Hence the PSNR of a

video sequence is generally taken as the average of PSNR taken over each of the video frame.

PSNR is a full reference video quality metric, which means that it is assumed that the original

video sequence is available during PSNR calculation.

PSNR is a powerful tool to benchmark video quality. Traditionally video quality using PSNR is

visualized using Rate Distortion (RD) plots [77].

Bjontegaard delta rate (BD rate) [57], a tool to compute average PSNR differences between RD

curves is used in this research along with PSNR values. This method is adopted by JCT-VC to

analyse HM reference encoder quality. BD-rate provides a simple way to analyse difference

between two different algorithms over different bit-rates and quality levels without having to

interpret RD plots. It provides the area between two curves corresponding to the RD plots of two

different algorithms. This is explained in Figure 4.3. The shaded region represents the RD

Video

Quality

Bitrate

Algorithm 1

Algorithm 2

51

difference. This distinctively provides the difference in the video quality between different

algorithms.

Figure 4-3 Example of BD-Rate

4.4.2 Bitrate Measurement

Bitrate is the average number of bits transmitted by the encoder every second. For a particular

encoding session which generates N number of bits to encode n number of frames, at a particular

FPS, the bitrate (R) of the encoder is calculated as follows.

𝑹 = 𝑵 × (
𝑭𝑷𝑺

𝒏
) Equation 4-3

These measurements are in kilo-bits-per-second (kbps) or mega-bits-per-second (mbps). These

bitrate measurements as provided by the reference implementations of H.264 and HEVC software

s are used for Bitrate measurements.

4.4.3 Computational Complexity Measurement

It is measured using the amount of time (in seconds) taken to encode/decode a particular video

content. These measurements provided by the H.264 and HEVC reference software applications

are used. In this research project, the main objective is to reduce the time taken by the HEVC

encoder during H.264 to HEVC transcoding. The Time Savings (TS) achieved is given by

𝑻𝑺 =
[(𝑻𝒊𝒎𝒆𝑹−𝑻𝒊𝒎𝒆𝑻)×𝟏𝟎𝟎]

𝑻𝒊𝒎𝒆𝑹
 Equation 4-4

where 𝑇𝑖𝑚𝑒𝑅 is the time in seconds taken by the reference HEVC encoder and 𝑇𝑖𝑚𝑒𝑇 is the

time taken in seconds by the modified encoder.

 PSNR

(dB)

Bitrate

(kbps)

Algorithm 1

Algorithm 2

52

4.5 Tools

The following tools were used for the research work

4.5.1 Microsoft Visual Studio 11.0

The H.264 and HEVC reference code is modified, compiled and tested using Microsoft Visual

Studio 11.0 IDE[93].

4.5.2 Matlab 2015b

Matlab [95] is used to analyse the large amounts of data collected from H.264 and HM codecs.

Most of the data collected from H.264 decoder is analysed in Matlab before developing the

algorithm for HEVC encoder.

4.5.3 Video Bitstream analysers

The different video analysers used are

- Elecard Stream Eye (for H.264 and HEVC)[96]

- Zond Analyzer (for HEVC)[97]

- Codec Visa analyzer (for HEVC)[98]

These analysers are used to decode and analyse the H.264/HEVC encoded streams. Each of these

analysers provide information and statistics in different ways with different kinds of

visualizations. This helps to analyse the same set of data from different perspectives and come up

with new hypotheses.

4.5.4 YUV viewers

YUV viewers are required to view the uncompressed YUV data. The YUV viewer used is Vooya

viewer[99]. The YUV viewer is used to view and play the raw video content (YUV format). Since

uncompressed YUV video does not have any header information, the video dimension, the pixel

format and the frame rate need to be provided as inputs so that the video is displayed correctly.

4.5.5 FFmpeg application

FFmpeg application[94] is used in this research for any video pre-processing or post-processing

operations such as format conversion and scaling.

53

4.6 Conclusion

This chapter explains the experimental methods used in this research. The algorithms developed

as part of this research are implemented using software simulation. The reference software codecs

are used for both H.264 and HEVC as the starting point and are modified to implement the

proposed algorithms. Standard test sequences that are used by the JVT-VC group, and other well-

known video test sequences are used for testing. The performance of the algorithm is evaluated

by measuring the video quality, encoded bitrate and the time savings achieved by the HEVC

encoder.

The next chapter provides the MV based mode merge algorithm that significantly reduces the

HEVC encoding time.

54

PART TWO: EXPERIMENTAL WORK

55

5 MV BASED MODE MERGE ALGORITHM

5.1 Introduction

 In this chapter, the MV based mode merge algorithm is presented. The MV based Mode Merge

algorithm is one of the proposed algorithms to reduce the computational complexity of H.264 to

HEVC video transcoder. This algorithm uses the block size and the MV variance for the

merge/non-merge decision during HEVC encoding. The focus of this algorithm is to try and

merge the maximum number of blocks with negligible reduction in video quality. The H.264

standard limits the maximum block size to be 16×16 pixels. This means that if a 32×32 region is

homogeneous, it is still coded as four 16×16 blocks instead of being coded as a single 32×32

block. The proposed algorithm exploits the fact that if there are four 16×16 blocks in H.264, they

could be coded as larger sized blocks in HEVC. Hence, there is a need to predict regional

homogeneity during the HEVC encoding stage using the information obtained from the H.264

decoder. Various spatial and temporal homogeneity indicators can be used to predict the

homogeneity. The proposed algorithm uses the H.264 information to estimate temporal

homogeneity. Chapter 7 proposes an algorithm to predict the regional homogeneity using spatial

information. Motion Vectors is one of the most commonly used indicators of temporal

homogeneity, as it is a measure of motion between successive frames. The proposed algorithm

uses MV variances along with block sizes to estimate the regional homogeneity. The region can

be homogeneous in different block sizes such as 64×64 pixels, 32×32 pixels, 64×32 pixels and so

on. The Mode Merge algorithm is divided into four stages to handle these different possibilities

to merge the blocks. The performance of the Mode Merge algorithm is compared against the state-

of-the-art H.264 to HEVC video transcoding algorithms. The results demonstrate that the

proposed Mode Merge algorithm achieves higher computational complexity reduction compared

to the state-of-the-art algorithms with similar R_D performance.

This chapter is structured as follows. The hypothesis is presented in section 5.2. Section 5.3

describes the significance of Motion Estimation, Motion Vectors and the background for choosing

Motion Vectors for developing the mode merge algorithm. A detailed description of the Mode

merge algorithm is provided in Section 5.4. The experimental results of the proposed algorithm

in terms of computational complexity and video quality is provided in Section 5.5. The Mode

Merge algorithm is critically discussed in Section 5.6 and concluded in Section 5.7.

56

5.2 Hypothesis

Mode prediction and motion estimation are the most computationally intensive operations during

inter prediction in a predictive frame [5], [69], [70]. With the increase in the block size of a coding

unit in HEVC, along with the coded tree unit structure, finding the best mode became

computationally very expensive [5]. By identifying homogeneous regions, it is easier to reduce

the number of block modes evaluated. This in turn reduces the computational complexity of the

mode selection process significantly, thereby reducing the computational cost involved in

encoding the video using HEVC. One of the important features which can be analysed and used

for identifying homogenous regions is the block size and MV values in the region of interest.

5.3 Motion Estimation and Motion Vectors

During encoding process, Motion Estimation and Compensation are extensively used to remove

temporal redundancy in successive frames and Motion Vectors are generated to indicate how

much the video data correlates temporally with its adjacent frames. This makes Motion Vectors

one of the most useful data point to analyse compressed video data. In this section, the derivation

of MVs, the approach used to interpret MV values to reduce encoding complexity, and the method

used to estimate the performance of the algorithm are described in detail.

5.3.1 Motion Estimation

A brief overview of the Motion Estimation process is provided in this section. A video is

considered as a set of images captured at short intervals of time. For a video with frame rate of

60fps, the inter-frame time is around 16.66 ms and there is a high probability that successive

frames capture very similar video data. This provides a lot of scope to remove the redundant data

between successive frames.

Motion estimation algorithms try to find the closest match to the current block in the reference

frame, using criteria such as Sum of Absolute Differences (SAD). The most commonly used

algorithms are the Nearest Neighbour Search (NNS) and Diamond Search (DS) algorithms [106],

[107].

Figure 5-1 explains the concept of Inter Picture prediction using translational motion model. It

can be seen that the patterned block has moved from its location between the previous and the

current frame. Motion Vector is the displacement of the block from its original position in the

reference frame and it is represented by displacement vectors Δx and Δy in X and Y directions

respectively. The magnitude of the displacement is calculated as shown in Equation 5-1

𝒅𝒊𝒔𝒑 = √[(𝒅𝒙)𝟐 + (𝒅𝒚)𝟐] Equation 5-1

57

Figure 5-1 Motion Estimation using translational motion model

Once Inter-picture prediction is performed, the delta between the original picture and predicted

picture is called as the residual data. The residual data is obtained by simple subtraction of the

predicted data from the actual data. The processes of quantisation and entropy coding are

performed on this residual data. Figure 5-2 shows the Y component of the predicted picture, the

residual image and the reconstructed image after decoding. Most of the visual information can be

obtained by using the predicted image, which is derived using the MV values and the reference

frame. The residual data that is transmitted as part of the bitstream generally contains only the

finer details.

(i) Predicted Image (ii) Residual Image (iii) Reconstructed

Image

Figure 5-2 BQTerrace video sequence 1920x1080

If a block is coded as a 16×16 block, there is a high probability that the neighbouring blocks are

also coded as 16×16 blocks assuming spatial homogeneity [58]. This can be used as an effective

approach to identify and merge four neighbouring 16×16 blocks to form 32×32 blocks and so on.

The main advantages of merging the 16×16 blocks to form 32×32 blocks , 64×64 blocks and so

on are : 1) It reduces the computational complexity significantly as the mode prediction

calculation for lower block sizes can be avoided and 2) The number of coding units is reduced,

thereby reducing the CU header bits, contributing to better compression efficiency. The MV

58

values and the block sizes of the neighbouring blocks can be used to identify the homogeneity in

the region of blocks. This work focuses on analysing the MV values and block sizes and devising

a fast transcoding algorithm to merge the 16×16 blocks in H.264 to form larger inter predicted

blocks in HEVC.

5.3.2 Analysis of MV Variances

H.264 restricts the maximum block size to 16×16 pixels, even if the region is homogeneous.

However, in HEVC the CUs can be coded as 64×64 CUs. The available block sizes for H.264 and

the CU sizes for HEVC format are described in detail in section 2.3 and 2.4 respectively. This

gives an opportunity to explore options to merge 16×16 blocks from H.264 to form larger sized

blocks in HEVC during transcoding. A group of 4 Inter 16×16 blocks in H.264 can be considered

as the most likely candidates to form a 32×32 block CU in HEVC as explained in 5.3.1. Skip MBs

are also considered as they are Inter 16×16 MBs without any residual data and differential MV.

The variance of the MVs of these four blocks is used to explore the possibility of merging to form

larger CUs in HEVC. Figure 5-3 illustrates the hypothesis. If the MV values are having similar

values for magnitudes and direction, then the four N×N blocks can be merged to form a 2N×2N

block. The variances of MV magnitude and direction is used to check the similarity of MVs. If

the MV values are different, the blocks cannot be merged. The merge/non-merge decision is made

based on the conditions described in the following paragraphs. The similarity of the MVs of the

neighbouring blocks in terms of magnitude and direction can be quantified using the variances of

the MV magnitude and directions.

Figure 5-3 Illustration of 4 merging and non-merging blocks

59

The MVs of these four blocks are converted to polar co-ordinates as it is easier to measure the

variances in magnitude and direction of the MV. The equations for performing this conversion is

provided in Equations 5-2 and 5-3.

MV𝜽 = 𝒕𝒂𝒏−𝟏 (
MV𝒀

MV𝑿
) Equation 5-2

MV𝑹 = √MV𝑿
𝟐 + MV𝒀

𝟐
 Equation 5-3

where MVX and MVY are the X and Y components of the MV, MVR is the magnitude of the MV

and MVθ is the direction of the MV.

The variances of the MVs of the 4 sub blocks constituting the larger block is termed as the local

variance and the corresponding standard deviation (SD) is termed as the local standard deviation.

The local standard deviation of the MVs in polar form are defined as shown in Equations 5-4 and

5-5.

SD(MV𝜽) = √∑ (MV𝜽𝒊 − 𝒎𝒆𝒂𝒏(MV𝜽))
𝟐𝒏

𝒊=𝟏 Equation 5-4

SD(MV𝑹) = √∑ (MVRi − 𝒎𝒆𝒂𝒏(MV𝑹))
𝟐𝒏

𝒊=𝟏 Equation 5-5

where i varies from 1 to 4. The denominator in the calculation of standard deviation is ignored to

avoid an extra calculation, as the number of blocks is fixed.

Experiments were carried out to investigate the relationship between the H.264 local MV

variances as defined in Equations 5-4 and 5-5, and the CU sizes in HEVC. Video sequences

encoded in H.264 are decoded and re-encoded in HEVC format; the CU sizes in HEVC as a

function of the corresponding H.264 MV local variance for Kimono1 and Basketball sequences

with QPs equal to 27 and 32 are shown in Figure 5-4 and Figure 5-5. Hence, it can be inferred

that the MV variance decreases with the increase in the CU size. Similar correlations can be found

for different video sequences with a wide range of activities and levels of details for various QP

levels.

Two 32×32 regions in HEVC – (one coded as a 32×32 PU and the other coded as four 16×16

PUs) have been examined and the corresponding blocks in H.264 have been analysed It is

observed that the local MV variance of the H.264 region corresponding to the 32×32 PU in HEVC

is less than that of the corresponding 32×32 region in HEVC with four 16×16 PUs. Therefore, the

MV variances of the corresponding 32×32 regions in H.264 can be used in the mode merge

decision during the HEVC encoding stage.

This justifies the use of MV variance and H.264 block sizes to make the split/non-split decision

in HEVC.

60

Figure 5-4 Correlations of H.264 MV Variance and HEVC CU sizes for Kimono1

sequences at QP=27 and QP=32

61

Figure 5-5 Correlations of H.264 MV Variance and HEVC CU sizes for

Basketball sequences at QP=27 and QP=32

5.3.3 Prediction Accuracy

The proposed algorithm aims to predict the mode for HEVC inter blocks instead of performing

the exhaustive mode prediction and estimation. The predicted mode for each PU is compared with

the actual mode information for the same PU obtained from the trivial transcoder. If the mode

62

predicted by the merge algorithm is a non-split (that is merge into a large PU) and the mode from

the trivial transcoder is a non-split as well, then it is considered as a true positive (TP) case. If the

mode predicted by the merge algorithm as well as the mode obtained from the Trivial transcoder

are not larger than 16×16 blocks, it is considered as a true negative (TN) case. This implies that

the proposed merging algorithm successfully predicted a split decision correctly. The false

positive (FP) case indicates that the predicted mode is a non-split block, but the actual mode from

the trivial transcoder is split. This case will achieve better time savings for the transcoder but may

cause drop in R-D performance. The false negative (FN) case is where the predicted mode

decision is to split the blocks, but the trivial transcoder encodes it as a non-split block. This case

will not cause any R-D drop but will not help in achieving maximum time saving.

The TP cases are the default cases for merging (non-split decisions), thereby reducing the

computational complexity of the HEVC mode decision. The FN cases can be considered for

merging, which results in further reduction in complexity without any reduction in video quality.

The FP cases reduce the video quality; hence additional care should be taken not to merge FP

cases. The TN cases are not considered for merging the blocks, as both the H.264 information and

HEVC information indicate that the blocks should not be merged.

5.4 Mode Merge based MV Algorithm

The proposed algorithm consists of different parts to handle the four different scenarios. The first

part deals with the recursively merging of 16×16 blocks to form 2N×2N partitions, i.e 32×32 and

64×64 sized blocks and so on. The second part of the algorithm deals with merging of blocks to

form N×2N and 2N×N partitions. The third part of the algorithm tries to use the temporal HEVC

information along with the H.264 information for the block decision. The fourth part of the

algorithm involves merging of blocks having sub 16×16 partitions to form 16×16 sized blocks.

These algorithms are mainly used to reduce the computational complexity involved in the mode

decision and motion estimation for all the additional block sizes.

5.4.1 Square Partitions

The algorithm uses block sizes and MV variance for the merge/non-merge decision for forming

32×32 blocks from 16×16 blocks and 64×64 blocks from 32×32 blocks. Considering that the

H.264 maximum block size is 16×16, and a significant percentage of H.264 blocks are coded as

16×16, merging 16×16 blocks to form 32×32 blocks was considered the first logical point to target

for the mode merge algorithm. In the proposed MV variance-based merging algorithm, the main

intent is to see if there is a possibility to merge as many blocks as possible to larger PU block

sizes. This is performed as explained below. Four inter 16×16 blocks are merged if the SD of the

63

magnitude and direction of the MVs is less than a threshold T1. To further reduce computational

complexity, 32×32 regions with 3 inter 16×16 blocks are also considered for merging if the

standard deviation of the 3 MVs is less than threshold T2. When the values of SD are within the

threshold values, it means that the MVs are similar in terms of magnitude and direction. This

means there is a possibility of merging these blocks. A number of thresholds have been tested on

a wide range of sequences covering various levels of motions and details. A threshold of 10

percent of the local mean MV (average of the 4 MVs) is chosen for T1 and 5 percent of the local

mean MV is chosen for T2. The thresholds are derived from experimental analysis, based on the

RD performance of the HEVC encoder for different threshold values. The threshold value for

merging the 3 inter 16×16 blocks is lower than the threshold value for merging the 4 inter 16×16

blocks to reduce the FP cases, which reduce the video quality. The merging procedure is

recursively performed for merging 32×32 blocks to form 64×64 blocks. The merging is illustrated

in possible output modes are illustrated in Figure 5-6 and Figure 5-7. The output of merging

these blocks are 2N×2N blocks as illustrated in Figure 5-8.

Figure 5-6 Merging of 4 N×N blocks to form 2N×2N blocks where N=16 or 32

Figure 5-7 Merging of 3 N×N blocks to form 2N×2N blocks where N=16 or 32

In order to obtain an estimate of the performance of the proposed MV variance-based merging

algorithm, the merge algorithm has been applied on each PU (32×32 and 64×64) to predict the

mode (that is merging or non-merging) by using the decoded mode information from the H.264

decoder offline. For example, if all the 4 macroblocks are either 16×16 inter MBs or Skip MBs

in H.264 and the SD of the MVs of these four MBs is less than T1, or if only 3 macroblocks are

either 16×16 inter MBs or Skip MBs and the SD of the MVs of these three MBs is less than T2,

the predicted mode is a merge. An Inter PU size of 32×32 should be used as the mode in this case.

H.264 HEVC

H.264 HEVC

64

Figure 5-8 2N×2N output modes

Algorithm

Input: Block sizes for 4 blocks, MVs for 4 blocks, Thresholds T1 and T2

Output: Merge/Non-merge decision

 function: Merge Square Blocks

 merge = 0

 if (all 4 blocks are 16x16 blocks)

 if (local MV variance < T1%)

 merge = 1;

end if

 else if (3 blocks are 16x16 blocks)

 if (local MV variance < T2%)

 merge = 1;

 end if

end if

 end function

The algorithm pseudo code is as shown above. The pseudo code is for merging a set of four 16×16

blocks to form a 32×32 block. A similar approach is used for merging 32×32 blocks to form

64×64 block.

The probability of the above four cases of merging 16×16 blocks in H.264 to 32×32 blocks in

HEVC are summarised in Table 5-1 for a number of video sequences.

Table 5-1 Block size patterns across H.264 and HEVC for QP of 27 for 32×32

blocks

Sequence TP (%) FP (%) FN (%) TN (%)

Basketball 32 18 8 42

Kimono1 21 22 8 49

Parkscene 23 15 3 59

Tennis 20 16 3 61

From Table 5-1, it can be observed that 20-32% of the blocks fall under the TP case across

different sequences. And another 15-22% of the blocks fall under the FP case. TP and FP cases

are mainly targeted for merging as they reduce computational complexity without any significant

16 x 16 32 x 32 64 x 64

 32 x 16 16 x 32 64 x 32 32 x 64

65

loss of video quality, as these are the blocks which are forming larger sized blocks in the HEVC

encoded video. Combining the two cases, for 33-50% of the blocks suitable for merging, the

16×16 and 8×8 mode decisions (corresponding to coding depths 2 and 3) can be avoided. This

can reduce computational complexity significantly. The basketball sequence has high motion and

relatively simple background compared to the other sequences, so it has a higher percentage of

TP blocks (contributed by the simple background) and a higher rate of false predictions, in terms

of the percentage of FN cases, that is due to the higher motion contained in the sequence. The

higher percentage of TN cases in Parkscene and Kimono can be attributed the relatively higher

amount of residual detail in these sequences.

Table 5-2 Block size patterns across H.264 and HEVC for QP of 27 for 64×64

blocks

Sequence TP (%) FP (%) FN (%) TN (%)

Basketball 22 12 12 44

Kimono1 22 15 11 52

Parkscene 16 09 10 65

Tennis 18 10 11 61

Table 5-2 presents statistics for merging bocks from 32×32 to 64×64 pixel blocks. It indicates

that 16-22% of blocks fall in the TP category and 9-15% of the blocks fall in the FP category.

Combining the two sets, it is around 25-44% of the blocks. Merging these blocks will improve

time savings significantly without any significant video quality loss. The Basketball and Kimono

sequence have higher values for average motion vectors, whereas Parkscene sequence has more

finer details in the spatial information. Hence, it can be seen that Basketball and Kimono

sequences merge more blocks compared to the Parkscene and Tennis sequences. The higher

percentage of TN cases in Parkscene and Kimono are contributed by the high amount of residual

detail in these sequences.

5.4.2 Rectangular Partitions

The main objective of the algorithm is to identify regions which can be partitioned as larger block

partitions, with negligible loss of video quality which in turn reduces computational complexity

and helps achieve better compression efficiency. Hence it is necessary to have a non-split decision

for many blocks. To achieve this, if the algorithm decision for a 4-block region in section 5.4.1 is

not to merge (i.e. split), it is still possible to improve the time savings by considering rectangular

partitions such as 64×32 and 32×64. This is achieved by considering the MV variances of 2 blocks

at a time both in horizontal and vertical direction to either code the CU as 2N×N or N×2N

partitions. This means in addition to the square partitions (2N×2N) considered in section 5.4.1, it

is possible to merge the partitions shown in Figure 5-9. A MV variance threshold of 5 percent is

66

chosen to make the decision based on empirical analysis to obtain the minimum R-D loss with

maximum complexity reduction over a wide range of sequences.

Figure 5-9 Additional output modes in proposed algorithm

Algorithm

Input: Block sizes for 4 blocks, MVs for 4 blocks, Threshold T

Output: Merge/Non-merge decision

 function: Merge Rectangular Blocks

 merge = 0

 if (4 blocks are 16x16 blocks)

 if (local MV variance of 2 sets of 2 horizontal blocks < T%)

 merge = 1;

 else if (local MV variance of 2 sets of 2 vertical blocks < T%)

 merge = 1;

 end if

end if

 end function

5.4.3 Spatial and Temporal Similarity

When coding a HEVC block, the spatial information in the form of block structure of the

neighbouring blocks can be used to estimate the block structure of the current block. There is a

high probability that a HEVC 64×64 block will be coded as 2N×2N partition if the neighbouring

three 64×64 blocks are coded as 2N×2N partitions. The three neighbouring blocks chosen are the

left, top and top left blocks as indicated in Figure 5-10. In the same way, the probability that a

32×32 block will be coded as 2N×2N partition is higher if the neighbouring three 32×32 regions

are coded as 2N×2N partitions. Similarly, if the co-located region in the previous frame is coded

as a 2N×2N block at depth 0, i.e. as a 64×64 block, there is a high probability the current block

will be coded as a 64×64 block. This is as shown in Figure 5-10. This feature of spatial and

temporal similarity is utilized to develop a new spatio-temporal based mode division algorithm.

16 x 16 32 x 32 64 x 64

 32 x 16 16 x 32 64 x 32 32 x 64

67

Figure 5-10 i) Spatial neighbouring blocks ii) Temporal neighbouring block

If the three neighbouring blocks of the current HEVC block are coded as 32×32 block, then the

current HEVC block is coded as 32×32 block even if the four 16×16 H.264 blocks forming the

32×32 region predicts a split block. Along with that, the block structure of the co-located region

in the previous picture is used to make the split/non-split decision. The same concept is extended

to 64×64 block level.

This new spatio-temporal based mode algorithm is developed based on the following score system

for spatial and temporal block modes for both H.264 and HEVC. The spatial score values for

each mode in H.264 and HEVC that are determined through empirical analysis are presented in

Table 5-3.

Table 5-3 Spatial and Temporal Score Calculator

H.264 HEVC

Block Size Score Block Size Score

16×16 1 64×64 1

16×8 2 64×32 1

8×16 2 32×64 1

8×8 (and lower) 4 32×32 1

 32×16 2

16×32 2

16×16 (and lower) 4

For both H.264 and HEVC, the Spatial Score Index (SSI), the Temporal Score Index (TSI) and

the Spatio-temporal score Index (STSI) are calculated as shown in equations 5-6, 5-7 and 5-8

respectively.

68

𝑺𝑺𝑰 =
𝟏

𝟒
[(𝑺𝒄𝒐𝒓𝒆)𝑻𝒐𝒑 + (𝑺𝒄𝒐𝒓𝒆)𝑻𝒐𝒑𝑳𝒆𝒇𝒕 + (𝑺𝒄𝒐𝒓𝒆)𝑳𝒆𝒇𝒕 + (𝑺𝒄𝒐𝒓𝒆)𝑪𝒖𝒓] Equation 5-6

𝑻𝑺𝑰 = (𝑺𝒄𝒐𝒓𝒆)𝑪𝒐𝒍𝒐𝒄𝒂𝒕𝒆𝒅 Equation 5-7

𝑺𝑻𝑺𝑰 = 𝑺𝑺𝑰 + 𝑻𝑺𝑰 Equation 5-8

The region is considered as homogeneous if the Spatiotemporal score is less than equal to 3. A

Spatiotemporal score of 3 is chosen because that would cover the cases where either SSI is 2 and

TSI is 1 or SSI is 1 and TSI is 2. This essentially means that either the temporal or the spatial

indicators need to indicate a merge decision. This algorithm is different from section 5.4.1 in the

sense that the merge decision is a combination of both the spatial and temporal information.

If the spatiotemporal score is greater than 3, the region is coded as a non-split region.

Algorithm

Input: Block sizes and MVs of 4 spatial neighbours and one temporal neighbour

Output: Merge/Non-merge decision

 function: Merge using spatio-temporal index

 merge = 0

 for i = 0 to 3

if (block size = 16×16)

 score(i) = 1

else if (block size = 16×8 or 8×16)

 score(i) = 2

 else

 score(i) =4;

 end if

end for

SSI = [score (0) + score (1) + score (2) + score (3)] / 4

if (block width ≥ 32 and block height ≥ 32)

 score = 1

else if (32×16 block or 16×32 block)

 score = 2

else

 score = 4

end if

TSI = score

STSI = SSI + TSI

if (STSI ≤ 3)

 merge = 1

end if

 end function

69

5.4.4 Merge to 16×16 Blocks

A brief analysis of the number of inter block partitions provides the insight that a large number

of blocks get coded as 16×16 blocks in HEVC.

Table 5-4 Percentage of 16×16 blocks in HEVC Sequences

Sequence QP

22 27 32 37

Parkscene 23.09 32.84 42.74 39.33

Kimono 40.52 45.99 48.01 44.92

Basketball 31.77 36.21 36.88 35.86

Figure 5-11 Partial snapshot of HEVC Inter PU sizes of Basketball 1920×1080

sequence at QP 27 from Zond 265 Analyser

Table 5-4 provides the information on the percentage of Inter 16×16 blocks in HEVC for different

1920×1080 test sequences at different QPs. Also Figure 5-11 provides the information regarding

the block partitions lower than 16×16. From the figure it can be observed that for Basketball

sequence at QP27, 36.2% of the blocks are coded as 16×16 PU blocks. Also, 6.72% percent of

the blocks are coded as 16×8 or 8×16 blocks. And 28.56% of the blocks are coded as 8×8 blocks.

This algorithm considers these sub 16×16 partitions and tries to merge them to form 16×16 blocks.

There is a significant opportunity to reduce the computational complexity by performing this

merge. The algorithm presented in 5.4.1 is reused for four 8×8 partitions to merge them to form

a 16×16 block. This means that 8×8 blocks are merged to form 16×16 block. On the same lines,

the algorithm presented in 5.4.2 is reused to merge 16×8 and 8×16 blocks in H.264 to 16×16

blocks in HEVC.

70

5.4.5 Algorithm Flowchart

The complete flowchart of the MV variance based mode merge algorithm is described in Figure

5-12.

Figure 5-12 Flowchart of the complete MV variance based mode merge algorithm

The algorithm first tries to form square partitions (2N × 2N), first using the MV variances alone

and then using the spatial and temporal score indicators. If forming the square partitions fails,

then the algorithm tries to form 2N × N and N × 2N partitions. If this merge is also not possible,

the algorithm will check to see if the sub 16 × 16 partitions can be merged to form a 16 × 16

block.

71

5.5 Experimental Results

The proposed algorithm is implemented using H.264 JM18.5 [7] and HEVC HM12.0 [8]

reference software. The HEVC encoder uses the low delay configuration with fast motion

estimation mode and fast mode decision enabled. AMP is not considered for the high

computational complexity for the negligible gain in quality [3]. The commonly used 1920×1080

video sequences described in section 4.3.1 are used for testing. H.264 and HEVC QPs of {27, 30,

32, 37} are used.

The count of the number of blocks merged is used to estimate the performance and time saving

achieved by the algorithm. An example of the number of blocks merged for the Basketball

sequence by different parts of the algorithm is provided in Table 5-5

Table 5-5 Average percentage of Blocks Merged as 32×32 blocks in Basketball

sequence for 100 frames

QP 4 blocks

merged

3 blocks

merged

Rectangular

partitions

Spatiotemporal

similarity

Merge to

16×16

22 20 6 4 2 4

27 26 9 3 2 5

32 35 14 6 3 5

37 44 18 7 3 8

The R-D performance is measured in terms of Bjontegaard delta PSNR (BD-PSNR) and

Bjontegaard delta BitRate (BD-RATE)[57]. The details of BD-PSNR and BD-RATE

measurements can be found in section 4.4.1. The computational complexity is measured in terms

of Time Saving (TS), which is defined as follows:

()
100*

Baseline Proposed

Baseline

EncTime EncTime
TS

EncTime

−
=

 Equation 5-9

Table 5-6 provides the performance details of the algorithm as compared against the HM

reference [8] implementation. From the results, it can be seen that the overall video quality loss

is around 0.08 dB with a complexity reduction of around 50%. The video quality loss of -0.08dB

cannot be perceptually sensed by the human eye.

Table 5-7 gives the performance of the proposed algorithm compared to other fast transcoding

algorithms. The algorithms presented in [58] and [59] are considered as they are primarily mode

mapping algorithms using MV and mode information similar to the proposed algorithm. The

algorithm provides 20-30 percent more complexity reduction with around 3 percent increase in

bitrate consumption when compared against state of the art algorithms.

72

Table 5-6 Performance of the MV based mode merge algorithm with respect to

HM reference encoder

Sequence BDPSNR

(dB)

BDRATE

(%)

TS (%)

Basketball -0.0994 8.715 47.45
Parkscene -0.088 4.171 48.49
Kimono -0.0751 4.12 51.28
BQTerrace -0.1121 8.465 47.34
Sunflower -0.0498 2.543 58.08
Pedestrian -0.0532 3.896 50.23
Tractor -0.0785 4.69 52.75

Total -0.08 5.23 50.8

Figure 5-13 and Figure 5-14 show the perceptual visual quality of two video sequences transcoded

by the proposed MV based Mode Merge algorithm the reference algorithm. There is no noticeable

visual video quality degradation of the frames coded by the proposed algorithm compared to the

frame transcoded by the reference algorithm so that it is evident that the proposed algorithm has

same perceptual visual quality as the reference algorithm

Table 5-7 Performance of Proposed Algorithm against other algorithms

 Prop vs. HM12 [58] vs. HM12 [59] vs. HM12

Sequence BD-

RATE (%)

TS

(%)

BD-

RATE (%)

TS

(%)

BD-

RATE (%)

TS (%)

Parkscene 4.171 48.49 1.889 43.68 2.4 34.3

Kimono 4.12 51.28 0.924 38.14 0.35 23.2

Average 4.15 49.88 1.41 40.91 1.38 28.75

Figure 5-13 Comparison of perceptual video quality of the frame transcoded by

the Trivial Transcoder (left image) and the Proposed Transcoder (right image) for

Basketball sequence

73

Figure 5-14 Comparison of perceptual video quality of the frame transcoded by

the Trivial Transcoder (left image) and the Proposed Transcoder (right image) for

Parkscene sequence

The RD curves of the proposed algorithm and the reference algorithm are shown in Figure 5-16,

and it can be observed that the reference and the proposed algorithm overlap with a very minimal

drop in video quality. The RD loss of the proposed MV based Mode Merge algorithm is negligible

compared to the reference algorithm.

Figure 5-15 RD plots for proposed MVV algorithm for different sequences

74

Figure 5-16 RD plots for proposed MVV algorithm for different sequences

75

5.6 Discussions

A low complexity algorithm for H.264 to HEVC video transcoding based on MV variance is

proposed in Chapter 5. The mode selection process in HEVC is a computationally intensive

process. It takes up 30-70 % of the computation bandwidth in the HEVC encoding process [5].

The proposed MV based Mode Merge algorithm reduces the computations involved in the mode

selection stage of the HEVC encoder. The Motion Vector and block size information from the

H.264 decoder are primarily used to design the Mode Merge algorithm. H.264 video standard

limits the maximum block size to 16×16 pixels. It has been hypothesised that if not for the

limitation, many of the 16×16 blocks would be encoded as larger block sizes such as 32×32 or

64×64 in 1920×1080 or 4K video resolutions. This is the main reason to merge blocks encoded

as 16×16 in H.264 to form larger blocks in HEVC. MV variance is a good indicator of the

homogeneity of the region, and so it dominates in the decision for the merge algorithm. The

algorithm is divided into multiple stages where-in each sub-algorithm is trying to improve upon

the previous stage by trying to merge more blocks to bigger block sizes. The first stage involves

merging 16×16 blocks to form 2N×2N blocks, i.e. 32×32 and 64×64 blocks iteratively. The

second stage targets merging 16×16 blocks to form 2N×N and N×2N blocks such as 64×32 and

16×32 respectively. The third stage not only considers merging four 16×16 blocks forming a

32×32 region, but also considers the temporally co-located block from the previous HEVC frame

for the merge/non-merge decision. If there are large number of blocks coded as 16×16 blocks in

HEVC, the fourth stage considers merging the sub-16×16 blocks to form 16×16 blocks in HEVC.

All stages of the algorithm build up sequentially on the previous stage in reducing computational

complexity, without sacrificing the video quality in the transcoded video. The computational

complexity of the algorithm is evaluated by considering the standard set of 1920×1080 video

sequences averaged over 100 frames each. The algorithm provides a complexity reduction of 50.8

% with a negligible BDPSNR loss of -0.08 dB. The performance of the algorithm is compared

against the other state of the art algorithms based on the principle of MV Variance [59], [60]. The

algorithm provides a significantly higher complexity reduction compared to [59] and [60] with a

slightly higher video quality loss. The advantages and disadvantages of the MV based Mode

Merge algorithm are summarised below.

Advantages

• The algorithm outperforms other MV variance based video transcoding algorithms [59],

[60] in terms of complexity reduction.

• In a scenario where the video sequence is dominated by low spatial frequency component

in texture, the algorithm performs much better than the average performance. This is

illustrated in transcoding the sunflower video sequence, where the video quality loss is

only around -0.04 dB whereas the time saving is around 58%.

76

Disadvantages

• In a scenario where the video sequence has significant high frequency components (like

edges and corners) in texture data, contributing to a significant residual signal, there is a

drop in the performance of the algorithm.

• There is no support for adaptive tuning of the thresholds based on the features of the

incoming video sequence. This is discussed as future work in chapter 9.

5.7 Conclusion

In this chapter, a fast H.264 to HEVC transcoding algorithm is proposed. The main contribution

of this work is the MV variance HEVC mode prediction algorithm which uses the H.264 mode

and MV information, spatial and temporal information from already encoded blocks in HEVC.

This algorithm develops a low complexity HEVC mode prediction algorithm using H.264 block

mode, block structure and MV values. The algorithm achieved around 50% reduction in

computational complexity with a very negligible rate-distortion loss.

The Time Savings achieved is significant for the negligible video quality loss. The algorithm

mainly considers the block size and the MV values. The algorithms perform very well for

sequences which have linear motion. It may not perform very well for sequences which have

complicated texture data. For such sequences, a different approach is required which is described

in chapter 7.

77

6 CONDITIONAL PROBABILITY BASED

MODE MAPPING ALGORITHM

6.1 Introduction

In this chapter, a conditional probability-based mode mapping algorithm for H.264 to HEVC

transcoding is described. The algorithm employs H.264 block information to form blocks of

16×16 samples and lower in HEVC. This algorithm predicts HEVC block sizes of 16×16 and

below and complements the Mode Merge algorithm presented in Chapter 5, which outputs HEVC

block modes greater than 16×16 pixels.

This model mapping algorithm is based on conditional probability prediction models, which have

been developed by analysing the encoded block size and Quantisation Parameter (QP) from H.264

and HEVC. The conditional probability prediction models use the principles of apriori and joint

probabilities based on the statistics obtained from H.264 and HEVC encoding of video sequences.

Another parallel approach employed is the direct re-use of H.264 modes in HEVC, which is a

sub-optimal solution and does not consider the QP variations between the source H.264 video and

the target HEVC video. The performance of the developed algorithm was measured against the

H.264 reference implementation and the implementation by directly re-using the H,264 modes in

HEVC. A computational complexity reduction of around 35-40% has been achieved with

negligible loss of 0.05 dB in video quality.

Section 6.2 provides the hypothesis for the Conditional Probability based Mode Mapping

algorithm and a review of the related work is provided in section 6.3. Section 6.4 explains the

concepts of mode conditional probabilities and provides details of the mathematical model

developed. Section 6.5 provides the experimental results. The mode mapping algorithm and its

advantages and disadvantages are critically analysed and discussed in Section 6.6. The algorithm

is concluded in section 6.7 of this chapter.

6.2 Hypothesis

A significant amount of research work on video format transcoding [101] directly re-uses the

block modes chosen in the source format for encoding in the target video format. This approach

reduces computational complexity of transcoding significantly. However, it compromises the

quality of the target video due to the difference of the available block modes in various generation

of video coding formats. In case the source and target video formats are encoded at different bit-

78

rates for different requirements of video quality, the directly re-use of block modes from source

format to target format is far from optimal. For example, considering a case of video transcoding

from H.264 to HEVC. If a block is coded as a Inter 16×16 block in H.264 at a particular QP, the

same block might be coded as 8×8 block in HEVC for the same QP as HEVC provides better

compression efficiency through employing advanced techniques in every stage of the encoding

process. Alternatively, if a block is coded as Inter 8×8 in H.264, it could be coded as Inter 16×16

block in HEVC for a higher QP. This is the basis of the hypothesis of the proposed algorithm that,

instead of re-using the block modes directly, modelling them based on the H.264 and HEVC

coded block information and QP levels is likely to improve quality of the transcoded video while

maintaining the low complexity. This is also under the assumption that QP has a role in deciding

the block sizes.

In [4], a computational complexity control algorithm for H.264 encoder based on Mode

Conditional Cost Probability Distributions is proposed. It was observed from the Probability

Distribution Functions (PDF) at different QPs that the PDFs of coded and skipped macroblocks

were dependent on the quantisation parameter (QP) used in the sequence. This concept can be

extended to different block sizes to prove the initial hypothesis of the proposed mode mapping

algorithm.

6.3 Related Work

A significant number of algorithms have re-used the inter prediction modes from the source

format for the target format.

In [39], dynamic thresholding is used to decide the HEVC prediction modes for 64×64 and 32×32

CUs. However, H.264/AVC modes are directly used for 16×16 and 8×8 CUs. H.264 integer pixel

level Motion Vectors (MV) are used as a starting point for HEVC sub-pixel search refinement.

This algorithm uses a training stage for content modelling. Though different H.264/AVC QPs

have been considered for training, the main algorithm is based on reusing the MV information.

Though this algorithm employs content based modelling for partitions larger than 16×16 blocks,

direct re-use of the H.264 modes is not the optimal solution for 16×16 partitions as this does not

consider the influence of QP on the decision.

In [40], the 64×64 CUs and Asymmetric Mode Partitions (AMP) are disabled to reduce the HEVC

computational complexity. Mode prediction is carried out by reusing the H.264 mode as a starting

point and coming up with a merge algorithm to form larger blocks in HEVC. For blocks which

does not form any of the block sizes greater than 16×16, the H.264 modes are re-used in HEVC.

This algorithm again does not consider the influence of QP on HEVC modes. So directly re-using

the modes may not result in the minimal cost and may lead to higher video quality loss.

79

As discussed above, existing transcoding algorithms reuse the original mode decisions for

predicting the HEVC prediction modes. These algorithms assume the original coding mode as the

most probable mode for HEVC, without considering the effects of the quantisation parameters

used in both AVC and HEVC encoders. However, experiments in section 6.4 demonstrate that

final HEVC mode probabilities depend on quantisation parameters as well as the original coding

mode. Therefore, a new algorithm is proposed to derive the HEVC inter prediction modes using

mode conditional probability functions based on the H.264 coding mode, the H.264 QP and the

HEVC QP. The related works described in this section directly re-use H.264 block sizes for

HEVC for blocks sizes of 16×16 and lower. In addition, these algorithms also have other part to

handle the 32×32 and 64×64 blocks, therefore, comparation of these algorithms and the proposed

algorithm cannot be made at the same ground. Instead, the HM reference is modified to re-use to

H.264 modes for HEVC block sizes of 16×16 and used as a reference to the performance

evaluation of the conditional probability-based mode mapping algorithm.

6.4 Conditional Probability based Mode Mapping

Algorithm

This section describes the rationale and the development of the Conditional Mode Probability

based Mode Mapping algorithm.

6.4.1 Mode Conditional Probabilities

An investigation was carried out to evaluate the effect of H.264/AVC and HEVC quantisation

parameters in mapping H.264/AVC modes to HEVC coding modes during transcoding (i.e.

conditional probability of a specific HEVC mode being selected for a given H.264/AVC mode

for the same block). The H.264/AVC modes considered are 8×8, 16×8, 8×16, 16×16 and skip

mode. The lower inter prediction modes 4×4, 4×8 and 8×4 are not considered to keep the scope

of the analysis limited. Though skip can be considered as a special case of 16×16, it is considered

separately so that in a low complexity algorithm, motion estimation can be skipped, and an early

termination of the CU performed in case the output mode in HEVC is skip. Four standard test

video sequences with varying motion and detail (Parkscene, Bluesky, Ducks and OldtownCross)

were initially encoded with H.264 reference [7] encoder at QP = 20, 26, 32 and 38. Next, the

coded video sequences were transcoded using HEVC reference software [8] at QP=20, 26, 32 and

38 resulting in sixteen transcoded versions of each original video sequence. All the coding modes

selected by H.264 and HEVC encoders were recorded and analysed and the conditional

80

probability was calculated for each combination of input H.264/AVC mode, output HEVC mode,

H.264/AVC QP.

Figure 6-1 H.264 Mode Probability Distribution for Parkscene

Figure 6-1 shows the mode conditional probability distributions for the Parkscene sequence for

H.264/AVC 8×8 mode with different combination of H.264/AVC and HEVC QP values. QP1

refers to the H.264 QP and QP2 refers to the HEVC QP value. It is evident that the most probable

HEVC mode depends on both AVC and HEVC QP values and it is not always the same mode as

the original AVC mode. Similar observations were made for other video sequences as well.

Figure 6-2 The probability of an 8×8 block in H.264/AVC being coded as a 8×8

block in HEVC for Parkscene 1920×1080 sequence

81

Figure 6-3 The number of 8×8 blocks in H.264/AVC for different QPs of

[20,26,32,38] for 50 frames of ParkScene1920×1080 sequence

Figure 6-2 shows the probability of an 8×8 coded block in H.264/AVC being coded as an 8×8 PU

in HEVC. It can be inferred that the probability of an 8×8 coded block in H.264/AVC being coded

as an 8×8 PU in HEVC is higher as the AVC QP increases. However, the absolute number of 8×8

blocks reduces with the increase in AVC QP, as evidenced by Figure 6-3. This is because the

number of blocks of size greater than 8×8 including skipped macro-blocks increase with QP.

Similar trends were observed for other sequences tested.

6.4.2 Mathematical Model

Based on the evidence mentioned in section 6.4.1, the mode mapping in HEVC can be viewed as

a probability distribution function as shown in Equation 6-1 where each input mode maps to

multiple output modes based on their probabilities which in turn depend on QPAVC and QPHEVC .

𝑷𝒓𝒐𝒃(𝑴𝒐𝒅𝒆𝑯𝑬𝑽𝑪) = 𝒇𝒖𝒏𝒄(𝑴𝒐𝒅𝒆𝑯𝟐𝟔𝟒, 𝑸𝑷𝑯𝟐𝟔𝟒, 𝑸𝑷𝑯𝑬𝑽𝑪) Equation 6-1

Consequently, H.264 to HEVC transcoding mode conditional probability distributions can be

represented as probability estimation functions for each mode mapping as shown in Table 6-1.

0

2000

4000

6000

8000

10000

12000

20 26 32 38

N
u

m
b

er
 o

f
8

x8
 p

ar
ti

ti
o

n
s

H.264 QPs

Number of 8x8 partitions in H.264 for
Parkscene

82

Table 6-1 The H.264 annd HEVC Modes considered for Modelling

AVC

Mode

 HEVC Mode

8×8 8×16 16×8 16×16 Skip

8×8 P11 P12 P13 P14 P15

8×16 P21 P22 P23 P24 P25

16×8 P31 P32 P33 P34 P35

16×16 P41 P42 P43 P44 P45

Skip P51 P52 P53 P54 P55

Figure 6-4 shows the conditional probability of selecting 8×8 HEVC mode (given that AVC mode

is 8×8) for different HEVC and AVC QP values for the Parkscene sequence. Using the probability

data, a mathematical model is derived as a set of two 2-dimensional third order polynomial

equations to model the probability estimations. The modelling is chosen as a set of two linear

models instead of using a 3-dimensional model to reduce computational complexity. 3rd order

polynomials are used to reduce the error, based on experimental analysis. The model can be

represented as:

Pcd = ∑ [𝒂𝒊(𝒚)]𝒙𝒊𝒊=𝟒
𝒊=𝟏 Equation 6-2

where

𝒂𝟏 (𝒚)=∑ 𝒌𝒋𝒚𝒋𝒋=𝟑
𝒋=𝟎 Equation 6-3

𝒂𝟐(𝒚) = ∑ 𝒍𝒋
𝒋=𝟑
𝒋=𝟎 𝒚𝒋 Equation 6-4

𝒂𝟑(𝒚) = ∑ 𝒎𝒋
𝒋=𝟑
𝒋=𝟎 𝒚𝒋 Equation 6-5

𝒂𝟒(𝒚) =∑ 𝒏𝒋
𝒋=𝟑
𝒋=𝟎 𝒚𝒋 Equation 6-6

x = normalized value of QPHEVC ,

y = normalized value of QPAVC, c = 1 to 5 and d = 1 to 5 (from Table 6-1).

The probability of a particular output mode (Pcd) is initially modelled as a function of HEVC QP.

Then the four constants, 1a , 2a , 3a and 4a are modelled as a function of H.264/AVC QP to obtain

values of 𝑘𝑗, 𝑙𝑗, 𝑚𝑗 and 𝑛𝑗 for j = 0 to 3.

The output of the mathematical model is plotted as a surface in Figure 6-4. The plot at the bottom

shows the model error as a percentage. The error is calculated as the distance between the

83

completely filled coloured and the hollow circles in the plot (error between corresponding points

in two plots). The maximum model error was ±5%. Similar mathematical models were derived

for all the mode mappings in Table 6-1.

Figure 6-4 The 2D surface generated using the model for P11 for different QPAVC

and QPHEVC values. The second graph shows the model error for the Parkscene

1920×1080 sequence

6.4.3 Application of the Model

A typical application of the above model in a low-complexity algorithm is described below. The

objective of the algorithm is to demonstrate the improved mode conditional prediction accuracy

of the model in a H.264 to HEVC transcoding scenario.

1. For every 16×16 prediction unit, the most probable HEVC mode is obtained from the mode

conditional probability model.

2. Motion estimation is carried out for the most probable mode and the RD cost is compared

with higher modes (such as 32×32 and 64×64).

3. The mode with lowest RD cost and the corresponding CTU structure is selected.

The AMP (Asymmetric Motion Partitioning) modes are not used because the computational

complexity is very high for the limited RD gain obtained [39]. Therefore, this algorithm does not

spend computation cycles to evaluate the modes within the 16×16 prediction unit. The proposed

model is used to predict the HEVC coding mode based on QP and H.264 coding mode. The

performance of the conditional probability Mode Mapping algorithm is compared against a direct

mode mapping algorithm.

84

6.5 Experimental Results

The proposed algorithm was developed using the H.264/AVC reference codec, JM18.5 [7]and

the HEVC reference codec HM12.0 [8]. An IPPP GOP structure with one reference frame is used

for both H.264 and HEVC encodings. The HEVC encoder is used with fast motion estimation

mode and fast mode decision enabled. In the H.264/AVC encoder, 8×4, 4×8 and 4×4 inter macro

block partition sizes have been disabled to limit the scope of the analysis. These modes have been

disabled in the HEVC encoder as well for an even comparison.

Table 6-2 and Table 6-3 show the improvement in prediction accuracy of the proposed model

compared with direct mode mapping. The first column of each of these tables shows the

percentage of instances (probability) that the mode selected by the HEVC encoder is the same as

the H.264 mode for each mode. This represents the correct mode prediction probability if direct

mode mapping is used. The second column shows the probability of predicting the correct mode

using the proposed model. For example, for a given 8×8 H.264 mode, the proposed model may

predict 16×16 or any other mode. A successful prediction is counted if the predicted mode

matches the actual mode selected by HEVC encoder. Table 6-2 shows the prediction accuracy

of the training video sequences (Parkscene 1920×1080, Bluesky 1920×1080, Ducks 1920×1080,

Oldtown 1920×1080). Table 6-3 shows the same data for non-training sequences (Basketball

1920×1080, Pedestrian 1920×1080, Sunflower 1920×1080, Tractor 1920×1080). It can be

observed that the proposed model significantly increases the mode prediction accuracy compared

to direct mode mapping.

Table 6-2 Prediction Performance (Training Sequences) for HEVC QP = 22

H.264 Mode Direct mode

accuracy %
Proposed model

accuracy %

8×8 91.1 91.3

8×16 74.6 75.6

16×8 78.7 84.5

16×16 72.3 80.4

skip 89.6 92.8

Table 6-3 Prediction performance (non-training sequences) HEVC QP=32

H.264 Mode Direct mode

accuracy %
Proposed model

accuracy %

8×8 34.2 51.0

8×16 35.4 52.3

16×8 35.8 52.4

16×16 35.6 50.4

skip 35.0 49.3

85

The proposed model was implemented as a low-complexity mode prediction algorithm in a H.264

to HEVC transcoding application The rate distortion performance of the proposed algorithm is

shown in Figure 6-5 to Figure 6-8. HEVC transcoded RD plots are presented for an original H.264

QP value of 22 for HEVC QP range of 22 to 37. The full complexity transcoder using HM12.0

encoder is used as the baseline.

Figure 6-5 RD plot for Parkscene (training sequence)

Figure 6-6 RD plot for OldTownCross (training sequence)

86

Figure 6-7 RD plot for Basketball (non-training sequence)

Figure 6-8 RD plot for Pedestrian (non-training sequence)

The RD plots are provided in Figure 6-5 to Figure 6-8. They show that the proposed algorithm

demonstrates very negligible rate-distortion loss compared to the full HEVC transcoder. Notably

the proposed model performs better than the direct mode implementation due to the improved

mode prediction accuracy. Implemented as a simple low-complexity transcoding algorithm, our

model achieved around 40% reduction in computational complexity on an Intel Xeon 3.5GHz PC

platform with 32GB RAM.

The R-D performance as compared against the reference baseline encoder implementation is

quantified in Table 6-4. The performance is measured in terms of BD-PSNR [57]. The

87

performance of the probability-based mode mapping algorithm is compared against the direct

mode mapping implementation. Direct Mode mapping algorithm is used as reference as that is

the algorithm to be outperformed to be in sync with the hypothesis. It can be seen that the proposed

mode mapping algorithm has a lower value of R-D loss compared to the direct mode mapping

implementation.

Table 6-4 Performance of the algorithm in terms of Video quality

Training Sequences Baseline vs

Proposed (dB)

Baseline vs

DirMode (dB)

Parkscene 1920×1080 -0.1211 -0.1651

Bluesky 1920×1080 -0.1348 -0.1555

Ducks 1920×1080 -0.0239 -0.0634

Oldtown 1920×1080 -0.0476 -0.0992

 -0.081 -0.12

Non-Training Sequences

Basketball 1920×1080 -0.0963 -0.1247

Pedestrian 1920×1080 -0.0733 -0.0955

Sunflower 1920×1080 -0.0586 -0.0639

Tractor 1920×1080 -0.0239 -0.0634

 -0.063 -0.087

Table 6-5 provides the complexity reduction compared to the baseline reference encoder. It can

be seen that there is around 40% complexity reduction across training and non-training sequences

across a different range of QPs.

Table 6-5 Performance of the algorithm in terms of Time Saving

Sequence Complexity Savings (%)

 HEVC QP

22 27 32 37

Basketball 1920×1080 46 44 41 38

Pedestrian 1920×1080 47 45 44 41

Sunflower 1920×1080 44 41 41 39

Tractor 1920×1080 44 50 43 39

Parkscene 1920×1080 42 39 38 38

Bluesky 1920×1080 41 38 37 37

Ducks 1920×1080 44 41 47 50

Oldtown 1920×1080 48 43 42 44

Average 44.5 42.6 41.6 40.7

88

6.6 Discussions

A novel conditional probability-based Mode Mapping algorithm is proposed in Chapter 6. When

the MV based mode merge algorithm proposed in Chapter 5 is not able to merge the HEVC

blocks, there is a need to optimize the block decision of 16×16 and lower blocks in HEVC. The

conditional probability-based Mode Mapping algorithm is developed to address this scenario.

This algorithm uses the H.264 QP, block size and HEVC QP to provide the two most probable

modes in HEVC. The algorithm considers 16×16, 16×8, 8×16 and 8×8 block sizes from the H.264

decoder. Skip MB is considered as a separate case of 16×16 block as this is very helpful for early

Skip CU prediction. The algorithm provides two most probable modes for HEVC for coding

depths 2 and 3. This reduces the computational complexity of mode prediction in HEVC for

coding depths 2 and 3. This algorithm achieves a computational complexity reduction of 42%

with a video quality loss of around -0.7dB.

From the results, it can be observed that the algorithm performs much better for sequences which

have low temporal motion and low texture/residual complexity. Hence the performance is better

for sequences such as Tractor, Ducks and OldTownCross. The video quality loss is higher for

sequences with either high temporal motion or high texture such as Basketball and Parkscene.

Also, it can be inferred that the time savings is higher for lower QPs compared to higher QPs

across all the sequences. This is mainly because there is a much higher probability of finding

larger number of 16×16 or 8×8 blocks at QP = 22 than at QP = 37.

The advantages and disadvantages of the proposed mode conditional probability-based mode

mapping algorithm are described below.

Advantages

• The proposed mode mapping algorithm performs better than directly re-using the block

modes from HEVC

• It can be used in conjunction with other Mode decision algorithms which try to code

HEVC blocks in non-split mode.

• The algorithm’s performance can be controlled by scaling it to output different number

of probable output HEVC modes. Increasing the number of probable modes increases

video quality at the cost of reduced time savings and decreasing the number of probable

modes increases time savings but at the cost of reduced video quality.

Disadvantages

• The algorithm does not model all the probable modes, the number of modes considered

is reduced to decrease the modelling complexity involved.

• The performance of the algorithm can be improved further by making it content adaptive

89

• The performance of the algorithm can be improved further by considering other

information such as residual data from the H.264 decoder.

6.7 Conclusion

In this chapter, a H.264 to HEVC transcoding mode prediction model based on mode conditional

probabilities is presented. H.264 mode conditional probabilities are modelled as a function of

H.264 QP and HEVC QP. The algorithm achieves a time savings of 40-44% for different QP

values with negligible video quality loss. Results show that the proposed mode conditional

probability-based mode mapping algorithm performs better than directly mapping the

H.264/AVC modes to HEVC as the most probable mode. This mathematical model can be easily

integrated into other transcoding algorithms that directly use the H.264 mode as a starting point.

90

7 RESIDUAL BITS BASED MODE

MERGE ALGORITHM

7.1 Introduction

The work proposed in chapter 5 employs block sizes and MV information to decide the split/non-

split decision. It is widely understood that spatial information has a great effect on the mode

decision. Considering the spatial information in the split/non-split mode decision may improve

the accuracy of the mode decision and increase the computational complexity saving while

maintaining the video quality. Therefore, there is a need to examine the CU residual information

from the H.264 decoder, such as block bits and block coefficients.

The proposed residual based mode merge algorithm employs the residual information for the

split/non-split decision. The residual mode merge algorithm classifies the video sequences into

multiple categories based on the spatial and temporal information from the H.264 decoder.

Models for the split/non-split mode decision in HEVC are developed for each of the different

categories based on the block partitions and number of bits used to encode the blocks in H.264.

The residual bits information is considered at the lowest granularity of 8×8 blocks. Blocks smaller

than that, or each of the individual residual coefficients are not considered to keep the complexity

of the algorithm minimal.

Section 7.2 provides the hypothesis used for this research work. Section 7.3 provides the critical

analysis of directly related research work. The detailed residual based mode merge algorithm is

explained in section 7.4. Section 7.5 provides the complete algorithm which includes the MV

based Mode merge algorithm and Conditional probability based Mode mapping algorithm.

Section 7.6 provides experimental results of the residual based mode merge algorithm as well as

the combination of the 3 algorithms described in chapters 5, 6 and 7. A critical review of the

residual mode merge algorithm is provided in section 7.7 which is followed by conclusion.

7.2 Hypothesis

A significant amount of research in the field of HEVC complexity optimisation is concentrated

in the area of finding homogeneous regions in a frame which can be coded as larger CU blocks.

This is to reduce the processing involved in the mode selection process. Video motion and texture

are two of the important criteria which characterize a video sequence. The homogeneity and

texture complexity of a region in a frame can be estimated by the pattern of the motion

91

compensated residual data [64], [49]. If a region has homogeneous content without much detail,

then the motion estimation algorithm accurately predicts larger sized blocks giving rise to lesser

average CU residual bits. If a region has high amount of texture details, then the MV variance

based algorithm may not be able to predict the blocks accurately. For this scenario, an algorithm

is developed where the split/non-split decision is based on the pattern of residual data. The

modelling of sequences based on the distribution of motion compensated residual data across

blocks is more effective than using the MV variances to merge the blocks for high texture video

sequences.

7.3 Related work

Existing algorithms try to re-use information from residual data for video transcoding. In [64], a

fast MB motion estimation algorithm was proposed to reduce the complexity of MPEG2 to H.264

transcoding. It proved that the H.264 mode is directly related to the mean and variance of the

MPEG2 MB residual data. H.264 mode computation problem was treated as a data classification

problem The H.264 coding mode is derived as a function of Mpeg2 MB coding mode and residual.

Machine learning algorithms are used to classify the Mpeg2 MB coding mode and residual into

one of the several H.264 coding modes. A decision tree is constructed for the various possible

modes, and different training sequences were trained using WEKA data mining tool [102] .

In [49], the authors showed that the occurrence of split CUs in HEVC increases as the average

value of non-zero coefficients increases in H.264 encoded videos. When the sum of coefficients

is higher than 2000, the vast majority of 64×64 CUs are split into smaller CUs. When this sum is

under 2000, 62% of CUs are not split. Based on the statistics and other similar inferences, various

kind of information from H.264 decoder such as mb_type, skip_flag, sum_coeff, avg_coeff are

used as input feature vectors to decide the HEVC coding mode using the WEKA data mining tool.

Three decision trees were trained, corresponding to 64×64, 32×32 and 16×16 CU sizes. The

decision tree decides whether the CU should be split or not.

7.4 Residual based Mode Merge Algorithm

7.4.1 Histogram of Split/Non-Split blocks

In order to examine the correlation of the block bits and the block mode, a set of H264 decoded

video sequences are encoded in HEVC format. The information related to MV, block structure

and block bits are collected from both the H.264 decoder and the HEVC encoder. The number of

bits for block obtained from H.264 and estimated bits of block headers for split and non-split

modes in HEVC are used to form a total block bits for each block. It is assumed that the HEVC

92

blocks having 32×32 or larger partitions would be represented by MBs with fewer block bits. In

order to justify this assumption, a histogram of the estimated block bits corresponding to non-

split and split blocks is plotted in Figure 7-1. The Non-split blocks represented by the red curve

are the blocks which are coded as 32×32 CUs or larger. Split blocks are the blocks which are

coded as blocks smaller than 32×32 pixels and are represented by the blue curve.

Figure 7-1 Histogram of Split and Non-Split blocks for video sequences (a)

Parkscene at QP 22 (b) Parkscene at QP 27 (c) Kimono1 at QP 22 and (d)

Kimono1 at QP 27 (Red - non-split and Blue – split)

From Figure 7-1, it is observed that the number of non-split blocks decreases with the increase of

bits per block. The number of split blocks goes up with the increase of the bits per block first and

then decreases after passing the maximum value. There is a cross-over point of these two curves.

The crossover point is the point on the plot where the number of non-split blocks is equal to the

number of split blocks. The number of the non-split blocks is significantly greater than the number

of split blocks when the bits per block are less than the cross-over point. This indicates that the

probability of a block being coded as a non-split block is much higher than being coded as a split

block when the bits per block are low. Therefore, it is possible to make split/non-split mode

decision by comparing the bits per block with the crossover point. Figure 7-1 also shows the

cross over point of the two curves varies depending on the characteristics of the video sequence

93

and the QP. The crossover point for a video sequence with high texture information, which

translates to presence of high frequency components, (such as for the Parkscene sequence) tends

to be higher than that of a less complex video sequence (such as the Kimono sequence). As

indicated in Figure 7-1, the crossover point decreases with the increase of QP for the same video

sequence. The crossover point can be used to obtain a block bits threshold for determining the

split and the non-split mode for a block. Hence there is a need to develop a mathematical model

for the cross-over point considering the activity of the sequence and the QP used.

7.4.2 Sequence Activity

The complexity of a video sequence can be broadly classified into two categories – motion

complexity and texture complexity. Motion complexity refers to the temporal motion of objects

between frames. This could be either due to the local motion of objects present in the video or the

global motion of the video itself. The texture complexity of the sequence refers to the amount of

spatial details present in the video frame. Therefore, there is a need to derive an activity factor

consisting of a motion complexity indicator and a texture complexity indicator. In [65], subjective

measures indicating the spatial detail and temporal changes of a video sequence are standardized.

Spatial perceptual information (SI) indicates the amount of spatial detail in a picture. The higher

the value of spatial perceptual information, the higher the complexity of the spatial information

in the video. It is defined in Equation 7-1

𝐒𝐈 = 𝐦𝐚𝐱
𝐭𝐢𝐦𝐞

{𝐬𝐭𝐝𝐬𝐩𝐚𝐜𝐞[𝐒𝐨𝐛𝐞𝐥(𝐅𝐧)]} Equation 7-1

where Sobel(Fn) is the Sobel filter applied on Fn which is the frame at time n, stdspaceis

the standard deviation over the pixels in each Sobel filtered frame. max
time

 represents the

maximum value in the time series.

Temporal perceptual information (TI) indicates the amount of temporal changes in a video

sequence. It is high with high motion sequences. It is based upon the motion difference feature,

Mn(i, j) of co-located pixels in successive frames which is defined as shown in Equation 7-2.

𝐌𝐧(𝐢, 𝐣) = 𝐅𝐧(𝐢, 𝐣) − 𝐅𝐧−𝟏(𝐢, 𝐣) Equation 7-2

TI is defined as shown in Equation 7-3

𝐓𝐈 = 𝐦𝐚𝐱
𝐭𝐢𝐦𝐞

{𝐬𝐭𝐝𝐬𝐩𝐚𝐜𝐞[𝐌𝐧(𝐢, 𝐣)]} Equation 7-3

The calculation of SI and TI is computationally intensive. Hence, there is a need to derive the

spatial and temporal complexity of a video sequence using low complexity methods. Table 7-1

provides a summary of different features used from the H.264 decoder to evaluate and categorize

the video sequences. Different properties such as average MV, percentage of skip blocks, average

number of partitions per 16×16 block and average number of MB residual bits are evaluated. It is

94

noted that average value of MV does not vary much across different QPs for all the video

sequences. However, the percentage of skipped blocks, the average number of partitions in a

16×16 block and the average number of residual bits encoded per block tend to increase with the

increase in QP.

Table 7-1 Summary of video sequence activities

Sequence QP Avg MV % of Skip

Blocks (×100)

Avg number of

partitions

Avg residual

bits

Parkscene 22 7.567 0.359 2.893 7.902

 27 7.985 0.564 2.379 2.902

 32 6.348 0.678 1.692 1.146

 37 5.092 0.787 1.343 0.497

 6.748 0.597 2.077 3.112

Kimono 22 24.27 0.206 1.614 6.446

 27 24.2 0.329 1.324 3.091

 32 24.01 0.46 1.226 1.551

 37 23.67 0.621 1.241 0.782

 24.04 0.404 1.351 2.967

Basketball 22 55.08 0.315 1.936 8.767

 27 54.77 0.472 1.55 2.772

 32 52.5 0.567 1.45 1.175

 37 46.65 0.628 1.289 0.63

 52.25 0.495 1.556 3.336

Cactus 22 5.699 0.218 3 14.76

 27 5.777 0.626 2.295 2.924

 32 5.317 0.708 1.782 1.094

 37 4.737 0.794 1.461 0.494

 5.382 0.587 2.134 4.818

BQTerrace 22 3.879 0.205 2.858 23.18

 27 2.262 0.442 2.93 7.92

 32 2.131 0.601 2.145 2.056

 37 1.561 0.734 1.438 0.602

 2.458 0.495 2.343 8.44

 Pedestrian 22 44.03 0.328 1.628 4.963

 27 47.05 0.431 1.408 2.176

 32 47.25 0.518 1.271 1.108

 37 45.78 0.596 1.198 0.614

 46.03 0.468 1.376 2.215

Crowdrun 22 6.816 0.082 3.97 27.33

 27 6.697 0.343 4.057 11.67

 32 6.594 0.428 3.576 5.314

 37 6.561 0.515 2.692 2.553

 6.667 0.342 3.574 11.72

Honeybee 22 0.399 0.759 1.468 0.91

 27 0.199 0.914 1.187 0.143

 32 0.112 0.96 1.072 0.051

 37 0.051 0.986 1.057 0.019

 0.19 0.905 1.196 0.281

Tractor 22 36.42 0.114 2.121 12.6

 27 35.91 0.272 1.716 5.041

 32 35.53 0.461 1.466 2.042

 37 35.08 0.638 1.361 0.945

 35.74 0.371 1.666 5.157

95

The motion and texture complexity can be broadly classified as being either high or low in order

to minimize the complexity of the proposed transcoding. This leads to a classification of the video

sequences into four categories:

Low Motion Low Texture (LMLT), Low Motion High Texture (LMHT), High Motion Low

Texture (LMHT) and High Motion High Texture (HMHT) sequences as shown in Figure 7-2. The

temporal information is adequately represented by the MV and hence the average MV is used to

estimate the temporal complexity. A video sequence with high texture tends to have smaller

partitions, leading to a high number of partitions on average. Therefore, the average number of

partitions for each H.264 MB is used as a measure of texture complexity. The activity factor is

derived using the average motion vector and the average number of partitions per 16×16 H.264

block.

Figure 7-2 Classification of Video Sequences

Figure 7-3 shows the correlation of the motion complexity and spatial complexity vs. QP. It is

observed from Figure 7-3 (i) that the average MV decreased by a negligible value with increasing

QP, indicating MV is nearly independent of QP; and (ii) that the number of block partitions in

H.264 MB decreases significantly with the increase of QP as shown in Figure 7-3. A linear model

was developed empirically to map the variation of number of partitions in each 16×16 H.264

block as a function of QP based on the classification of sequences into low and high textured

sequences.

The model is given by Equation 7-4 and 7-5.

N1 = ((-0.089446) * (QP)) + 4.95 Equation 7-4

N2 = ((-0.037462) * (QP)) + 2.57 Equation 7-5

where N1 is the average number of partitions for sequences with high spatial information and N2

is the average number of partitions for sequences with low spatial information.

High
Motion

Low
Motion

Low
Texture

High
Texture

Low Motion
Low Texture

High Motion
Low Texture

Low Motion
High Texture

High Motion
High Texture

96

Figure 7-3 Plots of (i) Average MV against QP (ii) No of partitions against QP, for

Kimono and Parkscene (1920×1080 resolution)

7.4.3 Modelling Bit Thresholds

Different models are developed for the four categories of video sequences. Each model is based

on the block bits threshold selected for the training video sequences in each category.

The models of the block bits threshold are developed as a function of QP using a power equation,

which provides a smaller Mean Square Error compared to others, such as exponential model. The

model is described as

𝑩𝒊𝒕𝑻𝒉 = [𝒂 × (𝑸𝑷)𝒃] + 𝒄 Equation 7-6

where BitTh is the bit threshold used for split/non-split mode decision and the constants of the

model a, b, and c are defined in Table 7-2.

Table 7-2 Constants for the Residual PMF based Mode Merge algorithm

 Low Texture High Texture

Low

Motion

a = 3068124.766

b = -3.883

c = 12.3599

a = 37984956.3639

b = -4.4793

c = 8.7837

High

Motion

a = 16156.7015

b = -1.8804

c = -5.8544

a = 9136.1294

b = -1.4564

c = 38.2515

(i)

 (ii)

97

A plot of all the four content based models is as shown in Figure 7-4. It can be observed that the

thresholds are different, mainly for the lower QPs. The high motion and high texture videos

sequences have higher thresholds compared to the other categories. With the increase in the QPs,

the difference in the thresholds for the different categories reduces and converges at very high

QPs.

Figure 7-4 The combined plot of LMLT, LMHT, HMLT and HMHT models

The models developed for each of the four different categories are provided in Figure 7-5 to

Figure 7-8. The models developed are based on the data collected for different video sequences.

The thresholds used for the split/non-split decision is based on the output of the corresponding

model at the particular QP that is being used for testing.

0

10

20

30

40

50

60

70

80

90

20 22 25 27 30 32 37

A
vg

 n
o

 o
f

b
it

s
p

er
 b

lo
ck

QP

LMLT

LMHT

HMLT

HMHT

98

Figure 7-5 Model for LMLT video sequences for a QP set of [22, 25, 27, 30, 32, 37]

Figure 7-6 Model for LMHT video sequences for a QP set of [22, 25, 27, 30, 32, 37]

99

Figure 7-7 Model for HMLT video sequences for a QP set of [22, 25, 27, 30, 32, 37]

Figure 7-8 Model for HMHT video sequences for a QP set of [22, 25, 27, 30, 32, 37]

100

7.4.4 Algorithm Steps

The MB residual based mode merge algorithm is explained below.

1) The residual bits for the 32×32 CU in HEVC is estimated based on the cumulative sum

of the H.264 MB residual bits.

2) The estimated number of bits for HEVC is calculated as a function of the H.264 blocks

per partition and H.264 MB residual bits.

3) The spatial and temporal complexity of the sequence is calculated based on the average

MV and the residual bits estimated from H.264 data.

4) Based on the category of video sequence, the corresponding threshold model is assigned

to make the split/non-split decision for the block.

5) If it is a non-split decision, the same process is repeated recursively depending on the

coding depth.

6) If it is a split decision, this merge algorithm is not continued.

7.5 Experimental Results

A range of video sequences are divided into four categories as shown in Figure 7-9, based on the

spatial and temporal indicators discussed above. The threshold for differentiating between low

and high Averaged MV is set as 15 pixels and the threshold for differentiating between low and

high texture is set to 1.9 partitions per block, and the thresholds are derived empirically. Various

1920×1080 resolution sequences are considered for the characterization of the sequence activity.

A sequence such as the honeybee which has negligible motion and does not have finer texture

details falls in the LMLT category. Sequences such as Parkscene and Cactus fall in the category

of LMHT sequences. They have higher texture details, and the MB residual bitrate based mode

merge algorithm works best for these sequences.

Figure 7-9 Sequence activities for various 1920×1080 sequences

101

The proposed MB residual based mode merge algorithm was developed using the H.264/AVC

reference codec, JM18.5 [7] and the HEVC reference codec HM12.0 [8]. An IPPP GOP structure

with one reference frame is used for both H.264 and HEVC encodings. The HEVC encoder is

used with fast motion estimation mode and fast mode decision enabled. In the H.264/AVC

encoder, 8×4, 4×8 and 4×4 inter macro block partition sizes have been disabled to limit the scope

of the analysis. These modes have been disabled in the HEVC encoder as well for an even

comparison.

Table 7-3 Performance of the Residual based mode merge algorithm

 Prop. vs HM12

Sequence BD-PSNR

(dB)

BD-RATE

(%)

TS (%)

Basketball -0.0891 5.32 44.23

Parkscene -0.053 3.023 50.14

Kimono1 -0.0392 2.034 47.66

BQTerrace -0.0788 5.284 45.9

Average -0.065 3.915 46.9

Table 7-3 provides the experimental results for the MB residual bits based mode merge

algorithm. The algorithm provides around 47% reduction in computational complexity, with a

video quality loss of around -0.065dB compared to the reference implementation. This video

quality loss is negligible and not perceivable by the human eye visually. As this algorithm is

mainly based on the MB residual, it performs better for a video sequence such as Parkscene which

is categorised as a high texture video sequence.

The RD plots for Parkscene and Kimono sequences are provided in Figure 7-10 and Figure 7-11

respectively. It can be seen that, the plot of the MB residual based mode merge algorithm is very

close to the reference implementation in both the cases.

102

Figure 7-10 RD plot for MB residual merge algorithm for Parkscene sequence

Figure 7-11 RD plot for the MB residual merge algorithm for Kimono sequence

7.6 Discussion

This chapter proposes the residual based mode merge algorithm. Video sequences are categorized

based on the spatial and temporal features. The categorisation is based on block level features

taken from the H.264 MBs. Different MB residual threshold models are developed for each of

103

these categories for the split/non-split decision. This is based on the hypothesis that split and non-

split blocks have a distinct difference in terms of the number of residual bits. The results

demonstrate that the MB residual based mode merge algorithm provides around 47% reduction

in computational complexity with a video quality loss of less than 0.05dB. The results also

demonstrate that the MB residual based mode merge algorithm merges around 10-20% of the

total blocks on top of the blocks merged by MV variance based mode merge algorithm.

The advantages and disadvantages of the mode are summarized as follows.

Advantages

• Significant reduction in computational complexity with a negligible loss in video quality.

• The categorization of models based on spatial and temporal complexity makes the

algorithm robust to handle different kinds of video sequences.

Disadvantages

• The algorithm accuracy may be increased by making the model adaptive based on

incoming content instead of the statically defined models

• The algorithm may not work very well for synthetic sequences, which have low spatial

and temporal correlation between frames and blocks.

7.7 Conclusion

The MB residual based mode merge algorithm provides around 47% reduction in computational

complexity with a negligible video quality loss of -0.06dB. This algorithm is used along with the

MV variance based mode merge algorithm proposed in Chapter 5 and MB residual based mode

mapping algorithm in chapter 6. The algorithm is developed by considering the spatial and

temporal complexities of a video sequence. In addition to this, HEVC temporal data is also

considered in addition to the H.264 data for the merge mode decision.

104

8 FAST H.264 TO HEVC TRANSCODING

SOLUTION

8.1 Introduction

This section presents the complete solution proposed for H.264 to HEVC video transcoding. It

includes the following algorithms for low complexity inter frame prediction.

• MV variance based mode merge algorithm

• Residual based mode merge algorithm

• Conditional Probability based mode mapping algorithm

The MV variance based mode merge algorithm is used to merge the 16×16 H.264 blocks to form

larger sized blocks in HEVC based on the temporal indicators. This algorithm is presented in

detail in Chapter 5. The Residual based mode merge algorithm is used to merge the 16×16 H.264

blocks to form larger sized blocks based on the spatial indicators. Although the actual merge

algorithm is based on residual data, the classification of sequences into different categories is

based on both spatial and temporal information. The conditional probability based mode

mapping algorithm provides the most probable HEVC modes in cases when the block size is

16×16 or lower.

Section 8.2 describes the complete algorithm. This also explains how the three algorithms

combine to form a complete transcoding solution to handle different types of video sequences.

Section 8.3 explains the experimental results of this algorithm. Section 8.4 provides a critical

review of the proposed solution. The conclusion is provided in section 8.5

8.2 Proposed Algorithm

The three different algorithms proposed for the computational complexity reduction of the HEVC

encoder can predict the mode estimation for different modes

The flowchart of the complete algorithm is described in Figure 8-1. It describes the complete

control flow for all the different scenarios.

A detailed description of the algorithm is provided below

1. Obtain the MB level information from the H.264 decoder that is re-used for HEVC

encoding. This consists of MV information, MB types, block sizes, number of entropy

coded MB header bits and entropy coded MB residual bits for each MB in a frame.

105

2. Perform the MV based Mode merge algorithm to check if the four 16×16 blocks can be

merged to form a 32×32 block. If the blocks are merged go to step 5, else go to step 3.

3. Perform the MB residual bits based mode merge algorithm to check if the four 16×16

blocks can be merged to form a 32×32 block. If the blocks are merged go to step 5, else

go to step 4.

4. If the blocks are not getting merged to form a 32×32 block, check if it is possible to at

least merge two 16×16 blocks to either form 32×16 and 16×32 blocks. If so, merge them

and end the mode prediction process, else go to step 9.

5. At this step, the 16×16 blocks have been merged to form a 32×32 block. In this step, four

neighbouring 32×32 blocks are evaluated to check whether they can form a 64×64 block

using the MV based mode merge algorithm. If they are being merged, form a 64×64 block

and end the mode prediction process. If they are not being merged, go to step 6.

6. Perform the MB residual bits based mode merge algorithm to check if the four 32×32

blocks can be merged to form a 64×64 block. If they can be merged, form a 64×64 block

and end the mode prediction process. If they are not being merged, go to step 7.

7. If the 32×32 blocks are not getting merged to form a 64×64 block, check if it is possible

to at least merge two 32×32 blocks to either form 64×32 or 32×64 blocks. If so, merge

them and end the mode prediction process, else go to step 8.

8. At this step, as the 32×32 blocks cannot be merged to form bigger blocks, end the mode

prediction process here by choosing 32×32 block sizes.

9. At this step, it is obvious that the 16×16 blocks cannot be merged to form bigger blocks.

Perform the MV based mode prediction process to merge sub 16×16 blocks to form

16×16 blocks. If merge is possible, end the mode prediction process. Else perform step

10.

10. Perform conditional probability based mode mapping algorithm to choose the two most

probable modes for the 16×16 or sub 16×16 block sizes. The mode mapping algorithm

outputs the two most probable HEVC modes, end the mode prediction process.

In the detailed description provided above, steps 2, 4, 5 and 7 correspond to the MV variance

based mode merge algorithm, Steps 3 and 5 represent the MB residual based mode merge

algorithm. Step 10 is the probability based mode merge algorithm.

106

Figure 8-1 Flowchart of the complete algorithm

8.3 Experimental Results

Both the MV variance based mode merge algorithm and the MB residual based mode merge

algorithm try to merge the 16×16 blocks to form blocks larger than 16×16 blocks.

107

Section 5.4.1 defines the various kinds of possibilities in terms of the mode analysis. The true

positives (TP) are the blocks which are correctly predicted as merge blocks. The true negatives

(TN) are the blocks which are correctly precited as non-merge blocks. The false positives (FP)

are the blocks which need to be split but are merged. The false negatives (FN) are the blocks

which should be merged but are coded as split blocks. The percentage of blocks merged by both

these algorithms for different video sequences is tabulated in Table 8-1 to Table 8-4 and

illustrated in Figure 8-2 to Figure 8-5. For a sequence which has finer texture details such as

Parkscene, the MB residual algorithm merges more blocks than the MV residual algorithm as

indicated by the blue bar. For the other sequences which have medium spatial and temporal

complexity, the MV algorithm merges more blocks compared to the MB residual algorithm. It is

important to consider the FP cases which are indicated in orange. These are the blocks which need

to be classified as split blocks but are actually classified as non-split blocks. These blocks add to

the video quality loss. It can be seen that at lower QPs, the MB residual algorithm has lower

percentage of FP blocks compared to the MV variance based mode merge algorithm. Similarly,

at higher QPs, the MV variance algorithm has a lower value for FP blocks, whereas MB residual

algorithm has relatively higher percentage of FP blocks. This indicates that at lower QPs, the MV

algorithm introduces more video quality losses, whereas at higher QPs, the MB residual algorithm

introduces higher video quality loss.

Table 8-1 Analysis of 16×16 to 32×32 block merge for Parkscene

QP Algorithm TP (%) FP (%) FN (%) TN (%)

22

MV Variance 12.17 12.86 6.18 68.79

MB Residual 13.34 5.7 5.01 75.95

27

MV Variance 22.86 12.93 10.45 53.76

MB Residual 28.37 12.15 4.94 54.54

32

MV Variance 34.38 10.37 16.9 38.35

MB Residual 44.66 13.96 6.62 34.76

37

MV Variance 47.09 5.96 24.06 22.89

MB Residual 63.44 11.36 7.7 17.49

Table 8-2 Analysis of 16×16 to 32×32 block merge for Basketball

QP Algorithm TP (%) FP (%) FN (%) TN (%)

22

MV Variance 10.83 15.9 5.5 67.77

MB Residual 11.03 16.22 9.95 80.57

27

MV Variance 33.54 14.59 12.11 39.76

MB Residual 36.84 17.1 18.04 47.78

32

MV Variance 41.34 11.01 15.21 32.43

MB Residual 46.96 13.92 18.86 37.69

37

MV Variance 48.23 8.22 17.38 26.17

MB Residual 55.5 11.31 19.42 29.15

108

Table 8-3 Analysis of 16×16 to 32×32 block merge for Kimono

QP Algorithm TP (%) FP (%) FN (%) TN (%)

22

MV Variance 12.96 14.65 9.51 62.88

MB Residual 14.61 16.91 13.03 72.82

27

MV Variance 26.59 13.9 16.77 42.74

MB Residual 31.62 19.03 23.7 51.05

32

MV Variance 33.78 10.79 20.42 35

MB Residual 44.01 19.5 26.64 40.13

37

MV Variance 39.44 7.42 25.5 27.65

MB Residual 56.17 18.08 28.83 29.91

Table 8-4 Analysis of 16×16 to 32×32 block merge for Cactus

QP Algorithm TP (%) FP (%) FN (%) TN (%)

22

MV Variance 11.76 6.84 3.83 77.57

MB Residual 12.16 7.05 5.9 83.95

27

MV Variance 47.46 6.71 6.32 39.51

MB Residual 50.14 9.53 7.66 44.08

32

MV Variance 53.25 6.2 9.38 31.17

MB Residual 57.94 10.69 10.71 34.77

37

MV Variance 59.61 6.41 11.52 22.46

MB Residual 66.22 11.23 12.95 25.57

Figure 8-2 Analysis of the probability of 16×16 blocks forming 32×32 blocks in MV

variance and MB residual based algorithms for Parkscene sequence

0% 20% 40% 60% 80% 100%

MV Variance

MB Residual

MV Variance

MB Residual

MV Variance

MB Residual

MV Variance

MB Residual

2
2

2
7

3
2

3
7

Parkscene

TP FP FN TN

109

Figure 8-3 Analysis of the probability of 16×16 blocks forming 32×32 blocks in MV

variance and MB residual based algorithms for Basketball sequence

Figure 8-4 Analysis of the probability of 16×16 blocks forming 32×32 blocks in MV

variance and MB residual based algorithms for Kimono sequence

0% 20% 40% 60% 80% 100%

MV Variance

MB Residual

MV Variance

MB Residual

MV Variance

MB Residual

MV Variance

MB Residual

2
2

2
7

3
2

3
7

Basketball

TP FP FN TN

0% 20% 40% 60% 80% 100%

MV Variance

MB Residual

MV Variance

MB Residual

MV Variance

MB Residual

MV Variance

MB Residual

2
2

2
7

3
2

3
7

Kimono

TP FP FN TN

110

Figure 8-5 Analysis of the probability of 16×16 blocks forming 32×32 blocks in MV

variance and MB residual based algorithms for Cactus sequence

The performance of the combined algorithm is compared against the H.264 reference encoder

implementation. The algorithm achieves an average computational complexity savings of 61.5%

with a video quality loss of -0.09 dB. The total computational complexity savings achieved is

lesser than the sum of computational savings achieved in each of the individual algorithms. This

is mainly because of the overlap between the number of blocks merged by the different

algorithms.

Table 8-5 Performance of the algorithm for different video sequences

Sequence
BDPSNR (dB) BDRATE (%) TS (%)

Basketball -0.1146 8.38 59.04

Parkscene -0.0981 7.43 59.36

Kimono1 -0.0801 4.48 62.33

Cactus -0.1011 10.34 61.85

BQTerrace -0.1202 9.03 58.65

Sunflower -0.0517 2.83 66.47

Pedestrian -0.0645 4.39 62.2

Tractor -0.0932 5.31 62.14

Average -0.09 6.5 61.5

0% 20% 40% 60% 80% 100%

MV Variance

MB Residual

MV Variance

MB Residual

MV Variance

MB Residual

MV Variance

MB Residual

2
2

2
7

3
2

3
7

Cactus

TP FP FN TN

111

Out of all the video sequences tested, the performance both in terms of computational complexity

savings is optimal for a video sequence with low motion and low texture complexity as is the case

for the sunflower sequence. In this case, the computational savings is around 66.5%, which is

much higher than the average savings of around 61.5%. For video sequences with high motion

and high texture complexity, the computational complexity savings is relatively lower, in the

range of 58-59%.

The performance of the proposed video transcoding solution is compared against [49], [59], [100]

in Table 8-6 to Table 8-8. These video transcoding solutions are chosen as they are implemented

with a similar hypothesis and using similar data from the H.264 decoder. [49] uses a machine

learning algorithm to decide the HEVC block mode, using the H.264 block mode, MV and

residual bits. [59] is a HEVC transcoding algorithm which mainly uses the H.264 block mode and

MV variance for dividing the HEVC block sizes. [100] proposes an algorithm which uses MV

clustering from H.264 to decide on the block sizes in HEVC. Though these algorithms have the

results for more video sequences of different resolutions, only the results of video sequences of

1920×1080 resolution are considered for comparison. These algorithms achieve a computational

complexity savings of around 28-41% with negligible video quality loss. The computational

complexity reduction achieved by these algorithms is much lesser than a value of 60% achieved

by the proposed algorithm, thought the objective video quality is slightly better. But the

marginally higher value in objective video quality numbers is not perceived visually.

From the results, it can be concluded that the proposed H.264 to HEVC video transcoding

algorithm outperforms H.264 to HEVC video transcoding algorithms which use similar set of

H.264 features.

Table 8-6 Performance of Proposed Algorithm against [49]

 Prop vs. HM12 [49] vs. HM12

Sequence BD-RATE

(%)

TS (%) BD-RATE

(%)

TS (%)

Parkscene 7.43 59.36 2.4 34.3

Kimono1 4.48 62.33 0.35 23.2

Average 5.95 60.84 1.38 28.75

112

Table 8-7 Performance of Proposed Algorithm against [59]

 Prop vs. HM12 [59] vs. HM12

Sequence BD-RATE

(%)

TS (%) BD-RATE

(%)

TS (%)

Parkscene 7.43 59.36 1.889 43.68

Kimono1 4.48 62.33 0.924 38.14

Basketball 8.38 59.04 4.027 41.62

Average 6.7 60.24 2.3 41.1

Table 8-8 Performance of Proposed algorithm against [100]

 Prop vs. HM12 [100] vs. HM12

Sequence BD-RATE

(%)

TS (%) BD-RATE

(%)

TS (%)

Parkscene 7.43 59.36 2.34 30.1

Kimono1 4.48 62.33 0.2 38

BQTerrace 9.03 58.65 1.63 28.1

Basketball 8.38 59.04 1.07 40.2

Average 7.3 59.9 1.31 34.1

The visual difference between the reference transcoder and the proposed transcoder is shown in

Figure 8-6. The images on the left column indicate the reference video whereas the images on the

right indicate the video coded using the proposed algorithm. The perceptual quality results

indicate that there are no noticeable differences between the video sequences encoded using the

reference transcoder and the proposed transcoder.

113

Figure 8-6 Subjective video quality between the reference and proposed transcoder

Reference Transcoder Output Proposed Transcoder Output

114

8.4 Discussions

The complete algorithm is evaluated in this section. The MV variance based algorithm mainly

targets to exploit the temporal information for developing a video transcoding algorithm. The MB

residual based mode merge algorithm mainly uses the spatial information for developing the mode

merge algorithm. These two algorithms mainly target merging blocks recursively to form larger

blocks. These mainly target the coding depths of 0 and 1. The conditional probability based mode

mapping algorithm mainly maps the H.264 block sizes to HEVC block sizes at coding depths of

2 and 3. The MV variance based algorithm is used as the starting point because of the higher

computational savings achieved. The MB residual based mode merge algorithm is used on top of

the MV variance algorithm to improve on the time savings. The conditional probability based

mode mapping algorithm is used for coding depths of 2 and 3.

The performance of the algorithm is compared against three different algorithms in Table 8-6 to

Table 8-8. The proposed H.264 to HEVC video transcoding solution outperforms the state-of-

art video transcoding algorithms by achieving significantly higher computational complexity

savings. Comparison of the perceptual quality of the encoded videos using the proposed solution

does not show any visual degradation.

The main advantages and disadvantages of the proposed solution are listed below

Advantages

• The proposed algorithm considers spatial and temporal information and sequence

complexities to make it a robust algorithm to perform well for a large set of natural video

sequences

• The overall algorithm re-uses block and MB level information from H.264 decoder, and

not re-using the coefficient values. This reduces the number of data reads for H.264

information.

Disadvantages

• The algorithm currently targets IPPP sequence for incoming H.264 videos. The algorithm

can be improved further by considering H.264 B pictures as well. In the case of a B

pictures, the data from the backward and forward reference frames need to be considered

before re-using it for the HEVC encoding stage.

• The algorithm currently uses the low delay configuration where the reference picture is

the previous I or P picture in the decode order. The solution can be more suitable for

practical applications if multiple reference pictures are used.

115

8.5 Conclusion

The complete H.264 to HEVC video transcoding solution includes the three algorithms proposed

in Chapter 5,6 and 7. Each of the algorithms address the short comings of the other algorithms

with the intention of making the proposed solution work for different kinds of video sequences.

Overall the proposed solution provides a computational complexity savings of 61.5 percent with

the video quality loss of around -0.09 dB. This is a significant reduction in computational

complexity of H.264 to HEVC video transcoding.

116

PART THREE: FUTURE WORK AND

CONCLUSIONS

117

9 CONCLUSION

9.1 Introduction

This chapter summarises the main contributions of this work. The algorithms presented in this

work and the experimental results obtained are critically reviewed. The advantages and

disadvantages of each of the algorithms are discussed. The conclusion of the thesis is provided

by summarising each of the objectives achieved, emphasizing its relevance towards the research

problem. Future directions related to the main findings of this research and general video

transcoding are also indicated.

9.2 Main Developments and Results

The aim of this work is to develop low complexity algorithms for H.264/AVC to HEVC Video

Transcoding, which achieves significant computational complexity savings while maintaining

good Rate-Distortional performance.

The significant contributions of this work are the three algorithms developed, which have been

presented in the following chapters:

Chapter 5 – MV variance based mode merge algorithm

Chapter 6 – Conditional Probability based mode mapping algorithm

Chapter 7 – MB Residual based mode merge algorithm

Chapter 8 – Low complexity H.264 to HEVC video transcoding solution

9.3 Conclusion

Low complexity video compression is one of the most important areas currently, because of the

number of video applications. With the advent of smart phones and smart devices, it is even more

important to develop low complexity algorithms as these mobile devices have power constraints.

With the diverse kind of devices, it is very important for dynamic adaption of video to cater for

various device and network capabilities. Considering that H.264 is the most common video

standard for the last 15 years, there is a large amount of video content available in H.264 format.

Going forward, there will be a need to convert this content into HEVC and other newer formats

for better compression efficiency.

To address this problem, many video transcoding solutions have been developed to transcode

from H.264 video format to HVC format. They do achieve good computation complexity savings

118

without much loss in video quality. As this is a very new area of research, there is scope to develop

new algorithms and improve on the computational complexity savings achieved. The new

algorithms developed should be computationally fast and have negligible loss in video quality

comparable to other state-of-the-art algorithms. This is achieved by considering both the spatial

and temporal information from the H.264 decoder, and developing an algorithm based on a hybrid

approach of starting with 16×16 block sizes and trying to merge to form larger blocks and split to

form smaller block sizes using two different algorithms.

The research work has been achieved using a preliminary study work and a list of key objectives

as described in Chapter 1. Each of these objectives have been achieved successfully. A brief

summary of each of these is provided below.

Objective 1: Study of the existing state-of-the-art video transcoding algorithms

available in literature. This also involves a critical analysis with an evaluation of

their performance.

During the preliminary stages of this research, understanding of the basics of video compression

and a comprehensive literature review of the existing video transcoding algorithms was carried

out. The main intention was to gain background knowledge in video compression, and study the

various algorithms developed in this area, critically analyse them and evaluate their performance.

The background knowledge obtained, and the review of video transcoding algorithms are

presented in chapter 2 and chapter 3. The experimental setup including but not limited to the video

sequences used for testing, the metrics used for video quality and computational complexity

measurements, the encoder settings used across both H.264 and HEVC in all these research works

were identified. This was very useful to define the methodology for this research work as

explained in chapter 4.

Objective 2: Development of a novel low complexity video transcoding algorithm

based on MV variances.

The first step to the development of the low complexity video transcoding algorithm is the

development of a H.264 to HEVC transcoding solution based on MV variances. The local MV

variances of the H.264 blocks are used for the merge/non-merge decision to form larger blocks in

HEVC. The algorithm employs a bottom up approach starting at the block size of 16×16 and can

form a maximum block size of 64×64.

The second part of this objective involved merging of 16×16 H.264 blocks to form larger blocks

in HEVC. This algorithm optimises the mode prediction for coding depths of 0 and 1. This does

not optimise the mode prediction process of blocks smaller than 16×16. Hence, there is scope to

reduce the computational complexity of the algorithm further by targeting blocks smaller than

119

16×16. The conditional probability based mode mapping algorithm models the HEVC block

mode as a function of the HEVC and H.264 QPs, and H.264 block mode. The results show the

conditional probability based algorithm performs better than directly re-using the H.264 modes

for HEVC, in terms of the video quality achieved. This proves the initial hypothesis that directly

reusing the H.264 modes for coding depths of 2 and 3 is not the best approach.

The results indicate that the computational complexity of the HEVC encoding process is reduced

by more than 50% with around -0.08 dB loss in Rate-Distortion performance.

Objective 3: Develop a MB residual based mode merge algorithm to improve the

video transcoding algorithm developed in Objective 2

The MV variance based mode merge algorithm developed as part of Objective 2 is mainly

dependent on MV variances which is a measure of temporal information. This algorithm achieves

very good performance in terms of complexity savings and video quality. However, the algorithm

will not perform very well for sequences which have very fine texture details. The higher amount

of texture details will get translated as higher number of residual bits. In such a case there is a

need to develop an algorithm which takes into consideration the texture content as well. Hence

the algorithm developed in Objective 3 was further improved by developing a content adaptive

model based on H.264 MB residual bits. This further improved the time savings by around 10%

with negligible loss in video quality. The gain seems to be less, as this algorithm is applied after

the MV variance algorithm, hence it can only merge the blocks which have not been merged by

the MV variance algorithm. If this algorithm is used independently, it achieves a computational

complexity reduction of around 46% with -0.065 dB loss in Rate-Distortion performance.

Objective 4: Present the developed algorithms as a complete solution

The MV variance based mode merge algorithm and the MB residual based mode merge algorithm

are mainly targeted at merging the 16×16 blocks from H.264 to form larger sized blocks in HEVC.

These mainly target coding depths of 0 and 1. The conditional probability based mode mapping

algorithm is mainly targeted for coding depths 2 and 3. When all the algorithms are integrated,

there is a time saving of 61.5 % with a -0.09dB loss in video quality. Higher time savings are

achieved with respect to H.264 to HEVC algorithms developed by other research works, with a

slightly higher video quality loss. But the video quality loss is not perceivable to the normal

human eye and does not degrade the user experience while watching the videos transcoded using

this algorithm.

120

The main contributions to the body of knowledge in video coding can be summarised as:

• Development of a novel MV variance based bottom up fast H.264 to HEVC video

transcoding solution. The proposed algorithm detects the regional homogeneity of the

video sequence based on MV variances and reduces the number of blocks evaluated for

mode prediction by the HEVC encoder. The main novelty of the algorithm is developing

a method to re-use the MV variance and block size data from H.264 for reducing the

computational complexity of HEVC encoding.

• Development of a novel conditional probability based mode mapping algorithm for video

transcoding. This algorithm is targeted for blocks not merged by the MV variance based

mode merge algorithm, hence it mainly targets HEVC coding depths of 2 and 3. The main

novelty of this algorithm is estimation of HEVC block modes using conditional

probability based models for the H.264 information.

• Development of a novel MB residual data based mode merge algorithm for H.264 to

HEVC transcoding. This also involved development of a spatiotemporal score to estimate

the regional activity factor of the region being processed in a video frame. Different

models are developed for different types of video content, and the bottom up merge

decision is based on the split/non-split output decision of the models. The main

contribution of this algorithm is modelling the thresholds for different kinds of video

sequences and using it for fast H.264 to HEVC video transcoding.

The proposed video transcoding algorithms are based on firm theoretical foundations. The

estimation of the most probable HEVC block modes using H.264 information is based on logical,

inductive, deductive and analogical inferences. The formulated hypotheses have been

corroborated by extensive experimental simulation. The developed algorithms have been tested

for different kinds of video sequences. The developed algorithms can be easily replicated, tested,

modified and critically analysed by other researchers.

Novel contributions of this work may be used in application such as supporting legacy formats in

new smart devices, internet based multimedia messaging services in smart devices which use

specific video formats, migration of H.264 video content to HEVC, cloud computing based video

transcoding applications, and to support very high quality video over constrained networking

bandwidths. Based on the major issues covered in this thesis, it can be concluded that this thesis

work has given rise to low complexity algorithms for H.264 to HEVC video transcoding with

negligible loss in video quality.

121

9.4 Future Directions

The future directions related to this research work and the general directions in the field of video

transcoding are presented in the following sections.

9.4.1 Future direction related to Proposed Algorithm

This section presents the future directions aimed at improving the developed algorithm to achieve

better performance in terms of computational complexity and video quality. They are described

below.

1. The proposed video transcoding algorithm mainly targets to optimize the inter frame

prediction in HEVC encoding. This is of utmost importance as predominantly most of the

video is encoded in the form of predictive frame to exploit the temporal redundancies.

Hence optimising inter frame prediction is the best way to reduce the HEVC encoding

complexity. The computational complexity can be further increased by optimizing the

intra predicted blocks and as well as intra frames. This is especially important in some

applications such as medical imaging where the video content is encoded as high

resolution intra frames.

2. As in any video transcoding algorithm, the video quality is compromised to reduce the

computational complexity in the proposed algorithm as well. The reduction in

computational complexity is a trade-off against the video quality. There are different use

cases which might need different levels of video quality and reduction in computational

complexity. Hence there is a need to manage the Quality of Services (QoS) requirements

of video transcoding in terms of computational complexity of the algorithm.

3. The conditional probability based mode mapping algorithm considers the Skip, 16×16,

16×8, 8×16 and 8×8 block sizes for modelling. The sub MB partitions in H.264 are not

modelled. This is to keep the permutation of mode mapping models between the input

H.264 modes and output HEVC modes manageable. This would basically mean 8×4 and

4×8 partitions are not considered, as HEVC does not support 4×4 Inter PU size. The sub

MB partitions can be considered to improve the algorithm .

4. The MV variance based mode merge algorithm uses the local MV variance as a measure

of spatial homogeneity. The local MV variance are compared against fixed thresholds for

the split/non-split decision. This can be further improved by making the threshold as a

weighted function of the average MV variances for that particular frame. This would

make it more accurate for different kinds of content and can also be used for complexity

management as well.

122

5. The MB residual based mode merge algorithm currently categorizes the video sequences

into four different categories based on their spatial and temporal activities. It can be

improved further by a real time modelling stage. This would basically mean that the first

few frames of the sequence are used for developing the model, and the developed model

is applied for the rest of the frames.

6. Currently, the focus is mainly to reduce the number of block modes for performing

motion estimation and performing full motion estimation at these limited block sizes. The

Motion Vectors obtained in H.264 decoding process can be used to further optimise the

MV prediction algorithm in HEVC, by reducing the number of searches.

7. In the proposed video transcoding algorithm, both the spatial and temporal information

from the H.264 decoder is re-used to reduce the computational complexity of HEVC

encoding. This basically assumes that there is correlation between the current frame and

the previous frame. This may not always be the case.

For example, consider the following scenarios: i) In the case of a movie video, there is a

possibility of a scene change ii) In a synthetic video sequence, there may not be much

correlation between successive frames iii) In an erroneous H.264 stream, the decoded

data may be incomplete or inaccurate.

There is a need to make the algorithm smarter to handle these scenarios. It is quite

possible to have a detection algorithm to detect these scenarios and modify the developed

algorithms to predict the HEVC modes based on either spatial or temporal information

only. For example, if there is an error in the H.264 stream at a particular frame, there is a

need for the HEVC encoder to only consider the temporal data for that particular frame.

And similarly, for the next frame, the HEVC encoder should only consider the spatial

data.

9.4.2 General Directions for Video Transcoding

This section suggests some of the general directions in the field of video coding

1. Currently the developed video transcoding algorithms uses the information extracted

from the H.264 decoder to estimate the spatial and temporal complexity of the video

sequence. This is used to reduce the complexity of the subsequent HEVC encoding stage

of video transcoding. The focus so far is to remove the spatial and temporal redundancies.

The algorithm can be further optimized to remove the perceptual redundancies. This

would include deriving perceptual indicators using the H.264 decoded information. The

perceptual indicators could be used to further reduce the computational complexity of the

HEVC encoding stage.

123

2. There are research works which use machine learning algorithms to perform video

transcoding. The use of machine learning algorithms for video transcoding is increasing.

The machine learning based video transcoding algorithms provide higher time savings

compared to traditional machine learning algorithms. Also, there is a lot of scope to use

deep learning concepts for developing video transcoding algorithms.

3. As the video content can be converted to many new video formats such as HEVC, VP9,

and H.266, there is a need to design a adaptive video transcoding solution which can cater

to different combinations of source and target video formats.

4. There is a lot of scope for hardware implementation of H.264 to HEVC video transcoder.

124

REFERENCES

[1] ISO/IEC 14496-10 and ITU-T Rec. H.264, Advanced Video Coding, 2003.

[2] ISO/IEC 23008-2 MPEG-H Part 2 and ITU-T Rec. H.265, High Efficiency Video Coding,

April, 2013.

[3] Jens-Rainer Ohm, Gary J. Sullivan, Heiko Schwarz, Thiow Keng Tan, and Thomas Wiegand,

"Comparison of the coding efficiency of video coding standards–including high efficiency

video coding (HEVC)," IEEE Transactions on Circuits and Systems for Video

Technology, Vol 22, No.12, 1649-1668, December 2012.

[4] C S Kannangara, "Complexity Management of H.264/AVC Video Compression", PhD

Thesis,The Robert Gordon University, October 2006.

[5] Frank Bossen, Benjamin Bross, Karsten Suhring, and David Flynn, "HEVC complexity and

implementation analysis," IEEE Transactions on Circuits and Systems for Video

Technology, Vol 22, No.12, 1649-1668, December 2012.

[6] G.J.Sullivan, J.Ohm, W. J Han, and T.Wiegand, “Overview of the high efficiency video

coding (HEVC) standard,” IEEE Transactions on Circuits and Systems for Video

Technology, Vol 22, No.12, 1649-1668, December 2012.

[7] H.264/AVC Reference JM Software 18.5 [Online] Available:

http://iphome.hhi.de/suehring/tml/download/

[8] HM Reference Software 12.0 [Online] Available:

https://hevc.hhi.fraunhofer.de/svn/svn_HEVCSoftware/

[9] ISO. "ISO/IEC 14496-2:2004 - Information technology -- Coding of audio-visual objects --

Part 2: Visual"

[10] Akshay Nagaraghatta, Yafan Zhao, Grant Maxwell, Sampath Kannangara "Fast

 H.264/AVC to HEVC transcoding using mode merging and mode mapping," 2015 IEEE

 5th International Conference on Consumer Electronics, Sept 2015, Berlin

125

[11] ITU-T (1988). "H.261: Video codec for audiovisual services at p x 384 kbit/s

 Recommendation H.261 (11/88)"

[12] ISO. "ISO/IEC 11172-2:1993 - Information technology -- Coding of moving pictures and

 associated audio for digital storage media at up to about 1,5 Mbit/s -- Part 2: Video"

[13] ISO/IEC 13818-2 MPEG2 Video, "Information technology: generic coding of moving

 pictures and associated audio information: Video," 1995.

[14] ITU-T. "H.263: Video coding for low bit rate communication," 1998.

[15] ISO. "ISO/IEC 14496-2:2004 - Information technology -- Coding of audio-visual objects

 -- Part 2: Visual"

[16] ISO/IEC 23008-2 MPEG-H Part 2 and ITU-T Rec. H.265, High Efficiency Video

 Coding, April 2013.

[17] "VP8 Bitstream Specification License". WebM Project. Retrieved 30 January 2012.

[18] “VP9 Bitstream & Decoding Process Specification" (PDF). 2016-03-31. Retrieved 2016

 11-09

[19] "AV1 Bitstream and Decoding Process Specification". Alliance for Open Media. June

 2018.

[20] Anthony T.S. Ho and Shujun Li, “Handbook of Digital forensics of Multimedia Data and

 devices” John Wiley & Sons, 2015, pp. 137

[21] ITU BT.601: Studio encoding parameters of digital television for standard 4:3 and wide

 screen 16:9 aspect ratios

[22] ITU-R BT.709-6 Parameter values for the HDTV standards for production and

 international programme exchange

[23] K. R. Rao and P. Yip Discrete Cosine Transform: Algorithms, advantages, applications.

 San Diego, CA: Academic Press, 1990

126

[24] R. C. Gonzalez and R. E. Woods, "Error Free Compression," in Digital Image Processing.

 New Jersey: Prentice Hall, 2002, pp. 440-459.

[25] Joint Video Team (JVT) of ISO/IEC MPEG & ITU T VCEG Doc. JVT-L047d 12, "Draft

 Text of H.2 64/AVC Fidelity Range Extensions Amendment" 12th Meeting: Redmond,

 WA, USA, 17-23 July 2004.

[26] ITU T Rec. H. 264 I ISO/EEC 14496 10 version 4, January 2005.

[27] G. J. Sullivan, P. Topiwala, and A. Luthra, "The H. 264/AVC Advanced Video Coding

 Standard: Overview and Introduction to the Fidelity Range Extensions, " SPIE Int. Conf.

 Applications of Digital Image Processing, Denver, CO, August 2004.

[28] Joint Video Team (JVT) of ISO/IEC MPEG & ITU T VCEG Doc. JVT-0013,

 "Performance Improved4 :4 :4 Coding for MPEG4"Part10/11.26" 41, 5th Meeting: Busan,

 KR, 16-22 April 2005.

[29] Joint Video Team (JVT) of ISO/IEC MPEG & ITU T VCEG Doc. JVT-P017,

 "Advanced4 :4 :4 Profile for MPEG4-Part-10/H2.6 4," 16th Meeting: Poznan,l 'L, 24-29

 July 2005.

[30] A. Ortega and K. Ramchandran, "Rate-distortion methods for image and video

 compression," in IEEE Signal Processing Magazine, vol. 15, no. 6, November 1998, pp.

 23-50.

[31] A. Vetro, C. Christopoulos, and H. Sun, “Video transcoding architectures and techniques:

 An overview,” IEEE Signal Processing Magazine, vol. 20, no. 2, pp. 18–29, March

 2003. J. Xin, C.-W. Lin, and M.-T. Sun, “Digital video transcoding,” Proceedings of

 the IEEE, vol. 93, no. 1, pp. 84–97, January 2005.

[32] P. Kunzelmann and H. Kalva, “Reduced complexity H.264 to MPEG- 2 transcoder,”

 International Conference on Consumer Electronics (ICCE 2007), Jan 2007, pp. 1

 2.

127

[33] T. Shanableh and M. Ghanbari, “Heterogeneous video transcoding to lower spatio

 temporal resolutions and different encoding formats,” IEEE Transactions on

 Multimedia, vol. 2, pp. 101–110, June 2000.

[34] P. Assuncao and M. Ghanbari, “Transcoding of MPEG-2 video in the frequency domain,”

 in IEEE International Conference on Acoustics, Speech, and Signal Processing

 (ICASSP 1997), vol. 4, April 1997, pp. 2633–2636 vol.4.

[35] H. Sun, W. Kwok, and J. Zdepski, “Architectures for MPEG compressed bitstream

 scaling,” IEEE Transactions on Circuits and Systems for Video Technology, vol. 6,

 no. 2, pp. 191–199, April 1996

[36] T.-K. Lee, C.-H. Fu, Y.-L. Chan, and W.-C. Siu, “A new motion vector composition

 algorithm for fast-forward video playback in H.264,” in IEEE International

 Symposium on Circuits and Systems (ISCAS 2010), June 2010, pp. 3649–3652.

[37] H. Shu and L.-P. Chau, “The realization of arbitrary downsizing video transcoding,”

 IEEE Transactions on Circuits and Systems for Video Technology, vol. 16, no. 4,

 pp. 540–546, April 2006.

[38] Dong Zhang, Bin Li, Jizheng Xu, and Houqiang Li, “Fast Transcoding from H. 264 AVC

 to High Efficiency Video Coding,” 2012 IEEE International Conference on

 Multimedia and Expo (ICME), Melbourne, Australia, July 2012.

[39] E. Peixoto, T. Shanableh, and E. Izquierdo, “H.264/AVC to HEVC Video Transcoder

 Based on Dynamic Thresholding and Content Modeling,” IEEE Transactions on Circuits

 and Systems for Video Technology, pp-99-112, Vol. 24, No.1, January 2014.

[40] Tong Shen, Yao Lu, Ziyu Wen, Linxi Zou, Yucong Chen, and Jiangtao Wen "Ultra-Fast

 H. 264/AVC to HEVC Transcoder," 2013 Data Compression Conference, Snowbird,

 UT, USA, March 2013.

[41] T. Shanableh, E. Peixoto, and E. Izquierdo, “MPEG-2 to HEVC video transcoding with

 content-based modeling,” IEEE Transactions on Circuits and Systems for Video

 Technology, Vol. PP, No. 99, pp. 1–1, 2013.

128

[42] G. Fernandez-Escribano, P. Cuenca, L. O. Barbosa, and H. Kalva, “Very low complexity

 MPEG-2 to H.264 transcoding using machine learning,” in ACM International

 Conference on Multimedia (ACM Multimedia 2006). ACM, 2006, pp. 931–940.

[43] Gerardo Fernández, Hari Kalva, Pedro Cuenca, Luis Orozco-Barbosa, and Antonio

 Garrido, "A Fast MB Mode Decision Algorithm for MPEG-2 to H.264 P-Frame

 Transcoding," IEEE Transactions on Circuits And Systems For Video Technology,

 Vol. 18, No. 2, February 2008

[44] Peiyin Xing, Yonghong Tian, Xianguo Zhang, Yaowei Wang, Tiejun Huang, A Coding

 Unit Classification Based AVC-to-HEVC Transcoding with Background Modeling for

 Surveillance Videos, Proc. 2013 IEEE International Conference on Visual

 Communication and Image Processing, Kuching, Malaysia, Nov 2013.

[45] Xiaoan Lu, Alexis Michael Tourapis, Peng Yin and Jill Boyce, “Fast Mode Decision and

 Motion Estimation for H.264 with a Focus on MPEG-2/H.264 Transcoding”, IEEE

 Internationa Symposium on Circuits and Systems (ICSAS), Kobe, Japan , May 2005

[46] X. Jing, W. C. Siu, L. P. Chau and A. G. Constantinides, Efficient inter mode decision

 for H.263 to H. 264 video transcoding using SVMs, Proc. of IEEE International

 Conference on Circuits and Systems, pp. 2349-2352, 2009.

[47] Zhaoqing Pan, Sam Kwong, Ming-Ting Sun, Jianjun Lei, “Early Merge Mode Decision

 Based on Motion Estimation and Hierarchical Depth Correlation for HEVC” TBC 60(2):

 405-412 (2014)

[48] Z. Zhou, S. Sun, S. Lei, M. T. Sun, “Motion information and coding mode reuse for

 MPEG-2 to H.264 transcoding,” Proceeding of IEEE International Symposium on

 Circuits and Systems, 2005, vol. 2, pp. 1230-1233, May 2005.

[49] Guilherme Correa, Luciano Agostini, Luis A. da Silva Cruz, “Fast H.264/AVC to HEVC

 Transcoder based on Data Mining and Decision Trees,” IEEE International Symposium

 on Circuits and Systems (ISCAS), May 2016, Montreal, Canada

[50] Antonio Jesús Díaz-Honrubia, José Luis Martínez, Pedro Cuenca, José Antonio Gamez,

 and José Miguel Puerta, “Adaptive Fast Quadtree Level Decision Algorithm for H.264 to

129

 HEVC Video Transcoding,” IEEE Transactions on Circuits and Systems for Video

 Technology, Vol.26, pp154-168, January 2016.

[51] Zhiru Shi, Xiaoyun Zhang, Zhiyong Gao, “Effective H.264/AVC to HEVC transcoder

 based on prediction homogeneity,” VCIP 2014, Valletta, Malta, Dec 2014.

[52] Xingang Liu, Wei Zhu, and Kook-Yeol Yoo, “Fast Inter Mode Decision Algorithm Based

 on MB Activity for MPEG-2 to H.264/AVC Transcoding,” International Conference on

 Computational Science and Engineering 2009

[53] Enrique de la Torre, Rafael Rodriguez-Sanchez, “Fast Video Transcoding from HEVC to

 VP9,” IEEE Transactions on Consumer Electronics, Vol 61, August 2015

[54] P. Assuncao and M. Ghanbari, “Transcoding of MPEG-2 video in the frequency domain,”

 in IEEE International Conference on Acoustics, Speech, and Signal Processing

 (ICASSP 1997), vol. 4, April 1997, pp. 2633–2636 vol.4.

[55] C. J. v. d. B. Lambrecht and O. Verscheure, "Perceptual Quality Measure using a Spatio

 Temporal Model of the Human Visual System," presented at SPIE, San Jose, CA, 1996.

[56] K. T. Tan and M. Ghanbari, "A Multi-Metric Objective Picture-Quality Measurement

 Model for MPEG Video," IEEE Trans. Circuits and System. Video Technology, vol. 10,

 No. 7, pp. 1208-1213, October 2000.

[57] G. Bjontegaard, “Calculation of average PSNR differences between RD-curves (VCEG

 M33),” VCEG Meeting (ITU-T SG16 Q.6), Austin, Texas, USA, Apr. 2001.

[58] S.Zhiru, W.A.C.Fernando, and A.M.Kondoz, “Fast inter mode decision using residual

 homogeneity in H.264/AVC,” in Acoustics, Speech and Signal Processing (ICASSP),

 2013 IEEE International Conference on 2013, pp 1384-1388.

[59] Peixoto, E., Izquierdo, E., “A complexity-scalable transcoder from H.264/AVC to the

 new HEVC codec,” Proc. 19th IEEE International Conference on Image Processing

 (ICIP), pp.737-740, Sept. 30 2012-Oct.3 2012

130

[60] Zhiru Shi, Xiaoyun Zhang, Zhiyong Gao, “Effective H.264/AVC to HEVC transcoder

 based on prediction homogeneity,” VCIP 2014, Valletta, Malta, Dec 2014.

[61] C. J. v. d. B. Lambrecht and O. Verscheure, "Perceptual Quality Measure using a Spatio

 Temporal Model of the Human Visual System," presented at SPIE, San Jose, CA, 1996.

[62] Eduardo Peixoto, Tamer Shanableh, and Ebroul Izquierdo, "H. 264/AVC to HEVC Video

 Transcoder based on Dynamic Thresholding and Content Modeling," IEEE Transactions

 on Circuits and Systems for Video Technology, Vol 24, No.1, 99-112, January 2014.

[63] Tong Shen, Yao Lu, Ziyu Wen, Linxi Zou, Yucong Chen, and Jiangtao Wen "Ultra Fast

 H. 264/AVC to HEVC Transcoder," 2013 Data Compression Conference, Snowbird, UT,

 USA, March 2013.

[64] Gerardo Fernandez-Escribano, Hari Kalva, Pedro Cuenca, Luis Orozco-Barbosa, Antonio

 Garrido “A Fast MB Mode decision Algorithm for MPEG2 to H.264 P frame

 Transcoding” IEEE Transactions on Circuits and Systems for Video Technology, Lov 18,

 No 2, Feb 2008

[65] Subjective Video Quality Assessment Methods for Multimedia Applications, document

 ITU-R P.910, 1999.

[66] ITU-T SG16 Q6 and ISO/IEC JTC1/SC29/WG11 (2010) Joint call for proposals on video

 compression technology. ITU-T SG16 Q6 document VCEG-AM91 and ISO/IEC

 JTC1/SC29/WG11 document N11113, Kyoto, 22 Jan. 2010

[67] Sullivan GJ, Ohm J-R (2010) Recent developments in standardization of High Efficiency

 Video Coding (HEVC). In: Proc. SPIE. 7798, Applications of Digital Image Processing

 XXXIII, no. 77980V, Aug. 2010

[68] Wiegand T, Ohm J-R, Sullivan GJ, Han W-J, Joshi R, Tan TK, Ugur K (2010) Special

 section on the joint call for proposals on High Efficiency Video Coding (HEVC)

 standardization. IEEE Transactions on Circuits and Systems for Video Technology

 2012:1661–1666

131

[69] S. SaponaraC, . Blanch,K . Denolf, and J. Bormans," The JVT advanced video coding

 standard: Complexity and performance analysis on a tool-by-tool basis, " presented at

 IEEE Packet Video 2003, Nantes, France, April 2003.

[70] J. Ostermann, J. Bormans, P. List, D. Marpe, M. Narroschke, F. Pereira, T.

 Stockhammera, nd T. Weidi, "Video Coding with H.2 64/AVC: Tools, Performance and

 Complexity, " in IEEE Circuits and Systems Magazine, vol. 4, 2004, pp. 7-28.

[71] T. Wiegand, G. J. Sullivan, G. Bjontegaard, and A. Luthra, "Overview of the H.264/AVC

 video coding standard, " IEEE Trans. Circuits and System. Video Technology, ol. 13, p

 p. 560-576, July 2003.

[72] D. Marpe, H. Schwarz, and T. Wiegand, "Context-Based Adaptive Binary Arithmatic

 Coding in the H. 264/AVC Video Compression Standard, " IEEE Trans. Circuits and

 System. Video Technology, vol. 13, No. 7, pp. 620-636, July 2003.

[73] P. List, A. Joch, J. Lainema, G. Bjontegaard, and M. Karczewicz, "Adaptive Deblocking

 filter, " IEEE Transactions on Circuits and Systems for Video Technology, vol. 13, No.

 7, pp. 614-619, July 2003.

[74] Sullivan GJ, Boyce JM, Chen Y, Ohm J-R, Segall CA, Vetro A (2013) Standardized

 extensions of High Efficiency Video Coding (HEVC). IEEE J Sel Top Signal Process

 7(6):1001–1016

[75] Chi CC, Alvarez-Mesa M, Juurlink B, Clare G, Henry F, Pateux S, Schierl T (2012)

 Parallel scalability and efficiency of HEVC parallelization approaches. IEEE

 Transactions on Circuits and Systems for Video Technology 22:1827–1838

[76] Henry F, Pateux S (2011) Wavefront parallel processing, Joint Collaborative Team on

 Video Coding (JCT-VC), Document JCTVC-E196, Geneva, Mar. 2011

[77] Sullivan GJ, Wiegand T (1998) Rate-distortion optimization for video compression. IEEE

 Signal Process Mag 15:74–90

132

[78] Chen P, Ye Y, Karczewicz M (2008) Video coding using extended block sizes. ITU-T

 SG16 Q6 Video Coding Experts Group (VCEG), Document VCEG- AJ23, San Diego,

 Oct. 2008

[79] Ma S, Kuo C-CJ (2007) High-definition video coding with super-macroblocks. In:

 Proceedings of visual communications and image processing, vol. 6508

[80] Misra K, Segall A, Horowitz M, Xu S, Fuldseth A, Zhou M (2013) An overview of tiles

 in HEVC. IEEE J Sel Topics Signal Process 7:969–977

[81] Schwarz H, Marpe D, Wiegand T (2007) Overview of the scalable video coding extension

 of the H.264/AVC standard. IEEE Transactions on Circuits and Systems for Video

 Technology 17:1103–1120

[82] Viéron J, Thiesse J-M (2012) On tiles and wavefront tools for parallelism, Joint

 Collaborative Team on Video Coding (JCT-VC), Document JCTVC-I0198, Geneva,

 Apr.-May 2012

[83] Han WJ, Min J, Kim IK, Alshina E, Alshin A, Lee T, Chen J, Seregin V, Lee S, Hong

 YM, Cheon MS, Shlyakhov N, McCann K, Davies T, Park JH (2010) Improved video

 compression efficiency through flexible unit representation and corresponding extension

 of coding tools. IEEE Transactions on Circuits and Systems for Video Technology

 20(12):1709–1720

[84] Helle P, Oudin S, Bross B,Marpe D, Bici M, Ugur K, Jung J, Clare G,Wiegand T (2012)

 Block merging for quadtree-based partitioning in HEVC. IEEE Transactions on Circuits

 and Systems for Video Technology 22(12):1720–1731

[85] Zhou M, Gao W, Jiang M, Yu H (2012) HEVC lossless coding and improvements. IEEE

 Transactions on Circuits and Systems for Video Technology 22(12):1839–1843

[86] Fu C-M, Chen C-Y, Huang Y-W, Lei S (2011) Sample adaptive offset for HEVC. In:

 IEEE 13th International Workshop on Multimedia Signal Processing (MMSP) 2011

133

[87] McCann K, Bross B, HanWJ, Kim IK, Sugimoto K, Sullivan GJ (2013), High Efficiency

 Video Coding (HEVC) Test Model 13 (HM 13) Encoder Description, Joint Collaborative

 Team on Video Coding (JCT-VC), Document JCTVC-O1002, Geneva, Oct. 2013

[88] "VC-1 Technical Overview". Windows Media. Microsoft. 2006. Retrieved October

 5,2006

[89] FFmpeg.org (2003) "FFmpeg 0.4.8 Documentation - Video Codecs". Archived from the

 original on December 7, 2003.

[90] Matroska Format Specifications, Matroska.org

[91] International Organization for Standardization (2003). "MPEG-4 Part 14: MP4 file

 format; ISO/IEC 14496-14:2003".

[92] AVI RIFF File Reference, https://docs.microsoft.com

[93] Visual Studio [online]. Available: https://www.visualstudio.com/en-gb

[94] FFmpeg [online]. Available: https://www.ffmpeg.org/

[95] Mathworks Matlab [online] Available: https://www.mathworks.com/

[96] Elecard Stream Eye Video analyser [online] Available: https://www.elecard.com/

[97] Zond Analyser [online] Available: http://www.solveigmm.com/

[98] Codec Visa Analyser [online] Available: http://www.codecian.com/

[99] Vooya YUV viewer [online] Available: https://www.offminor.de/

[100] W. Jiang and Y. W. Chen, "Low-complexity transcoding from H.264 to HEVC based on

 motion vector clustering," Electronics Letters, vol. 49, pp. 1224-1226, 2013.

http://www.microsoft.com/windows/windowsmedia/howto/articles/vc1techoverview.aspx
https://docs.microsoft.com/
https://www.visualstudio.com/en-gb
https://www.ffmpeg.org/
https://www.mathworks.com/
https://www.elecard.com/
http://www.solveigmm.com/
http://www.codecian.com/
https://www.offminor.de/

134

[101] E. Peixoto, B. Macchiavello, E. M. Hung, A. Zaghetto, T. Shanableh, E. Izquierdo, “An

 H.264/AVC to HEVC Video Transcoder based on Mode Mapping,” Proc. IEEE

 International Conference on Image Processing (ICIP), pp. 1972-1976, 2013.

[102] WEKA data mining tool [online] Available: https://www.cs.waikato.ac.nz/ml/weka/

[103] Ahmed, N.; Natarajan, T.; Rao, K. R. (January 1974), "Discrete Cosine Transform", IEEE

 Transactions on Computers, C-23 (1): pp. 90–93.

[104] BT 709 https://en.wikipedia.org/wiki/Rec._709

[105] N17195, Joint Call for Proposals on Video Compression with Capability beyond HEVC

 https://mpeg.chiariglione.org/

[106] M. Gallant, G. Cote, and F. Kossentini, "An Efficient Computation-constrained Block

 Based Motion Estimation Algorithm for Low Bit Rate Video Coding, "IEEE Trans.

 Image Processing, vol. 8, pp. 1816-1823, December 1999.

[107] S. Mietens, "Motion Estimation, " in Complexity Scalable MPEG Encoding. Eindhoven:

 Technische Universitiet Eindhoven, pp. 71-85, 2004.

[108] Vivienne Sze, Madhukar Budagavi, Gary J Sullivan, High Efficiency Video Coding

 (HEVC) Algorithms and Architectures, Springer, pp. 8, 2014.

[109] Iain E. Richardson, The H.264 Advanced Compression Standard, 2nd Edition, John Wiley

and Sons, pp. 274, 2010.

[110] ISO/IEC 14496-10 and ITU-T Rec. H.264, Advanced Video Coding, pp. 2, 2003.

[111] Ze-Nian Li and Mark S Drew, Fundamentals of Multimedia (2004) Prentice Hall, pp.

199-200, 2004.

https://www.cs.waikato.ac.nz/ml/weka/
https://en.wikipedia.org/wiki/N._Ahmed
https://en.wikipedia.org/wiki/Rec._709
https://mpeg.chiariglione.org/

135

BIBLIOGRAPHY

[1] Iain E Richardson, H.264 and MPEG-4 Video Compression: Video Coding for Next-

generation Multimedia, 1st edition , John Wiley & Sons, 2003.

[2] Ze-Nian Li and Mark S Drew, Fundamentals of Multimedia (2004), Prentice Hall, 2004.

[3] Vivienne Sze, Madhukar Budagavi, Gary J Sullivan, High Efficiency Video Coding (HEVC)

Algorithms and Architectures, Springer, 2014.

[4] Iain E. Richardson, The H.264 Advanced Video Compression Standard, 2nd Edition, John

Wiley & Sons, 2010.

[5] Glenn Kennel, Colour and Mastering for Digital Cinema, Focal Press, Elsevier, 2007.

[6] R. W. G. Hunt, The Reproduction of Colour, 6th edition, Wiley–IS&T Series in Imaging

Science and Technology, John Wiley & Sons, 2004.

[7] C S Kannangara, "Complexity Management of H.264/AVC Video Compression", PhD

Thesis, Robert Gordon University, October 2006.

[8] Yafan Zhao, “Complexity Management for Video Encoders”, PhD Thesis, Robert Gordon

University, March 2004.

[9] Jayachandra Chilukamari, “A computational Model of Visual Attention”, PhD Thesis,

RobertGordon University, February 2017.

[10] Sandro Moiron, “Video Transcoding for Media Adaptation”, PhD Thesis, University of

 Essex, 2011.

[11] K. R. Rao and P. Yip Discrete Cosine Transform: Algorithms, advantages, applications.

 San Diego, CA: Academic Press, 1990.

136

[12] R. C. Gonzalez and R. E. Woods, Digital Image Processing. New Jersey: Prentice Hall,

 2002.

[13] R.G.Lyons, Understanding Digital Signal Processing, Third edition, Prentice Hall, 2011.

[14] Anthony T.S. Ho and Shujun Li, Handbook of Digital forensics of Multimedia Data and

 devices, John Wiley & Sons, 2015.

[15] K.R.Rao, Do Nyeon Kim, Jae Jeong Hwang, Video Coding Standards, Springer, 2014.

